WO2022242658A1 - 杂环取代的嘌呤酮衍生物的盐型及晶型 - Google Patents

杂环取代的嘌呤酮衍生物的盐型及晶型 Download PDF

Info

Publication number
WO2022242658A1
WO2022242658A1 PCT/CN2022/093391 CN2022093391W WO2022242658A1 WO 2022242658 A1 WO2022242658 A1 WO 2022242658A1 CN 2022093391 W CN2022093391 W CN 2022093391W WO 2022242658 A1 WO2022242658 A1 WO 2022242658A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
present
ray powder
Prior art date
Application number
PCT/CN2022/093391
Other languages
English (en)
French (fr)
Inventor
陈新海
夏尚华
陈兆国
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CN202280036494.1A priority Critical patent/CN117355526A/zh
Priority to EP22803978.0A priority patent/EP4342899A1/en
Publication of WO2022242658A1 publication Critical patent/WO2022242658A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/04Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing only one sulfo group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • C07C309/30Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a salt form, a crystal form and a preparation method of a heterocyclic substituted purinone derivative.
  • DNA breaks especially double-strand breaks (DSBs), are extremely serious injuries that can cause loss of genetic material, genetic recombination, and thus lead to cancer or cell death.
  • Eukaryotic cells have evolved a variety of mechanisms to deal with the serious threat of DNA double-strand breaks. This is the DNA damage response mechanism (DDR), which mainly includes DNA damage detection, signal transduction and damage repair.
  • DDR DNA damage response mechanism
  • DNA double-strand break repair mainly includes homologous end joining (HR) repair and non-homologous end joining (NHEJ) repair.
  • DNA-PKcs which belongs to the phosphoinositide-3-kinase-related protein (PI3K-relatedkinase, PIKK) family, mainly targets the non-homologous ends of DNA double-strand breaks Junction (NHEJ) repair is an important member of DNA damage repair.
  • NHEJ DNA double-strand breaks Junction
  • the Ku70/Ku80 heterodimer is specifically connected to the double-strand damage through a pre-formed channel, recognizes the double-strand break and binds to the broken end respectively, and then along the DNA in an ATP-dependent manner
  • the strands slide a certain distance to both ends, forming a KU-DNA complex and recruiting DNA-PKcs to the double-strand break to bind with it, then the Ku dimer moves inward, activates DNA-PKcs and phosphorylates itself, and finally , phosphorylated DNA-PKcs guides damage signaling and recruits DNA end processing-related proteins such as PNKP, XRCC4, XLF, Pol X and DNA ligase IV to participate in the completion of double-strand break repair.
  • DNA end processing-related proteins such as PNKP, XRCC4, XLF, Pol X and DNA ligase IV to participate in the completion of double-strand break repair.
  • DNA-damaging chemotherapy drugs such as bleomycin, topoisomerase II inhibitors such as etoposide and doxorubicin
  • radiotherapy commonly used in cancer treatment
  • DNA-PK DNA-damaging chemotherapy drugs
  • bleomycin topoisomerase II inhibitors
  • doxorubicin doxorubicin
  • radiotherapy commonly used in cancer treatment
  • high expression of DNA-PK is found in tumor tissues treated with radiotherapy and chemotherapy, and the increase of DNA-PKcs activity enhances the repair of damaged DNA to a certain extent, prevents the death of tumor cells, and leads to the effect of radiotherapy and chemotherapy. develop tolerance.
  • DNA-PK inhibitors can inhibit the activity of DNA-PKcs, thereby greatly reducing tumor DNA repair, inducing cells to enter apoptosis, and achieving better therapeutic effects.
  • ATM plays an important role in homologous end-joining (HR) repair.
  • HR homologous end-joining
  • the present invention aims to find a small molecule inhibitor of DNA-PK, which can not only exert a therapeutic effect in tumors with defects in other DNA repair pathways as a single drug. It can also be used in combination with radiotherapy and chemotherapy drugs to enhance the sensitivity of tumor tissue to radiotherapy and chemotherapy, overcome the problem of drug resistance, and enhance the inhibitory effect on various solid tumors and hematological tumors.
  • the present invention provides the A crystal form of the compound of formula (I),
  • the Cu K ⁇ radiation X-ray powder diffraction pattern of the A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.26 ⁇ 0.20°, 19.47 ⁇ 0.20°, 22.69 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.26 ⁇ 0.20°, 11.50 ⁇ 0.20°, 17.03 ⁇ 0.20°, 19.47 ⁇ 0.20° , 22.69 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 9.26 ⁇ 0.20°, 11.50 ⁇ 0.20°, 13.52 ⁇ 0.20°, 17.03 ⁇ 0.20° , 18.75 ⁇ 0.20°, 19.47 ⁇ 0.20°, 22.69 ⁇ 0.20°, 27.74 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.77 ⁇ 0.20°, 9.26 ⁇ 0.20°, 11.50 ⁇ 0.20°, 13.52 ⁇ 0.20° , 17.03 ⁇ 0.20°, 17.50 ⁇ 0.20°, 18.75 ⁇ 0.20°, 19.47 ⁇ 0.20°, 22.69 ⁇ 0.20°, 23.84 ⁇ 0.20°, 24.42 ⁇ 0.20°, 26.76 ⁇ 0.20°, 27.74 ⁇ 0.20°
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.77 ⁇ 0.20°, 9.26 ⁇ 0.20°, 11.50 ⁇ 0.20°, 13.52 ⁇ 0.20° , 14.50 ⁇ 0.20°, 15.60 ⁇ 0.20°, 17.03 ⁇ 0.20°, 17.50 ⁇ 0.20°, 18.75 ⁇ 0.20°, 19.47 ⁇ 0.20°, 22.69 ⁇ 0.20°, 23.84 ⁇ 0.20°, 24.42 ⁇ 0.20°, 26.76 ⁇ 0.20° , 27.74 ⁇ 0.20°, 30.40 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.26 ⁇ 0.20°, 19.47 ⁇ 0.20°, 22.69 ⁇ 0.20°, and/or 5.77 ⁇ 0.20°, and/or 11.50 ⁇ 0.20°, and/or 13.52 ⁇ 0.20°, and/or 14.50 ⁇ 0.20°, and/or 15.16 ⁇ 0.20°, and/or 15.60 ⁇ 0.20°, and/or 17.03 ⁇ 0.20 °, and/or 17.28 ⁇ 0.20°, and/or 17.50 ⁇ 0.20°, and/or 18.47 ⁇ 0.20°, and/or 18.75 ⁇ 0.20°, and/or 19.27 ⁇ 0.20°, and/or 23.84 ⁇ 0.20°, and/or 24.42 ⁇ 0.20°, and/or 26.76 ⁇ 0.20°, and/or 27.74 ⁇ 0.20°, and/or 28.43 ⁇ 0.20°, and/or 29.77
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.77°, 9.26°, 11.50°, 13.52°, 14.50°, 15.16°, 15.60 °, 17.03°, 17.28°, 17.50°, 18.47°, 18.75°, 19.27°, 19.47°, 22.69°, 23.84°, 24.42°, 26.76°, 27.74°, 28.43°, 29.77°, 30.40°, 32.08°.
  • the XRPD spectrum of the above crystal form A is shown in FIG. 1 .
  • the XRPD pattern of the above crystal form A is basically as shown in FIG. 1 .
  • the differential scanning calorimetry (DSC) curve of the above-mentioned crystal form A shows an onset point of an endothermic peak at 257.8°C ⁇ 3°C.
  • the differential scanning calorimetry (DSC) curve of the above-mentioned crystal form A shows an onset point of an endothermic peak at 257.8°C ⁇ 5°C.
  • the DSC spectrum of the above crystal form A is shown in FIG. 2 .
  • the DSC spectrum of the above crystal form A is basically as shown in FIG. 2 .
  • thermogravimetric analysis (TGA) curve of the above crystal form A has a weight loss of 1.39% at 230.0°C ⁇ 3°C.
  • the TGA spectrum of the above crystal form A is shown in FIG. 3 .
  • the TGA spectrum of the above crystal form A is basically as shown in FIG. 3 .
  • the present invention also provides mesylate and p-toluenesulfonate of the compound of formula (I),
  • m and n are independently selected from 0.6-2.5.
  • m is selected from 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.8, 1.9, 2.0, 2.1 and 2.2;
  • n is selected from 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.8, 1.9, 2.0, 2.1 and 2.2.
  • m is selected from 1.0, 2.0 and 2.2.
  • n is selected from 1.0, 2.0 and 2.1.
  • the above-mentioned compound of formula (II) is selected from the compound of formula (II-1), and the compound of above-mentioned formula (III) is selected from the compound of formula (III-1),
  • the present invention also provides the B crystal form of the compound of formula (II-1),
  • the Cu K ⁇ radiation X-ray powder diffraction pattern of the B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02 ⁇ 0.20°, 16.56 ⁇ 0.20°, 21.25 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02 ⁇ 0.20°, 10.66 ⁇ 0.20°, 13.98 ⁇ 0.20°, 16.56 ⁇ 0.20° , 21.25 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02 ⁇ 0.20°, 10.66 ⁇ 0.20°, 13.98 ⁇ 0.20°, 16.56 ⁇ 0.20° , 21.25 ⁇ 0.20°, 29.98 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02 ⁇ 0.20°, 9.29 ⁇ 0.20°, 10.66 ⁇ 0.20°, 13.98 ⁇ 0.20° , 16.56 ⁇ 0.20°, 21.25 ⁇ 0.20°, 29.98 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02 ⁇ 0.20°, 9.29 ⁇ 0.20°, 10.66 ⁇ 0.20°, 13.98 ⁇ 0.20° , 16.56 ⁇ 0.20°, 20.51 ⁇ 0.20°, 21.25 ⁇ 0.20°, 26.14 ⁇ 0.20°, 28.08 ⁇ 0.20°, 29.98 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02 ⁇ 0.20°, 9.29 ⁇ 0.20°, 10.66 ⁇ 0.20°, 13.98 ⁇ 0.20° , 16.56 ⁇ 0.20°, 20.51 ⁇ 0.20°, 21.25 ⁇ 0.20°, 26.14 ⁇ 0.20°, 28.08 ⁇ 0.20°, 29.98 ⁇ 0.20°, 35.07 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02 ⁇ 0.20°, 9.29 ⁇ 0.20°, 10.66 ⁇ 0.20°, 13.98 ⁇ 0.20° , 16.56 ⁇ 0.20°, 18.54 ⁇ 0.20°, 19.11 ⁇ 0.20°, 20.51 ⁇ 0.20°, 21.25 ⁇ 0.20°, 22.25 ⁇ 0.20°, 23.14 ⁇ 0.20°, 23.77 ⁇ 0.20°, 26.14 ⁇ 0.20°, 28.08 ⁇ 0.20° , 29.98 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02 ⁇ 0.20°, 9.29 ⁇ 0.20°, 10.66 ⁇ 0.20°, 13.98 ⁇ 0.20° , 16.56 ⁇ 0.20°, 18.54 ⁇ 0.20°, 19.11 ⁇ 0.20°, 20.51 ⁇ 0.20°, 21.25 ⁇ 0.20°, 22.25 ⁇ 0.20°, 23.14 ⁇ 0.20°, 23.77 ⁇ 0.20°, 26.14 ⁇ 0.20°, 28.08 ⁇ 0.20° , 29.98 ⁇ 0.20°, 35.07 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02 ⁇ 0.20°, 16.56 ⁇ 0.20°, 21.25 ⁇ 0.20°, and/or 13.98 ⁇ 0.20°, and/or 10.66 ⁇ 0.20°, and/or 29.98 ⁇ 0.20°, and/or 9.29 ⁇ 0.20°, and/or 26.14 ⁇ 0.20°, and/or 20.51 ⁇ 0.20°, and/or 30.57 ⁇ 0.20 °, and/or 35.33 ⁇ 0.20°, and/or 28.08 ⁇ 0.20°, and/or 22.25 ⁇ 0.20°, and/or 23.14 ⁇ 0.20°, there are characteristic diffraction peaks.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02°, 9.29°, 10.66°, 13.98°, 16.56°, 18.54°, 19.11° °, 20.51°, 21.25°, 21.98°, 22.25°, 23.14°, 23.77°, 26.14°, 27.27°, 28.08°, 29.98°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.02°, 9.29°, 10.66°, 13.98°, 16.56°, 18.54°, 19.11° °, 20.51°, 21.25°, 21.98°, 22.25°, 23.14°, 23.77°, 26.14°, 27.27°, 28.08°, 29.98°, 30.67°, 33.75°, 35.07°, 35.33°, 37.17°.
  • the XRPD spectrum of the above crystal form B is shown in FIG. 4 .
  • the XRPD spectrum of the above crystal form B is basically as shown in FIG. 4 .
  • the differential scanning calorimetry (DSC) curve of the above crystal form B shows an onset point of an endothermic peak at 286.6°C ⁇ 3°C.
  • the differential scanning calorimetry (DSC) curve of the above crystal form B shows an onset point of an endothermic peak at 286.6°C ⁇ 5°C.
  • the DSC spectrum of the above crystal form B is shown in FIG. 5 .
  • the DSC spectrum of the above crystal form B is basically as shown in FIG. 5 .
  • thermogravimetric analysis (TGA) curve of the above crystal form B reaches a weight loss of 0.58% at 200.0°C ⁇ 3°C.
  • the TGA spectrum of the above crystal form B is shown in FIG. 6 .
  • the TGA spectrum of the above crystal form B is basically as shown in FIG. 6 .
  • the 1 H NMR spectrum of the above crystal form B is shown in FIG. 7 .
  • the 1 H NMR spectrum of the above crystal form B is basically as shown in FIG. 7 .
  • the present invention also provides a method for preparing the above crystal form B, the method comprising the following steps:
  • the compound Z is selected from the compound of formula (I), the crystal form of compound A of formula (I) and the crystal form of compound K of formula (VIII-1);
  • the solvent X is selected from dimethyl sulfoxide, methanol, ethanol, acetonitrile, acetone, tetrahydrofuran and dichloromethane;
  • the solvent Y does not exist, or the solvent Y is selected from methyl tert-butyl ether, ethyl acetate and n-heptane;
  • the molar ratio of the methanesulfonic acid to the crystal form of compound A of the formula (I) is 1.0:1 ⁇ 1.2:1.
  • the present invention also provides the C crystal form of the compound of formula (III-1),
  • the Cu K ⁇ radiation X-ray powder diffraction pattern of the C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.96 ⁇ 0.20°, 15.16 ⁇ 0.20°, 17.83 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.96 ⁇ 0.20°, 10.23 ⁇ 0.20°, 15.16 ⁇ 0.20°, 17.83 ⁇ 0.20° , 23.19 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.96 ⁇ 0.20°, 7.05 ⁇ 0.20°, 10.23 ⁇ 0.20°, 15.16 ⁇ 0.20° , 17.83 ⁇ 0.20°, 22.11 ⁇ 0.20°, 23.19 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.96 ⁇ 0.20°, 7.05 ⁇ 0.20°, 10.23 ⁇ 0.20°, 11.89 ⁇ 0.20° , 15.16 ⁇ 0.20°, 17.83 ⁇ 0.20°, 19.09 ⁇ 0.20°, 19.96 ⁇ 0.20°, 22.11 ⁇ 0.20°, 23.19 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.96 ⁇ 0.20°, 7.05 ⁇ 0.20°, 10.23 ⁇ 0.20°, 11.89 ⁇ 0.20° , 15.16 ⁇ 0.20°, 16.67 ⁇ 0.20°, 17.54 ⁇ 0.20°, 17.83 ⁇ 0.20°, 18.75 ⁇ 0.20°, 19.09 ⁇ 0.20°, 19.96 ⁇ 0.20°, 20.67 ⁇ 0.20°, 21.6 ⁇ 0.20°, 22.11 ⁇ 0.20° , 23.19 ⁇ 0.20°, 23.83 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.96 ⁇ 0.20°, 15.16 ⁇ 0.20°, 17.83 ⁇ 0.20°, and/or 7.05 ⁇ 0.20°, and/or 8.08 ⁇ 0.20°, and/or 10.23 ⁇ 0.20°, and/or 11.89 ⁇ 0.20°, and/or 12.30 ⁇ 0.20°, and/or 12.99 ⁇ 0.20°, and/or 14.01 ⁇ 0.20 °, and/or 16.67 ⁇ 0.20°, and/or 17.54 ⁇ 0.20°, and/or 18.75 ⁇ 0.20°, and/or 19.09 ⁇ 0.20°, and/or 19.47 ⁇ 0.20°, and/or 19.96 ⁇ 0.20°, and/or 20.67 ⁇ 0.20°, and/or 21.6 ⁇ 0.20°, and/or 22.11 ⁇ 0.20°, and/or 23.19 ⁇ 0.20°, and/or 23.83 ⁇ 0.20°, and/or
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.96°, 7.05°, 8.08°, 10.23°, 11.89°, 12.30°, 12.99° °, 14.01°, 15.16°, 16.67°, 17.54°, 17.83°, 18.75°, 19.09°, 19.47°, 19.96°, 20.67°, 21.6°, 22.11°, 23.19°, 23.83°, 25.18°, 26.69°, 28.32°, 29.90°, 30.48°, 32.39°, 35.02°.
  • the X-ray powder diffraction pattern of the above crystal form C is shown in FIG. 8 .
  • the X-ray powder diffraction pattern of the above crystal form C is basically as shown in FIG. 8 .
  • the differential scanning calorimetry (DSC) curve of the above crystal form C shows an initial value of an endothermic peak at 255.4 ⁇ 3°C.
  • the differential scanning calorimetry (DSC) curve of the above crystal form C shows an initial value of an endothermic peak at 255.4 ⁇ 5°C.
  • the DSC spectrum of the above crystal form C is shown in FIG. 9 .
  • the DSC spectrum of the above crystal form C is basically as shown in FIG. 9 .
