WO2022242355A1 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
WO2022242355A1
WO2022242355A1 PCT/CN2022/085693 CN2022085693W WO2022242355A1 WO 2022242355 A1 WO2022242355 A1 WO 2022242355A1 CN 2022085693 W CN2022085693 W CN 2022085693W WO 2022242355 A1 WO2022242355 A1 WO 2022242355A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser light
wavelength conversion
spot
conversion element
Prior art date
Application number
PCT/CN2022/085693
Other languages
English (en)
French (fr)
Inventor
陈彬
陈兴加
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2022242355A1 publication Critical patent/WO2022242355A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of optical technology, in particular to an illuminating device.
  • the lighting device using laser excitation phosphor technology includes a laser light source and a fluorescent device, so that the laser light emitted by the laser light source is irradiated on the fluorescent device, and part of the laser light is absorbed by the fluorescent material of the fluorescent device to generate fluorescence. The excitation light that is not absorbed is emitted together to form the outgoing light beam of the illuminating device.
  • a yellow fluorescent device is excited by a blue laser, and the resulting yellow light mixes with the remaining blue light to form white light.
  • Fig. 1 is the light intensity distribution of the fluorescent light produced after the laser excites the fluorescent device and the remaining laser light in the lighting device of the prior art, and its vertical axis represents the normalized light intensity, and the horizontal axis represents the light intensity with the optical axis
  • the distance between centers, the dotted line a in the figure is the light intensity distribution curve of the remaining laser light, and the solid line b is the light intensity distribution curve of the fluorescence generated by the fluorescent device. It can be seen from Figure 1 that the distribution range of the remaining laser light is small, and the distribution range of the fluorescence generated by the fluorescent device is relatively large, that is, the remaining laser spot is smaller than the fluorescent spot, which is mainly due to the following two reasons: 1.
  • the excited fluorescence is in the fluorescence
  • the inside of the device has a divergence angle of 4 ⁇ .
  • the fluorescence at a part of the angle is directly transmitted out of the fluorescent device, and the fluorescence at another part of the angle is reflected and scattered many times before being transmitted out of the fluorescent device, so the fluorescent spot expands.
  • the laser light enters the fluorescent device.
  • the laser light When the laser light encounters the phosphor, it will be converted into fluorescence, and it is difficult to spread a long distance laterally, so the fluorescent spot will be larger than the laser spot; thus making the remaining laser spot diffuse more than the fluorescent spot.
  • the diffusion of the laser fluorescent light source is small, so there is often a circle of yellow light at the edge of the mixed white light, which seriously affects the uniformity of the color of the emitted light from the laser fluorescent light source.
  • the object of the present invention is to provide an illuminating device to solve the above problems.
  • the illuminating device provided by the present invention includes: a laser light source, a diffusion element and a wavelength conversion element, the diffusion element is located between the laser light source and the wavelength conversion element; the laser light source is used for emit laser light, the laser light is a Gaussian beam; the diffusion element is used to scatter the laser light, and the laser light is scattered by the diffusion element to form a first light spot on the wavelength conversion element, and the wavelength conversion element is used to at least partially convert the received laser light into fluorescence; the first The central light intensity of the spot is I 0 , there is at least one first point in the first spot, the distance between the first point and the center of the first spot is r 1 , and the light intensity I 1 of the first point is equal to the central light of the first spot m times stronger than I 0 , and I 1 is equal to I 0 exp(-2(r 1 /r 0 ) 2 ), r 0 is a
  • the first point and the second point are located on the same straight line passing through the center of the first light spot.
  • first points there are multiple first points, and the multiple first points form a circle or an ellipse with the center of the first light spot as the center of symmetry.
  • the point's The light intensity is greater than I 0 exp(-2(r A /r 0 ) 2 ).
  • there is at least one third point in the first light spot the distance between the third point and the center of the first light spot is r 3 , and the light intensity I 3 of the third point is less than I 0 exp(-2(r 3 /r 0 ) 2 ), wherein, r 3 is less than r 1 and greater than 0.
  • the diffusion element scatters the central region of the laser light less than the peripheral regions of the laser light.
  • the lighting device further includes a light-shielding member disposed on the light-emitting surface of the wavelength conversion element, and the light-shielding member includes a light-transmitting area and a light-shielding area surrounding the light-transmitting area.
  • the size of the transparent area is smaller than or equal to the size of the first light spot.
  • the size of the wavelength conversion element is equal to the size of the first spot.
  • the illuminating device further includes a converging lens and a collecting lens
  • the converging lens is arranged on the light emitting side of the laser light source, and is used for converging the laser light emitted by the laser light source
  • the diffusing element is located between the converging lens and the wavelength conversion element
  • the collecting lens is arranged on the light emitting side of the wavelength converting element, and is used for collecting the outgoing light of the wavelength converting element.
  • the wavelength converting element is located at the focal plane of the converging lens.
  • the illuminating device further includes a refractive optical element, the refractive optical element is located between the diffusion element and the wavelength conversion element, the refractive optical element includes an incident surface and a refractive surface, and the laser light scattered by the diffusion element is incident from the incident surface to the The refraction optical element is refracted and deflected to the wavelength conversion element through the refraction surface.
  • the lighting device further includes a first deflecting optical element and a second deflecting optical element; the first deflecting optical element is located between the converging lens and the diffusing element, and is used to deflect and guide the laser light emitted by the converging lens to the diffusing element, the second deflection optical element is located between the diffusion element and the wavelength conversion element, and is used to deflect and guide the laser light emitted by the diffusion element to the wavelength conversion element; or, the first deflection optical element and the second deflection optical element are located in the converging lens in sequence Between the first deflection optical element and the diffusion element, the first deflection optical element is used to deflect and guide the laser light emitted by the converging lens to the second deflection optical element, and the second deflection optical element is used to deflect and guide the laser light emitted by the first deflection optical element to the diffuser element.
