WO2022247426A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2022247426A1
WO2022247426A1 PCT/CN2022/082797 CN2022082797W WO2022247426A1 WO 2022247426 A1 WO2022247426 A1 WO 2022247426A1 CN 2022082797 W CN2022082797 W CN 2022082797W WO 2022247426 A1 WO2022247426 A1 WO 2022247426A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical module
optical
signal
receiving
Prior art date
Application number
PCT/CN2022/082797
Other languages
English (en)
French (fr)
Inventor
张加傲
王欣南
慕建伟
孙飞龙
周小军
张晓廓
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110578417.6A external-priority patent/CN113325526A/zh
Priority claimed from CN202122512160.2U external-priority patent/CN215895042U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022247426A1 publication Critical patent/WO2022247426A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical communication, in particular to an optical module.
  • optical communication technology the optical module is a tool to realize the mutual conversion of photoelectric signals, and it is one of the key components in optical communication equipment.
  • the transmission rate of optical modules continues to increase.
  • the present disclosure provides an optical module.
  • the optical module includes a circuit board, a light emitting component and a flexible circuit board.
  • the light-emitting component includes a housing and a ceramic transfer block coated with a metal layer.
  • One side of the housing is provided with an opening, and one side of the ceramic transfer block is inserted into the housing through the opening.
  • One side is exposed outside the housing; signal pads and ground pads are arranged side by side on the metal layer of the ceramic transfer block, and the inner and outer signal pads of the ceramic transfer block are connected; the ceramic An isolation slot is provided between the signal pad and the ground pad on the transfer block, and the isolation slot is recessed in the signal pad and the ground pad.
  • One end of the flexible circuit board is connected to the ceramic transfer block through the signal pad and the ground pad, and the other end is connected to the circuit board.
  • the present disclosure provides an optical module.
  • the optical module includes a circuit board and a light receiving component.
  • the light-receiving component is electrically connected to the circuit board, and is configured to convert the received light signal into a current signal; wherein, the light-receiving component includes a light-receiving lower case and a light-receiving upper cover; the light-receiving lower case It includes a base plate and side plates surrounding the base plate, the base plate and the side plates form an accommodating cavity, the top of the side plate is provided with a first connection surface; the bottom of the light receiving upper cover includes a bottom surface and a second connection surface, The second connection surface is arranged around the bottom surface and the second connection surface and the bottom surface are located at different heights from the bottom of the light receiving upper cover, the second connection surface is connected to the first connection surface, The bottom surface is located in the accommodating cavity.
  • the present disclosure also provides an optical module.
  • the optical module includes a circuit board and a light emitting component.
  • the light-emitting assembly is electrically connected to the circuit board and is configured to generate an optical signal; wherein the light-emitting assembly includes a light-emitting lower case and a light-emitting upper cover; the light-emitting lower case includes a bottom plate and surrounding the bottom plate
  • the side plate, the bottom plate and the side plate form an accommodating cavity, the top of the side plate is provided with a first connection surface;
  • the bottom of the light emitting upper cover includes a bottom surface and a second connection surface, and the second connection surface is provided with Around the bottom surface and the second connection surface and the bottom surface are located at different heights from the bottom of the light emitting upper cover, the second connection surface is connected to the first connection surface, and the bottom surface is located at the accommodating cavity.
  • Fig. 1 is a connection diagram of an optical communication system according to some embodiments
  • Fig. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments.
  • Figure 4 is an exploded view of an optical module according to some embodiments.
  • FIG. 5 is a schematic diagram of an assembly of a light emitting component and a flexible circuit board in an optical module according to some embodiments
  • FIG. 6 is an exploded schematic diagram of a light emitting component in an optical module according to some embodiments.
  • FIG. 7 is a schematic diagram of an assembly of a laser component, a ceramic transition block, and a flexible circuit board in an optical module according to some embodiments;
  • FIG. 8 is a schematic diagram of an assembly of a ceramic transition block and a flexible circuit board in an optical module according to some embodiments
  • FIG. 9 is an exploded schematic diagram of a ceramic transition block and a flexible circuit board in an optical module according to some embodiments.
  • Fig. 10 is a schematic structural diagram of a ceramic transition block in an optical module according to some embodiments.
  • Fig. 11 is a schematic structural diagram of another angle of a ceramic adapter block in an optical module according to some embodiments.
  • Fig. 12 is a schematic diagram of a partial structure of a ceramic transition block in an optical module according to some embodiments.
  • Figure 13 is a perspective view of a light receiving component according to some embodiments.
  • Fig. 14 is a schematic structural diagram of removing the light receiving upper cover of a light receiving component according to some embodiments.
  • Figure 15 is a cross-sectional view of a light receiving assembly according to some embodiments.
  • 16 is a schematic diagram of the operation of a DeMUX configured to include beam splitting of four wavelengths ( ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4) according to some embodiments;
  • Fig. 17 is a schematic diagram of an optical path structure of a light receiving component according to some embodiments.
  • Figure 18 is an exploded schematic diagram of a light receiving assembly according to some embodiments.
  • Fig. 19 is a first structural schematic diagram of a substrate assembly in use according to some embodiments.
  • Fig. 20 is a second structural schematic diagram of a substrate assembly in use according to some embodiments.
  • Figure 21 is a cross-sectional view of another light receiving assembly according to some embodiments.
  • Fig. 22 is a schematic structural diagram of an electrical connector according to some embodiments.
  • Fig. 23 is an exploded schematic diagram of a light receiving cavity according to some embodiments.
  • Fig. 24 is a first structural schematic diagram of a light-receiving upper cover according to some embodiments.
  • Fig. 25 is a second structural schematic diagram of a light-receiving upper cover according to some embodiments.
  • Figure 26 is a cross-sectional view of a light receiving cavity according to some embodiments.
  • Fig. 27 is a schematic structural view of another light-receiving upper cover according to some embodiments.
  • 28 is a cross-sectional view of another light-receiving upper cover according to some embodiments.
  • first and second are only configured for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • optical communication technology In optical communication technology, light is used to carry information to be transmitted, and the optical signal carrying information is transmitted to information processing equipment such as a computer through optical fiber or optical waveguide and other information transmission equipment to complete the information transmission. Because optical signals have passive transmission characteristics when they are transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (such as an optical modem) through the electrical port. It is mainly configured to realize power supply, I2C signal transmission, data signal transmission, and grounding; the optical network terminal transmits electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • Fig. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103;
  • optical fiber 101 One end of the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • Optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long-distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach thousands of kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: routers, switches, computers, mobile phones, tablet computers, televisions, and so on.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101; electrical signal connection.
  • the optical module 200 implements mutual conversion between optical signals and electrical signals, so that a connection is established between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input to the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input to the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing (housing), and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 A two-way electrical signal connection is established.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200, so the optical network terminal 100, as the host computer of the optical module 200, can monitor the optical module 200 work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • the remote server 1000 establishes a two-way signal transmission channel with the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the casing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has raised parts such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the heat generated by the optical module 200 is conducted to the cage 106 and then diffused through the radiator 107 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 101 establish a bidirectional electrical signal connection.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201 , a lower housing 202 , an unlocking component 203 , a circuit board 206 , a light emitting component 207 and a light receiving component 208 .
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing is generally square.
  • the lower case 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the two upper side plates are combined by two side walls and two side plates to realize that the upper case 201 is covered on the lower case 202 .
  • the direction of the line connecting the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may not be consistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger of the circuit board 206 is stretched out from the electrical port 204, and is inserted into a host computer (such as the optical network terminal 100); the opening 205 is an optical port, configured to be connected to an external optical fiber 101, so that The optical fiber 101 is connected to the inside of the optical module 200 .
  • the combination of the upper case 201 and the lower case 202 is used to facilitate the installation of components such as the circuit board 206 into the case, and the upper case 201 and the lower case 202 can form package protection for these devices.
  • the upper case 201 and the lower case 202 can form package protection for these devices.
  • the circuit board 206 when components such as the circuit board 206 are assembled, it is convenient to deploy the positioning components, heat dissipation components and electromagnetic shielding components of these components, which is beneficial to the implementation of automatic production.
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking part 203 located on the outer wall of its housing, and the unlocking part 203 is configured to realize a fixed connection between the optical module 200 and the host computer, or release the connection between the optical module 200 and the host computer. fixed connection.
  • the unlocking component 203 is located on the outer walls of the two lower side panels of the lower housing 202 , and includes an engaging component matching with a cage of the upper computer (for example, the cage 106 of the optical network terminal 100 ).
  • a cage of the upper computer for example, the cage 106 of the optical network terminal 100 .
  • the optical module 200 is inserted into the cage of the host computer, the optical module 200 is fixed in the cage of the host computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing
  • the connection relationship between the engaging part and the host computer is to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 206 includes circuit traces, electronic components and chips, through which the electronic components and chips are connected together according to the circuit design, so as to realize functions such as power supply, electrical signal transmission and grounding.
  • the electronic components may include, for example, capacitors, resistors, transistors, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • Chips can include, for example, a Microcontroller Unit (MCU), a limiting amplifier (limiting amplifier), a clock data recovery chip (Clock and Data Recovery, CDR), a power management chip, and a digital signal processing (Digital Signal Processing, DSP) chip.
  • MCU Microcontroller Unit
  • limiting amplifier limiting amplifier
  • CDR clock data recovery chip
  • DSP digital signal processing
  • the circuit board 206 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function, such as the rigid circuit board can carry the chip stably; the rigid circuit board can also be inserted into the electrical connector in the cage of the host computer .
  • the circuit board 206 also includes gold fingers formed on the surface of its end, and the gold fingers are composed of a plurality of independent pins.
  • the circuit board 206 is inserted into the cage 106 and electrically connected with the electrical connector in the cage 106 by the gold finger.
  • Gold fingers can be arranged only on one side of the circuit board 206 (such as the upper surface shown in FIG. 4 ), or on the upper and lower sides of the circuit board 206, so as to meet the occasions where the number of pins is large.
  • the golden finger is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards are also used in some optical modules. Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • Fig. 5 is an assembly schematic diagram of a light emitting component and a flexible circuit board in an optical module according to some embodiments
  • Fig. 6 is an exploded schematic diagram of a light emitting component in an optical module according to some embodiments. As shown in FIG. 5 and FIG.
  • the light emitting assembly 207 provided by the embodiment of the present disclosure includes a housing and a ceramic adapter block 430A, the housing includes a cover plate 410A and a tube shell 420A, and the cover plate 410A is covered on the tube shell 420A
  • the side of the case 420A facing the circuit board 206 is provided with an opening, one side of the ceramic adapter block 430A is inserted into the case 420A through the opening, and the other side is exposed outside the case 420A, so that the cover plate 410A, the case 420A Assembled with the ceramic adapter block 430A to form an airtight housing.
  • the light emitting component 207 includes a laser component 440A, a lens array 450A, a wavelength division multiplexing component and a lens component, and components such as the laser component 440A, the lens array 450A, the wavelength division multiplexing component and the lens component are all placed on the cover plate 410A and the tube shell 420A In the airtight casing composed of the ceramic adapter block 430A, the laser component 440A, the lens array 450A, the wavelength division multiplexing component and the lens component are arranged in sequence along the light emitting direction.
  • the laser component is configured to emit a variety of beams of different wavelengths.
  • the beams of different wavelengths are combined by optical devices such as lens array 450A, wavelength division multiplexing components, and lens components.
  • the combined beams are transmitted to external optical fibers through fiber optic adapters. In order to realize the emission of the beam.
  • the laser component 440A includes a plurality of lasers, and the plurality of lasers are arranged close to the ceramic transition block 430A, and each laser is connected to the ceramic transition block 430A through a gold wire.
  • One end of the ceramic adapter block 430A located in the airtight housing is provided with a welding pad, and the laser is connected to the welding pad through a gold wire to realize the electrical connection between the laser component 440A in the airtight housing and the ceramic adapter block 430A.
  • the laser assembly 440A includes 8 lasers, and the 8 lasers are arranged in sequence along the front and rear directions of the airtight casing, and the 8 lasers emit 8 laser beams with different wavelengths, and the 8 laser beams with different wavelengths Combining light through lens array 450A, wavelength division multiplexing components, lens components and other optical devices to obtain a composite beam, and the combined composite beam is transmitted to an external optical fiber through a fiber optic adapter.
  • the lens array 450A includes 8 collimating lenses, each collimating lens is set corresponding to each laser, and is located in the light emitting direction of the laser, so that the laser beam emitted by the laser is converted into a collimated beam through the collimating lens, and the collimated beam emits
  • the input wavelength division multiplexing component performs light combination.
  • the wavelength division multiplexing component includes a first wavelength division multiplexer 460 and a second wavelength division multiplexer 470, the first wavelength division multiplexer 460 is set corresponding to 4 lasers and 4 collimating lenses, and the 4 lasers emit 4 laser beams with different wavelengths enter the first wavelength division multiplexer 460 through the collimating lens; the second wavelength division multiplexing device 470 is set corresponding to the other 4 lasers and 4 collimating lenses, Four laser beams with different wavelengths enter the second wavelength division multiplexer 470 through the collimating lens.
  • the right side of the first wavelength division multiplexer 460 includes four light entrances configured to enter light beams of various wavelengths, and the left side includes a light exit configured to emit light, and each light entrance is configured to enter a light beam. wavelength beams.
  • light beams of various wavelengths enter the first wavelength division multiplexer 460 through corresponding light entrances, and one beam passes through six different positions of the first wavelength division multiplexer 460 After six different reflections to reach the light outlet, a beam of light passes through four different positions of the first wavelength division multiplexer 460 and undergoes four different reflections to reach the light outlet, and a beam of light passes through the first wavelength division multiplexer 460 Two different reflections are performed at two different positions to reach the light outlet, and a beam of light is incident on the first wavelength division multiplexer 460 and then directly transmitted to the light outlet.
  • the first wavelength division multiplexer 460 through the first wavelength division multiplexer 460, light beams of different wavelengths enter the first wavelength division multiplexer 460 through different light entrances, and output through the same light exit port, thereby realizing beam combining of different wavelength light beams.
  • the first wavelength division multiplexer 460 is not limited to combining light beams with four wavelengths, and may be selected according to actual needs.
