WO2022247926A1 - 质量流量控制器及其流量控制方法 - Google Patents

质量流量控制器及其流量控制方法 Download PDF

Info

Publication number
WO2022247926A1
WO2022247926A1 PCT/CN2022/095493 CN2022095493W WO2022247926A1 WO 2022247926 A1 WO2022247926 A1 WO 2022247926A1 CN 2022095493 W CN2022095493 W CN 2022095493W WO 2022247926 A1 WO2022247926 A1 WO 2022247926A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
target
value
opening
regulating valve
Prior art date
Application number
PCT/CN2022/095493
Other languages
English (en)
French (fr)
Inventor
邓博文
牟昌华
邹义涛
Original Assignee
北京七星华创流量计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京七星华创流量计有限公司 filed Critical 北京七星华创流量计有限公司
Priority to EP22810650.6A priority Critical patent/EP4350465A1/en
Priority to JP2023573380A priority patent/JP2024520536A/ja
Priority to US18/562,942 priority patent/US20240231398A1/en
Publication of WO2022247926A1 publication Critical patent/WO2022247926A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/12Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with streamlined valve member around which the fluid flows when the valve is opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/54Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Definitions

  • the invention relates to the field of semiconductor process equipment, in particular to a mass flow controller and a flow control method of the mass flow controller.
  • Mass flow controllers are the core components of semiconductor process equipment and are widely used in semiconductor, photovoltaic, fuel cell, vacuum technology and other fields.
  • the mass flow controller usually includes a flow regulating valve and a flow detection device. While controlling the flow of fluid flowing through the mass flow controller by adjusting the opening of the flow regulating valve, the mass flow of the fluid is detected by the flow detection device. , can ensure the accuracy of flow rate control.
  • the flow detection device in the mass flow controller often uses a thermal flowmeter, that is, the thermal flowmeter is used to measure the mass flow of the fluid, and then the PID (Proportional Integral Differential (proportional integral differential) algorithm to adjust the opening of the flow regulating valve to achieve a stable flow.
  • the thermal flowmeter is used to measure the mass flow of the fluid
  • the PID Proportional Integral Differential (proportional integral differential) algorithm
  • mass flow controllers using thermal flowmeters require a long response time for the flow to reach a stable value, and cannot be used in fields that require high response time.
  • the present invention aims to provide a mass flow controller and a flow control method, the mass flow controller can realize fast response while ensuring flow control accuracy.
  • a mass flow controller wherein a fluid passage is provided, and a flow regulating valve is connected between the inlet and the outlet of the fluid passage, and it is characterized in that the mass flow
  • the controller also includes a control module, a flow sensor and a pressure sensor, wherein,
  • the flow sensor is arranged between the inlet and the flow regulating valve, and is used to detect the fluid flow value in the fluid passage;
  • the pressure sensor is arranged at the outlet for detecting the fluid pressure value in the fluid passage
  • the control module is used to enter the pressure feedback adjustment mode when the variation of the target flow value exceeds a preset threshold, and enter the flow feedback adjustment mode after the fluid flow value detected by the flow sensor meets the first stable condition, in,
  • the control module is used to calculate and obtain the opening adjustment amount of the flow regulating valve according to the fluid pressure value detected by the pressure sensor and the target pressure value corresponding to the target flow value in the pressure feedback regulation mode , and adjust the opening of the flow regulating valve according to the opening adjustment amount;
  • the control module is used for calculating and obtaining the opening adjustment amount of the flow regulating valve according to the fluid flow value detected by the flow sensor and the target flow value in the flow feedback adjustment mode, and according to the The opening adjustment amount adjusts the opening of the flow regulating valve.
  • control module is further configured to acquire the target opening degree of the flow regulating valve corresponding to the target flow value before entering the pressure feedback regulation mode, and adjust the flow regulating valve according to the target opening degree.
  • control module stores a plurality of flow setting values and opening degrees corresponding to each flow setting value
  • the control module is used to obtain the target opening corresponding to the target flow value through interpolation calculation based on the two flow setting values closest to the target flow value and their corresponding openings.
  • the flow regulating valve is a solenoid valve, and the opening corresponding to each of the flow setting values includes a rising opening and a falling opening;
  • the control module is used to calculate the target flow rate according to the two flow setting values closest to the target flow value and the corresponding rising openings by interpolation method when the target flow value increases.
  • the target opening degree corresponding to the target flow value is calculated by an interpolation method.
  • the flow sensor is a thermal flow sensor.
  • the first stable condition is: the difference between the maximum value and the minimum value of all the fluid flow values detected by the flow sensor within the first preset time is less than or equal to the first preset time. Set the difference;
  • the second stable condition is: a difference between a maximum value and a minimum value among all fluid pressure values detected by the pressure sensor within a second preset time is less than or equal to a second preset difference.
  • control module is further configured to enter the flow feedback adjustment mode when the variation of the target flow value does not exceed the preset threshold.
  • a flow control method of a mass flow controller is also provided, wherein the flow control method is applied to the above-mentioned mass flow controller provided by the present invention, and the flow control method includes:
  • the flow feedback adjustment mode is entered, and in the flow feedback adjustment mode, according to the fluid flow value detected by the flow sensor and the target flow value, the calculated The opening adjustment amount of the flow regulating valve is obtained, and the opening degree of the flow regulating valve is adjusted according to the opening adjustment amount.
  • the flow control method also includes:
  • the flow control method before entering the pressure feedback adjustment mode, the flow control method further includes:
  • the pressure feedback adjustment mode is entered.
  • the acquiring the target opening of the flow regulating valve corresponding to the target flow value includes:
  • the target opening degree corresponding to the target flow value is calculated by an interpolation method.
  • the flow regulating valve is a solenoid valve, and the opening corresponding to each flow setting value includes a rising opening and a falling opening;
  • the acquiring the target opening degree of the flow regulating valve corresponding to the target flow value includes:
  • the target flow value increases, according to the plurality of pre-stored flow setting values and the rising openings corresponding to each of the flow setting values, determine the two closest to the target flow value.
  • the set value of the flow rate and the corresponding rising opening thereof are calculated by an interpolation method to obtain the target opening corresponding to the target flow value;
  • the flow setting value and the corresponding descending opening are calculated by an interpolation method to obtain the target opening corresponding to the target flow value.
  • the technical solution of the mass flow controller and the flow control method provided by the present invention combines the pressure feedback adjustment mode with fast response speed and the flow feedback adjustment mode with high precision, that is, when the variation of the target flow value exceeds the preset threshold, First enter the pressure feedback adjustment mode, and make the opening of the flow regulating valve quickly approach the target opening through pressure feedback adjustment, then switch to the flow feedback adjustment mode, and accurately adjust the opening of the flow regulating valve through flow feedback adjustment.
  • the adjustment method of combining feedback and flow feedback can shorten the adjustment time for the opening of the flow regulating valve to gradually approach the target opening, thereby ensuring the accuracy of fluid flow regulation.
  • the response speed of the mass flow controller is improved.
  • Fig. 1 is a schematic structural diagram of a mass flow controller provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the functional structure of the control device in the mass flow controller provided by the embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a flow control method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a flow control method provided by another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a flow control method provided by another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a flow control method provided by another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a flow control method provided by another embodiment of the present invention.
  • Fig. 8 is a schematic flowchart of a flow control method provided by another embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a flow control method provided by another embodiment of the present invention.
  • Fig. 10 is a schematic diagram of curves corresponding to the flow setting value stored by the control device in the mass flow controller provided by the embodiment of the present invention and the opening degree of the flow regulating valve.
  • the inventors of the present invention have found through experimental research that the existing mass flow controllers usually have the problems of slow response speed and low flow regulation efficiency when the flow regulation is large, which is mainly caused by the characteristics of thermal flowmeters.
  • the principle of the thermal flowmeter to detect the flow is that when the fluid flows in the sensing tube, it detects the temperature of two different positions where the fluid flows through the sensing tube, which are the upstream temperature and the downstream temperature respectively, and there is a gap between them.
  • the temperature difference, and the temperature difference will increase with the increase of the fluid flow, based on this, the fluid flow can be detected by detecting the temperature difference.
  • the thermal flowmeter has the characteristics of high precision and high stability, it is limited by its inherent physical properties and long temperature sampling period. Influenced by the existing mass flow controller through the PID closed-loop control to make the flow rate reach a stable value, the response speed is relatively slow, and it is impossible to achieve a fast response.
  • a kind of mass flow controller is provided, as shown in Figure 1, wherein is provided with the fluid channel that is used to transfer fluid, the inlet of this fluid channel (being the mass flow controller in Figure 1 A flow regulating valve 200 is connected between the outlet (the right end of the mass flow controller in FIG. 1 ), and the mass flow controller also includes a control module 300 , a flow sensor 400 and a pressure sensor 500 .
  • the flow sensor 400 is arranged between the inlet of the above-mentioned fluid passage and the flow regulating valve 200, and is used to detect the flow value of the fluid (such as gas, liquid) in the fluid passage;
  • the pressure sensor 500 is arranged at the outlet of the above-mentioned fluid passage, It is used to detect the fluid pressure value in the fluid passage.
  • control module 300 is configured to enter the pressure feedback adjustment mode when the variation of the target flow value exceeds a preset threshold, and enter the flow feedback adjustment mode after the fluid flow value detected by the flow sensor satisfies the first stable condition. adjustment mode. in:
  • the control module 300 is used for calculating and obtaining the opening adjustment amount of the flow regulating valve 200 according to the fluid pressure value detected by the pressure sensor and the target pressure value corresponding to the target flow value in the pressure feedback adjustment mode, and according to the opening adjustment amount Adjust the opening degree of the flow regulating valve 200 (i.e. execute step S10 in FIG. 3);
  • the control module 300 is used to calculate and obtain the opening adjustment amount of the flow regulating valve 200 according to the fluid flow value detected by the flow sensor and the target flow value in the flow feedback adjustment mode, and adjust the flow regulating valve 200 according to the opening adjustment amount The opening degree (i.e. execute step S20 in FIG. 3).
  • the above target flow value is the actual target value that is expected to be achieved.
  • the target value can be set according to specific needs, and the change in the target flow value is the change when the target flow value is switched from the current set value to the new set value. quantity.
  • the target pressure value corresponding to the above target flow value is also preset and can be pre-stored in the control module 300 .
  • the opening adjustment amount of the flow regulating valve 200 is calculated and obtained, and according to The opening adjustment amount to adjust the opening of the flow regulating valve 200 may specifically include: according to the pressure sensor 500 in the downstream position of the flow regulating valve 200 (such as at the outlet of the fluid passage) periodically or in real time detected in the fluid passage
  • the fluid pressure value is continuously performed with the target pressure value corresponding to the target flow value.
  • the difference calculation is, for example, a PID (Proportion Integral Differential, proportional integral differential) algorithm, and then the opening adjustment amount obtained by each calculation is continuously adjusted.
  • other algorithms may also be used to calculate the obtained opening adjustment amount, which is not particularly limited in this embodiment of the present invention.
  • the opening adjustment amount of the flow regulating valve 200 is calculated and obtained, and the opening adjustment amount of the flow regulating valve 200 is adjusted according to the opening adjustment amount.
  • the opening degree may specifically include: according to the fluid flow value in the fluid passage detected in real time by the flow sensor 400 at the upstream position of the flow regulating valve 200 (for example, at the entrance of the above-mentioned fluid passage), continuously perform difference calculations with the target flow value , the difference calculation is, for example, a PID algorithm, and then continuously adjusts the opening of the flow regulating valve 200 according to the opening adjustment amount obtained by each calculation, so that the fluid flow gradually approaches and stabilizes at the target flow value.
  • the embodiment of the present invention does not specifically limit the structure of the flow sensor 400, for example, the flow sensor 400 is preferably a thermal flow meter.
  • the fluid flow value detected by the above-mentioned flow sensor 400 and the fluid pressure value detected by the pressure sensor 500 are both linearly related to the opening of the flow regulating valve 200 (the fluid flow rate allowed to pass). Faster response speed (ie, the fluid pressure detected by the pressure sensor 500 can be changed quickly in response to the change of the opening degree of the flow regulating valve 200 ).
  • the control module 300 first enters the pressure feedback adjustment mode, and performs rapid and rough adjustment of the opening of the flow adjustment valve 200 according to the fluid pressure value detected by the pressure sensor 500 (that is, performs pressure feedback adjustment) , so that the opening of the flow regulating valve 200 quickly approaches the target opening corresponding to the target flow value (that is, the opening of the flow regulating valve 200 after it finally stabilizes).