  • the first deflecting optical element is located between the converging lens and the diffusing element, and is used to deflect and guide
  • the wavelength conversion element is a reflective wavelength conversion element
  • the diffusion element is located on the optical path of the outgoing light of the wavelength conversion element.
  • the diffusing element is a reflective diffusing element
  • the lighting device further includes a first deflecting optical element, the first deflecting optical element is located between the converging lens and the diffusing element, and the first deflecting optical element is used to output the converging lens
  • the laser light is deflected and guided to the diffusion element, and the diffusion element is used to scatter the laser light emitted by the first deflection optical element and reflect it to the wavelength conversion element.
  • the lighting device further includes a light splitting element and a scattering reflection device, the light splitting element is located between the diffusion element and the wavelength conversion element, and the light splitting element is used to transmit a part of the laser light scattered by the diffusion element to the wavelength conversion element The first light spot is formed, and the other part is reflected to the scattering reflection device to form the second light spot.
  • the wavelength conversion element is a reflective wavelength conversion element, and the wavelength conversion element is also used for fluorescence and reflected to the spectroscopic element. Scatter and reflect to the light-splitting element, and the light-splitting element is also used to reflect the fluorescence, so that the fluorescence emitted by the wavelength conversion element and the laser light emitted by the scattering reflection device are combined.
  • the lighting device provided by the present invention includes: a laser light source, a diffusion element and a wavelength conversion element, the diffusion element is located between the laser light source and the wavelength conversion element; the laser light source is used to emit laser, and the laser is a Gaussian beam; the diffusion The element is used to scatter the laser light, and the laser light is scattered by the diffusion element to form a first light spot on the wavelength conversion element, and the wavelength conversion element is used to at least partially convert the received laser light into fluorescence; the central light intensity of the first light spot is I 0 , There is at least one first point in the first light spot, the distance between the first point and the center of the first light spot is r 1 , the light intensity I 1 of the first point is equal to m times the central light intensity I 0 of the first light spot, and I 1 is equal to I 0 exp(-2(r 1 /r 0 ) 2 ), r 0 is the preset distance from the center of the first light spot; there is at least one second point in the
  • the above solution can increase the light intensity of the edge region of the first light spot formed on the wavelength conversion element, so that there is enough laser light and fluorescent light in the edge region of the first light spot on the wavelength conversion element to mix, thereby improving the color of the light emitted by the wavelength conversion element Uniformity.
  • Fig. 1 is a light intensity distribution curve diagram of the fluorescence generated after the laser excites the fluorescent device and the remaining laser light in the lighting device of the prior art
  • Fig. 2 is a schematic diagram of the optical path of the lighting device provided by the first embodiment of the present invention
  • Fig. 3 is a graph showing the distribution of light intensity after the laser light emitted by the laser light source is scattered by the diffusion element in the first embodiment of the present invention
  • Fig. 4 is a schematic diagram of the optical path of the lighting device provided by the second embodiment of the present invention.
  • Fig. 5 is a schematic structural view of a light-shielding member in a second embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the optical path of the lighting device provided by the third embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the optical path of the lighting device provided by the fourth embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the optical path of the lighting device provided by the fifth embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the optical path of the lighting device provided by the sixth embodiment of the present invention.
  • Fig. 10 is a schematic diagram of the optical path of the lighting device provided by the seventh embodiment of the present invention.
  • Fig. 11 is a schematic diagram of the optical path of the lighting device provided by the eighth embodiment of the present invention.
  • Fig. 12 is a schematic diagram of the light path of the lighting device provided by the ninth embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the optical path of the lighting device 100 provided in the first embodiment of the present invention.
  • the lighting device 100 includes a laser light source 110, a diffusing element 120 and a wavelength converting element 130.
  • the diffusing element 120 is located between the laser light source 110 and the wavelength converting element.
  • the laser light source 110 is used to emit laser light, which is a Gaussian beam;
  • the diffusion element 120 is used to scatter the laser light, and the laser light is scattered by the diffusion element 120 to form a first spot on the wavelength conversion element 130.
  • the central light intensity of the first light spot is I 0
  • there is at least one first point in the first light spot and the distance between the first point and the center of the first light spot is r 1
  • the first The light intensity I 1 of a point is equal to m times of the central light intensity I 0 of the first spot, and I 1 is equal to I 0 exp(-2(r 1 /r 0 ) 2 )
  • r 0 is the center of the first spot preset distance
  • there is at least one second point in the first spot the distance between the second point and the center of the first spot is r 2
  • the light intensity I 2 of the second point is equal to the central light intensity I 0 of the first spot n times, and I 2 is greater than I 0 exp(-2(r 2 /r 0 ) 2 );
  • m is greater than 0.4 and less than 0.7
  • n is greater than 0 and less than m
  • r 2 is greater
  • the laser light source 110 is used to emit laser light, which is a Gaussian beam with the strongest light intensity distribution center and weaker edges, and the light intensity is concentrated on the axis of the laser light and its vicinity.
  • the laser light source 110 may include a laser, and the laser may be a single laser, a laser chip, or a laser diode (LD), or other laser emitting devices. It can be understood that the laser light source 110 may also include two, three or more lasers, and multiple lasers may be arranged in an array to increase the light intensity of the laser.
  • the laser light source 110 may be a blue light source. In other embodiments, the laser light source 110 may also be a purple light source or a green light source, as long as the conditions for emitting laser light are satisfied. It can also be a combination of multiple color laser light emitting units.
  • the diffusion element 120 is used to scatter the laser light emitted by the laser light source 110, change the angular distribution of the laser light, and expand the divergence angle of the laser light after scattering, and because the laser light emitted by the laser light source 110 has coherence, the diffusion element 120 can also play a role
  • the function of decoherence avoids speckle in the illumination pattern of the light emitted by the illumination device 100 .
  • the divergence angle after laser scattering refers to the angle between the laser light and the centerline of the laser optical axis.
  • the diffusion element 120 may be transmissive or reflective, and the shape of the diffusion element 120 may be one of circle, rectangle, ellipse, trapezoid or other polygons. In this embodiment, the diffusion element 120 is illustrated as an example of a transmission type and a circular shape.
