WO2022247038A1 - 一种大容量电泵应急启动试验初始参数设计方法 - Google Patents

一种大容量电泵应急启动试验初始参数设计方法 Download PDF

Info

Publication number
WO2022247038A1
WO2022247038A1 PCT/CN2021/115627 CN2021115627W WO2022247038A1 WO 2022247038 A1 WO2022247038 A1 WO 2022247038A1 CN 2021115627 W CN2021115627 W CN 2021115627W WO 2022247038 A1 WO2022247038 A1 WO 2022247038A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric pump
test
pump
parameters
opening
Prior art date
Application number
PCT/CN2021/115627
Other languages
English (en)
French (fr)
Inventor
宋晓辉
谭详帅
辛志波
赵如宇
李昭
伍刚
高景辉
孟颖琪
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2022247038A1 publication Critical patent/WO2022247038A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations

Definitions

  • the invention belongs to the technical field of thermal power generating sets, and relates to a method for designing initial parameters of a large-capacity electric pump emergency start test.
  • the water supply system is the core component of the hydrodynamic cycle of thermal power units.
  • the electric feed water pump is used as the unit starting feed water pump or standby feed water pump.
  • drive known as a variable speed pump.
  • the unit is equipped with an electric pump with 30% to 50% of the rated capacity. When the load of the unit is greater than 40% of the rated load, the electric pump will gradually withdraw, and the steam-driven feed pump will intervene to provide power for the circulation of the working medium.
  • the electric pumps are variable-speed pumps with spoon tubes that can adjust the speed.
  • the unit is equipped with a large-capacity electric pump, which not only requires the function of starting, but also needs to consider that when the filter screen of the steam-driven feed water pump is blocked or the valve of the small machine (steam-driven feed water pump small machine) is jammed, etc., the large The capacity electric feedwater pump can realize emergency start, and the electric pump can be quickly loaded to the actual demand of the feedwater flow, so as to stabilize the load of the unit and avoid tripping.
  • the large-capacity electric pump is in a hot standby state after it is out of operation. Once the RB action of the steam pump is triggered, the electric pump can automatically start and quickly load according to the preset target.
  • the second is that the initial parameters of the large-capacity electric pump in the standby state (spoon tube opening command and recirculation opening, etc.) are set reasonably, which can achieve fast loading, the vibration of the electric pump during the cut-off time does not exceed the limit, and the electric pump cuts off The time is shorter than the main water supply cut-off delay trip time.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a method for designing initial parameters of the emergency start-up test of a large-capacity electric pump, which can shorten the time for main water supply interruption on the premise of ensuring the safe operation of the large-capacity electric pump .
  • the method for designing the initial parameters of the large-capacity electric pump emergency start test of the present invention includes the following steps:
  • the evaluation index includes the duration of the starting current of the electric pump, the maximum vibration parameter of the electric pump in the emergency start process, the incoming power supply voltage of the electric pump, and the duration of the electric pump cut-off and main water flow cut-off time;
  • step 5 it also includes: correcting the parameters in the current water supply system according to the optimal initial parameters.
  • the influencing factors of the preset initial parameters include the opening of the spoon pipe, the opening of the electric pump recirculation control valve, the delay time of the electric pump overcurrent protection, the switching status of the electric pump water supply cut-off protection, the main The input and withdrawal status of the water supply cut-off protection, the loading rate of the scoop pipe opening process, and the closing rate of the electric pump recirculation regulating valve.
  • the unified test conditions before the multi-group test include: the boiler has been ignited; the main steam pressure of the unit has risen to the steam turbine rush pressure, and the high and low pressure bypasses have been opened and adjusted; The electric feedwater pump is put into standby, and the outlet door of the electric feedwater pump is interlocked and opened; the main feedwater flow has been added to the corresponding feedwater flow under the 40% load of the boiler.
  • step 3 design six groups of experiments, wherein, the test parameters of the six groups of experiments are respectively:
  • the test parameters of the first group of experiments are: the opening of the scoop tube is 0%, the opening of the recirculation regulating valve is 100%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation regulating valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • test parameters of the second group of experiments are: the opening of the scoop tube is 0%, the opening of the recirculation regulating valve is 30%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation regulating valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • the test parameters of the third group of experiments are: the opening of the scoop tube is 20%, the opening of the recirculation regulating valve is 30%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation regulating valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • test parameters of the fourth group of experiments are: the opening of the scoop tube is 40%, the opening of the recirculation control valve is 30%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation control valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is chained to start, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • the test parameters of the fifth group of experiments are: the opening of the scoop tube is 60%, the opening of the recirculation control valve is 100%, the loading rate of the scoop tube is 2%/s-5%/s, and the closing rate of the recirculation control valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • test parameters of the sixth group of experiments are: the opening of the spoon tube is 60%, the opening of the recirculation control valve is 30%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation control valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded.