  • the flow feedback adjustment mode is entered, and the opening of the flow regulating valve 200 is adjusted with high precision according to the fluid flow value detected by the flow sensor 400 (that is, perform flow feedback adjustment), so that the opening degree of the flow regulating valve 200 is precisely adjusted to the target opening degree.
  • the mass flow controller provided by the present invention combines the fast-response pressure feedback adjustment mode with the high-precision flow feedback adjustment mode, that is, when the variation of the target flow value exceeds the preset threshold, it first enters the pressure feedback adjustment mode, Make the opening of the flow regulating valve quickly approach the target opening through pressure feedback adjustment, then switch to the flow feedback adjustment mode, and accurately adjust the opening of the flow regulating valve through flow feedback adjustment.
  • This combination of pressure feedback and flow feedback Compared with the adjustment method only through flow feedback in the prior art, the adjustment method can shorten the adjustment time for the opening degree of the flow regulating valve to gradually approach the target opening degree, thereby ensuring the accuracy of fluid flow adjustment and improving the quality of the mass flow controller.
  • the response speed improves the process effect and machine capacity of the semiconductor process.
  • the control module 300 is used to receive the target flow signal, and determine the current target flow value of the mass flow controller according to the received target flow signal.
  • the embodiment of the present invention does not specifically limit the criterion for judging whether the variation of the target flow value exceeds the preset threshold.
  • the change in value refers to the difference between the currently received target flow value and the previous target flow value.
  • the variation of the target flow value exceeding the preset threshold means that: the difference between the currently received target flow value and the previous target flow value is greater than the preset threshold.
  • the embodiment of the present invention does not specifically limit the size of the preset threshold.
  • the preset threshold can be determined according to the actual efficiency of flow feedback adjustment, that is, when the flow feedback adjustment mode is used, that is, according to the fluid flow value detected by the flow sensor 400 Adjust the opening of the flow regulating valve 200 so that when the time required for the fluid flow to reach the new target flow is within an acceptable range, the flow feedback adjustment mode can be directly used for adjustment, without the need for pressure feedback adjustment first. Mode adjusts the opening of the flow regulating valve.
  • control module 300 is also used for:
  • step S10 is skipped, and step S20 is directly performed.
  • the embodiment of the present invention does not specifically limit the structure for forming the fluid passage.
  • the valve 200 , the control module 300 , the flow sensor 400 and the pressure sensor 500 are all connected to the flow guiding structure 100 .
  • the embodiment of the present invention does not specifically limit how the flow sensor 400 is connected to the flow guide structure 100.
  • the two branch openings are located between the inlet and the flow regulating valve 200, and the two branch openings are arranged at intervals along the extending direction of the fluid passage
  • the flow sensor 400 has a sensing tube 410 , the two ends of the sensing tube 410 communicate with the two branch openings respectively, and the flow sensor 400 is used to detect the fluid flow value in the sensing tube 410 (the fluid flow rate in the sensing tube 410 and the fluid flow rate in the fluid passage in parallel with it) Therefore, the fluid flow value passing through the flow regulating valve 200 can be determined from the fluid flow value in the sensing tube 410).
  • the embodiment of the present invention does not specifically limit the structure of the flow guide structure 100.
  • the first end of the air intake joint 120 is formed as the inlet of the fluid passage
  • the second end communicates with the first end of the flow divider 110
  • the second end of the flow divider 110 communicates with one end of the flow regulating valve 200
  • the other end of the valve 200 communicates with the first end of the air outlet joint 130
  • the second end of the air outlet joint 130 is formed as the outlet of the fluid passage.
  • the splitter 110 has two branch openings (a first branch opening 111 and a second branch opening 112 ) communicating with its internal cavity.
  • the path of the fluid flowing through the mass flow controller is shown by the arrow in Figure 1.
  • the fluid enters the fluid passage from the first end (inlet) of the inlet joint 120, and when it flows through the flow divider 110, a stream flows through the sensor tube. 410 branch, the flow velocity of the fluid in the sensing tube 410 is consistent with the flow velocity of the fluid in its parallel branch (that is, the fluid flow value detected by the flow sensor 400 is proportional to the fluid flow value in the fluid passage), and then passes through the flow divider
  • the second end of 110 flows into the flow regulating valve 200 , the flow regulating valve 200 controls the flow rate of the fluid in the fluid passage, and finally it is discharged from the outlet through the outlet joint 130 .
  • the embodiment of the present invention does not specifically limit how the flow sensor 400 detects the fluid flow in the sensing tube 410.
  • the flow sensor 400 when the flow sensor 400 is a thermal flowmeter, the flow sensor 400 includes two different positions respectively arranged on the sensing tube 410.
  • the flow sensor 400 calculates the temperature difference between the two temperature sensors at two different positions on the sensing tube 410 detected by the two temperature sensors, and obtains the fluid temperature in the sensing tube 410 according to the temperature difference.
  • the fluid flow value (that is, the fluid flow value detected by the flow sensor 400).
  • control module 300 uses the PID closed-loop control method to adjust the opening of the flow regulating valve 200 according to the fluid pressure value detected by the pressure sensor 500 downstream of the flow regulating valve 200.
  • control module 300 is specifically used in the pressure feedback regulation mode for:
  • step S11 the target pressure value corresponding to the pressure sensor 500 is determined according to the target flow value
  • Step S12 and Step S13 are executed cyclically.
  • the fluid pressure value detected by the pressure sensor 500 is acquired periodically or in real time, and the PID calculation is performed according to the fluid pressure value detected by the pressure sensor 500 and the target pressure value to obtain flow regulation. Adjust the opening of the valve 200, and adjust the opening of the flow regulating valve 200 according to the opening adjustment. By continuously performing PID calculations and adjusting the opening of the flow regulating valve 200, the pressure detected by the pressure sensor 500 can be gradually reduced.
  • the opening adjustment amount is positively correlated with the pressure difference.
  • control module 300 does not specifically limit how the control module 300 performs PID adjustment on the opening of the flow regulating valve 200 according to the fluid flow value detected by the flow sensor 400 upstream of the flow regulating valve 200, for example, as an optional Embodiments, as shown in Figure 6 and Figure 7, the control module 300 is specifically used in the flow feedback adjustment mode:
  • step S21 determine the target flow value corresponding to the flow sensor 400 according to the received target flow signal
  • Step S22 and Step S23 are executed cyclically.
  • the fluid flow value detected by the flow sensor 400 is obtained periodically or in real time, and the PID calculation is performed according to the fluid flow value detected by the flow sensor 400 and the target flow value to obtain flow regulation.
  • the opening adjustment amount of the valve 200 can gradually reduce the absolute value of the flow difference between the fluid flow value detected by the flow sensor 400 and the target flow value by continuously performing PID calculation and adjusting the opening degree of the flow regulating valve 200 , when the absolute value of the flow difference is less than the preset difference, jump out of the above loop, and the process ends.
  • the absolute value of the opening adjustment amount is positively correlated with the absolute value of the flow difference.
  • control module 300 is also used for:
  • step S31 After the absolute value of the flow difference is less than the preset difference, the fluid pressure value detected by the pressure sensor 500 is acquired periodically or in real time (step S31 is performed), and it is judged whether the fluid pressure value detected by the pressure sensor 500 satisfies the first Two stable conditions;
  • the flow feedback adjustment mode is re-entered.
  • the pressure sensor 500 is directly connected to the equipment downstream of the mass flow controller through the outlet of the fluid passage. Pressure fluctuations occur.
  • the control module 300 adjusts the opening of the flow regulating valve 200 through the flow feedback adjustment mode until the target opening is reached, the pressure sensor 500 continues to monitor the downstream fluid pressure. When the downstream fluid pressure appears When there is a fluctuation, the opening of the flow regulating valve 200 is adjusted again through the flow feedback adjustment mode, so as to offset the flow fluctuation that may be caused by the pressure fluctuation, and avoid the flow being affected by the downstream abnormal situation from changing.
  • the pressure sensor 500 is not only used to complete the rough adjustment of the opening of the flow regulating valve during the pressure feedback adjustment, but also can use its fast response characteristics to monitor the downstream conditions after the flow feedback adjustment, further improving the quality Flow controllers control the accuracy of fluid flow.
  • Opening that is, step S00 is performed
  • the second stable condition that is, the opening of the flow regulating valve 200 is stable near the target opening of the flow regulating valve
  • the control module 300 first obtains the target opening degree of the corresponding flow regulating valve according to the target flow value, and adjusts the opening degree of the flow regulating valve 200 according to the target opening degree, so that the flow rate is regulated through open-loop control.
  • the opening of the valve 200 quickly reaches the target opening, which can save the adjustment time and further improve the mass flow compared with directly changing the opening of the flow regulating valve 200 to the target opening through pressure feedback adjustment (closed-loop control).
  • a controller regulates the efficiency of fluid flow.
  • the target opening of the above-mentioned flow regulating valve is preset, for example, it can be pre-stored in the control module 300 .
  • first stable condition and second stable condition are used to judge whether the pressure and flow signals are stable, for example, it may be between the maximum value and the minimum value of the signal in the latest preset time fluctuation range. Whether the difference is within the preset difference range.
  • first stable condition may be: the difference between the maximum value and the minimum value of all fluid flow values detected by the flow sensor within the first preset time is less than or equal to the first preset difference;
  • second The stable condition may be: the difference between the maximum value and the minimum value among all the fluid pressure values detected by the pressure sensor within the second preset time is less than or equal to the second preset difference value.
  • the embodiment of the present invention does not specifically limit the structure type of the flow regulating valve 200.
  • the flow regulating valve 200 can be a solenoid valve or a piezoelectric valve, and the opening of the flow regulating valve corresponds to the magnitude of the electrical signal (such as valve voltage). .
  • control module 300 does not specifically limit the structure of the control module 300 and how the control module 300 is connected to the flow regulating valve 200, the flow sensor 400 and the pressure sensor 500.
  • control module 300 includes a PID A control unit 310 , a flow processing module 320 and a pressure processing module 330 .
  • the pressure processing module 330 is used to obtain the fluid pressure value detected by the pressure sensor 500, and send it to the PID control unit 310 after processing, so that the PID control unit 310 can perform corresponding calculation processing on the processed signal;
  • the flow processing module 320 is used to obtain the fluid flow value detected by the flow sensor 400, and send it to the PID control unit 310 after processing;
  • the PID control unit 310 is used to adopt an open-loop
  • the control method is to adjust the opening degree of the flow regulating valve 200 according to the determined target opening degree of the flow regulating valve corresponding to the target flow value; and in the pressure feedback regulation mode, according to the fluid pressure value provided by the pressure processing module 330 and the target For the pressure value, the opening of the flow regulating valve 200 is adjusted using a PID closed-loop control method; and in the flow feedback adjustment mode, according to the fluid flow value and the target flow value provided by the flow processing module 320, the flow regulating valve 200 is adjusted using a PID closed-loop control method of the opening.
  • the flow processing module 320 and the pressure processing module 330 are respectively connected to the corresponding flow sensor 400 and pressure sensor 500 through the A/D sampling unit, and the A/D sampling unit is used to connect the detection device (flow The analog (analog) signal of the sensor 400 and the pressure sensor 500) is converted into a digital (digital) signal, so that the PID control unit 310 can calculate and analyze the data.
  • the PID control unit 310 is connected to the flow regulating valve 200 through the valve driving unit, and the valve driving unit is used to output a corresponding valve voltage to the flow regulating valve 200 according to the signal sent by the PID control unit 310, so as to change the opening degree of the flow regulating valve 200, Further, the fluid flow in the mass flow controller can be adjusted.
  • the embodiment of the present invention does not specifically limit how the control module 300 determines the target opening of the flow regulating valve according to the target flow signal.
  • the control module 300 stores a plurality of flow setting values and corresponding The target opening of the flow regulating valve, as shown in Figure 8, the control module 300 is used to use the interpolation method according to the two flow setting values closest to the target flow value and the opening corresponding to these two flow setting values Calculate the target opening corresponding to the target flow value.
  • the vacuum pump 600 downstream of the outlet pumps air throughout the process to ensure that the outlet pressure of the mass flow controller located downstream of the flow regulating valve 200 before it starts to use At or near a vacuum state.
  • the flow of fluid passing through the valve port of the flow regulating valve 200 is proportional to the inlet pressure and the flow area of the flow regulating valve 200, namely F ⁇ P*A, where F is The fluid flow through the mass flow controller, P is the inlet pressure, and A is the flow area of the flow control valve 200 (ie, the opening of the flow control valve).
  • the flow area of the flow control valve 200 is changed A (the opening degree of the flow regulating valve 200 ) can change the fluid flow F passing through the mass flow controller.
  • a suction pump can be used downstream of the outlet to pump the liquid.