  • thermogravimetric analysis (TGA) curve of the above crystal form C has a weight loss of 2.90% at 150.0°C ⁇ 3°C.
  • the TGA spectrum of the above crystal form C is shown in FIG. 10 .
  • the TGA spectrum of the above crystal form C is basically as shown in FIG. 10 .
  • the 1 H NMR spectrum of the above crystal form C is shown in FIG. 11 .
  • the 1 H NMR spectrum of the above crystal form C is basically as shown in FIG. 11 .
  • the present invention also provides a method for preparing the above crystal form C, the method comprising the following steps:
  • the present invention also provides the D crystal form of the compound of formula (II-2),
  • the Cu K ⁇ radiation X-ray powder diffraction pattern of the D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.45 ⁇ 0.20°, 11.75 ⁇ 0.20°, 17.41 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.45 ⁇ 0.20°, 11.75 ⁇ 0.20°, 16.23 ⁇ 0.20°, 17.41 ⁇ 0.20° , 20.21 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.45 ⁇ 0.20°, 11.75 ⁇ 0.20°, 16.23 ⁇ 0.20°, 17.41 ⁇ 0.20° , 19.10 ⁇ 0.20°, 20.21 ⁇ 0.20°, 22.06 ⁇ 0.20°, 24.32 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.39 ⁇ 0.20°, 9.45 ⁇ 0.20°, 11.75 ⁇ 0.20°, 12.99 ⁇ 0.20° , 16.23 ⁇ 0.20°, 17.41 ⁇ 0.20°, 19.10 ⁇ 0.20°, 20.21 ⁇ 0.20°, 22.06 ⁇ 0.20°, 24.32 ⁇ 0.20°, 22.82 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.39 ⁇ 0.20°, 9.45 ⁇ 0.20°, 11.75 ⁇ 0.20°, 12.99 ⁇ 0.20° , 16.23 ⁇ 0.20°, 16.70 ⁇ 0.20°, 17.41 ⁇ 0.20°, 17.64 ⁇ 0.20°, 19.10 ⁇ 0.20°, 20.21 ⁇ 0.20°, 21.62 ⁇ 0.20°, 22.06 ⁇ 0.20°, 22.82 ⁇ 0.20°, 24.32 ⁇ 0.20° , 27.09 ⁇ 0.20°, 29.99 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.45 ⁇ 0.20°, 11.75 ⁇ 0.20°, 17.41 ⁇ 0.20°, and/or 7.39 ⁇ 0.20°, and/or 8.69 ⁇ 0.20°, and/or 12.99 ⁇ 0.20°, and/or 13.62 ⁇ 0.20°, and/or 14.65 ⁇ 0.20°, and/or 15.68 ⁇ 0.20°, and/or 16.23 ⁇ 0.20 °, and/or 16.7 ⁇ 0.20°, and/or 17.64 ⁇ 0.20°, and/or 18.02 ⁇ 0.20°, and/or 19.1 ⁇ 0.20°, and/or 19.33 ⁇ 0.20°, and/or 20.21 ⁇ 0.20°, and/or 21.62 ⁇ 0.20°, and/or 22.06 ⁇ 0.20°, and/or 22.82 ⁇ 0.20°, and/or 23.57 ⁇ 0.20°, and/or 24.08 ⁇ 0.20°, and
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.39°, 8.69°, 9.45°, 11.75°, 12.99°, 13.62°, 14.65° °, 15.68°, 16.23°, 16.7°, 17.41°, 17.64°, 18.02°, 19.1°, 19.33°, 20.21°, 21.62°, 22.06°, 22.82°, 23.57°, 24.08°, 24.32°, 25.29°, 26.02°, 27.09°, 28.02°, 28.51°, 29.99°, 32.18°, 35.13°, 35.43°, 38.16°.
  • the XRPD spectrum of the above-mentioned crystal form D is shown in FIG. 12 .
  • the XRPD pattern of the above-mentioned crystal form D is basically as shown in FIG. 12 .
  • the differential scanning calorimetry (DSC) curve of the above crystal form D shows the onset of endothermic peaks at 43.1°C ⁇ 3°C and 227.4°C ⁇ 3°C.
  • the differential scanning calorimetry (DSC) curve of the above crystal form D shows an onset point of an endothermic peak at 227.4°C ⁇ 5°C.
  • the DSC spectrum of the above-mentioned crystal form D is shown in FIG. 13 .
  • the DSC spectrum of the above-mentioned crystal form D is basically as shown in FIG. 13 .
  • thermogravimetric analysis (TGA) curve of the above crystal form D reaches a weight loss of 5.65% at 150.0°C ⁇ 3°C.
  • the TGA spectrum of the above crystal form D is shown in FIG. 14 .
  • the TGA spectrum of the above-mentioned crystal form D is basically as shown in FIG. 14 .
  • the 1 H NMR spectrum of the above crystal form D is shown in FIG. 15 .
  • the 1 H NMR spectrum of the above crystal form D is basically as shown in FIG. 15 .
  • the present invention also provides the crystal form E of the compound of formula (III-2),
  • the Cu K ⁇ radiation X-ray powder diffraction pattern of the E crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.78 ⁇ 0.20°, 17.02 ⁇ 0.20°, 18.49 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned E crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.78 ⁇ 0.20°, 7.77 ⁇ 0.20°, 11.90 ⁇ 0.20°, 17.02 ⁇ 0.20° , 17.97 ⁇ 0.20°, 18.49 ⁇ 0.20°, 18.95 ⁇ 0.20°, 23.33 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned E crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.78 ⁇ 0.20°, 7.77 ⁇ 0.20°, 11.90 ⁇ 0.20°, 14.43 ⁇ 0.20° , 15.24 ⁇ 0.20°, 17.02 ⁇ 0.20°, 17.97 ⁇ 0.20°, 18.49 ⁇ 0.20°, 18.95 ⁇ 0.20°, 21.06 ⁇ 0.20°, 23.33 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned E crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.78 ⁇ 0.20°, 17.02 ⁇ 0.20°, 18.49 ⁇ 0.20°, and/or 7.77 ⁇ 0.20°, and/or 8.50 ⁇ 0.20°, and/or 11.90 ⁇ 0.20°, and/or 13.34 ⁇ 0.20°, and/or 14.43 ⁇ 0.20°, and/or 15.24 ⁇ 0.20°, and/or 16.38 ⁇ 0.20 °, and/or 17.67 ⁇ 0.20°, and/or 17.97 ⁇ 0.20°, and/or 18.95 ⁇ 0.20°, and/or 19.87 ⁇ 0.20°, and/or 20.78 ⁇ 0.20°, and/or 21.06 ⁇ 0.20°, and/or 21.66 ⁇ 0.20°, and/or 21.90 ⁇ 0.20°, and/or 23.04 ⁇ 0.20°, and/or 23.33 ⁇ 0.20°, and/or 23.89
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above E crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.78°, 7.77°, 8.50°, 11.90°, 13.34°, 14.43°, 15.24° °, 16.38°, 17.02°, 17.67°, 17.97°, 18.49°, 18.95°, 19.87°, 20.78°, 21.06°, 21.66°, 21.90°, 23.04°, 23.33°, 23.89°, 24.45°, 24.84°, 25.85°, 26.82°, 27.97°, 28.65°, 29.92°, 30.25°, 31.22°, 33.01°, 33.85°, 35.61°.
  • the X-ray powder diffraction pattern of the above-mentioned E crystal form is shown in FIG. 16 .
  • the X-ray powder diffraction pattern of the above crystal form E is basically as shown in FIG. 16 .
  • the differential scanning calorimetry (DSC) curve of the above crystal form E shows an onset point of an endothermic peak at 268.6 ⁇ 3°C.
  • the DSC spectrum of the above-mentioned E crystal form is shown in FIG. 17 .
  • the DSC spectrum of the above crystal form E is basically as shown in FIG. 17 .
  • thermogravimetric analysis (TGA) curve of the above crystal form E has a weight loss of 0.76% at 150.0°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned E crystal form is shown in FIG. 18 .
  • the TGA spectrum of the above crystal form E is basically as shown in FIG. 18 .
  • the 1 H NMR spectrum of the above crystal form E is shown in FIG. 19 .
  • the 1 H NMR spectrum of the above crystal form E is basically as shown in FIG. 19 .
  • the present invention also provides benzenesulfonate, oxalate, hydrobromide, hydrochloride and hydrate of the compound of formula (I), its benzenesulfonate structure is shown in formula (IV), its oxalate Shown in formula (V), its hydrobromide is shown in formula (VI), its hydrochloride is shown in formula (VII), and its hydrate is shown in formula (VIII),
  • p, q and r are independently selected from 0.5-2.5; s and t are independently selected from 0.5-3.5.
  • p is selected from 1.0, 1.2 and 2.0.
  • q is selected from 0.6, 0.9 and 1.4.
  • r is selected from 1.0, 1.2 and 1.3.
  • s is selected from 0.8, 0.9, 1.0, 2.0, 2.2, 2.5 and 3.0.
  • t is selected from 0.8, 0.9, 1.0, 2.0, 2.2, 2.5 and 3.0.
  • the compound of formula (IV) is selected from compounds of formula (IV-1) and (IV-2), the compound of formula (V) is selected from compounds of formula (V-1), and the compound of formula (VI) is selected from From formula (VI-1) compound, formula (VII) compound is selected from formula (VII-1) compound, formula (VIII) compound is selected from formula (VIII-1) compound,
  • the present invention also provides the F crystal form of the compound of formula (IV-1),
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the F crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.21 ⁇ 0.20°, 6.97 ⁇ 0.20°, 13.58 ⁇ 0.20°, 15.90 ⁇ 0.20°, 17.81 ⁇ 0.20°, 19.76 ⁇ 0.20°, 20.73 ⁇ 0.20°, 22.17 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above F crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.21 ⁇ 0.20°, 6.97 ⁇ 0.20°, 13.58 ⁇ 0.20°, and/or 7.84 ⁇ 0.20°, and/or 10.58 ⁇ 0.20°, and/or 13.17 ⁇ 0.20°, and/or 13.90 ⁇ 0.20°, and/or 15.65 ⁇ 0.20°, and/or 15.90 ⁇ 0.20°, and/or 16.83 ⁇ 0.20 °, and/or 17.21 ⁇ 0.20°, and/or 17.81 ⁇ 0.20°, and/or 18.51 ⁇ 0.20°, and/or 19.12 ⁇ 0.20°, and/or 19.76 ⁇ 0.20°, and/or 19.99 ⁇ 0.20°, and/or 20.73 ⁇ 0.20°, and/or 22.17 ⁇ 0.20°, and/or 23.39 ⁇ 0.20°, and/or 23.69 ⁇ 0.20°, and/or 24.19 ⁇ 0.20°, and/or
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the above F crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.21°, 6.97°, 7.84°, 10.58°, 13.17°, 13.58°, 13.90° °, 15.65°, 15.90°, 16.83°, 17.21°, 17.81°, 18.51°, 19.12°, 19.76°, 19.99°, 20.73°, 22.17°, 23.39°, 23.69°, 24.19°, 24.83°, 26.38°, 28.30°, 29.58°, 30.62°, 32.50°, 34.06°, 37.83°.
  • the X-ray powder diffraction pattern of the above-mentioned F crystal form is shown in FIG. 20 .
  • the X-ray powder diffraction pattern of the above-mentioned F crystal form is basically as shown in FIG. 20 .
  • the differential scanning calorimetry (DSC) curve of the above crystal form F shows that there are three starting points of thermal signals at 216.9°C ⁇ 3°C, 219.6°C ⁇ 3°C and 240.7°C ⁇ 3°C.
  • the differential scanning calorimetry (DSC) curve of the above crystal form F shows that there are endothermic peak starting points at 216.9°C ⁇ 3°C and 240.7°C ⁇ 3°C.
  • the differential scanning calorimetry (DSC) curve of the above crystal form F shows an exothermic peak starting point at 219.6°C ⁇ 3°C.
  • the DSC spectrum of the above-mentioned F crystal form is basically as shown in FIG. 21 .
  • thermogravimetric analysis (TGA) curve of the above crystal form F reaches a weight loss of 3.19% at 150.0°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned F crystal form is shown in FIG. 22 .
  • the TGA spectrum of the above-mentioned F crystal form is basically as shown in FIG. 22 .
  • the 1 H NMR spectrum of the above crystal form F is basically as shown in FIG. 23 .
  • the present invention also provides the G crystal form of the compound of formula (IV-2),
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the G crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.83 ⁇ 0.20°, 8.06 ⁇ 0.20°, 12.27 ⁇ 0.20°, 16.56 ⁇ 0.20°, 18.67 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the G crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.83 ⁇ 0.20°, 8.06 ⁇ 0.20°, 12.27 ⁇ 0.20°, and/or 13.06 ⁇ 0.20°, and/or 14.75 ⁇ 0.20°, and/or 15.72 ⁇ 0.20°, and/or 16.56 ⁇ 0.20°, and/or 18.23 ⁇ 0.20°, and/or 18.67 ⁇ 0.20°, and/or 19.69 ⁇ 0.20 °, and/or 20.64 ⁇ 0.20°, and/or 21.11 ⁇ 0.20°, and/or 21.91 ⁇ 0.20°, and/or 22.57 ⁇ 0.20°, and/or 23.33 ⁇ 0.20°, and/or 24.25 ⁇ 0.20°, and/or 26.09 ⁇ 0.20°, and/or 29.00°.
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the G crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.83°, 8.06°, 12.27°, 13.06°, 14.75°, 15.72°, 16.56° °, 18.23°, 18.67°, 19.69°, 20.64°, 21.11°, 21.91°, 22.57°, 23.33°, 24.25°, 26.09°, 29.00°.
  • the X-ray powder diffraction pattern of the above-mentioned G crystal form is shown in FIG. 24 .
  • the X-ray powder diffraction pattern of the above-mentioned G crystal form is basically as shown in FIG. 24 .
  • the differential scanning calorimetry (DSC) curve of the above-mentioned G crystal form shows initial values of endothermic peaks at 224.4°C ⁇ 3°C and 251.5°C ⁇ 3°C, and at 233.7°C ⁇ 3°C. has a thermal signal initiation point.
  • the DSC spectrum of the above crystal form G is shown in FIG. 25 .
  • the DSC spectrum of the above-mentioned G crystal form is basically as shown in FIG. 25 .
  • the 1 H NMR spectrum of the above crystal form G is shown in FIG. 26 .
  • the 1 H NMR spectrum of the above crystal form G is basically as shown in FIG. 26 .
  • the present invention also provides the H crystal form of the compound of formula (V-1),
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the H crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 4.31°, 8.52°, 11.28°, 12.75°, 13.32°, 14.52°, 15.4°, 16.48°, 17.19° °, 18.32°, 18.87°, 19.09°, 19.78°, 20.4°, 21.28°, 25.4°, 26.99°, 27.34°, 29.22°, 29.93°, 30.69°, 35.02°, 36.16°.
  • the X-ray powder diffraction pattern of the above H crystal form is shown in FIG. 27 .
  • the X-ray powder diffraction pattern of the above H crystal form is basically as shown in FIG. 27 .
  • the present invention also provides the I crystal form of the compound of formula (VI-1),
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the I crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.27°, 8.02°, 8.59°, 10.14°, 13.90°, 14.99°, 15.56°, 16.07°, 16.95° °, 17.20°, 17.82°, 19.16°, 20.39°, 21.10°, 21.44°, 22.94°, 23.92°, 24.26°, 24.91°, 25.57°, 26.58°, 27.42°, 28.26°, 29.39°, 31.19°, 32.02°, 33.52°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form I is shown in FIG. 28 .
  • the X-ray powder diffraction pattern of the above-mentioned crystal form I is basically as shown in FIG. 28 .
  • the present invention also provides the J crystal form of the compound of formula (VII-1),
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the J crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.14°, 8.58°, 10.33°, 11.36°, 12.15°, 14.47°, 15.08°, 15.86°, 16.85° °, 17.25°, 17.58°, 18.08°, 18.58°, 19.54°, 20.69°, 21.44°, 21.81°, 22.10°, 23.35°, 24.33°, 24.66°, 25.29°, 25.96°, 27.88°, 28.71°, 29.53°, 29.84°, 31.74°, 32.71°, 34.04°, 37.79°.
  • the X-ray powder diffraction pattern of the above-mentioned J crystal form is shown in FIG. 29 .
  • the X-ray powder diffraction pattern of the above-mentioned J crystal form is basically as shown in FIG. 29 .
  • the present invention also provides the K crystal form of the compound of formula (VIII-1),
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the K crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.99°, 7.34°, 8.33°, 9.22°, 9.92°, 10.56°, 10.97°, 13.35°, 13.96° °, 14.60°, 15.13°, 15.83°, 16.36°, 16.91°, 18.48°, 19.58°, 20.62°, 20.99°, 22.22°, 22.67°, 23.78°, 25.77°, 26.19°, 26.84°, 27.46°, 31.21°, 37.22°.
  • the X-ray powder diffraction pattern of the above-mentioned K crystal form is shown in FIG. 30 .
  • the X-ray powder diffraction pattern of the above-mentioned K crystal form is basically as shown in FIG. 30 .
  • the present invention also provides the application of the mesylate, p-toluenesulfonate, B crystal form, C crystal form or A crystal form of the above compound in the preparation of DNA-PK inhibitor related drugs.