  • the starting current duration ⁇ t start of the electric pump should be as small as possible in multiple tests; the vibration parameter V xmax /V ymax of the electric pump is less than the vibration alarm value V alarm in multiple tests; the input power supply voltage U m of the electric pump The drop value is less than or equal to 20% U m ; the cut-off time ⁇ t e of the electric pump is as small as possible in multiple tests; the cut-off time of main feed water flow ⁇ t w is as small as possible in multiple tests.
  • step 5 The concrete operation of step 5) is:
  • the one with the smallest sum of the electric pump cut-off time ⁇ t e and the feed water flow cut-off time ⁇ t w is selected as the best test group, and the parameters of the best test group are taken as the best initial parameters.
  • the method for designing the initial parameters of the emergency start-up test of the large-capacity electric pump described in the present invention is in specific operation, by designing multiple groups of tests, carrying out actual tests under different initial parameters, and then selecting the best according to the evaluation index of the test results and the principle of optimization.
  • the optimal initial parameters corresponding to the test group in which the evaluation indicators include the duration of the electric pump starting current, the maximum vibration parameter of the electric pump during the emergency start process, the power supply voltage of the electric pump, the duration of the electric pump cut-off and the main feedwater flow Cut-off time, so as to effectively obtain the real and reliable initial parameters of the large-capacity electric pump in the standby state, and shorten the main water supply cut-off time under the premise of ensuring the safe operation of the large-capacity electric pump.
  • Fig. 1 is the structural representation of water supply system
  • Fig. 2 is a flowchart of Embodiment 1.
  • the large-capacity electric pump emergency start-up test initial parameter design method of the present invention comprises the following steps;
  • the influencing factors of the preset initial parameters include the opening of the spoon pipe, the opening of the electric pump recirculation control valve, the delay time of the electric pump overcurrent protection, the input and withdrawal status of the electric pump feedwater cut-off protection, the main feedwater cut-off The switching status of the protection, the loading rate of the spoon tube opening process and the closing rate of the electric pump recirculation regulating valve;
  • the unified test conditions before the multiple groups of tests include: 21) The boiler has been ignited; 22) The main steam pressure of the unit has risen to the steam turbine rush pressure, and the high and low pressure bypasses are opened and adjusted; 23) The steam-driven feed water pump is in normal operation 24) The electric feed water pump is put into standby mode, and the outlet door of the electric feed water pump is interlocked to open; 25) The main feed water flow has been added to the corresponding feed water flow under the 40% load of the boiler.
  • the test parameters of the first group of experiments are: the opening of the scoop tube is 0%, the opening of the recirculation regulating valve is 100%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation regulating valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • test parameters of the second group of experiments are: the opening of the scoop tube is 0%, the opening of the recirculation regulating valve is 30%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation regulating valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • the test parameters of the third group of experiments are: the opening of the scoop tube is 20%, the opening of the recirculation regulating valve is 30%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation regulating valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • test parameters of the fourth group of experiments are: the opening of the scoop tube is 40%, the opening of the recirculation control valve is 30%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation control valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • the test parameters of the fifth group of experiments are: the opening of the scoop tube is 60%, the opening of the recirculation control valve is 100%, the loading rate of the scoop tube is 2%/s-5%/s, and the closing rate of the recirculation control valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is started in chain, and the water supply flow rate corresponding to 40% Pe is manually loaded;
  • test parameters of the sixth group of experiments are: the opening of the spoon tube is 60%, the opening of the recirculation control valve is 30%, the loading rate of the scoop tube is 2%/s ⁇ 5%/s, and the closing rate of the recirculation control valve is 2%/s ⁇ 5%/s, the steam pump is manually switched on, the electric pump is chained to start, and the water supply flow rate corresponding to 40% Pe is manually loaded.
  • the evaluation indicators for establishing the test results include the duration of the starting current of the electric pump ⁇ t start , the maximum vibration parameter V xmax /V ymax of the electric pump during the emergency start process, the incoming power supply voltage U m of the electric pump, and the electric pump cut-off current.
