WO2022247656A1 - 一种光谱测量方法及装置 - Google Patents

一种光谱测量方法及装置 Download PDF

Info

Publication number
WO2022247656A1
WO2022247656A1 PCT/CN2022/092678 CN2022092678W WO2022247656A1 WO 2022247656 A1 WO2022247656 A1 WO 2022247656A1 CN 2022092678 W CN2022092678 W CN 2022092678W WO 2022247656 A1 WO2022247656 A1 WO 2022247656A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
noise ratio
wavelength
echo signal
original echo
Prior art date
Application number
PCT/CN2022/092678
Other languages
English (en)
French (fr)
Inventor
郭宏伟
高硕�
郑元辽
于頔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022247656A1 publication Critical patent/WO2022247656A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Definitions

  • the present application relates to the field of spectrum detection, in particular to a spectrum measurement method and device.
  • Spectral analysis is an important means of natural science analysis, which can be used to detect the physical structure, chemical composition and other indicators of objects. Spectral analysis mainly obtains the spectral information of the measured object through the self-illumination of the measured object or the interaction with the light source, so as to realize the detection and analysis.
  • spectrometers and other equipment used for spectral analysis in laboratories are large in size, and spectral analysis can be used in many applications in daily life. Therefore, the miniaturization of spectrometers is an important trend at present. For example, miniaturized point spectroscopy and even hyperspectral imaging devices Integration to the end side (such as mobile phones, watches, large screens, etc.) can obtain more dimensional information.
  • the embodiment of the present application provides a spectrum measurement method and device.
  • the signal-to-noise ratio of the obtained original echo signal is greater than or equal to the signal-to-noise ratio threshold, which can reduce the interference of the reflection spectrum, thereby improving Accuracy of spectral measurements.
  • the embodiment of the present application provides a spectral measurement method, which may include:
  • the incident signal corresponding to the modulated echo signal is a signal obtained by modulating light emitted by a light source using a target modulation method, and the light emitted by the light source includes light of at least one wavelength;
  • the original echo signal corresponding to the first signal-to-noise ratio obtains the original echo signal corresponding to the first signal-to-noise ratio, and update the target modulation method based on the original echo signal corresponding to the first signal-to-noise ratio until at least one original echo signal corresponding to the at least one original echo signal
  • a signal-to-noise ratio is greater than or equal to the signal-to-noise ratio threshold, outputting a reflectance spectrum associated with the updated target modulation mode, where the reflectance spectrum is based on the signal strength and the signal intensity of each wavelength of light in the at least one wavelength included in the light source
  • the updated target modulation mode is obtained from the signal strength of each original echo signal in the at least one original echo signal.
  • the signal-to-noise ratio of each original echo signal in at least one original signal corresponding to at least one wavelength included in the light source is obtained, If it is determined that there is a first signal-to-noise ratio in the at least one signal-to-noise ratio that is less than the signal-to-noise ratio threshold, the target modulation mode is updated based on the original echo signal corresponding to the first signal-to-noise ratio until the signal-to-noise ratio condition ( are greater than or equal to the signal-to-noise ratio threshold) to obtain the reflectance spectrum.
  • the target modulation method is updated, and the light emitted by the light source is processed by using the updated modulation method, so that the signal-to-noise ratio of the obtained original echo signal is improved, thereby reducing the impact on the reflection spectrum. interference, improving the accuracy of spectral measurements.
  • updating the target modulation method based on the original echo signal corresponding to the first signal-to-noise ratio includes:
  • the neural network model is used to process the two-dimensional image with an adaptive algorithm to obtain the updated target modulation mode.
  • the updated target modulation method can be obtained according to the original echo signal corresponding to the first SNR and the neural network model, so that the original echo with a higher SNR can be obtained based on the updated modulation method signal, so as to better resist the interference of ambient light and improve the accuracy of spectral measurement.
  • the modulated echo signal before acquiring the modulated echo signal, it also includes:
  • the light emitted by the light source is modulated by the target modulation mode to obtain the incident signal.
  • the interference of ambient light on spectrum measurement can be resisted by modulating the light emitted by the light source.
  • the updated target modulation mode includes a modulation mode; the original response based on the first signal-to-noise ratio After the wave signal updates the target modulation mode, the target modulation mode should be used to modulate the light emitted by the light source, including:
  • the light of each wavelength in the at least one wavelength emitted by the light source is modulated by using the updated target modulation mode.
  • the light of at least one wavelength included in the light source is separated from each other in space, and the updated modulation method includes N modulation methods, where N is at least one signal-to-noise ratio smaller than the signal-to-noise ratio
  • N is at least one signal-to-noise ratio smaller than the signal-to-noise ratio
  • one modulation method corresponds to a first wavelength
  • the first wavelength is the wavelength associated with the first signal-to-noise ratio
  • the first signal-to-noise ratio is based on the first wavelength
  • the target modulation mode is used to modulate the light emitted by the light source, including:
  • the modulation mode is used to modulate the light of the first wavelength corresponding to the modulation mode in the light emitted by the light source.
  • N types of modulation modes can be obtained.
  • the light of the first wavelength corresponding to the specific modulation mode emitted by the light source is re-modulated with the specific modulation mode, so that the corresponding modulation modes are respectively used for the light of different wavelengths, so as to ensure that the number of updates of the target modulation mode can be as few as possible.
  • the signal-to-noise ratio of the obtained original echo signal is improved to meet the signal-to-noise ratio condition, and the measurement speed is improved while improving the accuracy of spectrum measurement.
  • the method also includes:
  • Using the target modulation mode before updating modulate light of wavelengths other than the N first wavelengths corresponding to the N modulation modes among the light of at least one wavelength emitted by the light source.
  • the corresponding signal-to-noise ratio before The light with a wavelength greater than or equal to the threshold of the signal-to-noise ratio is still modulated by the target modulation mode before updating, so as to avoid increasing the processing cost and affecting the measurement efficiency.
  • the updated target modulation mode includes any one of the following modulation modes: sine wave modulation, square wave modulation, minimum frequency shift keying, frequency shift keying, and phase shift keying.
  • different modulation methods can be used to modulate the light emitted by the light source, thereby enhancing the anti-interference effect and improving the accuracy of spectrum measurement.
  • the neural network model includes a convolutional neural network model.
  • an embodiment of the present application provides a spectral measurement device, the device comprising:
  • the first acquisition unit is configured to acquire a modulated echo signal, the incident signal corresponding to the modulated echo signal is a signal obtained by modulating the light emitted by the light source using a target modulation method, and the light emitted by the light source includes at least one wavelength the light;
  • the second obtaining unit is used to obtain the original echo signal corresponding to each wavelength in the at least one wavelength obtained after demodulating the modulated echo signal, and the demodulation method used in the demodulation is the same as the demodulation method used in the demodulation.
  • the demodulation method used in the demodulation is the same as the demodulation method used in the demodulation.
  • a third acquiring unit configured to acquire a signal-to-noise ratio of each original echo signal in at least one original echo signal corresponding to the at least one wavelength
  • a determining unit configured to determine whether there is a first signal-to-noise ratio smaller than a signal-to-noise ratio threshold in at least one signal-to-noise ratio corresponding to the at least one original echo signal;
  • An updating unit configured to obtain an original echo corresponding to the first signal-to-noise ratio if it is determined that there is a first signal-to-noise ratio in at least one signal-to-noise ratio corresponding to the at least one original echo signal that is smaller than a threshold value of the signal-to-noise ratio signal, and update the target modulation method based on the original echo signal corresponding to the first signal-to-noise ratio until at least one signal-to-noise ratio corresponding to the at least one original echo signal is greater than or equal to the signal-to-noise ratio than the threshold;
  • an output unit configured to output a reflection spectrum associated with the updated target modulation mode, the reflection spectrum is based on the signal strength of light of each wavelength in the at least one wavelength included in the light source and the updated target The signal strength of each original echo signal in the at least one original echo signal related to the modulation mode is obtained.
  • the updating unit is specifically used for:
  • the first processing unit is configured to obtain a two-dimensional image based on the original echo signal corresponding to the first signal-to-noise ratio, and the two-dimensional image is at least two original echo signals corresponding to at least two first signal-to-noise ratios obtained by splicing echo signals;
  • the second processing unit is configured to use a neural network model to perform adaptive algorithm processing on the two-dimensional image to obtain an updated target modulation mode.
  • the device also includes:
  • the first modulation unit is configured to use the target modulation method to modulate the light emitted by the light source to obtain the incident signal.
  • the light of the at least one wavelength included in the light source overlaps each other in space, and the updated target modulation mode includes a modulation mode; the based on the first signal-to-noise After updating the target modulation mode compared with the corresponding original echo signal, the first modulation unit is specifically configured to:
  • the light of each wavelength in the at least one wavelength emitted by the light source is modulated by using the updated target modulation mode.
  • the light of the at least one wavelength included in the light source is separated from each other in space, and the updated modulation mode includes N modulation modes, where N is the at least one signal-to-noise ratio The number of the first signal-to-noise ratios that are less than the threshold value of the signal-to-noise ratio, the N is a positive integer, one modulation mode corresponds to a first wavelength, and the first wavelength is determined by the first signal-to-noise ratio Associated wavelength; after updating the target modulation mode based on the original echo signal corresponding to the first signal-to-noise ratio, the first modulation unit is specifically configured to:
  • the modulation mode is used to modulate the light of the first wavelength corresponding to the modulation mode in the light emitted by the light source.
  • the device also includes:
  • the second modulation unit is configured to use the target modulation method before updating to perform the wavelengths other than the N first wavelengths corresponding to the N modulation methods in the light of the at least one wavelength emitted by the light source The light is modulated.
  • the updated target modulation mode includes any one of the following modulation modes: sine wave modulation, square wave modulation, minimum frequency shift keying, frequency shift keying, and phase shift keying.
  • the neural network model includes a convolutional neural network model.