  • a Gaussian diffuser is usually used to scatter the laser light emitted by the laser light source.
  • the laser emitted by the laser light source is a Gaussian beam
  • the light intensity distribution of the laser light after being scattered by the Gaussian diffuser still satisfies the Gaussian distribution, and the light intensity formula is:
  • A is the central light intensity (or peak light intensity) of the laser after being scattered by the Gaussian diffuser
  • is the radius of the laser after being scattered by the Gaussian diffuser
  • r is the distance from the central optical axis in the cross-section of the laser after being scattered by the Gaussian diffuser distance.
  • the light intensity distribution of the laser spot formed by the incident laser light scattered by the Gaussian diffusion plate on the wavelength conversion device is also a Gaussian distribution.
  • the diffusing element 120 is different from the Gaussian distribution of light intensity obtained by scattering the laser light by the Gaussian diffusing sheet.
  • the diffusing element 120 scatters the laser light emitted by the laser light source 110 to form a non-Gaussian distribution of light intensity.
  • the first light spot formed on the wavelength conversion element 130 after the laser light emitted by the laser light source 110 is scattered by the diffusion element 120 is measured to obtain the central light at the center of the first light spot Intensity (that is, the peak light intensity) is I 0 , then measure the light intensity I 1 of the first point whose distance from the center of the first spot is r 1 , and ensure that I 1 is equal to m times I 0 , where m is greater than 0.4 and less than 0.7.
  • the light intensity at the center of the first spot is I 0
  • the radius is 0, and the light intensity at the first point is I 1 , and the radius is r 1
  • the parameter A is equal to I 0 and the specific value of the radius ⁇ of the laser spot, and the specific value of the radius ⁇ of the laser spot is defined as r 0 (that is, r 0 is the center formed on the wavelength conversion element 130 and the center of the first spot coincide, and the light intensity at the center and the first point is the same as the radius of the Gaussian distributed laser spot of the first light spot), so as to obtain a light intensity formula of the laser spot with Gaussian distribution:
  • the diffusing element 120 can meet the design requirements of the present invention.
  • the first point and the second point are located on the same straight line passing through the center of the first light spot.
  • a preset Gaussian diffuser with an appropriate degree of scattering is selected as a comparison.
  • the contrast spot formed on , the central light intensity (ie peak light intensity) of the contrast spot is I 0 , which is the same as the central light intensity I 0 of the first spot and the center of the first spot coincides with the center, and the radius of the contrast spot is r 0
  • the light intensity distribution is Gaussian distribution, that is, the light intensity distribution of the contrast spot satisfies the above formula (2).
  • FIG. 3 shows the light intensity distribution curves of the first light spot and the contrast light spot formed on the wavelength conversion element 130 after the laser light emitted by the laser light source 110 is scattered by the diffusion element 120 and the preset Gaussian diffusion sheet respectively.
  • the abscissa represents the distance from the center of the spot
  • the ordinate represents the normalized light intensity
  • the solid line c represents the contrast of the light spot formed on the wavelength conversion element 130 after the laser light emitted by the laser light source 110 is scattered by the preset Gaussian diffuser.
  • Light intensity distribution curve which is a Gaussian distribution.
  • the dotted line d in the figure represents the light intensity distribution curve of the first spot formed on the wavelength conversion element 130 after the laser light emitted by the laser light source 110 is scattered by the diffusion element 120, and it is a non-Gaussian distribution. .
  • the The light intensity I 1 of the first point is equal to m times the central light intensity I 0 of the first light spot, and I 1 is equal to I 0 exp(-2(r 1 /r 0 ) 2 ).
  • the first light spot with non-Gaussian distribution formed after the laser light is scattered by the diffusion element 120 there is at least one light intensity I 1 of the first point at a distance r 1 from its center, which is equal to the laser light scattered by the preset Gaussian diffusion plate
  • the light intensity at a distance r 1 from the center of the Gaussian-distributed contrast spot is circular or elliptical, there are multiple first spots in the first spot, and the multiple first spots are formed as The center of the first light spot is a circle or an ellipse with a symmetrical center.
  • m is 0.43, that is, the light intensity at the first point is 0.43 times of the central light intensity I 0 .
  • FWHM Full width at half maximum
  • the light intensity at this time is half of the peak light intensity, so m can be 0.5.
  • the value of m is not limited to the above list, and the effect of the present invention can be realized when m is greater than 0.4 and less than 0.7.
  • the diffusion element 120 can adjust the light intensity distribution of the scattered laser light, and adjust the light intensity in the central area of the laser beam to the edge area.
  • the center of the laser beam can be adjusted to The light intensity with more areas is adjusted to the edge area, so that the edge area of the first light spot formed on the wavelength conversion element 130 has higher light intensity.
  • less light in the center area of the laser beam can be Adjusting the intensity to the edge region can reduce the light intensity of the central region of the first light spot formed on the wavelength conversion element 130 less, and ensure the central brightness of the light emitted by the wavelength conversion element 130.
  • the light intensity distribution curve of the first light spot from the center to r 1 after the laser light emitted by the laser light source 110 is scattered by the diffusion element 120 is sharper than the light intensity distribution curve of the Gaussian distribution in comparison, and is greater than r 1
  • the edge region of the first light spot formed on the wavelength conversion element 130 can have sufficient light intensity, and the wavelength conversion element 130 can ensure that the emitted light the central brightness of .
  • the light intensity of the laser light emitted by the laser light source 110 after being scattered by the diffusing element 120 gradually decreases from the center to the edge.
  • the light intensity of the first spot formed on the wavelength converting element 130 gradually decreases from the center to the edge.
  • the solution adopted in the present invention is to make the light intensity of the edge area of the first spot formed on the wavelength conversion element 130 be greater than the light intensity of the edge area of the contrast light spot with a Gaussian distribution. powerful.