  • the optimization principle of the test results in step 4) is: the electric pump starting current duration ⁇ t start is as small as possible in multiple groups of tests; the vibration parameter V xmax /V ymax of the electric pump is all less than the vibration alarm value in multiple groups of tests V alarm ; the drop value of the power supply voltage U m of the electric pump is less than or equal to 20% U m ; the cut-off time ⁇ t e of the electric pump is as small as possible in the multi-group test; the main water flow cut-off time ⁇ t w in the multi-group Smaller is better in trials.
  • step 5 The concrete operation of step 5) is:
  • test group 54 select the one with the smallest sum of electric pump cut-off time ⁇ t e and feed water flow cut-off time ⁇ t w as the best test group, and use the parameters of the best test group as the best initial parameters.
  • step 6 The specific operation process of step 6) is:
  • the present invention modifies the existing feedwater pump full stop to directly trigger the boiler MFT logic to trigger the steam pump RB action when the steam pump trips and the electric pump is in standby state and the load of the unit before the steam pump trips is in the range of 60%Pe to 80%Pe.
  • the unit is equipped with an electric feed water pump with 50% capacity as the unit start-up feed water pump or backup feed water pump.
  • the driving mode of the electric feed water pump is that the front pump is directly driven by one end of the motor, and the electric pump is driven by the motor through the hydraulic coupling through the spoon tube.
  • Each unit is equipped with a 100% capacity steam-driven water feed pump.
  • the feed water from the deaerator enters the front pump of the electric pump through the electric valve and the inlet filter in sequence.
  • the feed water enters the large-capacity electric pump after passing through the filter screen.
  • the large-capacity electric pump transmits the torque through the hydraulic coupling device, and adjusts the speed through the spoon tube.
  • the incoming power of the electric pump motor comes from the 6kV bus voltage, and the bus voltage value is represented by Um.
  • the vibration measurement points of the electric pump are also added, namely Vx and Vy, mainly monitors the safety status of the electric pump under the condition of water cut-off during operation.
  • the high-pressure feed water pressurized by the electric pump enters each column of high-pressure heaters and external steam coolers in turn through the outlet electric valve, and finally enters the header of the boiler economizer.
  • the initial parameter influencing factors of this embodiment include the opening of the electric pump spoon tube, the opening of the electric pump recirculation control valve, the switch-on and withdrawal status of the electric pump feedwater cut-off protection, the switch-on and withdrawal status of the main feedwater cut-off protection, and the opening of the spoon tube.
  • the loading rate of the process and the closing rate of the electric pump recirculation control valve, each influencing factor and parameter setting are shown in Table 1 below.
  • This embodiment is divided into several groups, and six groups of tests are preliminarily designed.
  • the six groups of tests adopt unified test conditions, specifically including: the boiler has been ignited; The temperature is 390°C, the reheat steam pressure is 1.0MPa, the temperature is 370°C, the high and low pressure bypasses are opened and adjusted; the steam feed water pump is in normal operation, and the main feed water has been switched to the main road; the electric feed water pump is put into standby, and the electric The outlet door of the feed water pump is interlocked and opened; the main feed water flow has been increased to the corresponding feed water flow under 40% load of the boiler, that is, 487t/h.
  • the evaluation indicators of the test results include: the duration of the electric pump starting current ⁇ t start , the maximum vibration parameter V xmax /V ymax of the electric pump during the emergency start process, the electric pump incoming power supply voltage U m , and the duration of the electric pump cut-off ⁇ t e And main feedwater flow cut-off time ⁇ t w .
  • the optimization principle is: the electric pump starting current duration ⁇ t start is as small as possible in multiple tests, and the vibration parameter Vxmax/Vymax of the electric pump should be less than the vibration alarm value V alarm (set in this embodiment) in multiple tests. 90 ⁇ m), the drop value of the power supply voltage Um of the electric pump is not higher than 20%Um (that is, not less than 5.04kV), the sum of the cut-off time of the electric pump and the main feedwater cut-off time ( ⁇ t e + ⁇ t w ) Smaller is better in multiple experiments.
  • the group with the smallest sum of electric pump cut-off time ⁇ t e and feed water flow cut-off time ⁇ t w is selected as the best group, and its corresponding initial parameters are the best initial parameters.
  • the fourth group is the best group, and the corresponding optimal initial parameters are: the opening of the spoon tube is 40%, the opening of the recirculation regulating valve is 30%, the loading rate of the spoon tube is 4%/s, and then The cycle valve closing rate is 4%/s.
  • ⁇ t w in the best group is 18.3s
  • the existing delay time ⁇ t current of water supply cut-off protection is 15s
  • ⁇ t w - ⁇ tw current ⁇ 5s then modify the value of ⁇ t current to ( ⁇ t w +2)s, That is 20.3s.
  • the ⁇ t e in the best group is 5.4s
  • the current delay time ⁇ te current of electric pump cut-off protection is 2s
  • ⁇ t w - ⁇ te current ⁇ 5s then modify the value of ⁇ te current to ( ⁇ t e +1)s , ie 6.4s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