  • an embodiment of the present application provides a spectrum measurement device, including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so as to implement the method in the first aspect above.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the embodiment of the present application provides a processor, including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method of the first aspect.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • the embodiment of the present application provides a processing device, including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter, so as to execute the method of the first aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be set separately from the processor.
  • the memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • the processing device in the fifth aspect above may be one or more chips.
  • the processor in the processing device may be implemented by hardware or by software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory, which can Integrated in a processor, it can exist independently of that processor.
  • the embodiment of the present application provides a computer program product
  • the computer program product includes: a computer program (also called code, or instruction), when the computer program is executed, the computer executes the above-mentioned One way.
  • the embodiment of the present application provides a readable storage medium, and the readable storage medium stores a computer program (also referred to as code, or instruction) when it is run on a computer, so that the above-mentioned first aspect method is implemented.
  • a computer program also referred to as code, or instruction
  • the eighth aspect provides a chip system
  • the chip system includes a processor and an interface circuit
  • the processor is used to call and run the computer program (also called code, or instruction) stored in the memory from the memory, so as to realize the first
  • the system-on-a-chip further includes a memory, and the memory is used to store necessary program instructions and data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • Fig. 1 is the flow chart of a kind of spectrum measurement method provided by the embodiment of the present application.
  • Fig. 2 is a schematic diagram of a spectral measurement process provided by an embodiment of the present application.
  • FIG. 3 is a structural diagram of a convolutional neural network model provided by an embodiment of the present application.
  • Fig. 4A is a schematic diagram of a spectrum measurement scene provided by an embodiment of the present application.
  • Fig. 4B is a schematic diagram of another spectrum measurement scenario provided by the embodiment of the present application.
  • Fig. 5 is a schematic diagram of another spectrum measurement scenario provided by the embodiment of the present application.
  • Fig. 6 is a flow chart of another spectral measurement method provided by the embodiment of the present application.
  • Fig. 7 is a kind of skin spectrogram provided by the embodiment of the present application.
  • FIG. 8 is a structural diagram of a spectral measurement system provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a spectral measurement device provided in an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of another spectral measurement device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
  • At least one (item) means one or more
  • “multiple” means two or more
  • “at least two (items)” means two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items. For example, at least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ".
  • FIG. 1 is a schematic flowchart of a spectral measurement method provided in an embodiment of the present application. As shown in Figure 1, the spectral measurement method includes but is not limited to the following steps 110-step 160:
  • a modulated echo signal is obtained.
  • the incident signal corresponding to the modulated echo signal is a signal obtained by modulating light emitted by a light source using a target modulation method, and the light emitted by the light source includes light of at least one wavelength.
  • FIG. 2 is a schematic diagram of a spectral measurement process provided by the embodiment of the present application. After the object is reflected, the echo is obtained, and then the reflection spectrum is obtained. When there is a certain distance between the light source and the measured object, the light irradiated on the surface of the object includes the light emitted by the light source and the ambient light, that is, the spectral information of the measured object is obtained through measurement in a long-distance environment, which is easily affected by the ambient light. interference. In order to reduce the interference of ambient light, the light emitted by the light source can be modulated.
  • the incident signal is obtained after the light emitted by the light source is modulated by the target modulation method, and the incident signal is irradiated on the measured object, and after being reflected by the measured object, a modulated echo signal is obtained.
  • the light emitted by the light source includes light of at least one wavelength.
  • the target modulation method used can be a general modulation method, for example, sine wave modulation or square wave modulation.
  • a general modulation method can be The mode (such as sine wave modulation) is set as the initial target modulation mode.
  • the incident signal is obtained after the light emitted by the light source is modulated by the target modulation method, and then the modulated echo signal is obtained.
  • Step 120 obtaining the original echo signal corresponding to each wavelength in the at least one wavelength obtained after demodulating the modulated echo signal, and the demodulation method used in the demodulation is consistent with the target modulation method correspond.
  • the modulated echo signal is demodulated to obtain an original echo signal corresponding to each wavelength of at least one wavelength included in the light emitted by the light source.
  • the demodulation methods adopted during demodulation include methods of coherent demodulation and non-coherent demodulation.
  • the modulated echo signal may be demodulated by using a lock-in amplification method.
  • the lock-in amplifier uses the reference signal with the same frequency and fixed phase relationship as the signal to be measured as a reference, and filters out the noise with a different frequency, thereby extracting useful signal components.
  • the demodulation mode adopted for demodulating the modulated echo signal corresponds to the target debugging mode for obtaining the modulated echo signal. For example, if the sine wave modulation is used as the target modulation method to obtain the modulated echo signal, then the coherent demodulation method using the sine wave can be correspondingly used to obtain the corresponding original echo signal.
  • Step 130 acquiring the signal-to-noise ratio of each original echo signal in the at least one original echo signal corresponding to the at least one wavelength.
  • the signal-to-noise ratio of each original echo signal is acquired.
  • the signal-to-noise ratio may be obtained through measurement.
  • Step 140 determine whether there is a first signal-to-noise ratio smaller than a signal-to-noise ratio threshold in at least one signal-to-noise ratio corresponding to the at least one original echo signal.
  • the signal-to-noise ratio threshold can be set according to experience, and the signal-to-noise ratio threshold can reflect the tolerance to ambient light interference during spectral measurement. Understandably, when the obtained signal-to-noise ratio is greater than or equal to the signal-to-noise ratio threshold, the environment Light interference has a relatively small influence on the obtained spectrum, so the spectral measurement results that meet the accuracy requirements can be obtained.
  • Step 150 if yes, obtain the original echo signal corresponding to the first signal-to-noise ratio, and update the target modulation method based on the original echo signal corresponding to the first signal-to-noise ratio until the at least one At least one signal-to-noise ratio corresponding to the original echo signal is greater than or equal to the signal-to-noise ratio threshold.
  • the original echo signal corresponding to the first signal-to-noise ratio is obtained.
  • wave signal wherein the number of the first SNR can be one or more, that is, a low SNR smaller than the SNR threshold includes one or more SNRs. Therefore, the original echo signal corresponding to the first signal-to-noise ratio may include one or more original echo signals.
  • the target modulation mode After obtaining the original echo signal corresponding to the first signal-to-noise ratio, update the target modulation mode based on the original echo signal corresponding to the first signal-to-noise ratio until at least one signal-to-noise signal corresponding to the at least one original echo signal ratios are greater than or equal to the signal-to-noise ratio.
  • Different modulation methods have different signal-to-noise ratios, that is, modulation methods can affect the signal-to-noise ratio. Therefore, the obtained signal-to-noise ratio can be improved by updating the target modulation mode, thereby reducing the interference of ambient light on the reflection spectrum and improving the accuracy of spectrum measurement.
  • the updated target modulation mode can be used to modulate the light emitted by the light source to obtain the modulated echo signal, and further, the information of the original echo signal corresponding to the modulated echo signal can be obtained.
  • Noise ratio so as to determine whether at least one signal-to-noise ratio corresponding to the at least one original echo signal is greater than or equal to the signal-to-noise ratio.
  • Different modulation methods have different anti-noise effects.
  • the spectrum measurement method provided in the embodiment of the present application can adaptively select an appropriate modulation method to obtain the spectrum, and further, can also obtain spectral information that changes with time, which is different from the measurement method that uses a simple and single modulation method to obtain the spectrum
  • the method provided by the present application can reduce the interference of ambient light, obtain a spectrum with better quality, and improve the accuracy of spectrum measurement.
  • updating the target modulation mode based on the original echo signal corresponding to the first signal-to-noise ratio may include the following process:
  • the neural network model is used to process the two-dimensional image with an adaptive algorithm to obtain an updated target modulation mode.
  • the neural network model can be used to determine the updated target modulation mode.
  • a two-dimensional image is obtained by splicing the original echo signals corresponding to the first signal-to-noise ratio within a preset time window. Then the two-dimensional image is input into the neural network model, and the output obtained is the updated target modulation mode.
  • the neural network model may include a convolutional neural network model.
  • Figure 3 is a structural diagram of a convolutional neural network model.
  • the objective function of the convolutional neural network model is mainly composed of the signal-to-noise ratio, power efficiency and bandwidth efficiency of the signal.
  • the updated target modulation method obtained based on the neural network model can improve the signal-to-noise ratio of the signal, and the corresponding power efficiency and power efficiency meet preset requirements.
  • information such as the characteristics of the measured object, spatial attenuation, bit error rate and modulation method can also be considered, and one or more of these information can be combined , the most suitable modulation method is obtained through an adaptive algorithm, so that the signal-to-noise ratio of the signal is improved and the relevant requirements are met.
  • the original echo signal is obtained through demodulation, and the demodulation method adopted is coherent demodulation, so the reference signal can be used, so the neural network model is used to realize adaptive determination of the updated target modulation method
  • the reference signal and the original echo signal corresponding to the first signal-to-noise ratio may be spliced to obtain a two-dimensional image. Splicing by using the reference signal can play a correction role, making the measurement result more accurate.
  • the light of the at least one wavelength included in the light source overlaps each other in space, and the updated target modulation mode includes a modulation mode; the corresponding based on the first signal-to-noise ratio
  • the modulation of the light emitted by the light source by using the target modulation method includes the following process:
  • the light of each wavelength in the at least one wavelength emitted by the light source is modulated by using the updated target modulation mode.
