WO2022246601A1 - 声波滤波器封装结构及其制造方法、电子设备 - Google Patents

声波滤波器封装结构及其制造方法、电子设备 Download PDF

Info

Publication number
WO2022246601A1
WO2022246601A1 PCT/CN2021/095514 CN2021095514W WO2022246601A1 WO 2022246601 A1 WO2022246601 A1 WO 2022246601A1 CN 2021095514 W CN2021095514 W CN 2021095514W WO 2022246601 A1 WO2022246601 A1 WO 2022246601A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
acoustic wave
wiring
wave filter
dielectric protection
Prior art date
Application number
PCT/CN2021/095514
Other languages
English (en)
French (fr)
Inventor
陈建桦
林来存
张珊
刘国文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180088167.6A priority Critical patent/CN116711215A/zh
Priority to PCT/CN2021/095514 priority patent/WO2022246601A1/zh
Publication of WO2022246601A1 publication Critical patent/WO2022246601A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • the present application relates to the technical field of acoustic wave filtering, in particular to an acoustic wave filter packaging structure, a manufacturing method thereof, and electronic equipment.
  • FIG. 1 shows an acoustic wave filter packaging structure 1 in the related art, which includes multiple acoustic wave filters 100 , auxiliary devices 20 , a plastic sealing layer 41 , a substrate 31 and multiple third bumps 50 .
  • the substrate 31 has a first surface and a second surface opposite to each other.
  • a plurality of acoustic wave filters 100 and the auxiliary device 20 are mounted on the first surface of the substrate 31 , and the plurality of third bumps 50 are disposed on the second surface of the substrate 31 .
  • the plastic encapsulation layer 41 wraps at least the plurality of acoustic wave filters 100 and the auxiliary components 20 (such as passive components, etc.).
  • the substrate 31 is a multi-layer board.
  • the substrate 31 includes a wiring layer 31-1, a core board 31-2, and a dielectric protection layer 31-3. Redistribution layers are provided on the opposite first and second surfaces of the core board 31-2, and each redistribution layer includes at least one wiring layer 31-1, and a layer for insulating the wiring layer 31-1.
  • the dielectric protective layer 31-3 is provided on the opposite first and second surfaces of the core board 31-2, and each redistribution layer includes at least one wiring layer 31-1, and a layer for insulating the wiring layer 31-1.
  • RDL redistribution Layer
  • an embodiment of the present application provides an acoustic wave filter packaging structure, the acoustic wave filter packaging structure includes an acoustic wave filter packaging module, and the acoustic wave filter packaging module includes: a first plastic sealing layer, a plurality of an acoustic filter, a first protective layer and a redistribution layer;
  • the first plastic sealing layer at least partially wraps each of the acoustic wave filters, and the plurality of first bumps on the first surface of each of the acoustic wave filters are exposed from the first plastic sealing layer;
  • the first protective layer covers the first surface of the first plastic encapsulation layer, and a first via hole is respectively provided at a position corresponding to each of the first bumps in the first protective layer;
  • the redistribution layer is disposed on a side of the first protective layer away from the first plastic encapsulation layer, and the redistribution layer is electrically connected to each of the first bumps through the plurality of first via holes. connect.
  • the package structure of the acoustic wave filter further includes: a passive device, a second plastic sealing layer and a substrate;
  • the acoustic wave filter packaging module and the passive device are welded and fixed on the substrate, and the acoustic wave filter module and the passive device are electrically connected to the substrate;
  • the second plastic sealing layer at least partially wraps the acoustic wave filter packaging module and the passive device, and part of the surfaces of the multiple pins of the passive device and the multiple pins of the acoustic wave filter packaging module A second bump is exposed from the second plastic encapsulation layer.
  • a plurality of acoustic wave filters are integrated together to form an acoustic wave filter packaging module, and in the acoustic wave filter packaging module, each acoustic filter is wrapped with the first plastic sealing layer, so that
  • the acoustic wave filter packaging module including multiple acoustic wave filters can be fixedly installed on the substrate at one time. Compared with the related art where each acoustic wave filter is respectively installed and fixed on the substrate, Improve the yield rate and performance controllability of the packaging structure of the acoustic wave filter.
  • the number of wiring layers in the substrate of the acoustic wave filter packaging structure can be reduced, and the thickness of the substrate can be reduced and size, so that the thickness and size of the package structure of the acoustic wave filter can be reduced, which can meet the installation and integration requirements of smaller-sized electronic equipment, and expand the application range of the package structure of the acoustic wave filter.
  • plastic sealing pressure that each acoustic wave filter that has been wrapped by the first plastic sealing layer can withstand is significantly improved, and high pressure can be achieved.
  • Plastic sealing forms the packaging structure of the acoustic wave filter, which improves the membrane pressure resistance and structural stability of the acoustic wave filter in the packaging structure of the acoustic wave filter, and further improves the controllability of the performance of the packaging structure of the acoustic wave filter.
  • the redistribution layer includes: at least one wiring layer and at least one dielectric protection layer, each layer of dielectric protection layer is used to at least partially wrap a corresponding one of the wiring layers, The dielectric protection layer is exposed on the side of each wiring layer close to the plurality of acoustic wave filters, and each layer of the dielectric protection layer is provided with a plurality of wires electrically connected to the wrapped wiring layers. second via.
  • the number of layers of the wiring layer of the rewiring layer in the acoustic wave filter packaging module can be set according to the number of acoustic filters in the acoustic wave filter packaging structure and the interconnection requirements between the acoustic wave filters, and the number of acoustic wave filters .
  • the number of layers can be reduced, and the thickness and size of the substrate can be reduced, thereby reducing the thickness and size of the package structure of the acoustic wave filter.
  • the dielectric protection layer is exposed on the side of each wiring layer close to the plurality of acoustic wave filters, and the electrical connection between the wiring layers can be directly performed through the exposed wiring, reducing the thickness and size of the acoustic wave filter packaging module.
  • the rewiring layer includes a first wiring layer and a first dielectric protection layer
  • the first wiring layer covers the side of the first protective layer away from the first plastic encapsulation layer, and the wiring in the first wiring layer is respectively connected to each of the first wiring layers through the plurality of first via holes. a bump electrical connection;
  • the first dielectric protection layer is used to at least partially wrap the first wiring layer, and a side of the first wiring layer close to the first protection layer is exposed from the first dielectric protection layer, and the The plurality of second via holes electrically connected to the wiring in the first wiring layer are arranged in the first dielectric protection layer.
  • the redistribution layer further includes a second wiring layer and a second dielectric protection layer;
  • the second wiring layer covers a side of the first dielectric protection layer away from the first wiring layer, and the wiring in the second wiring layer passes through a plurality of first wiring layers in the first dielectric protection layer. Two via holes are electrically connected to the wiring in the first wiring layer;
  • the second dielectric protection layer is used to at least partially wrap the second wiring layer, and a side of the second wiring layer close to the first dielectric protection layer is exposed from the second dielectric protection layer, and A plurality of second via holes electrically connected to the wiring in the second wiring layer are arranged in the second dielectric protection layer.
  • the high-density interconnection among multiple acoustic wave filters can be realized by referring to the above structural arrangement of the acoustic wave filter packaging module including different numbers of wiring layers.
  • the package structure of the acoustic wave filter further includes an inductor, and the wiring in the redistribution layer is also used to form the inductor.
  • the acoustic wave filter package structure 1 in the related art, because it contains multiple acoustic filters and multiple auxiliary devices, there are differences in the operating voltage and current of different devices, and there will be electromagnetic interference between the devices. The device itself will also be affected by external electromagnetic interference, noise, etc., so it is necessary to refer to the adverse effects of factors such as differences between different devices, electromagnetic interference between devices, and external influences on the overall circuit of the acoustic wave filter package structure 1, These adverse effects are reduced or avoided by setting the inductance.
  • the substrate In the related art, multiple metal wiring layers in the substrate are used to set the inductance, but this will increase the thickness and size of the substrate.
  • at least one redistribution layer in the acoustic wave filter packaging module is used to form the entire acoustic wave filter packaging structure or the inductance required by the acoustic wave filter packaging module, instead of the prior art scheme of setting the inductance in the substrate,
  • the size and thickness of the first substrate in the acoustic wave filter packaging structure with the acoustic wave filter packaging module can be reduced, thereby reducing the thickness and size of the entire acoustic wave filter packaging structure.
  • At least one second surface of the acoustic wave filter opposite to the first surface is exposed from the first plastic encapsulation layer. In this way, the thickness of the first plastic sealing layer is reduced, thereby reducing the thickness and size of the acoustic wave filter packaging module.
  • an electronic device including:
  • a printed circuit board PCB, the acoustic wave filter packaging structure is electrically connected to the PCB.
  • the electronic equipment provided by the present application can also reduce the thickness and size of the electronic equipment due to the small thickness and size of the packaging structure of the acoustic wave filter. Moreover, since the acoustic wave filter in the packaging structure of the acoustic wave filter has good membrane pressure resistance performance and good structural stability, the pressure resistance performance and structural stability of the electronic equipment are also improved.
  • an embodiment of the present application provides a method for manufacturing an acoustic wave filter packaging structure, the acoustic wave filter packaging structure includes an acoustic wave filter packaging module, and the method includes:
  • the plurality of acoustic wave filters are plastic-encapsulated to form a first plastic-encapsulation layer for at least partially wrapping each of the acoustic wave filters, so that the plurality of first bumps on the first surface of each of the acoustic wave filters the first plastic encapsulant layer is exposed;
  • a first protective layer is formed on the first surface of the first plastic sealing layer exposing each of the acoustic wave filters, and a first protective layer is formed in the first protective layer corresponding to each of the first bumps Via;
  • a redistribution layer is formed on the side of the first protection layer away from the first plastic encapsulation layer, and the wiring in the redistribution layer passes through the plurality of first via holes and each of the first bumps respectively Electrically connected to obtain the acoustic wave filter packaging module.
  • the method further includes:
  • At least the acoustic wave filter packaging module and the passive components are plastic-encapsulated to form a second plastic sealing layer for at least partially wrapping the exposed surfaces of the acoustic wave filter packaging module and the passive components, to obtain acoustic waves Filter package structure.
  • the manufacturing method of the acoustic wave filter packaging structure provided in the present application can manufacture the above-mentioned acoustic wave filter packaging structure by using a simple and easy-to-implement process flow. Moreover, the thickness and size of the acoustic wave filter packaging module can be further reduced by temporarily bonding a plurality of acoustic wave filters to the carrier wafer and then performing plastic packaging. After plastic sealing the multiple acoustic wave filters, the first The protective layer and the rewiring layer realize the direct preparation of each layer in the acoustic wave filter packaging module, and also reduce the thickness and size of the acoustic wave filter packaging module.
  • the acoustic wave filter packaging module including a plurality of acoustic wave filters can be fixedly installed on the substrate at one time.
  • the acoustic wave filter package can be improved. Structural yield and performance controllability.
  • the plastic-seal pressure that each acoustic-wave filter that has been wrapped by the first plastic-seal layer can withstand is significantly improved, and it can be formed by high-pressure plastic-seal
  • the packaging structure of the acoustic wave filter improves the film pressure resistance and structural stability of the acoustic filter in the packaging structure of the acoustic wave filter, and further improves the controllability of the performance of the packaging structure of the acoustic wave filter.
  • the redistribution layer includes: at least one wiring layer and at least one dielectric protection layer, each layer of dielectric protection layer is used to at least partially wrap a corresponding one of the wiring layers, The dielectric protection layer is exposed on the side of each wiring layer close to the plurality of acoustic wave filters, and each layer of the dielectric protection layer is provided with a plurality of wires electrically connected to the wrapped wiring layers. second via.
  • the rewiring layer includes a first wiring layer and a first dielectric protection layer
  • a redistribution layer is formed on the side of the first protection layer away from the first plastic encapsulation layer, and the wiring in the redistribution layer passes through the plurality of first via holes and each of the first bumps.
  • the blocks are electrically connected separately, including:
  • a first wiring layer is formed on the side of the first protection layer away from the first plastic encapsulation layer, and the wiring in the first wiring layer is electrically connected to each of the first wiring layers through the plurality of first via holes.
  • a first dielectric protection layer for wrapping the exposed surface of the first wiring layer is formed on the side of the first protection layer away from the first plastic encapsulation layer, and in the first dielectric protection layer A plurality of second via holes electrically connected to the wiring in the first wiring layer are formed.
  • the redistribution layer further includes a second wiring layer and a second dielectric protection layer;
  • a redistribution layer is formed on the side of the first protection layer away from the first plastic encapsulation layer, and the wiring in the redistribution layer passes through the plurality of first via holes and each of the first bumps.
  • the blocks are electrically connected separately and also include:
  • a second wiring layer is formed on the side of the first dielectric protection layer away from the first wiring layer, and the wiring in the second wiring layer passes through a plurality of second wiring layers in the first dielectric protection layer.
  • the via hole is electrically connected to the wiring in the first wiring layer;
  • a second dielectric protection layer for wrapping the exposed surface of the second wiring layer is formed on the side of the first dielectric protection layer away from the first wiring layer, and a second dielectric protection layer is formed in the second dielectric layer A plurality of second vias electrically connected to the wiring in the second wiring layer.