一种大容量电泵应急启动试验初始参数设计方法,包括以下步骤:1)预设初始参数的影响因子;2)确立多组试验前的统一试验条件;3)设计多组试验,进行不同初始参数下的实际试验;4)确定试验结果的评价指标及寻优原则,评价指标包括电泵启动电流的持续时间、应急启动过程电泵的最大振动参数、电泵进线电源电压、电泵断流的持续时间及主给水流量断流时间;5)对多组试验的试验结果进行目标值寻优,确立最佳初始参数,完成大容量电泵应急启动试验初始参数设计。

Description

一种大容量电泵应急启动试验初始参数设计方法 技术领域
本发明属于火力发电机组技术领域,涉及一种大容量电泵应急启动试验初始参数设计方法。
背景技术
给水***是火电机组水动力循环的核心组成部分。电动给水泵作为机组启动给水泵或备用给水泵,驱动方式通常有两种,一种是由定速电机直接驱动的,称为定速电泵;另一种电动给水泵由电机通过勺管变速驱动,称为变速泵。一般机组设置30%~50%额定容量的电泵,当机组负荷大于40%额定负荷时,电泵逐步退出,由汽动给水泵介入,提供工质循环的动力。
近年来,在超临界300MW~1000MW机组中,给水***的配置中出现越来越多50%以上大容量电泵,且电泵为带勺管可调节转速的变速泵。机组配置大容量的电泵,不仅要求具备启动的功能,更多的是需要考虑当汽动给水泵滤网堵塞或者小机(汽动给水泵小机)调阀卡涩等故障发生时,大容量电动给水泵可以实现应急启动,电泵快速加载至给水流量的实际需求,稳住机组负荷,避免发生跳闸。机组快速降负荷、电泵应急启动,要做到响应迅速、调节精准,需要达到两个方面的要求。一是大容量电泵退出运行后处在热备用状态,一旦触发汽泵RB动作,电泵可自动启动,按照预设目标快速加载。二是大容量电泵在备用状态下的初始参数(勺管开度指令和再循环开度等)设置合理,能达到快速 加载、电泵在断流时间内振动不超限、电泵断流时间短于主给水断流延时跳机时间。
目前,大多专业技术人员仅仅掌握了电动给水泵的正常启动、加载及停运的特性,并不熟悉电泵的应急连锁启动、启动后快速加载至所需流量、加载的滞后时间及勺管的调节品质等,因此在实际操作中很难做到汽泵RB后锅炉不灭火、汽机不跳闸,并不能真正发挥大容量电泵应急启动的能力。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种大容量电泵应急启动试验初始参数设计方法,该方法能够在保证大容量电泵安全运行的前提下缩短主给水断流的时间。
为达到上述目的,本发明所述的大容量电泵应急启动试验初始参数设计方法包括以下步骤:
1)预设初始参数的影响因子;
2)确立多组试验前的统一试验条件;
3)设计多组试验,进行不同初始参数下的实际试验;
4)确定试验结果的评价指标及寻优原则,所述评价指标包括电泵启动电流的持续时间、应急启动过程电泵的最大振动参数、电泵进线电源电压、电泵断流的持续时间及主给水流量断流时间;
5)对多组试验的试验结果进行目标值寻优,确立最佳初始参数,完成大容量电泵应急启动试验初始参数设计。
步骤5)之后还包括:根据最佳初始参数对当前给水***中的参数 进行校正。
步骤1)中,预设初始参数的影响因子包括勺管开度、电泵再循环调节阀的开度、电泵过流保护的延时时间、电泵给水断流保护的投退状态、主给水断流保护的投退状态、勺管开启过程的加载速率以及电泵再循环调节阀的关闭速率。
多组试验前的统一试验条件包括:锅炉已点火;机组主汽压力已升至汽轮机冲转压力,高低压旁路开启配合调整;汽动给水泵在正常运行状态下,主给水已切换至主路运行;电动给水泵备用投入,电动给水泵出口门联锁打开;主给水流量已加至锅炉40%负荷下对应的给水流量。
步骤3)中,设计六组试验,其中,六组试验的试验参数分别为:
第一组试验的试验参数为:勺管开度为0%,再循环调阀开度为100%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第二组试验的试验参数为:勺管开度为0%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第三组试验的试验参数为:勺管开度为20%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第四组试验的试验参数为:勺管开度为40%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s, 汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第五组试验的试验参数为:勺管开度为60%,再循环调阀开度为100%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第六组试验的试验参数为:勺管开度为60%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量。
步骤4)中试验结果的寻优原则为:
电泵启动电流持续时间Δt start在多组试验中越小越好;电泵的振动参数V xmax/V ymax在多组试验中均小于振动报警值V alarm;电泵进线电源电压U m的下降值小于等于20%U m;电泵的断流时间Δt e在多组试验中越小越好;主给水流量断流时间Δt w在多组试验中越小越好。
步骤5)的具体操作为:
确定各组试验的评价指标数值;
排除电泵的最大振动参数V xmax/V ymax超过V alarm的试验组;
排除电泵进线电源电压U m的下降值高于20%U m的试验组;
在剩余的试验组中选择电泵断流时间Δt e与给水流量断流时间Δt w之和最小的作为最佳试验组,并将该最佳试验组的参数作为最佳初始参数。