  • the light source may be a broad-spectrum light source, so the light source generates broad-spectrum light, and light of at least one wavelength included in the broad-spectrum light overlaps each other in space.
  • the updated target modulation mode includes a modulation mode. After the target modulation mode is updated, the updated target modulation mode is used again to re-modulate the light of all wavelengths emitted by the light source.
  • At least one signal-to-noise ratio corresponding to at least one original echo signal is obtained based on the updated target modulation method, and if there is still a first signal-to-noise ratio in the at least one signal-to-noise ratio that is less than the signal-to-noise ratio threshold, continue to modulate the target Update in a manner until at least one of the SNRs is greater than or equal to the SNR threshold. Therefore, by continuously updating the target modulation mode, a new modulation mode is obtained after each update, and after one or more cycles, the measurement result can be obtained until the signal-to-noise ratio condition is satisfied.
  • the updated target modulation mode is used to re-modulate the light emitted by the light source to obtain modulated echo signals, and demodulate the modulated echo signals to obtain original echo signals of different wavelengths
  • the demodulation method used in demodulation corresponds to the updated target modulation method, that is, after the target modulation method is updated, the demodulation method is also updated accordingly, so that the modulation method and the demodulation method always satisfy the corresponding relationship.
  • the light of the at least one wavelength included in the light source is separated from each other in space, and the updated modulation method includes N kinds of modulation methods, and the N is the at least one signal-to-noise ratio smaller than The number of the first signal-to-noise ratio of the signal-to-noise ratio threshold, the N is a positive integer, one modulation mode corresponds to a first wavelength, and the first wavelength is associated with the first signal-to-noise ratio wavelength; after updating the target modulation mode based on the original echo signal corresponding to the first signal-to-noise ratio, modulating the light emitted by the light source by using the target modulation mode includes the following process:
  • the modulation mode is used to modulate the light of the first wavelength corresponding to the modulation mode in the light emitted by the light source.
  • the light of at least one wavelength included in the light source is separated from each other in space, so the light source may be a discrete multi-wavelength coherent light source.
  • the updated modulation method includes N modulation methods, one modulation method corresponds to a first wavelength, and the first wavelength is the wavelength of the original echo signal corresponding to the first signal-to-noise ratio, and the N The first wavelength is a wavelength of at least one wavelength included in the light source. Therefore, after the target modulation method is updated, for each of the N modulation methods, the modulation method is used to modulate the light of the first wavelength corresponding to the modulation method in the light emitted by the light source.
  • the target modulation mode before updating is used to modulate the light of wavelengths other than the N first wavelengths corresponding to the N modulation modes among the light of the at least one wavelength emitted by the light source .
  • the light emitted by the light source includes the light of the N first wavelengths corresponding to the above-mentioned N modulation methods, and also includes light of other wavelengths. Therefore, after the target modulation method is updated, the N modulation methods can be used to The light of N first wavelengths emitted by the light source is modulated, and the light of other wavelengths included in the light source except the first wavelength is still modulated by using the target modulation mode before updating.
  • the updated target modulation method includes any one of the following modulation methods: sine wave modulation, square wave modulation, minimum frequency shift keying, frequency shift keying, and phase shift keying.
  • the measurement results will be disturbed by ambient light.
  • the measurement scene or environment is different, so the interference caused by ambient light may also be different. Therefore, using modulation to reduce interference also has different modulation requirements, and different modulation methods will achieve different anti-noise effects.
  • different modulation methods may be used to process the light emitted by the light source, so the updated modulation methods may include but not limited to the above several modulation methods.
  • various encoding techniques such as random encoding techniques, may also be combined to determine an updated modulation mode, so as to obtain a measurement result satisfying the signal-to-noise ratio condition.
  • Step 160 outputting the reflection spectrum associated with the updated target modulation mode, the reflection spectrum is based on the signal strength of light of each wavelength in the at least one wavelength included in the light source and the updated target modulation mode The signal strength of each original echo signal in the associated at least one original echo signal is obtained.
  • the target modulation method is updated, and the light source is modulated again based on the updated target modulation method to obtain the modulated echo signal, and then again Demodulating the modulated echo signal to obtain the corresponding original echo signal, and determining that the signal-to-noise ratios of the original echo signals corresponding to the at least one wavelength are greater than or equal to the signal-to-noise ratio threshold, based on the original echo signal
  • a reflectance spectrum is obtained, and the reflectance spectrum is output.
  • the corresponding original echo signal when obtaining the reflection spectrum is the original echo signal related to the updated target modulation mode obtained after the last update of the target modulation mode, therefore, the obtained reflection spectrum is related to the updated The reflectance spectrum associated with the modulation of the target. That is to say, if the target modulation mode is updated one or more times before the reflection spectrum is obtained, the obtained reflection spectrum is associated with the target modulation mode obtained after the last update.
  • the target modulation mode obtained in the last update is determined as the updated target modulation mode, based on the signal strength of light of each wavelength in the at least one wavelength included in the light source, and the updated target modulation mode
  • the signal intensity of each original echo signal in the at least one original echo signal related to the mode can obtain the reflectivity corresponding to each wavelength, and then obtain the reflectance spectrum.
  • FIG. 4A is a schematic diagram of a spectrum measurement scenario. To perform spectral measurement in this scenario, it is necessary to attach the spectral measurement device to the object to be measured. This measurement method is not suitable for application in the field of terminal consumer electronics.
  • FIG. 4B is a schematic diagram of another spectrum measurement scenario. Spectral measurement in this scenario needs to be done in a specially designed chamber, which has certain limitations and is not easy to apply in daily life.
  • FIG. 5 is a schematic diagram of implementing a spectrum measurement scenario of the present application.
  • remote spectrum measurement can be performed.
  • the scene shown in Figure 5 does not limit the distance between the measured object and the light source (that is, non-contact spectral measurement can be realized), and there is no limit to the measurement environment, further Yes, it is more convenient to perform spectral measurement operations in this scenario, so the spectral measurement method provided by this application is more suitable for daily life.
  • FIG. 6 is a schematic flowchart of a spectral measurement method provided in an embodiment of the present application. As shown in Figure 6, the spectral measurement method includes:
  • Step 210 using the target modulation method to modulate the light emitted by the light source to obtain an incident signal.
  • the spectral measurement method provided in this application can be applied to a natural open environment to perform spectral measurement in a long-distance scene.
  • an electronic device can be used to measure human skin to obtain skin spectral information, and the electronic device can implement the spectral measurement method provided in this application.
  • the electronic device includes a probe, which can be used to transmit an incident signal to the object under test (skin in this scenario), and transmit a modulated echo signal from the object under test back to the electronic device.
  • the probe of the electronic device is aimed at the skin, but not close to the skin, and the distance between the probe and the skin can be determined by the user according to needs.
  • the light emitted by the light source is modulated by the target modulation method to obtain the incident signal.
  • the light source may be a continuous wide-spectrum light source, and the light emitted by the light source includes light of at least one wavelength, and the target modulation method may be general periodic modulation (such as sine wave modulation or square wave modulation, etc.).
  • step 220 After obtaining the incident signal, proceed to step 220 .
  • step 220 the modulated echo signal is obtained, and the modulated echo signal is demodulated to obtain original echo signals of different wavelengths.
  • the incident signal is transmitted from the probe of the electronic device to the object under test (skin in this scenario), and the modulated echo signal is obtained after being reflected by the object under test.
  • the modulated echo signal is demodulated, and the demodulation mode used corresponds to the target modulation mode. After demodulation, the original echo signals corresponding to different wavelengths are obtained.
  • step 230 continue to execute step 230 .
  • Step 230 acquiring signal-to-noise ratios of original echo signals of different wavelengths.
  • the signal-to-noise ratio of the original echo signals corresponding to each of the different wavelengths is obtained.
  • step 240 Then continue to execute step 240 .
  • Step 240 judging whether the signal-to-noise ratios of the original echo signals at all wavelengths are greater than or equal to the signal-to-noise ratio threshold.
  • the signal-to-noise ratio threshold can be set according to the accuracy (that is, accuracy) requirements of the measurement results , optionally, the signal-to-noise ratio threshold can also be set empirically.
  • Step 250 if the above-mentioned SNR condition is not satisfied, the original echo signal of the wavelength corresponding to the low SNR less than the SNR threshold is obtained.
  • the signal-to-noise ratio condition is not satisfied, further processing is performed, that is, the original echo signal of a wavelength corresponding to a low signal-to-noise ratio smaller than the signal-to-noise ratio threshold is obtained, and the target modulation mode is updated using the original echo signal.
  • the next step is to execute step 260 .
  • Step 260 based on the original echo signal of the wavelength corresponding to the low SNR that is smaller than the SNR threshold, obtain an updated target modulation mode, and return to step 210 .
  • an adaptive algorithm may be used to determine the updated target modulation mode.
  • This adaptive algorithm can be realized by convolutional neural network.
  • the updated target modulation method includes one or more modulation methods. According to the type of light source and the original echo signal of the wavelength corresponding to the low signal-to-noise ratio (SNR) threshold, the modulation included in the updated target modulation method can be determined. number of ways. Exemplarily, in a scenario where the light source is a continuous wide-spectrum light source, the updated target modulation mode includes one modulation mode.
  • the updated target modulation method may be amplitude modulation, frequency modulation, phase modulation, and more general quadrature modulation.
  • Modulation content can be periodic sine wave, periodic square wave, pulse, true/pseudo-random code, etc., and wavelength division multiplexing can also be considered.
  • step 210 After the updated target modulation mode is determined, return to step 210, that is, continue to use the updated target modulation mode to modulate the light emitted by the light source to obtain the incident signal.
  • Step 270 if the above signal-to-noise ratio condition is met, calculate the reflectance of each wavelength to obtain a reflectance spectrum.