  • the manufacturing process of the acoustic wave filter packaging module including the first wiring layer and the second wiring layer manufactures the acoustic wave filter packaging module including wiring layers of different layers, and then realizes the manufacturing of the acoustic wave filter packaging structure.
  • the method further includes: performing thinning treatment on the first plastic encapsulation layer and/or the second plastic encapsulation layer.
  • reducing the thickness of the first plastic sealing layer can reduce the thickness of the acoustic wave filter packaging module, and further reduce the thickness and size of the acoustic wave filter packaging structure.
  • Thinning the second plastic sealing layer can also reduce the thickness and size of the package structure of the acoustic wave filter
  • a redistribution layer is formed on the side of the first protective layer away from the first plastic encapsulation layer, and the wiring in the redistribution layer is made to pass through the plurality of first via holes and the Each of the first bumps is electrically connected respectively, including:
  • a redistribution layer is formed on the side of the first protection layer away from the first plastic encapsulation layer, and the wiring in the redistribution layer passes through the plurality of first via holes and each of the first bumps respectively electrical connection, and utilize the wiring in the redistribution layer to form the inductance of the package structure of the acoustic wave filter.
  • the inductance can be formed while the redistribution layer is arranged to realize high-density interconnection among multiple acoustic wave filters.
  • the size and thickness of the substrate in the packaging structure of the acoustic wave filter can be reduced, thereby reducing the thickness and size of the entire packaging structure of the acoustic wave filter.
  • FIG. 1 shows a schematic structural diagram of an acoustic wave filter packaging structure in the related art.
  • FIG. 2 and FIG. 3 are schematic structural diagrams of an acoustic wave filter packaging module according to an embodiment of the present application.
  • Fig. 4 shows a schematic structural diagram of an acoustic wave filter packaging structure according to an embodiment of the present application.
  • Fig. 5 shows a schematic flowchart of a manufacturing method of an acoustic wave filter packaging structure according to an embodiment of the present application.
  • Fig. 6 shows a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • 500 rewiring layer 511 first dielectric protection layer; 512 first wiring layer; 521 second dielectric protection layer; 522 second wiring layer; K2 second via hole;
  • FIG. 2 and FIG. 3 are schematic structural diagrams of an acoustic wave filter packaging module according to an embodiment of the present application.
  • Fig. 4 shows a schematic structural diagram of an acoustic wave filter packaging structure according to an embodiment of the present application.
  • the acoustic wave filter packaging modules 10, 10' shown in Fig. 2 and Fig. 3 are different, the difference between the two lies in the structure of the redistribution layer 500 in the acoustic wave filter packaging modules 10, 10'.
  • the acoustic wave filter packaging structure 2 shown in FIG. 4 is provided with the acoustic wave filter packaging module 10' shown in FIG. 3 (or the acoustic wave filter packaging module 10 shown in FIG. 2 ).
  • the acoustic wave filter packaging modules 10, 10' both include a first plastic sealing layer 300, a plurality of acoustic wave filters 100, a first protective layer 400, and a redistribution layer 500.
  • each acoustic wave filter 100 includes: a bare chip 102, a surface structure 103 arranged on the bare chip 102, and a plurality of first bumps arranged on the first surface S1 of the acoustic wave filter 100 101 , wherein a sealed cavity 104 is formed inside the structural component 103 , and the first surface S1 of the acoustic wave filter 100 is the side of the structural component 103 away from the die 102 .
  • each acoustic wave filter may be a surface acoustic wave filter, a bulk acoustic wave filter, or the like for implementing acoustic wave filtering.
  • the thicknesses and sizes of the multiple acoustic filters may be the same, or may not be completely the same, or may be completely different, which is not limited in the present application.
  • the first plastic encapsulation layer 300 at least partially wraps each acoustic wave filter 100 , and a plurality of first bumps 101 on the first surface S1 of each acoustic wave filter 100 are exposed.
  • the first protection layer 400 covers the first surface of the first plastic encapsulation layer 300 , and first via holes K1 are respectively provided at positions corresponding to each first bump 101 in the first protection layer 400 .
  • the redistribution layer is disposed on a side of the first protective layer 400 away from the first plastic encapsulation layer 300 , and the plurality of first via holes K1 of the redistribution layer are connected to each of the first bumps 101 are electrically connected respectively.
  • the acoustic wave filter packaging modules 10, 10' further include a plurality of second bumps 600.
  • the plurality of second bumps 600 are disposed on a side of the redistribution layer away from the first passivation layer 400 , and are electrically connected to wirings in the second redistribution layer.
  • the second bumps 600 can be copper pillars, solder balls, etc., so that the acoustic wave filter packaging modules 10, 10' can be electrically connected to the substrate 30 through a plurality of second bumps 600.
  • the acoustic wave filter packaging structure 2 includes the above-mentioned acoustic wave filter packaging module 10' (or acoustic wave filter packaging module 10), passive components 20, a second plastic package layer 40 and substrate 30.
  • the acoustic wave filter package module 10' and the passive device 20 are soldered and fixed on the substrate 30, and the acoustic wave filter package module 10' and the passive device 20 are electrically connected to the substrate 30. connect.
  • the second plastic sealing layer 40 at least partially wraps the acoustic wave filter packaging module 10' and the passive device 20, and part of the surface of the plurality of pins 21 of the passive device 20, and the acoustic wave filter
  • the plurality of second bumps 600 of the device packaging module 10 ′ are exposed from the second plastic encapsulation layer 40 .
  • the passive device 20 may be passive devices such as resistors and capacitors, and the passive devices may be integrated through low temperature co-fired ceramic (Low Temperature Co-fired Ceramic, LTCC) technology.
  • the acoustic wave filter packaging structure 2 may also include active devices such as power amplifiers and low noise amplifiers to realize the functions of the acoustic wave filter packaging structure 2 , and the active devices are also electrically connected to the substrate 30 .
  • the substrate 30 includes a wiring layer 30 - 1 , a core board 30 - 2 and a dielectric protection layer 30 - 3 .
  • Redistribution layers may also be provided on the opposite first and/or second surfaces of the core board 31-2, and each redistribution layer includes at least one wiring layer 30-1 and a layer for wrapping the wiring layer 30-1.
  • the substrate 30 is also provided with a plurality of third bumps 50 . Each third bump 50 is electrically connected to the wiring in the wiring layer 30 - 1 in the substrate 30 .
  • a plurality of acoustic wave filters 100 are integrated in an acoustic wave filter packaging module, and the first plastic sealing layer 300 is used to wrap each acoustic wave filter in the acoustic wave filter packaging module.
  • device 100 so that when manufacturing the acoustic wave filter packaging structure 2, the package module including the acoustic wave filter can be fixedly installed on the substrate 30 at one time. The yield rate and performance controllability of the acoustic wave filter packaging structure 2 .
  • the interconnection between the group and the passive device 20 can reduce the number of layers of the wiring layer 30-1 in the substrate 30, reduce the thickness and size of the substrate 30, so that the thickness and size of the acoustic wave filter package structure 2 can be reduced, and can meet The demand for installation and integration of electronic equipment with smaller size expands the application range of the acoustic wave filter packaging structure 2 .
  • the thickness h1 of the substrate 30 of the acoustic wave filter package structure 2 as shown in FIG. 4 of the present application can be 175 ⁇ m ⁇ 225 ⁇ m. It can be seen that the thickness and size of the acoustic wave filter package structure 2 shown in FIG. 4 of the present application can be reduced.
  • the acoustic wave filter packaging module is installed on the substrate 30, and the second plastic sealing can be formed by high pressure plastic sealing.
  • Layer 40 and finally obtain the acoustic wave filter packaging structure 2, so that the membrane pressure resistance and structural stability of the acoustic wave filter 100 in the acoustic wave filter packaging structure 2 are improved, and the performance controllability of the acoustic wave filter packaging structure 2 is also improved. further improvement.
  • the second surface S2 of at least one acoustic wave filter 100 among the plurality of acoustic wave filters 100 that is opposite to the first surface S1 is exposed from the first plastic encapsulation layer 300 .
  • the second surface S2 of each acoustic wave filter 100 is at the same horizontal plane, then the second surface S2 of each acoustic wave filter 100 can be exposed to the first plastic sealing layer 300, that is, the first plastic sealing layer 300 is far away from One side of the first protective layer 400 may be parallel to the second surface S2 of each acoustic wave filter 100 .
  • the first plastic encapsulation layer 300 can at least expose the first acoustic wave filter 100 of the plurality of acoustic wave filters 100 whose second surface S2 protrudes relatively.
  • the two surfaces S2 , the side of the first plastic encapsulation layer 300 away from the first protection layer 400 may be parallel to the second surface S2 of the acoustic wave filter 100 where the second surface S2 is exposed. In this way, the thickness of the first plastic sealing layer is reduced, thereby reducing the thickness and size of the acoustic wave filter packaging module.
  • the first plastic sealing layer 300 is used to wrap each acoustic wave filter 100.
  • the plastic sealing pressure that the acoustic wave filter can bear is significantly improved, and the acoustic wave filter can be formed by high-pressure plastic sealing.
  • the filter packaging structure improves the membrane pressure resistance and structural stability of the acoustic wave filter in the acoustic wave filter packaging structure, and further improves the performance controllability of the acoustic wave filter packaging structure.
  • the vias such as the first via hole in the present application and the second via hole hereinafter can be manufactured by using a through-silicon via technology (Through-Silicon-Via, TSV) or the like.
  • TSV through-silicon via technology
  • Each via hole may be a hole with the same diameter at different positions, that is, a hole shaped like a "cylindrical".
  • the via holes can be holes with incomplete diameters at different positions, for example, holes shaped like a "truncated circle” (as shown in Figure 2 and Figure 3), shaped like a combination of a "cylindrical” and a "truncated circle” hole, and so on.
  • the shape of the via hole can be set according to the requirement of electrical connection, which is not limited in the present application.
  • the redistribution layer 500 includes at least one wiring layer and at least one dielectric protection layer.
  • Each layer of dielectric protection layer is used to at least partially wrap a corresponding layer of the wiring layer, and the side of each layer of the wiring layer close to the plurality of acoustic wave filters 100 is exposed to the dielectric protection layer, and each layer of the wiring layer is exposed.
  • a plurality of second via holes K2 electrically connected to the wrapped wiring layer are arranged in the dielectric protection layer.
  • the number of wiring layers of the rewiring layer 500 in the acoustic wave filter packaging module can be set according to the number of acoustic filters in the acoustic wave filter packaging structure and the interconnection requirements between the acoustic wave filters, the number of acoustic wave filters, The higher the demand for interconnection, the more layers of the wiring layer of the redistribution layer 500 can be set, so as to ensure the realization of high-density interconnection among multiple acoustic wave filters 100, so that the substrate 30 of the acoustic wave filter package structure 2
  • the number of middle wiring layers can be reduced, and the thickness and size of the substrate 30 can be reduced, thereby reducing the thickness and size of the acoustic wave filter package structure 2 .
  • the dielectric protective layer is exposed on the side of each wiring layer close to the plurality of acoustic wave filters 100, and the electrical connection between the wiring layers can be directly performed through the exposed wiring, reducing the thickness and size of the acoustic wave filter packaging module.
  • the structural arrangement of two acoustic wave filter packaging modules 10, 10' with different numbers of redistribution layers will be described below in conjunction with Fig. 2 and Fig. 3 .
  • the redistribution layer 500 in the acoustic wave filter package module 10 includes a first wiring layer 512 and a first dielectric protection layer 511 .
  • the first wiring layer 512 covers the side of the first protective layer 511 away from the first plastic encapsulation layer 300 , and the wiring in the first wiring layer 512 exposed to the first dielectric protective layer 511 passes through
  • the plurality of first vias K1 are electrically connected to each of the first bumps 101 .
  • the first dielectric protection layer 511 is used to at least partially wrap the first wiring layer 512 and the first wiring layer 512 is close to the side of the first protection layer 400 (that is, with each of the first bumps).
  • the exposed wiring connected to the block 101) exposes the first dielectric protection layer 511, and a plurality of second via holes K2 are disposed in the first dielectric protection layer 511.
  • the plurality of second bumps 600 are disposed on the side of the first dielectric protection layer 511 away from the first wiring layer 512 and respectively connected with each of the second via holes in the first dielectric protection layer 511 At the position corresponding to K2, each second bump 600 covers the corresponding second via hole K2 and is electrically connected to the covered second via hole K2.
  • the redistribution layer 500 in the acoustic wave filter packaging module 10' may include not only the first wiring layer 512 and the first dielectric protection layer 511, but also the second wiring layer 522 and the second dielectric protection layer. 521.
  • the first wiring layer 512 covers the side of the first protective layer 511 away from the first plastic encapsulation layer 300 , and the exposed first dielectric protective layer 511 in the first wiring layer 512 Wiring is electrically connected to each of the first bumps 101 through the plurality of first via holes K1.
  • the first dielectric protection layer 511 is used to at least partially wrap the first wiring layer 512 and the first wiring layer 512 is close to the side of the first protection layer 400 (that is, with each of the first bumps
  • the exposed wiring connected to the block 101) exposes the first dielectric protection layer 511, and a plurality of second via holes K2 are disposed in the first dielectric protection layer 511.
  • the second wiring layer 522 covers the side of the first dielectric protection layer 511 away from the first wiring layer 512, and the wiring in the second wiring layer 522 passes through a plurality of second via holes K2 in the first dielectric protection layer 511 and The wirings in the first wiring layer 512 are electrically connected.
  • the second dielectric protection layer 521 is used to at least partially wrap the second wiring layer 522, and the side of the second wiring layer 522 close to the first dielectric protection layer 511 is exposed to the second dielectric protection layer 521, and the second dielectric protection layer A plurality of second via holes K2 electrically connected to the wiring in the second wiring layer 522 are disposed in the electrical protection layer 521 .