根据最佳初始参数对当前给水***中的参数进行校正的具体操作过程为:
当最佳初始参数中的Δt w>现有给水断流保护延时时间Δt current,且Δt w-Δtw current<5s时,则修改Δt current为(Δt w+2)s,否则,则保持Δt current不变。
当最佳初始参数中的Δt e>现有电泵断流保护延时时间Δte current,且Δt w-Δte current<5s时,则修改Δte current为(Δt e+2)s,否则,则保持Δte current不变。
本发明具有以下有益效果:
本发明所述的大容量电泵应急启动试验初始参数设计方法在具体操作时,通过设计多组试验,进行不同初始参数下的实际试验,再根据试验结果的评价指标及寻优原则选取最优试验组对应的最佳初始参数,其中,评价指标包括电泵启动电流的持续时间、应急启动过程电泵的最大振动参数、电泵进线电源电压、电泵断流的持续时间及主给水流量断流时间,从而有效获取真实可靠的大容量电泵备用状态下的初始参数,在保证大容量电泵安全运行的前提下缩短主给水断流的时间。
附图说明
图1为给水***的结构示意图;
图2为实施例一的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略 了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
参考图2,本发明所述的大容量电泵应急启动试验初始参数设计方法包括以下步骤;
1)预设初始参数的影响因子;
所述预设初始参数的影响因子包括勺管开度、电泵再循环调节阀的开度、电泵过流保护的延时时间、电泵给水断流保护的投退状态、主给水断流保护的投退状态、勺管开启过程的加载速率以及电泵再循环调节阀的关闭速率;
2)确立多组试验前的统一试验条件;
所述多组试验前的统一试验条件包括:21)锅炉已点火;22)机组主汽压力已升至汽轮机冲转压力,高低压旁路开启配合调整;23)汽动给水泵在正常运行状态下,主给水已切换至主路运行;24)电动给水泵备用投入,电动给水泵出口门联锁打开;25)主给水流量已加至锅炉40%负荷下对应的给水流量。
3)设计多组试验,进行不同初始参数下的实际试验;
步骤3)中进行六组试验,进行不同初始参数下的实际试验,所述六组试验包括
第一组试验的试验参数为:勺管开度为0%,再循环调阀开度为100%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第二组试验的试验参数为:勺管开度为0%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第三组试验的试验参数为:勺管开度为20%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第四组试验的试验参数为:勺管开度为40%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第五组试验的试验参数为:勺管开度为60%,再循环调阀开度为100%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
第六组试验的试验参数为:勺管开度为60%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s, 汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量。
多组试验之间为层层递进的关系,前一组试验成功后,再进行下一组试验。另外,在试验之前,手动解除电泵给水断流跳闸保护,解除主给水断流保护。
另外,当进行某一组试验时,当发生电泵跳闸或者振动大手动打闸时,则对试验参数进行修正,再重新进行该组试验。
4)确立试验结果的评价指标及寻优原则。
步骤4)中,确立试验结果的评价指标包括电泵启动电流的持续时间Δt start、应急启动过程电泵的最大振动参数V xmax/V ymax、电泵进线电源电压U m、电泵断流的持续时间Δt e及主给水流量断流时间Δt w
步骤4)中试验结果的寻优原则为:电泵启动电流持续时间Δt start在多组试验中越小越好;电泵的振动参数V xmax/V ymax在多组试验中均小于振动报警值V alarm;电泵进线电源电压U m的下降值小于等于20%U m;电泵的断流时间Δt e在多组试验中越小越好;主给水流量断流时间Δt w在多组试验中越小越好。
5)对多组试验结果进行目标值寻优,确立最佳的初始参数;
步骤5)的具体操作为:
51)列举每组试验时的评价指标数值,并以表格形式展示;
52)排除电泵的最大振动参数V xmax/V ymax超过V alarm的试验组别;
53)排除电泵进线电源电压U m的下降值高于20%U m的试验组;
54)在剩余的试验组中选择电泵断流时间Δt e与给水流量断流时间Δt w之和最小的作为最佳试验组,并将该最佳试验组的参数作为最佳初 始参数。
6)根据实际试验及最佳初始参数下的启动特性对当前给水***中的参数进行校正。
步骤6)的具体操作过程为:
61)当最佳初始参数中的Δt w>现有的给水断流保护延时时间Δt current,且Δt w-Δtw current<5s时,则修改Δt current为(Δt w+2)s,当最佳初始参数中的Δt w<现有的给水断流保护延时时间Δt current,则保持Δt current不变。
当最佳初始参数中的Δt e>现有的电泵断流保护延时时间Δte current,且Δt w-Δte current<5s时,则修改Δte current为(Δt e+2)s,否则,则保持Δte current不变。