  • the reflectance corresponding to each wavelength can be calculated to obtain the reflection spectrum.
  • the original signal strength of each wavelength included in the light source and the signal strength of the original echo signal of each wavelength obtained after the last update of the target modulation mode are obtained, and the reflectance corresponding to each wavelength is calculated based on the two.
  • the reflectance spectrum of the human skin is obtained (optionally, time-varying spectral information can also be obtained), so relevant information about the skin can be obtained based on the reflectance spectrum of the skin.
  • relevant information about the skin can be obtained based on the reflectance spectrum of the skin.
  • face skin index data such as blood oxygen, melanin, hemoglobin, collagen, etc.
  • FIG. 7 is a skin spectrogram, and relevant information about the content of substances contained in the skin can be obtained through spectral measurement.
  • the spectral measurement method provided by this application can be applied to a variety of scenarios, including long-distance heart rate detection, blood oxygen detection, human face liveness detection, skin detection, long-distance substance identification, etc.
  • functions such as measuring skin quality can be realized anytime and anywhere, wherein the electronic equipment can be a terminal integrated with related devices, etc.
  • the spectrum measurement device can be integrated in the front of the mobile phone or Rear mounted, convenient for long-distance spectrum measurement.
  • the light source emits light including at least one wavelength, and the light emitted by the light source is modulated by a light source modulation algorithm to obtain an incident signal; the incident signal is transmitted to the measured object, and is reflected by the measured object
  • the detector receives and obtains the modulated echo signal; uses the photoelectric signal demodulation algorithm to demodulate the modulated echo signal to obtain the original echo signal of each wavelength; uses the adaptive modulation selection algorithm to judge the signal of the original echo signal of each wavelength Whether the noise ratio is greater than or equal to the threshold of the signal-to-noise ratio; if not, update the light source modulation algorithm and repeat the above steps;
  • the signal intensity of the wave signal is calculated, and the reflectance of each wavelength is calculated to obtain the reflectance spectrum.
  • the light source modulation algorithm, photoelectric signal demodulation algorithm, adaptive modulation selection algorithm and reflection spectrum calculation algorithm can be implemented on a digital signal processor (DSP) or a general-purpose processor (general-purpose CPU).
  • DSP digital signal processor
  • general-purpose CPU general-purpose processor
  • the spectral measurement system can be implemented on a digital signal processor (DSP) or a general-purpose processor (general-purpose CPU).
  • DSP digital signal processor
  • general-purpose CPU general-purpose processor
  • Fig. 9 is a schematic block diagram of a spectrum measurement device provided by an embodiment of the present application.
  • the spectrum measurement device 10 may include a first acquisition unit 11 , a second acquisition unit 12 , a third acquisition unit 13 , a determination unit 14 , an update unit 15 and an output unit 16 .
  • the first acquisition unit 11 , the second acquisition unit 12 , the third acquisition unit 13 , the determination unit 14 , the update unit 15 and the output unit 16 can be software, hardware, or a combination of software and hardware. Each unit is described below:
  • the first acquisition unit 11 is configured to acquire a modulated echo signal.
  • the incident signal corresponding to the modulated echo signal is a signal obtained by modulating the light emitted by the light source using the target modulation method.
  • the light emitted by the light source includes at least one wavelength of light;
  • the second acquisition unit 12 is configured to acquire the original echo signal corresponding to each wavelength in the at least one wavelength obtained after demodulating the modulated echo signal, and the demodulation method used for the demodulation is the same as The target modulation mode corresponds to;
  • the third acquiring unit 13 is configured to acquire the signal-to-noise ratio of each original echo signal in the at least one original echo signal corresponding to the at least one wavelength;
  • a determining unit 14 configured to determine whether there is a first signal-to-noise ratio smaller than a signal-to-noise ratio threshold in at least one signal-to-noise ratio corresponding to the at least one original echo signal;
  • An updating unit 15 configured to obtain an original echo signal corresponding to the first signal-to-noise ratio if it is determined that there is a first signal-to-noise ratio in at least one signal-to-noise ratio corresponding to the at least one original echo signal that is smaller than the signal-to-noise ratio threshold. wave signal, and update the target modulation mode based on the original echo signal corresponding to the first signal-to-noise ratio until at least one signal-to-noise ratio corresponding to the at least one original echo signal is greater than or equal to the signal-to-noise ratio Noise Ratio Threshold;
  • An output unit 16 configured to output a reflection spectrum associated with the updated target modulation mode, the reflection spectrum is based on the signal strength of light of each wavelength in the at least one wavelength included in the light source and the updated The signal strength of each original echo signal in at least one original echo signal related to the target modulation mode is obtained.
  • the update unit 15 is specifically configured to:
  • the first processing unit is configured to obtain a two-dimensional image based on the original echo signal corresponding to the first signal-to-noise ratio, and the two-dimensional image is at least two original echo signals corresponding to at least two first signal-to-noise ratios obtained by splicing echo signals;
  • the second processing unit is configured to use a neural network model to perform adaptive algorithm processing on the two-dimensional image to obtain an updated target modulation mode.
  • the device also includes:
  • the first modulation unit is configured to use the target modulation method to modulate the light emitted by the light source to obtain the incident signal.
  • the light of the at least one wavelength included in the light source overlaps each other in space, and the updated target modulation mode includes a modulation mode; the based on the first signal-to-noise After updating the target modulation mode compared with the corresponding original echo signal, the first modulation unit is specifically configured to:
  • the light of each wavelength in the at least one wavelength emitted by the light source is modulated by using the updated target modulation manner.
  • the light of the at least one wavelength included in the light source is separated from each other in space, and the updated modulation mode includes N modulation modes, where N is the at least one signal-to-noise ratio The number of the first signal-to-noise ratios that are less than the threshold value of the signal-to-noise ratio, the N is a positive integer, one modulation mode corresponds to a first wavelength, and the first wavelength is determined by the first signal-to-noise ratio Associated wavelength; after updating the target modulation mode based on the original echo signal corresponding to the first signal-to-noise ratio, the first modulation unit is specifically configured to:
  • the modulation mode is used to modulate the light of the first wavelength corresponding to the modulation mode in the light emitted by the light source.
  • the device also includes:
  • the second modulation unit is configured to use the target modulation method before updating to perform the wavelengths other than the N first wavelengths corresponding to the N modulation methods in the light of the at least one wavelength emitted by the light source The light is modulated.
  • the updated target modulation mode includes any one of the following modulation modes: sine wave modulation, square wave modulation, minimum frequency shift keying, frequency shift keying, and phase shift keying.
  • the neural network model includes a convolutional neural network model.
  • FIG. 10 is a schematic block diagram of another spectrum measuring device 20 provided in an embodiment of the present application. It should be understood that the spectrum measurement device shown in FIG. 10 is only an example, and the spectrum measurement device in the embodiment of the present application may also include other components, or components with functions similar to those in FIG. All parts in.
  • the spectroscopic measurement device 20 includes a communication interface 21 and at least one processor 22 .
  • the spectrum measurement device may correspond to electronic equipment, and further, the spectrum measurement device may also correspond to terminal equipment.
  • the communication interface 21 is used to send and receive signals, and at least one processor 22 executes program instructions, so that the spectrum measurement device implements the corresponding process of the method executed by the electronic device in the above method embodiments.
  • the spectrum measurement device implements the corresponding process of the method executed by the electronic device in the above method embodiments.
  • the spectroscopic measurement device can be a chip or a system on a chip
  • the chip 30 shown in FIG. 11 includes a processor 31 and an interface 32 .
  • the number of processors 31 may be one or more, and the number of interfaces 32 may be more than one.
  • the corresponding functions of the processor 31 and the interface 32 can be realized by hardware design, software design, or a combination of software and hardware, which is not limited here.
  • the chip may also include a memory 33 for storing necessary program instructions and data.
  • the processor 31 may be configured to call from a memory a program for implementing the spectral measurement method provided by one or more embodiments of the present application in an electronic device, and execute instructions included in the program.
  • the interface 32 can be used to output the execution result of the processor 31 .
  • the interface 32 may be specifically used to output various messages or information of the processor 31 .
  • the signal processing method provided by one or more embodiments of the present application, reference may be made to the aforementioned method embodiments, and details are not repeated here.
  • the processor in the embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the method described in the foregoing method embodiments method.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program (also referred to as code, or instruction), and when it is run on a computer, The computer is made to execute the methods in the foregoing method embodiments.
  • a computer program also referred to as code, or instruction
  • the embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any one of the above method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), a general processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC) , off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, system on chip (system on chip, SoC), or central processing It can also be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit, MCU) , and can also be a programmable logic device (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • NP digital signal processing circuit
  • microcontroller micro controller unit, MCU
  • programmable logic device programmable logic device,
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process or thread of execution and a component can be localized on one computer or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, pass a local or remote processes to communicate.
  • the electronic device in the embodiment of the present application may perform some or all of the steps in the embodiment of the present application, these steps or operations are only examples, and the embodiment of the present application may also perform other operations or variations of various operations.
  • each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all operations in the embodiment of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory ROM, random access memory RAM, magnetic disk or optical disk, and other media capable of storing program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本申请涉及光谱检测领域。本申请提供一种光谱测量方法及装置,该方法中,获取调制回波信号;获取对调制回波信号进行解调后得到的,至少一个波长中每个波长对应的原始回波信号;获取至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比;确定至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比;若是,则获取第一信噪比对应的原始回波信号,并基于第一信噪比对应的原始回波信号对目标调制方式进行更新,直到至少一个原始回波信号对应的至少一个信噪比均大于或等于信噪比阈值,输出与更新后的目标调制方式关联的反射光谱。实施本申请,可以减少反射光谱受到的干扰,提高光谱测量的准确度。