  • the opening of the flow regulating valve 200 is positively correlated with the fluid flow (the curve shown in Figure 10 is the relationship curve between the opening of the flow regulating valve and the fluid flow, and the opening of the flow regulating valve in Figure 10 is a dimensionless value, which only represents the proportional relationship between the ordinates of each point), and since the opening of the solenoid valve is directly controlled by the valve voltage, within the variable range of the opening of the flow regulating valve, the greater the valve voltage, The larger the opening of the flow regulating valve is.
  • the control module 300 can calculate the target opening corresponding to the target flow value through interpolation according to the two flow setting values closest to the target flow value and the opening degrees corresponding to the two flow setting values.
  • the target opening degree can be pre-stored in the control module 300.
  • the control module 300 can call the target opening degree corresponding to the target flow value, and use an open-loop control method to adjust the opening degree of the flow regulating valve.
  • the flow regulating valve can quickly reach a position close to the target opening, thereby saving adjustment time and improving adjustment efficiency.
  • a plurality of black dots on the curve in Fig. 10 respectively represent a plurality of flow setting values and the opening degree of the flow regulating valve corresponding to each flow setting value
  • the target flow value is 30% (that is, the mass flow controller's 30% of full scale)
  • the abscissa is calculated as 30% by interpolation method
  • this value is the target opening corresponding to 30%, which can be stored in advance and called directly before the pressure feedback adjustment mode , to adjust the opening of the flow regulating valve 200 to 1.24 in an open-loop control mode, so as to reduce the subsequent adjustment amount in the pressure feedback adjustment mode and improve the adjustment efficiency.
  • the flow regulating valve 200 is a solenoid valve
  • the mass flow controller when controlling the mass flow controller to adjust the fluid flow from different sizes to the same target flow value, the fluid flow will rise from a lower value to the target flow value
  • the opening degree (valve voltage) of the solenoid valve is not the same as when it drops from a higher value to the target flow value.
  • the opening corresponding to each flow setting value includes a rising opening (that is, the flow rises from a lower value to the opening corresponding to the flow setting) and a falling opening (that is, The flow rate drops from a higher value to the opening corresponding to the flow setting value).
  • the rising opening corresponds to the rising valve voltage Uu
  • the falling opening corresponds to the falling valve voltage Ud
  • the calibrated flow setting values S1, S2, S3,..., Sn correspond to the rising valve voltage
  • the values of Uu_1, Uu_2, Uu_3, ..., Uu_n are respectively Uu_1, Uu_2, Uu_3, ..., Uu_n
  • the values of the falling valve voltage corresponding to the flow setting values S1, S2, S3, ..., Sn are Ud_1, Ud_2, Ud_3, ..., Ud_n respectively.
  • the control module 300 can store the two sets of calibration data of flow rate rise and fall as valve voltage data templates to facilitate subsequent call calculations.
  • the step S01 of obtaining the target opening degree of the corresponding flow regulating valve according to the target flow value includes:
  • the target opening corresponding to the target flow value is calculated by interpolation ( Valve voltage), that is, execute step S011;
  • the current target flow value Si is within the interval [S(n-1), Sn] (that is, the last two flow setting values are Sn-1 and Sn), and the current target flow value Si is higher than the upper
  • the coordinates (S(n-1), Uu_(n -1)) and (Sn, Uu_n) and then calculated by interpolation to obtain the target flow value Si corresponding to the curve between (S(n-1), Uu_(n-1)) and (Sn, Uu_n)
  • the ordinate of the point that is, the target opening).
  • the difference between the target flow value Si and the abscissa S(n-1) of (S(n-1), Uu_(n-1)) is (Si-S(n-1)), then the target The difference between the opening and the ordinate Uu_(n-1) of (S(n-1), Uu_(n-1)) is the slope of the curve between the abscissa difference and the two flow setting values Product, that is (Si-S(n-1))(Uu_n–Uu_(n-1))/(Sn-Sn-1), and then the target opening can be determined as (S(n-1),Uu_(n -1)) and the sum of the difference between the ordinate Uu_(n-1) and the ordinate, that is, when the target flow value Si is higher than the previous target flow value, the corresponding target opening is (Si-S(n- 1))(Uu_n–Uu_(n-1))/(Sn-Sn-1)+Uu_(n-1).
  • the current target flow value Si is within the interval [S(n-1), Sn], and the current target flow value Si is lower than the previous target flow value, it can be determined according to the information stored in the control module 300
  • the target flow value Si is calculated by the interpolation method corresponding to the ordinate of the point on the curve between (S(n-1), Ud_(n-1)) and (Sn, Ud_n) (that is, the target opening).
  • the difference between the target flow value Si and the abscissa S(n-1) of (S(n-1), Ud_(n-1)) is (Si-S(n-1)), then the target The difference between the opening and the ordinate Ud_(n-1) of (S(n-1), Ud_(n-1)) is equal to the slope of the curve between the abscissa difference and the two flow setting values Product, namely (Si-S(n-1))(Ud_n–Ud_(n-1))/(Sn-Sn-1), and then the target opening can be determined as (S(n-1), Ud_(n -1)) and the sum of the difference between the ordinate Ud_(n-1) and the ordinate, that is, when the target flow value Si is lower than the previous target flow value, the corresponding target opening is (Si-S(n- 1))(Ud_n–Ud_(n-1))/(Sn-Sn-1)+Ud_(n-1).
  • the opening corresponding to each flow setting value stored in the control module 300 includes a rising opening and a falling opening, so that when the flow regulating valve 200 is a solenoid valve, it can Lifting determines the increase or decrease of the opening of the flow regulating valve, and then selects a suitable set of data in the rising opening and falling opening to carry out open-loop control, so that the opening of the flow regulating valve can quickly approach the target opening, and then reduce The adjustment amount in the subsequent pressure feedback adjustment process is improved, and the adjustment efficiency of the fluid flow is improved.
  • the present invention also provides a specific embodiment of the process of adjusting the fluid flow in the mass flow controller by the control module 300 shown in FIG. 2:
  • control module 300 determines the target opening, target flow value and target pressure value corresponding to the input target flow value according to the pre-stored template;
  • the control module 300 first enters the open-loop control mode, and the PID control unit 310 controls the valve driving unit to load the corresponding valve voltage to the flow regulating valve 200 according to the target opening degree corresponding to the target flow value.
  • the pressure sensor 500 continuously detects the downstream fluid pressure value, and transmits it to the PID control unit 310 after analog-to-digital conversion by the A/D sampling unit in the pressure processing module 330 .
  • the control module 300 switches to the pressure feedback regulation mode , the pressure sensor 500 periodically feeds back the downstream fluid pressure value to the PID control unit 310 through the pressure processing module 330, and the PID control unit 310 periodically uses the PID control method to change the flow rate of the flow regulating valve 200 according to the fluid pressure value and the target pressure value. Opening degree to reduce the pressure difference between the fluid pressure value and the target pressure value.
  • the control module 300 switches to the flow feedback adjustment mode (due to large fluctuations in the downstream fluid pressure, in order to save adjustment time, it is not necessary to wait for the pressure sensor 500 The detected fluid pressure value is stable), the flow sensor 400 feeds back the detected fluid flow value to the PID control unit 310 through the flow processing module 320, and the PID control unit 310 periodically adopts the PID control method according to the fluid flow value and the target flow value Change the opening of the flow regulating valve 200 to reduce the flow difference between the fluid flow value and the target flow value until the absolute value of the flow difference is smaller than the preset difference.
  • control module 300 continues to monitor the fluid pressure value through the pressure sensor 500 in the background. Once an abnormal pressure fluctuation occurs downstream, it can feed back to the control module 300 through the pressure sensor 500, and the control module 300 switches to the flow feedback adjustment mode again.
  • the valve voltage is compensated in time to offset the flow fluctuations that may be caused by the pressure fluctuations, ensuring the stability and accuracy of the fluid flow in the mass flow controller.
  • a flow control method of a mass flow controller is provided, which is applied to the above-mentioned mass flow controller provided in the embodiment of the present invention.
  • the flow control method includes:
  • the flow adjustment is calculated according to the fluid pressure value detected by the pressure sensor and the target pressure value corresponding to the target flow value.
  • the opening adjustment amount of the valve, and adjust the opening degree of the flow regulating valve according to the opening adjustment amount i.e. execute step S10;
  • the flow feedback adjustment mode is entered.
  • the opening of the flow adjustment valve is calculated and obtained according to the fluid flow value detected by the flow sensor and the target flow value. degree adjustment amount, and adjust the opening degree of the flow regulating valve according to the opening degree adjustment amount (that is, execute step S20).
  • the above-mentioned preset threshold can be determined according to the actual efficiency of flow feedback regulation, that is, when the flow feedback regulation mode is adopted, that is, the opening of the flow regulating valve is adjusted according to the fluid flow value detected by the flow sensor, so that the fluid
  • the flow feedback adjustment mode can be directly used for adjustment without first adjusting the opening of the flow adjustment valve through the pressure feedback adjustment mode.
  • the flow control method also includes:
  • step S10 When the variation of the target flow value does not exceed the preset threshold, enter the flow feedback adjustment mode, that is, calculate the opening adjustment amount of the flow regulating valve according to the fluid flow value detected by the flow sensor and the target flow value, and according to the The opening adjustment amount adjusts the opening of the flow regulating valve (that is, step S10 is skipped and step S20 is directly performed).
  • the embodiment of the present invention does not specifically limit how to perform PID adjustment on the opening of the flow regulating valve according to the fluid pressure value downstream of the flow regulating valve.
  • the pressure feedback The adjustment (step S10) specifically includes:
  • step S11 the target pressure value corresponding to the pressure sensor is determined according to the target flow value
  • Step S12 and Step S13 are executed cyclically.
  • the fluid pressure value detected by the pressure sensor is acquired periodically or in real time, and the PID calculation is performed according to the fluid pressure value detected by the pressure sensor and the target pressure value to obtain the flow rate of the flow regulating valve. Adjust the opening degree, and adjust the opening degree of the flow regulating valve according to the opening degree adjustment amount. By continuously performing PID calculation and adjusting the opening degree of the flow regulating valve, the fluid pressure value detected by the pressure sensor and the target pressure can be gradually reduced.
  • the opening adjustment amount is positively correlated with the pressure difference.
  • flow feedback adjustment (step S20) specifically includes:
  • step S21 determine the target flow value corresponding to the flow sensor according to the target flow signal received
  • Steps S22 and S23 are executed cyclically.
  • the fluid flow value detected by the flow sensor is obtained periodically or in real time, and the PID calculation is performed according to the fluid flow value detected by the flow sensor and the target flow value to obtain the flow rate of the flow regulating valve.
  • the opening adjustment amount by continuously performing PID calculations and adjusting the opening of the flow regulating valve, can gradually reduce the absolute value of the flow difference between the fluid flow value detected by the flow sensor and the target flow value, when the flow difference If the absolute value of the value is less than the preset difference, the above loop is jumped out, and the process ends.
  • the absolute value of the opening adjustment amount is positively correlated with the absolute value of the flow difference.
  • the flow control method further includes:
  • step S31 is executed to obtain the fluid pressure value detected by the pressure sensor, and determine whether the fluid pressure value detected by the pressure sensor satisfies the second stable condition;
  • the flow feedback adjustment mode is re-entered.
  • the flow control method further includes:
  • step S10 Before entering the pressure feedback adjustment mode (step S10), execute step S00 to obtain the target opening degree of the flow regulating valve corresponding to the target flow value, and the fluid pressure value detected by the pressure sensor satisfies the second stable condition (that is, the flow regulating valve’s After the opening is stabilized near the target opening of the flow regulating valve), enter the pressure feedback regulation mode (that is, execute step S10).
  • the mass flow controller (the control module) stores a plurality of flow setpoints and the target opening degree of the flow regulation valve corresponding to each flow setpoint, including:
  • step S01 according to the two flow setting values closest to the target flow value and the opening corresponding to these two flow setting values, the target opening corresponding to the target flow value is calculated by interpolation method.
  • Step S00 also includes step S02, adjusting the opening of the flow regulating valve according to the target opening of the flow regulating valve
  • the opening corresponding to each flow setting value includes a rising opening (that is, the flow increases from a lower value to this The opening degree corresponding to the flow setting value) and the descending opening degree (that is, the flow rate drops from a higher value to the opening degree corresponding to the flow setting value), and the step S01 of obtaining the corresponding target opening degree according to the target flow value includes:
  • the target opening corresponding to the target flow value is calculated by interpolation ( valve voltage);
  • the flow control method provided by the present invention combines the fast-response pressure feedback adjustment mode with the high-precision flow feedback adjustment mode, that is, when the variation of the target flow value exceeds the preset threshold, it first enters the pressure feedback adjustment mode, through The pressure feedback adjustment makes the opening of the flow regulating valve quickly approach the target opening, and then switches to the flow feedback adjustment mode, and accurately adjusts the opening of the flow regulating valve through the flow feedback adjustment.
  • This combination of pressure feedback and flow feedback adjustment Compared with the adjustment method only through flow feedback in the prior art, the adjustment time for the opening of the flow regulating valve to gradually approach the target opening can be shortened, thereby ensuring the accuracy of fluid flow regulation and improving the performance of the mass flow controller. Response speed, thereby improving the process effect and machine productivity of the semiconductor process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种质量流量控制器,包括控制模块(300)、流体通路、流量调节阀(200)、设置在入口与流量调节阀(200)之间的流量传感器(400)和设置于出口处的压力传感器(500),控制模块(300)用于在目标流量值的变化量超出预设阈值时,进入压力反馈调节模式,并在流量传感器(400)检测到的流体流量满足第一稳定条件后,进入流量反馈调节模式。控制模块(300)用于在压力反馈调节模式中,根据流体压力值以及目标流量值计算获得流量调节阀(200)的开度调整量,并根据开度调整量调节流量调节阀(200)的开度;在流量反馈调节模式中,根据流体流量值以及目标流量值计算获得流量调节阀(200)的开度调整量,并根据开度调整量调节流量调节阀(200)的开度。在保证流量控制精度的同时,实现快速响应。