本发明修改现有的给水泵全停直接触发锅炉MFT逻辑为汽泵跳闸且电泵处于备用状态且汽泵跳闸前机组负荷在60%Pe~80%Pe区间时触发汽泵RB动作。
实施例一
以京能某2×350MW热电联产机组为例,参考图,,机组配置1台50%容量的电动给水泵,作为机组启动给水泵或备用给水泵。电动给水泵的驱动方式为前置泵由电动机的一端直接驱动,电泵由电机经液力耦合器通过勺管变速驱动,每台机组各配置1台100%容量汽动给水泵。
启动阶段,来自除氧器中的给水依次经过电动阀及入口滤网进入电泵前置泵,电泵前置泵由电泵电机通过固定传输比的减速箱减速后驱动,经过电泵前置泵加压后的给水经过滤网后进入大容量电泵。大容量电泵 经液耦装置传动力矩,通过勺管调节转速。电泵电机的进线电源来自6kV母线电压,母线电压值用Um表示,电泵的运行状态除了正常的转速、出口压力、电流等参数表征外,还增加了电泵振动测点,即Vx和Vy,主要监视电泵运行中出现断水工况下的安全状态。经电泵加压后的高压给水通过出口电动阀依次进入各列高压加热器和外置式蒸汽冷却器,最终进入锅炉省煤器集箱。
当机组负荷高于40%Pe(额定负荷)或汽泵具备启动条件后,冲转给水泵小汽轮机,机组给水***由电泵切换至汽泵运行,电泵处于热备用状态,出口电动阀全开。
为深度发掘大容量电泵应急启动的特性,即当机组在60%Pe~80%Pe负荷区间运行时,汽泵因故障发生跳闸,大容量电泵需要应急启动,快速加载至机组RB动作后设定的负荷对应的给水流量。
参考图2,本实施例的具体操作过程为:
1)预设初始参数的影响因子;
本实施例的初始参数影响因子包括电泵勺管开度、电泵再循环调节阀的开度、电泵给水断流保护的投退状态、主给水断流保护的投退状态、勺管开启过程的加载速率及电泵再循环调节阀的关闭速率,各影响因子及参数设定如下表1所示。
表1
Figure PCTCN2021115627-appb-000001
Figure PCTCN2021115627-appb-000002
2)确立多组试验前的统一试验条件。
本实施例分多组进行,初步设计六组试验,六组试验采用统一的试验条件,具体包括:锅炉已点火;机组主汽压力已升至汽轮机冲转压力,即主汽压力为6MPa,温度为390℃,再热汽压力为1.0MPa,温度为370℃,高低压旁路开启配合调整;汽动给水泵在正常运行状态,主给水已切换至主路运行;电动给水泵备用投入,电动给水泵出口门联锁打开;主给水流量已加至锅炉40%负荷下对应的给水流量,即487t/h。
3)设计多组试验,进行不同初始参数下的实际试验。
本实施例共设计六组试验,当影响因子的参数设定改变时,采集不同试验工况下的过程数据,试验组别的设计及内容具体如表2所示。
表2
Figure PCTCN2021115627-appb-000003
Figure PCTCN2021115627-appb-000004
4)确立试验结果的评价指标及寻优原则。
试验结果的评价指标包括:电泵启动电流的持续时间Δt start、应急启动过程电泵的最大振动参数V xmax/V ymax、电泵进线电源电压U m、电泵断流的持续时间Δt e及主给水流量断流时间Δt w
寻优原则为:电泵启动电流持续时间Δt start在多组试验中越小越好,电泵的振动参数Vxmax/Vymax在多组试验中应均小于振动报警值V alarm(本实施例设定为90μm),电泵进线电源电压Um的下降值不高于20%Um(即不低于5.04kV),电泵的断流时间与主给水断流时间之和(Δt e+Δt w)在多组试验中越小越佳。
5)对多组试验结果进行目标值寻优,确立最佳的初始参数;
具体过程为:
列举每组试验时的评价指标数值,以表格形式展示。
设按照步骤3)进行六组试验,试验过程中记录数据如表3所示;
表3
Figure PCTCN2021115627-appb-000005
Figure PCTCN2021115627-appb-000006
排除电泵的最大振动参数V xmax/V ymax超过V alarm(即振动超过90μm)的试验组别,从表3中可知第5组试验和第6组试验中电泵振动值超过报警值,故排除。
排除电泵进线电源电压Um的下降值高于20%Um(即低于5.03kV)的试验组,从表3可知6次试验过程中电泵进线电压均未低于5.03kV。
在剩余的组别中选择电泵断流时间Δt e与给水流量断流时间Δt w之和最小的组别即为最佳组别,其对应的初始参数即为最佳初始参数。
其中,第1组中,(Δt e+Δt w)=33s,第2组中,(Δt e+Δt w)=31s,第3组中,(Δt e+Δt w)=28.6s,第4组中,(Δt e+Δt w)=23.7s。
由此可知,第4组为最佳组别,对应的最佳初始参数为:勺管开度 为40%,再循环调阀开度为30%,勺管加载速率为4%/s,再循环关阀速率为4%/s。
6)根据实际试验及最佳初始参数下的启动特性修正当前给水***中的参数。
以上述六组试验的数据为例,修正的参数如下:
最佳组别中的Δt w为18.3s,现有的给水断流保护延时时间Δt current为15s,且Δt w-Δtw current<5s,则修改Δt current值为(Δt w+2)s,即20.3s。
最佳组别中的Δt e为5.4s,现有的电泵断流保护延时时间Δte current为2s,且Δt w-Δte current<5s,则修改Δte current值为(Δt e+1)s,即6.4s。
修改现有的给水泵全停触发锅炉MFT逻辑为汽泵跳闸且电泵处于备用状态且汽泵跳闸前机组负荷在60%Pe~80%Pe区间时触发汽泵RB动作。

