WO2022244195A1 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
WO2022244195A1
WO2022244195A1 PCT/JP2021/019178 JP2021019178W WO2022244195A1 WO 2022244195 A1 WO2022244195 A1 WO 2022244195A1 JP 2021019178 W JP2021019178 W JP 2021019178W WO 2022244195 A1 WO2022244195 A1 WO 2022244195A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage tank
heat
water heater
fluid
Prior art date
Application number
PCT/JP2021/019178
Other languages
French (fr)
Japanese (ja)
Inventor
慶和 矢次
純一 中園
有理子 西村
健 篠▲崎▼
誠治 中島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023522125A priority Critical patent/JPWO2022244195A1/ja
Priority to PCT/JP2021/019178 priority patent/WO2022244195A1/en
Publication of WO2022244195A1 publication Critical patent/WO2022244195A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • This disclosure relates to a water heater equipped with a heat storage tank that stores heat generated by a heat source.
  • Such a water heater has a configuration in which heat generated in advance by a heat source is stored in a heat storage tank unit when hot water is supplied, and the stored heat is used to heat feed water to supply hot water.
  • a heat storage tank unit used in a water heater a technique is known in which the shape of the tank is made cylindrical, mainly for the purpose of improving pressure resistance.
  • a heat storage tank is formed of a plurality of plates, the interval between adjacent plates is kept constant, a plurality of heat storage materials are arranged between the plates, and a flow path portion where water flows between the plates
  • a water heater is disclosed that forms a
  • Patent Document 1 has a problem that if the plate portion is damaged due to corrosion or the like, the heat storage material may be mixed with the water supply.
  • the present disclosure has been made in view of the problems in the conventional technology described above, and aims to provide a water heater that can prevent the heat storage material from being mixed into the water supply.
  • a water heater includes a heating device that heats a fluid, and a heat storage tank unit that stores heat by storing the fluid heated by the heating device, and uses the heat stored in the heat storage tank unit.
  • the heat storage tank unit includes a heat storage unit that stores the heated fluid, the heat storage unit being a first heat storage tank into which the heated fluid flows; a second heat storage tank that contains a heat storage material different from the fluid, is formed separately from the first heat storage tank, and is disposed in contact with the first heat storage tank;
  • the first heat storage tank that constitutes the heat storage section that stores the heated fluid and the second heat storage tank that stores the heat storage material are formed separately. Therefore, even if the second heat storage tank is damaged and the heat storage material inside leaks out, it is possible to prevent the heat storage material from entering the water supply.
  • FIG. 1 is a schematic diagram showing an example of a configuration of a water heater according to Embodiment 1;
  • FIG. FIG. 2 is a perspective view showing an example of the structure of the heat storage unit shown in FIG. 1;
  • FIG. 2 is a top view showing an example of the structure of the heat storage unit in FIG. 1;
  • FIG. 4 is a cross-sectional view of the heat storage unit shown in FIG. 3 taken along the line AA;
  • FIG. 11 is a perspective view showing an example of the structure of a heat storage unit according to Embodiment 2;
  • FIG. 10 is a top view showing an example of the structure of a heat storage unit according to Embodiment 2;
  • 7 is a cross-sectional view of the heat storage unit shown in FIG. 6 taken along the line BB.
  • FIG. FIG. 7 is a cross-sectional view taken along line BB of a modification of the heat storage unit shown in FIG. 6;
  • Embodiment 1 A water heater according to Embodiment 1 will be described.
  • the water heater according to the first embodiment uses a heating device such as a heat pump to heat a fluid to store heat during late-night hours when the hourly contract power unit price is low, and uses the stored heat for hot water supply. It is.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a water heater according to Embodiment 1.
  • water heater 100 includes heat storage tank unit 1 and heating device 2 .
  • the heat storage tank unit 1 and the heating device 2 are pipe-connected on site.
  • the heat storage tank unit 1 and the heating device 2 are connected by pipes 3 and 4 .
  • a water supply pipe 5 and a hot water supply pipe 6 are connected to the heat storage tank unit 1 .
  • the water supply pipe 5 and the hot water supply pipe 6 are connected to terminals such as a shower and a faucet at the site, respectively.
  • the heating device 2 is heating means for heating the fluid supplied from the heat storage tank unit 1 .
  • the heating device 2 for example, an electric heater, a gas boiler, a heat pump unit, or the like is used. In this example, a case where a heat pump unit is used as the heating device 2 will be described.
  • the heating device 2 includes a compressor 21 , a heating heat exchanger 22 , a pressure reducing device 23 and an endothermic heat exchanger 24 .
  • the compressor 21, the heating heat exchanger 22, the pressure reducing device 23, and the endothermic heat exchanger 24 are connected in a ring by refrigerant pipes to form a refrigerant circuit in which a refrigerant such as carbon dioxide circulates.
  • the compressor 21 sucks in a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges a high-temperature, high-pressure refrigerant.
  • the compressor 21 is, for example, an inverter compressor or the like whose capacity, which is the amount of refrigerant delivered per unit time, is controlled by changing the operating frequency.
  • the heating heat exchanger 22 has two flow paths formed therein: a refrigerant-side flow path through which the refrigerant circulating in the refrigerant circuit flows, and a fluid-side flow path through which the fluid circulating in the boiling circuit described later flows. there is The heating heat exchanger 22 exchanges heat between the refrigerant flowing through the refrigerant-side channel and the fluid flowing through the fluid-side channel.
  • the heating heat exchanger 22 functions as a condenser that radiates the heat of the refrigerant to the fluid to condense the refrigerant.
  • the decompression device 23 is, for example, an expansion valve, and decompresses and expands the refrigerant.
  • the decompression device 23 is composed of, for example, a valve such as an electronic expansion valve whose degree of opening can be controlled.
  • the endothermic heat exchanger 24 exchanges heat between the refrigerant and the air supplied by a nearby fan (not shown) or the like.
  • the endothermic heat exchanger 24 evaporates the refrigerant and cools the air with the heat of vaporization.
  • a fin-and-tube heat exchanger is used as the endothermic heat exchanger 24.
  • the heat storage tank unit 1 stores heat by storing the fluid heated by the heating device 2 .
  • the heat storage tank unit 1 includes a heat storage unit 10, a heating device pump 11, a hot water supply pump 12, a heat exchanger 13, and a mixing valve 14, and is connected to a water supply pipe 5 and a hot water supply pipe 6 connected to external terminals.
  • the fluid circulates through the heat storage section 10, the heating device pump 11, the endothermic heat exchanger 24 of the heating device 2, and the heat storage section 10, thereby forming a boiling circuit that heats the fluid.
  • fluid circulates through the heat storage unit 10, the heat exchanger 13, the hot water supply pump 12, and the heat storage unit 10, thereby forming a hot water supply heating circuit for heating water such as city water.
  • Water or antifreeze is used as the fluid that circulates in the boiling circuit and the hot water supply heating circuit. It is preferable to use water as the fluid because water is cheaper than antifreeze.
  • the heat storage unit 10 stores heated fluid supplied from the heating device 2 via the pipe 4 . Although details will be described later, an upper pipe 33 is provided above the heat storage unit 10, and a lower pipe 34 is provided below the heat storage unit 10 (see FIGS. 2 to 4).
  • the heat storage unit 10 is composed of a first heat storage tank 30 and a second heat storage tank 40 . A detailed configuration of the heat storage unit 10 will be described later.
  • the heating device pump 11 is driven by a motor (not shown) so as to send the fluid flowing out of the lower pipe 34 of the heat storage unit 10 to the heating heat exchanger 22 of the heating device 2 via the pipe 3 .
  • the hot water supply pump 12 is driven by a motor (not shown) so as to send the fluid flowing out of the upper pipe 33 of the heat storage unit 10 to the heat exchanger 13 .
  • the heat exchanger 13 is formed therein with two flow paths, a primary side flow path through which the fluid flowing out from the heat storage section 10 flows, and a secondary side flow path through which the fluid branched from the water supply pipe 5 flows. .
  • the heat exchanger 13 exchanges heat between fluids flowing through two channels formed inside.
  • the heat exchanger 13 is, for example, a plate-type heat exchanger, and is formed by processing metal such as stainless steel, aluminum, or copper into flat plates and laminating them.
  • the mixing valve 14 is, for example, a three-way valve, and has a first inlet connected to the heat exchanger 13, a second inlet connected to a flow path branched from the water supply pipe 5, and a hot water supply pipe 6. and an outlet.
  • the mixing valve 14 mixes the high-temperature fluid flowing into the first inlet and the fluid such as city water supplied through the water supply pipe 5 flowing into the second inlet, and causes the mixture to flow out from the outlet.
  • a temperature sensor (not shown) is provided on the downstream side of the mixing valve 14, and the mixing ratio of the fluids in the mixing valve 14 is controlled so that the temperature of the mixed fluid detected by the temperature sensor becomes the set temperature. be.
  • FIG. 2 is a perspective view showing an example of the structure of the heat storage unit in FIG. 1.
  • FIG. 3 is a top view showing an example of the structure of the heat storage unit in FIG. 1.
  • FIG. 4 is a cross-sectional view of the heat storage unit shown in FIG. 3, taken along the line AA.
  • the heat storage section 10 is composed of a first heat storage tank 30 and a second heat storage tank 40 formed separately from the first heat storage tank 30.
  • FIGS. 1 is a perspective view showing an example of the structure of the heat storage unit in FIG. 1.
  • FIG. 3 is a top view showing an example of the structure of the heat storage unit in FIG. 1.
  • FIG. 4 is a cross-sectional view of the heat storage unit shown in FIG. 3, taken along the line AA.
  • the heat storage section 10 is composed of a first heat storage tank 30 and a second heat storage tank 40 formed separately from the first heat storage tank 30.
  • the first heat storage tank 30 is formed in a hollow prismatic shape having a rectangular parallelepiped cross-sectional shape, and is made of stainless steel, for example.
  • the thickness of the sidewall of the first heat storage tank 30 is, for example, about 2 to 3 mm.
  • the first heat storage tank 30 has a stepped portion in the height direction (z direction), and is formed of a first stepped portion 31 on the lower side and a second stepped portion 32 on the upper side.
  • the height of the first stepped portion 31 is approximately 1.5 to 2 times the height of the second stepped portion 32 .
  • Each side of the first stepped portion 31 in the width direction (x direction) and the depth direction (y direction) is longer than each side of the second stepped portion 32 in the same direction by about 200 mm. That is, when the second stepped portion 32 is cut along a horizontal plane defined by the width direction (x direction) and the depth direction (y direction), the cut surface of the second stepped portion 32 is larger than the cut surface of the first stepped portion 31 similarly cut along the horizontal plane. is also small. Furthermore, on the same side surface of the first stepped portion 31 and the second stepped portion 32, the distance from the side surface of the first stepped portion 31 to the side surface of the second stepped portion 32 is approximately 100 mm.
  • first stepped portion 31 and the second stepped portion 32 By forming the first stepped portion 31 and the second stepped portion 32 in this way, when the first heat storage tank 30 is viewed from above, the intersection of the diagonal lines of the first stepped portion 31 and the second stepped portion 32 are at the same position in the width direction (x direction) and the depth direction (y direction).
  • An upper pipe 33 that protrudes upward is formed on the upper surface of the first stepped portion 31 .
  • a bottom pipe 34 that protrudes downward is formed on the bottom surface of the second stepped portion 32 .
  • the upper pipe 33 and the lower pipe 34 are formed so that the fluid stored inside the first heat storage tank 30 can flow in and out.
  • the upper pipe 33 and the lower pipe 34 are substantially parallel to each other in the width direction (x direction) and depth direction (y direction) from the intersection of the diagonal lines of the second stepped portion 32 . It is preferable that they are formed at the same position.
  • the second heat storage tank 40 is formed to cover and abut on the side surface of the second stepped portion 32 of the first heat storage tank 30 .
  • the outer periphery of the second heat storage tank 40 is formed to have the same dimensions as the outer periphery of the first stepped portion 31 of the first heat storage tank 30 .
  • the inner periphery of the second heat storage tank 40 is formed to have the same dimensions as the outer periphery of the second stepped portion 32 of the first heat storage tank 30 .
  • the second heat storage tank 40 is made of, for example, stainless steel and has a hollow prismatic shape with a cuboid cross section.
  • the thickness of the side wall of the second heat storage tank 40 is, for example, about 2 mm, and is the same as or thinner than the side wall of the first heat storage tank 30 .
  • the height of the second heat storage tank 40 is the same as the height of the second stepped portion 32 in the first heat storage tank 30 .
  • a heat storage material is stored in each of the first heat storage tank 30 and the second heat storage tank 40 .
  • Water is stored in the first heat storage tank 30 as a heat storage material.
  • a heat storage material different from that in the first heat storage tank 30 is stored in the second heat storage tank 40 .
  • a latent heat storage material is stored in the second heat storage tank 40 as a heat storage material.
  • a latent heat storage material is a heat storage material that stores latent heat as a result of a phase change from a solid to a liquid due to melting.
  • the sensible heat storage material refers to a heat storage material that stores sensible heat using temperature change without phase change. Since the water stored in the first heat storage tank 30 does not undergo a phase change, it is classified as a sensible heat storage material in this application.
  • the latent heat storage material may be, for example, a hydrate medium such as sodium acetate trihydrate or sodium thiosulfate pentahydrate, or an organic medium such as paraffin.
  • a hydrate medium such as sodium acetate trihydrate or sodium thiosulfate pentahydrate
  • an organic medium such as paraffin.
  • An example melting point of sodium acetate trihydrate is 58°C
  • an example melting point of sodium thiosulfate pentahydrate is 48°C
  • an example melting point of paraffin is 56°C.
  • An example of the heat storage density of these latent heat storage materials in a certain temperature range is 0.54 MJ/L for sodium acetate trihydrate and 0.28 MJ/L for paraffin.
  • sodium acetate trihydrate has a higher heat storage density than paraffin, but lacks stability in phase change due to the supercooling phenomenon in which the phase does not change from liquid to solid at the melting point. Therefore, from the viewpoint of stability as well as heat storage density, it is preferable to select a heat storage material such as paraffin that undergoes a stable phase change as the latent heat storage material. Further, since the latent heat storage material has a larger amount of heat storage than the sensible heat storage material, using the latent heat storage material as the heat storage material is advantageous for miniaturization of water heater 100 .
  • the inner periphery of the second heat storage tank 40 is preferably configured to have a thinner plate thickness than the outer periphery. This is to improve the heat transfer performance between the first heat storage tank 30 and the second heat storage tank 40 that are in contact with each other. Moreover, the same effect can be obtained by configuring the plate thickness of the second stepped portion 32 in the first heat storage tank 30 so as to be thinner than the plate thickness of the other portions.
  • a plurality of fin-shaped plate members may be arranged in the second heat storage tank 40 so as to extend from the inner circumference toward the outer circumference.
  • the fin-shaped plate material is desirably made of, for example, aluminum having a high thermal conductivity.
  • the inner wall of the second heat storage tank 40 may be subjected to processing such as fluorine coating that makes it difficult for paraffin, which is a latent heat storage material, to adhere.
  • processing such as fluorine coating that makes it difficult for paraffin, which is a latent heat storage material, to adhere.
  • the lower pipe 34 is the outlet through which the fluid flows from the heat storage unit 10 to the boiling circuit, that is, the outlet through which the fluid is supplied from the heat storage unit 10 to the heating device 2 .
  • the lower pipe 34 also serves as an inlet through which fluid flows into the heat storage unit 10 via the hot water supply heating circuit, that is, an inlet through which the fluid heat-exchanged in the heat exchanger 13 flows.
  • the upper pipe 33 is the inlet through which the fluid flows into the heat storage unit 10 via the boiling circuit, that is, the inlet through which the fluid heated by the heating device 2 flows into the heat storage unit 10 .
  • the upper pipe 33 also serves as an outlet for fluid flowing out from the heat storage unit 10 to the hot water heating circuit, that is, an outlet for supplying fluid from the heat storage unit 10 to the heat exchanger 13 .
  • the upper pipe 33 and the lower pipe 34 are parts that function as inlets and outlets when the fluid circulates through the two circulation paths. Therefore, the upper pipe 33 and the lower pipe 34 are provided with, for example, a T-shaped joint so that the flow path is branched into two.
  • the upper pipe 33 and the lower pipe 34 are shared parts of the two circulation circuits, but the present invention is not limited to this. Inflow and outflow piping may be further provided.