Description

质量流量控制器及其流量控制方法 技术领域
本发明涉及半导体工艺设备领域,具体地,涉及一种质量流量控制器和一种质量流量控制器的流量控制方法。
背景技术
质量流量控制器是半导体工艺设备中的核心部件,广泛应用在半导体、光伏、燃料电池、真空技术等领域。质量流量控制器通常包括一个流量调节阀和一个流量检测装置,在通过调节流量调节阀的开度来控制质量流量控制器中流过的流体流量的同时,通过流量检测装置对流体的质量流量进行检测,可以确保控制流速的精确性。
为实现高精度、高稳定性的流量控制,质量流量控制器中的流量检测装置常采用热式流量计,即,利用热式流量计测量流体的质量流量,再通过闭环控制***采用PID(Proportional Integral Differential,比例积分微分)算法调节流量调节阀的开度,进而达到稳定的流量。
然而,采用热式流量计的质量流量控制器使流量达到稳定值所需的响应时间较长,无法应用于对响应时间要求较高的领域。
发明内容
本发明旨在提供一种质量流量控制器和流量控制方法,该质量流量控制器能够在保证流量控制精度的同时,实现快速响应。
为实现上述目的,作为本发明的一个方面,提供一种质量流量控制器,其中设置有流体通路,所述流体通路的入口与出口之间连接有流量调节阀, 其特征在于,所述质量流量控制器还包括控制模块、流量传感器和压力传感器,其中,
所述流量传感器设置在所述入口与所述流量调节阀之间,用于检测所述流体通路中的流体流量值;
所述压力传感器设置于所述出口处,用于检测所述流体通路中的流体压力值;
所述控制模块用于在目标流量值的变化量超出预设阈值时,进入压力反馈调节模式,并在所述流量传感器检测到的流体流量值满足第一稳定条件后,进入流量反馈调节模式,其中,
所述控制模块用于在所述压力反馈调节模式中,根据所述压力传感器检测到的流体压力值,以及所述目标流量值对应的目标压力值计算获得所述流量调节阀的开度调整量,并根据所述开度调整量调节所述流量调节阀的开度;
所述控制模块用于在所述流量反馈调节模式中,根据所述流量传感器检测到的流体流量值,以及所述目标流量值计算获得所述流量调节阀的开度调整量,并根据所述开度调整量调节所述流量调节阀的开度。
可选的,所述控制模块还用于在进入所述压力反馈调节模式前,获取所述目标流量值对应的所述流量调节阀的目标开度,根据所述目标开度调节所述流量调节阀的开度,并在所述压力传感器检测到的流体压力值满足第二稳定条件后,进入所述压力反馈调节模式。
可选的,所述控制模块中存储有多个流量设定值及与各所述流量设定值对应的开度;
所述控制模块用于根据与所述目标流量值最接近的两个所述流量设定值及其对应的开度,通过插值法计算得到所述目标流量值对应的所述目标开度。
可选的,所述流量调节阀为电磁阀,每个所述流量设定值对应的开度均 包括上升开度和下降开度;
所述控制模块用于在所述目标流量值升高时,根据与所述目标流量值最接近的两个所述流量设定值及其对应的所述上升开度,通过插值法计算得到所述目标流量值对应的所述目标开度;在所述目标流量值降低时,根据与所述目标流量值最接近的两个所述流量设定值及其对应的所述下降开度,通过插值法计算得到所述目标流量值对应的所述目标开度。
可选的,所述流量传感器为热式流量传感器。
可选的,所述第一稳定条件为:所述流量传感器在第一预设时间内检测到的所有的所述流体流量值中的最大值与最小值之间的差值小于等于第一预设差值;
所述第二稳定条件为:所述压力传感器在第二预设时间内检测到的所有的流体压力值中的最大值与最小值之间的差值小于等于第二预设差值。
可选的,所述控制模块还用于在所述目标流量值的变化量未超出所述预设阈值时,进入所述流量反馈调节模式。
作为本发明的另一个方面,还提供一种质量流量控制器的流量控制方法,其特征在于,所述流量控制方法应用于本发明提供的上述质量流量控制器,所述流量控制方法包括:
在目标流量值的变化量超出预设阈值时,进入压力反馈调节模式,在所述压力反馈调节模式中,根据压力传感器检测到的流体压力值,以及所述目标流量值对应的目标压力值,计算获得所述流量调节阀的开度调整量,并根据所述开度调整量调节流量调节阀的开度;
在流量传感器检测到的流体流量值满足第一稳定条件后,进入流量反馈调节模式,在所述流量反馈调节模式中,根据所述流量传感器检测到的流体流量值以及所述目标流量值,计算获得所述流量调节阀的开度调整量,并根据所述开度调整量调节所述流量调节阀的开度。
可选的,所述流量控制方法还包括:
在所述目标流量值的变化量未超出所述预设阈值时,进入所述流量反馈调节模式。
可选的,在进入所述压力反馈调节模式之前,所述流量控制方法还包括:
获取所述目标流量值对应的所述流量调节阀的目标开度,根据所述目标开度调节所述流量调节阀的开度;
在所述压力传感器检测到的流体压力值满足第二稳定条件后,进入所述压力反馈调节模式。
可选的,所述获取所述目标流量值对应的所述流量调节阀的目标开度,包括:
根据预先存储的多个流量设定值及与各所述流量设定值对应的所述目标开度,确定与所述目标流量值最接近的两个所述流量设定值及其对应的开度,通过插值法计算得到所述目标流量值对应的所述目标开度。
可选的,所述流量调节阀为电磁阀,每个所述流量设定值对应的开度均包括上升开度和下降开度;
所述获取所述目标流量值对应的所述流量调节阀的目标开度,包括:
在所述目标流量值升高时,根据预先存储的多个所述流量设定值及与各所述流量设定值对应的所述上升开度,确定与所述目标流量值最接近的两个所述流量设定值及其对应的所述上升开度,通过插值法计算得到所述目标流量值对应的所述目标开度;
在所述目标流量值降低时,根据预先存储的多个所述流量设定值及与各所述流量设定值对应的所述下降开度,确定与所述目标流量值最接近的两个所述流量设定值及其对应的所述下降开度,通过插值法计算得到所述目标流量值对应的所述目标开度。
本发明提供的质量流量控制器和流量控制方法的技术方案,将响应速度 快的压力反馈调节模式与精度高的流量反馈调节模式结合,即,在目标流量值的变化量超出预设阈值时,先进入压力反馈调节模式,通过压力反馈调节使流量调节阀的开度快速接近目标开度,再切换至流量反馈调节模式,通过流量反馈调节对流量调节阀的开度进行精确调节,这种压力反馈与流量反馈相结合的调节方式与现有技术中仅通过流量反馈的调节方式相比,可以缩短流量调节阀的开度逐渐接近目标开度的调节时间,从而可以在保证流体流量调节精度的同时,提高质量流量控制器的响应速度。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明实施例提供的质量流量控制器的结构示意图;
图2是本发明实施例提供的质量流量控制器中控制装置的功能结构示意图;
图3是本发明实施例提供的流量控制方法的流程示意图;
图4是本发明另一实施例提供的流量控制方法的流程示意图;
图5是本发明另一实施例提供的流量控制方法的流程示意图;
图6是本发明另一实施例提供的流量控制方法的流程示意图;
图7是本发明另一实施例提供的流量控制方法的流程示意图;
图8是本发明另一实施例提供的流量控制方法的流程示意图;
图9是本发明另一实施例提供的流量控制方法的流程示意图;
图10是本发明实施例提供的质量流量控制器中控制装置存储的流量设定值以及流量调节阀的开度对应的曲线示意图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明的发明人经实验研究发现,现有的质量流量控制器通常在流量调节量较大时出现响应速度慢、流量调节效率低的问题,该问题主要由热式流量计的特性所致。具体地,热式流量计检测流量的原理是当流体在传感管中流动时,检测流体流经传感管的两个不同位置的温度,分别为上游温度和下游温度,二者之间具有温差,且温差会随着流体流量的增加而增大,基于此,可以通过检测该温差来检测流体的流量。然而,检测上游温度和下游温度的变化需要花费较长的时间,因此,虽然热式流量计具有高精度和高稳定性的特点,然而受其固有物理属性和较长的温度采样周期等因素的影响,现有的质量流量控制器通过PID闭环控制使流量达到稳定值的响应速度较慢,无法实现快速响应。
为解决上述技术问题,作为本发明的一个方面,提供一种质量流量控制器,如图1所示,其中设置有用于传输流体的流体通路,该流体通路的入口(即图1中质量流量控制器的左端开口)与出口(即图1中质量流量控制器的右端)之间连接有流量调节阀200,该质量流量控制器还包括控制模块300、流量传感器400和压力传感器500。其中,流量传感器400设置在上述流体通路的入口与流量调节阀200之间,用于检测流体通路中的流体(如,气体、液体)流量值;压力传感器500设置于上述流体通路的出口处,用于检测流体通路中的流体压力值。
如图3所示,控制模块300用于在目标流量值的变化量超出预设阈值时,进入压力反馈调节模式,并在流量传感器检测到的流体流量值满足第一稳定条件后,进入流量反馈调节模式。其中:
控制模块300用于在压力反馈调节模式中,根据压力传感器检测到的流体压力值以及目标流量值对应的目标压力值,计算获得流量调节阀200的开 度调整量,并根据该开度调整量调节流量调节阀200的开度(即执行图3中的步骤S10);
控制模块300用于在流量反馈调节模式中,根据流量传感器检测到的流体流量值以及目标流量值,计算获得流量调节阀200的开度调整量,并根据该开度调整量调节流量调节阀200的开度(即执行图3中的步骤S20)。
上述目标流量值是实际期望达到的目标值,该目标值可以根据具体需要而设定,而目标流量值的变化量即为目标流量值从当前设定值切换至新的设定值时的变化量。上述目标流量值对应的目标压力值也是预设的,可以预先存储在控制模块300中。
在一些可选的实施例中,在压力反馈调节模式中,根据压力传感器500检测到的流体压力值以及目标流量值对应的目标压力值,计算获得流量调节阀200的开度调整量,并根据该开度调整量调节流量调节阀200的开度,具体可以包括:根据压力传感器500在流量调节阀200的下游位置(例如流体通路的出口处)周期性地或者实时检测到的流体通路中的流体压力值,不断地与目标流量值对应的目标压力值做差值运算,该差值运算例如为PID(Proportion Integral Differential,比例积分微分)算法,然后根据每次运算获得的开度调整量不断地调节流量调节阀200的开度,以使流体压力逐渐接近并稳定在与目标流量值对应的目标压力值。当然,在实际应用中,也可以采用其他算法计算获得的开度调整量,本发明实施例对此没有特别的限制。
类似的,在流量反馈调节模式中,根据流量传感器400检测到的流体流量值以及目标流量值,计算获得流量调节阀200的开度调整量,并根据该开度调整量调节流量调节阀200的开度,具体可以包括:根据流量传感器400在流量调节阀200的上游位置(例如上述流体通路的入口处)实时检测到的流体通路中的流体流量值,不断地与目标流量值做差值运算,该差值运算例如为PID算法,然后根据每次运算获得的开度调整量不断地调节流量调节阀 200的开度,以使流体流量逐渐接近并稳定在目标流量值。本发明实施例对流量传感器400的结构不作具体限定,例如,流量传感器400优选为热式流量计。
上述流量传感器400检测到的流体流量值以及压力传感器500检测到的流体压力值均与流量调节阀200的开度(允许通过的流体流量)线性相关,而压力传感器500相较于流量传感器400具有更快的响应速度(即,压力传感器500检测到的流体压力可快速响应于流量调节阀200的开度变化而改变)。