  • a plurality of second bumps 600 are disposed on the side of the second dielectric protection layer 521 away from the second wiring layer 522 at positions corresponding to each second via hole K2 in the second dielectric protection layer 521, and each second via hole K2
  • the two bumps 600 cover the corresponding second via hole K2 and are electrically connected to the covered second via hole K2.
  • the structural setting of the device packaging module 10, 10' can set and distinguish the structure of the acoustic wave filter packaging module including the rewiring layer above the 2-layer wiring layer, and realize the high-density interconnection between multiple acoustic wave filters , Manufacture different acoustic wave filter packaging modules.
  • the acoustic wave filter packaging module 10 or 10' further includes an inductor, and the wiring in the redistribution layer 500 is also used to form the inductor. That is, at least one wiring layer in the rewiring layer 500 is used to form the inductor.
  • the inductance is used to adjust the electrical characteristics of the acoustic wave filter package structure 2 .
  • the acoustic wave filter package structure 1 in the related art, because it contains multiple acoustic filters and multiple auxiliary devices, there are differences in the operating voltage and current of different devices, and there will be electromagnetic interference between the devices.
  • the device itself will also be affected by external electromagnetic interference, noise, etc., so it is necessary to refer to the adverse effects of factors such as differences between different devices, electromagnetic interference between devices, and external influences on the overall circuit of the acoustic wave filter package structure 1, These adverse effects can be reduced or avoided by setting inductance.
  • multiple wiring layers 31 - 1 in the substrate 31 are used to set the inductance, but this will increase the thickness and size of the substrate.
  • the redistribution layer 500 in the acoustic wave filter packaging module is used to form the inductance required by the entire acoustic wave filter packaging structure 2, instead of the solution of setting the inductance in the substrate in the prior art, and the acoustic wave filter packaging structure can be reduced.
  • the size and thickness of the substrate 30 in 2 can be reduced, thereby reducing the thickness and size of the entire acoustic wave filter package structure 2 .
  • the number of wiring layers of the rewiring layer in an acoustic wave filter packaging module can be one (as shown in FIG. 2 ), two (as shown in FIG. 3 ) or more than two layers. Then, the inductance in the package module of the acoustic wave filter can be realized by the wiring in the same wiring layer in the redistribution layer, or can be realized by using the wiring in different wiring layers.
  • the materials of the first protection layer and each dielectric protection layer may be polyimide (Polyimide, PI), benzocyclobutene BCB, silicon nitride (SiN) and other materials capable of achieving insulation protection.
  • the wires in each wiring layer can be metals such as copper.
  • the material of the first plastic packaging layer 300 may be a material such as PI that can achieve plastic packaging for the acoustic wave filter through plastic packaging.
  • Fig. 5 shows a schematic flowchart of a manufacturing method of an acoustic wave filter packaging structure according to an embodiment of the present application.
  • the method includes step S11 to step S17.
  • the above-mentioned acoustic wave filter package structure 2 with small size and thickness can be manufactured by means of a simple and easy-to-implement process flow.
  • the thickness and size of the acoustic wave filter packaging module can be further reduced by temporarily bonding a plurality of acoustic wave filters to the carrier wafer and then performing plastic packaging.
  • Fig. 5 illustrates the manufacturing method of the acoustic wave filter packaging structure provided by the embodiment of the present application by taking the manufacturing process of the acoustic wave filter packaging structure including the above-mentioned acoustic wave filter packaging module 10' as an example.
  • step S11 a plurality of acoustic wave filters 100 are temporarily bonded to the carrier wafer 200 to form a first plastic encapsulation layer 300, each acoustic wave filter 100 has a first surface S1 and a second surface S2 opposite to each other, each The first bumps 101 of the acoustic wave filters 100 are located on the first surface S1 , and the first surface S1 of each acoustic wave filter 100 is in contact with the carrier wafer 200 .
  • Temporarily bonding a plurality of acoustic wave filters 100 to the carrier wafer 200 and then performing step S12 for plastic packaging can further reduce the thickness and size of the acoustic wave filter packaging module.
  • the material of the carrier wafer 200 may be semiconductor (such as silicon, germanium, gallium arsenide, silicon-on-insulator, etc.), glass, quartz, silicon carbide, aluminum oxide, epoxy resin, polyurethane, and the like.
  • Each acoustic wave filter 100 can be temporarily bonded to the carrier wafer 200 by coating bonding glue, attaching a bonding film, and depositing a laser release layer on the carrier wafer 200 .
  • bonding glue 201 may be temporarily bonded to a carrier wafer 200 by a bonding glue 201 .
  • each acoustic wave filter on the carrier wafer 200 can be set according to the connection relationship between each acoustic wave filter 100 in the acoustic wave filter packaging module to be manufactured, so as to simplify the wiring in the subsequent rewiring layer layout design.
  • the size of the carrier wafer 200 is larger or even much larger than the area occupied by multiple acoustic wave filters 100 in the acoustic wave filter packaging module.
  • Temporary bonding of acoustic wave filters 100 in multiple acoustic wave filter packaging modules can be performed on the same carrier wafer 200 at the same time, and cutting is performed after step S16 to obtain multiple acoustic wave filter packaging modules.
  • step S12 the plurality of acoustic wave filters 100 are plastic-encapsulated to form a first plastic-encapsulation layer 300 for at least partially wrapping each of the acoustic wave filters 100 and a first surface S1 of each of the acoustic wave filters 100
  • the plurality of first bumps 101 are exposed from the first molding layer 300 .
  • step S13 the plurality of acoustic wave filters 100 and the first plastic encapsulation layer 300 are completely peeled off from the carrier wafer 200 .
  • the peeling method for peeling off the carrier wafer 200 can be determined according to the temporary bonding method, and the peeling method can be thermal sliding peeling, mechanical peeling, laser peeling, and the like.
  • step S14 a first protective layer 400 is formed on the first surface of the first plastic sealing layer 300 where each acoustic wave filter 100 is exposed, and each first bump 101 is formed in the first protective layer 400 The position of the first via hole K1 is formed.
  • step S15 a redistribution layer is formed on the side of the first protective layer 400 away from the first plastic encapsulation layer 300, and the wiring in the redistribution layer 500 passes through the plurality of first via holes K1 and Each of the first bumps 101 is respectively electrically connected to obtain an acoustic wave filter packaging module 10 ′.
  • step S15 may include step S15-1, step S15-2 and step S15-3.
  • a first wiring layer 512 is formed on the side of the first protective layer 400 away from the first plastic encapsulation layer 300, and the wiring in the first wiring layer 512 passes through the plurality of first wiring layers.
  • a via K1 is electrically connected to each of the first bumps 101 .
  • a first dielectric protective layer 511 for wrapping the currently exposed surface of the first wiring layer 512 is formed, and on the first dielectric layer 512 A plurality of second via holes K2 are formed in the electrical protection layer 511 .
  • a second wiring layer 522 is formed on the side of the first dielectric protection layer 511 away from the first plastic encapsulation layer 300, and the wiring in the second wiring layer 522 passes through the first A plurality of second vias K2 in a dielectric protection layer 511 are electrically connected to the wiring in the first wiring layer 512 . Then, on the side of the first dielectric protection layer 511 away from the first wiring layer 512, a second dielectric protection layer 521 for wrapping the exposed surface of the second wiring layer 522 is formed, and on the second A plurality of second via holes K2 electrically connected to the wiring in the second wiring layer 522 are formed in the dielectric protection layer 521 .
  • step S15-3 on the side of the second dielectric protection layer 521 away from the first protection layer 400, a first hole electrically connected to each second via hole K2 in the second dielectric protection layer 521 is fabricated.
  • Two bumps 600, each second bump 600 covers the corresponding second via hole K2, so as to be electrically connected to the wiring in the second wiring layer 522 through the second via hole K2, to obtain the acoustic wave filter packaging module 10' .
  • the above-mentioned manufacturing process of the acoustic wave filter packaging module 10' can use the fan-out process (fan-out) and the redistribution layer process to manufacture the acoustic wave filter packaging module 10'.
  • the redistribution layer with the number of layers of the wiring layer not being 2 layers can be performed with reference to the above step S15. 500 made.
  • step S16 the acoustic wave filter packaging module 10' and the passive device 20 are respectively soldered and fixed on the pre-prepared substrate 30, so that the acoustic wave filter packaging module 10' and the passive device 20 are respectively It is electrically connected with the substrate 30 .
  • step S17 at least the acoustic wave filter packaging module 10' and the passive device 20 are plastic-encapsulated to form an exposed surface for at least partially wrapping the acoustic wave filter packaging module 10' and the passive device 20 The second plastic sealing layer 40 . Then, a plurality of third bumps 50 are manufactured on the side of the substrate 30 away from the acoustic wave filter packaging module 10' to obtain the acoustic wave filter packaging structure 2.
  • the acoustic wave filter package module also includes an inductance, and after the required inductance parameters (such as inductance, etc.) are determined based on the acoustic wave filter package structure 3, the parameters based on the inductance
  • the layout design of the wiring layer in the wiring layer is carried out, and in step S15, the manufacture of the rewiring layer 500 is carried out based on the layout design of the parameters of the inductance, to form an inductance, and the inductance is used to adjust the acoustic wave filter package structure 2 electrical properties.
  • the inductance can be formed while the redistribution layer is set to realize the high-density interconnection between multiple acoustic filters, and the size and thickness of the substrate 30 in the acoustic filter packaging structure can be reduced, thereby reducing the entire acoustic wave filter packaging structure. thickness and size.
  • the method may further include: thinning the first plastic sealing layer 300 and/or the second plastic sealing layer 40 of the acoustic wave filter packaging module.
  • the thickness of the first plastic sealing layer can reduce the thickness of the acoustic wave filter packaging module, and further reduce the thickness and size of the acoustic wave filter packaging structure.
  • the first plastic encapsulation layer 300 may be thinned by grinding or other means, which is not limited in the present application. Thinning of the first plastic sealing layer 300 of the acoustic wave filter packaging module can reduce the thickness of the first plastic sealing layer 300 covered on the second surface S2 of each acoustic wave filter 100 .
  • the thickness of the first plastic sealing layer 300 can be thinned until the second surface S2 of at least one acoustic wave filter 100 is exposed, that is, if the second surface S2 of each acoustic wave filter 100 is at the same level, the thickness can be reduced.
  • the side of the first plastic sealing layer 300 away from the first protective layer 400 is parallel to the second surface S2 of each acoustic wave filter 100, exposing the second surface S2 of each acoustic wave filter 100; if the second surface of each acoustic wave filter 100 S2 is not at the same horizontal plane, so the second surface of the acoustic wave filter 100 can be thinned so that the side of the first plastic sealing layer 300 away from the first protective layer 400 is relatively protruding from the second surface S2 of the plurality of acoustic wave filters 100 S2 parallel.
  • the second plastic sealing layer can be continuously thinned, and the thinning method and degree of thinning are similar to the method of thinning the first plastic sealing layer, which will not be repeated here. In this way, the thickness and size of the package structure of the acoustic wave filter can also be reduced.
  • the above-mentioned manufacturing method of the acoustic wave filter packaging module and the acoustic wave filter packaging structure is only a method for manufacturing the acoustic wave filter packaging module and the acoustic wave filter packaging structure provided by the application.
  • An exemplary implementation manner, those skilled in the art can also set the method for manufacturing the acoustic wave filter packaging module and the acoustic wave filter packaging structure according to actual needs, which is not limited in this application.
  • the present application also provides an electronic device, including:
  • a printed circuit board PCB, the acoustic wave filter packaging structure 2 is electrically connected to the PCB.
  • Fig. 6 shows a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • electronic devices may include mobile phones, foldable electronic devices, tablet computers, desktop computers, laptop computers, handheld computers, notebook computers, ultra-mobile personal computers (UMPC), netbooks , cellular phone, personal digital assistant (personal digital assistant, PDA), augmented reality (augmented reality, AR) device, virtual reality (virtual reality, VR) device, artificial intelligence (artificial intelligence, AI) device, wearable device, At least one of vehicle equipment, smart home equipment, or smart city equipment.
  • PDA personal digital assistant
  • augmented reality augmented reality, AR
  • VR virtual reality
  • AI artificial intelligence
  • wearable device At least one of vehicle equipment, smart home equipment, or smart city equipment.
  • the embodiment of the present application does not limit the specific type of the electronic device.
  • the electronic device may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) connector 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, Mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and user An identification module (subscriber identification module, SIM) card interface 195 and other components.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the electronic device also includes a PCB (not shown), a processor 110 in the electronic device, an external memory interface 120, an internal memory 121, a USB connector 130, a charging management module 140, a power management module 141, a battery 142, antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193 , the display screen 194 , and some or all of the components such as the SIM card interface 195 are respectively directly or indirectly electrically connected to the PCB.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent from the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the mobile communication module 150 may also include the acoustic wave filter packaging structure provided in this application, and the multiple acoustic wave filters in the acoustic wave filter packaging structure are all of the above-mentioned “multiple filters of the mobile communication module 150" or part of the sonic filter.
  • each block in a flowchart or block diagram may represent a module, a portion of a program segment, or an instruction that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented with hardware (such as circuits or ASIC (Application Specific Integrated Circuit, application-specific integrated circuit)), or can be implemented with a combination of hardware and software, such as firmware.
  • hardware such as circuits or ASIC (Application Specific Integrated Circuit, application-specific integrated circuit)
  • firmware such as firmware