  • a heat conductive material such as heat conductive grease or a heat conductive sheet is applied to the contact surfaces of these two tanks. It is preferable to place the material. This is for promoting heat conduction between the first heat storage tank 30 and the second heat storage tank 40 and improving the heat transfer performance.
  • a heat insulating material (not shown) may be arranged around the outer periphery of the heat storage section 10 . Thereby, natural heat radiation from the heat storage unit 10 can be suppressed.
  • a heat insulating material used at this time for example, a flat vacuum heat insulating material, a foam heat insulating material such as expanded polystyrene or expanded polypropylene for closing the gap between the vacuum heat insulating material and the vacuum heat insulating material, or a urethane heat insulating material is used. be done.
  • the outer circumference of the second heat storage tank 40 has the same dimensions as the outer circumference of the first stepped portion 31, and the inner circumference of the second heat storage tank 40 has the same dimensions as the outer circumference of the second stepped portion 32.
  • the first heat storage tank 30 may be formed without a step, and the second heat storage tank 40 may be arranged to cover the upper side of the first heat storage tank 30 .
  • boiling operation (heat storage operation)
  • the boiling operation is an operation in which the heating device 2 boils low-temperature water to a high temperature and stores the boiled water in the heat storage unit 10 .
  • the boiling operation is mainly carried out during a time period such as a late-night electric power time period in which electricity prices are low, or when the amount of heat stored in the heat storage unit 10 has decreased.
  • the low-temperature, low-pressure gas refrigerant is compressed by the compressor 21 and discharged as a high-temperature, high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the heating heat exchanger 22, exchanges heat with the water flowing through the boiling circuit, condenses while releasing heat, and becomes a high-pressure liquid refrigerant for heating and heat exchange. It flows out of vessel 22 .
  • the high-pressure liquid refrigerant that has flowed out of the heating heat exchanger 22 is decompressed by the decompression device 23 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant flows into the endothermic heat exchanger 24, where it exchanges heat with air taken in by a fan (not shown), absorbs heat and evaporates, becomes a low-pressure gas refrigerant, and is sucked into the compressor 21. be.
  • the heating device pump 11 is driven, whereby the water stored in the lower portion of the first heat storage tank 30 of the heat storage section 10 flows out from the lower pipe 34 .
  • the water that has flowed out of the first heat storage tank 30 is sucked into the suction side of the heating device pump 11, pressurized, and sent.
  • the water sent from the heating device pump 11 flows into the heating heat exchanger 22 of the heating device 2 via the pipe 3 .
  • the water that has flowed into the heating heat exchanger 22 exchanges heat with the refrigerant flowing through the refrigerant-side channel to become high-temperature water, and flows out of the heating heat exchanger 22 .
  • the high-temperature water that has flowed out of the heating heat exchanger 22 flows into the upper portion of the first heat storage tank 30 via the pipe 4 and the upper pipe 33 .
  • the water stored in the lower part of the first heat storage tank 30 depends on the season. It has become water.
  • the temperature of the refrigerant discharged from the compressor 21 is about 90.degree. Therefore, the water passing through the heating heat exchanger 22 during the boiling operation flows into the first heat storage tank 30 after being heated to about 65° C. by heat exchange with the refrigerant.
  • the high-temperature water that has flowed into the first heat storage tank 30 heats the heat storage material in the second heat storage tank 40 through the wall surface of the first heat storage tank 30 . That is, the first heat storage tank 30 and the second heat storage tank 40 function as heat exchangers.
  • the heat storage amount of the heat storage material provided in the second heat storage tank 40 is small, that is, when the temperature of the heat storage material is low, the heat of the water flowing into the first heat storage tank 30 is A large amount of heat is taken away by the heat storage material of the heat storage tank 40 . Therefore, the temperature of the water that has flowed into the first heat storage tank 30 drops significantly.
  • the temperature of the heat storage material in the second heat storage tank 40 gradually rises.
  • the amount of heat exchanged between the first heat storage tank 30 and the second heat storage tank 40 decreases. Therefore, the water that has flowed into the first heat storage tank 30 is stored in the first heat storage tank 30 while maintaining its high temperature.
  • the heat storage unit 10 high-temperature water is stored in the upper portion and low-temperature water is stored in the lowermost portion by performing the boiling operation. Also, thermal stratification is formed between the top and the bottom. As the boiling operation progresses, the high-temperature water region increases due to an increase in the amount of boiling, and the temperature stratification approaches the bottom. Then, the temperature of the water stored at the bottom rises, and the incoming water temperature of the water flowing into the heating heat exchanger 22 of the heating device 2 gradually rises.
  • the temperature of the water flowing into the first heat storage tank 30 during the boiling operation is lowered by transferring heat to the second heat storage tank 40 .
  • the temperature of the water flowing out of the heat storage unit 10 is lower than the temperature of the water flowing out of the conventional heat storage unit with respect to the amount of heat stored in the heat storage unit 10, so the performance of the heating device 2 is improved. Decrease can be suppressed.
  • Hot water supply operation (hot water supply operation)
  • the hot water supply operation is an operation for sending out water (hot water) at a set hot water supply temperature from the hot water supply pipe 6 in order to use water (hot water) at a desired temperature for showers, baths, wash basins, and the like. be.
  • the opening of the mixing valve 14 is adjusted so that the temperature of the temperature sensor provided downstream of the mixing valve 14 becomes the set hot water supply temperature.
  • the hot water supply pump 12 is driven.
  • the water stored in the first heat storage tank 30 flows out from the upper pipe 33 and flows into the primary flow path of the heat exchanger 13 .
  • the water that has flowed into the primary channel of the heat exchanger 13 exchanges heat with the water flowing through the secondary channel to become low-temperature water or medium-temperature water, and then flows out of the heat exchanger 13 .
  • the water flowing out of the first heat storage tank 30 is heat-exchanged in the heat exchanger 13 to raise the temperature of the water flowing through the secondary flow path to, for example, 40° C. or higher.
  • the water flowing out of the heat exchanger 13 is sucked into the suction side of the hot water supply pump 12, pressurized and sent. Water sent from the hot water supply pump 12 flows into the lower portion of the first heat storage tank 30 through the lower pipe 34 .
  • the water flowing from the water supply pipe 5 is branched within the heat storage tank unit 1 .
  • one branched water flows into the second inlet of the mixing valve 14 via the heat exchanger 13, and the other branched water flows into the secondary flow path of the heat exchanger 13. influx.
  • the water that has flowed into the secondary channel of the heat exchanger 13 exchanges heat with the water flowing through the primary channel to become hot water and flows out of the heat exchanger 13 .
  • Water flowing out of the heat exchanger 13 flows into the first inlet of the mixing valve 14 .
  • the mixing valve 14 the water that has flowed into the first inlet and the water that has flowed into the second inlet are mixed, and the mixed water reaches the set hot water supply temperature and flows out from the outlet.
  • the heat storage state of the heat storage unit 10 during the hot water supply operation (hot water supply operation) will be described.
  • the temperature stratification is formed in the first heat storage tank 30 of the heat storage unit 10 such that the upper portion is about 65° C. and the lower portion is about 10° C., which is the temperature of city water. That is, the temperature of the water in the first heat storage tank 30 decreases from the top to the bottom, and the temperature at the bottom is substantially the same as the temperature of the water entering the heating device 2 at the end of the heat storage operation.
  • the heat of the water stored in the first heat storage tank 30 is sufficiently transferred to the second heat storage tank 40, and the phase of the heat storage material in the second heat storage tank 40 undergoes a liquid phase change 65.
  • °C is assumed to be the initial state of hot water supply.
  • the water flowing out from the upper pipe 33 of the first heat storage tank 30 is approximately 65°C high temperature water, that is, the highest temperature in the heat storage state.
  • the water in the first heat storage tank 30 is pushed up from the bottom to the top. Therefore, the temperature of the water in the upper portion of the first heat storage tank 30 decreases as the hot water supply operation continues.
  • the temperature of the second heat storage tank 40 when the temperature of the water in the upper part of the first heat storage tank 30 decreases and becomes equal to or lower than the temperature of the heat storage material of the second heat storage tank 40, the temperature of the second heat storage tank 40 The heat of the heat storage material is transferred to the water in the first heat storage tank 30 . As a result, the temperature of the water in the upper portion of the first heat storage tank 30 rises. Therefore, in the region of the second step portion 32 of the first heat storage tank 30, heat is replenished from the second heat storage tank 40 as the temperature of the water drops.
  • the first heat storage tank 30 and the second heat storage tank 40 are formed separately. Therefore, even if the first heat storage tank 30 or the second heat storage tank 40 is damaged by corrosion and a hole is formed, the fluids in both tanks will not mix. Therefore, in Embodiment 1, it is possible to prevent the heat storage material of the second heat storage tank 40 from being mixed into the water flowing out of the first heat storage tank 30 .
  • the heat storage unit 10 for storing heat is composed of the first heat storage tank 30 and the second heat storage tank 40, and in addition to heat storage by fluid, water or the like is also used.
  • a latent heat storage material with a higher heat storage density than the fluid is applied. Therefore, the size of the heat storage unit 10 can be reduced when storing the same amount of heat as conventionally.
  • Embodiment 1 since the heat stored in the first heat storage tank 30 is supplied to the second heat storage tank 40, the temperature of the fluid heated by the heat pump, which is the heating device 2, can be lowered. can be done. Therefore, deterioration of the performance of the heat pump can be suppressed, and deterioration of the energy saving performance can be suppressed.
  • the first heat storage tank 30 and the second heat storage tank 40 that constitute the heat storage section 10 are formed separately. Therefore, even if the second heat storage tank 40 is damaged due to corrosion or the like and the heat storage material inside leaks out, the heat storage material can be prevented from being mixed into the fluid in the first heat storage tank 30 . Furthermore, it is possible to prevent the heat storage material from being mixed into the water supply.
  • the heat storage unit 10 is formed by the first heat storage tank 30 and the second heat storage tank 40, and when the heated fluid flows into the first heat storage tank 30, the fluid and the second Heat is exchanged with the heat storage material of the heat storage tank 40 , and heat is stored in the second heat storage tank 40 .
  • the temperature of the fluid stored in the first heat storage tank 30 is lowered, so that the temperature rise of the fluid supplied to the heating device 2 caused by repeating the heat storage operation is suppressed while storing the heat. . Therefore, deterioration of the performance of the heat pump, which is the heating device 2, can be suppressed, and deterioration of the energy saving performance can be suppressed.
  • Embodiment 2 Water heater 100 according to the second embodiment differs from that of the first embodiment in the structure of heat storage unit 10 . It should be noted that, in the second embodiment, the same reference numerals are assigned to the parts that are common to the first embodiment, and detailed description thereof will be omitted.
  • a water heater 100 according to Embodiment 2 is common to Embodiment 1 described above, except for the structure of the heat storage section 10 provided in the heat storage tank unit 1 . Therefore, below, the structure of the heat storage part 10 provided in the heat storage tank unit 1 of the water heater 100 will be described.
  • FIG. 5 is a perspective view showing an example of the structure of the heat storage unit according to the second embodiment.
  • FIG. 6 is a top view showing an example of the structure of the heat storage section according to the second embodiment.
  • FIG. 7 is a BB cross-sectional view of the heat storage unit shown in FIG.
  • the heat storage section 10 is composed of a first heat storage tank 30 and a second heat storage tank 40A formed separately from the first heat storage tank 30.
  • FIGS. 5 the heat storage section 10 is composed of a first heat storage tank 30 and a second heat storage tank 40A formed separately from the first heat storage tank 30.
  • the second heat storage tank 40A is formed so as to cover and abut on the side surface and top surface of the second stepped portion 32 of the first heat storage tank 30 .
  • the outer periphery of the second heat storage tank 40A is formed to have the same dimensions as the outer periphery of the first stepped portion 31 of the first heat storage tank 30, as in the first embodiment.
  • the inner periphery of the second heat storage tank 40A is formed to have the same dimensions as the outer periphery of the second stepped portion 32 of the first heat storage tank 30, as in the first embodiment.
  • a hole 41 penetrating in the height direction (z direction) is formed in the center of the upper surface of the second heat storage tank 40 at a position corresponding to the upper pipe 33 of the first heat storage tank 30 .
  • the upper surface of the second stepped portion 32 is the portion where the heat is most dissipated. Therefore, by being covered with the second heat storage tank 40 in this way, the heat insulation performance is improved compared with the conventional one, and the heat dissipation of the stored heat can be suppressed.
  • FIG. 8 is a BB cross-sectional view of a modification of the heat storage unit shown in FIG.
  • the upper surface of the second stepped portion 32B in the first heat storage tank 30 is tapered from the center of the upper surface.
  • the inner periphery of the upper surface of the second heat storage tank 40B is tapered along the upper surface of the second step portion 32B of the first heat storage tank 30 .
  • These tapered shapes are formed so as to be inclined by about 5° with respect to the width direction (x direction) and the depth direction (y direction).
  • the latent heat storage material in the second heat storage tank 40 undergoes a phase change from the upper side when heat is exchanged with water flowing into the first heat storage tank 30 . Therefore, the contact surfaces of the upper surfaces of the first heat storage tank 30 and the second heat storage tank 40 are formed in a tapered shape, so that the stress generated in the tanks can be alleviated.
  • the first heat storage tank 30 is covered with the second heat storage tank 40 not only on the side surface of the second stepped portion 32 but also on the top surface. ing.
  • the heat insulation performance of the upper surface of the second stepped portion 32, where the heat is most dissipated, is improved, so that the heat dissipation of the accumulated heat can be suppressed.
  • the present disclosure is not limited to the first and second embodiments described above, and various modifications and applications are possible without departing from the gist of the present disclosure.
  • the second heat storage tank 40 is desirably arranged so as to cover the upper portion of the first heat storage tank 30, but is not limited to this, and may be arranged in the middle or lower portion of the first heat storage tank 30. good too.
  • the fluid in the first heat storage tank 30 is thermally stratified so that the upper part is hot and the lower part is cold. Moreover, since the fluid in the upper part of the first heat storage tank 30 is supplied to the heat exchanger 13 during hot water supply, it is desirable to supply the heat of the second heat storage tank 40 to the upper part of the first heat storage tank 30. .
  • the present invention is not limited to this, and any material having a melting point near the heat storage temperature can be used.
  • other latent heat storage materials may be applied.
  • the heat storage material is not limited to the latent heat storage material, and a sensible heat storage material may be applied. In this case, if the fluid in the first heat storage tank 30 is at a temperature at which the heat storage density is high, the same effect can be obtained.
  • the heat storage section 10 has been described as being formed in a rectangular parallelepiped shape, it is not limited to this, and may be formed in a cylindrical shape, for example.
  • the above-described effects can be obtained, and although the degree of freedom in the installation space of the heat storage unit 10 is reduced, the pressure resistance performance can be improved. can be done.
  • the first heat storage tank 30 and the second heat storage tank 40 are made of stainless steel, but this is not limited to this example.
  • the first heat storage tank 30 and the second heat storage tank 40 may be made of a material other than stainless steel as long as the material does not corrode with the heat storage material inside. Examples of materials that are not corroded by the heat storage material include iron, nickel-chromium alloys, and resins. However, it is desirable that the portion where the first heat storage tank 30 and the second heat storage tank 40 are in contact with each other be made of a material with high thermal conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