Description

一种光谱测量方法及装置
本申请要求于2021年05月26日提交中国专利局、申请号为202110580785.4、申请名称为“一种光谱测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光谱检测领域,尤其涉及一种光谱测量方法及装置。
背景技术
光谱分析是自然科学分析的重要手段,可以用来检测物体的物理结构、化学成分等指标。光谱分析主要通过被测物体自发光或者与光源的相互作用来获得被测物体的光谱信息,从而实现检测分析。
一般在实验室中进行光谱分析使用的光谱仪等设备体型较大,而光谱分析可以在生活中实现很多应用,因此光谱仪小型化是当前的重要趋势,例如,将小型化点光谱乃至高光谱成像装置向端侧(如手机、手表、大屏等)集成,可以获取更多维度的信息。
使用小型化光谱仪进行非接触式(光谱仪和被测物体之间存在距离)的光谱测量时,环境光会对光谱测量造成干扰,因而获得的反射光谱受干扰大,导致光谱测量准确度不高。
发明内容
本申请实施例提供一种光谱测量方法及装置,通过对调制方式进行更新,使得获得的原始回波信号的信噪比均大于或等于信噪比阈值,可以减少反射光谱受到的干扰,从而提高光谱测量的准确度。
第一方面,本申请实施例提供一种光谱测量方法,该光谱测量方法可以包括:
获取调制回波信号,该调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,该光源发出的光包括至少一个波长的光;
然后,获取对该调制回波信号进行解调后得到的,该至少一个波长中每个波长对应的原始回波信号,该解调所采用的解调方式与该目标调制方式对应;
进一步的,获取该至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比;
确定该至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比;
若是,则获取该第一信噪比对应的原始回波信号,并基于该第一信噪比对应的原始回波信号对该目标调制方式进行更新,直到该至少一个原始回波信号对应的至少一个信噪比均大于或等于该信噪比阈值,输出与更新后的目标调制方式关联的反射光谱,该反射光谱是基于该光源包括的该至少一个波长中每个波长的光的信号强度和该更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
通过实施本申请实施例,基于采用目标调制方式对光源发出的光进行调制后得到的入射信号,获取光源包括的至少一个波长对应的至少一个原始信号中每个原始回波信号的信噪比, 若确定该至少一个信噪比中存在小于信噪比阈值的第一信噪比,则基于该第一信噪比对应的原始回波信号对目标调制方式进行更新,直到满足信噪比条件(均大于或等于信噪比阈值),获得反射光谱。即在原始回波信号的信噪比较小时更新目标调制方式,利用更新后的调制方式对光源发出的光进行处理使得获得的原始回波信号的信噪比提高,从而减少了反射光谱受到的干扰,提高了光谱测量的准确度。
在一种可能的实施方式中,该基于该第一信噪比对应的原始回波信号对该目标调制方式进行更新,包括:
基于该第一信噪比对应的原始回波信号,获得二维图像,该二维图像是通过至少两个该第一信噪比对应的至少两个原始回波信号拼接得到的;
采用神经网络模型对该二维图像进行自适应算法处理,获得更新后的目标调制方式。
通过实施该实施例,可以根据第一信噪比对应的原始回波信号和神经网络模型,获得更新后的目标调制方式,使得基于更新后的调制方式能获得信噪比更大的原始回波信号,从而更好的抵抗环境光的干扰,提高光谱测量的准确度。
在一种可能的实施方式中,该获取调制回波信号之前,还包括:
采用该目标调制方式对该光源发出的光进行调制,获得该入射信号。
通过实施该实施例,可以通过对光源发出的光进行调制,来抵抗环境光对光谱测量的干扰。
在一种可能的实施方式中,该光源包括的至少一个波长的光在空间中相互交叠,该更新后的目标调制方式包括一种调制方式;该基于该第一信噪比对应的原始回波信号对该目标调制方式进行更新之后,该采用该目标调制方式对该光源发出的光进行调制,包括:
采用该更新后的目标调制方式对该光源发出的该至少一个波长中每个波长的光进行调制。
通过实施该实施例,可以针对发出至少一个波长的光且这些波长的光在空间中相互交叠的光源,在使用该光源进行光谱测量的过程中,更新目标调制方式后对该光源包括的所有波长的光重新进行调制,使得获得的原始回波信号的信噪比提高,从而增强抗干扰效果,提高光谱测量的准确度。
在一种可能的实施方式中,该光源包括的至少一个波长的光在空间中相互分离,该更新后的调制方式包括N种调制方式,该N为至少一个信噪比中小于该信噪比阈值的该第一信噪比的数量,该N为正整数,一种调制方式对应一个第一波长,该第一波长为该第一信噪比所关联的波长;该基于该第一信噪比对应的原始回波信号对该目标调制方式进行更新之后,该采用该目标调制方式对该光源发出的光进行调制,包括:
针对该N种调制方式中的每种调制方式,采用该调制方式对该光源发出的光中与该调制方式对应的第一波长的光进行调制。
通过实施该实施例,可以针对发出至少一个波长的光且这些波长的光在空间中相互分离的光源,在使用该光源进行光谱测量的过程中,更新目标调制方式后得到N种调制方式,对光源发出的与特定调制方式对应的第一波长的光用该特定调制方式进行重新调制,实现对不同波长的光分别采用相应的调制方式,从而保证能以尽量少的目标调制方式更新次数,来提高获得的原始回波信号的信噪比以满足信噪比条件,在提高光谱测量的准确度的同时提高了测量速度。
在一种可能的实施方式中,该方法还包括:
采用更新前的该目标调制方式,对该光源发出的至少一个波长的光中除该N种调制方式对应的N个第一波长之外的波长的光进行调制。
通过实施该实施例,可以针对发出至少一个波长的光且这些波长的光在空间中相互分离的光源,在使用该光源进行光谱测量的过程中,更新目标调制方式后对于之前对应的信噪比已经大于或等于信噪比阈值的波长的光,仍采用更新前的目标调制方式对其进行调制,从而避免增加处理成本,影响测量效率。
在一种可能的实施方式中,该更新后的目标调制方式包括以下调制方式中的任一项:正弦波调制、方波调制、最小频移键控、频移键控以及相移键控。
通过实施该实施例,可以采用不同的调制方式对光源发出的光进行调制,从而增强抗干扰效果,提高光谱测量的准确度。
在一种可能的实施方式中,该神经网络模型包括卷积神经网络模型。
第二方面,本申请实施例提供一种光谱测量装置,所述装置包括:
第一获取单元,用于获取调制回波信号,所述调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,所述光源发出的光包括至少一个波长的光;
第二获取单元,用于获取对所述调制回波信号进行解调后得到的,所述至少一个波长中每个波长对应的原始回波信号,所述解调所采用的解调方式与所述目标调制方式对应;
第三获取单元,用于获取所述至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比;
确定单元,用于确定所述至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比;
更新单元,用于若确定所述至少一个原始回波信号对应的至少一个信噪比中存在小于信噪比阈值的第一信噪比,则获取所述第一信噪比对应的原始回波信号,并基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,直到所述至少一个原始回波信号对应的至少一个信噪比均大于或等于所述信噪比阈值;
输出单元,用于输出与更新后的目标调制方式关联的反射光谱,所述反射光谱是基于所述光源包括的所述至少一个波长中每个波长的光的信号强度和所述更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
在一种可能的设计中,所述更新单元具体用于:
第一处理单元,用于基于所述第一信噪比对应的原始回波信号,获得二维图像,所述二维图像是通过至少两个所述第一信噪比对应的至少两个原始回波信号拼接得到的;
第二处理单元,用于采用神经网络模型对所述二维图像进行自适应算法处理,获得更新后的目标调制方式。
在一种可能的设计中,所述装置还包括:
第一调制单元,用于采用所述目标调制方式对所述光源发出的光进行调制,获得所述入射信号。
在一种可能的设计中,所述光源包括的所述至少一个波长的光在空间中相互交叠,所述更新后的目标调制方式包括一种调制方式;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述第一调制单元具体用于:
采用所述更新后的目标调制方式对所述光源发出的所述至少一个波长中每个波长的光进行调制。
在一种可能的设计中,所述光源包括的所述至少一个波长的光在空间中相互分离,所述更新后的调制方式包括N种调制方式,所述N为所述至少一个信噪比中小于所述信噪比阈值的所述第一信噪比的数量,所述N为正整数,一种调制方式对应一个第一波长,所述第一波 长为所述第一信噪比所关联的波长;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述第一调制单元具体用于:
针对所述N种调制方式中的每种调制方式,采用所述调制方式对所述光源发出的光中与所述调制方式对应的第一波长的光进行调制。
在一种可能的设计中,所述装置还包括:
第二调制单元,用于采用更新前的所述目标调制方式,对所述光源发出的所述至少一个波长的光中除所述N种调制方式对应的N个第一波长之外的波长的光进行调制。
在一种可能的设计中,所述更新后的目标调制方式包括以下调制方式中的任一项:正弦波调制、方波调制、最小频移键控、频移键控以及相移键控。
在一种可能的设计中,所述神经网络模型包括卷积神经网络模型。
第三方面,本申请实施例提供了一种光谱测量装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第四方面,本申请实施例提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第五方面,本申请实施例提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
上述第五方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第六方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面的方法。
第七方面,本申请实施例提供了一种可读存储介质,所述可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得上述第一方面方法被实现。
第八方面,提供了一种芯片***,该芯片***包括处理器和接口电路,处理器用于从存储器 中调用并运行存储器中存储的计算机程序(也可以称为代码,或指令),以实现第一方面所涉及的功能,在一种可能的设计中,该芯片***还包括存储器,存储器用于保存必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种光谱测量方法的流程图;
图2是本申请实施例提供的一种光谱测量的过程示意图;
图3是本申请实施例提供的一种卷积神经网络模型的结构图;
图4A是本申请实施例提供的一种光谱测量场景的示意图;
图4B是本申请实施例提供的另一种光谱测量场景的示意图;
图5是本申请实施例提供的又一种光谱测量场景的示意图;
图6是本申请实施例提供的另一种光谱测量方法的流程图;
图7是本申请实施例提供的一种皮肤光谱图;
图8是本申请实施例提供的一种光谱测量***的架构图;
图9是本申请实施例提供的一种光谱测量装置的示意性框图;
图10是本申请实施例提供的另一光谱测量装置的示意性框图;
图11是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请实施例的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1,图1为本申请实施例提供的一种光谱测量方法的流程示意图。如图1所示,该光谱测量方法包括但不限于以下步骤110-步骤160:
步骤110,获取调制回波信号,所述调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,所述光源发出的光包括至少一个波长的光。
本申请可以应用于终端人工智能领域中的光谱检测领域。如图2所示,图2为本申请实施例提供的一种光谱测量的过程示意图,由图2可知,在进行光谱测量的过程中,光源发出的光照射至被测物体上,经被测物体反射后获得回波,进而得到反射光谱。而在光源与被测物体之间存在一定距离时,照射至物体表面的光包括光源发出的光和环境光,即在远距离环境下通过测量来获得被测物体的光谱信息,容易受到环境光的干扰。为了降低环境光的干扰,可以对光源发出的光进行调制。因此,通过对光源发出的光采用目标调制方式进行调制后获得入射信号,该入射信号照射至被测物体上,经被测物体反射后,获得调制回波信号。其中,光源发出的光包括至少一个波长的光。
而针对第一次照射至被测物体上的入射信号,采用的目标调制方式可以是通用的调制方式,例如,正弦波调制或者方波调制,根据具体的场景需求,可以将某种通用的调制方式(如正弦波调制)设置为初始的目标调制方式。采用该目标调制方式对光源发出的光进行调制后获得入射信号,进而获得调制回波信号。
步骤120,获取对所述调制回波信号进行解调后得到的,所述至少一个波长中每个波长对应的原始回波信号,所述解调所采用的解调方式与所述目标调制方式对应。
具体的,在获取调制回波信号之后,针对该调制回波信号进行解调,得到光源发出的光中包括的至少一个波长里每个波长对应的原始回波信号。进行解调时所采用的解调方式包括相干解调和非相干解调的方法。示例性的,可以采用锁相放大法对调制回波信号进行解调。锁相放大器利用与待测信号有相同频率和固定相位关系的参考信号作为基准,滤掉与其频率不同的噪声,从而提取出有用信号成分。而对调制回波信号进行解调所采用的解调方式与得到该调制回波信号的目标调试方式是对应的。例如,采用正弦波调制作为目标调制方式获得调制回波信号,那么,相应可以采用利用正弦波的相干解调方式来获得对应的原始回波信号。