基于此,在接收到目标流量值后,控制模块300先进入压力反馈调节模式,根据压力传感器500检测到的流体压力值对流量调节阀200的开度进行快速粗调(即进行压力反馈调节),从而使流量调节阀200的开度快速接近目标流量值对应的目标开度(即流量调节阀200最终稳定后的开度)。待流量传感器400检测到的流体流量值稳定(即满足第一稳定条件)后,再进入流量反馈调节模式,根据流量传感器400检测到的流体流量值对流量调节阀200的开度进行高精度调节(即进行流量反馈调节),从而将流量调节阀200的开度精确调节至目标开度。
本发明提供的质量流量控制器,将响应速度快的压力反馈调节模式与精度高的流量反馈调节模式结合,即,在目标流量值的变化量超出预设阈值时,先进入压力反馈调节模式,通过压力反馈调节使流量调节阀的开度快速接近目标开度,再切换至流量反馈调节模式,通过流量反馈调节对流量调节阀的开度进行精确调节,这种压力反馈与流量反馈相结合的调节方式与现有技术中仅通过流量反馈的调节方式相比,可以缩短流量调节阀的开度逐渐接近目标开度的调节时间,从而可以在保证流体流量调节精度的同时,提高质量流量控制器的响应速度,提高了半导体工艺的工艺效果和机台产能。
如图3所示,控制模块300用于接收目标流量信号,并根据接收到的目 标流量信号确定质量流量控制器的当前的目标流量值。本发明实施例对判断目标流量值的变化量是否超出预设阈值的判定标准不作具体限定,例如,为适应质量流量控制器的量程在半导体工艺中需多次改变的需求,优选地,目标流量值的变化量是指当前接收到的目标流量值与上一目标流量值之间的差值。目标流量值的变化量超出预设阈值是指:当前接收到的目标流量值与上一目标流量值之间的差值大于预设阈值。
本发明实施例对该预设阈值的大小不作具体限定,该预设阈值可根据流量反馈调节的实际效率确定,即,在采用流量反馈调节模式,即,根据流量传感器400检测到的流体流量值对流量调节阀200的开度进行调节,使流体流量值达到新的目标流量值所需的时长在可接受的范围内时,则可直接采用流量反馈调节模式进行调节,不必先通过压力反馈调节模式调节流量调节阀的开度。
具体地,如图3所示,控制模块300还用于:
在目标流量值的变化量未超出预设阈值时,进入流量反馈调节模式,即,根据流量传感器400检测到的流体流量值以及目标流量值,计算获得流量调节阀200的开度调整量,并根据该开度调整量调节流量调节阀200的开度(即跳过步骤S10,直接执行步骤S20)。
本发明实施例对形成该流体通路的结构不作具体限定,例如,可选地,如图1所示,质量流量控制器可以包括导流结构100,流体通路形成在导流结构100中,流量调节阀200、控制模块300、流量传感器400和压力传感器500均与导流结构100连接。
本发明实施例对流量传感器400如何与导流结构100连接不作具体限定,例如,可选地,如图1所示,导流结构100具有与流体通路连通的两个支路开口(第一支路开口111和第二支路开口112),两个支路开口位于入口与流量调节阀200之间,且两个支路开口沿流体通路的延伸方向间隔设置, 流量传感器400具有传感管410,传感管410的两端分别与两个支路开口连通,流量传感器400用于检测传感管410中的流体流量值(传感管410中的流体流速与其并联的流体通路中的流体流速一致,因此可由传感管410中的流体流量值确定流量调节阀200中通过的流体流量值)。
本发明实施例对导流结构100的结构不作具体限定,例如,可选地,如图1所示,导流结构100包括基座和固定在基座上的分流器110、进气接头120以及出气接头130,进气接头120的第一端形成为流体通路的入口,第二端与分流器110的第一端连通,分流器110的第二端与流量调节阀200的一端连通,流量调节阀200的另一端与出气接头130的第一端连通,出气接头130的第二端形成为流体通路的出口。分流器110上具有与其内部腔体连通的两个支路开口(第一支路开口111和第二支路开口112)。
流体流经质量流量控制器的路径如图1中箭头所示,流体由进气接头120的第一端(入口)进入流体通路,并在流经分流器110时分出一股流经传感管410的支路,传感管410中流体的流速与其并联的支路中流体的流速一致(即流量传感器400检测到的流体流量值与流体通路中的流体流量值成正比),再通过分流器110的第二端汇入流量调节阀200中,由流量调节阀200控制流体通路中的流体流量大小,最后经出气接头130由出口排出。
本发明实施例对流量传感器400如何检测传感管410中的流体流量不作具体限定,例如,当流量传感器400为热式流量计时,流量传感器400包括分别设置在传感管410上两个不同位置处的两个温度传感器,流量传感器400根据两个温度传感器分别检测到的传感管410上两个不同位置处的流体温度,计算获得二者的温差,并根据该温差得到传感管410中的流体流量值(即流量传感器400检测到的流体流量值)。
本发明实施例对控制模块300如何根据流量调节阀200下游的压力传感器500检测到的流体压力值,采用PID闭环控制方法对流量调节阀200的开 度进行调节不作具体限定,例如,作为本发明的一种可选实施方式,如图5所示,控制模块300在压力反馈调节模式中具体用于:
在步骤S11中,根据目标流量值确定压力传感器500对应的目标压力值;
循环执行步骤S12和步骤S13,在此过程中,周期性地或者实时获取压力传感器500检测到的流体压力值,根据压力传感器500检测到的流体压力值以及目标压力值进行PID计算,获得流量调节阀200的开度调节量,并根据该开度调节量调节流量调节阀200的开度,通过不断地进行PID计算并调节流量调节阀200的开度,可以逐渐减小压力传感器500检测到的流体压力值与目标压力值之间的压力差值的绝对值,当压力传感器500检测到的流体压力值逐渐稳定在目标压力值,即,流量传感器400检测到的流体流量值满足第一稳定条件时,跳出上述循环,并进入流量反馈调节模式(即,执行步骤S20)。其中,开度调节量与压力差值正相关。
本发明实施例对控制模块300如何根据流量调节阀200上游的流量传感器400检测到的流体流量值对流量调节阀200的开度进行PID调节不作具体限定,例如,作为本发明的一种可选实施方式,如图6和图7所示,控制模块300在流量反馈调节模式中具体用于:
在步骤S21中,根据接收到的目标流量信号确定流量传感器400对应的目标流量值;
循环执行步骤S22和步骤S23,在此过程中,周期性地或者实时获取流量传感器400检测到的流体流量值,根据流量传感器400检测到的流体流量值以及目标流量值进行PID计算,获得流量调节阀200的开度调节量,通过不断地进行PID计算并调节流量调节阀200的开度,可以逐渐减小流量传感器400检测到的流体流量值与目标流量值之间的流量差值的绝对值,当该流量差值的绝对值小于预设差值,跳出上述循环,流程结束。其中,开度调节量的绝对值与流量差值的绝对值正相关。
为进一步提高质量流量控制器控制流体流量的精确性,作为本发明的一种优选实施方式,如图7所示,控制模块300还用于:
在上述流量差值的绝对值小于预设差值后,周期性地或实时获取压力传感器500检测到的流体压力值(执行步骤S31),并判断压力传感器500检测到的流体压力值是否满足第二稳定条件;
当压力传感器检测到的流体压力值不满足第二稳定条件时,重新进入流量反馈调节模式。
如图1所示,压力传感器500直接通过流体通路的出口与质量流量控制器下游的设备连通,当质量流量控制器下游设备出现故障或气路受阻时,流量调节阀200下游的气路中将出现压力波动。在本发明实施例中,控制模块300在通过流量反馈调节模式调节流量调节阀200的开度,直至达到目标开度后,还通过压力传感器500继续对下游流体压力进行监控,当下游流体压力出现波动时,则重新通过流量反馈调节模式对流量调节阀200的开度进行调节,以抵消该压力波动可能带来的流量波动,避免流量受下游异常情况影响而发生变化。
在本发明实施例中,压力传感器500不仅用于在压力反馈调节中完成流量调节阀开度粗调,还可以在流量反馈调节后利用其快速响应的特性对下游情况进行监控,进一步提高了质量流量控制器控制流体流量的精确性。
为进一步提高质量流量控制器调节流体流量的效率,优选地,如图4至图6所示,控制模块300还用于在进入压力反馈调节模式前,获取目标流量值对应的流量调节阀的目标开度(即,执行步骤S00),在压力传感器检测到的流体压力值满足第二稳定条件(即流量调节阀200的开度稳定在流量调节阀的目标开度附近)后,进入压力反馈调节模式。
在本发明实施例中,控制模块300先根据目标流量值获取对应的流量调节阀的目标开度,根据该目标开度调节流量调节阀200的开度,从而通过开 环控制的方式使流量调节阀200的开度快速达到目标开度附近,这与直接通过压力反馈调节(闭环控制)使流量调节阀200的开度变化至接近目标开度相比,可以节约调节时间,进一步提高了质量流量控制器调节流体流量的效率。
上述流量调节阀的目标开度是预设的,例如可以预先存储在控制模块300中。
需要说明的是,上述第一稳定条件与第二稳定条件用于分别判断压力和流量的信号是否稳定,例如,可以是信号在最近预设时间内的波动范围中的最大值与最小值之间的差值是否在预设的差值范围内。具体地,第一稳定条件可以是:流量传感器在第一预设时间内检测到的所有的流体流量值中的最大值与最小值之间的差值小于等于第一预设差值;第二稳定条件可以是:压力传感器在第二预设时间内检测到的所有的流体压力值中的最大值与最小值之间的差值小于等于第二预设差值。
本发明实施例对流量调节阀200的结构类型不作具体限定,例如,流量调节阀200可以为电磁阀或压电阀,流量调节阀的开度大小与电信号(如,阀电压)的大小对应。
本发明实施例对控制模块300的结构以及控制模块300如何与流量调节阀200、流量传感器400和压力传感器500连接不作具体限定,例如,可选地,如图2所示,控制模块300包括PID控制单元310、流量处理模块320和压力处理模块330。其中,压力处理模块330用于获取压力传感器500检测到的流体压力值,并将其进行处理之后发送至PID控制单元310,以使PID控制单元310能够对处理后的信号进行相应的计算处理;类似的,流量处理模块320用于获取流量传感器400检测到的流体流量值,并将其进行处理之后发送至PID控制单元310;PID控制单元310用于在进入压力反馈调节模式之前,采用开环控制的方式根据已确定的与目标流量值对应的流量调节阀 的目标开度,调节流量调节阀200的开度;以及在压力反馈调节模式中,根据压力处理模块330提供的流体压力值以及目标压力值,采用PID闭环控制方式调节流量调节阀200的开度;以及在流量反馈调节模式中,根据流量处理模块320提供的流体流量值以及目标流量值,采用PID闭环控制方式调节流量调节阀200的开度。
可选地,如图2所示,流量处理模块320和压力处理模块330分别通过A/D采样单元与对应的流量传感器400和压力传感器500连接,A/D采样单元用于将检测装置(流量传感器400和压力传感器500)的模拟(analog)信号转变为数字(digital)信号,以便PID控制单元310对数据进行计算分析。PID控制单元310通过阀驱动单元与流量调节阀200连接,阀驱动单元用于根据PID控制单元310发送的信号,向流量调节阀200输出对应的阀电压,以改变流量调节阀200的开度,进而实现调节质量流量控制器中的流体流量。