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

本申请涉及一种声波滤波器封装结构及其制造方法、电子设备。该封装结构包括:声波滤波器封装模组,声波滤波器封装模组包括:第一塑封层、多个声波滤波器、第一保护层和重布线层;第一塑封层至少部分包裹每个声波滤波器,且每个声波滤波器的第一表面的多个第一凸块被暴露出第一塑封层;第一保护层覆盖第一塑封层的第一面,且第一保护层中对应每个第一凸块的位置分别设置有第一过孔;重布线层设置在第一保护层的远离第一塑封层的一面,且重布线层通过多个第一过孔与每个第一凸块分别电连接。封装结构中声波滤波器高耐膜压、结构稳定性好,封装结构的良率及效能可控性提高,且厚度及尺寸缩减,可满足更小尺寸电子设备的整合需求。

Description

声波滤波器封装结构及其制造方法、电子设备 技术领域
本申请涉及声波滤波技术领域,尤其涉及一种声波滤波器封装结构及其制造方法、电子设备。
背景技术
声波滤波器(如表面声波滤波器(surface acoustic wave filter)、体声波滤波器(bulk acoustic wave filter)等)是智能手机等电子设备中常用的滤波器。相关技术中,将电子设备所需的多个声波滤波器先安装在基板上后再塑封成一个声波滤波器封装结构,最后将声波滤波器封装结构安装到电子设备中。例如图1所示出的相关技术中的声波滤波器封装结构1,其包括多个声波滤波器100、辅助器件20、塑封层41、基板31和多个第三凸块50。所述基板31具有相对设置的第一面和第二面。多个声波滤波器100和所述辅助器件20安装在所述基板31的第一面,所述多个第三凸块50设置在所述基板31的第二面。塑封层41至少包裹所述多个声波滤波器100和所述辅助器件20(如无源器件等)。其中,基板31为多层板。基板31包括布线层31-1、芯板31-2和介电保护层31-3。芯板31-2的相对设置的第一面和第二面上均设置有重布线层,每个重布线层包括至少一层布线层31-1,以及包裹布线层31-1的用于绝缘的介电保护层31-3。而为了实现声波滤波器封装结构1中多个声波滤波器、辅助器件中各个器件之间的高密度互连,需要在基板31中利用重布线层(Redistribution Layer,RDL)工艺进行重布线,这就会导致整个基板31中至少设置7层布线层31-1,导致声波滤波器封装结构1的厚度大、尺寸大,在电子设备中需提供较大空间才能实现声波滤波器封装结构1的安装,不能满足小尺寸电子设备安装整合需求,且使声波滤波器封装结构1的效能可控性也受到不利影响。且由于多个声波滤波器100中存在声波滤波器使用干膜形成空腔的声波滤波器,其表面相对脆弱,会对塑封层41的塑封压力造成限制,使得制造出的声波滤波器封装结构1中声波滤波器的耐膜压性能、结构稳定性差。且声波滤波器封装结构1的制造过程中需要将各声波滤波器、辅助器件分别安装到基板上,给装置的良率、效能可控性受到不利影响。如何解决相关技术中声波滤波器封装结构所存在的问题是当前亟待解决的。
发明内容
有鉴于此,为解决上述技术问题,提出了一种声波滤波器封装结构及其制造方法以及电子设备。
第一方面,本申请的实施例提供了一种声波滤波器封装结构,所述声波滤波器封装结构包括声波滤波器封装模组,所述声波滤波器封装模组包括:第一塑封层、多个声波滤波器、第一保护层和重布线层;
所述第一塑封层至少部分包裹每个所述声波滤波器,且每个所述声波滤波器的第一表面的多个第一凸块被暴露出所述第一塑封层;
所述第一保护层覆盖所述第一塑封层的第一面,且所述第一保护层中对应每个所述第一凸块的位置分别设置有第一过孔;
所述重布线层设置在所述第一保护层的远离所述第一塑封层的一面,且所述重布线层通过所述多个第一过孔与每个所述第一凸块分别电连接。
在一种可能的实现方式中,所述声波滤波器封装结构还包括:无源器件、第二塑封层和基板;
所述声波滤波器封装模组和所述无源器件焊接固定在所述基板上、且所述声波滤波模组和所述无源器件与所述基板电连接;
所述第二塑封层至少部分包裹所述声波滤波器封装模组和所述无源器件,且所述无源器件的多个引脚的部分表面、以及所述声波滤波器封装模组的多个第二凸块被暴露出所述第二塑封层。
这样,在声波滤波器封装结构中,通过将多个声波滤波器整合在一起形成声波滤波器封装模组,并在声波滤波器封装模组中用第一塑封层包裹每个声波滤波器,使得制造声波滤波器封装结构时可以一次性将包括多个声波滤波器的声波滤波器封装模组固定安装到基板上,相比于相关技术中分别将每个声波滤波器安装固定到基板上,能够提高声波滤波器封装结构的良率以及效能可控性。且由于在声波滤波器封装模组中通过重布线层已经实现了多个声波滤波器之间的高密度互连,可以减少声波滤波器封装结构的基板中布线层的层数,缩减基板的厚度和尺寸,使得声波滤波器封装结构的厚度、尺寸得以缩减,能够满足更小尺寸电子设备安装整合需求,扩大了声波滤波器封装结构的使用范围。
并且,由于将声波滤波器封装模组安装到基板上再进行塑封形成最终的声波滤波器封装结构,已经被第一塑封层包裹的各声波滤波器所能承受的塑封压力得到显著提升,可以高压塑封形成声波滤波器封装结构,使得声波滤波器封装结构中声波滤波器的耐膜压性能、结构稳定性得到提升,也使得声波滤波器封装结构的效能可控性得到进一步提升。
在一种可能的实现方式中,所述重布线层包括:至少一层布线层和至少一层介电保护层,每层介电保护层用于至少部分包裹对应的一层所述布线层,每层所述布线层靠近所述多个声波滤波器的一面被暴露出所述介电保护层,每层所述介电保护层中设置有与所包裹的所述布线层电连接的多个第二过孔。
这样,可以根据声波滤波器封装结构中声波滤波器的数量、声波滤波器之间的互连需求对声波滤波器封装模组中重布线层的布线层的层数进行设置,声波滤波器的数量、互连需求越高,重布线层的布线层的层数就可以设置的越多,保证实现多个声波滤波器之间的高密度互连,以使得声波滤波器封装结构的基板中布线层的层数得以减少,基板的厚度和尺寸能够缩减,进而缩减声波滤波器封装结构的厚度、尺寸。且每层布线层靠近多个声波滤波器的一面被暴露出介电保护层,可以通过暴露的布线直接进行布线层之间的电连接,缩减声波滤波器封装模组的厚度和尺寸。
在一种可能的实现方式中,所述重布线层包括第一布线层和第一介电保护层;
所述第一布线层覆盖在所述第一保护层远离所述第一塑封层的一面,且所述第一布线层中的布线通过所述多个第一过孔分别与每个所述第一凸块电连接;
所述第一介电保护层用于至少部分包裹所述第一布线层且所述第一布线层靠近所述第一保护层的一面被暴露出所述第一介电保护层,且所述第一介电保护层中设置有与所述第一布线层中的布线电连接的所述多个第二过孔。
在一种可能的实现方式中,所述重布线层还包括第二布线层和第二介电保护层;
所述第二布线层覆盖在所述第一介电保护层远离所述第一布线层的一面,且所述第二布线层中的布线通过所述第一介电保护层中的多个第二过孔与所述第一布线层中的布线电连接;
所述第二介电保护层用于至少部分包裹所述第二布线层且所述第二布线层靠近所述第一介电保护层的一面被暴露出所述第二介电保护层,且所述第二介电保护层中设置有与所述第二布线层中的布线电连接的多个第二过孔。
这样,可以参照上述包括不同布线层层数的声波滤波器封装模组的结构设置实现多个声波滤波器之间的高密度互连。
在一种可能的实现方式中,所述声波滤波器封装结构的还包括电感,所述重布线层中的布线还用于形成所述电感。相关技术中的声波滤波器封装结构1(参见图1),由于其包含多个声波滤波器和多个辅助器件,不同器件的工作电压、电流等存在差异,器件之间也会存在电磁干扰,装置本身也会受外界的电磁干扰、噪声等影响,因此需要参考不同器件之间的差异、器件之间的电磁干扰情况、外界影响等因素对声波滤波器封装结构1的电路整体的不利影响,通过设置电感来降低或避免这些不利影响,相关技术中通过基板中的多个金属布线层实现电感的设置,但这样会增加基板的厚度和尺寸。而本申请中利用声波滤波器封装模组中的至少一个重布线层形成整个声波滤波器封装结构或声波滤波器封装模组所需的电感,代替现有技术中在基板中设置电感的方案,可以缩减带有声波滤波器封装模组的声波滤波器封装结构中第一基板的尺寸和厚度,进而缩减整个声波滤波器封装结构的厚度和尺寸。
在一种可能的实现方式中,至少一个所述声波滤波器的与所述第一表面相对设置的第二表面被暴露出所述第一塑封层。这样,使得第一塑封层的厚度减小,进而可以缩减声波滤波器封装模组的厚度和尺寸。
第二方面,本申请的实施例提供了一种电子设备,包括:
如第一方面及其任意一种可能的实现方式所述的声波滤波器封装结构;以及
印制电路板PCB,所述声波滤波器封装结构与所述PCB电连接。
本申请所提供的电子设备,由于声波滤波器封装结构的厚度和尺寸小,使得电子设备的厚度和尺寸也可以得到缩减。且由于声波滤波器封装结构中声波滤波器的耐膜压性能好、结构稳定性好,使得电子设备的耐压性能和结构稳定性也得到提升。
第三方面,本申请的实施例提供了一种声波滤波器封装结构的制造方法,所述声波滤波器封装结构包括声波滤波器封装模组,所述方法包括:
将多个声波滤波器临时键合到载体晶圆上;
对所述多个声波滤波器进行塑封,形成用于至少部分包裹每个所述声波滤波器的第一塑封层,以使每个所述声波滤波器的第一表面的多个第一凸块被暴露出所述第一塑封层;
将所述多个声波滤波器以及所述第一塑封层从所述载体晶圆上剥离;
在所述第一塑封层暴露出每个所述声波滤波器的第一面形成第一保护层,并在所述第一保护层中对应每个所述第一凸块的位置分别形成第一过孔;
在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,得到声波滤波器封装模组。
在一种可能的实现方式中,所述方法还包括:
将所述声波滤波器封装模组、无源器件焊接固定到预先制备的基板上,以使所述声波滤波器封装模组、所述无源器件与所述基板电连接;
至少对所述声波滤波器封装模组和所述无源器件进行塑封,形成用于至少部分包裹所述声波滤波器封装模组和所述无源器件的裸露表面的第二塑封层,得到声波滤波器封装结构。
本申请所提供的声波滤波器封装结构的制造方法,利用简单、易于实现的工艺流程即可制造出上述声波滤波器封装结构。而且,将多个声波滤波器临时键合到载体晶圆后进行塑封可以进一步缩减声波滤波器封装模组的厚度和尺寸,塑封多个声波滤波器后直接在第一塑封层上依次形成第一保护层和重布线层,实现了声波滤波器封装模组中各层的直接制备,也能使声波滤波器封装模组的厚度和尺寸得以缩减。
并且,可以一次性将包括多个声波滤波器的声波滤波器封装模组固定安装到基板上,相比于相关技术中分别将每个声波滤波器安装固定到基板上,能够提高声波滤波器封装结构的良率以及效能可控性。由于将声波滤波器封装模组安装到基板上再进行塑封形成最终的声波滤波器封装结构,已经被第一塑封层包裹的各声波滤波器所能承受的塑封压力得到显著提升,可以高压塑封形成声波滤波器封装结构,使得声波滤波器封装结构中声波滤波器的耐膜压性能、结构稳定性得到提升,也使得声波滤波器封装结构的效能可控性得到进一步提升。
在一种可能的实现方式中,所述重布线层包括:至少一层布线层和至少一层介电保护层,每层介电保护层用于至少部分包裹对应的一层所述布线层,每层所述布线层靠近所述多个声波滤波器的一面被暴露出所述介电保护层,每层所述介电保护层中设置有与所包裹的所述布线层电连接的多个第二过孔。
在一种可能的实现方式中,所述重布线层包括第一布线层和第一介电保护层;
其中,在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,包括:
在所述第一保护层远离所述第一塑封层的一面形成第一布线层,并使所述第一布线层中的布线通过所述多个第一过孔电连接到每个所述第一凸块;
在所述所述第一保护层远离所述第一塑封层的一面形成用于包裹所述第一布线层的裸露表面的第一介电保护层,以及在所述第一介电保护层中形成与所述第一布线层中的布线电连接的多个第二过孔。
在一种可能的实现方式中,所述重布线层还包括第二布线层和第二介电保护层;
其中,在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,还包括:
在所述第一介电保护层远离所述第一布线层的一面形成第二布线层,并使所述第二布线层中的布线通过所述第一介电保护层中的多个第二过孔与所述第一布线层中的布线电连接;