步骤130,获取所述至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比。
在本申请实施例中,针对解调得到的至少一个波长对应的至少一个原始回波信号,获取每个原始回波信号的信噪比。其中,信噪比可以是通过测量得到的。
步骤140,确定所述至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比。
具体的,在获取该至少一个原始回波信号对应的至少一个信噪比之后,确定该至少一个信噪比中是否存在小于信噪比阈值的第一信噪比。信噪比阈值可以根据经验进行设置,该信噪比阈值可以反映进行光谱测量时对环境光干扰的容忍程度,可理解的,在获取的信噪比大于或等于该信噪比阈值时,环境光干扰对获得的光谱的影响程度比较小,因此可以得到符合准确度要求的光谱测量结果。
步骤150,若是,则获取所述第一信噪比对应的原始回波信号,并基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,直到所述至少一个原始回波信号对应的至少一个信噪比均大于或等于所述信噪比阈值。
在本申请实施例中,若确定获取的至少一个原始回波信号对应的至少一个信噪比中存在小于信噪比阈值的第一信噪比,那么获取该第一信噪比对应的原始回波信号,其中,第一信噪比的数量可以为一个或者多个,即小于信噪比阈值的低信噪比包括一个或多个信噪比。因此第一信噪比对应的原始回波信号可以包括一个或者多个原始回波信号。在获取该第一信噪 比对应的原始回波信号之后,基于该第一信噪比对应的原始回波信号对目标调制方式进行更新,直到该至少一个原始回波信号对应的至少一个信噪比均大于或等于该信噪比。调制方式不同,信噪比也不同,即调制方式可以影响信噪比。因此可以通过更新目标调制方式,使得获得的信噪比得到提高,进而减少环境光对反射光谱的干扰,提高光谱测量的准确度。
对目标调制方式进行更新之后,可以重新利用更新后的目标调制方式对光源发出的光进行调制,以获得调制回波信号,进一步的,获得与该调制回波信号对应的原始回波信号的信噪比,从而再次判断该至少一个原始回波信号对应的至少一个信噪比是否均大于或等于该信噪比。不同的调制方式的抗噪效果不同,通过对调制方式进行更新,即根据获得的原始回波信号确定相应的调制方式,再采用更新后的调制方式对光源发出的光进行调制,可以获得满足信噪比条件的测量结果,提高光谱测量的准确度。本申请实施例提供的光谱测量方法,可以自适应地选择合适的调制方式来获得光谱,进一步的,还可以获得随时间变化的光谱信息,与采用简单且单一的调制方式来获得光谱的测量方法相比,本申请提供的方法能减少环境光的干扰,获得质量更好的光谱,提高光谱测量的准确度。
具体的,基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,可以包括以下过程:
基于所述第一信噪比对应的原始回波信号,获得二维图像,所述二维图像是通过至少两个所述第一信噪比对应的至少两个原始回波信号拼接得到的;
采用神经网络模型对所述二维图像进行自适应算法处理,获得更新后的目标调制方式。
即可以利用神经网络模型来确定更新后的目标调制方式。通过将第一信噪比对应的原始回波信号在预设时间窗内进行拼接,获得二维图像。接着将该二维图像输入至神经网络模型,得到的输出即为更新后的目标调制方式。其中,所述神经网络模型可以包括卷积神经网络模型。如图3所示,图3为卷积神经网络模型的结构图。该卷积神经网络模型的目标函数主要由信号的信噪比、功率效率和带宽效率等组成。基于该神经网络模型获得的更新后的目标调制方式,可以使信号的信噪比提高,且对应的功率效率和功率效率满足预设要求。可选的,确定更新后的目标调制方式的过程中,还可以考虑被测物体的特征、空间衰减、误码率和调制方式实现难易程度等信息,结合这些信息中的一项或多项,通过自适应算法来获得最合适的调制方式,使得信号的信噪比得到提高,且满足相关要求。在一个实施例中,通过解调获得原始回波信号,采用的解调方式为相干解调,那么可以用到参考信号,因此在利用神经网络模型来实现自适应确定更新后的目标调制方式的过程中,可以将参考信号与第一信噪比对应的原始回波信号进行拼接,获得二维图像。利用参考信号进行拼接可以起到校正作用,使得测量结果更准确。
在一个实施例中,所述光源包括的所述至少一个波长的光在空间中相互交叠,所述更新后的目标调制方式包括一种调制方式;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述采用所述目标调制方式对所述光源发出的光进行调制,包括以下过程:
采用所述更新后的目标调制方式对所述光源发出的所述至少一个波长中每个波长的光进行调制。
在此实施例中,光源可以为宽谱光源,因此光源产生宽谱光,宽谱光中包括的至少一个波长的光在空间中相互交叠。对应地,更新后的目标调制方式包括一种调制方式,在对目标调制方式进行更新后,再次利用该更新后的目标调制方式对光源发出的所有波长的光均进行重新调制。基于该更新后的目标调制方式获取至少一个原始回波信号对应的至少一个信噪比, 若该至少一个信噪比中仍存在小于信噪比阈值的第一信噪比,则继续对目标调制方式进行更新,直到此至少一个信噪比均大于或等于信噪比阈值。因此,通过不断对目标调制方式进行更新,每次更新后得到一种新的调制方式,经过一次或多次循环,直到满足信噪比条件时可以获得测量结果。可理解的,对目标调制方式进行更新后,采用更新后的目标调制方式重新对光源发出的光进行调制,获得调制回波信号,对调制回波信号进行解调得到不同波长的原始回波信号,解调时采用的解调方式和更新后的目标调制方式对应,即对目标调制方式进行更新之后,相应地也对解调方式进行更新,使得调制方式和解调方式始终满足对应关系。
在一个实施例中,所述光源包括的所述至少一个波长的光在空间中相互分离,所述更新后的调制方式包括N种调制方式,所述N为所述至少一个信噪比中小于所述信噪比阈值的所述第一信噪比的数量,所述N为正整数,一种调制方式对应一个第一波长,所述第一波长为所述第一信噪比所关联的波长;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述采用所述目标调制方式对所述光源发出的光进行调制,包括以下过程:
针对所述N种调制方式中的每种调制方式,采用所述调制方式对所述光源发出的光中与所述调制方式对应的第一波长的光进行调制。
在此实施例中,光源包括的所述至少一个波长的光在空间中相互分离,因此光源可以为分立的多波长相干光源。对应地,更新后的调制方式包括N种调制方式,一种调制方式和一个第一波长对应,而第一波长是与第一信噪比对应的原始回波信号的波长,并且,该N个第一波长为光源包括的至少一个波长中的波长。因而,在对目标调制方式进行更新后,针对该N种调制方式中的每种调制方式,采用该调制方式对光源发出的光中与该调制方式对应的第一波长的光进行调制。即分别用N种调制方式中的一种调制方式对光源中一个第一波长的光进行调制,该调制方式和该第一波长满足对应关系。基于该更新后的目标调制方式获取至少一个原始回波信号对应的至少一个信噪比,若该至少一个信噪比中仍存在小于信噪比阈值的第一信噪比,则继续对目标调制方式进行更新,直到此至少一个信噪比均大于或等于信噪比阈值。因此,通过不断对目标调制方式进行更新,每次更新后得到一种或多种新的调制方式,经过一次或多次循环,直到满足信噪比条件时可以获得测量结果。
可选的,采用更新前的所述目标调制方式,对所述光源发出的所述至少一个波长的光中除所述N种调制方式对应的N个第一波长之外的波长的光进行调制。
具体的,光源发出的光中,包括上述N种调制方式对应的N个第一波长的光,还包括其他波长的光,因此,在对目标调制方式进行更新后,可以采用N种调制方式对光源发出的N个第一波长的光进行调制,而针对光源包括的除第一波长之外其他波长的光,仍采用更新前的目标调制方式进行调制。
所述更新后的目标调制方式包括以下调制方式中的任一项:正弦波调制、方波调制、最小频移键控、频移键控以及相移键控。
在进行光谱测量的过程中,光源和被测物体之间相距一定距离,因此测量结果会受到环境光的干扰。而测量的场景或者环境不同,那么环境光产生的干扰也可能存在区别,因此利用调制来降低干扰,也相应存在不同的调制需求,采用不同调制方式会达到不同的抗噪效果。根据不同的调制需求,可以分别采用不同的调制方式来对光源发出的光进行处理,因而更新后的调制方式可以包括但不限于上述几种调制方式。可选的,还可以结合各种编码技术,如随机编码技术等来确定更新后的调制方式,以获得满足信噪比条件的测量结果。
步骤160,输出与更新后的目标调制方式关联的反射光谱,所述反射光谱是基于所述光 源包括的所述至少一个波长中每个波长的光的信号强度和所述更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
在本申请实施例中,当得到的原始回波信号对应的信噪比较小时,对目标调制方式进行更新,基于更新后的目标调制方式再次对光源进行调制,获得调制回波信号,进而再次对调制回波信号进行解调得到对应的原始回波信号,在确定上述至少一个波长对应的原始回波信号的信噪比均大于或等于信噪比阈值的情况下,基于该原始回波信号获得反射光谱,输出该反射光谱。其中,获得反射光谱时对应的原始回波信号,是最后一次更新目标调制方式后获得的与该更新后的目标调制方式相关的原始回波信号,因而,获得的反射光谱是与该更新后的目标调制方式关联的反射光谱。也就是说,若获得反射光谱前,对目标调制方式进行了一次或多次更新,那么获得的反射光谱与最后一次更新后得到的目标调制方式关联。具体的,把最后一次更新得到的目标调制方式确定为更新后的目标调制方式,基于所述光源包括的所述至少一个波长中每个波长的光的信号强度,和所述更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度,可以获得各波长对应的反射率,进而得到反射光谱。
下面介绍两个光谱测量的场景。如图4A所示,图4A为一种光谱测量场景的示意图。在该场景下进行光谱测量,需要将光谱测量的装置紧贴被测物体,这种测量方式不太适合在终端消费电子领域应用。而如图4B所示,图4B为另一种光谱测量场景的示意图。在该场景下进行光谱测量,需要在特定设计的腔室中完成测量,这种测量方式有一定的限制,也不便于在日常生活中应用。
因此,可以采用本申请提供的光谱测量方法,在日常生活中获取光谱信息,在满足信息准确度需求的同时,提高获取信息的简便性。如图5所示,图5为实施本申请的光谱测量场景的示意图,在该场景下,可以进行远距离的光谱测量。相对于图4A、图4B所示的场景,图5所示的场景不限制被测物体与光源之间的距离(即可以实现非接触式的光谱测量),而且对测量环境也无限制,进一步的,在该场景下进行光谱测量操作比较方便,因此本申请提供的光谱测量方法更适合应用于日常生活。
下面以一个具体的场景为例,介绍实施本申请提供的光谱测量方法的具体过程。请参阅图6,图6为本申请实施例提供的一种光谱测量方法的流程示意图。如图6所示,该光谱测量方法包括:
步骤210,采用目标调制方式对光源发出的光进行调制,获得入射信号。
本申请提供的光谱测量方法可以应用于自然开放环境,在远距离场景下进行光谱测量。示例性的,在一个具体的场景下,可以使用电子设备对人的皮肤进行测量,以获取皮肤的光谱信息,该电子设备能够实施本申请提供的光谱测量方法。该电子设备包括探头,该探头可以用于将入射信号传输到被测物体(在此场景下指皮肤)上,并从被测物体处将调制回波信号传送回电子设备。在远距离场景下,该电子设备的探头对准皮肤,但不紧贴皮肤,探头和皮肤间的距离可以由用户根据需要确定。
实施本申请,首先,采用目标调制方式对光源发出的光进行调制,获得入射信号。其中,光源可以为连续宽谱光源,此光源发出的光包括至少一个波长的光,而目标调制方式可以为一般周期调制(例如正弦波调制或方波调制等)。
在获得入射信号后,继续执行步骤220。
步骤220,获取调制回波信号,对该调制回波信号进行解调获得不同波长的原始回波信 号。
入射信号从电子设备的探头传输至被测物体(在此场景下指皮肤)上,经被测物体反射后获得调制回波信号。对该调制回波信号进行解调,采用的解调方式和目标调制方式对应。解调之后获得不同波长对应的原始回波信号。
然后,继续执行步骤230。
步骤230,获取不同波长的原始回波信号的信噪比。
在获得不同波长对应的原始回波信号之后,获取该不同波长中每个波长对应的原始回波信号的信噪比。
接着继续执行步骤240。
步骤240,判断所有波长的原始回波信号的信噪比是否均大于或等于信噪比阈值。
判断所有波长的原始回波信号的信噪比是否满足信噪比条件,即均大于或者等于信噪比阈值,此信噪比阈值可以根据测量结果的精确度(也即准确度)需求进行设置,可选的,信噪比阈值也可以根据经验设置。
根据判断结果执行步骤250或步骤270。
步骤250,若不满足上述信噪比条件,获取小于信噪比阈值的低信噪比对应的波长的原始回波信号。
不满足信噪比条件,则作进一步处理,即获取小于信噪比阈值的低信噪比对应的波长的原始回波信号,利用该原始回波信号对目标调制方式进行更新。
下一步执行步骤260。
步骤260,基于该小于信噪比阈值的低信噪比对应的波长的原始回波信号,获得更新后的目标调制方式,返回步骤210。
基于该小于信噪比阈值的低信噪比对应的波长的原始回波信号,可以利用自适应算法来确定更新后的目标调制方式。该自适应算法可以通过卷积神经网络实现。更新后的目标调制方式包括一种或多种调制方式,根据光源的类型和小于信噪比阈值的低信噪比对应的波长的原始回波信号,可以确定更新后的目标调制方式包括的调制方式的数量。示例性的,在光源为连续宽谱光源的场景下,更新后的目标调制方式包括一种调制方式。该更新后的目标调制方式可以为调幅、调频、调相,以及更一般的正交调制等。调制内容可以是周期正弦、周期方波、脉冲、真/伪随机编码等,还可考虑波分复用等。
确定更新后的目标调制方式后,返回步骤210,即继续采用该更新后的目标调制方式对光源发出的光进行调制,获得入射信号。
步骤270,若满足上述信噪比条件,计算各个波长反射率,获得反射光谱。
满足信噪比条件,即所有波长的原始回波信号的信噪比均大于或等于信噪比阈值,则可以计算各个波长对应的反射率,得到反射光谱。计算反射率时,获取光源包括的各个波长的原始信号强度,以及最后一次更新目标调制方式后得到的各个波长的原始回波信号的信号强度,根据此两者计算得到各个波长对应的反射率。