This water heater, provided with a heating device which heats a fluid and a heat storage tank unit which stores heat by storing the fluid heated by the heating device, supplies hot water using heat stored in the heat storage tank unit, wherein the heat storage tank unit is provided with a heat storage unit which stores the heated fluid, the heat storage unit comprises a first heat storage tank into which the heated fluid flows, and a second heat storage tank which stores a heat storage material different from the fluid and which is formed separately from the first heat storage tank and is arranged in contact with the first heat storage tank. When the heated fluid flows into the heat storage unit, heat is stored in the second heat storage tank through heat exchange between the fluid in the first heat storage tank and the heat storage material in the second heat storage tank.

Description

給湯機water heater
 本開示は、熱源で生成した熱を蓄える蓄熱タンクを備えた給湯機に関するものである。 This disclosure relates to a water heater equipped with a heat storage tank that stores heat generated by a heat source.
 従来、熱源機で生成した熱を給湯に利用する給湯機が知られている。このような給湯機は、給湯の際に、予め熱源で生成した熱を蓄熱タンクユニットに蓄え、蓄えた熱で給水を加熱して給湯する構成となっている。給湯機で用いられる蓄熱タンクユニットでは、耐圧を向上させることを主な目的として、タンク形状を円筒形状にする技術が知られている。 Conventionally, water heaters that use the heat generated by the heat source for hot water supply are known. Such a water heater has a configuration in which heat generated in advance by a heat source is stored in a heat storage tank unit when hot water is supplied, and the stored heat is used to heat feed water to supply hot water. In a heat storage tank unit used in a water heater, a technique is known in which the shape of the tank is made cylindrical, mainly for the purpose of improving pressure resistance.
 一方、従来の給湯機では、狭いスペースへの設置に対応するために、蓄熱タンクユニットの小型化が望まれている。そこで、蓄熱タンクユニットの小型化に対応するため、種々の蓄熱タンクユニットが提案されている。例えば、特許文献1には、蓄熱タンクを複数枚のプレートで形成し、隣接するプレート間の間隔を一定に保つとともに、プレート間に蓄熱材を複数配置し、プレート間に給水が流れる流路部を形成する給湯機が開示されている。 On the other hand, in conventional water heaters, it is desirable to reduce the size of the heat storage tank unit in order to accommodate installation in narrow spaces. Therefore, various heat storage tank units have been proposed in order to cope with the miniaturization of heat storage tank units. For example, in Patent Document 1, a heat storage tank is formed of a plurality of plates, the interval between adjacent plates is kept constant, a plurality of heat storage materials are arranged between the plates, and a flow path portion where water flows between the plates A water heater is disclosed that forms a
特開2009-97825号公報JP 2009-97825 A
 しかしながら、特許文献1に記載の技術では、腐食等によってプレート部分が破損した場合、蓄熱材が給水に混合する虞があるという課題があった。 However, the technique described in Patent Document 1 has a problem that if the plate portion is damaged due to corrosion or the like, the heat storage material may be mixed with the water supply.
 本開示は、上記従来の技術における課題に鑑みてなされたものであって、蓄熱材の給水への混入を防ぐことができる給湯機を提供することを目的とする。 The present disclosure has been made in view of the problems in the conventional technology described above, and aims to provide a water heater that can prevent the heat storage material from being mixed into the water supply.
 本開示に係る給湯機は、流体を加熱する加熱装置と、前記加熱装置で加熱された前記流体を貯留することによって蓄熱する蓄熱タンクユニットとを備え、前記蓄熱タンクユニットに蓄えられた熱を利用して給湯を行う給湯機であって、前記蓄熱タンクユニットは、加熱された前記流体を貯留する蓄熱部を備え、前記蓄熱部は、加熱された前記流体が流入する第1の蓄熱タンクと、前記流体とは異なる蓄熱材が収納され、前記第1の蓄熱タンクと別体で形成されるとともに、前記第1の蓄熱タンクと当接して配置される第2の蓄熱タンクとを有し、加熱された前記流体が前記蓄熱部に流入した際に、前記第1の蓄熱タンク内の前記流体と前記第2の蓄熱タンクの前記蓄熱材との間の熱交換により、前記第2の蓄熱タンクに蓄熱されるものである。 A water heater according to the present disclosure includes a heating device that heats a fluid, and a heat storage tank unit that stores heat by storing the fluid heated by the heating device, and uses the heat stored in the heat storage tank unit. wherein the heat storage tank unit includes a heat storage unit that stores the heated fluid, the heat storage unit being a first heat storage tank into which the heated fluid flows; a second heat storage tank that contains a heat storage material different from the fluid, is formed separately from the first heat storage tank, and is disposed in contact with the first heat storage tank; When the fluid thus obtained flows into the heat storage unit, heat exchange between the fluid in the first heat storage tank and the heat storage material of the second heat storage tank causes heat to flow into the second heat storage tank. It stores heat.
 本開示によれば、加熱された流体を貯留する蓄熱部を構成する第1の蓄熱タンクと蓄熱材が収納された第2の蓄熱タンクとが別体で形成されている。そのため、第2の蓄熱タンクが破損して内部の蓄熱材が漏れ出す場合でも、蓄熱材の給水への混入を防ぐことができる。 According to the present disclosure, the first heat storage tank that constitutes the heat storage section that stores the heated fluid and the second heat storage tank that stores the heat storage material are formed separately. Therefore, even if the second heat storage tank is damaged and the heat storage material inside leaks out, it is possible to prevent the heat storage material from entering the water supply.
実施の形態1に係る給湯機の構成の一例を示す概略図である。1 is a schematic diagram showing an example of a configuration of a water heater according to Embodiment 1; FIG. 図1の蓄熱部の構造の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of the structure of the heat storage unit shown in FIG. 1; 図1の蓄熱部の構造の一例を示す上面図である。FIG. 2 is a top view showing an example of the structure of the heat storage unit in FIG. 1; 図3に示す蓄熱部のA-A断面図である。FIG. 4 is a cross-sectional view of the heat storage unit shown in FIG. 3 taken along the line AA; 実施の形態2に係る蓄熱部の構造の一例を示す斜視図である。FIG. 11 is a perspective view showing an example of the structure of a heat storage unit according to Embodiment 2; 実施の形態2に係る蓄熱部の構造の一例を示す上面図である。FIG. 10 is a top view showing an example of the structure of a heat storage unit according to Embodiment 2; 図6に示す蓄熱部のB-B断面図である。7 is a cross-sectional view of the heat storage unit shown in FIG. 6 taken along the line BB. FIG. 図6に示す蓄熱部の変形例のB-B断面図である。FIG. 7 is a cross-sectional view taken along line BB of a modification of the heat storage unit shown in FIG. 6;
 以下、本開示の実施の形態について、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present disclosure. In addition, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
実施の形態1.
 本実施の形態1に係る給湯機について説明する。本実施の形態1に係る給湯機は、時間帯別契約電力の電力単価が安価な深夜時間帯にヒートポンプ等の加熱装置を用いて流体を加熱して蓄熱し、蓄えられた熱を給湯に用いるものである。
Embodiment 1.
A water heater according to Embodiment 1 will be described. The water heater according to the first embodiment uses a heating device such as a heat pump to heat a fluid to store heat during late-night hours when the hourly contract power unit price is low, and uses the stored heat for hot water supply. It is.
[給湯機100の構成]
 図1は、本実施の形態1に係る給湯機の構成の一例を示す概略図である。図1に示すように、給湯機100は、蓄熱タンクユニット1および加熱装置2を含んで構成されている。蓄熱タンクユニット1および加熱装置2は、現地で配管接続される。蓄熱タンクユニット1および加熱装置2は、配管3および配管4で接続されている。また、蓄熱タンクユニット1には、給水配管5および給湯配管6が接続されている。給水配管5および給湯配管6は、それぞれ現地でシャワーおよび蛇口等の端末に接続される。
[Configuration of water heater 100]
FIG. 1 is a schematic diagram showing an example of the configuration of a water heater according to Embodiment 1. FIG. As shown in FIG. 1 , water heater 100 includes heat storage tank unit 1 and heating device 2 . The heat storage tank unit 1 and the heating device 2 are pipe-connected on site. The heat storage tank unit 1 and the heating device 2 are connected by pipes 3 and 4 . A water supply pipe 5 and a hot water supply pipe 6 are connected to the heat storage tank unit 1 . The water supply pipe 5 and the hot water supply pipe 6 are connected to terminals such as a shower and a faucet at the site, respectively.
(加熱装置2)
 加熱装置2は、蓄熱タンクユニット1から供給される流体を加熱する加熱手段である。加熱装置2として、例えば、電気ヒーター、ガスボイラーまたはヒートポンプユニット等が用いられる。この例では、加熱装置2としてヒートポンプユニットが用いられる場合について説明する。
(Heating device 2)
The heating device 2 is heating means for heating the fluid supplied from the heat storage tank unit 1 . As the heating device 2, for example, an electric heater, a gas boiler, a heat pump unit, or the like is used. In this example, a case where a heat pump unit is used as the heating device 2 will be described.
 加熱装置2は、圧縮機21、加熱熱交換器22、減圧装置23および吸熱熱交換器24を備えている。加熱装置2では、圧縮機21、加熱熱交換器22、減圧装置23および吸熱熱交換器24が冷媒配管によって環状に接続されることにより、二酸化炭素等の冷媒が循環する冷媒回路が形成されている。 The heating device 2 includes a compressor 21 , a heating heat exchanger 22 , a pressure reducing device 23 and an endothermic heat exchanger 24 . In the heating device 2, the compressor 21, the heating heat exchanger 22, the pressure reducing device 23, and the endothermic heat exchanger 24 are connected in a ring by refrigerant pipes to form a refrigerant circuit in which a refrigerant such as carbon dioxide circulates. there is
 圧縮機21は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機21は、例えば、運転周波数を変化させることにより、単位時間あたりの冷媒の送出量である容量が制御されるインバータ圧縮機等からなる。 The compressor 21 sucks in a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges a high-temperature, high-pressure refrigerant. The compressor 21 is, for example, an inverter compressor or the like whose capacity, which is the amount of refrigerant delivered per unit time, is controlled by changing the operating frequency.
 加熱熱交換器22は、その内部に、冷媒回路を循環する冷媒が流れる冷媒側流路と、後述する沸き上げ回路を循環する流体が流れる流体側流路との2つの流路が形成されている。加熱熱交換器22は、冷媒側流路を流れる冷媒と、流体側流路を流れる流体との間で熱交換を行う。加熱熱交換器22は、冷媒の熱を流体に放熱して冷媒を凝縮させる凝縮器として機能する。 The heating heat exchanger 22 has two flow paths formed therein: a refrigerant-side flow path through which the refrigerant circulating in the refrigerant circuit flows, and a fluid-side flow path through which the fluid circulating in the boiling circuit described later flows. there is The heating heat exchanger 22 exchanges heat between the refrigerant flowing through the refrigerant-side channel and the fluid flowing through the fluid-side channel. The heating heat exchanger 22 functions as a condenser that radiates the heat of the refrigerant to the fluid to condense the refrigerant.
 減圧装置23は、例えば膨張弁であり、冷媒を減圧して膨張させる。減圧装置23は、例えば、電子式膨張弁などの開度の制御を行うことができる弁で構成される。 The decompression device 23 is, for example, an expansion valve, and decompresses and expands the refrigerant. The decompression device 23 is composed of, for example, a valve such as an electronic expansion valve whose degree of opening can be controlled.
 吸熱熱交換器24は、近傍に設けられた図示しないファン等によって供給される空気と冷媒との間で熱交換を行う。吸熱熱交換器24は、冷媒を蒸発させ、その際の気化熱により空気を冷却する。吸熱熱交換器24として、例えばフィンアンドチューブ型の熱交換器が用いられる。 The endothermic heat exchanger 24 exchanges heat between the refrigerant and the air supplied by a nearby fan (not shown) or the like. The endothermic heat exchanger 24 evaporates the refrigerant and cools the air with the heat of vaporization. As the endothermic heat exchanger 24, for example, a fin-and-tube heat exchanger is used.
(蓄熱タンクユニット1)
 蓄熱タンクユニット1は、加熱装置2によって加熱された流体を貯留することによって蓄熱する。蓄熱タンクユニット1は、蓄熱部10、加熱装置用ポンプ11、給湯用ポンプ12、熱交換器13および混合弁14を備え、外部の端末に接続された給水配管5および給湯配管6が接続されている。
(Heat storage tank unit 1)
The heat storage tank unit 1 stores heat by storing the fluid heated by the heating device 2 . The heat storage tank unit 1 includes a heat storage unit 10, a heating device pump 11, a hot water supply pump 12, a heat exchanger 13, and a mixing valve 14, and is connected to a water supply pipe 5 and a hot water supply pipe 6 connected to external terminals. there is
 蓄熱タンクユニット1では、蓄熱部10、加熱装置用ポンプ11、加熱装置2の吸熱熱交換器24および蓄熱部10を流体が循環することにより、流体を加熱する沸き上げ回路が形成される。また、蓄熱タンクユニット1では、蓄熱部10、熱交換器13、給湯用ポンプ12および蓄熱部10を流体が循環することにより、市水等の水を加熱する給湯加熱回路が形成される。沸き上げ回路および給湯加熱回路を循環する流体として、水または不凍液が用いられる。なお、水は、不凍液と比較して安価であるため、流体として水を用いることが好ましい。 In the heat storage tank unit 1, the fluid circulates through the heat storage section 10, the heating device pump 11, the endothermic heat exchanger 24 of the heating device 2, and the heat storage section 10, thereby forming a boiling circuit that heats the fluid. In the heat storage tank unit 1, fluid circulates through the heat storage unit 10, the heat exchanger 13, the hot water supply pump 12, and the heat storage unit 10, thereby forming a hot water supply heating circuit for heating water such as city water. Water or antifreeze is used as the fluid that circulates in the boiling circuit and the hot water supply heating circuit. It is preferable to use water as the fluid because water is cheaper than antifreeze.
 蓄熱部10は、配管4を介して加熱装置2から供給される加熱された流体を貯留する。詳細は後述するが、蓄熱部10の上部には、上部配管33が設けられ、蓄熱部10の下部には、下部配管34が設けられている(図2~図4参照)。蓄熱部10は、第1の蓄熱タンク30および第2の蓄熱タンク40で構成されている。蓄熱部10の詳細な構成については、後述する。 The heat storage unit 10 stores heated fluid supplied from the heating device 2 via the pipe 4 . Although details will be described later, an upper pipe 33 is provided above the heat storage unit 10, and a lower pipe 34 is provided below the heat storage unit 10 (see FIGS. 2 to 4). The heat storage unit 10 is composed of a first heat storage tank 30 and a second heat storage tank 40 . A detailed configuration of the heat storage unit 10 will be described later.
 加熱装置用ポンプ11は、蓄熱部10の下部配管34から流出した流体を、配管3を介して加熱装置2の加熱熱交換器22に対して送出するように、図示しないモータによって駆動される。給湯用ポンプ12は、蓄熱部10の上部配管33から流出した流体を、熱交換器13に対して送出するように、図示しないモータによって駆動される。 The heating device pump 11 is driven by a motor (not shown) so as to send the fluid flowing out of the lower pipe 34 of the heat storage unit 10 to the heating heat exchanger 22 of the heating device 2 via the pipe 3 . The hot water supply pump 12 is driven by a motor (not shown) so as to send the fluid flowing out of the upper pipe 33 of the heat storage unit 10 to the heat exchanger 13 .
 熱交換器13は、その内部に、蓄熱部10から流出した流体が流れる一次側流路と、給水配管5から分岐した流体が流れる二次側流路との2つの流路が形成されている。熱交換器13は、内部に形成された2つの流路を流れる流体の間で熱交換を行う。熱交換器13は、例えばプレート式熱交換器であり、ステンレス、アルミニウムまたは銅等の金属を平板状に加工して積層することによって形成されている。 The heat exchanger 13 is formed therein with two flow paths, a primary side flow path through which the fluid flowing out from the heat storage section 10 flows, and a secondary side flow path through which the fluid branched from the water supply pipe 5 flows. . The heat exchanger 13 exchanges heat between fluids flowing through two channels formed inside. The heat exchanger 13 is, for example, a plate-type heat exchanger, and is formed by processing metal such as stainless steel, aluminum, or copper into flat plates and laminating them.
 混合弁14は、例えば三方弁であり、熱交換器13に接続された第1流入口と、給水配管5から分岐した流路に接続された第2流入口と、給湯配管6に接続された流出口とを有している。混合弁14は、第1流入口に流入する高温の流体と、第2流入口に流入する給水配管5を介して供給された市水等の流体とを混合し、流出口から流出させる。混合弁14の下流側には、図示しない温度センサが設けられており、温度センサで検出された混合された流体の温度が設定温度となるように、混合弁14における流体の混合比が制御される。 The mixing valve 14 is, for example, a three-way valve, and has a first inlet connected to the heat exchanger 13, a second inlet connected to a flow path branched from the water supply pipe 5, and a hot water supply pipe 6. and an outlet. The mixing valve 14 mixes the high-temperature fluid flowing into the first inlet and the fluid such as city water supplied through the water supply pipe 5 flowing into the second inlet, and causes the mixture to flow out from the outlet. A temperature sensor (not shown) is provided on the downstream side of the mixing valve 14, and the mixing ratio of the fluids in the mixing valve 14 is controlled so that the temperature of the mixed fluid detected by the temperature sensor becomes the set temperature. be.