Claims (8)

  1. 一种大容量电泵应急启动试验初始参数设计方法,其特征在于,包括以下步骤:
    1)预设初始参数的影响因子;
    2)确立多组试验前的统一试验条件;
    3)设计多组试验,进行不同初始参数下的实际试验;
    4)确定试验结果的评价指标及寻优原则,所述评价指标包括电泵启动电流的持续时间、应急启动过程电泵的最大振动参数、电泵进线电源电压、电泵断流的持续时间及主给水流量断流时间;
    5)对多组试验的试验结果进行目标值寻优,确立最佳初始参数,完成大容量电泵应急启动试验初始参数设计。
  2. 根据权利要求1所述的大容量电泵应急启动试验初始参数设计方法,其特征在于,步骤5)之后还包括:根据最佳初始参数对当前给水***中的参数进行校正。
  3. 根据权利要求1所述的大容量电泵应急启动试验初始参数设计方法,其特征在于,步骤1)中,预设初始参数的影响因子包括勺管开度、电泵再循环调节阀的开度、电泵过流保护的延时时间、电泵给水断流保护的投退状态、主给水断流保护的投退状态、勺管开启过程的加载速率以及电泵再循环调节阀的关闭速率。
  4. 根据权利要求1所述的大容量电泵应急启动试验初始参数设计方法,其特征在于,多组试验前的统一试验条件包括:锅炉已点火;机组主汽压力已升至汽轮机冲转压力,高低压旁路开启配合调整;汽动给水泵在正常运行状态下,主给水已切换至主路运行;电动给水泵备用投入,电动给水泵出口门联锁打开;主给水流量已加至锅炉40%负荷下对应的给水流 量。
  5. 根据权利要求1所述的大容量电泵应急启动试验初始参数设计方法,其特征在于,步骤3)中,设计六组试验,其中,六组试验的试验参数分别为:
    第一组试验的试验参数为:勺管开度为0%,再循环调阀开度为100%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
    第二组试验的试验参数为:勺管开度为0%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
    第三组试验的试验参数为:勺管开度为20%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
    第四组试验的试验参数为:勺管开度为40%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
    第五组试验的试验参数为:勺管开度为60%,再循环调阀开度为100%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量;
    第六组试验的试验参数为:勺管开度为60%,再循环调阀开度为30%,勺管加载速率为2%/s~5%/s,再循环调阀关阀速率为2%/s~5%/s,汽泵手动打闸,电泵连锁启动,手动加载至40%Pe对应的给水流量。
  6. 根据权利要求1所述的大容量电泵应急启动试验初始参数设计方 法,其特征在于,步骤4)中试验结果的寻优原则为:
    电泵启动电流持续时间Δt start在多组试验中越小越好;电泵的振动参数V xmax/V ymax在多组试验中均小于振动报警值V alarm;电泵进线电源电压U m的下降值小于等于20%U m;电泵的断流时间Δt e在多组试验中越小越好;主给水流量断流时间Δt w在多组试验中越小越好。
  7. 根据权利要求1所述的大容量电泵应急启动试验初始参数设计方法,其特征在于,步骤5)的具体操作为:
    确定各组试验的评价指标数值;
    排除电泵的最大振动参数V xmax/V ymax超过V alarm的试验组;
    排除电泵进线电源电压U m的下降值高于20%U m的试验组;
    在剩余的试验组中选择电泵断流时间Δt e与给水流量断流时间Δt w之和最小的作为最佳试验组,并将该最佳试验组的参数作为最佳初始参数。
  8. 根据权利要求1所述的大容量电泵应急启动试验初始参数设计方法,其特征在于,根据最佳初始参数对当前给水***中的参数进行校正的具体操作过程为:
    当最佳初始参数中的Δt w>现有给水断流保护延时时间Δt current,且Δt w-Δtw current<5s时,则修改Δt current为(Δt w+2)s,否则,则保持Δt current不变;
    当最佳初始参数中的Δt e>现有电泵断流保护延时时间Δte current,且Δt w-Δte current<5s时,则修改Δte current为(Δt e+2)s,否则,则保持Δte current不变。
PCT/CN2021/115627 2021-05-25 2021-08-31 一种大容量电泵应急启动试验初始参数设计方法 WO2022247038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110573025.0A CN113464416B (zh) 2021-05-25 2021-05-25 一种大容量电泵应急启动试验初始参数设计方法
CN202110573025.0 2021-05-25