  • the lens assembly includes a first lens assembly 480 and a second lens assembly 490, the first lens assembly 480 is disposed on the light output direction of the first wavelength division multiplexer 460, and the second lens assembly 490 is disposed on the second wavelength division multiplexer 470 In the light-emitting direction, the first composite light beam emitted by the first wavelength division multiplexer 460 is reflected by the first lens assembly 480 to the second lens assembly 490, and the second composite light beam emitted by the second wavelength division multiplexer 470 enters the first The second lens assembly 490 synthesizes the reflected first composite light beam and the second composite light beam into one beam through the second lens assembly 490 , and the combined beam is injected into the fiber optic adapter and emitted.
  • Fig. 7 is a schematic diagram of an assembly of a laser component, a ceramic transition block and a flexible circuit board in an optical module according to some embodiments.
  • one end of the ceramic transition block 430A located inside the airtight casing is connected to each laser of the laser assembly 440A through a gold wire
  • one end of the ceramic transition block 430A located outside the airtight casing is connected to the circuit board 206 through a flexible circuit board.
  • the electrical signal and working signal generated by the circuit board 206 are transferred to each laser through the flexible circuit board and the ceramic adapter block 430A, so as to drive each laser to emit laser beams of different wavelengths.
  • the ceramic transfer block 430A is coated with a metal layer, and the metal layer of the ceramic transfer block 430A located inside the housing is provided with signal pads and ground pads ,
  • the ceramic transfer block 430A is located on the metal layer outside the shell, and the signal pad and the ground pad are also provided, and the signal pads on the inner and outer sides of the ceramic transfer block 430A are connected to realize the inner and outer sides of the ceramic transfer block 430A. electrical connection, so as to realize the transfer of electrical signals, working signals, etc. through the ceramic transfer block 430A.
  • Fig. 8 is an assembly schematic diagram of a ceramic transition block and a flexible circuit board in an optical module according to some embodiments
  • Fig. 9 is an exploded schematic diagram of a ceramic transition block and a flexible circuit board in an optical module according to some embodiments.
  • One end of the ceramic adapter block 430A facing the circuit board 206 (the end outside the airtight housing) is provided with a boss 4310, the boss 4310 is integrated with the ceramic adapter block 430A, and the boss 4310 is connected to the flexible circuit board,
  • the signal of the circuit board 206 is transmitted to the ceramic transfer block 430A through the flexible circuit board, and the ceramic transfer block 430A transfers the signal to the laser component 440A to realize the normal operation of the laser in the laser component 440A.
  • the side where the ceramic adapter block 430A is inserted into the airtight housing is provided with multiple installation grooves 4320, and the multiple installation grooves 4320 are arranged in a stepped shape, and each installation groove 4320 is provided with a solder pad.
  • the laser driver of the laser component 440A , the laser, etc. are respectively connected to the pads on the installation groove 4320 through gold wires, so as to realize signal transfer.
  • the boss 4310 on one side of the ceramic adapter block 430A can be connected to the circuit board 206 through two flexible circuit boards, that is, the upper side of the boss 4310 is connected to the first flexible circuit board 600A, and the lower side of the boss 4310 is connected to the second flexible circuit board 600A.
  • the circuit board 700 is connected to realize the transmission of various signals.
  • the side of the boss 4310 is provided with a signal pad and a ground pad side by side, and one end of the flexible circuit board is correspondingly provided with an FPC signal pad and an FPC ground pad.
  • the signal pads on the transfer block 430A are connected to the corresponding FPC signal pads on the flexible circuit board by soldering, and the ground pads on the ceramic transfer block 430A are connected to the corresponding PC grounding pads on the flexible circuit board by soldering, so that The connection and fixation between the flexible circuit board and the ceramic transition block 430A is realized.
  • the front-to-back length of the boss 4310 is consistent with the front-to-back length of the ceramic adapter block 430A, so as to leave enough space for the signal pad and the ground pad on the side of the boss 4310, This ensures the integrity of signal transmission between the ceramic transition block 430A and the flexible circuit board.
  • the upper side of the boss 4310 has a certain distance from the upper side of the ceramic adapter block 430A, and the lower side of the boss 4310 has a certain distance from the lower side of the ceramic adapter block 430A, so as to facilitate the installation of the boss 4310.
  • the upper and lower sides are welded with the flexible circuit board.
  • Fig. 10 is a schematic structural diagram of a ceramic transition block in an optical module according to some embodiments
  • Fig. 11 is a schematic structural diagram of another angle of a ceramic transition block in an optical module according to some embodiments
  • Fig. 12 is a schematic diagram of a ceramic transition block according to some embodiments A schematic diagram of a partial structure of a ceramic transition block in an optical module according to an embodiment.
  • the transmission mode of high-speed signals is GND-Signal-GND mode
  • the pad mode of the ceramic adapter block 430A connected to the flexible circuit board is GSG mode, that is, ceramic
  • the structure of the signal pads and ground pads provided on the side of the boss 4310 of the transfer block 430A is a first ground pad 4311, a signal pad 4312 and a second ground pad 4313, and the signal pad 4312 is set on the first ground pad 4311 and the second ground pad 4313.
  • first ground pad 4311, the signal pad 4312, and the second ground pad 4313 on the boss 4310 are connected to the pads on the flexible circuit board, they need to be connected by soldering. If it is successful, it will inevitably lead to impedance discontinuities at the solder joints between the first ground pad 4311, the signal pad 4312, the second ground pad 4313 on the boss 4310 and the pads on the flexible circuit board, and the signal quality will change. Signal integrity degrades.
  • the impedance of the soldering joints between the signal pad, the ground pad and the pad on the flexible circuit board on the ceramic transfer block 430A is related to the dielectric constant of the ceramic transfer block 430A itself.
  • the dielectric constant is smaller and other parameters remain unchanged, the The impedance becomes larger, so the present disclosure can increase the impedance by reducing the dielectric constant of the ceramic transfer block 430A, and reduce the impedance discontinuity at the soldering point of the ceramic transfer block 430A and the flexible circuit board pad.
  • an isolation groove is provided between the signal pad and the ground pad of the boss 4310, and the isolation groove is recessed in the Signal pad and ground pad.
  • the dielectric constant of the ceramic adapter block 430A is reduced by setting an isolation groove on the boss 4310. There is no conductive medium in the isolation groove, and the dielectric constant of the medium around the isolation groove is reduced through the lower dielectric constant of the isolation groove, thereby The impedance of the signal pad and the ground pad around the isolation slot can be increased.
  • a first isolation groove 4314 is provided between the first ground pad 4311 and the signal pad 4312
  • a second isolation groove is provided between the signal pad 4312 and the second ground pad 4313 4315
  • the first isolation groove 4314 and the second isolation groove 4315 are both recessed in the first ground pad 4311 , the signal pad 4312 and the second ground pad 4313 , extending from the left side of the boss 4310 to the right side.
  • a first isolation groove 4314 is provided between the first ground pad 4311 and the signal pad 4312 of the boss 4310, and when a second isolation groove 4315 is provided between the signal pad 4312 and the second ground pad 4313, the first isolation The groove 4314 and the second isolation groove 4315 extend from the outer wall of the ceramic adapter block 430A along the left-right direction to the side of the boss 4310 facing the circuit board 206, that is, the length dimensions of the first isolation groove 4314 and the second isolation groove 4315 in the left-right direction are consistent with the protrusions.
  • the signal pads and ground pads on the platform 4310 have the same length in the left and right directions.
  • the second isolation groove 4314 extends from the front side of the first ground pad 4311 to the rear side of the signal pad 4312, and the second isolation groove 4315 extends from the front side of the signal pad 4312 to the rear side of the second ground pad 4313.
  • the width dimension of the front-to-back direction of the first isolation groove 4314 may be equal to the distance between the first ground pad 4311 and the signal pad 4312
  • the width dimension of the second isolation groove 4315 in the front-to-back direction may be equal to the distance between the signal pad 4312 and the second ground pad 4312. The spacing between pads 4313.
  • the front-to-back width of the first isolation groove 4314 may also be smaller than the distance between the first ground pad 4311 and the signal pad 4312
  • the front-to-back width of the second isolation groove 4315 may also be smaller than the distance between the signal pad 4312 and the signal pad 4312.
  • an isolation groove can be provided only between the signal pad and the ground pad on one side of the boss 4310, and the side with the isolation groove transmits high-speed signals, and the side without the isolation groove transmits low-speed signals.
  • an isolation groove is provided between the signal pad and the ground pad on the upper side of the boss 4310; an isolation groove can also be set between the signal pad and the ground pad on both sides of the boss 4310, that is, the boss 4310
  • the upper side is provided with a first ground pad 4311, a first signal pad and a second ground pad 4313, the first signal pad is set between the first ground pad 4311 and the second ground pad 4313, the first The pads on the flexible circuit board 600A are soldered together with the first ground pad 4311, the first signal pad, and the second ground pad 4313 on the upper side of the boss 4310 to connect the first flexible circuit board 600A to the The upper side of the boss 4310.
  • the lower side of the boss 4310 is provided with a third ground pad, a second signal pad and a fourth ground pad, the second signal pad is arranged between the third ground pad and the fourth ground pad, and the second flexible
  • the pads on the circuit board 700 and the third ground pad, the second signal pad, and the fourth ground pad on the lower side of the boss 4310 are welded together by soldering to connect the second flexible circuit board 700 to the boss 4310 the lower side of the .
  • a first isolation groove 4314 is provided between the first ground pad 4311 and the first signal pad, and a second isolation groove is provided between the first signal pad and the second ground pad 4313 4315 ; on the lower side of the boss 4310 , a third isolation slot is provided between the third ground pad and the second signal pad, and a fourth isolation slot is provided between the second signal pad and the fourth ground pad.
  • the flexible circuit board when the flexible circuit board is connected to the ceramic transition block 430A, the flexible circuit board covers the isolation groove provided on the ceramic transition block 430A. That is, when the upper side of the boss 4310 of the ceramic adapter block 430A is provided with the first isolation groove 4314 and the second isolation groove 4315, when the flexible circuit board is welded to the boss 4310 of the ceramic adapter block 430A, the flexible circuit board covers the boss 4310 The first ground pad 4311 , the first isolation slot 4314 , the signal pad 4312 , the second isolation slot 4315 and the second ground pad 4313 .
  • the grooves reduce the dielectric constant of the ceramic adapter block 430A, thereby improving the ceramic adapter.
  • the impedance at the junction of the ground pad, the signal pad and the pad of the flexible circuit board on the block 430A reduces the impedance discontinuity at the soldering point of the ceramic transfer block 430A and the pad of the flexible circuit board. As a result, it can not only save space, but also ensure the width of the pad, and ensure the stability of welding process. The most important thing is that the signal quality can be greatly improved, thereby ensuring the integrity of signal transmission.
  • the optical module provided by the embodiment of the present disclosure includes a circuit board, a light emitting component, and a flexible circuit board.
  • the light emitting component includes a housing and a ceramic transfer block coated with a metal layer.
  • An opening is provided on one side of the housing, and the ceramic transfer block One side is inserted into the housing through the opening, and the other side is exposed outside the housing, and the housing and the ceramic adapter block form an airtight housing, so that the laser components, lens arrays, wavelength division multiplexing components and Optical components such as lens components are placed in the airtight casing for hermetic packaging; one end of the ceramic adapter block located in the airtight casing is connected to the laser component through a gold wire, and the end outside the airtight casing is provided with a boss, the boss The metal layer on the side is provided with a signal pad and a ground pad side by side.
  • the flexible circuit board is connected to the ceramic transfer block through the signal pad and the ground pad on the boss, and the other end is connected to the circuit board.
  • the board and the ceramic transfer block transfer the working signal generated on the circuit board to the laser component to drive the laser component to generate the laser beam to realize light emission; the signal pad and the ground pad on the side of the boss of the ceramic transfer block
  • There is no conductive medium in the isolation groove so that the dielectric constant of the isolation groove is low, and the lower dielectric constant of the isolation groove is used to reduce the surrounding area of the isolation groove.
  • the dielectric constant of the medium improves the impedance of the signal pad and the ground pad around the isolation slot, and reduces the impedance discontinuity at the welding point of the signal pad, the ground pad and the flexible circuit board pad on the ceramic transfer block, thereby The quality of signal transmission between the ceramic adapter block and the flexible circuit board is improved, and the integrity of signal transmission is guaranteed.
  • the isolation groove is arranged on the metal layer of the ceramic transition block exposed outside the casing, which does not affect the airtight packaging of the light emitting component.
  • the light receiving component includes a light receiving cavity configured to accommodate devices or components configured to transmit and receive signal light.
  • Figure 13 is a perspective view of a light receiving assembly according to some embodiments.
  • the light-receiving cavity of the light-receiving assembly 208 provided by the embodiment of the present disclosure includes a light-receiving lower case 081 and a light-receiving upper cover 082 , and the light-receiving upper cover 082 is closed and connected to the light-receiving lower case 081 to form a light-receiving The cavity, the device configured to receive light transmission and light reception is arranged in the light receiving cavity.
  • the light-receiving lower case 081 and the light-receiving upper cover 082 can be metal structural parts, such as die-casting or milling metal parts.
  • the structure of the light-receiving cavity is not limited to the mechanism composed of the light-receiving lower shell 081 and the light-receiving upper cover 082 in FIG.
  • the light-receiving lower case 081 includes a bottom plate and side plates surrounding the bottom plate.
  • the bottom plate and the side plates of the light-receiving lower case 081 form an accommodating cavity, and the accommodating cavity is configured to accommodate and carry light. received device.
  • a first connection surface is provided on the top of the side plate, and the first connection surface is configured to support and connect the light-receiving upper cover 082 .
  • Fig. 14 is a schematic structural view of a light receiving assembly with the light receiving upper cover removed according to some embodiments;
  • Fig. 15 is a cross-sectional view of a light receiving assembly according to some embodiments.
  • one end of the light-receiving lower housing 081 is provided with an optical fiber adapter assembly 300, and the other end is provided with an electrical connector 400;
  • the free end of the optical fiber adapter assembly 300 is located at the optical port, and is configured to transmit signals from the outside of the optical module Light;
  • the electrical connector 400 is configured to realize the electrical connection between the light receiving component 208 and the circuit board 206;
  • the signal light from the outside of the optical module is transmitted to the light receiving cavity through the optical fiber adapter component 300, and the light transmission and light in the light receiving cavity
  • the received devices are transmitted and converted, finally converted into electrical signals and transmitted to the circuit board 206 through the electrical connector 400 .
  • the electrical connector 400 is electrically connected to the circuit board 206 through a flexible circuit board.
  • one end of the light-receiving lower case 081 is provided with a light entrance hole 083 through which the optical fiber adapter assembly 300 and the inner cavity of the light-receiving cavity are connected; the other end of the light-receiving lower case 081 is provided with an opening 084 , the electrical connector 400 is embedded in the opening 084 .