在所述第一介电保护层远离所述第一布线层的一面形成用于包裹所述第二布线层的裸露表面的第二介电保护层,以及在所述第二介电层中形成与所述第二布线层中的布线电连接的多个第二过孔。
这样,在基于声波滤波器封装结构中声波滤波器的数量、声波滤波器之间的互连需求确定出布线层的层数后,可以参照上述包括第一布线层的声波滤波器封装模组,包括第一布线层和第二布线层的声波滤波器封装模组的制造过程进行包括不同层数的布线层的声波滤波器封装模组的制造,进而实现声波滤波器封装结构的制造。
在一种可能的实现方式中,所述方法还包括:对所述第一塑封层和/或第二塑封层进行减薄处理。这样,减薄第一塑封层,可以缩减声波滤波器封装模组的厚度,进而可以缩减声波 滤波器封装结构的厚度和尺寸。而对第二塑封层进行减薄,也可以缩减声波滤波器封装结构的厚度和尺寸
在一种可能的实现方式中,在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,包括:
在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,以及利用所述重布线层中的布线形成所述声波滤波器封装结构的电感。这样,在基于声波滤波器封装结构确定出所需的电感后,可以在设置重布线层实现多个声波滤波器之间的高密度互连的同时,形成电感。可以缩减声波滤波器封装结构中基板的尺寸和厚度,进而缩减整个声波滤波器封装结构的厚度和尺寸。
根据下面参考附图对示例性实施例的详细说明,本申请的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例、特征和方面,并且用于解释本申请的原理。
图1示出相关技术中声波滤波器封装结构的结构示意图。
图2、图3示出根据本申请一实施例的声波滤波器封装模组的结构示意图。
图4示出根据本申请一实施例的声波滤波器封装结构的结构示意图。
图5示出根据本申请一实施例的声波滤波器封装结构的制造方法的流程示意图。
图6示出根据本申请一实施例的一种电子设备的结构示意图。
附图标记说明:
1相关技术中的声波滤波器封装结构;
2本申请中的声波滤波器封装结构;10、10’声波滤波器封装模组;
100声波滤波器;101第一凸块;102裸片;103结构件;104密闭腔体;
20无源器件;21引脚;
41塑封层;300第一塑封层;40第二塑封层;
31、30基板;31-1、30-1基板中的布线层;30-2、31-2芯板;30-3、31-3基板中的介电保护层;
400第一保护层;K1第一过孔;
500重布线层;511第一介电保护层;512第一布线层;521第二介电保护层;522第二布线层;K2第二过孔;
600第二凸块;50第三凸块。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
为解决相关技术中声波滤波器封装结构所存在的问题,本申请提供一种声波滤波器封装结构及其制造方法以及电子设备。图2、图3示出根据本申请一实施例的声波滤波器封装模组的结构示意图。图4示出根据本申请一实施例的声波滤波器封装结构的结构示意图。其中,图2、图3中所示的声波滤波器封装模组10、10’不同,二者的区别在于声波滤波器封装模组10、10’中重布线层500的结构不同。图4所示的声波滤波器封装结构2中设置有图3所示的声波滤波器封装模组10’(或图2所示的声波滤波器封装模组10)。
其中,如图2、图3所示,声波滤波器封装模组10、10’均包括第一塑封层300、多个声波滤波器100、第一保护层400、重布线层500。
如图2、图3所示,每个声波滤波器100包括:裸片102、设置于裸片102的一面结构件103、设置于声波滤波器100的第一表面S1的多个第一凸块101,其中,结构件103内部形成有一个密闭腔体104,声波滤波器100的第一表面S1即为结构件103的远离裸片102的一面。其中,各声波滤波器可以为表面声波滤波器、体声波滤波器等用于实现声波滤波的滤波器。多个声波滤波器的厚度、尺寸可以为相同的,也可以是不完全相同的,还可以是完全不同的,本申请对此不作限制。
如图2、图3所示,所述第一塑封层300至少部分包裹每个声波滤波器100,且每个声波滤波器100的第一表面S1的多个第一凸块101被暴露出第一塑封层300。所述第一保护层400覆盖所述第一塑封层300的第一面,且所述第一保护层400中对应每个第一凸块101的位置分别设置有第一过孔K1。所述重布线层设置在所述第一保护层400的远离所述第一塑封层300的一面,且所述重布线层所述多个第一过孔K1与每个所述第一凸块101分别电连接。
其中,如图2、图3所示,声波滤波器封装模组10、10’还包括多个第二凸块600。所述多个第二凸块600设置于所述重布线层远离所述第一保护层400的一面,且与所述第二重布线层中的布线电连接。其中,第二凸块600可以为铜柱、锡球等等,以便于声波滤波器封装模组10、10’可以通过多个第二凸块600电连接到基板30上。
在一种可能的实现方式中,如图4所示,声波滤波器封装结构2包括上述声波滤波器封装模组10’(或声波滤波器封装模组10)、无源器件20、第二塑封层40和基板30。
所述声波滤波器封装模组10’和所述无源器件20焊接固定在所述基板30上、且所述声波滤波器封装模组10’和所述无源器件20与所述基板30电连接。所述第二塑封层40至少部分包裹所述声波滤波器封装模组10’和所述无源器件20,且所述无源器件20的多个引脚21的部分表面、以及所述声波滤波器封装模组10’的多个第二凸块600被暴露出所述第二塑封层40。
其中,无源器件20可以是电阻、电容等无源器件,且无源器件可以通过低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)技术集成在一起。声波滤波器封装结构2还可以包括功率放大器,低噪声放大器等为实现声波滤波器封装结构2功能的有源器件,有源器件也电连接到基板30上。
其中,如图4所示,基板30包括布线层30-1、芯板30-2和介电保护层30-3。芯板31-2的相对设置的第一面和/或第二面上也可以设置有重布线层,每个重布线层包括至少一层布线 层30-1以及包裹布线层30-1的用于绝缘的介电保护层30-3。基板30还设置有多个第三凸块50。每个第三凸块50与基板30中布线层30-1中的布线电连接。
本申请所提供的声波滤波器封装结构2,其中的多个声波滤波器100整合在一个声波滤波器封装模组中,并在声波滤波器封装模组中用第一塑封层300包裹各声波滤波器100,使得制造声波滤波器封装结构2时可以一次性将包括声波滤波器封装模组固定安装到基板30上,相比于相关技术中分别将各声波滤波器安装固定到基板上,能够提高声波滤波器封装结构2的良率以及效能可控性。
且由于先在声波滤波器封装模组中通过重布线层已经实现了多个声波滤波器100之间的高密度互连,制造声波滤波器封装结构2仅需要在基板中实现声波滤波器封装模组与无源器件20之间的互连,可以减少基板30中布线层30-1的层数,缩减基板30的厚度和尺寸,使得声波滤波器封装结构2的厚度、尺寸得以缩减,能够满足更小尺寸电子设备安装整合需求,扩大了声波滤波器封装结构2的使用范围。图1中相关技术中的声波滤波器封装结构1为满足装置的设置要求基板31需要至少设置7层,其厚度h2至少为350μm。而本申请如图4所提供的声波滤波器封装结构2的基板30的厚度h1可以为175μm~225μm,可见本申请如图4所示的声波滤波器封装结构2的厚度及尺寸能够得以缩减。
再有由于被第一塑封层300包裹的各声波滤波器100所能承受的塑封压力得到显著提升,本申请中将声波滤波器封装模组安装到基板30上,能以高压塑封形成第二塑封层40,最终得到声波滤波器封装结构2,使得声波滤波器封装结构2中声波滤波器100的耐膜压性能、结构稳定性得到提升,也使得声波滤波器封装结构2的效能可控性得到进一步提升。
在一种可能的实现方式中,多个声波滤波器100中至少一个声波滤波器100的与所述第一表面S1相对设置的第二表面S2被暴露出第一塑封层300。其中,若每个声波滤波器100的第二表面S2处于同一水平面,则每个声波滤波器100的第二表面S2可以均被暴露出第一塑封层300,也即使得第一塑封层300远离第一保护层400的一面可以与每个声波滤波器100的第二表面S2平行。若每个声波滤波器100的第二表面S2处于不完全相同的水平面,则第一塑封层300可以至少暴露出多个声波滤波器100中第二表面S2相对凸出的声波滤波器100的第二表面S2,第一塑封层300远离第一保护层400的一面可以与第二表面S2被暴露的声波滤波器100的第二表面S2平行。这样,使得第一塑封层的厚度减小,进而可以缩减声波滤波器封装模组的厚度和尺寸。
其中,利用第一塑封层300包裹每个声波滤波器100,在基于声波滤波器封装模组制造声波滤波器封装结构时,声波滤波器所能承受的塑封压力得到显著提升,可以高压塑封形成声波滤波器封装结构,使得声波滤波器封装结构中声波滤波器的耐膜压性能、结构稳定性得到提升,也使得声波滤波器封装结构的效能可控性得到进一步提升。
其中,本申请中的第一过孔以及下文中的第二过孔等过孔可以利用硅通孔技术(Through-Silicon-Via,TSV)等进行制造。每个过孔可以为不同位置的直径一致的孔,也即形如“圆柱”的孔。或者,过孔可以为不同位置的直径不完全一致的孔,例如,形如“圆台”的孔(如图2、图3所示),形如“圆柱”与“圆台”组合在一起的形状的孔,等等。可以根据电连接需要对过孔的形状进行设置,本申请对此不作限制。
在一种可能的实现方式中,重布线层500包括至少一层布线层和至少一层介电保护层。每层介电保护层用于至少部分包裹对应的一层所述布线层,每层所述布线层靠近所述多个声 波滤波器100的一面被暴露出所述介电保护层,每层所述介电保护层中设置有与所包裹的所述布线层电连接的多个第二过孔K2。可以根据声波滤波器封装结构中声波滤波器的数量、声波滤波器之间的互连需求对声波滤波器封装模组中重布线层500的布线层的层数进行设置,声波滤波器的数量、互连需求越高,重布线层500的布线层的层数就可以设置的越多,保证实现多个声波滤波器100之间的高密度互连,以使得声波滤波器封装结构2的基板30中布线层的层数得以减少,基板30的厚度和尺寸能够缩减,进而缩减声波滤波器封装结构2的厚度、尺寸。且每层布线层靠近多个声波滤波器100的一面被暴露出介电保护层,可以通过暴露的布线直接进行布线层之间的电连接,缩减声波滤波器封装模组的厚度和尺寸。以下结合图2、图3包括重布线层层数不同的两个声波滤波器封装模组10、10’的结构设置进行说明。
如图2所示,所述声波滤波器封装模组10中重布线层500包括第一布线层512和第一介电保护层511。所述第一布线层512覆盖在所述第一保护层511远离所述第一塑封层300的一面,且所述第一布线层512中的被裸露出第一介电保护层511的布线通过所述多个第一过孔K1电连接到每个所述第一凸块101。所述第一介电保护层511用于至少部分包裹所述第一布线层512且所述第一布线层512靠近所述第一保护层400的一面(也即与每个所述第一凸块101连接的裸露的布线)被暴露出所述第一介电保护层511,且所述第一介电保护层511中设置有多个第二过孔K2。则所述多个第二凸块600设置于所述第一介电保护层511远离所述第一布线层512的一面上分别与第一介电保护层511中每个所述第二过孔K2对应的位置,每个第二凸块600覆盖在对应的第二过孔K2处且与所覆盖的第二过孔K2电连接。
如图3所示,声波滤波器封装模组10’中重布线层500除包括第一布线层512、第一介电保护层511,还可以包括第二布线层522和第二介电保护层521。
其中,所述第一布线层512覆盖在所述第一保护层511远离所述第一塑封层300的一面,且所述第一布线层512中的被裸露出第一介电保护层511的布线通过所述多个第一过孔K1电连接到每个所述第一凸块101。所述第一介电保护层511用于至少部分包裹所述第一布线层512且所述第一布线层512靠近所述第一保护层400的一面(也即与每个所述第一凸块101连接的裸露的布线)被暴露出所述第一介电保护层511,且所述第一介电保护层511中设置有多个第二过孔K2。第二布线层522覆盖在第一介电保护层511远离第一布线层512的一面,且第二布线层522中的布线通过第一介电保护层511中的多个第二过孔K2与第一布线层512中的布线电连接。第二介电保护层521用于至少部分包裹第二布线层522且第二布线层522靠近所述第一介电保护层511的一面被暴露出第二介电保护层521,且第二介电保护层521中设置有与所述第二布线层522中的布线电连接的多个第二过孔K2。则多个第二凸块600设置于第二介电保护层521远离第二布线层522的一面上分别与第二介电保护层521中每个第二过孔K2对应的位置,每个第二凸块600覆盖在对应的第二过孔K2处且与所覆盖的第二过孔K2电连接。