[蓄熱部10の構造]
 図2は、図1の蓄熱部の構造の一例を示す斜視図である。図3は、図1の蓄熱部の構造の一例を示す上面図である。図4は、図3に示す蓄熱部のA-A断面図である。図2~図4に示すように、蓄熱部10は、第1の蓄熱タンク30と、第1の蓄熱タンク30と別体で形成された第2の蓄熱タンク40とで構成されている。
[Structure of heat storage unit 10]
FIG. 2 is a perspective view showing an example of the structure of the heat storage unit in FIG. 1. FIG. 3 is a top view showing an example of the structure of the heat storage unit in FIG. 1. FIG. 4 is a cross-sectional view of the heat storage unit shown in FIG. 3, taken along the line AA. As shown in FIGS. 2 to 4, the heat storage section 10 is composed of a first heat storage tank 30 and a second heat storage tank 40 formed separately from the first heat storage tank 30. As shown in FIGS.
 第1の蓄熱タンク30は、直方体の断面形状を有する中空の角柱状に形成され、例えばステンレスで形成されている。第1の蓄熱タンク30における側壁の厚みは、例えば、2~3mm程度である。第1の蓄熱タンク30は、高さ方向(z方向)に段部を有し、下部側の第1段部31と、上部側の第2段部32とで形成されている。 The first heat storage tank 30 is formed in a hollow prismatic shape having a rectangular parallelepiped cross-sectional shape, and is made of stainless steel, for example. The thickness of the sidewall of the first heat storage tank 30 is, for example, about 2 to 3 mm. The first heat storage tank 30 has a stepped portion in the height direction (z direction), and is formed of a first stepped portion 31 on the lower side and a second stepped portion 32 on the upper side.
 第1段部31の高さは、第2段部32の高さに対して1.5~2倍程度となっている。また、第1段部31における幅方向(x方向)および奥行き方向(y方向)のそれぞれの辺は、第2段部32における同方向のそれぞれの辺よりも、200mm程度長く形成されている。すなわち、幅方向(x方向)および奥行き方向(y方向)によって形成される水平面で第2段部32を切断した場合の切断面は、同様に水平面で切断した第1段部31の切断面よりも小さい。さらに、第1段部31および第2段部32の同一側面において、第1段部31の側面から第2段部32の側面までの距離は、それぞれ100mm程度となっている。 The height of the first stepped portion 31 is approximately 1.5 to 2 times the height of the second stepped portion 32 . Each side of the first stepped portion 31 in the width direction (x direction) and the depth direction (y direction) is longer than each side of the second stepped portion 32 in the same direction by about 200 mm. That is, when the second stepped portion 32 is cut along a horizontal plane defined by the width direction (x direction) and the depth direction (y direction), the cut surface of the second stepped portion 32 is larger than the cut surface of the first stepped portion 31 similarly cut along the horizontal plane. is also small. Furthermore, on the same side surface of the first stepped portion 31 and the second stepped portion 32, the distance from the side surface of the first stepped portion 31 to the side surface of the second stepped portion 32 is approximately 100 mm.
 このように第1段部31および第2段部32が形成されることにより、第1の蓄熱タンク30を上面から見た場合、第1段部31の対角線の交点と、第2段部32の対角線の交点とが、幅方向(x方向)および奥行き方向(y方向)において同一位置となっている。 By forming the first stepped portion 31 and the second stepped portion 32 in this way, when the first heat storage tank 30 is viewed from above, the intersection of the diagonal lines of the first stepped portion 31 and the second stepped portion 32 are at the same position in the width direction (x direction) and the depth direction (y direction).
 第1段部31の上面には、上方に突出する上部配管33が形成されている。第2段部32の底面には、下方に突出する下部配管34が形成されている。上部配管33および下部配管34は、第1の蓄熱タンク30の内部に貯留された流体が流入出可能に形成されている。上部配管33および下部配管34は、第1の蓄熱タンク30を上面側から見た場合に、第2段部32の対角線の交点と、幅方向(x方向)および奥行き方向(y方向)において略同位置に形成されると好ましい。 An upper pipe 33 that protrudes upward is formed on the upper surface of the first stepped portion 31 . A bottom pipe 34 that protrudes downward is formed on the bottom surface of the second stepped portion 32 . The upper pipe 33 and the lower pipe 34 are formed so that the fluid stored inside the first heat storage tank 30 can flow in and out. When the first heat storage tank 30 is viewed from above, the upper pipe 33 and the lower pipe 34 are substantially parallel to each other in the width direction (x direction) and depth direction (y direction) from the intersection of the diagonal lines of the second stepped portion 32 . It is preferable that they are formed at the same position.
 第2の蓄熱タンク40は、第1の蓄熱タンク30における第2段部32の側面を覆って当接するように形成されている。第2の蓄熱タンク40の外周は、第1の蓄熱タンク30の第1段部31の外周と同寸法となるように形成されている。また、第2の蓄熱タンク40の内周は、第1の蓄熱タンク30の第2段部32の外周と同寸法となるように形成されている。 The second heat storage tank 40 is formed to cover and abut on the side surface of the second stepped portion 32 of the first heat storage tank 30 . The outer periphery of the second heat storage tank 40 is formed to have the same dimensions as the outer periphery of the first stepped portion 31 of the first heat storage tank 30 . In addition, the inner periphery of the second heat storage tank 40 is formed to have the same dimensions as the outer periphery of the second stepped portion 32 of the first heat storage tank 30 .
 第2の蓄熱タンク40は、例えばステンレスで形成された直方体の断面形状を有する中空の角柱状に形成されている。第2の蓄熱タンク40における側壁の厚みは、例えば、2mm程度であり、第1の蓄熱タンク30における側壁と同じ、あるいは薄く形成されている。第2の蓄熱タンク40の高さは、第1の蓄熱タンク30における第2段部32の高さと同等である。 The second heat storage tank 40 is made of, for example, stainless steel and has a hollow prismatic shape with a cuboid cross section. The thickness of the side wall of the second heat storage tank 40 is, for example, about 2 mm, and is the same as or thinner than the side wall of the first heat storage tank 30 . The height of the second heat storage tank 40 is the same as the height of the second stepped portion 32 in the first heat storage tank 30 .
 第1の蓄熱タンク30および第2の蓄熱タンク40には、それぞれ蓄熱材が貯えられる。第1の蓄熱タンク30には、蓄熱材として水が貯えられる。第2の蓄熱タンク40には、第1の蓄熱タンク30とは異なる蓄熱材が貯えられる。具体的には、第2の蓄熱タンク40には、蓄熱材として潜熱蓄熱材が貯えられる。潜熱蓄熱材とは、融解による固体から液体への相変化に伴い、潜熱を蓄熱する蓄熱材を示す。 A heat storage material is stored in each of the first heat storage tank 30 and the second heat storage tank 40 . Water is stored in the first heat storage tank 30 as a heat storage material. A heat storage material different from that in the first heat storage tank 30 is stored in the second heat storage tank 40 . Specifically, a latent heat storage material is stored in the second heat storage tank 40 as a heat storage material. A latent heat storage material is a heat storage material that stores latent heat as a result of a phase change from a solid to a liquid due to melting.
 また、蓄熱材として、潜熱蓄熱材と異なる顕熱蓄熱材が挙げられる。顕熱蓄熱材とは、相変化を伴わず温度変化を利用して顕熱を蓄熱する蓄熱材を示す。第1の蓄熱タンク30に貯えられる水は、相変化を生じないため、本用途においては顕熱蓄熱材に分類される。 In addition, as a heat storage material, a sensible heat storage material different from a latent heat storage material can be mentioned. The sensible heat storage material refers to a heat storage material that stores sensible heat using temperature change without phase change. Since the water stored in the first heat storage tank 30 does not undergo a phase change, it is classified as a sensible heat storage material in this application.
 潜熱蓄熱材は、例えば、酢酸ナトリウム3水和物やチオ硫酸ナトリウム5水和物などの水和物媒体や、パラフィンなどの有機系媒体であってもよい。酢酸ナトリウム3水和物の融点の一例は58℃であり、チオ硫酸ナトリウム5水和物の融点の一例は48℃であり、パラフィンの融点の一例は56℃である。また、ある温度帯におけるこれらの潜熱蓄熱材の蓄熱密度の一例は、酢酸ナトリウム3水和物が0.54MJ/Lであるのに対し、パラフィンは0.28MJ/Lである。 The latent heat storage material may be, for example, a hydrate medium such as sodium acetate trihydrate or sodium thiosulfate pentahydrate, or an organic medium such as paraffin. An example melting point of sodium acetate trihydrate is 58°C, an example melting point of sodium thiosulfate pentahydrate is 48°C, and an example melting point of paraffin is 56°C. An example of the heat storage density of these latent heat storage materials in a certain temperature range is 0.54 MJ/L for sodium acetate trihydrate and 0.28 MJ/L for paraffin.
 ここで、酢酸ナトリウム3水和物の方が、パラフィンに比べて蓄熱密度は高いが、融点において液体から固体に相変化しない過冷却現象が発生するため、相変化の安定性に欠ける。そのため、蓄熱密度だけでなく安定性の観点から、潜熱蓄熱材としては、パラフィンなどのように相変化が安定している蓄熱材を選定することが好ましい。また、潜熱蓄熱材は、顕熱蓄熱材よりも蓄熱量が多いため、潜熱蓄熱材を蓄熱材に用いることは、給湯機100の小型化に有利となる。 Here, sodium acetate trihydrate has a higher heat storage density than paraffin, but lacks stability in phase change due to the supercooling phenomenon in which the phase does not change from liquid to solid at the melting point. Therefore, from the viewpoint of stability as well as heat storage density, it is preferable to select a heat storage material such as paraffin that undergoes a stable phase change as the latent heat storage material. Further, since the latent heat storage material has a larger amount of heat storage than the sensible heat storage material, using the latent heat storage material as the heat storage material is advantageous for miniaturization of water heater 100 .
 なお、第2の蓄熱タンク40の内周は、外周よりも板厚が薄くなるように構成すると好ましい。これは、当接する第1の蓄熱タンク30と第2の蓄熱タンク40との間の伝熱性能を向上させるためである。また、第1の蓄熱タンク30における第2段部32の板厚が、それ以外の板厚よりも薄くなるように構成することでも、同様の効果を奏することができる。 It should be noted that the inner periphery of the second heat storage tank 40 is preferably configured to have a thinner plate thickness than the outer periphery. This is to improve the heat transfer performance between the first heat storage tank 30 and the second heat storage tank 40 that are in contact with each other. Moreover, the same effect can be obtained by configuring the plate thickness of the second stepped portion 32 in the first heat storage tank 30 so as to be thinner than the plate thickness of the other portions.
 なお、第2の蓄熱タンク40内に、複数のフィン形状の板材が内周から外周に向かって延びるように配置されてもよい。このとき、フィン形状の板材は、例えば、熱伝導率の高いアルミニウムが望ましい。このように、フィン形状の板材が第2の蓄熱タンク40内に配置されることにより、潜熱蓄熱材同士の熱伝導性を向上させることができ、また、第1の蓄熱タンク30と第2の蓄熱タンク40との間の伝熱性能を向上させることができる。 A plurality of fin-shaped plate members may be arranged in the second heat storage tank 40 so as to extend from the inner circumference toward the outer circumference. At this time, the fin-shaped plate material is desirably made of, for example, aluminum having a high thermal conductivity. By arranging the fin-shaped plate material in the second heat storage tank 40 in this way, the thermal conductivity between the latent heat storage materials can be improved, and the first heat storage tank 30 and the second heat storage tank The heat transfer performance with the heat storage tank 40 can be improved.
 また、第2の蓄熱タンク40の内壁には、フッ素コーティング等の潜熱蓄熱材であるパラフィンが付着しにくい加工が施されてもよい。これにより、壁面の周囲に位置する一部の潜熱蓄熱材のみが固相から液相に変化した際に、相変化したときの体積増により発生する圧力によるタンクへの応力を緩和することができる。 In addition, the inner wall of the second heat storage tank 40 may be subjected to processing such as fluorine coating that makes it difficult for paraffin, which is a latent heat storage material, to adhere. As a result, when only a portion of the latent heat storage material located around the wall surface changes from solid to liquid phase, it is possible to relax the stress on the tank due to the pressure generated by the volume increase at the time of the phase change. .
 図1において、蓄熱部10から沸き上げ回路に流体が流出する際の流出口、すなわち、蓄熱部10から加熱装置2に流体を供給する際の流出口が下部配管34である。下部配管34は、給湯加熱回路を介して蓄熱部10に流体を流入させる流入口、すなわち、熱交換器13で熱交換された流体が流入する流入口も兼ねている。 In FIG. 1, the lower pipe 34 is the outlet through which the fluid flows from the heat storage unit 10 to the boiling circuit, that is, the outlet through which the fluid is supplied from the heat storage unit 10 to the heating device 2 . The lower pipe 34 also serves as an inlet through which fluid flows into the heat storage unit 10 via the hot water supply heating circuit, that is, an inlet through which the fluid heat-exchanged in the heat exchanger 13 flows.
 また、沸き上げ回路を介して蓄熱部10に流体が流入する際の流入口、すなわち、加熱装置2で加熱された流体が蓄熱部10に流入する際の流入口が上部配管33である。上部配管33は、蓄熱部10から給湯加熱回路に流体が流出する際の流出口、すなわち、蓄熱部10から熱交換器13に流体を供給する際の流出口も兼ねている。 The upper pipe 33 is the inlet through which the fluid flows into the heat storage unit 10 via the boiling circuit, that is, the inlet through which the fluid heated by the heating device 2 flows into the heat storage unit 10 . The upper pipe 33 also serves as an outlet for fluid flowing out from the heat storage unit 10 to the hot water heating circuit, that is, an outlet for supplying fluid from the heat storage unit 10 to the heat exchanger 13 .
 このように、上部配管33および下部配管34は、2つの循環経路を流体が循環する際に、それぞれ流入出口として機能する部品である。そのため、上部配管33および下部配管34に、例えばT型の継手が設けられ、流路が2つに分岐するようになっている。 Thus, the upper pipe 33 and the lower pipe 34 are parts that function as inlets and outlets when the fluid circulates through the two circulation paths. Therefore, the upper pipe 33 and the lower pipe 34 are provided with, for example, a T-shaped joint so that the flow path is branched into two.
 なお、この例では、上部配管33および下部配管34を2つの循環回路の共用部品としているが、これに限られず、例えば、第1の蓄熱タンク30の上面および底面のそれぞれに、流体が流入出する流入出配管がさらに設けられてもよい。 In this example, the upper pipe 33 and the lower pipe 34 are shared parts of the two circulation circuits, but the present invention is not limited to this. Inflow and outflow piping may be further provided.
 第1の蓄熱タンク30および第2の蓄熱タンク40が組み合わせられて蓄熱部10が形成される場合、これら2つのタンクの当接面には、熱伝導性グリスまたは熱伝導シート等の熱伝導性材料を配置すると好ましい。これは、第1の蓄熱タンク30と第2の蓄熱タンク40との間の熱伝導を促進させ、伝熱性能を向上させるためである。 When the first heat storage tank 30 and the second heat storage tank 40 are combined to form the heat storage section 10, a heat conductive material such as heat conductive grease or a heat conductive sheet is applied to the contact surfaces of these two tanks. It is preferable to place the material. This is for promoting heat conduction between the first heat storage tank 30 and the second heat storage tank 40 and improving the heat transfer performance.
 また、蓄熱部10の外周には、図示しない断熱材が配置されてもよい。これにより、蓄熱部10からの自然放熱を抑制することができる。このとき使用する断熱材として、例えば、平板状の真空断熱材、真空断熱材と真空断熱材との隙間を塞ぐための発泡ポリスチレンまたは発泡ポリプロピレン等の発泡断熱材、あるいは、ウレタン断熱材などが用いられる。 Also, a heat insulating material (not shown) may be arranged around the outer periphery of the heat storage section 10 . Thereby, natural heat radiation from the heat storage unit 10 can be suppressed. As the heat insulating material used at this time, for example, a flat vacuum heat insulating material, a foam heat insulating material such as expanded polystyrene or expanded polypropylene for closing the gap between the vacuum heat insulating material and the vacuum heat insulating material, or a urethane heat insulating material is used. be done.