  • One side of the electrical connector 400 is configured to be electrically connected to the electrical device in the light-receiving cavity, and the other side is configured to be electrically connected to the circuit board 206, and the electrical connection transfer between the circuit board 206 and the light-receiving component 208 is realized through the electrical connector 400 .
  • the electrical connector 400 is electrically connected to the electrical devices in the light receiving cavity by bonding wires.
  • the fiber optic adapter assembly 300 includes a fiber optic adapter and an adapter connection piece, etc., one end of the adapter connection piece is a fiber optic adapter, and the other end is connected to the light entrance hole 083 of the light receiving lower case 081; the inside of the fiber optic adapter is provided with a fiber optic ferrule,
  • the optical fiber adapter is configured to connect with the external optical fiber of the optical module;
  • the adapter connector is configured to connect the optical fiber adapter to the light-receiving lower housing 081 , and optical devices such as lenses can be arranged in the adapter connector.
  • a plane light window is arranged in the light entrance hole 083 , and the plane light window can be configured as the light entrance hole 083 , which facilitates the sealing of the light receiving cavity to a certain extent.
  • the plane light window is arranged obliquely in the light entrance hole 083, or the plane light window is not perpendicular to the central axis of the light entrance hole 083, and the plane light window arranged obliquely is configured to prevent the signal light transmitted into the light receiving cavity from returning to the optical fiber in the original path In the adapter assembly 300 , the signal light reflected back in the light receiving cavity is prevented from polluting the signal light transmitted to the optical fiber adapter assembly 300 outside the optical module.
  • the light-receiving cavity of the light-receiving component 208 provided in the embodiment of the present disclosure is usually provided with devices such as an isolator, a lens, a light-receiving chip, and a transimpedance amplifier.
  • devices such as an isolator, a lens, a light-receiving chip, and a transimpedance amplifier.
  • multiple light-receiving chips are arranged in the light-receiving cavity of the light-receiving component 208, and are configured to receive signal lights of various wavelengths; for example, two light-receiving chips, four light-receiving chips, and four Receiving chip, 8 optical receiving chips, etc.
  • the light-receiving component 208 is configured to receive signal lights of multiple different wavelengths, and signal lights including multiple different wavelengths from the outside of the optical module are transmitted to the light-receiving cavity through a fiber optic adapter In the body, the reflection and refraction of different lenses and other optical devices in the light-receiving cavity realize the beam splitting according to the wavelength, and the signal light split according to the wavelength is finally transmitted to the photosensitive surface of the corresponding light-receiving chip, and the light-receiving chip receives the signal through its photosensitive surface Light, the light receiving chip receives the signal light and converts the light signal into an electrical signal.
  • the light receiving module 208 shown in Figures 14 and 15 is provided with 4 light receiving chips in the light receiving cavity, and is configured to receive signal light of 4 different wavelengths, but the optical module provided by the embodiment of the present disclosure is not limited to Receive signal light of 4 different wavelengths.
  • the light receiving chip is PD (photodetector), such as APD (avalanche diode), PIN-PD (photodiode), etc., configured to convert received signal light into photocurrent.
  • the light-receiving component 208 provided by the embodiment of the present disclosure includes a light-receiving element 810 disposed in a light-receiving cavity, and the light-receiving element 810 includes a plurality of light-receiving chips.
  • the light receiving element 810 also includes a metallized ceramic substrate, the surface of the metallized ceramic substrate forms a circuit pattern, the light receiving chip is arranged on the surface of the metallized ceramic substrate, and is electrically connected to the circuit on the metallized ceramic substrate, and the light receiving chip passes through the metallized ceramic substrate.
  • the substrate is electrically connected to the electrical connector 400 .
  • the light receiving part 810 is arranged in the light receiving lower case 081 close to the electrical connector 400, and the side of the light receiving part 810 is provided with a transimpedance amplifier 820; The transimpedance amplifier 820 is connected; the transimpedance amplifier 820 is electrically connected to the electrical connector 400 .
  • the transimpedance amplifier 820 in order to facilitate the electrical connection of the transimpedance amplifier 820 to the electrical connector 400, the transimpedance amplifier 820 is closer to the electrical connector 400 than the light receiving element 810, as shown in Figures 14 and 15, the transimpedance amplifier 820 is set On the right side of the light receiving element 810 , a transimpedance amplifier 820 is located between the light receiving element 810 and the electrical connector 400 .
  • the optical receiving element 810 is connected to the transimpedance amplifier 820 by wire bonding. 810.
  • the optical receiving component 208 further includes a demultiplexing component (DeMUX) 830, the demultiplexing component 830 is arranged in the optical receiving cavity, and the demultiplexing component 830 is configured according to The signal light is split according to the difference in the wavelength of the signal light. Specifically: a beam of signal light including multiple wavelengths enters the wavelength division multiplexing component 830 , and the signal lights of different wavelengths undergo different reflections in the wavelength division multiplexing component 830 to realize beam splitting of the signal lights of different wavelengths.
  • DeMUX demultiplexing component
  • 16 is a working schematic diagram of a DeMUX configured to include beam splitting of 4 wavelengths ( ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4) according to some embodiments; wherein, the right side of the DeMUX includes a DeMUX configured to inject multiple wavelength signals
  • the light input port on the left side includes a plurality of light exit ports configured to emit light, and each light exit port is configured to emit signal light of a wavelength.
  • the signal light enters the DeMUX through the incident light port of the DeMUX, and the ⁇ 1 signal light passes through six different positions of the DeMUX and undergoes six different reflections to reach its light exit port; the ⁇ 2 signal light passes through four different positions of the DeMUX.
  • the light receiving component 208 further includes a reflective prism 840 , and the reflective prism 840 can be configured to change the transmission direction of the signal light.
  • the reflective prism 840 is arranged above the light-receiving element 810, wherein the emitting surface of the reflective prism 840 covers the light-receiving chip in the light-receiving element 810, and the signal light split by the demultiplexing component 830 enters the reflective prism 840, and
  • the signal light to the reflective prism 840 is parallel to the photosensitive surface of the light receiving chip, and the reflective surface of the reflective prism 840 reflects the direction parallel to the photosensitive surface light of the light receiving chip to be perpendicular to the photosensitive surface of the light receiving chip, so that the light receiving chip can Receive signal light smoothly.
  • the light receiving assembly 208 also includes an isolator 850, the isolator 850 is arranged in the light receiving cavity and close to the light entrance hole, and the signal light entering the light receiving cavity through the optical fiber adapter assembly 300 passes through The isolator 850, and the isolator 850 prevents the signal light that is reflected again and transmitted to the isolator 850 from passing through, avoiding the pollution of the reflected signal light during the transmission of the signal light to be received, so as to ensure the quality of the signal light to be received.
  • the light receiving component 208 also includes a focusing lens 870, the focusing lens 870 is arranged in the light receiving cavity and is located close to the light entrance of the demultiplexing component 830, and the focus lens 870 focuses
  • the signal light is transmitted to the light entrance of the wavelength division multiplexing component 830 , so as to ensure the coupling efficiency of the signal light to the wavelength division multiplexing component 830 .
  • the light receiving component 208 also includes a lens group 880, the lens group 880 is arranged in the light receiving cavity and is located between the demultiplexing component 830 and the reflective prism 840, the lens group 880 is configured to The signal light split by the demultiplexing component 830 is correspondingly converged and transmitted to the reflective prism 840 .
  • the lens group 880 can adopt a structure in which a plurality of lenses are arranged side by side, and each lens corresponds to a light outlet of the wavelength division multiplexing component 830, that is, each lens corresponds to focusing and transmitting signal light of a wavelength; or, the lens group 880 can be Several protrusions are arranged on a lens body, and the protrusions are arranged at the light exit port of the demultiplexing component 830. The protrusions are configured to converge light beams, that is, each protrusion focuses and transmits signal light of one wavelength.
  • the light receiving component 208 provided in the embodiments of the present disclosure also includes an optical amplification component 500, the optical amplifying component 500 is arranged in the light receiving cavity close to the light entrance hole 083, the optical amplifying component 500 is configured to amplify the signal light transmitted to the light receiving cavity, and the signal light amplified by the optical amplifying component 500 is again transmitted to the wavelength division multiplexing component 830.
  • the optical amplifying component 500 is arranged between the isolator 850 and the focusing lens 870, the signal light passing through the isolator 850 is transmitted to the optical amplifying component 500, and the signal light amplified by the optical amplifying component 500 is transmitted to to focusing lens 870.
  • the light receiving component 208 further includes a collimating lens 860, and the collimating lens 860 is arranged between the isolator 850 and the optical amplification component 500, and the signal light transmitted through the isolator 850 is transmitted to the collimating lens 860, The light is collimated and transmitted to the light amplification component 500 through the collimating lens 860 .
  • the optical amplification component 500 includes a SOA (Semiconductor Optical Amplifier, Semiconductor Optical Amplifier), and the SOA is arranged on the optical axis from the collimating lens 860 to the focusing lens 870.
  • the SOA performs signal light amplification gain according to the magnitude of the driving current applied to it.
  • the SOA amplification gain can be controlled by controlling the magnitude of the driving current applied to the SOA and Adjustment.
  • FIG. 17 is a schematic diagram of an optical path structure of a light receiving component 208 according to some embodiments.
  • the arrows in FIG. 17 show the transmission path of external signal light from the optical module in the light receiving component 208 .
  • the multi-wavelength signal light from the outside of the optical module is transmitted to the isolator 850 through the optical fiber adapter assembly 300, and the signal light passing through the isolator 850 is transmitted to the collimator lens 860, and after being collimated by the collimator lens 860
  • the signal light transmitted to the optical amplification component 500, the signal light amplified by the optical amplification component 500 is transmitted to the focusing lens 870, the signal light converged by the focusing lens 870 is transmitted to the demultiplexing component 830, and transmitted to the demultiplexing
  • the signal of the multiplexing component 830 is split into four beams of signal light according to the wavelength of the light, the four beams of signal light are transmitted to the lens group 880, the four beams of signal
  • the light receiving component 208 provided by the embodiment of the present disclosure also includes a substrate component, and the optical The receiving element 810 , the transimpedance amplifier 820 , the demultiplexing component 830 , and the reflective prism 840 are arranged on the substrate assembly, and the substrate assembly is arranged on the bottom plate of the light-receiving lower case 081 .
  • the substrate assembly facilitates the installation of the light receiving element 810, the transimpedance amplifier 820, the demultiplexing component 830, the reflective prism 840, etc.
  • the relative heights of the wavelength division multiplexing component 830, the reflective prism 840, etc., further ensure the transmission direction and coupling efficiency of the signal light to be received.
  • Figure 18 is an exploded schematic view of a light receiving assembly according to some embodiments.
  • the light-receiving component provided by the embodiment of the present disclosure further includes a substrate component 600, and a light-receiving element 810, a transimpedance amplifier 820, a wavelength division multiplexing component 830, a reflective prism 840, and a lens group 880 are arranged on the substrate the top of the assembly 600.
  • Fig. 19 is a first structural schematic diagram of a substrate assembly in use state according to some embodiments. 18 and 19, in some embodiments of the present disclosure, the substrate assembly 600 includes a first substrate 610 and a second substrate 620, the second substrate 620 is disposed above the first substrate 610, and the size of the second substrate 620 is smaller than that of the first substrate 620. The size of the substrate 610 , and thus the first substrate 610 is configured to carry the second substrate 620 .
  • the light receiving element 810 , the transimpedance amplifier 820 and the reflective prism 840 are disposed on the first substrate 610 .
  • the wavelength division multiplexing component 830 and the lens group 880 are arranged on the second substrate 620; on the one hand, the second substrate 620 is configured to carry the wavelength division multiplexing component 830 and the lens group 880, on the other hand, the second substrate 620 It is convenient to adjust the optical path during the optical path coupling process and ensure the coupling efficiency of the optical path to be received.
  • the first substrate 610 is disposed on the bottom plate of the lower light-receiving case 081 , that is, the first substrate 610 is connected to the bottom plate of the lower light-receiving case 081 .
  • the first substrate 610 is arranged on one side of the bottom of the first substrate 610, and the second notch 618 is arranged on the other side of the bottom of the first substrate 610.
  • the first notch 617 and the second notch 618 are configured so that the bottom of the first substrate 610 avoids receiving light.
  • the side walls of the lower case 081 facilitate the assembly of the first substrate 610 .
  • a first support block 841 and a first support block 841 are also provided on the first substrate 610.
  • the second support block 842 The second support block 842; the first support block 841 is arranged on one end of the light receiving member 810, and the second support block 842 is arranged on the other end of the light receiving member 810, and the first support block 841 supports one end of the reflective prism 840, the second support The block 842 supports the other end of the reflective prism 840, and then the first support block 841 and the second support block 842 are configured to elevate the reflective prism 840, so that the reflective prism 840 is located above the light receiving member 810 and on the optical path of the light to be received .
  • the reflective prism 840 can be fixed on the first support block 841 and the second support block 842 with glue, such as by dispensing the reflective prism 840 is fixedly arranged on the first support block 841 and the second support block 842, so through the first support block 841 and the second supporting block 842 support the reflective prism 840 , which can facilitate fixing the reflective prism 840 and effectively prevent dispensing of glue from contaminating components such as the light receiving element 810 .
  • the first support block 841 and the second support block 842 may be square pillars made of insulating materials such as plastic and glass.
  • the isolator 850, the optical amplifying component 500, etc. may also be disposed on the first substrate 610 or the second substrate 620, so as to facilitate assembly and optical path coupling of the isolator 850, the optical amplifying component 500, etc.
  • the second substrate 620, the light receiving element 810, the transimpedance amplifier 820, etc. are fixedly connected to the first substrate 610 by patching, in order to ensure that the second substrate 620, the light receiving element 810, the transimpedance amplifier 820
  • marking points 611 are set on the surface of the first substrate 610 , and the marking points 611 are configured for visual identification of high-precision patching on the first substrate 610 .
  • the marking point 611 may be an O-shaped, L-shaped or +-shaped marking point; in FIG. 19 , the marking point 611 is an O-shaped marking point.
  • the marking points 611 can be arranged on the first substrate 610 by printing; the marking points are arranged on the edge of the top surface of the first substrate 610 .
  • the substrate assembly 600 further includes a third substrate 630, and the isolator 850, the optical amplification assembly 500, the collimating lens 860, the focusing lens 870, etc. are arranged on the third substrate 630.