在该场景下,获得人的皮肤的反射光谱(可选的,还可以获得随时间变化的光谱信息),因而可以根据该皮肤的反射光谱等获得皮肤的相关信息。示例性的,可以通过测量获取人脸皮肤指标数据(如血氧、黑色素、血红蛋白、胶原蛋白等),或者获取相关信息在支付场景性进行活体验证等。如图7所示,图7为一种皮肤光谱图,通过光谱测量可以获得皮肤中包含的物质的含量的相关信息。
因此,本申请提供的光谱测量方法可应用于多种场景,包括远距离心率检测、血氧检测、 人脸活体检测、皮肤检测、远距离物质识别等。通过在电子设备上实施该光谱测量方法,可以实现随时随地测量肤质等功能,其中,该电子设备可以为集成了相关装置的终端等,具体的,可以将光谱测量装置集成于手机前置或后置,方便进行远距离的光谱测量。
下面介绍本申请提供的光谱测量***,如图8所示,图8为本申请提供的一种光谱测量***的架构图。在该光谱测量***中,光源发出包括至少一个波长的光,采用光源调制算法对光源发出的光进行调制后,获得入射信号;入射信号传输至被测物体上,经被测物体反射后被光谱探测器接收,得到调制回波信号;利用光电信号解调算法对调制回波信号进行解调,获得各波长的原始回波信号;利用自适应调制选择算法判断各波长的原始回波信号的信噪比是否均大于或等于信噪比阈值,若否,则更新光源调制算法,重复上述步骤;若是,则利用反射光谱计算算法获取光源包括的各个波长的原始信号强度,以及各个波长的原始回波信号的信号强度,计算各波长的反射率,获得反射光谱。其中,光源调制算法、光电信号解调算法、自适应调制选择算法以及反射光谱计算算法可以在数字信号处理器(DSP)或通用处理器(通用CPU)上实现。通过利用该光谱测量***获得反射光谱,可以减少杂散环境光对测量过程的干扰,提高光谱测量的准确度。在该光谱测量***中,光源可以为宽谱光源或者分立波长的光源,光源中可以包含透镜等光学聚焦组件;光谱探测器可以包括分光器件和光电探测器件,因而该光谱探测器可以包括分立滤光片或可实现连续分光的线性滤光片等。可理解的,该光谱测量***中包括光源调制算法、光电信号解调算法、自适应调制选择算法以及反射光谱计算算法,那么还包括用于实现这些算法对信号进行处理的相关器件。
以上,结合图1至图8详细说明了本申请实施例提供的方法。以下,结合图9至图11详细说明本申请实施例提供的装置。
图9是本申请实施例提供的一种光谱测量装置的示意性框图。如图9所示,该光谱测量装置10可以包括第一获取单元11、第二获取单元12、第三获取单元13、确定单元14、更新单元15和输出单元16。第一获取单元11、第二获取单元12、第三获取单元13、确定单元14、更新单元15和输出单元16可以是软件,也可以是硬件,或者是软件和硬件结合。下面对各个单元进行阐述:
第一获取单元11,用于获取调制回波信号,所述调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,所述光源发出的光包括至少一个波长的光;
第二获取单元12,用于获取对所述调制回波信号进行解调后得到的,所述至少一个波长中每个波长对应的原始回波信号,所述解调所采用的解调方式与所述目标调制方式对应;
第三获取单元13,用于获取所述至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比;
确定单元14,用于确定所述至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比;
更新单元15,用于若确定所述至少一个原始回波信号对应的至少一个信噪比中存在小于信噪比阈值的第一信噪比,则获取所述第一信噪比对应的原始回波信号,并基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,直到所述至少一个原始回波信号对应的至少一个信噪比均大于或等于所述信噪比阈值;
输出单元16,用于输出与更新后的目标调制方式关联的反射光谱,所述反射光谱是基于所述光源包括的所述至少一个波长中每个波长的光的信号强度和所述更新后的目标调制方式 相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
在一种可能的设计中,所述更新单元15具体用于:
第一处理单元,用于基于所述第一信噪比对应的原始回波信号,获得二维图像,所述二维图像是通过至少两个所述第一信噪比对应的至少两个原始回波信号拼接得到的;
第二处理单元,用于采用神经网络模型对所述二维图像进行自适应算法处理,获得更新后的目标调制方式。
在一种可能的设计中,所述装置还包括:
第一调制单元,用于采用所述目标调制方式对所述光源发出的光进行调制,获得所述入射信号。
在一种可能的设计中,所述光源包括的所述至少一个波长的光在空间中相互交叠,所述更新后的目标调制方式包括一种调制方式;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述第一调制单元具体用于:
采用所述更新后的目标调制方式对所述光源发出的所述至少一个波长中每个波长的光进行调制。
在一种可能的设计中,所述光源包括的所述至少一个波长的光在空间中相互分离,所述更新后的调制方式包括N种调制方式,所述N为所述至少一个信噪比中小于所述信噪比阈值的所述第一信噪比的数量,所述N为正整数,一种调制方式对应一个第一波长,所述第一波长为所述第一信噪比所关联的波长;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述第一调制单元具体用于:
针对所述N种调制方式中的每种调制方式,采用所述调制方式对所述光源发出的光中与所述调制方式对应的第一波长的光进行调制。
在一种可能的设计中,所述装置还包括:
第二调制单元,用于采用更新前的所述目标调制方式,对所述光源发出的所述至少一个波长的光中除所述N种调制方式对应的N个第一波长之外的波长的光进行调制。
在一种可能的设计中,所述更新后的目标调制方式包括以下调制方式中的任一项:正弦波调制、方波调制、最小频移键控、频移键控以及相移键控。
在一种可能的设计中,所述神经网络模型包括卷积神经网络模型。
请参照图10,是本申请实施例提供的另一种光谱测量装置20的示意性框图。应理解,图10示出的光谱测量装置仅是示例,本申请实施例的光谱测量装置还可包括其他部件,或者包括与图10中的各个部件的功能相似的部件,或者并非要包括图10中所有部件。
光谱测量装置20包括通信接口21和至少一个处理器22。
该光谱测量装置可以对应电子设备,进一步的,该光谱测量装置还可以对应终端设备。通信接口21用于收发信号,至少一个处理器22执行程序指令,使得该光谱测量装置实现上述方法实施例中电子设备所执行的方法的相应流程。具体请参照前述方法实施例的描述,在此不再赘述。
对于光谱测量装置可以是芯片或芯片***的情况,可参见图11所示的芯片的结构示意图。图11所示的芯片30包括处理器31和接口32。其中,处理器31的数量可以是一个或多个,接口32的数量可以是多个。需要说明的,处理器31、接口32各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
可选的,芯片还可以包括存储器33,存储器33用于存储必要的程序指令和数据。
本申请中,处理器31可用于从存储器中调用本申请的一个或多个实施例提供的光谱测量方法在电子设备的实现程序,并执行该程序包含的指令。接口32可用于输出处理器31的执行结果。本申请中,接口32可具体用于输出处理器31的各个消息或信息。关于本申请的一个或多个实施例提供的信号处理方法可参考前述所示方法实施例,这里不再赘述。
本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述方法实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令),当其在计算机上运行时,使得该计算机执行前述方法实施例中的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是***芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate  SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地或远程进程来通信。
可以理解的,本申请实施例中电子设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光谱测量方法,其特征在于,所述方法包括:
    获取调制回波信号,所述调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,所述光源发出的光包括至少一个波长的光;
    获取对所述调制回波信号进行解调后得到的,所述至少一个波长中每个波长对应的原始回波信号,所述解调所采用的解调方式与所述目标调制方式对应;
    获取所述至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比;
    确定所述至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比;
    若是,则获取所述第一信噪比对应的原始回波信号,并基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,直到所述至少一个原始回波信号对应的至少一个信噪比均大于或等于所述信噪比阈值,输出与更新后的目标调制方式关联的反射光谱,所述反射光谱是基于所述光源包括的所述至少一个波长中每个波长的光的信号强度和所述更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
  2. 如权利要求1所述的方法,其特征在于,所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,包括:
    基于所述第一信噪比对应的原始回波信号,获得二维图像,所述二维图像是通过至少两个所述第一信噪比对应的至少两个原始回波信号拼接得到的;
    采用神经网络模型对所述二维图像进行自适应算法处理,获得更新后的目标调制方式。
  3. 如权利要求2所述的方法,其特征在于,所述获取调制回波信号之前,还包括:
    采用所述目标调制方式对所述光源发出的光进行调制,获得所述入射信号。
  4. 如权利要求3所述的方法,其特征在于,所述光源包括的所述至少一个波长的光在空间中相互交叠,所述更新后的目标调制方式包括一种调制方式;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述采用所述目标调制方式对所述光源发出的光进行调制,包括:
    采用所述更新后的目标调制方式对所述光源发出的所述至少一个波长中每个波长的光进行调制。
  5. 如权利要求3所述的方法,其特征在于,所述光源包括的所述至少一个波长的光在空间中相互分离,所述更新后的调制方式包括N种调制方式,所述N为所述至少一个信噪比中小于所述信噪比阈值的所述第一信噪比的数量,所述N为正整数,一种调制方式对应一个第一波长,所述第一波长为所述第一信噪比所关联的波长;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述采用所述目标调制方式对所述光源发出的光进行调制,包括:
    针对所述N种调制方式中的每种调制方式,采用所述调制方式对所述光源发出的光中与所述调制方式对应的第一波长的光进行调制。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    采用更新前的所述目标调制方式,对所述光源发出的所述至少一个波长的光中除所述N种调制方式对应的N个第一波长之外的波长的光进行调制。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述更新后的目标调制方式包括以下调制方式中的任一项:正弦波调制、方波调制、最小频移键控、频移键控以及相移键控。
  8. 如权利要求2-7任一项所述的方法,其特征在于,所述神经网络模型包括卷积神经网络模型。
  9. 一种光谱测量装置,其特征在于,所述装置包括:
    第一获取单元,用于获取调制回波信号,所述调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,所述光源发出的光包括至少一个波长的光;
    第二获取单元,用于获取对所述调制回波信号进行解调后得到的,所述至少一个波长中每个波长对应的原始回波信号,所述解调所采用的解调方式与所述目标调制方式对应;
    第三获取单元,用于获取所述至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比;
    确定单元,用于确定所述至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比;
    更新单元,用于若确定所述至少一个原始回波信号对应的至少一个信噪比中存在小于信噪比阈值的第一信噪比,则获取所述第一信噪比对应的原始回波信号,并基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,直到所述至少一个原始回波信号对应的至少一个信噪比均大于或等于所述信噪比阈值;
    输出单元,用于输出与更新后的目标调制方式关联的反射光谱,所述反射光谱是基于所述光源包括的所述至少一个波长中每个波长的光的信号强度和所述更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在一个或多个处理器上运行时,执行如权利要求1-8中任一项所述的方法。
PCT/CN2022/092678 2021-05-26 2022-05-13 一种光谱测量方法及装置 WO2022247656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110580785.4 2021-05-26
CN202110580785.4A CN115406530A (zh) 2021-05-26 2021-05-26 一种光谱测量方法及装置