  • the present invention also provides mesylate, p-toluenesulfonate, benzenesulfonate, oxalate, hydrobromide, hydrochloride, hydrate, A crystal form, B crystal form and C crystal of the above compounds Application of crystal form, D crystal form, E crystal form, F crystal form, G crystal form, H crystal form, I crystal form, J crystal form or K crystal form in the preparation of DNA-PK inhibitor related drugs.
  • the compound of the present invention exhibits good DNA-PK kinase inhibitory activity.
  • the PK results show that the compound of the present invention has longer half-life and higher drug exposure, excellent pharmacokinetics in vivo, and is a good molecule that can be developed for oral administration.
  • the intermediate compound of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by its combination with other chemical synthesis methods, and the methods described by those skilled in the art. Known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
  • pharmaceutically acceptable salt refers to the salt of the compound, which is prepared from the compound with a relatively non-toxic acid or base; the nature of the compound of formula (I) of the basic invention is preferably prepared with a relatively non-toxic acid. Acid addition salts can be obtained by contacting such compounds with a sufficient amount of the acid, either neat or in a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include salts of inorganic acids including, for example, hydrochloric acid, hydrobromic acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogenphosphate, dihydrogenphosphate, sulfuric acid, hydrogensulfate radical, hydriodic acid, phosphorous acid, etc.; Alkenedic acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalene disulfonic acid, citric acid, tartaric acid and methanesulfonic acid and similar acids.
  • inorganic acids including, for example, hydrochloric acid, hydrobromic acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogenphosphate, dihydrogenphosphate, sulfuric acid, hydrogensulfate radical, hydriodic acid, phosphorous acid, etc.
  • Alkenedic acid lactic acid, mandelic acid, phthalic acid,
  • Formula (I) compound in the present invention the pharmaceutically acceptable salt of formula (I) compound, include but not limited to hydrobromide, methanesulfonate, oxalate, p-toluenesulfonic acid and solvate; Wherein, hydrate The substance is a case of a solvate.
  • the pharmaceutically acceptable salt or solvate of the compound of formula (I) in the present invention the amount of combined acid or solvent is represented by the molar ratio of the acid or solvent to the compound of formula (I).
  • the compound of formula (I) It represents the addition salt of the compound of formula (I) and methanesulfonic acid, and in the acid addition salt, the molar ratio of methanesulfonic acid to the compound of formula (I) is 2:1.
  • the structure of the compounds of the present invention can be confirmed by conventional methods known to those skilled in the art. If the present invention involves the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, in single crystal X-ray diffraction (SXRD), the cultured single crystal is collected with a Bruker D8 venture diffractometer to collect diffraction intensity data, the light source is CuK ⁇ radiation, and the scanning method is: After scanning and collecting relevant data, the absolute configuration can be confirmed by further analyzing the crystal structure by direct method (Shelxs97).
  • SXRD single crystal X-ray diffraction
  • ACN stands for acetonitrile
  • DMSO dimethylsulfoxide
  • N 2 nitrogen
  • RH relative humidity
  • mL milliliter
  • L liter
  • min minute
  • °C degree Celsius
  • ⁇ m micrometer
  • mm millimeter
  • ⁇ L microliter
  • moL/L mole per liter
  • mg milligram
  • s second
  • nm nanometer
  • MPa megapascal
  • lux lux
  • ⁇ w/cm 2 microwatt per square centimeter
  • h hour
  • Kg kilogram
  • DSC stands for Differential Scanning Calorimetry
  • TGA stands for Thermogravimetric Analysis
  • 1 H NMR stands for Proton Nuclear Magnetic Resonance.
  • the compounds of the present invention are named according to the conventional naming principles in this field or used
  • the software is named, the commercially available compounds adopt the supplier catalog name, and all the solvents used in the present invention are commercially available.
  • Test method About 10 mg of sample is used for XRPD detection.
  • Test conditions Take a sample (about 10 mg) and place it in a DVS sample tray for testing.
  • ⁇ W% represents the moisture absorption weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • Fig. 1 is the XRPD pattern of formula (I) compound A crystal form
  • Fig. 2 is the DSC spectrogram of formula (I) compound A crystal form
  • Fig. 3 is the TGA spectrogram of formula (I) compound A crystal form
  • Fig. 4 is the XRPD spectrogram of formula (II-1) compound B crystal form
  • Fig. 5 is the DSC spectrogram of formula (II-1) compound B crystal form
  • Fig. 6 is the TGA spectrogram of formula (II-1) compound B crystal form
  • Fig. 7 is the 1 H NMR spectrogram of formula (II-1) compound B crystal form
  • Fig. 8 is the XRPD pattern of formula (III-1) compound C crystal form
  • Fig. 9 is the DSC spectrogram of formula (III-1) compound C crystal form
  • Figure 10 is the TGA spectrum of formula (III-1) compound C crystal form
  • Figure 11 is the 1 H NMR spectrum of the C crystal form of the compound of formula (III-1)
  • Figure 12 is the XRPD spectrum of formula (II-2) compound D crystal form
  • Fig. 13 is the DSC spectrogram of formula (II-2) compound D crystal form
  • Figure 14 is the TGA spectrum of formula (II-2) compound D crystal form
  • Figure 15 is the 1 H NMR spectrum of the D crystal form of the compound of formula (II-2)
  • Figure 16 is the XRPD spectrum of Formula (III-2) compound E crystal form
  • Fig. 17 is the DSC spectrogram of formula (III-2) compound E crystal form
  • Fig. 18 is the TGA spectrogram of formula (III-2) compound E crystal form
  • Figure 19 is the 1 H NMR spectrum of the crystal form of compound E of formula (III-2)
  • Figure 20 is the XRPD spectrum of Formula (IV-1) compound F crystal form
  • Figure 21 is the DSC spectrum of Formula (IV-1) compound F crystal form
  • Figure 22 is the TGA spectrum of formula (IV-1) compound F crystal form
  • Figure 23 is the 1 H NMR spectrum of Formula (IV-1) compound F crystal form
  • Figure 24 is the XRPD spectrum of Formula (IV-2) compound G crystal form
  • Figure 25 is the DSC spectrum of formula (IV-2) compound G crystal form
  • Figure 26 is the 1 H NMR spectrum of the G crystal form of the compound of formula (IV-2)
  • Figure 27 is the XRPD spectrum of formula (V-1) compound H crystal form
  • Figure 28 is the XRPD spectrum of formula (VI-1) compound I crystal form
  • Figure 29 is the XRPD spectrum of Formula (VII-1) compound J crystal form
  • Figure 30 is the XRPD spectrum of formula (VIII-1) compound K crystal form
  • Figure 31 is the DVS spectrum of formula (II-1) compound B crystal form
  • Figure 32 is the photo of the tumor on the 21st day
  • Embodiment 1 the preparation of formula (I) compound
  • Embodiment 2 the preparation of formula (VIII-1) compound K crystal form
  • Embodiment 3 Preparation of formula (I) compound A crystal form
  • Method 1 Weigh about 20 mg of compound K crystal form solid of formula (VIII-1) and acetone (0.5 ml) to make a slurry and stir at room temperature for 6 days, and dry in the open at room temperature (40-60% RH/19-21°C) overnight Afterwards, the compound A crystal form of formula (I) is obtained.
  • Method 2 Add 1500 mL of acetonitrile to compound K crystal form (74 g) of formula (VIII-1), and stir at 60° C. for 24 hours after the addition. Cool to room temperature, filter, and vacuum-dry the filter cake at 25° C. for 3 hours to obtain the compound A crystal form of formula (I).
  • the XRPD spectrum is basically shown in Figure 1
  • the DSC spectrum is basically shown in Figure 2
  • the TGA spectrum is basically shown in Figure 3.
  • Embodiment 4 Preparation of formula (II-1) compound B crystal form
  • Method 1 Weigh about 20 mg (1eq) of compound K crystal form (VIII-1) and methanesulfonic acid (1eq) into ethanol/water (19:1, v/v, 0.5mL), and the suspension Stir at room temperature for 3 days. After centrifugation, the collected solid was vacuum-dried at room temperature for 4 hours to obtain the compound B crystal form of formula (II-1).
  • Method 2 at 25°C, the crystal form K of compound (VIII-1) (2g, 4.90mmol, 1eq) was dissolved in acetonitrile (19mL), and methanesulfonic acid (476.6mg, 4.96mmol, 1.01eq) was slowly added dropwise in acetonitrile (1 mL) solution. After the dropwise addition was completed, the mixture was stirred at 25° C. for 16 hours. After filtering, the filter cake was washed with n-heptane (20 mL*2), and dried in vacuum at 25° C. for 1 hour to obtain the compound B crystal form of formula (II-1).
  • Method 3 At 25°C, the crystal form of compound A (30g, 73.63mmol, 1eq) of formula (I) was diluted with DMSO (300mL), heated to 60°C, and stirred to dissolve. Methanesulfonic acid (3.54g, 36.82mmol, 0.5eq) was added dropwise to the reaction solution and stirred at 60°C for 1 hour, then methanesulfonic acid (3.89g, 40.50mmol, 0.55eq) was added dropwise to the reaction solution and in Stir at 60°C for 12 hours. Methyl tert-butyl ether (450 mL) was added dropwise to the reaction solution and stirring was continued at 60° C. for 1 hour.
  • reaction solution was slowly cooled to 25 °C. After filtering, the filter cake was washed with methyl tert-butyl ether (100 mL*3), and dried in vacuum at 25° C. for 1 hour to obtain the compound B crystal form of formula (II-1).
  • the XRPD spectrum is basically shown in FIG. 4
  • the DSC spectrum is basically shown in FIG. 5
  • the TGA spectrum is basically shown in FIG. 6
  • the 1 H NMR spectrum is basically shown in FIG. 7 .
  • Embodiment 5 Preparation of D crystal form of compound of formula (II-2)
  • Embodiment 6 the preparation of formula (III-1) compound C crystal form
  • Embodiment 7 the preparation of formula (III-2) compound E crystal form
  • Embodiment 8 Preparation of Formula (IV-1) compound F crystal form
  • Embodiment 9 Preparation of Formula (IV-2) Compound G Crystal Form
  • Embodiment 10 Preparation of H crystal form of compound of formula (V-1)
  • Embodiment 11 Preparation of Formula (VI-1) Compound I Crystal Form
  • Embodiment 12 Preparation of crystal form of compound J of formula (VII-1)
  • Embodiment 13 solid stability test of formula (II-1) compound B crystal form
  • XRPD tests were carried out on all stability samples to detect changes in crystal forms, and the results are shown in Table 16.
  • the hygroscopic weight gain of compound B crystal form of formula (II-1) at 25°C and 80% RH is 2%> ⁇ W% ⁇ 0.2%, which is slightly hygroscopic.
  • Experimental example 1 DNA-dependent protein kinase (DNA-PK) inhibitory activity screening experiment
  • the compound of the present invention has good inhibitory activity on DNA-PK.
  • test compound was mixed with 0.5% CMC-Na+0.2% (V:V) Tween80 aqueous solution, vortexed and sonicated to prepare a 3 mg/mL homogeneous suspension. SD male rats were selected, and the candidate compound solution was orally administered at a dose of 30 mg/kg. Whole blood was collected for a certain period of time to prepare plasma, and the drug concentration was analyzed by LC-MS/MS method, and the pharmacokinetic parameters were calculated by Phoenix WinNonlin software (Pharsight, USA).
  • C max the highest blood drug concentration after administration
  • T max the time required to reach the peak drug concentration after administration
  • T 1/2 the time required for the blood drug concentration to drop by half
  • T last the last test
  • AUC 0-last the area under the drug-time curve, which refers to the area surrounded by the blood drug concentration curve on the time axis.
  • Test results See Table 19 for the test results.
  • the compound of the present invention exhibits longer half-life, higher drug exposure, and better in vivo pharmacokinetic properties.
  • mice female BALB/c nude mice, 6-8 weeks old, weighing 18-22 grams; supplier: Shanghai Xipuer-Bicai Laboratory Animal Co., Ltd. Experimental methods and procedures:
  • NCI-H1703 cells Human non-small cell lung cancer NCI-H1703 cells were cultured in vitro, RPMI1640 medium was added with 10% fetal bovine serum, 100 U/mL penicillin and 100 ⁇ g/mL streptomycin, and cultured in a 5% CO 2 incubator at 37°C. Routine digestion with trypsin-EDTA was performed twice a week for passaging. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and inoculated.
  • the compound of formula (I) is prepared into 3mg/mL, 6mg/mL, 9mg/mL suspension solution with 98.5% water+0.5%HPMC+1%Tween 80.
  • Tumor diameters were measured twice a week with vernier calipers.
  • RTV relative tumor volume
  • TGI %, reflecting tumor growth inhibition rate
  • T/C relative tumor proliferation rate
  • T/C (%) T RTV /C RTV ⁇ 100%
  • T RTV represents the average value of RTV in the treatment group
  • C RTV represents the average value of RTV in the negative control group.
  • TGI (%) [1-(Average tumor volume at the end of administration of a certain treatment group-Average tumor volume at the beginning of administration of this treatment group)/(Average tumor volume at the end of treatment of vehicle control group-Average at the beginning of treatment of vehicle control group Tumor volume)] ⁇ 100%.
  • TW tumor weight
  • Table 20 The tumor inhibitory effect of the compound of the present invention on human lung cancer NCI-H1703 xenograft tumor model
  • the compound of formula (I) has a significant tumor inhibitory effect compared with the control group at doses of 60 mg/kg and 90 mg/kg, and it is dose-dependent.
  • the tumor-bearing mice showed good tolerance to the compound of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