本发明实施例对控制模块300如何根据目标流量信号确定流量调节阀的目标开度不作具体限定,例如,优选地,控制模块300中存储有多个流量设定值以及与各流量设定值对应的流量调节阀的目标开度,如图8所示,控制模块300用于根据与目标流量值最接近的两个流量设定值以及这两个流量设定值对应的开度,通过插值法计算得到目标流量值对应的目标开度。
如图1所示,在半导体工艺过程中,以流体为气体为例,出口下游的真空泵600全程进行抽气,以保证质量流量控制器在开始使用之前,其位于流量调节阀200下游的出口压力达到或接近真空状态。质量流量控制器的出口压力远低于入口压力时,流体通过流量调节阀200的阀口的流量正比于入口压力以及流量调节阀200的过流面积,即F∝P*A,其中,F为通过质量流量控制器的流体流量,P为入口压力,A为流量调节阀200的过流面积(即流量调节阀的开度),当入口压力P恒定时,改变流量调节阀200的过流面积A(流量调节阀200的开度)即可改变通过质量流量控制器的流体流量F。 在实际应用中,如果流体为液体,则可以在出口下游采用吸液泵进行抽液。
当入口压力不变时,流量调节阀200的开度与流体流量正相关(图10所示曲线为流量调节阀的开度与流体流量之间的关系曲线,图10中流量调节阀的开度为无量纲值,仅表示各点纵坐标之间的比例关系),而由于电磁阀的开度是由阀电压直接控制,在流量调节阀的开度的可变范围内,阀电压越大,则流量调节阀的开度越大。
在本发明实施例中,控制模块300可根据与目标流量值最接近的两个流量设定值以及这两个流量设定值对应的开度,通过插值法计算得到目标流量值对应的目标开度,该目标开度可以预先存储在控制模块300中,在进行流量控制时,控制模块300可以调用与目标流量值对应的目标开度,采用开环控制方式调节流量调节阀的开度,以使流量调节阀能够快速达到接近目标开度的位置,从而节省调节时间,提高调节效率。
例如,图10中的曲线上的多个黑点分别表示多个流量设定值以及各流量设定值对应的流量调节阀的开度,当目标流量值为30%(即质量流量控制器的满量程的30%)时,根据由与30%最接近的相邻两个流量设定值的坐标(25%,1.2)和(50%,1.4),通过插值法计算得到横坐标为30%对应于两个流量设定值之间的曲线上的纵坐标为1.24,该值即为与30%对应的目标开度,可以预先存储该目标开度,并在进行压力反馈调节模式之前直接调用,以采用开环控制方式将流量调节阀200的开度调节至1.24,以减小后续在压力反馈调节模式中的调节量,提高调节效率。
当流量调节阀200为电磁阀时,因电磁阀存在磁滞特性,在控制质量流量控制器从不同大小的流体流量调节至同一目标流量值时,流体流量由较低值上升至该目标流量值和由较高值下降至该目标流量值时,电磁阀的开度(阀电压)并不相同。
为进一步提高流量调节效率,优选地,每个流量设定值对应的开度均包 括上升开度(即流量从较低值上升至该流量设定值对应的开度)和下降开度(即流量从较高值下降至该流量设定值对应的开度)。
具体地,如下表1-1所示,上升开度对应上升阀电压Uu,下降开度对应下降阀电压Ud,已标定的流量设定值S1、S2、S3、…、Sn对应的上升阀电压的值分别为Uu_1、Uu_2、Uu_3、…、Uu_n,流量设定值S1、S2、S3、…、Sn对应的下降阀电压的值分别为Ud_1、Ud_2、Ud_3、…、Ud_n。控制模块300可将流量上升和下降的两套标定数据作为阀电压数据模板进行存储,方便后续的调用计算。
表1-1多个流量设定值对应的阀电压值
Figure PCTCN2022095493-appb-000001
相应地,如图9所示,根据目标流量值获取对应的流量调节阀的目标开度的步骤S01包括:
在目标流量值升高时,根据与目标流量值最接近的两个流量设定值以及这两个流量设定值对应的上升开度,通过插值法计算得到目标流量值对应的目标开度(阀电压),即,执行步骤S011;
在目标流量值降低时,根据与目标流量值最接近的两个流量设定值以及这两个流量设定值对应的下降开度,通过插值法计算得到目标流量值对应的目标开度(阀电压),即,执行步骤S012。
例如,若当前的目标流量值Si在[S(n-1),Sn]区间内(即最近的两个流量设定值为Sn-1和Sn),且当前的目标流量值Si高于上一目标流量值时,可根据控制模块300中存储的信息确定与当前的目标流量值Si最接近的两个流 量设定值及上升开度对应的坐标(S(n-1),Uu_(n-1))和(Sn,Uu_n),进而通过插值法计算得到目标流量值Si对应于(S(n-1),Uu_(n-1))与(Sn,Uu_n)之间的曲线上的点的纵坐标(即目标开度)。
具体地,由两个流量设定值及上升开度对应的坐标(S(n-1),Uu_(n-1))和(Sn,Uu_n)可知,两个流量设定值之间曲线的斜率为(Uu_n–Uu_(n-1))/(Sn-Sn-1),进而可通过(S(n-1),Uu_(n-1))或(Sn,Uu_n)的横坐标与目标流量值Si之间的差值确定(S(n-1),Uu_(n-1))或(Sn,Uu_n)的纵坐标与目标开度之间的差值。例如,目标流量值Si与(S(n-1),Uu_(n-1))的横坐标S(n-1)之间的差值为(Si-S(n-1)),则目标开度与(S(n-1),Uu_(n-1))的纵坐标Uu_(n-1)之间的差值为横坐标差值与两个流量设定值之间的曲线斜率的乘积,即(Si-S(n-1))(Uu_n–Uu_(n-1))/(Sn-Sn-1),进而可以确定目标开度为(S(n-1),Uu_(n-1))的纵坐标Uu_(n-1)与该纵坐标差值的和,即,目标流量值Si高于上一目标流量值时,对应的目标开度为(Si-S(n-1))(Uu_n–Uu_(n-1))/(Sn-Sn-1)+Uu_(n-1)。
同样地,在当前的目标流量值Si在[S(n-1),Sn]区间内,且当前的目标流量值Si低于上一目标流量值时,可根据控制模块300中存储的信息确定与当前的目标流量值Si最接近的两个流量设定值及其对应的下降开度对应的坐标(S(n-1),Ud_(n-1))和(Sn,Ud_n),进而通过插值法计算得到目标流量值Si对应于(S(n-1),Ud_(n-1))与(Sn,Ud_n)之间的曲线上的点的纵坐标(即目标开度)。
具体地,由两个流量设定值及下降开度对应的坐标(S(n-1),Ud_(n-1))与(Sn,Ud_n)可知,两个流量设定值之间曲线的斜率为(Ud_n–Ud_(n-1))/(Sn-Sn-1),进而可通过(S(n-1),Ud_(n-1))或(Sn,Ud_n)的横坐标与目标流量值Si之间的差值确定(S(n-1),Ud_(n-1))或(Sn,Ud_n)的纵坐标与目标开度之间的差值。例如,目标流量值Si与(S(n-1),Ud_(n-1))的横坐标S(n-1)之间的差值为(Si-S(n-1)),则目标开度与(S(n-1),Ud_(n-1))的纵坐标Ud_(n-1)之间 的差值为横坐标差值与两个流量设定值之间的曲线斜率的乘积,即(Si-S(n-1))(Ud_n–Ud_(n-1))/(Sn-Sn-1),进而可以确定目标开度为(S(n-1),Ud_(n-1))的纵坐标Ud_(n-1)与该纵坐标差值的和,即,目标流量值Si低于上一目标流量值时,对应的目标开度为(Si-S(n-1))(Ud_n–Ud_(n-1))/(Sn-Sn-1)+Ud_(n-1)。
在本发明实施例中,控制模块300中存储的每个流量设定值对应的开度均包括上升开度和下降开度,从而在流量调节阀200为电磁阀时,可根据目标流量值的升降确定流量调节阀开度的增减,进而在上升开度和下降开度中选择合适的一组数据进行开环控制,以使流量调节阀的开度能够快速接近目标开度,进而减小了后续压力反馈调节过程中的调节量,提高了流体流量的调节效率。
为便于本领域技术人员理解,本发明还提供图2所示控制模块300对质量流量控制器中的流体流量进行调节的流程的具体实施例:
在目标流量值的变化量大于预设阈值时,控制模块300根据预先存储的模板确定输入的目标流量值对应的目标开度、目标流量值和目标压力值;
控制模块300首先进入开环控制模式,PID控制单元310根据与目标流量值对应的目标开度控制阀驱动单元向流量调节阀200加载对应的阀电压。同时压力传感器500不断检测下游的流体压力值,并通过压力处理模块330中的A/D采样单元进行模数转换之后传输至PID控制单元310。
待压力传感器500检测到的流体压力值稳定(满足第二稳定条件)后(即流量调节阀的开度已稳定在与目标开度对应的开度后),控制模块300切换至压力反馈调节模式,压力传感器500通过压力处理模块330周期性地将下游的流体压力值反馈至PID控制单元310,PID控制单元310根据流体压力值以及目标压力值周期性地采用PID控制方法改变流量调节阀200的开度,以减小流体压力值与目标压力值之间的压力差值。
当流量传感器400检测到的流体流量值趋于稳定(满足第一稳定条件)时,控制模块300切换至流量反馈调节模式(由于下游流体压力波动较大,为节约调节时间,不必等待压力传感器500检测到的流体压力值稳定),流量传感器400将检测到的流体流量值通过流量处理模块320反馈至PID控制单元310,PID控制单元310根据流体流量值和目标流量值周期性地采用PID控制方法改变流量调节阀200的开度,以减小流体流量值与目标流量值之间的流量差值,直至流量差值的绝对值小于预设差值。
此后,控制模块300继续在后台通过压力传感器500对流体压力值进行监控,一旦下游出现异常的压力波动,则可通过压力传感器500反馈至控制模块300,控制模块300重新切换至流量反馈调节模式,以及时进行阀电压的补偿,抵消该压力波动可能带来的流量波动,保证得质量流量控制器中流体流量的平稳性和精确性。
作为本发明的第二个方面,提供一种质量流量控制器的流量控制方法,应用于本发明实施例提供的上述质量流量控制器,如图3所示,该流量控制方法包括:
在目标流量值的变化量超出预设阈值时,进入压力反馈调节模式,在压力反馈调节模式中,根据压力传感器检测到的流体压力值,以及目标流量值对应的目标压力值,计算获得流量调节阀的开度调整量,并根据该开度调整量调节流量调节阀的开度(即执行步骤S10);
在流量传感器检测到的流体流量值满足第一稳定条件后,进入流量反馈调节模式,在流量反馈调节模式中,根据流量传感器检测到的流体流量值以及目标流量值,计算获得流量调节阀的开度调整量,并根据该开度调整量调节流量调节阀的开度(即执行步骤S20)。
可选地,上述预设阈值可根据流量反馈调节的实际效率确定,即,在采用流量反馈调节模式,即,根据流量传感器检测到的流体流量值对流量调节 阀的开度进行调节,使流体流量值达到新的目标流量值所需的时长在可接受的范围内时,则可直接采用流量反馈调节模式进行调节,不必先通过压力反馈调节模式调节流量调节阀的开度。具体地,如图3所示,该流量控制方法还包括:
在目标流量值的变化量未超出预设阈值时,进入流量反馈调节模式,即,根据流量传感器检测到的流体流量值以及目标流量值,计算获得流量调节阀的开度调整量,并根据该开度调整量调节流量调节阀的开度(即跳过步骤S10,直接执行步骤S20)。