  • the distance between the second point and the center of the first light spot is r 2 , and r 2 is greater than r 1 , that is, the second point is located radially outside the first point, and the light intensity I 2 of the second point is equal to n times the central light intensity I 0 of the first spot, and I 2 greater than I 0 exp(-2(r 2 /r 0 ) 2 ). That is, in the first light spot with non - Gaussian distribution formed after the laser is scattered by the diffusion element 120 , there is at least one point at a distance r 2 from its center.
  • the light intensity at a distance r 2 from the center of the Gaussian distribution contrast spot formed after scattering.
  • the first spot with a non-Gaussian distribution of light intensity formed after the laser is scattered by the diffusion element 120 is at a distance from the center of the spot.
  • the distance is r2 , it has a greater light intensity.
  • the inner edge of the area is a circle or ellipse formed by multiple first points, and the outer edge is the edge of the first light spot.
  • the light intensity of the first light spot is greater than that of the contrasting light spot.
  • Light intensity that is, for any point located radially outside the first point, the distance between this point and the center of the first spot is r A , and its light intensity is greater than I 0 exp(-2(r A /r 0 ) 2 ), that is to say, any point located on the line connecting the first point and the center of the first light spot and having a distance r A greater than r 1 from the center of the first light spot, the light at this point Stronger than I 0 exp(-2(r A /r 0 ) 2 ).
  • the light intensity of the edge region of the first light spot formed on the wavelength conversion element 130 after the laser light emitted by the laser light source 110 is scattered by the diffusion element 120 is higher than that of the edge area of the first spot formed on the wavelength conversion element after Gaussian scattering by the preset Gaussian diffusion sheet.
  • the light intensity of the edge area of the contrast spot formed on the 130 is greater.
  • the diffusion element 120 in the first light spot formed on the wavelength conversion element 130 after the laser light emitted by the laser light source 110 is scattered by the diffusion element 120, there is at least one third point, and the distance between the third point and the center of the first light spot is r 3 , and r 3 is greater than r 1 , the area where the third point is located is the central area of the scattered laser light, and the light intensity I 3 of the third point is less than I 0 exp(-2(r 3 /r 0 ) 2 ).
  • the light intensity of which is I 3 is smaller than the laser light passing through the preset Gaussian diffusion sheet.
  • the first spot with a non-Gaussian distribution of light intensity formed after the laser is scattered by the diffusion element 120 is at a distance from the center of the spot When it is r 3 , it corresponds to a smaller light intensity.
  • the preset Gaussian diffusion sheet is used as a comparison to illustrate the characteristics of the diffusion element 120.
  • the laser light emitted by the laser light source 110 pass through the diffusion element 120 and the selected preset Gaussian diffusion sheet, respectively, by measuring After the diffusion element 120 and the preset Gaussian diffuser, the light intensity distribution curve of the two is obtained, and then the center light intensity of the two is compared, the light intensity of the two when the distance from the center of the spot is r 1 , and the light intensity when the distance from the center of the spot is r 2 is two
  • the size of the light intensity of the laser light so as to determine whether the light intensity distribution of the laser light after being scattered by the diffusion element 120 meets the requirements.
  • the light intensity of the laser light scattered by the diffusion element 120 and the preset Gaussian diffuser should be measured respectively under the same conditions, such as the power of the laser light source 110, the power of the laser light source 110 and the diffuser 120 and the preset Gaussian diffuser. The same conditions as distance, measurement location, etc.
  • the scattering degree of the central area of the laser light by the diffusion element 120 is smaller than that of the edge area of the laser light, so that the laser light emitted by the laser light source 110 forms a non-Gaussian light intensity distribution curve after being scattered by the diffusion element 120 .
  • the degree of scattering refers to the percentage of the transmitted light intensity that deviates from the preset angle (for example, 1.5°) of the incident light to the total transmitted light intensity. The greater the degree of scattering, the larger the angle of deviation of the diffuser from the incident light.
  • the diffusion element 120 can be a microstructure that forms scattered light on the surface of its substrate.
  • the incident angle of the light beam in the central region of the laser incident on the diffusion element 120 is different from that of the incident light beam in the edge area on the diffusion element 120. There is a certain difference in the incident angle.
  • the scattering degree of the diffusion element 120 By setting the shape and size of the microstructure, the scattering degree of the diffusion element 120 to the central area of the laser is smaller than the scattering degree to the edge area of the laser;
  • the density of the microstructure is less than that of the edge area, or the diffusion element 120 is set transparently or has openings in the central area, so that the scattering degree of the laser light in the central area of the diffusion element 120 is smaller than the scattering degree of the laser light in the edge area;
  • the diffusion element 120 can also be
  • the thickness of the central region is smaller than the thickness of the edge region, so that the scattering degree of the laser light in the central region of the diffusion element 120 is smaller than the scattering degree of the laser light in the edge region;
  • the diffusion element 120 can also include a substrate and scattering particles dispersed
  • the density of the scattering particles in the central area is lower than that of the scattering particles in the edge area, so that the scattering degree of the laser light in the central area of the diffusion element 120 is smaller than that in the edge area; it can also be adjusted by adjusting parameters such as the size and shape of the scattering particles and microstructures. , so that the scattering degree of laser light in the central area of the diffusion element 120 is smaller than that in the edge area of the diffusion element 120 .
  • the wavelength conversion element 130 is used to at least partially convert the received excitation light into fluorescence.
  • the wavelength conversion element 130 includes a wavelength conversion material.
  • the wavelength conversion element 130 performs wavelength conversion on the received laser light to generate fluorescence.
  • a mixed light comprising fluorescent light and remaining unabsorbed laser light is then emitted.
  • the wavelength conversion element 130 may be a transmissive wavelength conversion element, or a reflective wavelength conversion element.
  • the wavelength conversion element 130 may be fluorescent ceramics or fluorescent glass, which have high light extraction efficiency, stable performance, and high temperature resistance, thereby improving the light output quality and service life of the lighting device 100 .
  • the wavelength conversion element 130 may include yellow phosphor, which can generate yellow fluorescence under the excitation of blue laser light, and the yellow fluorescence emitted by the wavelength conversion element 130 is mixed with the remaining unabsorbed blue laser light. into white light.