公开了一种杂环取代的嘌呤酮衍生物的盐型、晶型及其制备方法,具体公开了式(I)化合物的盐型、晶型及其制备方法。

Description

杂环取代的嘌呤酮衍生物的盐型及晶型
本发明主张如下优先权:
CN202110547042.7,申请日2021年05月19日;
CN202210459521.8,申请日2022年04月27日。
技术领域
本发明涉及一种杂环取代的嘌呤酮衍生物的盐型、晶型及其制备方法。
背景技术
DNA断裂尤其是双链断裂(DSBs)是一种极为严重的损伤,会造成遗传物质的丢失、基因重组,从而导致癌症或细胞死亡。真核细胞进化出了多种机制来应对DNA双链断裂造成的严重威胁,这便是DNA损伤应答机制(DDR),主要包括DNA损伤的检测、信号传导以及损伤修复。DNA双链断裂修复主要包括同源末端连接(HR)修复和非同源末端连接(NHEJ)修复。
DNA依赖性蛋白激酶催化亚单位(DNA-PK catalytic subunit,DNA-PKcs),属于磷酸肌醇-3-激酶相关蛋白(PI3K-relatedkinase,PIKK)家族,主要针对DNA双链断裂的非同源末端连接(NHEJ)修复,是DNA损伤修复的重要成员。DNA双链损伤修复时,Ku70/Ku80异源二聚体通过一个预先形成的通道特异性地连接到双链损伤处,识别双链断裂并与断裂端分别结合,然后以ATP依赖的方式沿DNA链分别向两端滑动一段距离,形成KU-DNA复合物并招募DNA-PKcs到双链断裂处与之结合,随后Ku二聚体向内移动,激活DNA-PKcs并使其自身磷酸化,最后,磷酸化的DNA-PKcs引导损伤信号传导并招募DNA末端加工相关蛋白如PNKP,XRCC4,XLF,Pol X和DNA连接酶IV等参与完成双链断裂修复。
目前,肿瘤治疗中常用的DNA损伤性化疗药物(如博来霉素,拓扑异构酶II抑制剂如依托泊苷和多柔比星)和放疗发挥作用的主要机制就是造成DNA分子的致死性的双链断裂,进而诱导肿瘤细胞的死亡。研究表明,经过放化疗治疗的肿瘤组织中均发现DNA-PK的高表达,而DNA-PKcs活性的增加在一定程度上增强了受损DNA的修复,阻止了肿瘤细胞死亡,导致了对放化疗产生耐受。此外,放化疗治疗后肿瘤组织中存活的细胞往往是对治疗不敏感的高DNA-PKcs活性细胞,这也是疗效不好和预后差的原因。通过与放化疗药物联用,DNA-PK抑制剂可以抑制DNA-PKcs活性,从而大大减少肿瘤DNA修复,诱导细胞进入凋亡程序,达到更佳的治疗效果。
ATM在同源末端链接(HR)修复中起到重要作用,当肿瘤细胞因缺陷缺乏ATM时,DNA断裂修复会更加依赖于DNA-PKcs主导的NHEJ修复以使其存活。因此,DNA-PK抑制剂同样可以作为单一药物在具有其他DNA修复途径缺陷时的肿瘤中发挥治疗效果。
本发明旨在发现一种DNA-PK小分子抑制剂,不仅可以作为单一药物在具有其他DNA修复途径缺陷时的肿瘤中发挥治疗效果。也可以通过与放化疗药物联用,增强肿瘤组织对放化疗的敏感性,克服耐药问题,增强对多种实体瘤和血液瘤的抑制作用。
发明内容
本发明提供了式(I)化合物的A晶型,
Figure PCTCN2022093391-appb-000001
所述A晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.26±0.20°,19.47±0.20°,22.69±0.20°。
本发明的一些方案中,上述A晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.26±0.20°,11.50±0.20°,17.03±0.20°,19.47±0.20°,22.69±0.20°。
本发明的一些方案中,上述A晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.26±0.20°,11.50±0.20°,13.52±0.20°,17.03±0.20°,18.75±0.20°,19.47±0.20°,22.69±0.20°,27.74±0.20°。
本发明的一些方案中,上述A晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.77±0.20°,9.26±0.20°,11.50±0.20°,13.52±0.20°,17.03±0.20°,17.50±0.20°,18.75±0.20°,19.47±0.20°,22.69±0.20°,23.84±0.20°,24.42±0.20°,26.76±0.20°,27.74±0.20°
本发明的一些方案中,上述A晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.77±0.20°,9.26±0.20°,11.50±0.20°,13.52±0.20°,14.50±0.20°,15.60±0.20°,17.03±0.20°,17.50±0.20°,18.75±0.20°,19.47±0.20°,22.69±0.20°,23.84±0.20°,24.42±0.20°,26.76±0.20°,27.74±0.20°,30.40±0.20°。
本发明的一些方案中,上述A晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.26±0.20°,19.47±0.20°,22.69±0.20°,和/或5.77±0.20°,和/或11.50±0.20°,和/或13.52±0.20°,和/或14.50±0.20°,和/或15.16±0.20°,和/或15.60±0.20°,和/或17.03±0.20°,和/或17.28±0.20°,和/或17.50±0.20°,和/或18.47±0.20°,和/或18.75±0.20°,和/或19.27±0.20°,和/或23.84±0.20°,和/或24.42±0.20°,和/或26.76±0.20°,和/或27.74±0.20°,和/或28.43±0.20°,和/或29.77±0.20°,和/或30.40±0.20°,和/或32.08±0.20°。
本发明的一些方案中,上述A晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.77°,9.26°,11.50°,13.52°,14.50°,15.16°,15.60°,17.03°,17.28°,17.50°,18.47°,18.75°,19.27°,19.47°,22.69°,23.84°,24.42°,26.76°,27.74°,28.43°,29.77°,30.40°,32.08°。
本发明的一些方案中,上述A晶型的XRPD图谱如图1所示。
本发明的一些方案中,上述A晶型的XRPD图谱基本上如图1所示。
本发明的一些方案中,上述A晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度如下表所示:
表1 式(I)化合物A晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 5.77 586.27 15.42 13 19.27 1428.42 37.56
2 9.26 1316.63 34.62 14 19.47 2536.63 66.71
3 11.50 1326.39 34.88 15 22.69 3802.68 100.00
4 13.52 947.57 24.92 16 23.84 967.59 25.44
5 14.50 409.18 10.76 17 24.42 686.03 18.04
6 15.16 129.18 3.40 18 26.76 1068.12 28.09
7 15.60 427.66 11.25 19 27.74 1226.40 32.25
8 17.03 1342.38 35.30 20 28.43 101.75 2.68
9 17.28 788.64 20.74 21 29.77 111.22 2.92
10 17.50 656.55 17.27 22 30.40 298.34 7.85
11 18.47 795.01 20.91 23 32.08 48.53 1.28
12 18.75 1206.93 31.74 - -   -
本发明的一些方案中,上述A晶型的差示扫描量热(DSC)曲线显示在257.8℃±3℃处具有吸热峰的起始点。
本发明的一些方案中,上述A晶型的差示扫描量热(DSC)曲线显示在257.8℃±5℃处具有吸热峰的起始点。
本发明的一些方案中,上述A晶型的DSC图谱如图2所示。
本发明的一些方案中,上述A晶型的DSC图谱基本上如图2所示。
本发明的一些方案中,上述A晶型的热重分析(TGA)曲线在230.0℃±3℃时失重达1.39%。
本发明的一些方案中,上述A晶型的TGA图谱如图3所示。
本发明的一些方案中,上述A晶型的TGA图谱基本上如图3所示。
本发明还提供了式(I)化合物的甲磺酸盐和对甲苯磺酸盐,
Figure PCTCN2022093391-appb-000002
本发明的一些方案中,上述式(I)化合物的甲磺酸盐结构如式(II)所示,上述式(I)化合物的对甲苯磺酸盐结构如式(III)所示,
Figure PCTCN2022093391-appb-000003
其中,m和n分别独立地选自0.6~2.5。
本发明的一些方案中,上述式(I)化合物的甲磺酸盐结构为式(II)所示,上述式(I)化合物的对甲苯磺酸盐结构为式(III)所示,
Figure PCTCN2022093391-appb-000004
其中,
m选自0.8,0.9,1.0,1.1,1.2,1.5,1.8,1.9,2.0,2.1和2.2;
n选自0.8,0.9,1.0,1.1,1.2,1.5,1.8,1.9,2.0,2.1和2.2。
本发明的一些方案中,m选自1.0,2.0和2.2。
本发明的一些方案中,n选自1.0,2.0和2.1。
本发明的一些方案中,上述式(II)化合物选自式(II-1)化合物,上述式(III)化合物选自式(III-1)化合物,
Figure PCTCN2022093391-appb-000005
本发明还提供了式(II-1)化合物的B晶型,
Figure PCTCN2022093391-appb-000006
所述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,16.56±0.20°,21.25±0.20°。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,10.66±0.20°,13.98±0.20°,16.56±0.20°,21.25±0.20°。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,10.66±0.20°,13.98±0.20°,16.56±0.20°,21.25±0.20°,29.98±0.20°。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,9.29±0.20°,10.66±0.20°,13.98±0.20°,16.56±0.20°,21.25±0.20°,29.98±0.20°。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,9.29±0.20°,10.66±0.20°,13.98±0.20°,16.56±0.20°,20.51±0.20°,21.25±0.20°,26.14±0.20°,28.08±0.20°,29.98±0.20°。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,9.29±0.20°,10.66±0.20°,13.98±0.20°,16.56±0.20°,20.51±0.20°,21.25±0.20°,26.14±0.20°,28.08±0.20°,29.98±0.20°,35.07±0.20°。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,9.29±0.20°,10.66±0.20°,13.98±0.20°,16.56±0.20°,18.54±0.20°,19.11±0.20°,20.51±0.20°,21.25±0.20°,22.25±0.20°,23.14±0.20°,23.77±0.20°,26.14±0.20°,28.08±0.20°,29.98±0.20°。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,9.29±0.20°,10.66±0.20°,13.98±0.20°,16.56±0.20°,18.54±0.20°,19.11±0.20°,20.51±0.20°,21.25±0.20°,22.25±0.20°,23.14±0.20°,23.77±0.20°,26.14±0.20°,28.08±0.20°,29.98±0.20°,35.07±0.20°。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,16.56±0.20°,21.25±0.20°,和/或13.98±0.20°,和/或10.66±0.20°,和/或29.98±0.20°,和/或9.29±0.20°,和/或26.14±0.20°,和/或20.51±0.20°,和/或30.57±0.20°,和/或35.33±0.20°,和/或28.08±0.20°,和/或22.25±0.20°,和/或23.14±0.20°处有特征衍射峰。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02°,9.29°,10.66°,13.98°,16.56°,18.54°,19.11°,20.51°,21.25°,21.98°,22.25°,23.14°,23.77°,26.14°,27.27°,28.08°,29.98°。
本发明的一些方案中,上述B晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02°,9.29°,10.66°,13.98°,16.56°,18.54°,19.11°,20.51°,21.25°,21.98°,22.25°,23.14°,23.77°, 26.14°,27.27°,28.08°,29.98°,30.67°,33.75°,35.07°,35.33°,37.17°。
本发明的一些方案中,上述B晶型的XRPD图谱如图4所示。
本发明的一些方案中,上述B晶型的XRPD图谱基本上如图4所示。
本发明的一些方案中,上述B晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表2 式(II-1)化合物B晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 7.02 17003.86 65.93 12 23.14 262.20 1.02
2 9.29 417.16 1.62 13 23.77 222.80 0.86
3 10.66 2082.57 8.07 14 26.14 333.95 1.29
4 13.98 3377.68 13.10 15 27.27 120.81 0.47
5 16.56 25791.82 100.00 16 28.08 327.37 1.27
6 18.54 226.48 0.88 17 29.98 2120.07 8.22
7 19.11 199.53 0.77 18 30.67 163.54 0.63
8 20.51 303.83 1.18 19 33.75 134.07 0.52
9 21.25 4534.37 17.58 20 35.07 437.00 1.69
10 21.98 202.05 0.78 21 35.33 432.24 1.68
11 22.25 273.41 1.06 22 37.17 87.96 0.34
本发明的一些方案中,上述B晶型的差示扫描量热(DSC)曲线显示在286.6℃±3℃处具有吸热峰的起始点。
本发明的一些方案中,上述B晶型的差示扫描量热(DSC)曲线显示在286.6℃±5℃处具有吸热峰的起始点。
本发明的一些方案中,上述B晶型的DSC图谱如图5所示。
本发明的一些方案中,上述B晶型的DSC图谱基本上如图5所示。
本发明的一些方案中,上述B晶型的热重分析(TGA)曲线在200.0℃±3℃时失重达0.58%。
本发明的一些方案中,上述B晶型的TGA图谱如图6所示。
本发明的一些方案中,上述B晶型的TGA图谱基本上如图6所示。
本发明的一些方案中,上述B晶型的 1H NMR图谱如图7所示。
本发明的一些方案中,上述B晶型的 1H NMR图谱基本上如图7所示。
本发明还提供了上述B晶型的制备方法,所述方法包括如下步骤:
(a)将化合物Z加入溶剂X中;
(b)25~80℃下滴加甲磺酸,加完后在25~80℃继续搅拌3~16小时;
(c)滴加溶剂Y,加完后在25~80℃搅拌1~3小时;
(d)冷却至15~30℃;
(e)过滤;
(f)25~60℃下真空干燥1~24小时;
其中,
所述化合物Z选自式(I)化合物、式(I)化合物A晶型和式(VIII-1)化合物K晶型;
所述溶剂X选自二甲基亚砜、甲醇、乙醇、乙腈、丙酮、四氢呋喃和二氯甲烷;
所述溶剂Y不存在,或者溶剂Y选自甲基叔丁基醚、乙酸乙酯和正庚烷;
所述甲磺酸与式(I)化合物A晶型的摩尔比为1.0∶1~1.2∶1。
本发明还提供了式(III-1)化合物的C晶型,
Figure PCTCN2022093391-appb-000007
所述C晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96±0.20°,15.16±0.20°,17.83±0.20°。
本发明的一些方案中,上述C晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96±0.20°,10.23±0.20°,15.16±0.20°,17.83±0.20°,23.19±0.20°。
本发明的一些方案中,上述C晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96±0.20°,7.05±0.20°,10.23±0.20°,15.16±0.20°,17.83±0.20°,22.11±0.20°,23.19±0.20°。
本发明的一些方案中,上述C晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96±0.20°,7.05±0.20°,10.23±0.20°,11.89±0.20°,15.16±0.20°,17.83±0.20°,19.09±0.20°,19.96±0.20°,22.11±0.20°,23.19±0.20°。
本发明的一些方案中,上述C晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96±0.20°,7.05±0.20°,10.23±0.20°,11.89±0.20°,15.16±0.20°,16.67±0.20°,17.54±0.20°,17.83±0.20°,18.75±0.20°,19.09±0.20°,19.96±0.20°,20.67±0.20°,21.6±0.20°,22.11±0.20°,23.19±0.20°,23.83±0.20°。
本发明的一些方案中,上述C晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96±0.20°,15.16±0.20°,17.83±0.20°,和/或7.05±0.20°,和/或8.08±0.20°,和/或10.23±0.20°,和/或11.89±0.20°,和/或12.30±0.20°,和/或12.99±0.20°,和/或14.01±0.20°,和/或16.67±0.20°,和/或17.54±0.20°,和/或18.75±0.20°,和/或19.09±0.20°,和/或19.47±0.20°,和/或19.96±0.20°,和/或20.67±0.20°,和/或21.6±0.20°,和/或22.11±0.20°,和/或23.19±0.20°,和/或23.83±0.20°,和/或25.18±0.20°,和/或26.69±0.20°,和/或28.32±0.20°,和/或29.90±0.20°,和/或30.48±0.20°,和/或32.39±0.20°,和/或35.02±0.20°。
本发明的一些方案中,上述C晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96°,7.05°,8.08°,10.23°,11.89°,12.30°,12.99°,14.01°,15.16°,16.67°,17.54°,17.83°,18.75°,19.09°,19.47°,19.96°,20.67°,21.6°,22.11°,23.19°,23.83°,25.18°,26.69°,28.32°,29.90°,30.48°,32.39°,35.02°。
本发明的一些方案中,上述C晶型的X-射线粉末衍射图谱如图8所示。
本发明的一些方案中,上述C晶型的X-射线粉末衍射图谱基本上如图8所示。