 さらに、この例では、第2の蓄熱タンク40の外周が第1段部31の外周と同寸法となり、第2の蓄熱タンク40の内周が第2段部32の外周と同寸法となるように形成されているように説明したが、これはこの例に限られない。例えば、第1の蓄熱タンク30を、段部を有さないように形成し、第2の蓄熱タンク40は、第1の蓄熱タンク30の側面の上部側を覆うように配置されてもよい。 Furthermore, in this example, the outer circumference of the second heat storage tank 40 has the same dimensions as the outer circumference of the first stepped portion 31, and the inner circumference of the second heat storage tank 40 has the same dimensions as the outer circumference of the second stepped portion 32. , but this is not limited to this example. For example, the first heat storage tank 30 may be formed without a step, and the second heat storage tank 40 may be arranged to cover the upper side of the first heat storage tank 30 .
[給湯機100の動作]
 上記構成を有する給湯機100の動作について説明する。本実施の形態1に係る給湯機100では、給湯機100における蓄熱動作である沸き上げ運転、および、給湯機100における給湯動作である給湯運転が行われる。
[Operation of water heater 100]
The operation of water heater 100 having the above configuration will be described. In water heater 100 according to Embodiment 1, a boiling operation, which is a heat storage operation in water heater 100, and a hot water supply operation, which is a hot water supply operation in water heater 100, are performed.
(沸き上げ運転(蓄熱動作))
 給湯機100による沸き上げ運転(蓄熱動作)について説明する。ここでは、蓄熱部10に貯留される流体が水である場合を例にとって説明する。沸き上げ運転は、加熱装置2によって低温の水を高温に沸き上げ、沸き上げられた水を蓄熱部10に貯留する運転である。沸き上げ運転は、主に、深夜電力時間帯などの電気料機が安価な時間帯、あるいは、蓄熱部10の蓄熱量が減少した場合に実施される。
(Boiling operation (heat storage operation))
A boiling operation (heat storage operation) by water heater 100 will be described. Here, a case where the fluid stored in the heat storage unit 10 is water will be described as an example. The boiling operation is an operation in which the heating device 2 boils low-temperature water to a high temperature and stores the boiled water in the heat storage unit 10 . The boiling operation is mainly carried out during a time period such as a late-night electric power time period in which electricity prices are low, or when the amount of heat stored in the heat storage unit 10 has decreased.
 沸き上げ運転が開始されると、加熱装置2では、低温低圧のガス冷媒が圧縮機21によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機21から吐出された高温高圧のガス冷媒は、加熱熱交換器22に流入し、沸き上げ回路を流れる水と熱交換して放熱しながら凝縮し、高圧の液冷媒となって加熱熱交換器22から流出する。 When the boiling operation is started, in the heating device 2, the low-temperature, low-pressure gas refrigerant is compressed by the compressor 21 and discharged as a high-temperature, high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the heating heat exchanger 22, exchanges heat with the water flowing through the boiling circuit, condenses while releasing heat, and becomes a high-pressure liquid refrigerant for heating and heat exchange. It flows out of vessel 22 .
 加熱熱交換器22から流出した高圧の液冷媒は、減圧装置23によって減圧されて低温低圧の気液二相冷媒となる。低温低圧の気液二相冷媒は、吸熱熱交換器24に流入し、図示しないファンによって取り込まれた空気と熱交換して吸熱および蒸発し、低圧のガス冷媒となって圧縮機21へ吸入される。 The high-pressure liquid refrigerant that has flowed out of the heating heat exchanger 22 is decompressed by the decompression device 23 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. The low-temperature, low-pressure gas-liquid two-phase refrigerant flows into the endothermic heat exchanger 24, where it exchanges heat with air taken in by a fan (not shown), absorbs heat and evaporates, becomes a low-pressure gas refrigerant, and is sucked into the compressor 21. be.
 一方、蓄熱タンクユニット1では、加熱装置用ポンプ11が駆動され、それによって蓄熱部10の第1の蓄熱タンク30の下部に貯留された水が下部配管34から流出する。第1の蓄熱タンク30から流出した水は、加熱装置用ポンプ11の吸入側に吸入され、加圧されて送水される。 On the other hand, in the heat storage tank unit 1 , the heating device pump 11 is driven, whereby the water stored in the lower portion of the first heat storage tank 30 of the heat storage section 10 flows out from the lower pipe 34 . The water that has flowed out of the first heat storage tank 30 is sucked into the suction side of the heating device pump 11, pressurized, and sent.
 加熱装置用ポンプ11から送水された水は、配管3を介して加熱装置2の加熱熱交換器22に流入する。加熱熱交換器22に流入した水は、冷媒側流路を流れる冷媒と熱交換して高温水となり、加熱熱交換器22から流出する。加熱熱交換器22から流出した高温水は、配管4および上部配管33を介して第1の蓄熱タンク30の上部に流入する。 The water sent from the heating device pump 11 flows into the heating heat exchanger 22 of the heating device 2 via the pipe 3 . The water that has flowed into the heating heat exchanger 22 exchanges heat with the refrigerant flowing through the refrigerant-side channel to become high-temperature water, and flows out of the heating heat exchanger 22 . The high-temperature water that has flowed out of the heating heat exchanger 22 flows into the upper portion of the first heat storage tank 30 via the pipe 4 and the upper pipe 33 .
 沸き上げ運転が実施される場合、第1の蓄熱タンク30の下部に貯えられている水は、季節にも依存するが、市水が10℃程度となる季節であれば、10℃程度の低温水となっている。一方、加熱装置2において、圧縮機21から吐出される冷媒の温度は、90℃程度である。したがって、沸き上げ運転時に加熱熱交換器22を通過する水は、冷媒との熱交換により65℃程度まで昇温した状態で、第1の蓄熱タンク30に流入する。 When the boiling operation is carried out, the water stored in the lower part of the first heat storage tank 30 depends on the season. It has become water. On the other hand, in the heating device 2, the temperature of the refrigerant discharged from the compressor 21 is about 90.degree. Therefore, the water passing through the heating heat exchanger 22 during the boiling operation flows into the first heat storage tank 30 after being heated to about 65° C. by heat exchange with the refrigerant.
 第1の蓄熱タンク30に流入した高温の水は、第1の蓄熱タンク30の壁面を介して、第2の蓄熱タンク40内の蓄熱材を加熱する。すなわち、第1の蓄熱タンク30および第2の蓄熱タンク40は、熱交換器として機能する。 The high-temperature water that has flowed into the first heat storage tank 30 heats the heat storage material in the second heat storage tank 40 through the wall surface of the first heat storage tank 30 . That is, the first heat storage tank 30 and the second heat storage tank 40 function as heat exchangers.
 ここで、第2の蓄熱タンク40に設けられた蓄熱材の蓄熱量が少ない場合、すなわち、蓄熱材の温度が低い場合は、第1の蓄熱タンク30に流入した水の熱は、第2の蓄熱タンク40の蓄熱材に多く奪われる。そのため、第1の蓄熱タンク30に流入した水の温度は、大きく低下する。 Here, when the heat storage amount of the heat storage material provided in the second heat storage tank 40 is small, that is, when the temperature of the heat storage material is low, the heat of the water flowing into the first heat storage tank 30 is A large amount of heat is taken away by the heat storage material of the heat storage tank 40 . Therefore, the temperature of the water that has flowed into the first heat storage tank 30 drops significantly.
 このようにして、第1の蓄熱タンク30への加熱された水の流入が繰り返されることにより、第2の蓄熱タンク40の蓄熱材の温度が徐々に上昇する。そして、蓄熱材の温度が融点近傍まで到達すると、第1の蓄熱タンク30と第2の蓄熱タンク40との間の熱交換量が低下する。したがって、第1の蓄熱タンク30に流入した水は、高温を維持した状態で、第1の蓄熱タンク30に貯えられる。 By repeating the inflow of heated water into the first heat storage tank 30 in this way, the temperature of the heat storage material in the second heat storage tank 40 gradually rises. When the temperature of the heat storage material reaches near the melting point, the amount of heat exchanged between the first heat storage tank 30 and the second heat storage tank 40 decreases. Therefore, the water that has flowed into the first heat storage tank 30 is stored in the first heat storage tank 30 while maintaining its high temperature.
 ところで、沸き上げ運転が行われることにより、蓄熱部10では、上部に高温水が貯留され、最下部に低温水が貯留される。また、上部と最下部との間には、温度成層が形成される。沸き上げ運転が進行すると、沸き上げ量が増加することによって高温水の領域が大きくなり、温度成層が最下部に近づく。そして、最下部に貯留された水の温度が上昇し、加熱装置2の加熱熱交換器22に流入する水の入水温度が次第に上昇する。 By the way, in the heat storage unit 10, high-temperature water is stored in the upper portion and low-temperature water is stored in the lowermost portion by performing the boiling operation. Also, thermal stratification is formed between the top and the bottom. As the boiling operation progresses, the high-temperature water region increases due to an increase in the amount of boiling, and the temperature stratification approaches the bottom. Then, the temperature of the water stored at the bottom rises, and the incoming water temperature of the water flowing into the heating heat exchanger 22 of the heating device 2 gradually rises.
 一般的な給湯機では、必要な熱量を貯える、もしくは加熱装置であるヒートポンプユニットへの入水温度が上昇すると、ヒートポンプユニットの性能が低下する。そして、ヒートポンプユニットの性能が低下すると、沸き上げ運転が停止される。 In a typical water heater, if the required amount of heat is stored, or if the temperature of the water entering the heat pump unit, which is a heating device, rises, the performance of the heat pump unit will decrease. Then, when the performance of the heat pump unit deteriorates, the boiling operation is stopped.
 これに対して、本実施の形態1に係る給湯機100では、沸き上げ運転時に第1の蓄熱タンク30に流入した水は、第2の蓄熱タンク40に伝熱することによって温度が低下する。これにより、蓄熱部10に蓄熱される熱量に対して、蓄熱部10から流出する水の温度は、従来の蓄熱部から流出する水の温度と比較して低くなるため、加熱装置2の性能の低下を抑制することができる。 On the other hand, in the water heater 100 according to Embodiment 1, the temperature of the water flowing into the first heat storage tank 30 during the boiling operation is lowered by transferring heat to the second heat storage tank 40 . As a result, the temperature of the water flowing out of the heat storage unit 10 is lower than the temperature of the water flowing out of the conventional heat storage unit with respect to the amount of heat stored in the heat storage unit 10, so the performance of the heating device 2 is improved. Decrease can be suppressed.
(給湯運転(給湯動作))
 給湯機100による給湯運転(給湯動作)について説明する。給湯運転は、シャワー、風呂の湯張り、および洗面等で所望の温度の水(湯)を利用するために、設定された給湯温度の水(湯)を給湯配管6から送出するための運転である。
(Hot water supply operation (hot water supply operation))
A hot water supply operation (hot water supply operation) by water heater 100 will be described. The hot water supply operation is an operation for sending out water (hot water) at a set hot water supply temperature from the hot water supply pipe 6 in order to use water (hot water) at a desired temperature for showers, baths, wash basins, and the like. be.
 使用者によって給湯運転が指示され、給湯温度が設定されると、混合弁14の下流側に設けられた温度センサの温度が設定給湯温度となるように、混合弁14における開度が調整される。そして、使用者が蛇口をひねる等して給水配管5から蓄熱タンクユニット1に対して市水等の水が流入すると、給湯用ポンプ12が駆動される。 When the hot water supply operation is instructed by the user and the hot water supply temperature is set, the opening of the mixing valve 14 is adjusted so that the temperature of the temperature sensor provided downstream of the mixing valve 14 becomes the set hot water supply temperature. . When water such as city water flows into the heat storage tank unit 1 from the water supply pipe 5 by the user turning on the faucet or the like, the hot water supply pump 12 is driven.
 給湯用ポンプ12の駆動により、第1の蓄熱タンク30に貯留された水は、上部配管33から流出し、熱交換器13の一次側流路に流入する。熱交換器13の一次側流路に流入した水は、二次側流路を流れる水と熱交換して低温水または中温水となり、熱交換器13から流出する。このとき、第1の蓄熱タンク30から流出した水は、熱交換器13での熱交換により、二次側流路を流れる水を、例えば40℃以上の高温の水に昇温させる。熱交換器13から流出した水は、給湯用ポンプ12の吸入側に吸入され、加圧されて送水される。給湯用ポンプ12から送水された水は、下部配管34を介して第1の蓄熱タンク30の下部に流入する。 By driving the hot water supply pump 12 , the water stored in the first heat storage tank 30 flows out from the upper pipe 33 and flows into the primary flow path of the heat exchanger 13 . The water that has flowed into the primary channel of the heat exchanger 13 exchanges heat with the water flowing through the secondary channel to become low-temperature water or medium-temperature water, and then flows out of the heat exchanger 13 . At this time, the water flowing out of the first heat storage tank 30 is heat-exchanged in the heat exchanger 13 to raise the temperature of the water flowing through the secondary flow path to, for example, 40° C. or higher. The water flowing out of the heat exchanger 13 is sucked into the suction side of the hot water supply pump 12, pressurized and sent. Water sent from the hot water supply pump 12 flows into the lower portion of the first heat storage tank 30 through the lower pipe 34 .
 一方、給水配管5から流入した水は、蓄熱タンクユニット1内で分岐される。このとき、分岐された一方の水は、熱交換器13を経由して混合弁14の第2流入口に流入し、分岐された他方の水は、熱交換器13の二次側流路に流入する。 On the other hand, the water flowing from the water supply pipe 5 is branched within the heat storage tank unit 1 . At this time, one branched water flows into the second inlet of the mixing valve 14 via the heat exchanger 13, and the other branched water flows into the secondary flow path of the heat exchanger 13. influx.
 熱交換器13の二次側流路に流入した水は、一次側流路を流れる水と熱交換して高温水となり、熱交換器13から流出する。熱交換器13から流出した水は、混合弁14の第1流入口に流入する。混合弁14では、第1流入口に流入した水と、第2流入口に流入した水とが混合され、混合水は、設定給湯温度となって流出口から流出する。 The water that has flowed into the secondary channel of the heat exchanger 13 exchanges heat with the water flowing through the primary channel to become hot water and flows out of the heat exchanger 13 . Water flowing out of the heat exchanger 13 flows into the first inlet of the mixing valve 14 . In the mixing valve 14, the water that has flowed into the first inlet and the water that has flowed into the second inlet are mixed, and the mixed water reaches the set hot water supply temperature and flows out from the outlet.
 給湯運転(給湯動作)時における蓄熱部10の蓄熱状態について説明する。蓄熱動作が完了した場合、蓄熱部10の第1の蓄熱タンク30では、上部が65℃程度となり、下部が市水の温度である10℃程度となる温度成層が形成されている。すなわち、第1の蓄熱タンク30内の水は、上部から下部に向かうにつれて低温となり、最下部は蓄熱動作終了時の加熱装置2への入水温度と略同一となっている。 The heat storage state of the heat storage unit 10 during the hot water supply operation (hot water supply operation) will be described. When the heat storage operation is completed, the temperature stratification is formed in the first heat storage tank 30 of the heat storage unit 10 such that the upper portion is about 65° C. and the lower portion is about 10° C., which is the temperature of city water. That is, the temperature of the water in the first heat storage tank 30 decreases from the top to the bottom, and the temperature at the bottom is substantially the same as the temperature of the water entering the heating device 2 at the end of the heat storage operation.
 なお、ここでは、第2の蓄熱タンク40に第1の蓄熱タンク30内に貯留された水の熱が十分に伝達され、第2の蓄熱タンク40内の蓄熱材が液状に相変化して65℃に保たれている状態を給湯初期状態とするものとする。 Here, the heat of the water stored in the first heat storage tank 30 is sufficiently transferred to the second heat storage tank 40, and the phase of the heat storage material in the second heat storage tank 40 undergoes a liquid phase change 65. ℃ is assumed to be the initial state of hot water supply.
 給湯初期状態において給湯動作を実行した場合、第1の蓄熱タンク30の上部配管33から流出する水は、概ね65℃の高温水、すなわち蓄熱状態において最も高温となっている。このような給湯初期状態から給湯運転が継続されることにより、第1の蓄熱タンク30内の水は、下部から上部に押し上げられる。したがって、第1の蓄熱タンク30の上部の水の温度は、給湯運転の継続に伴い、低下する。 When the hot water supply operation is performed in the hot water supply initial state, the water flowing out from the upper pipe 33 of the first heat storage tank 30 is approximately 65°C high temperature water, that is, the highest temperature in the heat storage state. By continuing the hot water supply operation from the hot water supply initial state, the water in the first heat storage tank 30 is pushed up from the bottom to the top. Therefore, the temperature of the water in the upper portion of the first heat storage tank 30 decreases as the hot water supply operation continues.