  • the wavelength conversion element 130 may also include wavelength conversion materials capable of generating light of other colors, so that fluorescence of other colors may be generated under excitation of laser light.
  • the lighting device 100 includes a laser light source 110, a diffusion element 120, and a wavelength conversion element 130, and the diffusion element 120 is located between the laser light source 110 and the wavelength conversion element 130;
  • the laser light source 110 is used to emit laser light
  • the laser light is a Gaussian beam
  • the diffusion element 120 is used to scatter the laser light, and the laser light is scattered by the diffusion element 120 to form a first light spot on the wavelength conversion element 130, and the wavelength conversion element 130 is used to at least partially convert the received laser light into fluorescence;
  • the center of the first light spot The light intensity is I 0 , there is at least one first point in the first light spot, the distance between the first point and the center of the first light spot is r 1 , the light intensity I 1 of the first point is equal to the center light intensity I 0 of the first light spot m times of , and I 1 is equal to I 0 exp(-2(r 1 /r 0 ) 2 ), r 0 is the preset distance from the center of the first light
  • the solution of the present invention can increase the light intensity of the scattered laser light in the edge region of its cross section, so that there is enough laser light and fluorescent light in the edge region of the first spot on the wavelength conversion element 130 to mix, thereby improving the output of the wavelength conversion element 130. Color uniformity of incident light.
  • FIG. 4 is a schematic diagram of an optical path of an illuminating device 200 according to the second embodiment of the present invention.
  • the illuminating device 200 includes a laser light source 110 , a diffusing element 120 , a wavelength conversion element 130 and a shading element 210 .
  • the same components in the lighting device 200 of the present embodiment and the lighting device 100 of the first embodiment are denoted by the same serial numbers.
  • the difference between the lighting device 200 of this embodiment and the lighting device 100 of Embodiment 1 is that the lighting device 200 also includes a shading member 210 disposed on the light-emitting surface of the wavelength conversion element 130. As shown in FIG. 5 , the shading member 210 includes a light-transmitting area.
  • the light-shielding member 210 and the light-emitting surface of the wavelength conversion element 130 are closely connected, and the light-shielding member 210 can be made of an opaque metal sheet with holes.
  • the light-shielding member 210 is glued together It is bonded to the light-emitting surface of the wavelength conversion element 130; the shading member 210 may also be a light-shielding coating directly coated on the light-emitting surface of the wavelength conversion element 130.
  • the light-transmitting region 211 of the light-shielding member 210 is opposite to the first light spot.
  • the shading member 210 by setting the shading member 210, the part of the light with uniform color in the central area of the mixed light emitted by the long conversion element 130 passes through the light transmission area 211 of the shading member 210, and the edge area of the mixed light emitted by the wavelength conversion element 130 is redundant.
  • the fluorescent light is blocked by the light-shielding area 212 of the light-shielding member 210 , so as to improve the uniformity of the color of the light emitted from the lighting device 200 . Since the shading member 210 is closely connected to the light-emitting surface of the wavelength conversion element 130 , there is no light propagation distance between the two, so that the shading effect of the shading area 212 is more accurate.
  • the size of the light-transmitting area 211 of the light-shielding member 210 is smaller than or equal to the size of the first light spot, which can block all the light rays that propagate laterally outside the light-transmitting area 211 in the wavelength conversion element 130, thereby further improving the illumination.
  • the uniformity of the light color emitted by the device 200 is smaller than or equal to the size of the first light spot, which can block all the light rays that propagate laterally outside the light-transmitting area 211 in the wavelength conversion element 130, thereby further improving the illumination.
  • FIG. 6 is a schematic diagram of an optical path of an illumination device 300 according to a third embodiment of the present invention.
  • the illumination device 300 includes a laser light source 110 , a diffusion element 120 , and a wavelength conversion element 330 .
  • the same components in the lighting device 300 of the present embodiment and the lighting device 100 of the first embodiment are denoted by the same serial numbers.
  • the difference between the lighting device 300 of this embodiment and the lighting device 100 of Embodiment 1 is that the size of the wavelength conversion element 330 is equal to the size of the first light spot.
  • the illuminating device 300 may also include a substrate 310, the size of which is larger than that of the wavelength conversion element 330.
  • the substrate 310 is used to carry the wavelength conversion element 330.
  • the substrate 310 may be made of light-transmitting materials such as glass, quartz, and sapphire.
  • the size of the wavelength conversion element 330 equal to the size of the first light spot, the scattering and propagation of laser light and fluorescent light in the area other than the first light spot inside the wavelength conversion element 330 are avoided, so that the wavelength conversion element 330 can convert The fluorescent light and the remaining unabsorbed laser light are evenly mixed, thereby improving the color uniformity of the emitted light from the illuminating device 300 .
  • FIG. 7 is a schematic diagram of an optical path of an illuminating device 400 according to a fourth embodiment of the present invention.
  • the illuminating device 100 includes a laser light source 110 , a diffusing element 120 , a wavelength converting element 130 , a converging lens 410 and a collecting lens 420 .
  • the same components in the lighting device 400 of the present embodiment and the lighting device 100 of the first embodiment are denoted by the same serial numbers.
  • the illuminating device 400 of this embodiment further includes a converging lens 410 and a collecting lens 420, and the converging lens 410 is arranged on the light-emitting side of the laser light source 110 for emitting light to the laser light source 110.
  • the laser light of the wavelength conversion element 130 is collected, and the diffusion element 120 is located between the convergence lens 410 and the wavelength conversion element 130;
  • the outgoing light of 130 is compressed from a large divergence angle to a small divergence angle.
  • the wavelength conversion element 130 is located at the focal plane of the converging lens 410 .
  • the laser light emitted by the laser light source 110 is directly focused on the wavelength conversion element 130 through the converging lens 410 to form a focused spot with a small area.