本发明实施例对如何根据流量调节阀下游的流体压力值对流量调节阀的开度进行PID调节不作具体限定,例如,作为本发明的一种可选实施方式,如图5所示,压力反馈调节(步骤S10)具体包括:
在步骤S11中,根据目标流量值确定压力传感器对应的目标压力值;
循环执行步骤S12和步骤S13,在此过程中,周期性地或者实时获取压力传感器检测到的流体压力值,根据压力传感器检测到的流体压力值以及目标压力值进行PID计算,获得流量调节阀的开度调节量,并根据该开度调节量调节流量调节阀的开度,通过不断地进行PID计算并调节流量调节阀的开度,可以逐渐减小压力传感器检测到的流体压力值与目标压力值之间的压力差值的绝对值,当压力传感器检测到的流体压力值逐渐稳定在目标压力值,即,流量传感器检测到的流体流量值满足第一稳定条件时,跳出上述循环,并进入流量反馈调节模式(即,执行步骤S20)。其中,开度调节量与压力差值正相关。
本发明实施例对如何根据流量调节阀上游的流体流量值对流量调节阀的开度进行PID调节不作具体限定,例如,作为本发明的一种可选实施方式,如图6、图7所示,流量反馈调节(步骤S20)具体包括:
在步骤S21中,根据接收到的目标流量信号确定流量传感器对应的目标 流量值;
循环执行步骤S22和步骤S23,在此过程中,周期性地或者实时获取流量传感器检测到的流体流量值,根据流量传感器检测到的流体流量值以及目标流量值进行PID计算,获得流量调节阀的开度调节量,通过不断地进行PID计算并调节流量调节阀的开度,可以逐渐减小流量传感器检测到的流体流量值与目标流量值之间的流量差值的绝对值,当该流量差值的绝对值小于预设差值,跳出上述循环,流程结束。其中,开度调节量的绝对值与流量差值的绝对值正相关。
为进一步提高质量流量控制器控制流体流量的精确性,作为本发明的一种优选实施方式,如图7所示,流量控制方法还包括:
在流量差值的绝对值小于预设差值后,周期性地或实时执行步骤S31、获取压力传感器检测到的流体压力值,并判断压力传感器检测到的流体压力值是否满足第二稳定条件;
当压力传感器检测到的流体压力值不满足第二稳定条件时,重新进入流量反馈调节模式。
为进一步提高质量流量控制器调节流体流量的效率,优选地,如图4至图6所示,流量控制方法还包括:
在进入压力反馈调节模式(步骤S10)前,执行步骤S00、获取目标流量值对应的流量调节阀的目标开度,在压力传感器检测到的流体压力值满足第二稳定条件(即流量调节阀的开度稳定在流量调节阀的目标开度附近)后,进入压力反馈调节模式(即执行步骤S10)。
为进一步提高流量调节效率,优选地,质量流量控制器(的控制模块)中存储有多个流量设定值以及与各流量设定值对应的流量调节阀的目标开度,包括:
在步骤S01中,根据与目标流量值最接近的两个流量设定值以及这两个 流量设定值对应的开度,通过插值法计算得到目标流量值对应的目标开度。(步骤S00还包括在步骤S02中,根据流量调节阀的目标开度调节流量调节阀的开度)
当质量流量控制器中的流量调节阀为电磁阀时,为进一步提高流量调节效率,优选地,每个流量设定值对应的开度均包括上升开度(即流量从较低值上升至该流量设定值对应的开度)和下降开度(即流量从较高值下降至该流量设定值对应的开度),根据目标流量值获取对应的目标开度的步骤S01,包括:
在目标流量值升高时,根据与目标流量值最接近的两个流量设定值以及这两个流量设定值对应的上升开度,通过插值法计算得到目标流量值对应的目标开度(阀电压);
在目标流量值降低时,根据与目标流量值最接近的两个流量设定值以及这两个流量设定值对应的下降开度,通过插值法计算得到目标流量值对应的目标开度(阀电压)。
本发明提供的流量控制方法,将响应速度快的压力反馈调节模式与精度高的流量反馈调节模式结合,即,在目标流量值的变化量超出预设阈值时,先进入压力反馈调节模式,通过压力反馈调节使流量调节阀的开度快速接近目标开度,再切换至流量反馈调节模式,通过流量反馈调节对流量调节阀的开度进行精确调节,这种压力反馈与流量反馈相结合的调节方式与现有技术中仅通过流量反馈的调节方式相比,可以缩短流量调节阀的开度逐渐接近目标开度的调节时间,从而可以在保证流体流量调节精度的同时,提高质量流量控制器的响应速度,进而提高半导体工艺的工艺效果和机台产能。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这 些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种质量流量控制器,其中设置有流体通路,所述流体通路的入口与出口之间连接有流量调节阀,其特征在于,所述质量流量控制器还包括控制模块、流量传感器和压力传感器,其中,
    所述流量传感器设置在所述入口与所述流量调节阀之间,用于检测所述流体通路中的流体流量值;
    所述压力传感器设置于所述出口处,用于检测所述流体通路中的流体压力值;
    所述控制模块用于在目标流量值的变化量超出预设阈值时,进入压力反馈调节模式,并在所述流量传感器检测到的流体流量值满足第一稳定条件后,进入流量反馈调节模式,其中,
    所述控制模块用于在所述压力反馈调节模式中,根据所述压力传感器检测到的流体压力值,以及所述目标流量值对应的目标压力值计算获得所述流量调节阀的开度调整量,并根据所述开度调整量调节所述流量调节阀的开度;
    所述控制模块用于在所述流量反馈调节模式中,根据所述流量传感器检测到的流体流量值,以及所述目标流量值计算获得所述流量调节阀的开度调整量,并根据所述开度调整量调节所述流量调节阀的开度。
  2. 根据权利要求1所述的质量流量控制器,其特征在于,所述控制模块还用于在进入所述压力反馈调节模式前,获取所述目标流量值对应的所述流量调节阀的目标开度,根据所述目标开度调节所述流量调节阀的开度,并在所述压力传感器检测到的流体压力值满足第二稳定条件后,进入所述压力反馈调节模式。
  3. 根据权利要求2所述的质量流量控制器,其特征在于,所述控制模 块中存储有多个流量设定值及与各所述流量设定值对应的开度;
    所述控制模块用于根据与所述目标流量值最接近的两个所述流量设定值及其对应的开度,通过插值法计算得到所述目标流量值对应的所述目标开度。
  4. 根据权利要求3所述的质量流量控制器,其特征在于,所述流量调节阀为电磁阀,每个所述流量设定值对应的开度均包括上升开度和下降开度;
    所述控制模块用于在所述目标流量值升高时,根据与所述目标流量值最接近的两个所述流量设定值及其对应的所述上升开度,通过插值法计算得到所述目标流量值对应的所述目标开度;在所述目标流量值降低时,根据与所述目标流量值最接近的两个所述流量设定值及其对应的所述下降开度,通过插值法计算得到所述目标流量值对应的所述目标开度。
  5. 根据权利要求1至4中任意一项所述的质量流量控制器,其特征在于,所述流量传感器为热式流量传感器。
  6. 根据权利要求2至4中任意一项所述的质量流量控制器,其特征在于,所述第一稳定条件为:所述流量传感器在第一预设时间内检测到的所有的所述流体流量值中的最大值与最小值之间的差值小于等于第一预设差值;
    所述第二稳定条件为:所述压力传感器在第二预设时间内检测到的所有的流体压力值中的最大值与最小值之间的差值小于等于第二预设差值。
  7. 根据权利要求1所述的质量流量控制器,其特征在于,所述控制模块还用于在所述目标流量值的变化量未超出所述预设阈值时,进入所述流量反馈调节模式。
  8. 一种质量流量控制器的流量控制方法,其特征在于,所述流量控制方法应用于权利要求1至7中任意一项所述的质量流量控制器,所述流量控制方法包括:
    在目标流量值的变化量超出预设阈值时,进入压力反馈调节模式,在所述压力反馈调节模式中,根据压力传感器检测到的流体压力值,以及所述目标流量值对应的目标压力值,计算获得所述流量调节阀的开度调整量,并根据所述开度调整量调节流量调节阀的开度;
    在流量传感器检测到的流体流量值满足第一稳定条件后,进入流量反馈调节模式,在所述流量反馈调节模式中,根据所述流量传感器检测到的流体流量值以及所述目标流量值,计算获得所述流量调节阀的开度调整量,并根据所述开度调整量调节所述流量调节阀的开度。
  9. 根据权利要求8所述的流量控制方法,其特征在于,所述流量控制方法还包括:
    在所述目标流量值的变化量未超出所述预设阈值时,进入所述流量反馈调节模式。
  10. 根据权利要求8所述的流量控制方法,其特征在于,在进入所述压力反馈调节模式之前,所述流量控制方法还包括:
    获取所述目标流量值对应的所述流量调节阀的目标开度,根据所述目标开度调节所述流量调节阀的开度;
    在所述压力传感器检测到的流体压力值满足第二稳定条件后,进入所述压力反馈调节模式。
  11. 根据权利要求10所述的流量控制方法,其特征在于,所述获取所述目标流量值对应的所述流量调节阀的目标开度,包括:
    根据预先存储的多个流量设定值及与各所述流量设定值对应的所述目 标开度,确定与所述目标流量值最接近的两个所述流量设定值及其对应的开度,通过插值法计算得到所述目标流量值对应的所述目标开度。
  12. 根据权利要求11所述的流量控制方法,其特征在于,所述流量调节阀为电磁阀,每个所述流量设定值对应的开度均包括上升开度和下降开度;
    所述获取所述目标流量值对应的所述流量调节阀的目标开度,包括:
    在所述目标流量值升高时,根据预先存储的多个所述流量设定值及与各所述流量设定值对应的所述上升开度,确定与所述目标流量值最接近的两个所述流量设定值及其对应的所述上升开度,通过插值法计算得到所述目标流量值对应的所述目标开度;
    在所述目标流量值降低时,根据预先存储的多个所述流量设定值及与各所述流量设定值对应的所述下降开度,确定与所述目标流量值最接近的两个所述流量设定值及其对应的所述下降开度,通过插值法计算得到所述目标流量值对应的所述目标开度。
PCT/CN2022/095493 2021-05-28 2022-05-27 质量流量控制器及其流量控制方法 WO2022247926A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22810650.6A EP4350465A1 (en) 2021-05-28 2022-05-27 Mass flow controller and flow control method therefor
JP2023573380A JP2024520536A (ja) 2021-05-28 2022-05-27 マスフローコントローラ及びそのフロー制御方法
US18/562,942 US20240231398A1 (en) 2021-05-28 2022-05-27 Mass flow controller and flow control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110594358.1A CN113311881B (zh) 2021-05-28 2021-05-28 一种质量流量控制器和流量控制方法
CN202110594358.1 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022247926A1 true WO2022247926A1 (zh) 2022-12-01