 しかしながら、本実施の形態1では、第1の蓄熱タンク30の上部の水の温度が低下し、第2の蓄熱タンク40の蓄熱材の温度以下となった場合に、第2の蓄熱タンク40の蓄熱材の熱が第1の蓄熱タンク30の水へ伝熱する。これにより、第1の蓄熱タンク30の上部の水が昇温する。したがって、第1の蓄熱タンク30の第2段部32の領域では、水の温度の低下に伴い、第2の蓄熱タンク40から熱が補充される。 However, in the first embodiment, when the temperature of the water in the upper part of the first heat storage tank 30 decreases and becomes equal to or lower than the temperature of the heat storage material of the second heat storage tank 40, the temperature of the second heat storage tank 40 The heat of the heat storage material is transferred to the water in the first heat storage tank 30 . As a result, the temperature of the water in the upper portion of the first heat storage tank 30 rises. Therefore, in the region of the second step portion 32 of the first heat storage tank 30, heat is replenished from the second heat storage tank 40 as the temperature of the water drops.
 ここで、第1の蓄熱タンク30と第2の蓄熱タンク40とは、別体で形成されている。そのため、腐食により第1の蓄熱タンク30あるいは第2の蓄熱タンク40が破損し、穴が生じた場合でも両タンク内の流体が混合することはない。したがって、本実施の形態1では、第1の蓄熱タンク30から流出する水への第2の蓄熱タンク40の蓄熱材の混入を防ぐことができる。 Here, the first heat storage tank 30 and the second heat storage tank 40 are formed separately. Therefore, even if the first heat storage tank 30 or the second heat storage tank 40 is damaged by corrosion and a hole is formed, the fluids in both tanks will not mix. Therefore, in Embodiment 1, it is possible to prevent the heat storage material of the second heat storage tank 40 from being mixed into the water flowing out of the first heat storage tank 30 .
 このように、本実施の形態1に係る給湯機100では、蓄熱する蓄熱部10が第1の蓄熱タンク30および第2の蓄熱タンク40で構成されており、流体による蓄熱に加えて、水等の流体よりも蓄熱密度の高い潜熱蓄熱材が適用される。そのため、従来と同程度の熱を蓄える際には、蓄熱部10を小型化することができる。 As described above, in the water heater 100 according to Embodiment 1, the heat storage unit 10 for storing heat is composed of the first heat storage tank 30 and the second heat storage tank 40, and in addition to heat storage by fluid, water or the like is also used. A latent heat storage material with a higher heat storage density than the fluid is applied. Therefore, the size of the heat storage unit 10 can be reduced when storing the same amount of heat as conventionally.
 また、本実施の形態1では、第1の蓄熱タンク30に蓄えられた熱が第2の蓄熱タンク40に供給されるので、加熱装置2であるヒートポンプで加熱される流体の温度を低下させることができる。そのため、ヒートポンプの性能低下を抑制することができ、省エネ性能の低下を抑制することができる。 Further, in Embodiment 1, since the heat stored in the first heat storage tank 30 is supplied to the second heat storage tank 40, the temperature of the fluid heated by the heat pump, which is the heating device 2, can be lowered. can be done. Therefore, deterioration of the performance of the heat pump can be suppressed, and deterioration of the energy saving performance can be suppressed.
 以上のように、本実施の形態1に係る給湯機100では、蓄熱部10を構成する第1の蓄熱タンク30と第2の蓄熱タンク40とが別体で形成されている。そのため、第2の蓄熱タンク40が腐食等によって破損して内部の蓄熱材が漏れ出す場合でも、第1の蓄熱タンク30内の流体への蓄熱材の混入を防ぐことができる。さらには、蓄熱材の給水への混入を防ぐことができる。 As described above, in the water heater 100 according to Embodiment 1, the first heat storage tank 30 and the second heat storage tank 40 that constitute the heat storage section 10 are formed separately. Therefore, even if the second heat storage tank 40 is damaged due to corrosion or the like and the heat storage material inside leaks out, the heat storage material can be prevented from being mixed into the fluid in the first heat storage tank 30 . Furthermore, it is possible to prevent the heat storage material from being mixed into the water supply.
 また、給湯機100では、蓄熱部10が第1の蓄熱タンク30および第2の蓄熱タンク40で形成され、加熱された流体が第1の蓄熱タンク30に流入する際に、流体と、第2の蓄熱タンク40の蓄熱材との間で熱交換が行われ、第2の蓄熱タンク40内に蓄熱される。これにより、第1の蓄熱タンク30内に貯留される流体の温度が低下するので、蓄熱動作を繰り返すことによって生じる、加熱装置2に供給される流体の温度上昇が、蓄熱しながらも抑制される。そのため、加熱装置2であるヒートポンプの性能の低下を抑制し、省エネ性能の低下を抑制することができる。 Further, in the water heater 100, the heat storage unit 10 is formed by the first heat storage tank 30 and the second heat storage tank 40, and when the heated fluid flows into the first heat storage tank 30, the fluid and the second Heat is exchanged with the heat storage material of the heat storage tank 40 , and heat is stored in the second heat storage tank 40 . As a result, the temperature of the fluid stored in the first heat storage tank 30 is lowered, so that the temperature rise of the fluid supplied to the heating device 2 caused by repeating the heat storage operation is suppressed while storing the heat. . Therefore, deterioration of the performance of the heat pump, which is the heating device 2, can be suppressed, and deterioration of the energy saving performance can be suppressed.
実施の形態2.
 次に、本実施の形態2について説明する。本実施の形態2に係る給湯機100は、蓄熱部10の構造が実施の形態1と相違する。なお、本実施の形態2において、実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。
Embodiment 2.
Next, Embodiment 2 will be described. Water heater 100 according to the second embodiment differs from that of the first embodiment in the structure of heat storage unit 10 . It should be noted that, in the second embodiment, the same reference numerals are assigned to the parts that are common to the first embodiment, and detailed description thereof will be omitted.
 本実施の形態2に係る給湯機100は、蓄熱タンクユニット1に設けられた蓄熱部10の構造を除いて、上述した実施の形態1と共通する。そのため、以下では、給湯機100の蓄熱タンクユニット1に設けられた蓄熱部10の構造について説明する。 A water heater 100 according to Embodiment 2 is common to Embodiment 1 described above, except for the structure of the heat storage section 10 provided in the heat storage tank unit 1 . Therefore, below, the structure of the heat storage part 10 provided in the heat storage tank unit 1 of the water heater 100 will be described.
[蓄熱部10の構造]
 図5は、本実施の形態2に係る蓄熱部の構造の一例を示す斜視図である。図6は、本実施の形態2に係る蓄熱部の構造の一例を示す上面図である。図7は、図6に示す蓄熱部のB-B断面図である。図5~図7に示すように、蓄熱部10は、第1の蓄熱タンク30と、第1の蓄熱タンク30と別体で形成された第2の蓄熱タンク40Aとで構成されている。
[Structure of heat storage unit 10]
FIG. 5 is a perspective view showing an example of the structure of the heat storage unit according to the second embodiment. FIG. 6 is a top view showing an example of the structure of the heat storage section according to the second embodiment. FIG. 7 is a BB cross-sectional view of the heat storage unit shown in FIG. As shown in FIGS. 5 to 7, the heat storage section 10 is composed of a first heat storage tank 30 and a second heat storage tank 40A formed separately from the first heat storage tank 30. As shown in FIGS.
 第2の蓄熱タンク40Aは、第1の蓄熱タンク30における第2段部32の側面および上面を覆って当接するように形成されている。第2の蓄熱タンク40Aの外周は、実施の形態1と同様に、第1の蓄熱タンク30の第1段部31の外周と同寸法となるように形成されている。また、第2の蓄熱タンク40Aの内周は、実施の形態1と同様に、第1の蓄熱タンク30の第2段部32の外周と同寸法となるように形成されている。 The second heat storage tank 40A is formed so as to cover and abut on the side surface and top surface of the second stepped portion 32 of the first heat storage tank 30 . The outer periphery of the second heat storage tank 40A is formed to have the same dimensions as the outer periphery of the first stepped portion 31 of the first heat storage tank 30, as in the first embodiment. Further, the inner periphery of the second heat storage tank 40A is formed to have the same dimensions as the outer periphery of the second stepped portion 32 of the first heat storage tank 30, as in the first embodiment.
 第2の蓄熱タンク40の上面中央には、第1の蓄熱タンク30の上部配管33に対応する位置に、高さ方向(z方向)に貫通する孔部41が形成されている。これにより、第1の蓄熱タンク30および第2の蓄熱タンク40が組み合わせられた際に、第1の蓄熱タンク30の上部配管33は、孔部41を貫通するように上方に突出する。 A hole 41 penetrating in the height direction (z direction) is formed in the center of the upper surface of the second heat storage tank 40 at a position corresponding to the upper pipe 33 of the first heat storage tank 30 . Thereby, when the first heat storage tank 30 and the second heat storage tank 40 are combined, the upper pipe 33 of the first heat storage tank 30 protrudes upward so as to pass through the hole 41 .
 第2段部32の上面は、放熱が最も多くなる部位である。そのため、このように第2の蓄熱タンク40によって覆われることにより、従来と比較して断熱性能が向上し、蓄えられた熱の放熱を抑制することができる。 The upper surface of the second stepped portion 32 is the portion where the heat is most dissipated. Therefore, by being covered with the second heat storage tank 40 in this way, the heat insulation performance is improved compared with the conventional one, and the heat dissipation of the stored heat can be suppressed.
[蓄熱部10の変形例]
 図8は、図6に示す蓄熱部の変形例のB-B断面図である。図8に示すように、本実施の形態2に係る蓄熱部10の変形例では、第1の蓄熱タンク30における第2段部32Bの上面が、上面中央からテーパ状に形成されている。また、第2の蓄熱タンク40Bにおける上面内周は、第1の蓄熱タンク30の第2段部32Bの上面に沿うようにテーパ状に形成されている。これらのテーパ形状は、幅方向(x方向)および奥行き方向(y方向)に対して5°程度傾斜するように形成されている。
[Modification of heat storage unit 10]
FIG. 8 is a BB cross-sectional view of a modification of the heat storage unit shown in FIG. As shown in FIG. 8, in the modification of the heat storage section 10 according to the second embodiment, the upper surface of the second stepped portion 32B in the first heat storage tank 30 is tapered from the center of the upper surface. In addition, the inner periphery of the upper surface of the second heat storage tank 40B is tapered along the upper surface of the second step portion 32B of the first heat storage tank 30 . These tapered shapes are formed so as to be inclined by about 5° with respect to the width direction (x direction) and the depth direction (y direction).
 第2の蓄熱タンク40内の潜熱蓄熱材は、第1の蓄熱タンク30に流入する水と熱交換した際に、上部側から相変化する。そのため、第1の蓄熱タンク30と第2の蓄熱タンク40との上面における当接面がテーパ状に形成されることにより、タンクに生じる応力を緩和することができる。 The latent heat storage material in the second heat storage tank 40 undergoes a phase change from the upper side when heat is exchanged with water flowing into the first heat storage tank 30 . Therefore, the contact surfaces of the upper surfaces of the first heat storage tank 30 and the second heat storage tank 40 are formed in a tapered shape, so that the stress generated in the tanks can be alleviated.
 以上のように、本実施の形態2に係る給湯機100において、第1の蓄熱タンク30は、第2段部32の側面に加えて上面が第2の蓄熱タンク40によって覆われて当接されている。これにより、放熱が最も多くなる第2段部32の上面の断熱性能が向上するため、蓄えられた熱の放熱を抑制することができる。 As described above, in the water heater 100 according to Embodiment 2, the first heat storage tank 30 is covered with the second heat storage tank 40 not only on the side surface of the second stepped portion 32 but also on the top surface. ing. As a result, the heat insulation performance of the upper surface of the second stepped portion 32, where the heat is most dissipated, is improved, so that the heat dissipation of the accumulated heat can be suppressed.
 以上、本実施の形態1および2について説明したが、本開示は、上述した実施の形態1および2に限定されるものではなく、本開示要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、第2の蓄熱タンク40は、第1の蓄熱タンク30の上部を覆うように配置されることが望ましいが、これに限られず、第1の蓄熱タンク30の中間部または下部に配置させてもよい。このように第2の蓄熱タンク40が配置されることによっても、本実施の形態1および2の効果を奏することができる。 Although the first and second embodiments have been described above, the present disclosure is not limited to the first and second embodiments described above, and various modifications and applications are possible without departing from the gist of the present disclosure. is. For example, the second heat storage tank 40 is desirably arranged so as to cover the upper portion of the first heat storage tank 30, but is not limited to this, and may be arranged in the middle or lower portion of the first heat storage tank 30. good too. By arranging the second heat storage tank 40 in this way, the effects of the first and second embodiments can be obtained.
 ただし、第1の蓄熱タンク30内の流体は、上部が高温となり、下部が低温となるように温度成層が形成されており、給湯動作を行うことで、このような温度成層はさらに顕著となる。また、給湯時は、第1の蓄熱タンク30の上部の流体が熱交換器13に供給されるため、第1の蓄熱タンク30の上部に第2の蓄熱タンク40の熱を供給することが望ましい。 However, the fluid in the first heat storage tank 30 is thermally stratified so that the upper part is hot and the lower part is cold. . Moreover, since the fluid in the upper part of the first heat storage tank 30 is supplied to the heat exchanger 13 during hot water supply, it is desirable to supply the heat of the second heat storage tank 40 to the upper part of the first heat storage tank 30. .
 また、実施の形態1および2の給湯機100では、第2の蓄熱タンク40の潜熱蓄熱材としてパラフィンが用いられる場合について説明したが、これに限られず、蓄熱温度近傍に融点がある材料であれば、その他の潜熱蓄熱材が適用されてもよい。 Further, in the water heater 100 of the first and second embodiments, the case where paraffin is used as the latent heat storage material of the second heat storage tank 40 has been described, but the present invention is not limited to this, and any material having a melting point near the heat storage temperature can be used. For example, other latent heat storage materials may be applied.
 さらに、蓄熱材として、潜熱蓄熱材に限られず、顕熱蓄熱材が適用されてもよい。この場合には、第1の蓄熱タンク30内の流体に対して、蓄熱密度の高い温度であれば、同様の効果を奏することができる。 Furthermore, the heat storage material is not limited to the latent heat storage material, and a sensible heat storage material may be applied. In this case, if the fluid in the first heat storage tank 30 is at a temperature at which the heat storage density is high, the same effect can be obtained.
 さらにまた、蓄熱部10は、直方体状に形成されるように説明したが、これに限られず、例えば円筒形状に形成されてもよい。形状以外の構成を実施の形態1および2と同等にすることにより、上述した効果を奏することができ、これにより、蓄熱部10の設置スペースの自由度は低下するものの、耐圧性能を向上させることができる。 Furthermore, although the heat storage section 10 has been described as being formed in a rectangular parallelepiped shape, it is not limited to this, and may be formed in a cylindrical shape, for example. By making the configurations other than the shape the same as those of the first and second embodiments, the above-described effects can be obtained, and although the degree of freedom in the installation space of the heat storage unit 10 is reduced, the pressure resistance performance can be improved. can be done.
 また、実施の形態1および2では、第1の蓄熱タンク30および第2の蓄熱タンク40がステンレスで形成されるように説明したが、これはこの例に限られない。内部の蓄熱材によって腐食しない材料であれば、第1の蓄熱タンク30および第2の蓄熱タンク40は、ステンレス以外の材料で形成されてもよい。例えば、蓄熱材によって腐食しない材料として、鉄、ニッケルクロム合金および樹脂等が挙げられる。ただし、第1の蓄熱タンク30と第2の蓄熱タンク40とが互いに接触する部分は、熱伝導率の高い材料で構成することが望ましい。 Also, in Embodiments 1 and 2, the first heat storage tank 30 and the second heat storage tank 40 are made of stainless steel, but this is not limited to this example. The first heat storage tank 30 and the second heat storage tank 40 may be made of a material other than stainless steel as long as the material does not corrode with the heat storage material inside. Examples of materials that are not corroded by the heat storage material include iron, nickel-chromium alloys, and resins. However, it is desirable that the portion where the first heat storage tank 30 and the second heat storage tank 40 are in contact with each other be made of a material with high thermal conductivity.
 1 蓄熱タンクユニット、2 加熱装置、3、4 配管、5 給水配管、6 給湯配管、10 蓄熱部、11 加熱装置用ポンプ、12 給湯用ポンプ、13 熱交換器、14 混合弁、21 圧縮機、22 加熱熱交換器、23 減圧装置、24 吸熱熱交換器、30 第1の蓄熱タンク、31 第1段部、32、32B 第2段部、33 上部配管、34 下部配管、40、40A 第2の蓄熱タンク、41 孔部、100 給湯機。 1 heat storage tank unit, 2 heating device, 3, 4 piping, 5 water supply piping, 6 hot water supply piping, 10 heat storage unit, 11 heating device pump, 12 hot water supply pump, 13 heat exchanger, 14 mixing valve, 21 compressor, 22 heating heat exchanger, 23 decompression device, 24 endothermic heat exchanger, 30 first heat storage tank, 31 first stage, 32, 32B second stage, 33 upper pipe, 34 lower pipe, 40, 40A second heat storage tank, 41 hole, 100 water heater.