  • disposing the isolator 850 and the optical amplifier component 500 and the demultiplexing component 830 on different substrates can facilitate the adjustment of the relative height of each device, and further facilitate the adjustment of the optical coupling to ensure the optical coupling efficiency.
  • the light receiving component 208 further includes a TEC (Thermo Electric Cooler, semiconductor cooler), and the TEC is configured to stabilize the operating temperature of the SOA.
  • TEC Thermo Electric Cooler, semiconductor cooler
  • Fig. 20 is a second structural schematic diagram of a substrate assembly in use according to some embodiments.
  • the light receiving component 208 further includes a TEC 890 , the isolator 850 , the optical amplification component 500 , the collimating lens 860 , and the focusing lens 870 are disposed on the third substrate 630 .
  • the three substrates 630 are disposed on the TEC 890 .
  • the isolator 850, the optical amplifying component 500, the collimating lens 860 and the focusing lens 870 are arranged on the TEC 890 through a common substrate, so that when the third substrate 630 deforms due to temperature changes, the isolator 850, the optical amplifying component 500, and the collimating lens
  • the collimating lens 860 and the focusing lens 870 have the same effect, thereby ensuring the stability of the transmission light path in the isolator 850 , the collimating lens 860 , the light amplification component 500 and the focusing lens 870 .
  • the optical amplifying assembly 500 includes an SOA510 and a fourth substrate 520, the SOA510 is disposed on the fourth substrate 520, a circuit pattern is formed on the surface of the fourth substrate 520, and the SOA510 is electrically connected to the fourth substrate 520. circuit patterns on the four substrates 520 , so as to apply driving current to the SOA 510 through the fourth substrate 520 .
  • the fourth substrate 520 is a ceramic substrate, and a surface of the ceramic substrate forms a circuit pattern configured to be electrically connected to the SOA 510 .
  • the SOA 510 is mounted on the fourth substrate 520 , and the anode of the SOA 510 is connected to the circuit on the fourth substrate 520 by bonding.
  • the optical amplification component 500 further includes a temperature sensor 530 disposed around the SOA 510 and configured to collect the temperature of the SOA 510 in real time so as to control the temperature of the SOA 510 .
  • the temperature sensor 530 is disposed on the fourth substrate 520 , and a circuit pattern configured to be electrically connected to the temperature sensor 530 is disposed on the fourth substrate 520 .
  • the temperature sensor 530 may be a thermistor mounted on the fourth substrate 520 and electrically connected to the circuit pattern on the fourth substrate 520 .
  • Fig. 21 is a cross-sectional view of another light receiving component according to some embodiments.
  • Fig. 21 shows the structure of the light receiving component provided by the embodiments of the present disclosure and the structure of the light path to receive light.
  • the TEC890 and the first substrate 610 are arranged on the light-receiving lower case 081, that is, the bottom of the TEC890 and the first substrate 610 are fixed on the bottom plate of the light-receiving lower case 081; wherein, the TEC890 is connected to the optical fiber close to the light-receiving lower case 081
  • One end of the adapter assembly 300 is connected to the end of the electrical connector 400 near the light-receiving lower case 081 of the first substrate 610 .
  • the top of the TEC 890 is provided with a third substrate 630, on which an isolator 850, a collimating lens 860, an optical amplification assembly 500, and a focusing lens 870 are arranged;
  • a wavelength demultiplexing component 830 and a lens group 880 are disposed on the second substrate 620
  • the first substrate 610, the second substrate 620, and the third substrate 630 coordinately carry devices such as the isolator 850 and the collimating lens 860, which not only meets the requirements of the relative installation height between the devices, but also facilitates the installation of the devices in the light receiving cavity. assembly.
  • Fig. 22 is a schematic structural diagram of an electrical connector according to some embodiments. As shown in FIGS. 21 and 22 , the left side of the electrical connector 400 protrudes into the cavity of the light-receiving lower case 081 , and the right side is located outside the cavity of the light-receiving lower case 081 .
  • the electrical connector 400 includes an electrical connector body 410, the electrical connector body 410 is configured to embed the connection opening 084; the left side of the electrical connector body 410 is configured to electrically connect the device in the cavity of the light receiving lower case 081, and electrically connect The right side of the device body 410 is configured to be electrically connected to the circuit board 206 .
  • a first stepped surface 420 and a second stepped surface 430 are provided on the left side of the electrical connector body 410 , and the first stepped surface 420 and the second stepped surface 430 are located on different sides of the left side of the electrical connector body 410 .
  • Height, the first stepped surface 420 and the second stepped surface 430 face to the top of the lower light-receiving case 081 , forming a mutually staggered step-like structure, which is convenient for the electrical connector 400 to electrically connect devices in the cavity of the lower light-receiving case 081 .
  • the right side of the electrical connector body 410 is provided with a first connection surface 440 and a second connection surface 450 facing the back, such as the first connection surface 440 facing the top of the light-receiving lower case 081, and the second connection surface 450 facing the light-receiving lower case 081
  • the bottom of the first connection surface 440 and the second connection surface 450 are configured to connect the circuit board 206, such as the first connection surface 440 and the second connection surface 450 are respectively electrically connected to the circuit board 206 through the flexible circuit board.
  • a DC pin is set on the first stepped surface 420 and is configured to transmit DC signals and supply power
  • an AC pin and a ground pin are set on the second stepped surface 430 , respectively. It is configured to transmit AC signals and ground
  • several pins are respectively arranged on the first connection surface 440 and the second connection surface 450, and the pins of the first connection surface 440 and the second connection surface 450 are configured to electrically connect the circuit board 206;
  • the pins on the first stepped surface 420 are connected to the pins on the first connecting surface 440
  • the pins on the second stepped surface 430 are connected to the pins on the second connecting surface 450 .
  • the first stepped surface 420 is provided with pins configured to connect to the negative pole, pins configured to connect to the positive pole of the SOA510, and pins configured to connect to the positive pole of the temperature sensor 530;
  • the second stepped surface 430 is configured as a ground pin connected to the negative pole of the light receiving element 810 , the negative pole of the transimpedance amplifier 820 , the negative pole of the SOA 510 , and the negative pole of the temperature sensor 530 .
  • the devices in the cavity of the lower light-receiving housing 081 are connected to corresponding pins on the electrical connector 400 by wire bonding, for example, the transimpedance amplifier 820 is connected to several pins on the electrical connector 400 by wire bonding.
  • the work of optical amplifier assembly 500 and TEC890 etc. also needs power supply, so it is necessary to provide electrical connection for optical amplifier assembly 500 and TEC89 etc. through electrical connector 400, and electrical connector 400 is configured to And TEC89 etc. power supply.
  • the optical amplifier components 500 and TEC89 are relatively far from the electrical connector 400 and the optical amplifier components 500, TEC890, etc. and the electrical connector 400 span devices such as the wavelength division multiplexing component 830, etc.
  • the optical amplifier components 500, TEC890, etc. and the corresponding pins on the electrical connector 400 are not easy to be realized, and the impedance between the optical amplifier components 500, TEC890, etc.
  • the way of direct bonding makes the optical amplifier components 500 and TEC890 etc. electrically connected to the corresponding pins on the electrical connector 400 , and the electrical stability of the optical amplifier components 500 and TEC890 is often difficult to meet the requirements.
  • a substrate with a circuit pattern is used to perform the transfer between the optical amplifier assembly 500, TEC890, etc. and the electrical connector 400.
  • the substrate is arranged on the bottom plate of the light-receiving lower case 081 or other positions of the light-receiving cavity, and a corresponding metal layer is arranged on the substrate to form a circuit pattern, and one end of the substrate is electrically
  • the optical amplifier component 500 is connected to the TEC890, etc., and the other end of the substrate is electrically connected to the electrical connector 400, and then the optical amplifier component 500, the TEC89, etc. are electrically connected to the electrical connector 400 through the substrate.
  • the light-receiving lower case 081 and the light-receiving upper cover 082 need to be hermetically sealed and connected, and the light-receiving lower case 081 and the light-receiving upper cover 082 can be hermetically sealed using parallel seam welding technology, and the alloy metal of the cover plate is melted by resistance welding through rollers Then seal it.
  • parallel seam welding technology the local temperature of the light-receiving lower shell 081 and the light-receiving upper cover 082 needs to reach 1400°C, so that a large thermal stress is easily generated in the cavity, which will cause a decrease in the received light power in the cavity.
  • the present disclosure adopts metal solder with a relatively low melting point to package and connect the light-receiving lower case 081 and the light-receiving upper cover 082.
  • the metal solder with a relatively low melting point has a melting point of 150-350°C, and alloy or A single metal, metal solder can be disposed on the light-receiving lower case 081 or the light-receiving upper cover 082 by evaporation or electroplating.
  • FIG. 23 is an exploded schematic diagram of a light receiving cavity according to some embodiments.
  • the light-receiving cavity provided in this example includes a light-receiving lower case 081 and a light-receiving upper cover 082 , and the light-receiving upper cover 082 is closed and connected to the light-receiving lower case 081 .
  • the light-receiving lower case 081 includes a bottom plate 0811 and side plates 0812 , the side plates 0812 surround the bottom plate 0811 , and the bottom plate 0811 and the side plates 0812 form a receiving cavity.
  • a first connection surface 0813 is provided on the top of the side plate 0812 , and the first connection surface 0813 is configured to support and connect the light receiving upper cover 082 .
  • Metal solder can be disposed on the first connection surface 0813 .
  • FIG. 24 is a first structural schematic diagram of a light receiving upper cover according to some embodiments
  • FIG. 25 is a second structural schematic diagram of a light receiving upper cover according to some embodiments.
  • the top of the light-receiving upper cover 082 provided by the embodiment of the present disclosure includes a top surface 0821
  • the bottom of the light-receiving upper cover 082 includes a bottom surface 0822 and a second connection surface 0823
  • the second connection surface 0823 is arranged on Around the bottom surface 0822
  • the bottom surface 0822 and the second connection surface 0823 are located at different heights from the bottom of the light receiving upper cover 082
  • the second connection surface 0823 is configured to make the light-receiving upper cover 082 cooperate with the first connection surface 0813 of the light-receiving lower case 081 .
  • Metal solder can be provided on the second connecting surface 0823 .
  • the height of the bottom surface 0822 at the bottom of the light receiving upper cover 082 is greater than the height of the second connecting surface 0823 at the bottom of the light receiving upper cover 082 .
  • the second connection surface 0823 is configured to connect to the first connection surface 0813 , and the bottom surface 0822 is located in the receiving cavity of the lower light receiving case 081 .
  • Figure 26 is a cross-sectional view of a light receiving cavity according to some embodiments. As shown in FIG. 26 , when the light-receiving upper cover 082 is mated with the light-receiving lower case 081 , the second connection surface 0823 is connected to the first connection surface 0813 , and the bottom surface 0822 is located in the cavity of the light-receiving lower case 081 .
  • metal solder is provided on the first connection surface 0813 or the second connection surface 0823, or metal solder is provided on the first connection surface 0813 and the second connection surface 0823, and the light receiving upper cover 082 is matched with the light receiving
  • the lower shell 081 make the first connecting surface 0813 and the second connecting surface 0823 fit and connect, then heat the light-receiving upper cover 082 or the light-receiving lower shell 081 by local heating to melt the metal solder to connect the first connecting surface 0813 and the second connecting surface 0813
  • the two connection surfaces 0823 are further connected to the light-receiving upper cover 082 and the light-receiving lower case 081 in an airtight package.
  • the packaging equipment in order to facilitate the hermetic packaging connection of the light-receiving upper cover 082 and the light-receiving lower case 081, the packaging equipment has a sealed cabin and a laser beam function, and the sealed cabin can be filled with nitrogen to reduce the dew point to -40°C below, the laser beam can achieve local heating, and the local temperature can be adjusted.
  • the laser beam can be set inside or outside the sealed cabin.
  • the light-receiving upper cover 082 and the light-receiving lower case 081 are hermetically sealed and connected, the light-receiving lower case 081 is first arranged on the carrier platform in the sealed cabin, and the metal solder
  • the light-receiving upper cover 082 is covered on the light-receiving lower case 081 and the first connecting surface 0813 and the second connecting surface 0823 are matched; the four corners or two corners of the light-receiving lower case 081 are spot-welded with a laser beam
  • Pre-fix the light-receiving upper cover 082 and the light-receiving lower shell 081 quickly scan the laser beam several times around the light-receiving upper cover 082 to melt the metal solder, and then airtightly connect the light-receiving upper cover 082 and the light-receiving lower shell 081.
  • the packaging equipment in order to facilitate the airtight packaging connection of the light receiving upper cover 082 and the light receiving lower case 081, the packaging equipment has a sealed cabin and rollers, and the sealed cabin can be filled with nitrogen to reduce the dew point to below -40°C , the roller is in contact with the cover plate, the roller has a local heating function, and the local temperature is adjustable.
  • the light-receiving upper cover 082 and the light-receiving lower case 081 are hermetically sealed and connected, the light-receiving lower case 081 is first arranged on the carrier platform in the sealed cabin, and the metal solder
  • the light-receiving upper cover 082 is covered on the light-receiving lower case 081 and the first connecting surface 0813 and the second connecting surface 0823 are matched; the four corners or two corners of the light-receiving lower case 081 are spot-welded by rollers Pre-fix the light-receiving upper cover 082 and the light-receiving lower shell 081; make the roller quickly scan several circles along the light-receiving upper cover 082 to melt the metal solder, and then connect the light-receiving upper cover 082 and the light-receiving lower shell 081 in an airtight package.
  • Embodiments of the present disclosure also provide a light-receiving upper cover
  • FIG. 27 is a schematic structural diagram of another light-receiving upper cover according to some embodiments.
  • the top of the light receiving upper cover 082 further includes a pressing surface 0824, and the pressing surface 0824 is arranged around the top surface 0821, and the pressing surface 0824 and the top surface 0821 are located on the light receiving Different heights of the top of the upper cover 082.
  • the height of the pressing surface 0824 at the top of the light receiving upper cover 082 is higher than the height of the top surface 0821 at the top of the light receiving upper cover 082 .
  • This facilitates the operation of the light-receiving upper cover 082 and the light-receiving lower case 081 in hermetic packaging connection, such as when using a roller air-tight package to connect the light-receiving upper cover 082 and the light-receiving lower case 081, it is convenient to ensure that the roller is on the light-receiving upper cover. The accuracy of rolling on 082.
  • FIG. 28 is a cross-sectional view of another light-receiving upper cover according to some embodiments.
  • the pressing surface 0824 is located above the second connecting surface 0823 .