Family

ID=77376452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095493 WO2022247926A1 (zh) 2021-05-28 2022-05-27 质量流量控制器及其流量控制方法

Country Status (5)

Country Link
US (1) US20240231398A1 (zh)
EP (1) EP4350465A1 (zh)
JP (1) JP2024520536A (zh)
CN (1) CN113311881B (zh)
WO (1) WO2022247926A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117686042A (zh) * 2024-02-02 2024-03-12 成都秦川物联网科技股份有限公司 一种物联网超声波水表阀控联动方法、***及设备
CN117806375A (zh) * 2023-12-20 2024-04-02 无锡展硕科技有限公司 调节流体流量的方法、装置、计算机***与可存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311881B (zh) * 2021-05-28 2022-12-13 北京七星华创流量计有限公司 一种质量流量控制器和流量控制方法
CN113721673B (zh) * 2021-08-31 2024-05-10 北京七星华创流量计有限公司 气体质量流量控制方法及装置
CN113883910B (zh) * 2021-10-19 2023-05-16 攀钢集团西昌钢钒有限公司 控制***在节流流量计处于死区时控制调节阀的方法
CN114167716A (zh) * 2021-12-03 2022-03-11 江苏海博流体控制有限公司 一种基于流量控制的调节型电动执行方法和机构
CN115454153A (zh) * 2022-10-26 2022-12-09 北京七星华创流量计有限公司 质量流量控制器及其流量控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475614A (en) * 1994-01-13 1995-12-12 Micro-Trak Systems, Inc. Method and apparatus for controlling a variable fluid delivery system
CN108227763A (zh) * 2016-12-15 2018-06-29 株式会社堀场Stec 流量控制装置和程序存储介质
CN112000160A (zh) * 2020-09-07 2020-11-27 中国航空工业集团公司沈阳空气动力研究所 一种大量程高精度气体压力和流量快速调节装置及其调节方法
CN113311881A (zh) * 2021-05-28 2021-08-27 北京七星华创流量计有限公司 一种质量流量控制器和流量控制方法
CN113485470A (zh) * 2021-06-04 2021-10-08 北京农业智能装备技术研究中心 一种变量喷雾控制方法、装置及***

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865205A (en) * 1997-04-17 1999-02-02 Applied Materials, Inc. Dynamic gas flow controller
US6138708A (en) * 1999-07-28 2000-10-31 Controls Corporation Of America Mass flow controller having automatic pressure compensator
US6655408B2 (en) * 2001-06-13 2003-12-02 Applied Materials, Inc. Tunable ramp rate circuit for a mass flow controller
JP2003280745A (ja) * 2002-03-25 2003-10-02 Stec Inc マスフローコントローラ
US7621290B2 (en) * 2005-04-21 2009-11-24 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using antisymmetric optimal control
JP2008039513A (ja) * 2006-08-03 2008-02-21 Hitachi Metals Ltd 質量流量制御装置の流量制御補正方法
US7874208B2 (en) * 2007-10-10 2011-01-25 Brooks Instrument, Llc System for and method of providing a wide-range flow controller
JP5082989B2 (ja) * 2008-03-31 2012-11-28 日立金属株式会社 流量制御装置、その検定方法及び流量制御方法
JP2010169657A (ja) * 2008-12-25 2010-08-05 Horiba Stec Co Ltd 質量流量計及びマスフローコントローラ
US9127361B2 (en) * 2009-12-07 2015-09-08 Mks Instruments, Inc. Methods of and apparatus for controlling pressure in multiple zones of a process tool
WO2012153455A1 (ja) * 2011-05-10 2012-11-15 株式会社フジキン 流量モニタ付圧力式流量制御装置
JP5873681B2 (ja) * 2011-10-14 2016-03-01 株式会社堀場エステック 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
JP2013088944A (ja) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd 流量制御装置、流量測定機構、又は、当該流量測定機構を備えた流量制御装置に用いられる診断装置及び診断用プログラム
JP5809012B2 (ja) * 2011-10-14 2015-11-10 株式会社堀場エステック 流量制御装置、流量測定機構、又は、当該流量測定機構を備えた流量制御装置に用いられる診断装置及び診断用プログラム
US9027585B2 (en) * 2011-12-13 2015-05-12 Hitachi Metals, Ltd. Adaptive pressure insensitive mass flow controller and method for multi-gas applications
JP6426475B2 (ja) * 2012-03-07 2018-11-21 イリノイ トゥール ワークス インコーポレイティド 熱モデルを用いてrod測定における熱に起因する誤差を最小にすることによって質量流量制御器または質量流量計における実時間補正のための減衰速度測定の精度を改善するためのシステムおよび方法
JP5665794B2 (ja) * 2012-04-27 2015-02-04 株式会社フジキン 半導体製造装置のガス分流供給装置
CN106104222B (zh) * 2014-03-20 2018-10-26 日立金属株式会社 热式质量流量计和使用该热式质量流量计的质量流量控制装置
JP6264152B2 (ja) * 2014-03-31 2018-01-24 日立金属株式会社 質量流量計、及び当該質量流量計を使用する質量流量制御装置
JP6551398B2 (ja) * 2014-03-31 2019-07-31 日立金属株式会社 質量流量の測定方法、当該方法を使用する熱式質量流量計、及び当該熱式質量流量計を使用する熱式質量流量制御装置
CN108369425B (zh) * 2015-12-25 2021-03-02 株式会社富士金 流量控制装置以及使用流量控制装置的异常检测方法
JP7044629B2 (ja) * 2018-05-18 2022-03-30 株式会社堀場エステック 流体制御装置、及び、流量比率制御装置
US10705543B2 (en) * 2018-08-29 2020-07-07 Illinois Tool Works, Inc. Mass flow controller and controller algorithm
US11675374B2 (en) * 2018-10-26 2023-06-13 Illinois Tool Works Inc. Mass flow controller with advanced zero trending diagnostics
JP7111408B2 (ja) * 2019-12-06 2022-08-02 株式会社フジキン 流量制御装置の異常検知方法および流量監視方法
CN112000139B (zh) * 2020-09-09 2024-04-16 北京七星华创流量计有限公司 气体质量流量控制器及故障自检方法
CN112327948B (zh) * 2020-10-26 2024-01-09 北京七星华创流量计有限公司 一种质量流量控制器
US11435764B1 (en) * 2021-03-30 2022-09-06 Hitachi Metals, Ltd. Mass flow controller utilizing nonlinearity component functions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475614A (en) * 1994-01-13 1995-12-12 Micro-Trak Systems, Inc. Method and apparatus for controlling a variable fluid delivery system
CN108227763A (zh) * 2016-12-15 2018-06-29 株式会社堀场Stec 流量控制装置和程序存储介质
CN112000160A (zh) * 2020-09-07 2020-11-27 中国航空工业集团公司沈阳空气动力研究所 一种大量程高精度气体压力和流量快速调节装置及其调节方法
CN113311881A (zh) * 2021-05-28 2021-08-27 北京七星华创流量计有限公司 一种质量流量控制器和流量控制方法
CN113485470A (zh) * 2021-06-04 2021-10-08 北京农业智能装备技术研究中心 一种变量喷雾控制方法、装置及***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117806375A (zh) * 2023-12-20 2024-04-02 无锡展硕科技有限公司 调节流体流量的方法、装置、计算机***与可存储介质
CN117686042A (zh) * 2024-02-02 2024-03-12 成都秦川物联网科技股份有限公司 一种物联网超声波水表阀控联动方法、***及设备
CN117686042B (zh) * 2024-02-02 2024-05-24 成都秦川物联网科技股份有限公司 一种物联网超声波水表阀控联动方法、***及设备

Also Published As

Publication number Publication date
TW202246930A (zh) 2022-12-01
US20240231398A1 (en) 2024-07-11
EP4350465A1 (en) 2024-04-10
JP2024520536A (ja) 2024-05-24
CN113311881A (zh) 2021-08-27
CN113311881B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2022247926A1 (zh) 质量流量控制器及其流量控制方法
US7881829B2 (en) Mass flow controller
JP5607501B2 (ja) マスフローコントローラ
US8265795B2 (en) Mass flow controller
KR102384035B1 (ko) 유량 제어 장치, 유량 제어 장치용 프로그램을 기억한 기억 매체 및 유량 제어 방법
KR101391198B1 (ko) 질량 유량 제어기를 위한 제어기 이득 스케쥴링
CN113324605B (zh) 气体质量流量控制器和气体质量流量控制方法
EP1475684A1 (en) Advanced pressure type flow control device
CN110543194B (zh) 压力控制装置和半导体设备
US10921828B2 (en) Fluid control apparatus and flow rate ratio control apparatus
JP2002532800A (ja) ガス流の圧力を調整するための装置および方法
US8056579B2 (en) Mass flow controller
TWI844855B (zh) 質量流量控制器及其流量控制方法
CN113721673B (zh) 气体质量流量控制方法及装置
JP2007034550A (ja) マスフローコントローラ
CN103021489B (zh) 核电站化学与容积控制***下泄流温度的控制装置及方法
CN117850483A (zh) 质量流量控制器及其流量控制方法
KR101668483B1 (ko) 매스플로우 컨트롤러
CN115454153A (zh) 质量流量控制器及其流量控制方法
JP7474541B1 (ja) 流量制御装置
JP2790879B2 (ja) 流体圧力制御方法及び装置
CN104729235B (zh) 流化床物料恒温控制***及控制方法
JP7194421B2 (ja) 流量制御装置および流量制御方法
CN116400750A (zh) 流体恒压控制方法和流体恒压输出***
JPS63174110A (ja) 制御弁の流量制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18562942

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023573380

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022810650

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810650

Country of ref document: EP

Effective date: 20240102