  • the light energy density of the converging spot is very high, and thermal quenching phenomenon is prone to occur when the fluorescent material is excited, and because the focused spot area incident on the wavelength conversion element 130 is small, the fluorescence spot on the light output side of the wavelength conversion element 130 is more than the remaining unconverted
  • the laser spot is much larger, resulting in serious color unevenness in the edge region of the light emitted by the wavelength conversion element 130 .
  • the diffusing element 120 is located between the converging lens 410 and the wavelength converting element 130, and the wavelength converting element 130 is located on the focal plane of the converging lens 410, so that the laser light emitted by the laser light source 110 is converged by the converging lens 410 and passes through the diffusing element.
  • 120 Scattering processing changing the angular distribution of the laser light, expanding the divergence angle of the laser light, so as to form a first light spot with an enlarged area on the wavelength conversion element 130, and the first light spot has a light intensity with a non-Gaussian distribution.
  • the light energy density of the laser spot incident on the wavelength conversion element 130 is reduced, and the light conversion efficiency of the wavelength conversion element 130 is improved; on the other hand, the light intensity of the first light spot is a non-Gaussian distribution.
  • the area has a greater light intensity than the edge area of the laser spot with a Gaussian distribution of light intensity, so that the edge area of the first spot has enough laser light and fluorescent light to mix, and the color uniformity of the light emitted by the wavelength conversion element 130 is improved.
  • the specific position of the diffusion element 120 between the converging lens 410 and the wavelength conversion element 130 can be set according to actual needs. For example, when the distance between the diffusion element 120 and the wavelength conversion element 130 is relatively long, the first The light spot has a larger area, and when the distance between the diffusion element 120 and the wavelength conversion element 130 is shorter, the first light spot formed on the wavelength conversion element 130 has a smaller area. However, compared to the case where the diffusing element 120 is not provided, disposing the diffusing element 120 between the converging lens 410 and the wavelength converting element 130 can enlarge the area of the incident spot formed by the laser light on the wavelength converting element 130 .
  • the collecting lens 420 is disposed on the light emitting side of the wavelength conversion element 130 for collecting the emitted light of the wavelength conversion element 130 .
  • the outgoing light of the wavelength conversion element 130 has a relatively large divergence angle, usually ranging from 120° to 160°, and is collected by the collecting lens 420 to compress the large-angle outgoing light into a small-angle outgoing light. After collection and compression, the divergence angle of the emitted light from the collection lens 420 is 60°-80°.
  • the distance between the collecting lens 420 and the light-emitting surface of the wavelength converting element 130 may be determined according to actual conditions, and is not specifically limited here.
  • the illuminating device 400 may also include a collimating lens arranged on the light-emitting side of the collecting lens 420, and collimate the outgoing light of the collecting lens 420 to obtain a collimated beam whose divergence angle is within 1°, so that it can be applied to Long-distance lighting, beam lighting, etc.
  • a collimating lens arranged on the light-emitting side of the collecting lens 420, and collimate the outgoing light of the collecting lens 420 to obtain a collimated beam whose divergence angle is within 1°, so that it can be applied to Long-distance lighting, beam lighting, etc.
  • the converging lens 410 and the collecting lens 420 may be one of a biconvex lens, a plano-convex lens or a concave-convex lens, respectively.
  • both the converging lens 410 and the collecting lens 420 are biconvex lenses, and the curvature of the collecting lens 420 is greater than that of the converging lens 410 to enhance the collection of light emitted by the wavelength converting element 130 .
  • FIG. 8 is a schematic diagram of an optical path of an illumination device 500 according to a fifth embodiment of the present invention.
  • the illumination device 500 includes a laser light source 110, a diffusion element 120, a wavelength conversion element 530, a converging lens 410, a collecting lens 420, and a refracting Optical element 510 .
  • the same components in the lighting device 500 of the present embodiment and the lighting device 400 of the fourth embodiment are denoted by the same serial numbers.
  • the wavelength conversion element 530 is a reflective wavelength conversion element
  • the lighting device 500 also includes a refractive optical element 510, which is located between the diffusion element 120 and the wavelength Between the conversion elements 530, the refractive optical element includes an incident surface 511 and a refractive surface 512.
  • the laser light scattered by the diffusion element 120 enters the refractive optical element 510 from the incident surface 511, and is refracted and deflected to the wavelength conversion element 530 by the refractive surface 512.
  • the refractive optical element 510 is a trapezoidal prism, and the refractive optical element 510 includes an incident surface 511, a refractive surface 512, and a total reflection surface 513.
  • the included angle is also an acute angle.
  • the laser light emitted by the laser light source 110 is converged by the converging lens 410 and then incident on the incident surface 511.
  • the refracting optical element 510 is refracted and deflected from the refracting surface 512 to the wavelength conversion element after being totally reflected by the total reflection surface 513.
  • the refractive optical element 510 can also be a right-angled trapezoidal prism, a triangular prism, etc. In this case, the deflection of the laser light can be achieved without including a total reflection surface.
  • the wavelength conversion element 530 is a reflective wavelength conversion element, and the surface of the wavelength conversion element 530 facing away from the light incident surface is provided with a reflective layer.
  • the fluorescence generated by the wavelength conversion element 530 and the remaining unabsorbed laser light can be emitted from the same side by setting the reflective layer, which improves the light extraction efficiency, and it is also convenient to install a diffuser on the reflective layer of the wavelength conversion element 530 to dissipate heat.
  • the transmission direction of the laser light can be changed, thereby folding the optical path of the laser light and reducing the volume of the illuminating device 500 .
  • FIG. 9 is a schematic diagram of an optical path of an illuminating device 600 provided in the sixth embodiment of the present invention.
  • the illuminating device 600 includes a laser light source 110, a diffusing element 120, a wavelength conversion element 530, a converging lens 410, a collecting lens 420, a first A deflecting optical element 610 and a second deflecting optical element 620 .
  • the same components in the lighting device 600 of the present embodiment and the lighting device 400 of the fourth embodiment are denoted by the same serial numbers.
  • the illuminating device 600 further includes a first deflecting optical element 610 and a second deflecting optical element 620 .