  • the pressing surface 0824 covers the second connecting surface 0823 .
  • the light emitting assembly includes a light emitting cavity configured to house a device or component configured to transmit and emit signal light.
  • the light-emitting cavity includes a light-emitting lower case and a light-emitting upper cover.
  • the light-emitting upper cover is closed and connected to the light-emitting lower case to form a light-emitting cavity, which is configured to arrange light-emitting devices and the like in the light-receiving cavity.
  • the light emitting lower case includes a bottom plate and side plates surrounding the bottom plate, and the bottom plate and the side plates form an accommodating cavity.
  • a first connection surface is provided on the top of the side plate, and the first connection surface is configured to support and connect the light emitting upper cover.
  • the top of the light-emitting upper cover includes a top surface
  • the bottom of the light-emitting upper cover includes a bottom surface and a second connection surface
  • the second connection surface is arranged around the bottom surface
  • the bottom surface and the second connection surface are located between the light Launch different heights on the bottom of the lid.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括电路板(206)、光发射组件(207)及柔性电路板(600A,700)。光发射组件(207)包括壳体及镀有金属层的陶瓷转接块(430A),陶瓷转接块(430A)的一侧***壳体内、另一侧露在壳体外侧;陶瓷转接块(430A)的金属层上设置有信号焊盘(4312)、接地焊盘(4311,4313),陶瓷转接块(430A)内、外侧的信号焊盘(4312)相连接;陶瓷转接块(430A)上位于壳体外侧的信号焊盘(4312)、接地焊盘(4311,4313)之间设有隔离槽(4314,4315),隔离槽(4314,4315)凹陷于信号焊盘(4312)、接地焊盘(4311,4313);柔性电路板(600A,700)的一端与陶瓷转接块(430A)连接,另一端与电路板连接(206)。

Description

光模块
本公开要求在2021年05月26日提交中国专利局、申请号为202110578417.6,在2021年10月19日提交中国专利局、申请号为202122512160.2的专利优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
第一方面,本公开提供的一种光模块。所述光模块包括电路板、光发射组件和柔性电路板。所述光发射组件包括壳体及镀有金属层的陶瓷转接块,所述壳体的一侧设有开口,所述陶瓷转接块的一侧通过所述开口***所述壳体内、另一侧露在所述壳体外侧;所述陶瓷转接块的金属层上并排设置有信号焊盘与接地焊盘,所述陶瓷转接块内、外侧的信号焊盘相连接;所述陶瓷转接块上位于所述壳体外侧的所述信号焊盘与所述接地焊盘之间设置有隔离槽,所述隔离槽凹陷于所述信号焊盘与所述接地焊盘。所述柔性电路板的一端通过所述信号焊盘、所述接地焊盘与所述陶瓷转接块连接、另一端与所述电路板连接。
第二方面,本公开提供的一种光模块。所述光模块包括电路板和光接收组件。所述光接收组件与所述电路板电连接,被配置为将接收到的光信号转换为电流信号;其中,所述光接收组件包括光接收下壳和光接收上盖;所述光接收下壳包括底板和围绕底板四周的侧板,所述底板和所述侧板形成容纳腔,所述侧板的顶部设置第一连接面;所述光接收上盖的底部包括底面和第二连接面,所述第二连接面设置在所述底面的四周且所述第二连接面与所述底面位于所述光接收上盖底部不同的高度,所述第二连接面连接所述第一连接面,所述底面位于所述容纳腔内。
第三方面,本公开还提供了一种光模块。所述光模块包括电路板和光发射组件。所述光发射组件与所述电路板电连接,被配置为产生光信号;其中,所述光发射组件包括光发射下壳和光发射上盖;所述光发射下壳包括底板和围绕底板四周的侧板,所述底板和所述侧板形成容纳腔,所述侧板的顶部设置第一连接面;所述光发射上盖的底部包括底面和第二连接面,所述第二连接面设置在所述底面的四周且所述第二连接面与所述底面位于所述光发射上盖底部不同的高度,所述第二连接面连接所述第一连接面,所述底面位于所述容纳腔内。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图 可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信***的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光模块中光发射组件、柔性电路板的装配示意图;
图6为根据一些实施例的一种光模块中光发射组件的分解示意图;
图7为根据一些实施例的一种光模块中激光器组件、陶瓷转接块与柔性电路板的装配示意图;
图8为根据一些实施例的一种光模块中陶瓷转接块与柔性电路板的装配示意图;
图9为根据一些实施例的一种光模块中陶瓷转接块与柔性电路板的分解示意图;
图10为根据一些实施例的一种光模块中陶瓷转接块的结构示意图;
图11为根据一些实施例的一种光模块中陶瓷转接块的另一角度结构示意图;
图12为根据一些实施例的一种光模块中陶瓷转接块的局部结构示意图;
图13为根据一些实施例的一种光接收组件的立体图;
图14为根据一些实施例的一种光接收组件拆除光接收上盖的结构示意图;
图15为根据一些实施例的一种光接收组件的剖视图;
图16为根据一些实施例的一种被配置为包括4种波长(β1、β2、β3和β4)光束分束的DeMUX工作原理图;
图17为根据一些实施例的一种光接收组件的光路结构示意图;
图18为根据一些实施例的一种光接收组件的分解示意图;
图19为根据一些实施例的一种基板组件的使用状态结构示意图一;
图20为根据一些实施例的一种基板组件的使用状态结构示意图二;
图21为根据一些实施例的另一种光接收组件的剖视图;
图22为根据一些实施例的一种电连接器的结构示意图;
图23为根据一些实施例的一种光接收腔体的分解示意图;
图24为根据一些实施例的一种光接收上盖的结构示意图一;
图25为根据一些实施例的一种光接收上盖的结构示意图二;
图26为根据一些实施例的一种光接收腔体的剖视图;
图27为根据一些实施例的另一种光接收上盖的结构示意图;
图28为根据一些实施例的另一种光接收上盖的剖视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅被配置为描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立 信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要被配置为实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信***的连接关系图。如图1所示,光通信***主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信***中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网 络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200***光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200***笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3和图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板206、光发射组件207与光接收组件208。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板206的金手指从电口204伸出,***上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200的内部。
采用上壳体201、下壳体202结合的装配方式,便于将电路板206等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板206等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200***上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与 上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板206包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板206一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以***上位机笼子中的电连接器中。
电路板206还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板206***笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板206一侧的表面(例如图4所示的上表面),也可以设置在电路板206上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
图5为根据一些实施例的一种光模块中光发射组件、柔性电路板的装配示意图,图6为根据一些实施例的一种光模块中光发射组件的分解示意图。如图5、图6所示,本公开实施例提供的光发射组件207包括壳体与陶瓷转接块430A,壳体包括盖板410A与管壳420A,盖板410A盖合于管壳420A上;管壳420A朝向电路板206的一侧设置有开口,陶瓷转接块430A的一侧通过该开口***管壳420A内、另一侧露在管壳420A外侧,使得盖板410A、管壳420A与陶瓷转接块430A组装形成气密壳体。
光发射组件207包括激光器组件440A、透镜阵列450A、波分复用组件与透镜组件,激光器组件440A、透镜阵列450A、波分复用组件与透镜组件等器件均置于盖板410A、管壳420A与陶瓷转接块430A组成的气密壳体内,且激光器组件440A、透镜阵列450A、波分复用组件与透镜组件等器件沿光发射方向依次设置。激光器组件被配置为发射多种不同波长的光束,不同波长的光束经透镜阵列450A、波分复用组件、透镜组件等光学器件实现合光,合光后的复合光束通过光纤适配器传输至外部光纤中,以实现光束的发射。
在本公开的某一些实施例中,激光器组件440A包括多个激光器,多个激光器均靠近陶瓷转接块430A设置,且每个激光器通过金线与陶瓷转接块430A连接。陶瓷转接块430A位于气密壳体的一端设置有焊盘,激光器通过金线与焊盘连接,以实现气密壳体内激光器组件440A与陶瓷转接块430A的电连接。
在本公开实施例中,激光器组件440A包括8个激光器,8个激光器沿着气密壳体的前后方向依次设置,且8个激光器发射8束不同波长的激光光束,8束不同波长的激光光束经透镜阵列450A、波分复用组件、透镜组件等光学器件实现合光,得到一束复合光束,合光后的复合光束通过光纤适配器传输至外部光纤中。
透镜阵列450A包括8个准直透镜,每个准直透镜与每个激光器对应设置,位于激光器 的光出射方向上,如此激光器发射的激光光束通过准直透镜转换成准直光束,准直光束射入波分复用组件进行合光。
波分复用组件包括第一波分复用器460与第二波分复用器470,第一波分复用器460与4个激光器、4个准直透镜对应设置,4个激光器发射的4束不同波长的激光光束经由准直透镜射入第一波分复用器460;第二波分复用器470与另外4个激光器、4个准直透镜对应设置,另外4个激光器发射的4束不同波长的激光光束经由准直透镜射入第二波分复用器470。
第一波分复用器460右侧包括四个被配置为入射多种波长光束的入光口,左侧包括一个被配置为出射光的出光口,每一入光口被配置为入射一种波长的光束。在本公开的某一些实施例中,多种不同波长的光束经由相应的入光口进入第一波分复用器460,一束光束经第一波分复用器460的六个不同位置进行了六次不同的反射到达出光口,一束光束经第一波分复用器460的四个不同位置进行了四次不同的反射到达出光口,一束光束经第一波分复用器460的两个不同位置进行了两次不同的反射到达出光口,一束光束入射至第一波分复用器460后直接传输到达出光口。如此,通过第一波分复用器460实现了不同波长的光束经不同入光口进入第一波分复用器460、经同一出光口输出,进而实现了不同波长光束的合束。在本公开实施例中,第一波分复用器460不限于包括4中波长光束的合束,可根据实际需要选择。
透镜组件包括第一透镜组件480与第二透镜组件490,第一透镜组件480设置于第一波分复用器460的出光方向上,第二透镜组件490设置于第二波分复用器470的出光方向上,第一波分复用器460射出的第一复合光束经由第一透镜组件480反射至第二透镜组件490,第二波分复用器470射出的第二复合光束射入第二透镜组件490,经由第二透镜组件490将反射的第一复合光束与第二复合光束合成为一束光束,合成后的光束射入光纤适配器中发射出去。
图7为根据一些实施例的一种光模块中激光器组件、陶瓷转接块与柔性电路板的装配示意图。如图7所示,陶瓷转接块430A位于气密壳体内的一端通过金线与激光器组件440A的各个激光器连接,陶瓷转接块430A位于气密壳体外的一端通过柔性电路板与电路板206连接,通过柔性电路板、陶瓷转接块430A将电路板206产生的电信号、工作信号等转接至各个激光器,以驱动各个激光器发射不同波长的激光光束。
为了通过陶瓷转接块430A实现壳体内与壳体外的电连接,陶瓷转接块430A上镀有金属层,陶瓷转接块430A位于壳体内侧的金属层上设置有信号焊盘与接地焊盘,陶瓷转接块430A位于壳体外侧的金属层上同样设置有信号焊盘与接地焊盘,陶瓷转接块430A内、外侧的信号焊盘相连接,以实现陶瓷转接块430A内、外侧的电连接,从而通过陶瓷转接块430A实现电信号、工作信号等的转接。