Publications (1)

Publication Number Publication Date
WO2022247656A1 true WO2022247656A1 (zh) 2022-12-01

Family

ID=84155607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092678 WO2022247656A1 (zh) 2021-05-26 2022-05-13 一种光谱测量方法及装置

Country Status (2)

Country Link
CN (1) CN115406530A (zh)
WO (1) WO2022247656A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117744035B (zh) * 2024-02-20 2024-04-26 上海诺睿科半导体设备有限公司 一种多光谱光学关键尺寸的获取方法、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760223A1 (en) * 1995-08-31 1997-03-05 Hewlett-Packard GmbH Apparatus for monitoring, in particular pulse oximeter
CN109916852A (zh) * 2019-01-31 2019-06-21 上海禾赛光电科技有限公司 一种***体遥测仪信号采集方法和***
CN112013957A (zh) * 2020-09-29 2020-12-01 吉林大学 多通道采集快速解调检测***、检测方法以及光谱仪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760223A1 (en) * 1995-08-31 1997-03-05 Hewlett-Packard GmbH Apparatus for monitoring, in particular pulse oximeter
CN109916852A (zh) * 2019-01-31 2019-06-21 上海禾赛光电科技有限公司 一种***体遥测仪信号采集方法和***
CN112013957A (zh) * 2020-09-29 2020-12-01 吉林大学 多通道采集快速解调检测***、检测方法以及光谱仪

Also Published As

Publication number Publication date
CN115406530A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
EP3981329A1 (en) Apparatus and method for estimating analyte concentration, and signal measuring apparatus
WO2022247656A1 (zh) 一种光谱测量方法及装置
KR102534002B1 (ko) 복수 개의 수신부들을 이용하여 생체 정보를 감지하는 센서를 포함하는 전자 장치 및 제어 방법
TWI708070B (zh) 用於測距系統之光學串擾校準
US11422263B2 (en) Range estimation for light detecting and ranging (LIDAR) systems
US20180059246A1 (en) Optoelectronic modules for distance measurements and supplemental measurements
US20230081137A1 (en) Spatial metrics for denoising depth image data
CN112362544A (zh) 基于高光谱遥感的颗粒有机碳监测方法及***
JP2001343324A (ja) 赤外線吸光スペクトルのベースライン補正方法及びそのプログラム記録媒体
CN111157115B (zh) 一种水下布里渊散射光谱获取方法及装置
US11209358B2 (en) Blocking specular reflections
CN115266583A (zh) 环境光滤除方法、***、计算机设备及计算机可读存储介质
Danielis et al. A quadratic model with nonpolynomial terms for remote colorimetric calibration of 3D laser scanner data based on piecewise cubic Hermite polynomials
CN112097950B (zh) 基于光热反射的温度测量方法、装置及终端设备
US20190340776A1 (en) Depth map interpolation using generalized likelihood ratio test parameter estimation of a coded image
CN114414500B (zh) 光谱检测方法、存储介质、电子设备及装置
CN111076659B (zh) 一种信号处理方法、装置、终端和计算机可读存储介质
US20240201069A1 (en) System and method for extracting optical feature information
CN111157116B (zh) 一种水下布里渊散射光谱测试***
US20230072179A1 (en) Temporal metrics for denoising depth image data
US20160216156A1 (en) System, method and apparatus for performing colour matching
JPH09133629A (ja) 分光測定におけるスペクトルの処理方法およびそれを 用いた定量方法
WO2024003758A1 (en) Optical critical dimensions (ocd) metrology for thick stacks
WO2023194416A1 (en) White transfer camera check
CN115079190A (zh) 飞行时间测量方法、装置及时间飞行深度相机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810383

Country of ref document: EP

Kind code of ref document: A1