本发明的一些方案中,上述C晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表3 式(III-1)化合物C晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 5.96 16844.73 100.00 15 19.47 149.60 0.89
2 7.05 875.78 5.20 16 19.96 468.03 2.78
3 8.08 196.16 1.16 17 20.67 387.01 2.30
4 10.23 980.16 5.82 18 21.60 332.62 1.97
5 11.89 635.46 3.77 19 22.11 752.03 4.46
6 12.30 279.05 1.66 20 23.19 1132.61 6.72
7 12.99 153.38 0.91 21 23.83 356.85 2.12
8 14.01 93.76 0.56 22 25.18 113.71 0.68
9 15.16 4151.59 24.65 23 26.69 78.69 0.47
10 16.67 326.15 1.94 24 28.32 163.25 0.97
11 17.54 1155.51 6.86 25 29.90 140.55 0.83
12 17.83 1701.96 10.10 26 30.48 113.78 0.68
13 18.75 465.76 2.76 27 32.39 136.59 0.81
14 19.09 549.77 3.26 28 35.02 151.07 0.90
本发明的一些方案中,上述C晶型的差示扫描量热(DSC)曲线显示在255.4±3℃处具有吸热峰的初始值。
本发明的一些方案中,上述C晶型的差示扫描量热(DSC)曲线显示在255.4±5℃处具有吸热峰的初始值。
本发明的一些方案中,上述C晶型的DSC图谱如图9所示。
本发明的一些方案中,上述C晶型的DSC图谱基本上如图9所示。
本发明的一些方案中,上述C晶型的热重分析(TGA)曲线在150.0℃±3℃时失重达2.90%。
本发明的一些方案中,上述C晶型的TGA图谱如图10所示。
本发明的一些方案中,上述C晶型的TGA图谱基本上如图10所示。
本发明的一些方案中,上述C晶型的 1H NMR图谱如图11所示。
本发明的一些方案中,上述C晶型的 1H NMR图谱基本上如图11所示。
本发明还提供了上述C晶型的制备方法,所述方法包括如下步骤:
(a)将式(VIII-1)化合物的K晶型(1eq)和对甲苯磺酸(1eq)加入四氢呋喃中;
(b)悬浊液在室温下搅拌2天;
(c)离心,收集固体,室温下真空干燥3小时。
本发明的一些方案中,上述式(II)或式(III)化合物,其选自,
Figure PCTCN2022093391-appb-000008
本发明还提供了式(II-2)化合物的D晶型,
Figure PCTCN2022093391-appb-000009
所述D晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.45±0.20°,11.75±0.20°,17.41±0.20°。
本发明的一些方案中,上述D晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.45±0.20°,11.75±0.20°,16.23±0.20°,17.41±0.20°,20.21±0.20°。
本发明的一些方案中,上述D晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.45±0.20°,11.75±0.20°,16.23±0.20°,17.41±0.20°,19.10±0.20°,20.21±0.20°,22.06±0.20°,24.32±0.20°。
本发明的一些方案中,上述D晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.39±0.20°,9.45±0.20°,11.75±0.20°,12.99±0.20°,16.23±0.20°,17.41±0.20°,19.10±0.20°,20.21±0.20°,22.06±0.20°,24.32±0.20°,22.82±0.20°。
本发明的一些方案中,上述D晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.39±0.20°,9.45±0.20°,11.75±0.20°,12.99±0.20°,16.23±0.20°,16.70±0.20°,17.41±0.20°,17.64±0.20°,19.10±0.20°,20.21±0.20°,21.62±0.20°,22.06±0.20°,22.82±0.20°,24.32±0.20°,27.09±0.20°,29.99±0.20°。
本发明的一些方案中,上述D晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.45±0.20°,11.75±0.20°,17.41±0.20°,和/或7.39±0.20°,和/或8.69±0.20°,和/或12.99±0.20°,和/或13.62±0.20°,和/或14.65±0.20°,和/或15.68±0.20°,和/或16.23±0.20°,和/或16.7±0.20°,和/或17.64±0.20°,和/或18.02±0.20°,和/或19.1±0.20°,和/或19.33±0.20°,和/或20.21±0.20°,和/或21.62±0.20°,和/或22.06±0.20°,和/或22.82±0.20°,和/或23.57±0.20°,和/或24.08±0.20°,和/或24.32±0.20°,和/或25.29±0.20°,和/或26.02±0.20°,和/或27.09±0.20°,和/或28.02±0.20°,和/或28.51±0.20°,和/或29.99±0.20°,和/或32.18±0.20°,和/或35.13±0.20°,和/或35.43±0.20°,和/或38.16±0.20°。
本发明的一些方案中,上述D晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.39°,8.69°,9.45°,11.75°,12.99°,13.62°,14.65°,15.68°,16.23°,16.7°,17.41°,17.64°,18.02°,19.1°,19.33°,20.21°,21.62°,22.06°,22.82°,23.57°,24.08°,24.32°,25.29°,26.02°,27.09°,28.02°, 28.51°,29.99°,32.18°,35.13°,35.43°,38.16°。
本发明的一些方案中,上述D晶型的XRPD图谱如图12所示。
本发明的一些方案中,上述D晶型的XRPD图谱基本上如图12所示。
本发明的一些方案中,上述D晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表4 式(II-2)化合物D晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 7.39 238.42 7.43 17 21.62 434.32 13.53
2 8.69 146.37 4.56 18 22.06 1281.55 39.93
3 9.45 1873.51 58.38 19 22.82 483.21 15.06
4 11.75 1767.36 55.07 20 23.57 212.23 6.61
5 12.99 262.23 8.17 21 24.08 627.59 19.56
6 13.62 190.14 5.92 22 24.32 651.33 20.30
7 14.65 105.20 3.28 23 25.29 223.58 6.97
8 15.68 195.17 6.08 24 26.02 293.31 9.14
9 16.23 1623.03 50.57 25 27.09 428.97 13.37
10 16.70 449.70 14.01 26 28.02 134.01 4.18
11 17.41 3209.30 100.00 27 28.51 206.68 6.44
12 17.64 658.23 20.51 28 29.99 303.95 9.47
13 18.02 209.50 6.53 29 32.18 100.28 3.12
14 19.10 561.28 17.49 30 35.13 108.14 3.37
15 19.33 500.40 15.59 31 35.43 116.31 3.62
16 20.21 1177.56 36.69 - 38.16 99.52 3.10
本发明的一些方案中,上述D晶型的差示扫描量热(DSC)曲线显示在43.1℃±3℃和227.4℃±3℃处具有吸热峰的起始点。
本发明的一些方案中,上述D晶型的差示扫描量热(DSC)曲线显示在227.4℃±5℃处具有吸热峰的起始点。
本发明的一些方案中,上述D晶型的DSC图谱如图13所示。
本发明的一些方案中,上述D晶型的DSC图谱基本上如图13所示。
本发明的一些方案中,上述D晶型的热重分析(TGA)曲线在150.0℃±3℃时失重达5.65%。
本发明的一些方案中,上述D晶型的TGA图谱如图14所示。
本发明的一些方案中,上述D晶型的TGA图谱基本上如图14所示。
本发明的一些方案中,上述D晶型的 1H NMR图谱如图15所示。
本发明的一些方案中,上述D晶型的 1H NMR图谱基本上如图15所示。
本发明还提供了式(III-2)化合物的E晶型,
Figure PCTCN2022093391-appb-000010
所述E晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.78±0.20°,17.02±0.20°,18.49±0.20°。
本发明的一些方案中,上述E晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.78±0.20°,7.77±0.20°,11.90±0.20°,17.02±0.20°,17.97±0.20°,18.49±0.20°,18.95±0.20°,23.33±0.20°。
本发明的一些方案中,上述E晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.78±0.20°,7.77±0.20°,11.90±0.20°,14.43±0.20°,15.24±0.20°,17.02±0.20°,17.97±0.20°,18.49±0.20°,18.95±0.20°,21.06±0.20°,23.33±0.20°。
本发明的一些方案中,上述E晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.78±0.20°,17.02±0.20°,18.49±0.20°,和/或7.77±0.20°,和/或8.50±0.20°,和/或11.90±0.20°,和/或13.34±0.20°,和/或14.43±0.20°,和/或15.24±0.20°,和/或16.38±0.20°,和/或17.67±0.20°,和/或17.97±0.20°,和/或18.95±0.20°,和/或19.87±0.20°,和/或20.78±0.20°,和/或21.06±0.20°,和/或21.66±0.20°,和/或21.90±0.20°,和/或23.04±0.20°,和/或23.33±0.20°,和/或23.89±0.20°,和/或24.45±0.20°,和/或24.84±0.20°,和/或25.85±0.20°,和/或26.82±0.20°,和/或27.97±0.20°,和/或28.65±0.20°,和/或29.92±0.20°,和/或30.25±0.20°,和/或31.22±0.20°,和/或33.01±0.20°,和/或33.85±0.20°,和/或35.61±0.20°。
本发明的一些方案中,上述E晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.78°,7.77°,8.50°,11.90°,13.34°,14.43°,15.24°,16.38°,17.02°,17.67°,17.97°,18.49°,18.95°,19.87°,20.78°,21.06°,21.66°,21.90°,23.04°,23.33°,23.89°,24.45°,24.84°,25.85°,26.82°,27.97°,28.65°,29.92°,30.25°,31.22°,33.01°,33.85°,35.61°。
本发明的一些方案中,上述E晶型的X-射线粉末衍射图谱如图16所示。
本发明的一些方案中,上述E晶型的X-射线粉末衍射图谱基本上如图16所示。
本发明的一些方案中,上述E晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表5 式(III-2)化合物E晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 5.78 4072.98 100.00 18 21.90 160.02 3.93
2 7.77 877.37 21.54 19 23.04 479.05 11.76
3 8.50 323.93 7.95 20 23.33 792.90 19.47
4 11.90 1007.68 24.74 21 23.89 307.99 7.56
5 13.34 443.31 10.88 22 24.45 355.08 8.72
6 14.43 718.73 17.65 23 24.84 203.16 4.99
7 15.24 617.91 15.17 24 25.85 203.46 5.00
8 16.38 252.49 6.20 25 26.82 348.10 8.55
9 17.02 1712.80 42.05 26 27.97 258.75 6.35
10 17.67 720.89 17.70 27 28.65 207.34 5.09
11 17.97 883.45 21.69 28 29.92 113.17 2.78
12 18.49 2073.96 50.92 29 30.25 101.06 2.48
13 18.95 759.21 18.64 30 31.22 87.48 2.15
14 19.87 519.82 12.76 31 33.01 38.44 0.94
15 20.78 508.06 12.47 32 33.85 49.75 1.22
16 21.06 621.96 15.27 33 35.61 98.70 2.42
17 21.66 259.70 6.38 - - - -
本发明的一些方案中,上述E晶型的差示扫描量热(DSC)曲线显示在268.6±3℃处具有吸热峰的起始点。
本发明的一些方案中,上述E晶型的DSC图谱如图17所示。
本发明的一些方案中,上述E晶型的DSC图谱基本上如图17所示。
本发明的一些方案中,上述E晶型的热重分析(TGA)曲线在150.0℃±3℃时失重达0.76%。
本发明的一些方案中,上述E晶型的TGA图谱如图18所示。
本发明的一些方案中,上述E晶型的TGA图谱基本上如图18所示。
本发明的一些方案中,上述E晶型的 1H NMR图谱如图19所示。
本发明的一些方案中,上述E晶型的 1H NMR图谱基本上如图19所示。
本发明还提供了式(I)化合物的苯磺酸盐、草酸盐、氢溴酸盐、盐酸盐和水合物,其苯磺酸盐结构为式(IV)所示,其草酸盐为式(V)所示,其氢溴酸盐为式(VI)所示,其盐酸盐为式(VII)所示,其水合物为式(VIII)所示,
Figure PCTCN2022093391-appb-000011
其中,p、q和r分别独立地选自0.5~2.5;s和t分别独立地选自0.5~3.5。
本发明的一些方案中,p和r分别独立地选自0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1和2.2;q选自0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1和2.2;s和t分别独立地选自0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2。
本发明的一些方案中,p选自1.0,1.2和2.0。
本发明的一些方案中,q选自0.6,0.9和1.4。
本发明的一些方案中,r选自1.0,1.2和1.3。
本发明的一些方案中,s选自0.8,0.9,1.0,2.0,2.2,2.5和3.0。
本发明的一些方案中,t选自0.8,0.9,1.0,2.0,2.2,2.5和3.0。
本发明的一些方案中,上述式(IV)化合物选自式(IV-1)和(IV-2)化合物,式(V)化合物选自式(V-1)化合物,式(VI)化合物选自式(VI-1)化合物,式(VII)化合物选自式(VII-1)化合物,式(VIII)化合物选自式(VIII-1)化合物,
Figure PCTCN2022093391-appb-000012
Figure PCTCN2022093391-appb-000013
本发明还提供了式(IV-1)化合物的F晶型,
Figure PCTCN2022093391-appb-000014
所述F晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.21±0.20°,6.97±0.20°,13.58±0.20°,15.90±0.20°,17.81±0.20°,19.76±0.20°,20.73±0.20°,22.17±0.20°。
本发明的一些方案中,上述F晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.21±0.20°,6.97±0.20°,13.58±0.20°,和/或7.84±0.20°,和/或10.58±0.20°,和/或13.17±0.20°,和/或13.90±0.20°,和/或15.65±0.20°,和/或15.90±0.20°,和/或16.83±0.20°,和/或17.21±0.20°,和/或17.81±0.20°,和/或18.51±0.20°,和/或19.12±0.20°,和/或19.76±0.20°,和/或19.99±0.20°,和/或20.73±0.20°,和/或22.17±0.20°,和/或23.39±0.20°,和/或23.69±0.20°,和/或24.19±0.20°,和/或24.83±0.20°,和/或26.38±0.20°,和/或28.30±0.20°,和/或29.58±0.20°,和/或30.62±0.20°,和/或32.50±0.20°,和/或34.06±0.20°,和/或37.83±0.20°。
本发明的一些方案中,上述F晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.21°,6.97°,7.84°,10.58°,13.17°,13.58°,13.90°,15.65°,15.90°,16.83°,17.21°,17.81°,18.51°,19.12°,19.76°,19.99°,20.73°,22.17°,23.39°,23.69°,24.19°,24.83°,26.38°,28.30°,29.58°,30.62°,32.50°,34.06°,37.83°。
本发明的一些方案中,上述F晶型的X-射线粉末衍射图谱如图20所示。
本发明的一些方案中,上述F晶型的X-射线粉末衍射图谱基本上如图20所示。
本发明的一些方案中,上述F晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表6 式(IV-1)化合物F晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 6.21 3665.40 100.00 16 19.99 577.66 15.76
2 6.97 1888.74 51.53 17 20.73 801.72 21.87
3 7.84 423.24 11.55 18 22.17 1011.98 27.61
4 10.58 234.12 6.39 19 23.39 363.14 9.91
5 13.17 257.62 7.03 20 23.69 322.62 8.80
6 13.58 571.82 15.60 21 24.19 175.69 4.79
7 13.90 182.38 4.98 22 24.83 96.77 2.64
8 15.65 709.83 19.37 23 26.38 88.93 2.43
9 15.90 1099.04 29.98 24 28.30 106.35 2.90
10 16.83 617.16 16.84 25 29.58 118.23 3.23
11 17.21 599.16 16.35 26 30.62 140.20 3.82
12 17.81 619.20 16.89 27 32.50 44.17 1.21
13 18.51 289.19 7.89 28 34.06 52.79 1.44
14 19.12 385.70 10.52 29 37.83 30.88 0.84
15 19.76 677.49 18.48 - - - -