Publications (1)

Publication Number Publication Date
WO2022247038A1 true WO2022247038A1 (zh) 2022-12-01

Family

ID=77871551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115627 WO2022247038A1 (zh) 2021-05-25 2021-08-31 一种大容量电泵应急启动试验初始参数设计方法

Country Status (2)

Country Link
CN (1) CN113464416B (zh)
WO (1) WO2022247038A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241607A (ja) * 2000-03-02 2001-09-07 Hitachi Ltd 給水ポンプバックアップ起動時の負荷制御方法
CN101430358A (zh) * 2008-12-10 2009-05-13 河南国网宝泉抽水蓄能有限公司 抽水蓄能电站首机首次水泵工况整组启动试验方法
CN101614203A (zh) * 2009-07-27 2009-12-30 广州粤能电力科技开发有限公司 一种电动给水泵自动控制的方法和***
CN110848124A (zh) * 2019-09-30 2020-02-28 国电浙能宁东发电有限公司 一种电泵汽泵自动切换控制方法、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241607A (ja) * 2000-03-02 2001-09-07 Hitachi Ltd 給水ポンプバックアップ起動時の負荷制御方法
CN101430358A (zh) * 2008-12-10 2009-05-13 河南国网宝泉抽水蓄能有限公司 抽水蓄能电站首机首次水泵工况整组启动试验方法
CN101614203A (zh) * 2009-07-27 2009-12-30 广州粤能电力科技开发有限公司 一种电动给水泵自动控制的方法和***
CN110848124A (zh) * 2019-09-30 2020-02-28 国电浙能宁东发电有限公司 一种电泵汽泵自动切换控制方法、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN PENG, LIANG XING;LIU MEI-QING;YAN HAO;WU YUAN-WEI;ZHAO WEN-SHENG;LIU ZHI-YONG: "Optimizing Configuration of Vertical Mixed-Flow Pump Start-up Parameters Based on Orthogonal Test", HUANAN LIGONG DAXUE XUEBAO - JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY, GUANGZHOU, CH, vol. 42, no. 12, 15 December 2014 (2014-12-15), CH , pages 97 - 103, XP093008753, ISSN: 1000-565X, DOI: 10.3969/j.issn.1000-565X.2014.12.015 *

Also Published As

Publication number Publication date
CN113464416B (zh) 2022-08-23
CN113464416A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN103791485B (zh) 一种火电机组给水***优化控制方法
CN102235657B (zh) 一种提高电站锅炉可靠性的控制方法
CN108665991B (zh) 一种高温气冷堆核电机组极热态启动的***和方法
CN107165686B (zh) 一种二次再热火电机组旁路控制方法和***
CN206055732U (zh) 一种新型供热机组
WO2023071254A1 (zh) 停堆瞬态不停机的运行***及方法
CN109057897A (zh) 用于火电机组fcb时的汽源切换方法
CN111102024A (zh) 一种基于锅炉跟随策略的高加rb综合控制装置及方法
CN108104888A (zh) 一种基于调频旁路的电网调频***及方法
CN112128734A (zh) 135mw燃煤汽包炉亚临界机组电动给水泵无扰切换控制方法
CN105782948A (zh) 火电机组在汽动给水泵再循环故障下的启动方法
EP2175104B1 (en) A small bypass system of a generator set and a controlling method thereof
WO2022247038A1 (zh) 一种大容量电泵应急启动试验初始参数设计方法
JP2020134054A (ja) 汽力プラントの復水給水系統及び汽力プラント復水給水系統の運転方法
CN113530625A (zh) 一种超(超)临界机组配置单台汽泵故障后快速降负荷方法
CN212716793U (zh) 汽轮机
CN110056854B (zh) 一种燃煤机组中零号高压加热器的供汽***及运行方法
CN110444302B (zh) 冷却剂装量减少事件下堆芯热工实验装置与实验方法
CN208633887U (zh) 用于火电机组的汽源***
CN204691830U (zh) 一种汽轮机旁路控制装置
CN104913287B (zh) 直流锅炉启停过程中防止过热器大量进水的控制方法
CN103471080B (zh) 提高燃机发电厂余热锅炉启动水位可靠性的方法及装置
CN208073572U (zh) 一种基于调频旁路的电网调频***
CN110821587A (zh) 一种切缸方法、装置及设备
CN113623638A (zh) 单台100%汽动给水泵可rb的锅炉除氧给水***及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942605

Country of ref document: EP

Kind code of ref document: A1