图8为根据一些实施例的一种光模块中陶瓷转接块与柔性电路板的装配示意图,图9为根据一些实施例的一种光模块中陶瓷转接块与柔性电路板的分解示意图。陶瓷转接块430A朝向电路板206的一端(位于气密壳体外的一端)设置有凸台4310,该凸台4310与陶瓷转接块430A一体设置,且该凸台4310与柔性电路板连接,通过柔性电路板将电路板206的信号传送至陶瓷转接块430A,陶瓷转接块430A再将信号转接至激光器组件440A,实现激光器 组件440A中激光器等的正常工作。
陶瓷转接块430A***气密壳体的一侧设置有多个安装槽4320,多个安装槽4320成阶梯状设置,且每个安装槽4320上均设置有焊盘,激光器组件440A的激光驱动器、激光器等分别通过金线与安装槽4320上的焊盘连接,以实现信号的转接。
陶瓷转接块430A一侧的凸台4310可通过两个柔性电路板与电路板206连接,即凸台4310的上侧面与第一柔性电路板600A连接,凸台4310的下侧面与第二柔性电路板700连接,以实现各种信号的传递。
为了实现陶瓷转接块430A与柔性电路板的连接,凸台4310的侧面上并排设置有信号焊盘与接地焊盘,柔性电路板的一端相应设置有FPC信号焊盘与FPC接地焊盘,陶瓷转接块430A上的信号焊盘与柔性电路板上相应的FPC信号焊盘通过焊锡连接,陶瓷转接块430A上的接地焊盘与柔性电路板上相应的PC接地焊盘通过焊锡连接,从而实现了柔性电路板与陶瓷转接块430A的连接固定。
在本公开实施例中,凸台4310前后方向的长度尺寸与陶瓷转接块430A前后方向的长度尺寸一致,以在凸台4310的侧面上留有足够的空间设置信号焊盘与接地焊盘,保证陶瓷转接块430A与柔性电路板之间信号传输的完整性。还有,凸台4310的上侧面距陶瓷转接块430A的上侧面具有一定的距离,凸台4310的下侧面距陶瓷转接块430A的下侧面同样具有一定的距离,以方便凸台4310的上、下侧面与柔性电路板焊接。
图10为根据一些实施例的一种光模块中陶瓷转接块的结构示意图,图11为根据一些实施例的一种光模块中陶瓷转接块的另一角度结构示意图,图12为根据一些实施例的一种光模块中陶瓷转接块的局部结构示意图。如图10、图11、图12所示,高速产品中,高速信号的传输模式为GND-Signal-GND模式,因此陶瓷转接块430A与柔性电路板互联的焊盘模式为GSG模式,即陶瓷转接块430A的凸台4310侧面设置的信号焊盘、接地焊盘结构为第一接地焊盘4311、信号焊盘4312与第二接地焊盘4313,信号焊盘4312设置在第一接地焊盘4311与第二接地焊盘4313之间。
凸台4310上的第一接地焊盘4311、信号焊盘4312、第二接地焊盘4313与柔性电路板上的焊盘连接时,需要通过焊锡连接,焊盘的宽度要保证一定大小才能充分焊接成功,这样势必会导致凸台4310上的第一接地焊盘4311、信号焊盘4312、第二接地焊盘4313与柔性电路板上的焊盘焊接处存在阻抗不连续点,信号质量发生变化,信号完整性变差。
陶瓷转接块430A上信号焊盘、接地焊盘与柔性电路板上焊盘焊接处的阻抗与陶瓷转接块430A自身的介电常数有关,当介电常数越小时,其他参量不变,会使得阻抗变大,因此本公开可通过降低陶瓷转接块430A的介电常数来提升其阻抗,减少陶瓷转接块430A与柔性电路板焊盘焊接处的阻抗不连续点。
在本公开实施例中,为了提高信号质量,减少阻抗不连续点,使高频性能更佳完善,在凸台4310的信号焊盘与接地焊盘之间设置有隔离槽,该隔离槽凹陷于信号焊盘与接地焊盘。通过在凸台4310上设置隔离槽来减小陶瓷转接块430A的介电常数,隔离槽内没有导电介质,通过隔离槽较低的介电常数来降低隔离槽周围介质的介电常数,从而可提升隔离槽周围信号 焊盘与接地焊盘的阻抗。
在本公开的某一些实施例中,第一接地焊盘4311与信号焊盘4312之间设置有第一隔离槽4314,信号焊盘4312与第二接地焊盘4313之间设置有第二隔离槽4315,第一隔离槽4314与第二隔离槽4315均凹陷于第一接地焊盘4311、信号焊盘4312与第二接地焊盘4313,由凸台4310的左侧面向右侧面方向延伸。
在凸台4310的第一接地焊盘4311与信号焊盘4312之间设置第一隔离槽4314,在信号焊盘4312与第二接地焊盘4313之间设置第二隔离槽4315时,第一隔离槽4314与第二隔离槽4315由陶瓷转接块430A的外壁沿左右方向延伸至凸台4310朝向电路板206的侧面,即第一隔离槽4314、第二隔离槽4315左右方向的长度尺寸与凸台4310上信号焊盘、接地焊盘左右方向的长度尺寸一致。
另外,在凸台4310的第一接地焊盘4311与信号焊盘4312之间设置第一隔离槽4314,在信号焊盘4312与第二接地焊盘4313之间设置第二隔离槽4315时,第一隔离槽4314由第一接地焊盘4311的前侧面向信号焊盘4312的后侧面方向延伸,第二隔离槽4315由信号焊盘4312的前侧面向第二接地焊盘4313的后侧面方向延伸,即第一隔离槽4314前后方向的宽度尺寸可等于第一接地焊盘4311与信号焊盘4312之间的间距,第二隔离槽4315前后方向的宽度尺寸可等于信号焊盘4312与第二接地焊盘4313之间的间距。
在本公开实施例中,第一隔离槽4314前后方向的宽度尺寸也可小于第一接地焊盘4311与信号焊盘4312之间的间距,第二隔离槽4315前后方向的宽度尺寸也可小于信号焊盘4312与第二接地焊盘4313之间的间距。只要陶瓷转接块430A的凸台4310在信号焊盘与接地焊盘之间设置有隔离槽即可,本公开对隔离槽的尺寸限制可根据实际情况进行设置。
在本公开实施例中,可只在凸台4310一侧的信号焊盘与接地焊盘之间设置隔离槽,设置有隔离槽的一侧传输高速信号,未设置隔离槽的一侧传输低速信号。如在凸台4310上侧面的信号焊盘与接地焊盘之间设置隔离槽;也可在凸台4310相对的两侧的信号焊盘与接地焊盘之间均设置隔离槽,即凸台4310的上侧面设置有第一接地焊盘4311、第一信号焊盘与第二接地焊盘4313,第一信号焊盘设置在第一接地焊盘4311与第二接地焊盘之间4313,第一柔性电路板600A上的焊盘与凸台4310上侧面的第一接地焊盘4311、第一信号焊盘、第二接地焊盘4313通过焊锡焊接在一起,以将第一柔性电路板600A连接至凸台4310的上侧面。
凸台4310的下侧面设置有第三接地焊盘、第二信号焊盘与第四接地焊盘,第二信号焊盘设置在第三接地焊盘与第四接地焊盘之间,第二柔性电路板700上的焊盘与凸台4310下侧面的第三接地焊盘、第二信号焊盘、第四接地焊盘通过焊锡焊接在一起,以将第二柔性电路板700连接至凸台4310的下侧面。
凸台4310的上侧面上,第一接地焊盘4311与第一信号焊盘之间设置有第一隔离槽4314,第一信号焊盘与第二接地焊盘4313之间设置有第二隔离槽4315;凸台4310的下侧面上,第三接地焊盘与第二信号焊盘之间设置有第三隔离槽,第二信号焊盘与第四接地焊盘之间设置有第四隔离槽。
在本公开实施例中,柔性电路板与陶瓷转接块430A连接时,柔性电路板覆盖陶瓷转接 块430A上设置的隔离槽。即陶瓷转接块430A的凸台4310上侧面设置第一隔离槽4314与第二隔离槽4315时,柔性电路板与陶瓷转接块430A的凸台4310焊接时,柔性电路板覆盖凸台4310上的第一接地焊盘4311、第一隔离槽4314、信号焊盘4312、第二隔离槽4315与第二接地焊盘4313。
通过在凸台4310上下侧面上分别设置第一隔离槽4314、第二隔离槽4315、第三隔离槽与第四隔离,槽降低了陶瓷转接块430A的介电常数,从而提升了陶瓷转接块430A上接地焊盘、信号焊盘与柔性电路板焊盘连接处的阻抗,减少了陶瓷转接块430A与柔性电路板焊盘焊接处的阻抗不连续点。由此,既能节省空间,又能保证焊盘的宽度,可以确保工艺焊接稳定,最重要的是可以大幅提升信号质量,从而保证了信号传输的完整性。
本公开实施例提供的光模块包括电路板、光发射组件与柔性电路板,光发射组件包括壳体及镀有金属层的陶瓷转接块,壳体的一侧设有开口,陶瓷转接块的一侧通过开口***壳体内、另一侧露在壳体外侧,且壳体与陶瓷转接块组成气密壳体,以将光发射组件的激光器组件、透镜阵列、波分复用组件与透镜组件等光器件置于该气密壳体内进行气密封装;陶瓷转接块位于气密壳体内的一端通过金线与激光器组件连接,位于气密壳体外的一端设置有凸台,凸台侧面的金属层上并排设置有信号焊盘与接地焊盘,柔性电路板的一端通过凸台上的信号焊盘、接地焊盘与陶瓷转接块连接,另一端与电路板连接,通过柔性电路板、陶瓷转接块将电路板上产生的工作信号转接至激光器组件,以驱动激光器组件产生激光光束,实现光的发射;陶瓷转接块的凸台侧面上的信号焊盘与接地焊盘之间设置有隔离槽,隔离槽凹陷于信号焊盘与接地焊盘,隔离槽内没有导电介质,使得隔离槽的介电常数较低,通过隔离槽较低的介电常数来降低隔离槽周围介质的介电常数,提升了隔离槽周围信号焊盘与接地焊盘的阻抗,减少了陶瓷转接块上信号焊盘、接地焊盘与柔性电路板焊盘焊接处的阻抗不连续点,从而提升了陶瓷转接块与柔性电路板之间信号传输的质量,保证了信号传输的完整性。另外,隔离槽设置在陶瓷转接块露在壳体外侧的金属层上,不影响光发射组件的气密封装。
本公开实施例中,光接收组件包括光接收腔体,光接收腔体被配置为容纳被配置为传输、接收信号光的器件或组件。图13为根据一些实施例的一种光接收组件的立体图。如图13所示,本公开实施例提供的光接收组件208的光接收腔体包括光接收下壳081和光接收上盖082,光接收上盖082盖合连接光光接收下壳081形成光接收腔体,被配置为待接收光传输以及光接收的器件设置在光接收腔体内。光接收下壳081和光接收上盖082可采用金属材料结构件,如压铸、铣削加工的金属件。当然在本公开一些实施例,光接收腔体的结构不局限于图13中光接收下壳081和光接收上盖082组成的机构,还可以根据需要是其他结构形式的光接收腔体结构。
在本公开一些实施例中,光接收下壳081包括底板以及围绕在底板四周的侧板,光接收下壳081的底板与侧板形成容纳腔,容纳腔被配置为容纳、承载被配置为光接收的器件。侧板的顶部设置第一连接面,第一连接面被配置为支撑连接光接收上盖082。
图14为根据一些实施例的一种光接收组件拆除光接收上盖的结构示意图;图15为根据一些实施例的一种光接收组件的剖视图。如图13-15所示,光接收下壳081的一端设置光纤 适配器组件300、另一端设置电连接器400;光纤适配器组件300的自由端位于光口,被配置为传输来自光模块外部的信号光;电连接器400被配置为实现光接收组件208与电路板206的电连接;来自光模块外部的信号光通过光纤适配器组件300传输至光接收腔体内,经光接收腔体内光传输以及光接收的器件传输和转化、最终转化为电信号经电连接器400传输至电路板206。在本公开的某一些实施例中,电连接器400通过柔性电路板电连接电路板206。
在本公开一些实施例中,光接收下壳081的一端开设入光孔083,通过入光孔083连通光纤适配器组件300和光接收腔体的内腔;光接收下壳081的另一端设置开口084,电连接器400嵌设在开口084内。电连接器400的一侧被配置为电连接光接收腔体内的电学器件、另一侧被配置为电连接电路板206,通过电连接器400实现电路板206到光接收组件208电连接转接。通常电连接器400通过打线电连接光接收腔体内的电学器件。
在一些实施例中,光纤适配器组件300包括光纤适配器和适配器连接件等,适配器连接件的一端光纤适配器、另一端连接光接收下壳081的入光孔083;光纤适配器的内部设置光纤插芯,光纤适配器被配置为与光模块外部光纤对接;适配器连接件被配置为光纤适配器连接光接收下壳081,适配器连接件中可设置透镜等光器件。
在一些实施例中,入光孔083内设置平面光窗,平面光窗可被配置为入光孔083,在一定程度便于实现光接收腔体的密封。平面光窗倾斜设置在入光孔083内,或平面光窗与入光孔083中轴线不垂直,倾斜设置的平面光窗被配置为防止传输至光接收腔体内的信号光原路返回至光纤适配器组件300中,避免光接收腔体内反射回的信号光污染光模块外部传输至光纤适配器组件300的信号光。
本公开实施例提供的光接收组件208的光接收腔体内通常设置有隔离器、透镜、光接收芯片、跨阻放大器等器件。在本公开一些实施例中,光接收组件208的光接收腔体内设置多个光接收芯片,被配置为接收多种波长的信号光;如光接收腔体内设置2个光接收芯片、4个光接收芯片、8个光接收芯片等。当光接收腔体内设置多个光接收芯片时,光接收组件208被配置为接收多种不同波长的信号光,来自光模块外部的包括多种不同波长的信号光通过光纤适配器传输至光接收腔体内,经光接收腔体内不同透镜等光学器件的反射、折射实现按波长分束,按波长分束后的信号光最后传输至对应光接收芯片的光敏面,光接收芯片通过其光敏面接收信号光,光接收芯片接收信号光将光信号转换为电信号。图14和15中所示的光收次模块208的光接收腔体内设置4个光接收芯片,被配置为接收4种不同波长的信号光,但本公开实施例提供的光模块中不局限于接收4种不同波长的信号光。在本公开实施例中,光接收芯片为PD(光电探测器),如APD(雪崩二极管)、PIN-PD(光电二极管)等,被配置为将接收到的信号光转换为光电流。
如图15所示,本公开实施例提供的光接收组件208中包括光接收件810,光接收件810设置在光接收腔体内,光接收件810包括多个光接收芯片。光接收件810还包括金属化陶瓷基板,金属化陶瓷基板的表面形成电路图案,光接收芯片设置在金属化陶瓷基板的表面,电连接金属化陶瓷基板上的电路,光接收芯片通过金属化陶瓷基板电连接电连接器400。
光接收件810设置在光接收下壳081内靠近电连接器400处,光接收件810的侧边设置 跨阻放大器820;光接收件810电连接跨阻放大器820,如光接收件810打线连接跨阻放大器820;跨阻放大器820电连接电连接器400。在一些实施例中,为便于跨阻放大器820电连接电连接器400,跨阻放大器820较光接收件810更靠近电连接器400,如图14和15所示的方向,跨阻放大器820设置在光接收件810的右侧,跨阻放大器820位于光接收件810和电连接器400之间。在本公开的某一些实施例中,光接收件810打线连接跨阻放大器820,为便于控制光接收件810与跨阻放大器820之间打线连接的长度,跨阻放大器820靠近光接收件810。
在本公开一些实施例中,光接收组件208还包括解波分复用组件(DeMUX)830,解波分复用组件830设置在光接收腔体内,解波分复用组件830被配置为根据信号光波长的不同进行信号光分束。具体的:包括多种波长的一束信号光进入解波分复用组件830,不同波长的信号光在解波分复用组件830内经过不同次反射从而实现不同波长的信号光的分束。图16为根据一些实施例的一种被配置为包括4种波长(β1、β2、β3和β4)光束分束的DeMUX工作原理图;其中,DeMUX右侧包括一个被配置为入射多种波长信号光的入光口,左侧包括多个被配置为出射光的出光口,每一出光口被配置为出射一种波长的信号光。如图16所示,信号光通过DeMUX的入射光口进入DeMUX,β1信号光经过DeMUX的六个不同位置进行了六次不同的反射到达其出光口;β2信号光经过DeMUX的四个不同位置进行了四次不同的反射到达其出光口;β3信号光经过DeMUX的二个不同位置进行了二次不同的反射到达其出光口;β4信号光入射至DeMUX后直接传输到达至其出光口。如此,通过DeMUX实现不同波长的信号光经同一入光口进入DeMUX、经不同的出光口输出,进而实现不同波长信号光的分束。
在一些实施例中,如图14和15所示,光接收组件208还包括反射棱镜840,反射棱镜840可被配置为改变信号光的传输方向。反射棱镜840设置在光接收件810的上方,其中反射棱镜840的发射面覆盖在光接收件810中光接收芯片,经解波分复用组件830分束的信号光入射至反射棱镜840,入射至反射棱镜840的信号光平行于光接收芯片的光敏面,反射棱镜840的反射面将平行于光接收芯片光敏面光的方向反射为垂直于光接收芯片的光敏面,以便于光接收芯片能够顺利接收信号光。