本发明的一些方案中,上述F晶型的差示扫描量热(DSC)曲线显示在216.9℃±3℃、219.6℃±3℃和240.7℃±3℃三处具有热信号起始点。
本发明的一些方案中,上述F晶型的差示扫描量热(DSC)曲线显示在216.9℃±3℃和240.7℃±3℃处具有吸热峰起始点。
本发明的一些方案中,上述F晶型的差示扫描量热(DSC)曲线显示在219.6℃±3℃处具有放热峰起始点。
本发明的一些方案中,上述F晶型的DSC图谱如图21所示。
本发明的一些方案中,上述F晶型的DSC图谱基本上如图21所示。
本发明的一些方案中,上述F晶型的热重分析(TGA)曲线在150.0℃±3℃时失重达3.19%。
本发明的一些方案中,上述F晶型的TGA图谱如图22所示。
本发明的一些方案中,上述F晶型的TGA图谱基本上如图22所示。
本发明的一些方案中,上述F晶型的 1H NMR图谱如图23所示。
本发明的一些方案中,上述F晶型的 1H NMR图谱基本上如图23所示。
本发明还提供了式(IV-2)化合物的G晶型,
Figure PCTCN2022093391-appb-000015
所述G晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.83±0.20°,8.06±0.20°,12.27±0.20°,16.56±0.20°,18.67±0.20°。
本发明的一些方案中,上述G晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.83±0.20°,8.06±0.20°,12.27±0.20°,和/或13.06±0.20°,和/或14.75±0.20°,和/或15.72±0.20°,和/或 16.56±0.20°,和/或18.23±0.20°,和/或18.67±0.20°,和/或19.69±0.20°,和/或20.64±0.20°,和/或21.11±0.20°,和/或21.91±0.20°,和/或22.57±0.20°,和/或23.33±0.20°,和/或24.25±0.20°,和/或26.09±0.20°,和/或29.00°。
本发明的一些方案中,上述G晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.83°,8.06°,12.27°,13.06°,14.75°,15.72°,16.56°,18.23°,18.67°,19.69°,20.64°,21.11°,21.91°,22.57°,23.33°,24.25°,26.09°,29.00°。
本发明的一些方案中,上述G晶型的X-射线粉末衍射图谱如图24所示。
本发明的一些方案中,上述G晶型的X-射线粉末衍射图谱基本上如图24所示。
本发明的一些方案中,上述G晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表7 式(IV-2)化合物G晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 5.83 2976.45 100.00 10 19.69 130.64 4.39
2 8.06 875.80 29.42 11 20.64 250.49 8.42
3 12.27 470.26 15.80 12 21.11 451.88 15.18
4 13.06 116.89 3.93 13 21.91 319.36 10.73
5 14.75 213.26 7.16 14 22.57 222.20 7.47
6 15.72 240.47 8.08 15 23.33 359.20 12.07
7 16.56 993.57 33.38 16 24.25 122.90 4.13
8 18.23 554.14 18.62 17 26.09 212.77 7.15
9 18.67 1745.41 58.64 18 29.00 133.84 4.50
本发明的一些方案中,上述G晶型的差示扫描量热(DSC)曲线显示在224.4℃±3℃和251.5℃±3℃处具有吸热峰的初始值,在233.7℃±3℃三处具有热信号起始点。
本发明的一些方案中,上述G晶型的DSC图谱如图25所示。
本发明的一些方案中,上述G晶型的DSC图谱基本上如图25所示。
本发明的一些方案中,上述G晶型的 1H NMR图谱如图26所示。
本发明的一些方案中,上述G晶型的 1H NMR图谱基本上如图26所示。
本发明还提供了式(V-1)化合物的H晶型,
Figure PCTCN2022093391-appb-000016
所述H晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.31°,8.52°,11.28°,12.75°,13.32°,14.52°,15.4°,16.48°,17.19°,18.32°,18.87°,19.09°,19.78°,20.4°,21.28°,25.4°,26.99°,27.34°,29.22°,29.93°,30.69°,35.02°,36.16°。
本发明的一些方案中,上述H晶型的X-射线粉末衍射图谱如图27所示。
本发明的一些方案中,上述H晶型的X-射线粉末衍射图谱基本上如图27所示。
本发明的一些方案中,上述H晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表8 式(V-1)化合物H晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 4.31 807.33 29.30 13 19.78 217.17 7.88
2 8.52 796.80 28.91 14 20.40 293.58 10.65
3 11.28 43.53 1.58 15 21.28 276.77 10.04
4 12.75 1405.29 50.99 16 25.40 142.88 5.18
5 13.32 1400.98 50.84 17 26.99 1478.93 53.67
6 14.52 193.61 7.03 18 27.34 2755.77 100.00
7 15.40 360.38 13.08 19 29.22 94.43 3.43
8 16.48 678.63 24.63 20 29.93 231.77 8.41
9 17.19 336.12 12.20 21 30.69 104.88 3.81
10 18.32 1391.94 50.51 22 35.02 42.54 1.54
11 18.87 724.23 26.28 23 36.16 53.92 1.96
12 19.09 546.48 19.83 - - - -
本发明还提供了式(VI-1)化合物的I晶型,
Figure PCTCN2022093391-appb-000017
所述I晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.27°,8.02°,8.59°,10.14°,13.90°,14.99°,15.56°,16.07°,16.95°,17.20°,17.82°,19.16°,20.39°,21.10°,21.44°,22.94°,23.92°,24.26°,24.91°,25.57°,26.58°,27.42°,28.26°,29.39°,31.19°,32.02°,33.52°。
本发明的一些方案中,上述I晶型的X-射线粉末衍射图谱如图28所示。
本发明的一些方案中,上述I晶型的X-射线粉末衍射图谱基本上如图28所示。
本发明的一些方案中,上述I晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表9 式(VI-1)化合物I晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 6.27 626.52 45.11 15 21.44 445.48 32.07
2 8.02 1389.00 100.00 16 22.94 214.03 15.41
3 8.59 143.55 10.34 17 23.92 342.38 24.65
4 10.14 395.37 28.46 18 24.26 294.13 21.18
5 13.90 75.89 5.46 19 24.91 159.91 11.51
6 14.99 556.98 40.10 20 25.57 362.76 26.12
7 15.56 439.95 31.67 21 26.58 173.10 12.46
8 16.07 262.74 18.92 22 27.42 224.17 16.14
9 16.95 268.39 19.32 23 28.26 262.30 18.88
10 17.20 484.23 34.86 24 29.39 173.15 12.47
11 17.82 229.71 16.54 25 31.19 189.29 13.63
12 19.16 138.22 9.95 26 32.02 129.41 9.32
13 20.39 178.57 12.86 27 33.52 96.99 6.98
14 21.10 219.33 15.79 - - - -
本发明还提供了式(VII-1)化合物的J晶型,
Figure PCTCN2022093391-appb-000018
所述J晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.14°,8.58°,10.33°,11.36°,12.15°,14.47°,15.08°,15.86°,16.85°,17.25°,17.58°,18.08°,18.58°,19.54°,20.69°,21.44°,21.81°,22.10°,23.35°,24.33°,24.66°,25.29°,25.96°,27.88°,28.71°,29.53°,29.84°,31.74°,32.71°,34.04°,37.79°。
本发明的一些方案中,上述J晶型的X-射线粉末衍射图谱如图29所示。
本发明的一些方案中,上述J晶型的X-射线粉末衍射图谱基本上如图29所示。
本发明的一些方案中,上述J晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表10 式(VII-1)化合物J晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 7.14 366.08 16.78 17 21.81 1988.21 91.13
2 8.58 76.34 3.50 18 22.10 204.08 9.35
3 10.33 416.43 19.09 19 23.35 895.06 41.03
4 11.36 538.48 24.68 20 24.33 501.38 22.98
5 12.15 285.42 13.08 21 24.66 402.48 18.45
6 14.47 356.16 16.32 22 25.29 701.92 32.17
7 15.08 143.54 6.58 23 25.96 179.36 8.22
8 15.86 2181.72 100.00 24 27.88 527.68 24.19
9 16.85 614.50 28.17 25 28.71 502.40 23.03
10 17.25 344.72 15.80 26 29.53 438.88 20.12
11 17.58 304.31 13.95 27 29.84 239.02 10.96
12 18.08 90.69 4.16 28 31.74 487.14 22.33
13 18.58 603.24 27.65 29 32.71 421.26 19.31
14 19.54 1122.21 51.44 30 34.04 118.56 5.43
15 20.69 196.21 8.99 31 37.79 29.50 1.35
16 21.44 474.01 21.73 - - - -
本发明还提供了式(VIII-1)化合物的K晶型,
Figure PCTCN2022093391-appb-000019
所述K晶型的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.99°,7.34°,8.33°,9.22°,9.92°,10.56°,10.97°,13.35°,13.96°,14.60°,15.13°,15.83°,16.36°,16.91°,18.48°,19.58°,20.62°,20.99°,22.22°,22.67°,23.78°,25.77°,26.19°,26.84°,27.46°,31.21°,37.22°。
本发明的一些方案中,上述K晶型的X-射线粉末衍射图谱如图30所示。
本发明的一些方案中,上述K晶型的X-射线粉末衍射图谱基本上如图30所示。
本发明的一些方案中,上述K晶型的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表所示:
表11 式(VIII-1)化合物K晶型的XRPD衍射数据
编号 衍射角2θ 峰高 相对强度% 编号 衍射角2θ 峰高 相对强度%
1 6.99 2948.60 100.00 15 18.48 138.53 4.70
2 7.34 2087.30 70.79 16 19.58 1108.68 37.60
3 8.33 257.73 8.74 17 20.62 714.58 24.23
4 9.22 1358.47 46.07 18 20.99 600.93 20.38
5 9.92 488.45 16.57 19 22.22 214.80 7.28
6 10.56 565.01 19.16 20 22.67 154.95 5.26
7 10.97 804.48 27.28 21 23.78 184.49 6.26
8 13.35 338.84 11.49 22 25.77 836.23 28.36
9 13.96 655.05 22.22 23 26.19 1382.89 46.90
10 14.60 1236.10 41.92 24 26.84 412.81 14.00
11 15.13 1451.49 49.23 25 27.46 505.00 17.13
12 15.83 532.35 18.05 26 31.21 44.76 1.52
13 16.36 874.04 29.64 27 37.22 42.01 1.42
14 16.91 1374.26 46.61 - - - -
本发明还提供了上述化合物的甲磺酸盐、对甲苯磺酸盐、B晶型、C晶型或A晶型在制备DNA-PK抑制剂相关药物中的应用。
本发明还提供了上述化合物的甲磺酸盐、对甲苯磺酸盐、苯磺酸盐、草酸盐、氢溴酸盐、盐酸盐、水合物、A晶型、B晶型、C晶型、D晶型、E晶型、F晶型、G晶型、H晶型、I晶型、J晶型或K晶型在制备DNA-PK抑制剂相关药物中的应用。
技术效果
本发明化合物作为一类DNA-PK抑制剂,展示了很好的DNA-PK激酶抑制活性。PK结果显示,本发明化合物具有较长的半衰期和较高的药物暴露量,体内药物代谢动力学优良,是很好的可开发口服给药的分子。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
术语“药学上可接受的盐”是指化合物的盐,由化合物与相对无毒的酸或碱制备;基本发明式(I)化合物的性质,优选为与相对无毒的酸制备。可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、萘二磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸。
本发明中式(I)化合物、式(I)化合物药学上可接受的盐,包括但不限于氢溴酸盐、甲磺酸盐、草酸盐、对甲苯磺酸和溶剂合物;其中,水合物是溶剂合物的一种情形。本发明中式(I)化合物药学上可接受的盐或溶剂合物中,结合酸或溶剂的量用酸或溶剂与式(I)化合物的摩尔比值表示。例如,式(I)化合物
Figure PCTCN2022093391-appb-000020
表示式(I)化合物与甲磺酸的加成盐,所述酸加成盐中,甲磺酸与式(I)化合物的摩尔比为2∶1。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
除非另有说明,本发明化合物的差示扫描量热曲线中,向上表示放热。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022093391-appb-000021
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明采用下述缩略词:ACN代表乙腈;DMSO代表二甲基亚砜。N 2:氮气;RH:相对湿度;mL:毫升;L:升;min:分钟;℃:摄氏度;μm:微米;mm:毫米;μL:微升;moL/L:摩尔每升;mg:毫克;s:秒;nm:纳米;MPa:兆帕;lux:勒克斯;μw/cm 2:微瓦每平方厘米;h:小时;Kg:千克;nM:纳摩尔,rpm:转速;XRPD代表X射线粉末衍射;DSC代表差示扫描量热分析;TGA代表热重分析; 1H NMR代表核磁共振氢谱。
本发明化合物依据本领域常规命名原则或者使用
Figure PCTCN2022093391-appb-000022
软件命名,市售化合物采用供应商目录名称,本发明所使用的所有溶剂是市售可得的。
本发明仪器及分析方法
1.1X-射线粉末衍射(X-ray powder diffractometer,XRPD)方法
测试方法:大约10mg样品用于XRPD检测。
详细的XRPD仪器信息和参数如下表所示:
表12 XRPD仪器信息和参数
Figure PCTCN2022093391-appb-000023
1.2差式扫描量热法(Differential Scanning Calorimeter,DSC)和热重分析(Thermal Gravimetric Analyzer,TGA)
仪器型号:Discovery DSC 2500差示扫描量热仪和Discovery 5500 TGA热重分析仪,详细的参数如下表所示:
表13 DSC和TGA仪器参数
参数 TGA DSC
方法 线性升温 线性升温
样品盘 铝盘,敞开 铝盘,压盖
温度范围 室温-设置终点温度 25℃-设置终点温度
扫描速率(℃/分钟) 10 10
保护气体 氮气 氮气
1.3核磁共振氢谱( 1H NMR)
仪器:Bruker 400M NMR Spectrometer,氘代溶剂:DMSO-d6。
1.4动态水分吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS intrinsic动态水分吸附仪
测试条件:取样品(约10mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.01%/min
RH(%)测试梯级:5%RH
RH(%)测试梯级范围:0%-95%-0%
引湿性评价分类如下:
吸收足量水分形成液体:潮解;ΔW%≥15%:极具吸湿性;15%>ΔW%≥2%:有吸湿性;2%>ΔW%≥0.2%:略有吸湿性;ΔW%<0.2%:无或几乎无吸湿性。ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
1.5超高效液相色谱/离子色谱(UPLC/IC)仪器
试验中酸碱摩尔比测试是由超高效液相色谱仪和离子色谱仪测试,分析条件如表14和表15所示。
表14 超高效液相色谱测试条件
Figure PCTCN2022093391-appb-000024
表15 离子色谱测试条件
离子色谱仪 ThermoFisher ICS-1100
色谱柱 IonPac AS18 Analytical Column,4×250mm
流动相 25mMNaOH
运行时间 7min(氯离子);18min(溴离子)
流速 1.0毫升/分钟
进样体积 25微升
电流 80毫安
柱温 35℃
附图说明
图1为式(I)化合A晶型的XRPD图谱
图2为式(I)化合物A晶型的DSC谱图
图3为式(I)化合物A晶型的TGA谱图
图4为式(II-1)化合物B晶型的XRPD谱图
图5为式(II-1)化合物B晶型的DSC谱图
图6为式(II-1)化合物B晶型的TGA谱图
图7为式(II-1)化合物B晶型的 1H NMR谱图
图8为式(III-1)化合物C晶型的XRPD谱图
图9为式(III-1)化合物C晶型的DSC谱图
图10为式(III-1)化合物C晶型的TGA谱图
图11为式(III-1)化合物C晶型的 1H NMR谱图
图12为式(II-2)化合物D晶型的XRPD谱图
图13为式(II-2)化合物D晶型的DSC谱图
图14为式(II-2)化合物D晶型的TGA谱图
图15为式(II-2)化合物D晶型的 1H NMR谱图
图16为式(III-2)化合物E晶型的XRPD谱图
图17为式(III-2)化合物E晶型的DSC谱图
图18为式(III-2)化合物E晶型的TGA谱图
图19为式(III-2)化合物E晶型的 1H NMR谱图
图20为式(IV-1)化合物F晶型的XRPD谱图
图21为式(IV-1)化合物F晶型的DSC谱图
图22为式(IV-1)化合物F晶型的TGA谱图
图23为式(IV-1)化合物F晶型的 1H NMR谱图
图24为式(IV-2)化合物G晶型的XRPD谱图
图25为式(IV-2)化合物G晶型的DSC谱图