  • the first deflecting optical element 610 is located between the converging lens 410 and the diffusing element 420, and is used to deflect and guide the laser emitted by the converging lens 410 to the diffusing element 120;
  • the second deflecting optical element 620 is located between the diffusing element 120 and the wavelength converting element 530 During this time, it is used to deflect and guide the laser light emitted from the diffusion element 120 to the wavelength conversion element 530 .
  • the first deflecting optical element 610 and the second deflecting optical element 620 may be one of a reflective plane mirror, a reflective prism, or a coated film capable of reflecting laser light, which can reflect the laser light and deflect the laser light.
  • the reflective surfaces of the first deflecting optical element 610 and the second deflecting optical element 620 form an angle of 45° with the incident laser light, so that the incident laser light and the reflected and deflected laser light form an angle of 90°. horn.
  • the wavelength conversion element 530 is a reflective wavelength conversion element
  • the surface 5 of the wavelength conversion element 530 facing away from the light incident surface is provided with a reflective layer
  • the light incident surface and the light output surface of the wavelength conversion element 530 are the same surface of the wavelength conversion element 530.
  • the second The projection size of the deflection optical element 620 on the optical axis of the light emitted by the wavelength conversion element 530 is smaller than 1/3 of the diameter of the collection lens 420 .
  • the transmission direction of the laser light can be changed, Therefore, the optical path of the laser light is folded, and the volume of the illuminating device 600 is reduced.
  • FIG. 10 is a schematic diagram of an optical path of an illuminating device 700 provided by the seventh embodiment of the present invention.
  • the illuminating device 700 includes a laser light source 110, a diffusing element 120, a wavelength converting element 530, a converging lens 410, a collecting lens 420, a first A deflecting optical element 710 and a second deflecting optical element 720 .
  • the same components in the lighting device 700 of the present embodiment and the lighting device 400 of the fourth embodiment are denoted by the same serial numbers.
  • the illuminating device 700 further includes a first deflecting optical element 710 and a second deflecting optical element 720 .
  • the first deflecting optical element 710 and the second deflecting optical element 720 are sequentially located between the converging lens 410 and the diffusing element 120 , the first deflecting optical element 710 is used to deflect and guide the laser light emitted by the converging lens 410 to the second deflecting optical element 720 , the second deflecting optical element 720 is used to deflect and guide the laser light emitted by the first deflecting optical element 710 to the diffusing element 120 .
  • the first deflecting optical element 710 and the second deflecting optical element 720 may be one of a reflective plane mirror, a reflective prism, or a coated film capable of reflecting laser light, and they can reflect laser light to deflect the laser light.
  • the reflective surfaces of the first deflecting optical element 710 and the second deflecting optical element 720 form an angle of 45° with the incident laser light, so that the incident laser light and the reflected and deflected laser light form an angle of 90°. horn.
  • the wavelength conversion element 530 is a reflective wavelength conversion element
  • the surface of the wavelength conversion element 530 away from the light incident surface is provided with a reflective layer
  • the light incident surface and the light output surface of the wavelength conversion element 530 are the same surface of the wavelength conversion element 530.
  • the fluorescence generated by the wavelength conversion element 530 and the remaining unabsorbed laser light can be emitted from the same side by setting the reflective layer, which improves the light extraction efficiency, and it is also convenient to install a diffuser on the reflective layer of the wavelength conversion element 530 to dissipate heat.
  • the collecting lens 420, the diffusion element 120 and the second deflection optical element 620 are sequentially arranged on the optical path of the light emitted by the wavelength conversion element 530, in order to reduce the shading loss caused by the second deflection optical element 620 to the light emitted by the wavelength conversion element 530 , so that the projected size of the second deflection optical element 620 on the optical axis of the light emitted by the wavelength conversion element 530 is smaller than 1/3 of the diameter of the collecting lens 420 .
  • the diffusing element 120 is located on the optical path of the laser light emitted by the laser light source 110 and the fluorescent light emitted by the wavelength conversion element 530 , the color uniformity of the light emitted by the illuminating device 700 can be further improved.
  • the transmission direction of the laser light can be changed, so that the optical path of the laser light can be folded and the illumination device 700 can be reduced.
  • the diffusion element 120 is positioned on the optical path of the emitted light of the wavelength conversion element 530 , which can further improve the uniformity of the color of the emitted light from the illuminating device 700 .
  • FIG. 11 is a schematic diagram of an optical path of an illuminating device 800 provided in an eighth embodiment of the present invention.
  • the illuminating device 800 includes a laser light source 110, a diffusing element 820, a wavelength conversion element 530, a converging lens 410, a collecting lens 420, a first Deflection optics 810 .
  • the same components in the lighting device 800 of the present embodiment and the lighting device 800 of the fourth embodiment are denoted by the same serial numbers.
  • the lighting device 800 of this embodiment is different from the lighting device 400 of the fourth embodiment in that the diffusing element 820 is a reflective diffusing element, and the illuminating device 800 also includes a first deflecting optical element 810, and the first deflecting optical element 810 is located on the converging lens 410 Between the first deflecting optical element 810 and the diffusing element 820, the first deflecting optical element 810 is used to deflect and guide the laser light emitted by the converging lens 410 to the diffusing element 820, and the diffusing element 820 is used to scatter and reflect the laser light emitted by the first deflecting optical element 810 to wavelength conversion element 530 .
  • the first deflecting optical element 810 may be one of a reflective plane mirror, a reflective prism, or a coated film capable of reflecting laser light, which can reflect the laser light to deflect the laser light.
  • the surface of the diffusing element 820 facing away from the light-incident surface is also provided with a reflective layer or a mirror, so that the diffusing element 820 is a reflective diffusing element.
  • both the reflective surface of the first deflection optical element 810 and the incident surface of the diffusion element 820 form an included angle of 45° with the incident laser light, so that the incident laser light and the reflected and deflected laser light form an angle of 90°. angle.