如图14和15所示,光接收组件208还包括隔离器850,隔离器850设置在光接收腔体内且靠近入光孔的位置,通过光纤适配器组件300进入光接收腔体内的信号光透过隔离器850,同时隔离器850防止再次反射传输至隔离器850的信号光通过,避免待接收信号光传输过程中遭受被反射比分信号光的污染,以便于保证待接收信号光的质量。
如图14和15所示,光接收组件208还包括聚焦透镜870,聚焦透镜870设置在光接收腔体内且设置位置靠近解波分复用组件830的入光口,经聚焦透镜870聚焦后的信号光传输至解波分复用组件830的入光口,如此便于保证信号光到解波分复用组件830的耦合效率。
如图14和15所示,光接收组件208还包括透镜组880,透镜组880设置在光接收腔体内且位于解波分复用组件830和反射棱镜840之间,透镜组880被配置为将解波分复用组件830分束后的信号光对应汇聚传输至反射棱镜840。透镜组880可以采用多个透镜并排排列的 结构形式,每个透镜对应解波分复用组件830的一个出光口,即每个透镜对应聚焦传输一种波长的信号光;或者,透镜组880可以采用一个透镜本体上设置若干凸起,凸起设置于解波分复用组件830的出光口,凸起被配置为汇聚光束,即每个凸起对应聚焦传输一种波长的信号光。
在本公开的某一些实施例中,如图14和15所示,为满足光模块在40Km或80Km等长距离传输场景中灵敏度要求,本公开实施例提供的光接收组件208还包括光放大组件500,光放大组件500设置在光接收腔体内靠近入光孔083的位置,光放大组件500被配置为进行传输至光接收腔体内信号光的放大,经过光放大组件500放大后的信号光再传输至解波分复用组件830。
在本公开一些实施例中,光放大组件500设置在隔离器850和聚焦透镜870之间,透过隔离器850的信号光传输至光放大组件500,经光放大组件500放大后的信号光传输至聚焦透镜870。
在本公开一些实施例中,光接收组件208还包括准直透镜860,准直透镜860设置在隔离器850和光放大组件500之间,透过隔离器850的信号光传输至准直透镜860,经准直透镜860准传输至光放大组件500。
在本公开的某一些实施例中,在本公开实施例中,光放大组件500包括SOA(Semiconductor Optical Amplifier,半导体光放大器),SOA设置在准直透镜860到聚焦透镜870的光轴上。SOA根据其上施加驱动电流的大小进行信号光放大增益,当SOA上施加电流不同时,对信号光的放大增益不同,因此可通过控制SOA上施加驱动电流的大小进行SOA放大增益倍数的控制以及调整。
图17为根据一些实施例的一种光接收组件208的光路结构示意图,图17中箭头展示出了来自光模块外部信号光在光接收组件208中的传输路径。如图17所示,来自光模块外部的多波长信号光通过光纤适配器组件300中传输至隔离器850,透过隔离器850的信号光传输至准直透镜860,经准直透镜860准直后的信号光传输至光放大组件500,经光放大组件500放大后的信号光传输至聚焦透镜870,经聚焦透镜870汇聚后的信号光传输至解波分复用组件830,传输至解波分复用组件830信号根据光波长被分束为四束信号光,四束信号光传输至透镜组880,四束信号光分别被汇聚传输至反射棱镜840,最后被反射棱镜840改变传输方向的传输至光接收件810(被反射棱镜840遮挡)中光接收芯片的光敏面。
为便于光接收件810、跨阻放大器820、解波分复用组件830、反射棱镜840等在光接收下壳081中的设置,本公开实施例提供的光接收组件208还包括基板组件,光接收件810、跨阻放大器820、解波分复用组件830、反射棱镜840等设置在基板组件上,基板组件设置在光接收下壳081的底板上。在进行光接收组件208装配时,先将光接收件810、跨阻放大器820、解波分复用组件830、反射棱镜840等装配置基板组件上,然后将基板组件装配置光接收下壳081的底板上。基板组件除了方便光接收件810、跨阻放大器820、解波分复用组件830、反射棱镜840等在光接收下壳081中的安装,还便于调整光接收件810、跨阻放大器820、解波分复用组件830、反射棱镜840等的相对高度,进而保证待接收信号光传输方向和 耦合效率。
图18为根据一些实施例的一种光接收组件的分解示意图。如图18所示,本公开实施例提供的光接收组件还包括基板组件600,光接收件810、跨阻放大器820、解波分复用组件830、反射棱镜840、透镜组880等设置在基板组件600的上方。
图19为根据一些实施例的一种基板组件的使用状态结构示意图一。结合图18和19,在本公开一些实施例中,基板组件600包括第一基板610和第二基板620,第二基板620设置在第一基板610的上方,第二基板620的尺寸小于第一基板610的尺寸,进而第一基板610被配置为承载第二基板620。光接收件810、跨阻放大器820和反射棱镜840设置在第一基板610上。解波分复用组件830和透镜组880设置在第二基板620上;一方面,第二基板620被配置为承载解波分复用组件830和透镜组880,另一方面,第二基板620便于在光路耦合过程中便于调整光路,保证待接收光路的耦合效率。
在本公开一些实施例中,第一基板610设置在光接收下壳081的底板上,即第一基板610连接光接收下壳081的底板。为便于第一基板610在光接收下壳081上的装配,如图19所示方向,第一基板610长度方向的底边设置第一缺角617和第二缺角618,第一缺角617设置在第一基板610底部的一侧,第二缺角618设置在第一基板610底部的另一侧,第一缺角617和第二缺角618被配置为第一基板610底部避让光接收下壳081的侧壁,便于第一基板610的装配。
在本公开一些实施例中,如图19所示,为便于装配反射棱镜840以及防止装配反射棱镜840干扰光接收件810等结构的装配,第一基板610上设置还设置第一支撑块841和第二支撑块842;第一支撑块841设置在光接收件810的一端,第二支撑块842设置在光接收件810的另一端,第一支撑块841支撑反射棱镜840的一端、第二支撑块842支撑反射棱镜840的另一端,进而第一支撑块841和第二支撑块842被配置为抬高反射棱镜840,使反射棱镜840位于光接收件810的上方以及位于待接收光的光路上。反射棱镜840可用胶水固定在第一支撑块841和第二支撑块842上,如通过点胶将反射棱镜840固定设置在第一支撑块841和第二支撑块842上,因此通过第一支撑块841和第二支撑块842支撑反射棱镜840,可方便固定反射棱镜840以及有效避免点胶污染到光接收件810等器件。在本公开一些实施例中,第一支撑块841和第二支撑块842可采用塑料、玻璃等绝缘材质的方形柱。
在本公开一些实施例中,隔离器850、光放大组件500等也可设置在第一基板610或第二基板620上,以便于隔离器850、光放大组件500等的装配以及光路耦合。
在本公开一些实施例中,第二基板620、光接收件810、跨阻放大器820等通过贴片方式固定连接第一基板610,为保证第二基板620、光接收件810、跨阻放大器820等在第一基板610上的贴片固定精度,第一基板610的表面设置标记点611,标记点611被配置为第一基板610高精度贴片的视觉识别。在本公开的某一些实施例中,标记点611可为O型、L型或+型等形状的标记点;图19中标记点611采用的是O型形状的标记点。标记点611可通过印刷设置在第一基板610上;标记点设置在第一基板610顶面的边缘。
在本公开的某一些实施例中,在本公开一些实施例中,基板组件600还包括第三基板630, 隔离器850、光放大组件500、准直透镜860、聚焦透镜870等设置在第三基板630上,将隔离器850和光放大组件500等与解波分复用组件830等设置在不同的基板上,可以便于调整各器件的相对高度,进而更加便于光路耦合调整以保证光路耦合效率。
光放大组件500中SOA在工作过程时,当将SOA的光放大增益稳定在某个固定值时,需要给SOA施加稳定驱动电流;同时,因为SOA易受温度影响,在同样的驱动电流下,不同温度,SOA的光放大增益不一样,因此为确定SOA的光放大增益需要将SOA保持在一定的温度范围,进而才能使SOA的工作性能表现更佳。因此本公开一些实施例中,光接收组件208还包括TEC(Thermo Electric Cooler,半导体致冷器),TEC被配置为SOA工作温度的稳定。
图20为根据一些实施例的一种基板组件的使用状态结构示意图二。如图20和21所示,在本公开一些实施例中,光接收组件208还包括TEC890,隔离器850、光放大组件500、准直透镜860、聚焦透镜870设置在第三基板630上,第三基板630设置在TEC890上。然后通过将TEC890固定在光接收下壳081的底板上以将隔离器850、光放大组件500、准直透镜860和聚焦透镜870设置在光接收腔体内。隔离器850、光放大组件500、准直透镜860和聚焦透镜870通过共同的基板设置在TEC890上,使在第三基板630在温度变化而产生形变时对隔离器850、光放大组件500、准直透镜860和聚焦透镜870产生相同的影响,进而保证在隔离器850、准直透镜860、光放大组件500和聚焦透镜870传输光路的稳定性。
如图20所示,在本公开一些实施例中,光放大组件500包括SOA510和第四基板520,SOA510设置在第四基板520上,第四基板520的表面形成有电路图案,SOA510电连接第四基板520上的电路图案,以通过第四基板520向SOA510施加驱动电流。在本公开的一些实施例中,第四基板520采用陶瓷基板,陶瓷基板的表面形成被配置为电连接SOA510的电路图案。SOA510贴装在第四基板520上,SOA510的正极通过打线连接第四基板520上的电路。
在本公开实施例中,光放大组件500还包括温度传感器530,温度传感器530设置在SOA510的周围,被配置为实时采集SOA510的温度以便于对SOA510的温度进行控制。在本公开一些实施例中,温度传感器530设置在第四基板520上,第四基板520上设置有被配置为电连接温度传感器530的电路图案。在本公开一些实施例中,温度传感器530可为热敏电阻,热敏电阻贴装在第四基板520上,与第四基板520上的电路图案电连接。
图21为根据一些实施例的另一种光接收组件的剖视图,图21中展示出了本公开实施例提供的光接收组件的结构以及待接收光的光路结构。如图21所示,TEC890和第一基板610设置在光接收下壳081,即TEC890和第一基板610底部固定在光接收下壳081的底板上;其中,TEC890靠近光接收下壳081连接光纤适配器组件300的一端,第一基板610靠近光接收下壳081连接电连接器400的一端。TEC890的顶部设置第三基板630,第三基板630上设置隔离器850、准直透镜860、光放大组件500和聚焦透镜870;第一基板610上设置第二基板620、光接收件810、跨阻放大器820和反射棱镜840;第二基板620上设置解波分复用组件830和透镜组880。第一基板610、第二基板620和第三基板630协调承载隔离器850、 准直透镜860等器件,既满足了器件间相对安装高度的需求,同时又能便于各器件在光接收腔体内的装配。
图22为根据一些实施例的一种电连接器的结构示意图。如图21和22所示方向,电连接器400的左侧伸入光接收下壳081的腔体内、右侧位于光接收下壳081的腔体外。电连接器400包括电连接器本体410,电连接器本体410被配置为嵌设连接开口084;电连接器本体410的左侧被配置为电连接光接收下壳081腔体内的器件,电连接器本体410的右侧被配置为电连接电路板206。
在本公开一些实施例中,电连接器本体410的左侧设置第一台阶面420和第二台阶面430,第一台阶面420和第二台阶面430位于电连接器本体410左侧的不同高度,第一台阶面420和第二台阶面430的朝向光接收下壳081的顶部、形成相互错开的台阶状结构,方便电连接器400电连接光接收下壳081腔体内的器件。电连接器本体410的右侧设置向背设置的第一连接面440和第二连接面450,如第一连接面440朝向光接收下壳081的顶部、第二连接面450朝向光接收下壳081的底部;第一连接面440和第二连接面450被配置为连接电路板206,如第一连接面440和第二连接面450分别通过柔性电路板电连接电路板206。
在本公开一些实施例中,如图22所示,第一台阶面420上设置直流引脚,被配置为传输直流信号、供电,第二台阶面430上设置交流引脚、接地引脚,分别被配置为传输交流信号、接地;第一连接面440和第二连接面450上分别设置若干引脚,第一连接面440和第二连接面450的引脚被配置为电连接电路板206;且第一台阶面420上的引脚连接第一连接面440上的引脚、第二台阶面430上的引脚连接第二连接面450上的引脚。在本公开一些实施例中,第一台阶面420设置有被配置为连接负极的引脚、被配置为连接SOA510正极的引脚、被配置为连接温度传感器530正极的引脚;第二台阶面430被配置为连接光接收件810负极、跨阻放大器820负极、SOA510负极以及温度传感器530负极的接地引脚。
在本公开一些实施例中,光接收下壳081腔体内的器件通过打线连接电连接器400上相应的引脚,如跨阻放大器820打线连接电连接器400上若干引脚。在申请实施例中,光放大组件500和TEC890等的工作也需要供电,因此需要通过电连接器400为光放大组件500和TEC89等提供电连接,电连接器400被配置为向光放大组件500和TEC89等供电。但是光放大组件500和TEC89等距离电连接器400相对较远且光放大组件500、TEC890等与电连接器400之间跨越了解波分复用组件830等器件,采用打线直接连接光放大组件500、TEC890等与电连接器400上相应的引脚不易被实现,并且采用直接打线的形式光放大组件500、TEC890等与电连接器400之间的阻抗不容易被限定,因此即使可通过直接打线的方式使光放大组件500和TEC890等电连接电连接器400上相应的引脚,光放大组件500、TEC890等电学稳定性也往往很难满足需求。
为满足光放大组件500和TEC890等电连接电连接器400的需求,本公开一些实施例中采用设置电路图案的基板进行光放大组件500和TEC890等与电连接器400之间的转接,基板可直接设置在光接收下壳081的腔体内;如,基板设置在光接收下壳081的底板上或光接收腔体的其他位置,基板上设置相应金属层以形成电路图案,基板的一端电连接光放大组件 500和TEC890等,基板的另一端电连接电连接器400,进而通过基板实现光放大组件500和TEC89等到电连接器400的电连接。
通常光接收下壳081和光接收上盖082需要进行气密封装连接,光接收下壳081和光接收上盖082气密封装可采用平行缝焊技术,通过滚轴进行电阻焊将盖板合金金属熔融后实现密封。而在平行缝焊技术操作中,光接收下壳081和光接收上盖082的局部温度需要达到1400℃,如此容易在腔体内产生较大的热应力,进而将造成腔体内接收光功率下降。为保证腔体内接收光功率,本公开采用熔点相对较低的金属焊料进行封装连接光接收下壳081和光接收上盖082,熔点相对较低的金属焊料熔点在150-350℃,可以采用合金或单一金属,金属焊料可通过蒸镀或电镀等方式设置在光接收下壳081或光接收上盖082上。
为便于通过金属焊料连接光接收下壳081和光接收上盖082,本公开实施例提供了一种光接收腔体。图23为根据一些实施例的一种光接收腔体的分解示意图。如图23所示,本实例提供的光接收腔体包括光接收下壳081和光接收上盖082,光接收上盖082盖合连接光接收下壳081。
如图23所示,光接收下壳081包括底板0811和侧板0812,侧板0812围绕在底板0811的四周,底板0811和侧板0812形成容纳腔。侧板0812的顶部设置第一连接面0813,第一连接面0813被配置为支撑连接光接收上盖082。金属焊料可设置在第一连接面0813上。