图26为式(IV-2)化合物G晶型的 1H NMR谱图
图27为式(V-1)化合物H晶型的XRPD谱图
图28为式(VI-1)化合物I晶型的XRPD谱图
图29为式(VII-1)化合物J晶型的XRPD谱图
图30为式(VIII-1)化合物K晶型的XRPD谱图
图31为式(II-1)化合物B晶型的DVS谱图
图32为第21天肿瘤照片
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1:式(I)化合物的制备
Figure PCTCN2022093391-appb-000025
步骤1
0℃下,向化合物1a(4.49g,30mmol,1eq)的乙酸(50mL)和水(18mL)混合溶液中缓慢加入亚硝酸钠(2.28g,33mmol,1.1eq)的水(4.5mL)溶液,加毕反应液于20℃反应3小时。反应完全后,反应液加入水(50mL)稀释,乙酸乙酯150mL(50mL*3)萃取,有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯∶石油醚=0∶1~1∶1)纯化得化合物1b。MS:m/z.143.0[M+H] +
步骤2
0℃下,向化合物1b(3.70g,26mmol,1eq)的甲醇(20mL)溶液中依次加入锌粉(6.80g,104mmol,4eq)和乙酸(20mL),加毕反应液在20℃反应4小时。反应完全后,反应液经硅藻土过滤并用乙酸乙酯(200mL)洗涤,滤液减压浓缩得粗品化合物1c。
步骤3
0℃下,向化合物1d(10.09g,52mmol,2eq)的二氧六环(150mL)溶液中依次加入化合物1c(4.89g,26mmol,1eq)和三乙胺(13.15g,130mmol,5eq,18.09mL),加毕反应液于20℃下反应5小时。反应完全后,反应液加入水(100mL)稀释,乙酸乙酯300mL(100mL*3)萃取,有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯∶石油醚=0∶1~1∶1)纯化得化合物1e。MS:m/z 285.9[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.05(s,1H),8.97(br s,1H),4.43(br dd,J=4.44,2.06Hz,2H),2.94-3.06(m,4H),2.19-2.28(m,2H),1.90-2.03(m,2H)。
步骤4
向化合物1e(2.43g,8.5mmol,1eq)的乙醇(120mL)和水(30mL)混合溶液中依次加入铁粉(2.37g,42.5mmol,5eq)和氯化铵(2.27g,42.5mmol,5eq),加毕反应液于75℃下反应3小时。反应完全后,反应液冷却至室温并向其中加入乙酸乙酯(200mL)稀释,硅藻土过滤并减压浓缩得粗品化合物1f。MS:m/z 256.0[M+H] +
步骤5
向化合物1f(2.17g,8.5mmol,1eq)的乙腈(30mL)溶液中加入N,N′-羰基二咪唑(2.76g,17mmol,2eq),加毕反应液于80℃下反应2小时。反应完全后,反应液减压浓缩并经柱层析(乙酸乙酯∶石油醚=0∶1~1∶0)纯化得化合物1g。MS:m/z 281.9[M+H]+。
1H NMR(400MHz,DMSO-d 6)δppm 11.61(br s,1H),8.12(s,1H),4.38(br d,J=2.01Hz,2H),3.73(dd,J=9.91,1.63Hz,2H),2.81(d,J=9.54Hz,2H),1.99-2.09(m,2H),1.78-1.87(m,2H)。
步骤6
向化合物1g(1.24g,4.4mmol,1eq)的N,N-二甲基甲酰胺(40mL)溶液中依次加入碳酸铯(2.15g,6.6mmol,1.5eq)和碘甲烷(780mg,5.5mmol,1.25eq),加毕反应液于21℃下反应4小时。反应完全后,反应液加入水(50mL)稀释,乙酸乙酯180mL(60mL*3)萃取,有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯∶石油醚=0∶1~4∶1)纯化得化合物1h。MS:m/z 295.9[M+H] +
1H NMR(400MHz,CDCl 3)δppm 7.98-8.05(m,1H),4.45(br d,J=2.25Hz,2H),3.99(dd,J=9.69,1.81Hz,2H),3.41(s,3H),2.80(br d,J=9.51Hz,2H),2.23-2.31(m,2H),1.94-2.04(m,2H)。
步骤7
将化合物1h(502.7mg,1.7mmol,1eq),化合物1i(201.5mg,1.36mmol,0.8eq),甲磺酸(2-二环己基膦基-3,6-二甲氧基-2′,4′,6′-三异丙基-1,1′-联苯)(2-氨基-1,1′-联苯-2-基)钯(II)(231.2mg,255μmol,0.15eq)和碳酸铯(830.8mg,2.55mmol,1.5eq)置于反应瓶并抽换三次氮气,随后向混合物中加入无水二氧六环(30mL)并在100℃下反应3小时。反应完全后,反应液经硅藻土过滤后减压浓缩得粗品,随后经柱层析纯化(甲醇/二氯甲烷,甲醇比例:0~10%)和打浆搅拌(二氯甲烷/乙酸乙酯:1.5mL/3mL,25℃,15分钟)得式(I)化合物。MS:m/z 408.2[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.87(s,1H),8.26(s,1H),7.91(s,1H),7.57(s,1H),6.76(s,1H),4.48(br d,J=2.25Hz,2H),4.04(dd,J=9.76,1.88Hz,2H),3.40(s,3H),2.85(d,J=9.51Hz,2H),2.53(s,3H)2.29-2.37(m,2H),2.00-2.10(m,2H)。
实施例2:式(VIII-1)化合物K晶型的制备
Figure PCTCN2022093391-appb-000026
25℃下,向式(I)化合物(44g)中加入去离子水(200mL)并在25℃下搅拌5小时,过滤,滤饼在55℃下真空干燥18小时,得到式(VIII-1)化合物K晶型。XRPD谱图基本上如图30所示。
实施例3:式(I)化合物A晶型的制备
Figure PCTCN2022093391-appb-000027
方法一:称取式(VIII-1)化合物K晶型固体约20毫克与丙酮(0.5毫升)在室温下打浆搅拌6天,室温敞口干燥(40-60%RH/19-21℃)过夜后得到式(I)化合物A晶型。
方法二:向式(VIII-1)化合物K晶型(74g)中加入乙腈1500mL,加毕在60℃下搅拌24小时。冷却至室温,过滤,滤饼在25℃下真空干燥3小时,得到式(I)化合物A晶型。
XRPD谱图基本上如图1所示,DSC谱图基本上如图2所示,TGA图谱基本上如图3所示。
实施例4:式(II-1)化合物B晶型的制备
Figure PCTCN2022093391-appb-000028
方法一:称取式(VIII-1)化合物K晶型约20毫克(1eq)和甲磺酸(1eq)加入到乙醇/水(19∶1,v/v,0.5mL)中,悬浊液在室温下搅拌3天。离心,收集固体在室温下真空干燥4小时,得到式(II-1)化合物B晶型。
方法二:25℃下,式(VIII-1)化合物K晶型(2g,4.90mmol,1eq)用乙腈(19mL)溶解,缓慢滴加甲磺酸(476.6mg,4.96mmol,1.01eq)的乙腈(1mL)溶液。滴加完毕后于25℃下搅拌16小时。过滤,滤饼用正庚烷(20mL*2)洗涤,于25℃真空干燥1小时,得到式(II-1)化合物B晶型。
方法三:25℃下,式(I)化合物A晶型(30g,73.63mmol,1eq)用DMSO(300mL)稀释,升温至60℃,搅拌溶解。向反应液中滴加甲磺酸(3.54g,36.82mmol,0.5eq)并在60℃下搅拌1小时,随后向反应液中滴加甲烷磺酸(3.89g,40.50mmol,0.55eq)并在60℃下搅拌12小时。向反应液中滴加加入甲基叔丁基醚(450mL)并继续在60℃下搅拌1小时。随后反应液缓慢冷却至25℃。过滤,滤饼用甲基叔丁基醚(100mL*3)洗涤,于25℃真空干燥1小时,得到式(II-1)化合物B晶型。
1H NMR显示甲磺酸与式(I)化合物的摩尔比为1。XRPD谱图基本上如图4所示,DSC谱图基本上如图5所示,TGA图谱基本上如图6所示, 1H NMR谱图基本上如图7所示。
实施例5:式(II-2)化合物D晶型的制备
Figure PCTCN2022093391-appb-000029
称取式(VIII-1)化合物K晶型约20毫克(1eq)和甲磺酸(2eq)加入到丙酮(0.5mL)中,室温下搅拌2天。离心,收集固体在室温下真空干燥3小时,得到式(II-2)化合物D晶型,1H NMR显示甲磺酸与式(I)化合物的摩尔比为2。XRPD谱图基本上如图12所示,DSC谱图基本上如图13所示,TGA图谱基本上如图14所示, 1H NMR谱图基本上如图15所示。
实施例6:式(III-1)化合物C晶型的制备
Figure PCTCN2022093391-appb-000030
称取式(VIII-1)化合物K晶型约20毫克(1eq)和对甲苯磺酸(1eq)加入到四氢呋喃(0.5mL)中,悬浊液在室温下搅拌2天。离心,收集固体在室温下真空干燥3小时,得到式(III-1)化合物C晶型。 1H NMR显示甲磺酸与式(I)化合物的摩尔比为1。XRPD谱图基本上如图8所示,DSC谱图基本上如图9所示,TGA图谱基本上如图10所示, 1H NMR谱图基本上如图11所示。
实施例7:式(III-2)化合物E晶型的制备
Figure PCTCN2022093391-appb-000031
称取式(VIII-1)化合物K晶型约20毫克(1eq)和对甲苯磺酸(2eq)加入到丙酮(0.5mL)中,悬浊液在室温下搅拌2天。离心,收集固体在室温下真空干燥3小时,得到式(III-2)化合物E晶型。 1H NMR显示甲磺酸与式(I)化合物的摩尔比为2。XRPD谱图基本上如图15所示,DSC谱图基本上如图17所示,TGA图谱基本上如图18所示, 1H NMR谱图基本上如图19所示。
实施例8:式(IV-1)化合物F晶型的制备
Figure PCTCN2022093391-appb-000032
称取式(VIII-1)化合物K晶型约20毫克(1eq)和苯磺酸(1eq)加入到乙醇/水(19∶1,v/v,0.5mL)中,悬浊液在室温下搅拌2天。离心,收集固体在室温下真空干燥3小时,得到式(IV-1)化合物F晶型。 1H NMR显示甲磺酸与式(I)化合物的摩尔比为1。XRPD谱图基本上如图20所示,DSC谱图基本上如图21所示,TGA图谱基本上如图22所示, 1H NMR谱图基本上如图23所示。
实施例9:式(IV-2)化合物G晶型的制备
Figure PCTCN2022093391-appb-000033
称取式(VIII-1)化合物K晶型约20毫克(1eq)和苯磺酸(2eq)加入到丙酮(0.5mL)中,悬浊液在室温下搅拌2天。离心,收集固体在室温下真空干燥3小时,得到式(IV-2)化合物G晶型。 1H NMR显示甲磺酸与式(I)化合物的摩尔比为2。XRPD谱图基本上如图24所示,DSC谱图基本上如图25所示, 1H NMR谱图基本上如图26所示。
实施例10:式(V-1)化合物H晶型的制备
Figure PCTCN2022093391-appb-000034
称取式(VIII-1)化合物K晶型约20毫克(1eq)和草酸(2eq)加入到丙酮(0.5mL)中,悬浊液在室温下搅拌2天。离心,收集固体在室温下真空干燥3小时,得到式(V-1)化合物H晶型。高效液相色谱与离子色谱联用(UPLC/IC)显示酸碱摩尔比为1.4,XRPD谱图基本上如图27所示。
实施例11:式(VI-1)化合物I晶型的制备
Figure PCTCN2022093391-appb-000035
称取式(VIII-1)化合物K晶型约20毫克(1eq)和氢溴酸(1eq)加入到乙醇/水(19∶1,v/v,0.5mL)中,悬浊液在室温下搅拌3天。离心,收集固体在室温下真空干燥4小时,得到式(VI-1)化合物I晶型。高效液相色谱与离子色谱联用(UPLC/IC)显示酸碱摩尔比为1.2,XRPD谱图基本上如图28所示。
实施例12:式(VII-1)化合物J晶型的制备
Figure PCTCN2022093391-appb-000036
称取式(VIII-1)化合物K晶型200毫克(1eq)用乙腈(2mL)稀释,随后加入4mol/L的盐酸/甲醇溶液(0.5mL),加毕在25℃下搅拌8小时。过滤,滤饼减压干燥得到式(VII-1)化合物J晶型。高效液相色谱与离子色谱联用(UPLC/IC)显示酸碱摩尔比为2.2,XRPD谱图基本上如图29所示。
实施例13:式(II-1)化合物B晶型的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2020版四部通则9001),为评估式(II-1)化合物B晶型的固体稳定性,对B晶型进行了影响因素(高温、高湿及光照)、60℃/75%RH及40℃/75%RH条件的稳定性考察。将B晶型分别在高温(60℃,敞口)、高湿(25℃/92.5%RH,敞口)条件下各放置10天,按照ICH条件(可见光总照度达到1200000Lux·hrs、紫外光总照度达到200W·hrs/m 2)敞口放置在可见光及紫外光下(遮光对照组样品同时放置并用锡箔纸包裹),在60℃/75%RH(敞口)条件下放置1、2和3个月,在40℃/75%RH(敞口)条件下放置1、2和3个月。对所有稳定性样品进行了XRPD测试,以检测晶型的变化,结果如表16所示。
准确称取该晶型约10mg置于干燥洁净的玻璃瓶中,摊成薄薄一层,敞口放置于影响因素试验条件下和加速条件下。光照(可见光1200000Lux·hrs,紫外200W·hrs/m 2)条件下放置的样品采用透明玻璃瓶,完全暴露,用于XRPD检测的样品单独放置。
样品到时间点取出后,盖好盖子,使用封口膜密封,置于-20℃冰箱保存。配样时,将样品从冰箱取出,恢复至室温,加入25mL稀释液(乙腈/水,1∶1,v/v),使样品溶解,得浓度约为0.5mg/mL溶液,使用液相进行进样分析,检测结果与0天的初始检测结果进行比较,试验结果见下表16所示。
0天标准溶液的配制:称取该晶型约12.5mg于25mL容量瓶中,使用50%乙腈溶解并定容至刻度。
同时,对所有稳定性样品进行了HPLC测试,具体结果汇总于表16,HPLC测试仪器和分析条件见表17所示。
表16 式(II-1)化合物B晶型的固体稳定性试验结果
Figure PCTCN2022093391-appb-000037
Figure PCTCN2022093391-appb-000038
表17 HPLC仪器信息及分析方法
Figure PCTCN2022093391-appb-000039
结论:式(II-1)化合物B晶型在所有稳定性(高温,高湿,光照)条件下纯度和晶型均未发生明显变化,具有较好的化学稳定性。
实施例14:式(II-1)化合物B晶型的吸湿性研究
实验材料:
SMS DVS intrinsic动态水分吸附仪
实验方法:
取式(II-1)化合物B晶型(约10mg)置于DVS样品盘内进行测试。
实验结果:
式(II-1)化合物B晶型的DVS谱图如图31所示,2%>ΔW%≥0.2%。
实验结论:
式(II-1)化合物B晶型在25℃和80%RH下的吸湿增重2%>ΔW%≥0.2%,略有吸湿性。
生物测试数据:
实验例1:DNA依赖性蛋白激酶(DNA-PK)抑制活性筛选实验
本实验测试于Eurofins
实验材料及方法:
人源DNA-PK;Mg/ATP;GST-cMyc-p53;EDTA;Ser15抗体;ATP:10μM。
实验方法(Eurofins Pharma Discovery Service):
将DNA-PK(h)在含有50nM GST-cMyc-p53和Mg/ATP(根据需要的浓度)的测定缓冲液中温育。通过添加Mg/ATP混合物引发反应。在室温下温育30分钟后,加入含有EDTA的终止溶液终止反应。最后,添加检测缓冲液(含有标记的抗GST单克隆抗体和针对磷酸化p53的铕标记的抗磷酸Ser15抗体)。然后以时间分辨荧光模式读板,并根据公式HTRF=10000×(Em665nm/Em620nm)测定均匀时间分辨荧光(HTRF)信号。
实验结果:实验结果见表18。
表18 DNA-PK激酶活性测试结果
供试品 DNA-PK激酶抑制活IC 50(nM)
式(II-1)化合物B晶型 0.6
结论:本发明化合物对DNA-PK具有很好的抑制活性。
实验例2.药代动力学评价
实验方法
受试化合物与0.5%CMC-Na+0.2%(V∶V)Tween80水溶液混合,涡旋并超声,制备得到3mg/mL均一混悬液。选取SD雄性大鼠,口服给予候选化合物溶液,剂量30mg/kg。收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。
各参数定义:
C max:给药后出现的血药浓度最高值;T max:给药后达到药峰浓度所需的时间;T 1/2:血药浓度下降一半所需的时间;T last:最后一个检测点的时间;AUC 0-last:药时曲线下面积,指血药浓度曲线对时间轴所包围的面积。
测试结果:实验结果见表19。
表19 化合物各晶型及盐型在大鼠血浆中的PK测试结果
参数 C max(nM) T max(h) T 1/2(h) T last(h) AUC 0-1ast(nM.h)
式(VIII-1)化合物K晶型 21728 1.50 2.42 32.0 127313
式(I)化合物A晶型 14552 0.67 1.59 ND 83483
式(II-1)化合物B晶型 11057 1.33 4.07 ND 87413
注:ND:未确定(因为终止消除相定义不充分而未能确定参数)
结论:本发明化合物展现了较长的半衰期、较高的药物暴露量,具有较优的体内药物代谢动力学性质。
实验例3:体内药效学研究
实验目的:研究待测化合物对人小细胞肺癌NCI-H1703细胞皮下异种移植肿瘤BALB/c裸小鼠模型的体内药效学
实验动物:雌性BALB/c裸小鼠,6~8周龄,体重18-22克;供应商:上海西普尔-必凯实验动物有限公司实验方法与步骤:
(1)细胞培养
人非小细胞肺癌NCI-H1703细胞体外培养,RPMI1640培养基中加10%胎牛血清,100U/mL青霉素和100μg/mL链霉素,37℃ 5%CO 2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
(2)肿瘤细胞接种(肿瘤接种)
将0.2ml(5×10 6个)NCI-H1703细胞(加基质胶,体积比为1∶1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到约130mm 3时开始分组给药。
(3)受试物的配制
式(I)化合物用98.5%水+0.5%HPMC+I%Tween 80配制成3mg/mL,6mg/mL,9mg/mL的混悬溶液。
(4)肿瘤测量和实验指标
每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。根据肿瘤测量的结果计算出相对肿瘤体积(RTV),计算公式为RTV=V t/V 0,其中V 0是分组给药时(即第0天)测量所得肿瘤体积,V t为某一次测量时的肿瘤体积,T RTV与C RTV取同一天数据。
化合物的抑瘤疗效用TGI(%,反映肿瘤生长抑制率)或相对肿瘤增殖率T/C(%)评价:
T/C(%)=T RTV/C RTV×100%,T RTV表示治疗组RTV平均值,C RTV表示阴性对照组RTV平均值。
TGI(%)=[1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶媒对照组治疗结束时平均瘤体积-溶媒对照组开始治疗时平均瘤体积)]×100%。
在实验结束后检测肿瘤重量(TW),并计算T/C weight(%),计算公式:T/C weight(%)=TW treatment/TW 溶媒×100%,TW treatment和TW 溶媒分别表示给药组和溶媒对照组的瘤重。
(5)统计分析
统计分析基于试验结束时RTV的数据运用SPSS软件进行分析。治疗组在试验结束时给药后第21天表现出最好的治疗效果,因此基于此数据进行统计学分析评估组间差异。两组间比较用T-test进行分析,三组或多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey‘s法进行分析;如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。p<0.05认为有显著性差异。
(6)实验结论和讨论
实验结果见表20和表21,第21天肿瘤照片结果见图32。
表20 本发明化合物对人肺癌NCI-H1703异种移植瘤模型的抑瘤效果
Figure PCTCN2022093391-appb-000040
注:a.平均值±SEM,n=9。
表21 各实验组肿瘤重量及照片
Figure PCTCN2022093391-appb-000041
注:a.平均值±SEM,n=9。
结论:在本实验中,式(I)化合物在60mg/kg和90mg/kg剂量下,与对照组相比具有显著的抑瘤作用,且呈现剂量依赖性。在本实验中,荷瘤鼠对本发明化合物显示出良好的耐受性。