Claims (10)

  1.  流体を加熱する加熱装置と、前記加熱装置で加熱された前記流体を貯留することによって蓄熱する蓄熱タンクユニットとを備え、前記蓄熱タンクユニットに蓄えられた熱を利用して給湯を行う給湯機であって、
     前記蓄熱タンクユニットは、
     加熱された前記流体を貯留する蓄熱部を備え、
     前記蓄熱部は、
     加熱された前記流体が流入する第1の蓄熱タンクと、
     前記流体とは異なる蓄熱材が収納され、前記第1の蓄熱タンクと別体で形成されるとともに、前記第1の蓄熱タンクと当接して配置される第2の蓄熱タンクと
    を有し、
     加熱された前記流体が前記蓄熱部に流入した際に、前記第1の蓄熱タンク内の前記流体と前記第2の蓄熱タンクの前記蓄熱材との間の熱交換により、前記第2の蓄熱タンクに蓄熱される
    給湯機。
    A water heater that includes a heating device that heats a fluid and a heat storage tank unit that stores heat by storing the fluid heated by the heating device, and supplies hot water using the heat stored in the heat storage tank unit. There is
    The heat storage tank unit is
    A heat storage unit that stores the heated fluid,
    The heat storage unit is
    a first heat storage tank into which the heated fluid flows;
    A second heat storage tank that contains a heat storage material different from the fluid, is formed separately from the first heat storage tank, and is arranged in contact with the first heat storage tank,
    When the heated fluid flows into the heat storage unit, heat exchange between the fluid in the first heat storage tank and the heat storage material of the second heat storage tank causes the second heat storage tank to A water heater that stores heat in
  2.  前記第2の蓄熱タンクは、
     前記第1の蓄熱タンクの側面の少なくとも一部を覆って当接するように配置される
    請求項1に記載の給湯機。
    The second heat storage tank is
    The water heater according to claim 1, wherein the water heater is arranged so as to cover and abut at least a portion of a side surface of the first heat storage tank.
  3.  前記第1の蓄熱タンクは、
     下部側に形成された第1段部と、
     上部側に形成され、水平面で切断したときの切断面が前記第1段部よりも小さい第2段部と
    を有し、
     前記第2の蓄熱タンクは、
     前記第2段部の側面を覆って当接するように配置される
    請求項1または2に記載の給湯機。
    The first heat storage tank is
    a first stepped portion formed on the lower side;
    a second stepped portion formed on the upper side and having a cut surface smaller than that of the first stepped portion when cut along a horizontal plane;
    The second heat storage tank is
    3. The water heater according to claim 1, wherein the water heater is arranged so as to cover and abut on a side surface of the second stepped portion.
  4.  前記第2の蓄熱タンクは、
     さらに、前記第2段部の上面を覆って当接するように配置される
    請求項3に記載の給湯機。
    The second heat storage tank is
    4. The water heater according to claim 3, further arranged to cover and abut on the upper surface of the second stepped portion.
  5.  前記第1の蓄熱タンクの前記第2段部と前記第2の蓄熱タンクとの上面における当接面がテーパ状に形成されている
    請求項4に記載の給湯機。
    5. The water heater according to claim 4, wherein a contact surface between the second stepped portion of the first heat storage tank and the upper surface of the second heat storage tank is tapered.
  6.  前記第2の蓄熱タンクは、
     潜熱蓄熱材が収納されている
    請求項1~5のいずれか一項に記載の給湯機。
    The second heat storage tank is
    The water heater according to any one of claims 1 to 5, wherein the latent heat storage material is accommodated.
  7.  前記第2の蓄熱タンクは、
     前記潜熱蓄熱材としてパラフィンが収納されている
    請求項6に記載の給湯機。
    The second heat storage tank is
    7. The water heater according to claim 6, wherein paraffin is contained as said latent heat storage material.
  8.  前記第1の蓄熱タンクと前記第2の蓄熱タンクとの当接面に、熱伝導性材料が配置される
    請求項1~7のいずれか一項に記載の給湯機。
    The water heater according to any one of claims 1 to 7, wherein a heat conductive material is arranged on a contact surface between the first heat storage tank and the second heat storage tank.
  9.  前記第1の蓄熱タンクと前記第2の蓄熱タンクとの当接面は、板厚が前記第1の蓄熱タンクおよび前記第2の蓄熱タンクにおける他の面よりも薄く形成されている
    請求項1~8のいずれか一項に記載の給湯機。
    2. A contact surface between said first heat storage tank and said second heat storage tank is formed to have a plate thickness thinner than other surfaces of said first heat storage tank and said second heat storage tank. 9. The water heater according to any one of -8.
  10.  前記第2の蓄熱タンクは、
     内部に内周側から外周側に向かって延びるフィン形状が形成されている
    請求項1~9のいずれか一項に記載の給湯機。
    The second heat storage tank is
    The water heater according to any one of claims 1 to 9, wherein a fin shape extending from the inner peripheral side to the outer peripheral side is formed inside.
PCT/JP2021/019178 2021-05-20 2021-05-20 Water heater WO2022244195A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023522125A JPWO2022244195A1 (en) 2021-05-20 2021-05-20
PCT/JP2021/019178 WO2022244195A1 (en) 2021-05-20 2021-05-20 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019178 WO2022244195A1 (en) 2021-05-20 2021-05-20 Water heater