而由于声波滤波器封装模组中重布线层内布线层的层数的不同,其结构上也存在一定区别,参照上述包括不同层数的布线层和介电保护层的重布线层的声波滤波器封装模组10、10’的结构设置,可以对包括2层布线层以上的重布线层的声波滤波器封装模组的结构进行设置区别,实现多个声波滤波器之间的高密度互连,制造不同的声波滤波器封装模组。
在一种可能的实现方式中,所述声波滤波器封装模组10或10’还包括电感,所述重布线层500中的布线还用于形成所述电感。也即所述重布线层500中的至少一层布线层用于形成 所述电感。所述电感用于调节声波滤波器封装结构2的电学特性。相关技术中的声波滤波器封装结构1(参见图1),由于其包含多个声波滤波器和多个辅助器件,不同器件的工作电压、电流等存在差异,器件之间也会存在电磁干扰,装置本身也会受外界的电磁干扰、噪声等影响,因此需要参考不同器件之间的差异、器件之间的电磁干扰情况、外界影响等因素对声波滤波器封装结构1的电路整体的不利影响,通过设置电感来降低或避免这些不利影响,相关技术中通过基板31中的多个布线层31-1实现电感的设置,但这样会增加基板的厚度和尺寸。而本申请中利用声波滤波器封装模组中的重布线层500形成整个声波滤波器封装结构2所需的电感,代替现有技术中在基板中设置电感的方案,可以缩减声波滤波器封装结构2中基板30的尺寸和厚度,进而缩减整个声波滤波器封装结构2的厚度和尺寸。
其中,由于一个声波滤波器封装模组中重布线层的布线层的层数可以是一层(如图2所示)、两层(如图3所示)或者两层以上。则,声波滤波器封装模组中的电感可以利用重布线层中的同一布线层中的布线实现,也可以利用不同布线层中的布线实现。
在本申请中,第一保护层和各介电保护层的材料可以是聚酰亚胺(Polyimide,PI)、苯并环丁烯BCB、氮化硅(SiN)等能够实现绝缘保护的材料。各布线层中到导线可以是铜等金属。第一塑封层300的材料可以是PI等能够通过塑封方式实现针对声波滤波器的塑封的材料。
图5示出根据本申请一实施例的声波滤波器封装结构的制造方法的流程示意图。如图5所示,该方法包括步骤S11至步骤S17。通过该方法可以借助简单、易于实现的工艺流程制造出尺寸和厚度小的上述声波滤波器封装结构2。而且,将多个声波滤波器临时键合到载体晶圆后进行塑封可以进一步缩减声波滤波器封装模组的厚度和尺寸,塑封多个声波滤波器后直接在第一塑封层上依次形成第一保护层和重布线层,实现了声波滤波器封装模组中各层的直接制备,也能使声波滤波器封装模组的厚度和尺寸得以缩减。其中,图5以制造包括上述声波滤波器封装模组10’的声波滤波器封装结构的制造过程为例对本申请实施例提供的声波滤波器封装结构的制造方法进行说明。
在步骤S11中,将多个声波滤波器100临时键合到载体晶圆200上,形成第一塑封层300,每个声波滤波器100具有相对设置的第一表面S1和第二表面S2,各声波滤波器100的第一凸块101位于第一表面S1,每个声波滤波器100的第一表面S1与所述载体晶圆200接触。将多个声波滤波器100临时键合到载体晶圆200后再执行步骤S12进行塑封可以进一步缩减声波滤波器封装模组的厚度和尺寸。
其中,载体晶圆200的材料可以为半导体(例如硅、锗、砷化镓、绝缘体上硅等)、玻璃、石英、碳化硅、氧化铝、环氧树脂、聚氨酯等等。可以通过涂覆键合胶水、贴键合膜和在载体晶圆200上沉积激光释放层等方式,将各声波滤波器100临时键合到载体晶圆200上。例如,如图5所示,可以通过键合胶水201将每个声波滤波器100临时键合到载体晶圆200。可以根据所需制造的声波滤波器封装模组中每个声波滤波器100之间的连接关系等对每个声波滤波器在载体晶圆200上的位置进行设置,以简化后续重布线层中布线的布局设计。
其中,载体晶圆200的尺寸大于甚至可以远大于声波滤波器封装模组中多个声波滤波器100所占用的面积。同一载体晶圆200上可以同时进行多个声波滤波器封装模组中声波滤波器100的临时键合,并在步骤S16之后进行切割,得到多个声波滤波器封装模组。
在步骤S12中,对所述多个声波滤波器100进行塑封,形成用于至少部分包裹每个所述声波滤波器100的第一塑封层300且每个所述声波滤波器100第一表面S1多个第一凸块101 被暴露出第一塑封层300。
在步骤S13中,将多个声波滤波器100以及第一塑封层300整体从所述载体晶圆200上剥离。其中,可以根据临时键合的方式确定剥离载体晶圆200的剥离方式,剥离方式可以为热滑动剥离、机械剥离、激光剥离等。
在步骤S14中,在所述第一塑封层300暴露出每个声波滤波器100的第一面形成第一保护层400,并在所述第一保护层400中对应每个第一凸块101的位置形成第一过孔K1。
在步骤S15中,在所述第一保护层400远离所述第一塑封层300的一面形成重布线层,且使所述重布线层500中的布线通过所述多个第一过孔K1与每个所述第一凸块101分别电连接,得到声波滤波器封装模组10’。其中,步骤S15可以包括步骤S15-1、步骤S15-2和步骤S15-3。
在步骤S15-1中,在所述第一保护层400远离所述第一塑封层300的一面形成第一布线层512,并使所述第一布线层512中的布线通过所述多个第一过孔K1电连接到每个所述第一凸块101。而后在所述第一布线层512远离所述第一保护层400的一面形成用于包裹所述第一布线层512当前裸露的表面的第一介电保护层511,以及在所述第一介电保护层511中形成多个第二过孔K2。
在步骤S15-2中,在所述第一介电保护层511远离所述第一塑封层300的一面形成第二布线层522,并使所述第二布线层522中的布线通过所述第一介电保护层511中的多个第二过孔K2与所述第一布线层512中的布线电连接。而后在所述第一介电保护层511远离所述第一布线层512的一面形成用于包裹所述第二布线层522的裸露表面的第二介电保护层521,且在所述第二介电保护层521中形成与所述第二布线层522中的布线电连接的多个第二过孔K2。
在步骤S15-3中,在所述第二介电保护层521的远离所述第一保护层400的一面,制造与第二介电保护层521中每个第二过孔K2电连接的第二凸块600,每个第二凸块600覆盖对应的第二过孔K2上,以通过第二过孔K2与第二布线层522中的布线电连接,得到声波滤波器封装模组10’。
其中,上述制造声波滤波器封装模组10’制造过程中可以利用扇出工艺(fan-out)、重布线层工艺进行声波滤波器封装模组10’的制造。
其中,参照步骤S15中重布线层的制造过程,在重布线层500中的布线层的层数不为2层时,可以参照上述步骤S15进行布线层的层数不为2层的重布线层500的制造。
在步骤S16中,将声波滤波器封装模组10’和无源器件20分别焊接固定到预先制备的基板30上,以使所述声波滤波器封装模组10’、所述无源器件20分别与所述基板30电连接。
在步骤S17中,至少对声波滤波器封装模组10’和无源器件20进行塑封,形成用于至少部分包裹所述声波滤波器封装模组10’和所述无源器件20的裸露表面的第二塑封层40。而后在基板30远离声波滤波器封装模组10’的一面制造多个第三凸块50,得到声波滤波器封装结构2。
在一种可能的实现方式中,声波滤波器封装模组还包括电感,且在基于声波滤波器封装结构3确定出所需的电感的参数(如电感量等)后,基于电感的参数对重布线层中的布线层进行布局设计,并在步骤S15中,基于考虑了电感的参数的布局设计进行重布线层500的制造,以形成电感,所述电感用于调节声波滤波器封装结构2的电学特性。这样,可以在设置 重布线层实现多个声波滤波器之间的高密度互连的同时,形成电感,可以缩减声波滤波器封装结构中基板30的尺寸和厚度,进而缩减整个声波滤波器封装结构的厚度和尺寸。
在一种可能的实现方式中,该方法还可以包括:对所述声波滤波器封装模组的第一塑封层300和/或第二塑封层40进行减薄处理。
这样,减薄第一塑封层,可以缩减声波滤波器封装模组的厚度,进而可以缩减声波滤波器封装结构的厚度和尺寸。其中,可以通过研磨等方式对第一塑封层300进行减薄,本申请对此不作限制。声波滤波器封装模组的第一塑封层300被减薄后可以使得各声波滤波器100第二表面S2上覆盖的第一塑封层300的厚度减小。或者也可以减薄第一塑封层300的厚度,直至暴露出至少一个声波滤波器100的第二表面S2,也即:若各声波滤波器100的第二表面S2处于同一水平面,则可以减薄使得第一塑封层300远离第一保护层400的一面与各声波滤波器100的第二表面S2平行,暴露出各声波滤波器100的第二表面S2;若各声波滤波器100的第二表面S2处于不完全相同的水平面,则可以减薄使得第一塑封层300远离第一保护层400的一面与多个声波滤波器100中第二表面S2相对凸出的声波滤波器100的第二表面S2平行。
其中,可以继续对第二塑封层进行减薄,减薄方式和减薄程度与对第一塑封层进行减薄的方式相似,此处不予赘述。这样,也可以缩减声波滤波器封装结构的厚度和尺寸。
可以理解的是,上述声波滤波器封装模组、声波滤波器封装结构的制造方法仅是本申请提供的一种用于制造本申请所提供的声波滤波器封装模组、声波滤波器封装结构的一种示例性实现方式,本领域技术人员还可以根据实际需要对制造声波滤波器封装模组、声波滤波器封装结构的方法进行设置,本申请对此不作限制。
本申请还提供一种电子设备,包括:
上述声波滤波器封装结构2;以及
印制电路板PCB,所述声波滤波器封装结构2与所述PCB电连接。
图6示出根据本申请一实施例的一种电子设备的结构示意图。如图6所示,电子设备可以包括手机、可折叠电子设备、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificial intelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备、或智慧城市设备中的至少一种。本申请实施例对该电子设备的具体类型不作限制。
电子设备可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接头130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等组成部分。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
其中,电子设备还包括PCB(图中未示出),电子设备中的处理器110,外部存储器接口 120,内部存储器121,通用串行总线接头130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块卡接口195等组成部分中的部分或全部,分别直接或间接电连接到PCB。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
其中,移动通信模块150还可以包括本申请所提供的声波滤波器封装结构,且声波滤波器封装结构中的多个声波滤波器即为上述“移动通信模块150的多个滤波器”中的全部或部分声波滤波器。
附图中的流程图和框图显示了根据本申请的多个实施例的装置、***、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。
也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行相应的功能或动作的硬件(例如电路或ASIC(Application Specific Integrated Circuit,专用集成电路))来实现,或者可以用硬件和软件的组合,如固件等来实现。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其它变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其它单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围的情况下,对于本技术领域的普通 技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (15)