图24为根据一些实施例的一种光接收上盖的结构示意图一,图25为根据一些实施例的一种光接收上盖的结构示意图二。如图24和25所示,本公开实施例提供的光接收上盖082的顶部包括顶面0821,光接收上盖082的底部包括底面0822和第二连接面0823,第二连接面0823设置在底面0822的四周,底面0822和第二连接面0823位于光接收上盖082底部的不同高度。第二连接面0823被配置为使光接收上盖082配合连接光接收下壳081的第一连接面0813。金属焊料可设置在第二连接面0823上。
在本公开一些实施例中,如图24和25所示,底面0822在光接收上盖082底部的高度大于第二连接面0823在光接收上盖082底部的高度。第二连接面0823被配置为连接第一连接面0813,底面0822位于光接收下壳081的容纳腔内。
图26为根据一些实施例的一种光接收腔体的剖视图。如图26所示,当光接收上盖082配合连接光接收下壳081时,第二连接面0823连接第一连接面0813,底面0822位于光接收下壳081的容纳腔内。
在本公开实施例中,第一连接面0813或第二连接面0823上设置金属焊料,或者第一连接面0813和第二连接面0823上设置金属焊料,将光接收上盖082配合连接光接收下壳081,使第一连接面0813和第二连接面0823配合连接,然后通过局部加热方式加热光接收上盖082或光接收下壳081,使金属焊料熔融以连接第一连接面0813和第二连接面0823,进而达到气密封装连接光接收上盖082和光接收下壳081。
在本公开一些实施例中,为便于实现光接收上盖082和光接收下壳081的气密封装连接,封装设备具有一密封舱和激光束功能,密封舱充氮气可将露点降低到-40℃以下,激光束可实现局部加热,局部温度可调,激光束可设置在密封舱内,也可设置在密封舱外。在本公开一 些实施例中,当进行光接收上盖082和光接收下壳081的气密封装连接时,先将光接收下壳081设置在密封舱内的载具台上,将带有金属焊料的光接收上盖082盖合在光接收下壳体081上且使第一连接面0813和第二连接面0823配合;利用激光束在光接收下壳081的四个角或两个角点焊预固定光接收上盖082和光接收下壳081;将激光束沿光接收上盖082四周快速扫描若干圈,使金属焊料熔融,进而将光接收上盖082和光接收下壳081气密封装连接。
在本公开一些实施例中,为便于实现光接收上盖082和光接收下壳081的气密封装连接,封装设备具有一密封舱和滚轴,密封舱充氮气可将露点降低到-40℃以下,滚轴与盖板接触,滚轴具备局部加热功能,局部温度可调。在本公开一些实施例中,当进行光接收上盖082和光接收下壳081的气密封装连接时,先将光接收下壳081设置在密封舱内的载具台上,将带有金属焊料的光接收上盖082盖合在光接收下壳体081上且使第一连接面0813和第二连接面0823配合;利用滚轴在光接收下壳081的四个角或两个角点焊预固定光接收上盖082和光接收下壳081;使滚轴沿光接收上盖082四周快速扫描若干圈,使金属焊料熔融,进而将光接收上盖082和光接收下壳081气密封装连接。
在本公开实施例中还提供了一种光接收上盖,图27为根据一些实施例的另一种光接收上盖的结构示意图。如图27所示,本公开一些实施例中,光接收上盖082的顶部还包括压持面0824,压持面0824设置在顶面0821的四周,压持面0824和顶面0821位于光接收上盖082顶部的不同高度。
在本公开一些实施例中,压持面0824在光接收上盖082顶部的高度高于顶面0821在光接收上盖082顶部的高度。如此便于光接收上盖082和光接收下壳081的气密封装连接的操作,如当使用滚轴气密封装连接光接收上盖082和光接收下壳081时,便于保证滚轴在光接收上盖082上辊压的准确性。
图28为根据一些实施例的另一种光接收上盖的剖视图。在本公开一些实施例中,如图28所示,压持面0824位于第二连接面0823的上方。在本公开的某一些实施例中,压持面0824覆盖第二连接面0823。
在本公开一些实施例中,光发射组件包括光发射腔体,光发射腔体被配置为容纳被配置为传输、发射信号光的器件或组件。光发射腔体包括光发射下壳和光发射上盖,光发射上盖盖合连接光发射下壳形成光发射腔体,被配置为将光发射的器件等设置在光接收腔体内。
在本公开一些实施例中,光发射下壳包括底板和围绕底板四周的侧板,底板和侧板形成容纳腔。侧板的顶部设置第一连接面,第一连接面被配置为支撑连接光发射上盖。
在本公开一些实施例中,光发射上盖的顶部包括顶面,光发射上盖的底部包括底面和第二连接面,第二连接面设置在底面的四周,底面和第二连接面位于光发射上盖底部的不同高度。
本公开实施例提供的光发射腔体的详细结构可参考光上述实施例中提供的光接收腔体的结构。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的 保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光模块,包括:
    电路板;
    光发射组件,包括壳体及镀有金属层的陶瓷转接块,所述壳体的一侧设有开口,所述陶瓷转接块的一侧通过所述开口***所述壳体内、另一侧露在所述壳体外侧;所述陶瓷转接块的金属层上并排设置有信号焊盘与接地焊盘,所述陶瓷转接块内、外侧的信号焊盘相连接;所述陶瓷转接块上位于所述壳体外侧的所述信号焊盘与所述接地焊盘之间设置有隔离槽,所述隔离槽凹陷于所述信号焊盘与所述接地焊盘;
    柔性电路板,一端通过所述信号焊盘、所述接地焊盘与所述陶瓷转接块连接,另一端与所述电路板连接。
  2. 根据权利要求1所述的光模块,其中,所述陶瓷转接块露在所述壳体的外侧设置有凸台,所述凸台与陶瓷转接块一体设置;所述信号焊盘与所述接地焊盘设置于所述凸台与所述陶瓷转接块连接的侧面上。
  3. 根据权利要求2所述的光模块,其中,所述信号焊盘、所述接地焊盘设置在所述凸台与所述陶瓷转接块外壁连接的一侧面上,所述信号焊盘与所述接地焊盘相邻设置;
    所述接地焊盘包括第一接地焊盘与第二接地焊盘,所述信号焊盘设置在所述第一接地焊盘与所述第二接地焊盘之间,所述第一接地焊盘与所述信号焊盘之间设置有第一隔离槽,所述信号焊盘与所述第二接地焊盘之间设置有第二隔离槽。
  4. 根据权利要求3所述的光模块,其中,所述第一隔离槽、所述第二隔离槽均由所述凸台的一侧面向另一侧面方向延伸。
  5. 根据权利要求3所述的光模块,其中,所述第一隔离槽前后方向的尺寸等于所述第一接地焊盘与所述信号焊盘之间的间距。
  6. 根据权利要求3所述的光模块,其中,所述第一隔离槽前后方向的尺寸小于所述第一接地焊盘与所述信号焊盘之间的间距。
  7. 根据权利要求3所述的光模块,其中,所述柔性电路板覆盖所述第一隔离槽与所述第二隔离槽。
  8. 根据权利要求3所述的光模块,其中,所述凸台前后方向的长度尺寸与所述陶瓷转接块前后方向的长度尺寸一致。
  9. 根据权利要求2所述的光模块,其中,所述凸台与所述陶瓷转接块相对的两侧面之间均具有一定的距离。
  10. 根据权利要求1所述的光模块,其中,所述光发射组件包括激光器组件,所述激光器组件置于所述壳体内;所述陶瓷转接块***所述壳体的一端设置有安装槽,所述安装槽上设置有焊盘,所述激光器组件通过金线与所述焊盘连接。
  11. 一种光模块,包括:电路板;
    光接收组件,与所述电路板电连接,被配置为将接收到的光信号转换为电流信号;
    其中,所述光接收组件包括:
    光接收下壳,包括底板和围绕底板四周的侧板,所述底板和所述侧板形成容纳腔,所述 侧板的顶部设置第一连接面;
    光接收上盖,底部包括底面和第二连接面,所述第二连接面设置在所述底面的四周,且所述第二连接面与所述底面位于所述光接收上盖底部不同的高度,所述第二连接面连接所述第一连接面,所述底面位于所述容纳腔内。
  12. 根据权利要求11所述的光模块,其中,所述光接收上盖的顶部包括顶面,所述顶面的四周设置压持面,所述压持面与所述顶面位于所述光接收上盖顶部不同的高度,所述压持面位于所述第二连接面的上方。
  13. 根据权利要求12所述的光模块,其中,所述压持面在所述光接收上盖顶部的高度高于所述顶面在所述光接收上盖顶部的高度。
  14. 根据权利要求11所述的光模块,其中,所述光接收组件还包括光接收件和反射棱镜,所述光接收件和所述反射棱镜设置所述容纳腔内;
    所述光接收下壳中设置第一支撑块和第二支撑块,所述第一支撑块和所述第二支撑块设置在所述光接收件的两侧,所述反射棱镜设置在所述第一支撑块和所述第二支撑块的顶部且反射棱镜位于所述光接收件的上方。
  15. 根据权利要求14所述的光模块,其中,所述光接收组件还包括解波分复用组件和透镜组,所述透镜组位于所述解波分复用组件的出光侧,所述反射棱镜位于所述透镜组远离所述解波分复用组件的一侧。
  16. 根据权利要求11所述的光模块,其中,所述侧板上设置入光孔,所述光接收组件还包括光放大组件,所述光放大组件包括半导体光放大器,所述半导体光放大器设置在所述光接收下壳内且靠近所述入光孔。
  17. 根据权利要求16所述的光模块,其中,所述光接收组件还包括TEC,所述TEC设置在所述容纳腔内,且所述光放大组件设置在所述TEC上。
  18. 根据权利要求11所述的光模块,其中,所述第一连接面与所述第二连接面通过低温金属焊料连接。
  19. 根据权利要求16所述的光模块,其中,所述侧板上设置开口,所述开口内嵌设设置电连接器,所述光接收组件通过所述电连接器电连接所述电路板;
    所述入光孔连通光纤适配器。
  20. 一种光模块,包括:电路板;
    光发射组件,与所述电路板电连接,被配置为产生光信号;
    其中,所述光发射组件包括:
    光发射下壳,包括底板和围绕底板四周的侧板,所述底板和所述侧板形成容纳腔,所述侧板的顶部设置第一连接面;
    光发射上盖,底部包括底面和第二连接面,所述第二连接面设置在所述底面的四周且所述第二连接面与所述底面位于所述光发射上盖底部不同的高度,所述第二连接面连接所述第一连接面,所述底面位于所述容纳腔内。
PCT/CN2022/082797 2021-05-26 2022-03-24 光模块 WO2022247426A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110578417.6 2021-05-26
CN202110578417.6A CN113325526A (zh) 2021-05-26 2021-05-26 一种光模块
CN202122512160.2 2021-10-19
CN202122512160.2U CN215895042U (zh) 2021-10-19 2021-10-19 一种光模块

Publications (1)

Publication Number Publication Date
WO2022247426A1 true WO2022247426A1 (zh) 2022-12-01

Family

ID=84229484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082797 WO2022247426A1 (zh) 2021-05-26 2022-03-24 光模块

Country Status (1)

Country Link
WO (1) WO2022247426A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809254A (zh) * 2012-11-08 2014-05-21 住友电气工业株式会社 装有热电控制器的发送器光学组件
CN109387909A (zh) * 2017-08-10 2019-02-26 住友电气工业株式会社 配有激光二极管的光学组件
CN110085572A (zh) * 2018-01-26 2019-08-02 住友电气工业株式会社 用于光接收器模块的封装部
JP2020017657A (ja) * 2018-07-26 2020-01-30 日本ルメンタム株式会社 光受信サブアセンブリ及び光モジュール
CN212083735U (zh) * 2020-04-26 2020-12-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN212647079U (zh) * 2020-04-26 2021-03-02 青岛海信宽带多媒体技术有限公司 一种光模块
CN113325526A (zh) * 2021-05-26 2021-08-31 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895042U (zh) * 2021-10-19 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809254A (zh) * 2012-11-08 2014-05-21 住友电气工业株式会社 装有热电控制器的发送器光学组件
CN109387909A (zh) * 2017-08-10 2019-02-26 住友电气工业株式会社 配有激光二极管的光学组件
CN110085572A (zh) * 2018-01-26 2019-08-02 住友电气工业株式会社 用于光接收器模块的封装部
JP2020017657A (ja) * 2018-07-26 2020-01-30 日本ルメンタム株式会社 光受信サブアセンブリ及び光モジュール
CN212083735U (zh) * 2020-04-26 2020-12-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN212647079U (zh) * 2020-04-26 2021-03-02 青岛海信宽带多媒体技术有限公司 一种光模块
CN113325526A (zh) * 2021-05-26 2021-08-31 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895042U (zh) * 2021-10-19 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN217085337U (zh) 一种光模块
CN218350559U (zh) 一种光模块
CN218350560U (zh) 一种光模块
CN218350561U (zh) 一种光模块
US20240241328A1 (en) Optical Module
CN114035287A (zh) 一种光模块
CN114035286A (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN114035288A (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN118284836A (zh) 一种光模块
US20230194802A1 (en) Optical module
WO2023185220A1 (zh) 一种光模块
CN215895042U (zh) 一种光模块
WO2023109210A1 (zh) 光模块
CN216310330U (zh) 一种光模块
CN216248442U (zh) 一种光模块
CN216310329U (zh) 一种光模块
CN113805290B (zh) 一种光模块
WO2022247426A1 (zh) 光模块
CN217543461U (zh) 一种光模块
WO2022206169A1 (zh) 光模块
CN220543163U (zh) 一种光模块
WO2022193933A1 (zh) 光模块
WO2023082783A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810160

Country of ref document: EP

Kind code of ref document: A1