Publications (1)

Publication Number Publication Date
WO2022244195A1 true WO2022244195A1 (en) 2022-11-24

Family

ID=84141556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019178 WO2022244195A1 (en) 2021-05-20 2021-05-20 Water heater

Country Status (2)

Country Link
JP (1) JPWO2022244195A1 (en)
WO (1) WO2022244195A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121158A (en) * 1998-10-20 2000-04-28 Sekisui Chem Co Ltd Hot water storage type electric water heater
JP2006084090A (en) * 2004-09-15 2006-03-30 Matsushita Electric Ind Co Ltd Heat pump heat accumulator
JP2011007418A (en) * 2009-06-25 2011-01-13 Sumitomo Electric Ind Ltd Heat pump heater-water heater
JP2012180993A (en) * 2011-03-02 2012-09-20 Yazaki Corp Latent heat storing hot water storage tank and hot water supply device
JP2013024529A (en) * 2011-07-26 2013-02-04 Dainichi Co Ltd Heat storage hot water supply device
JP2016205725A (en) * 2015-04-24 2016-12-08 株式会社ガスター Hot water storage unit
JP2019190668A (en) * 2018-04-18 2019-10-31 パナソニックIpマネジメント株式会社 Heat storage type water heating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121158A (en) * 1998-10-20 2000-04-28 Sekisui Chem Co Ltd Hot water storage type electric water heater
JP2006084090A (en) * 2004-09-15 2006-03-30 Matsushita Electric Ind Co Ltd Heat pump heat accumulator
JP2011007418A (en) * 2009-06-25 2011-01-13 Sumitomo Electric Ind Ltd Heat pump heater-water heater
JP2012180993A (en) * 2011-03-02 2012-09-20 Yazaki Corp Latent heat storing hot water storage tank and hot water supply device
JP2013024529A (en) * 2011-07-26 2013-02-04 Dainichi Co Ltd Heat storage hot water supply device
JP2016205725A (en) * 2015-04-24 2016-12-08 株式会社ガスター Hot water storage unit
JP2019190668A (en) * 2018-04-18 2019-10-31 パナソニックIpマネジメント株式会社 Heat storage type water heating device

Also Published As

Publication number Publication date
JPWO2022244195A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US20170248373A1 (en) Plate heat exchanger and heat pump outdoor unit
JP2011252636A (en) Hot-water heating hot-water supply apparatus
JP2010043759A (en) Storage type water heater
CN204649044U (en) A kind of follow-on ultra-thin loop circuit heat pipe
JP2011106738A (en) Heat exchanger and heat pump system
EP2770278B1 (en) Water heater
EP2770277B1 (en) Water heater
JP4792902B2 (en) Heat exchanger
CN104880107A (en) Improved ultrathin loop heat pipe
JP2007064540A (en) Geothermal heat pump type water heater
WO2022244195A1 (en) Water heater
JP5637903B2 (en) Hot water system
JP3917581B2 (en) Heat pump water heater
JP5404541B2 (en) Heat exchanger and hot water supply apparatus provided with the same
JP4805179B2 (en) Water refrigerant heat exchanger
JP7257799B2 (en) Storage hot water heater
JP2015206551A (en) refrigerant-water heat exchanger
JP7149735B2 (en) water heater
JP2005140393A (en) Hot water storage type water heater
JP2005069608A (en) Hot water utilizing system
JP2007333270A (en) Heat-pump heat source equipment
JPH0320708Y2 (en)
JP2003240465A (en) Latent heat storage device
JP2003222448A (en) Air conditioning system for high rise building
JP2009174753A (en) Heat exchanger and heat pump water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522125

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940809

Country of ref document: EP

Kind code of ref document: A1