  1. 一种声波滤波器封装结构,其特征在于,所述声波滤波器封装结构包括声波滤波器封装模组,所述声波滤波器封装模组包括:第一塑封层、多个声波滤波器、第一保护层和重布线层;
    所述第一塑封层至少部分包裹每个所述声波滤波器,且每个所述声波滤波器的第一表面的多个第一凸块被暴露出所述第一塑封层;
    所述第一保护层覆盖所述第一塑封层的第一面,且所述第一保护层中对应每个所述第一凸块的位置分别设置有第一过孔;
    所述重布线层设置在所述第一保护层的远离所述第一塑封层的一面,且所述重布线层通过所述多个第一过孔与每个所述第一凸块分别电连接。
  2. 根据权利要求1所述的声波滤波器封装结构,其特征在于,所述声波滤波器封装结构还包括:无源器件、第二塑封层和基板;
    所述声波滤波器封装模组和所述无源器件焊接固定在所述基板上、且所述声波滤波器封装模组和所述无源器件与所述基板电连接;
    所述第二塑封层至少部分包裹所述声波滤波器封装模组和所述无源器件,且所述无源器件的多个引脚的部分表面、以及所述声波滤波器封装模组的多个第二凸块被暴露出所述第二塑封层。
  3. 根据权利要求1或2所述的声波滤波器封装结构,其特征在于,所述重布线层包括:至少一层布线层和至少一层介电保护层,每层介电保护层用于至少部分包裹对应的一层所述布线层,每层所述布线层靠近所述多个声波滤波器的一面被暴露出所述介电保护层,每层所述介电保护层中设置有与所包裹的所述布线层电连接的多个第二过孔。
  4. 根据权利要求3所述的声波滤波器封装结构,其特征在于,所述重布线层包括第一布线层和第一介电保护层;
    所述第一布线层覆盖在所述第一保护层远离所述第一塑封层的一面,且所述第一布线层中的布线通过所述多个第一过孔分别与每个所述第一凸块电连接;
    所述第一介电保护层用于至少部分包裹所述第一布线层且所述第一布线层靠近所述第一保护层的一面被暴露出所述第一介电保护层,且所述第一介电保护层中设置有与所述第一布线层中的布线电连接的所述多个第二过孔。
  5. 根据权利要求4所述的声波滤波器封装结构,其特征在于,所述重布线层还包括第二布线层和第二介电保护层;
    所述第二布线层覆盖在所述第一介电保护层远离所述第一布线层的一面,且所述第二布线层中的布线通过所述第一介电保护层中的多个第二过孔与所述第一布线层中的布线电连接;
    所述第二介电保护层用于至少部分包裹所述第二布线层且所述第二布线层靠近所述第一介电保护层的一面被暴露出所述第二介电保护层,且所述第二介电保护层中设置有与所述第二布线层中的布线电连接的多个第二过孔。
  6. 根据权利要求1-5任意一项所述的声波滤波器封装结构,其特征在于,所述声波滤波器封装模组还包括电感,所述重布线层中的布线还用于形成所述电感。
  7. 根据权利要求1-6任意一项所述的声波滤波器封装结构,其特征在于,至少一个所述声波滤波器的与所述第一表面相对设置的第二表面被暴露出所述第一塑封层。
  8. 一种电子设备,其特征在于,包括:
    如权利要求1-7任意一项所述的声波滤波器封装结构;以及
    印制电路板PCB,所述声波滤波器封装结构与所述PCB电连接。
  9. 一种声波滤波器封装结构的制造方法,其特征在于,所述声波滤波器封装结构包括声波滤波器封装模组,所述方法包括:
    将多个声波滤波器临时键合到载体晶圆上;
    对所述多个声波滤波器进行塑封,形成用于至少部分包裹每个所述声波滤波器的第一塑封层,以使每个所述声波滤波器的第一表面的多个第一凸块被暴露出所述第一塑封层;
    将所述多个声波滤波器以及所述第一塑封层从所述载体晶圆上剥离;
    在所述第一塑封层暴露出每个所述声波滤波器的第一面形成第一保护层,并在所述第一保护层中对应每个所述第一凸块的位置分别形成第一过孔;
    在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,得到声波滤波器封装模组。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    将所述声波滤波器封装模组、无源器件焊接固定到预先制备的基板上,以使所述声波滤波器封装模组、所述无源器件分别与所述基板电连接;
    至少对所述声波滤波器封装模组和所述无源器件进行塑封,形成用于至少部分包裹所述声波滤波器封装模组和所述无源器件的裸露表面的第二塑封层,得到声波滤波器封装结构。
  11. 根据权利要求9或10所述的方法,其特征在于,所述重布线层包括:至少一层布线层和至少一层介电保护层,每层介电保护层用于至少部分包裹对应的一层所述布线层,每层所述布线层靠近所述多个声波滤波器的一面被暴露出所述介电保护层,每层所述介电保护层中设置有与所包裹的所述布线层电连接的多个第二过孔。
  12. 根据权利要求11所述的方法,其特征在于,所述重布线层包括第一布线层和第一介电保护层;
    其中,在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,包括:
    在所述第一保护层远离所述第一塑封层的一面形成第一布线层,并使所述第一布线层中的布线通过所述多个第一过孔电连接到每个所述第一凸块;
    在所述所述第一保护层远离所述第一塑封层的一面形成用于包裹所述第一布线层的裸露表面的第一介电保护层,以及在所述第一介电保护层中形成与所述第一布线层中的布线电连接的多个第二过孔。
  13. 根据权利要求12所述的方法,其特征在于,所述重布线层还包括第二布线层和第二介电保护层;
    其中,在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,还包括:
    在所述第一介电保护层远离所述第一布线层的一面形成第二布线层,并使所述第二布线层中的布线通过所述第一介电保护层中的多个第二过孔与所述第一布线层中的布线电连接;
    在所述第一介电保护层远离所述第一布线层的一面形成用于包裹所述第二布线层的裸露表面的第二介电保护层,以及在所述第二介电层中形成与所述第二布线层中的布线电连接的多个第二过孔。
  14. 根据权利要求9-13任意一项所述的方法,其特征在于,所述方法还包括:
    对所述第一塑封层和/或第二塑封层进行减薄处理。
  15. 根据权利要求9-14任意一项所述的方法,其特征在于,在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,包括:
    在所述第一保护层远离所述第一塑封层的一面形成重布线层,且使所述重布线层中的布线通过所述多个第一过孔与每个所述第一凸块分别电连接,以及利用所述重布线层中的布线形成所述声波滤波器封装结构的电感。
PCT/CN2021/095514 2021-05-24 2021-05-24 声波滤波器封装结构及其制造方法、电子设备 WO2022246601A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180088167.6A CN116711215A (zh) 2021-05-24 2021-05-24 声波滤波器封装结构及其制造方法、电子设备
PCT/CN2021/095514 WO2022246601A1 (zh) 2021-05-24 2021-05-24 声波滤波器封装结构及其制造方法、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/095514 WO2022246601A1 (zh) 2021-05-24 2021-05-24 声波滤波器封装结构及其制造方法、电子设备