Claims (31)

  1. 式(I)化合物,
    Figure PCTCN2022093391-appb-100001
    其特征在于,所述化合物药学上可接受的盐为甲磺酸盐和对甲苯磺酸盐。
  2. 根据权利要求1所述的甲磺酸盐和对甲苯磺酸盐,其特征在于,所述的甲磺酸盐结构为式(II)所示,所述的对甲苯磺酸盐结构为式(III)所示,
    Figure PCTCN2022093391-appb-100002
    其中,
    m选自0.8,0.9,1.0,1.1,1.2,1.5,1.8,1.9,2.0,2.1,2.2;
    n选自0.8,0.9,1.0,1.1,1.2,1.5,1.8,1.9,2.0,2.1,2.2。
  3. 根据权利要求2所述的甲磺酸盐和对甲苯磺酸盐,其特征在于,所述的式(II)化合物选自式(II-1)化合物,式(III)化合物选自式(III-1)化合物,
    Figure PCTCN2022093391-appb-100003
  4. 式(II-1)化合物的B晶型,
    Figure PCTCN2022093391-appb-100004
    其特征在于,其CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,16.56±0.20°,21.25±0.20°。
  5. 根据权利要求4所述的B晶型,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,10.66±0.20°,13.98±0.20°,16.56±0.20°,21.25±0.20°。
  6. 根据权利要求5所述的B晶型,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.02±0.20°,9.29±0.20°,10.66±0.20°,13.98±0.20°,16.56±0.20°,21.25±0.20°,29.98±0.20°。
  7. 根据权利要求6所述的B晶型,其XRPD图谱如图4所示。
  8. 根据权利要求4~7任意一项所述的B晶型,其差示扫描量热曲线在286.6℃±3℃处具有吸热峰的起始点。
  9. 根据权利要求8所述的B晶型,其DSC图谱如图5所示。
  10. 根据权利要求4~7任意一项所述的B晶型,其热重分析曲线在200.0℃±3℃时失重达0.58%。
  11. 根据权利要求10所述的B晶型,其TGA图谱如图6所示。
  12. 式(II-1)化合物的B晶型,
    Figure PCTCN2022093391-appb-100005
    其制备方法包括如下步骤:
    (a)将化合物Z加入溶剂X中;
    (b)25~80℃下滴加甲磺酸,加完后在25~80℃继续搅拌3~16小时;
    (c)滴加溶剂Y,加完后在25~80℃搅拌1~3小时;
    (d)冷却至15~30℃;
    (e)过滤;
    (f)25~60℃下真空干燥1~24小时;
    其中,
    化合物Z选自式(I)化合物、式(I)化合物A晶型和式(VIII-1)化合物K晶型;
    溶剂X选自二甲基亚砜、甲醇、乙醇、乙腈、丙酮、四氢呋喃和二氯甲烷;
    溶剂Y不存在,或者溶剂Y选自甲基叔丁基醚、乙酸乙酯和正庚烷;
    甲磺酸与式(I)化合物的摩尔比为1.0∶1~1.2∶1。
  13. 式(III-1)化合物的C晶型,
    Figure PCTCN2022093391-appb-100006
    其特征在于,其CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96±0.20°,15.16±0.20°,17.83±0.20°。
  14. 根据权利要求13所述的C晶型,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96±0.20°,7.05±0.20°,10.23±0.20°,15.16±0.20°,17.83±0.20°,22.11±0.20°,23.19±0.20°。
  15. 根据权利要求14所述的C晶型,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96±0.20°,7.05±0.20°,10.23±0.20°,11.89±0.20°,15.16±0.20°,17.83±0.20°,19.09±0.20°,19.96±0.20°,22.11±0.20°,23.19±0.20°。
  16. 根据权利要求15所述的C晶型,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.96°,7.05°,8.08°,10.23°,11.89°,12.30°,12.99°,14.01°,15.16°,16.67°,17.54°,17.83°,18.75°,19.09°,19.47°,19.96°,20.67°,21.6°,22.11°,23.19°,23.83°,25.18°,26.69°,28.32°,29.90°,30.48°,32.39°,35.02°。
  17. 根据权利要求16所述的C晶型,其XRPD图谱如图8所示。
  18. 根据权利要求13~17任意一项所述的C晶型,其差示扫描量热曲线在255.4±3℃处具有吸热峰的起始点。
  19. 根据权利要求18所述的C晶型,其DSC图谱如图9所示。
  20. 根据权利要求13~17任意一项所述的C晶型,其热重分析曲线在150.0℃±3℃时失重达2.90%。
  21. 根据权利要求20所述的C晶型,其TGA图谱如图10所示。
  22. 式(I)化合物的A晶型,
    Figure PCTCN2022093391-appb-100007
    其特征在于其CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.26±0.20°,19.47±0.20°,22.69±0.20°。
  23. 根据权利要求22所述的A晶型,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.26±0.20°,11.50±0.20°,13.52±0.20°,17.03±0.20°,18.75±0.20°,19.47±0.20°,22.69±0.20°,27.74±0.20°。
  24. 根据权利要求23所述的A晶型,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.77±0.20°,9.26±0.20°,11.50±0.20°,13.52±0.20°,17.03±0.20°,17.50±0.20°,18.75±0.20°,19.47±0.20°,22.69±0.20°,23.84±0.20°,24.42±0.20°,26.76±0.20°,27.74±0.20°。
  25. 根据权利要求24所述的A晶型,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰::5.77°,9.26°,11.50°,13.52°,14.50°,15.16°,15.60°,17.03°,17.28°,17.50°,18.47°,18.75°,19.27°,19.47°,22.69°,23.84°,24.42°,26.76°,27.74°,28.43°,29.77°,30.40°,32.08°。
  26. 根据权利要求25所述的A晶型,其XRPD图谱如图1所示。
  27. 根据权利要求22~26任意一项所述的A晶型,其差示扫描量热曲线在257.8℃±3℃处具有吸热峰的起始点。
  28. 根据权利要求27所述的A晶型,其DSC图谱如图2所示。
  29. 根据权利要求22~26任意一项所述的A晶型,其热重分析曲线在230.0℃±3℃时失重达1.39%。
  30. 根据权利要求29所述的A晶型,其TGA图谱如图3所示。
  31. 根据权利要求1~3任意一项所述的甲磺酸盐或对甲苯磺酸盐、权利要求4~11任意一项所述的B晶型、
    权利要求13~21任意一项所述的C晶型、根据权利要求22~30任一项所述的A晶型或根据权利要求12的方法制备得到的晶型在制备DNA-PK抑制剂相关药物中的应用。
PCT/CN2022/093391 2021-05-19 2022-05-17 杂环取代的嘌呤酮衍生物的盐型及晶型 WO2022242658A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280036494.1A CN117355526A (zh) 2021-05-19 2022-05-17 杂环取代的嘌呤酮衍生物的盐型及晶型
EP22803978.0A EP4342899A1 (en) 2021-05-19 2022-05-17 Salt form and crystal form of heterocyclic substituted purinone derivative

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110547042 2021-05-19
CN202110547042.7 2021-05-19
CN202210459521.8 2022-04-27
CN202210459521 2022-04-27

Publications (1)

Publication Number Publication Date
WO2022242658A1 true WO2022242658A1 (zh) 2022-11-24

Family

ID=84141125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093391 WO2022242658A1 (zh) 2021-05-19 2022-05-17 杂环取代的嘌呤酮衍生物的盐型及晶型

Country Status (4)

Country Link
EP (1) EP4342899A1 (zh)
CN (1) CN117355526A (zh)
TW (1) TWI812223B (zh)
WO (1) WO2022242658A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114728969A (zh) * 2019-11-25 2022-07-08 南京明德新药研发有限公司 作为dna-pk抑制剂的嘧啶并咪唑类化合物
WO2023165603A1 (en) * 2022-03-03 2023-09-07 Zai Lab (Shanghai) Co., Ltd. Dna-pk inhibitor and combination use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177791A (zh) * 2016-12-20 2019-08-27 阿斯利康(瑞典)有限公司 氨基-***并吡啶化合物及其在治疗癌症中的用途
WO2021104277A1 (zh) * 2019-11-25 2021-06-03 南京明德新药研发有限公司 作为dna-pk抑制剂的嘧啶并咪唑类化合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177791A (zh) * 2016-12-20 2019-08-27 阿斯利康(瑞典)有限公司 氨基-***并吡啶化合物及其在治疗癌症中的用途
WO2021104277A1 (zh) * 2019-11-25 2021-06-03 南京明德新药研发有限公司 作为dna-pk抑制剂的嘧啶并咪唑类化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Chinese Pharmacopoeia", 2020, article "Guideline for Stability Testing of Pharmaceutical Ingredients and Formulations"

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114728969A (zh) * 2019-11-25 2022-07-08 南京明德新药研发有限公司 作为dna-pk抑制剂的嘧啶并咪唑类化合物
CN114728969B (zh) * 2019-11-25 2024-03-08 再鼎医药(上海)有限公司 作为dna-pk抑制剂的嘧啶并咪唑类化合物
WO2023165603A1 (en) * 2022-03-03 2023-09-07 Zai Lab (Shanghai) Co., Ltd. Dna-pk inhibitor and combination use thereof

Also Published As

Publication number Publication date
TW202315875A (zh) 2023-04-16
TWI812223B (zh) 2023-08-11
CN117355526A (zh) 2024-01-05
EP4342899A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
WO2022242658A1 (zh) 杂环取代的嘌呤酮衍生物的盐型及晶型
WO2018133856A1 (zh) 1,3,5-三嗪衍生物的盐及其晶体、它们的制备方法、药物组合物和用途
ES2516940T3 (es) 6-(1-metil-1H-pirazol-4-il)-3-(2-metil-2H-indazol-5-iltio)-[1,2,4] triazolo[4,3-b]piridazina como inhibidor de c-Met
WO2021238827A1 (zh) Egfr抑制剂、其制备方法及用途
US11680061B2 (en) Crystal forms C and E of pyrazin-2(1H)-one compound and preparation method therefor
WO2020228635A1 (zh) 一种egfr激酶抑制剂及其在制备抗癌药物方面的应用
CN112047893A (zh) 吉非替尼与水杨酸共晶体
WO2022171044A1 (zh) 一种氧氮杂螺环化合物、其盐型及其晶型
EP4046686B1 (en) Salt types, crystal forms, and preparation methods for benzopyrazole compounds as rho kinase inhibitors
WO2021143843A1 (zh) 一种pde3/pde4双重抑制剂的结晶及其应用
CN107793371B (zh) 一类溴结构域识别蛋白抑制剂及其制备方法和用途
WO2022257965A1 (zh) 固体形式的周期蛋白依赖性激酶9抑制剂及其用途
WO2022063229A1 (zh) 含芳氨基喹唑啉的化合物的盐及其制备方法和应用
WO2022048545A1 (zh) 一种吡啶并嘧啶化合物的晶型
WO2020147838A1 (zh) 一种egfr抑制剂的盐、晶型及其制备方法
JP2023543080A (ja) ピロロ複素環系誘導体の結晶及びその製造方法
WO2021047466A1 (zh) 一种p53-MDM2抑制剂的晶型及其制备方法
JP2024521565A (ja) 複素環置換のプリノン誘導体の塩の形及び結晶
WO2020224585A1 (zh) 一种mTORC1/2双激酶活性抑制剂的盐型、晶型及其制备方法
US20230365596A1 (en) Crystal forms of pyridopyrazole compounds and preparation method therefor
WO2018028673A1 (zh) 喹唑啉衍生物类酪氨酸激酶抑制剂的盐及其晶型
WO2022143671A1 (zh) 吗啉取代的苯并嘧啶类化合物的晶型及其制备方法
CN114920745B (zh) 一种咪唑并吡嗪类化合物及其作为igf1r抑制剂的应用
WO2022237808A1 (zh) 吡咯并嘧啶类化合物的晶型及其制备方法
WO2022033471A1 (zh) 含邻氨基吡啶炔基的化合物的盐及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18562215

Country of ref document: US

Ref document number: 2023571467

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280036494.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022803978

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022803978

Country of ref document: EP

Effective date: 20231219