Publications (1)

Publication Number Publication Date
WO2022246601A1 true WO2022246601A1 (zh) 2022-12-01

Family

ID=84229391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095514 WO2022246601A1 (zh) 2021-05-24 2021-05-24 声波滤波器封装结构及其制造方法、电子设备

Country Status (2)

Country Link
CN (1) CN116711215A (zh)
WO (1) WO2022246601A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223789A1 (en) * 2011-03-01 2012-09-06 Takashi Inoue Elastic-wave filter device and composite device including the same
US20130321102A1 (en) * 2012-06-04 2013-12-05 Taiyo Yuden Co., Ltd. Acoustic wave device
US20140097913A1 (en) * 2012-10-09 2014-04-10 Mesaplexx Pty Ltd Multi-mode filter
US20140197915A1 (en) * 2013-01-11 2014-07-17 Taiyo Yuden Co., Ltd. Electronic component
CN110120373A (zh) * 2018-02-05 2019-08-13 日月光半导体制造股份有限公司 半导体封装结构和其制造方法
CN112687629A (zh) * 2020-12-25 2021-04-20 上海易卜半导体有限公司 半导体封装方法、半导体组件以及包含其的电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223789A1 (en) * 2011-03-01 2012-09-06 Takashi Inoue Elastic-wave filter device and composite device including the same
US20130321102A1 (en) * 2012-06-04 2013-12-05 Taiyo Yuden Co., Ltd. Acoustic wave device
US20140097913A1 (en) * 2012-10-09 2014-04-10 Mesaplexx Pty Ltd Multi-mode filter
US20140197915A1 (en) * 2013-01-11 2014-07-17 Taiyo Yuden Co., Ltd. Electronic component
CN110120373A (zh) * 2018-02-05 2019-08-13 日月光半导体制造股份有限公司 半导体封装结构和其制造方法
CN112687629A (zh) * 2020-12-25 2021-04-20 上海易卜半导体有限公司 半导体封装方法、半导体组件以及包含其的电子设备

Also Published As

Publication number Publication date
CN116711215A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US7872356B2 (en) Die stacking system and method
US11335669B2 (en) Wafer level chip scale filter packaging using semiconductor wafers with through wafer vias
TW201633501A (zh) 具改良互連帶寬之堆疊半導體裝置封裝體
KR20100032909A (ko) 후면 수동 디바이스 집적을 이용하는 반도체 다이
US20050211749A1 (en) Bumpless die and heat spreader lid module bonded to bumped die carrier
TW202203397A (zh) 包括基板、整合元件和具有底切的包封層的封裝
JP2014170811A (ja) CSP(ChipSizePackage)
CN114503257A (zh) 超低剖面堆叠rdl半导体封装件
WO2022246601A1 (zh) 声波滤波器封装结构及其制造方法、电子设备
US20210376810A1 (en) Package comprising stacked filters with a shared substrate cap
US20050180122A1 (en) Electronic circuit module
KR102598381B1 (ko) 적층된 다이들을 이용하는 반도체 다이(die) 모듈을 용이하게 하기 위해 분할된 양면 금속화 구조물들을 이용하는 집적 회로(ic) 패키지들, 및 그의 제조 방법들
US11948853B2 (en) High-power die heat sink
US11929299B2 (en) High-power die heat sink with vertical heat path
CN108364948A (zh) 射频前端微***模块及其制造方法
TW202220153A (zh) 重分佈層連接
WO2022233058A1 (zh) 一种封装结构及其制作方法、电子设备
CN115336020B (zh) 玻璃基板的热路径
TWI382515B (zh) 無線收發模組
WO2022199481A1 (zh) 一种集成电路、芯片及电子设备
US11626657B2 (en) Antenna packaging module and making method thereof
KR20100059053A (ko) 안테나가 실장된 sip 구조의 통신 모듈
WO2023019516A1 (zh) 芯片封装结构及电子设备
TW202245173A (zh) 具有垂直熱路徑的高功率晶粒散熱器
TW202228389A (zh) 用於射頻濾波器的混合固定封裝

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180088167.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942190

Country of ref document: EP

Kind code of ref document: A1