  • the wavelength conversion element 530 is a reflective wavelength conversion element, and the surface of the wavelength conversion element 530 facing away from the light incident surface is provided with a reflective layer.
  • the reflection layer By setting the reflection layer, the fluorescence generated by the wavelength conversion element 530 and the remaining unabsorbed laser light can be emitted from the same side, which improves the light extraction efficiency and facilitates the installation of a diffuser on the reflection layer of the wavelength conversion element 530 for heat dissipation.
  • the collecting lens 420 and the diffusing element 820 are sequentially arranged on the optical path of the outgoing light of the wavelength converting element 530.
  • the projection size on the optical axis of the outgoing light is less than 1/3 of the diameter of the collecting lens 420 .
  • the transmission direction of the laser can be changed, so that the optical path of the laser light can be folded, reducing the number of lighting devices. 800 volume.
  • FIG. 12 is a schematic diagram of an optical path of an illuminating device 900 according to the ninth embodiment of the present invention.
  • the illuminating device 900 includes a laser light source 110 , a diffusing element 120 , a wavelength conversion element 930 , a spectroscopic element 910 and a scattering reflection device 920 .
  • the same components in the lighting device 900 of this embodiment and the lighting device 100 of Embodiment 1 are denoted by the same serial numbers.
  • the difference between the lighting device 900 of this embodiment and the lighting device 100 of Embodiment 1 is that the wavelength conversion element 930 is a reflective wavelength conversion element.
  • the fluorescence generated by the element 930 can be reflected and emitted; the lighting device 900 also includes a light-splitting element 910 and a scattering reflection device 920, the light-splitting element 910 is located between the diffusion element 120 and the wavelength conversion element 930, and the light-splitting element 910 is used to diffuse the light after being scattered by the diffusion element 120 A part of the laser light is transmitted to the wavelength conversion element 930 to form a first light spot, and the other part is reflected to the scattering reflection device 920 to form a second light spot.
  • the spectroscopic element 910 is used to scatter the received laser light and reflect it to the spectroscopic element 910 , and the spectroscopic element 910 is also used to reflect the fluorescence, so that the fluorescence emitted by the wavelength conversion element 930 and the laser emitted by the scattering reflection device 920 are combined.
  • the light-splitting element 910 is a wavelength-splitting sheet, and a coating is provided on the light-splitting element 910, so that part of the laser light emitted by the laser light source 110 can be transmitted, and part of the laser light emitted by the laser light source 110 can be reflected, and the wavelength conversion element 930 is arranged on the laser light path of the transmitted part , the scattering reflection device 920 passes through the reflection part of the laser light path.
  • the laser light source 110 emits collimated laser light
  • the diffuser element 120 scatters the collimated laser light, so that the laser light scattered by the diffuser element 120 has a certain divergence angle, and its light intensity distribution is non-linear. Gaussian distribution.
  • the laser light scattered by the diffusion element 120 is incident on the light splitting element 910 , and the light splitting element 910 transmits part of the scattered laser light to the wavelength conversion element 930 and reflects the other part to the scattering reflection device 920 .
  • the illuminating device 900 also includes a first collection lens 940 located between the light splitting element 910 and the wavelength conversion element 930 and adjacent to the wavelength conversion element 930, and a first collecting lens 940 disposed between the light splitting element 910 and the scattering reflection device 920 and adjacent to the scattering reflection device 920.
  • the second collecting lens 950, the first collecting lens 940 and the second collecting lens 950 can be one lens or a lens group.
  • Part of the scattered laser light transmitted by the spectroscopic element 910 is converged by the first collecting lens 940 to convert the angular distribution of the partly scattered laser light into a surface distribution, forming a first spot on the wavelength conversion element 130.
  • the first spot The intensity distribution of the light is non-Gaussian distribution.
  • Another part of the scattered laser light reflected by the spectroscopic element 910 is converged by the second collecting lens 950, and its angular distribution is converted into a surface distribution, forming a second light spot on the scattering reflection device 920.
  • the light intensity distribution of the second light spot is non-polar. Gaussian distribution.
  • the light intensity distributions of the first light spot and the second light spot are as described in Embodiment 1, and will not be repeated here.
  • the wavelength converting element 930 converts the laser light at the first light spot into fluorescent light, and reflects it out.
  • the first collecting lens 940 collects the fluorescent light emitted from the wavelength converting element 930 and compresses its divergence angle, and then emits it to the spectroscopic element 910;
  • the reflection device 920 scatters the laser light at the second spot, and reflects it out.
  • the second collection lens 950 collects the laser light emitted by the scattering reflection device 920 and compresses its divergence angle, and then emits it to the spectroscopic element 910;
  • the fluorescent light emitted by the collecting lens 940 and the laser light emitted by the second collecting lens 950 are combined at the light splitting element 910 .
  • a relay lens, a projection lens, etc. may also be arranged on the outgoing light path of the light splitting element 910 .
  • the distance between the wavelength conversion element 930 and the first collecting lens 940 and the relationship between the scattering reflection device 920 and the second light spot Two conditions such as the distance of the collecting lens 950, make the fluorescent light emitted by the wavelength conversion element 930 and the laser light emitted by the scattering reflection device 920 coincide with the fluorescent light spot and the laser light spot formed at a specific distance from the light outlet of the lighting device 900, and the fluorescent light spot and the laser light spot overlap.
  • the laser spot has a matched light intensity distribution, resulting in a uniformly colored illuminated spot at a specific distance.
  • the distance between the wavelength conversion element 930 and the first collection lens 940 is approximately equal to the distance between the scattering reflection device 920 and the second collection lens 950, so that the wavelength conversion element 130 forms
  • the size of the first light spot is approximately equal to the size of the second light spot formed on the scattering reflection device 920; due to the lateral transmission of the fluorescent light converted by the wavelength conversion element 930, the fluorescence emission spot on the wavelength conversion element 930 will be slightly larger than the first light spot.
  • the dispersion of fluorescence by the first collection lens 940 is different from the dispersion of laser light by the first collection lens 940, and there may be errors between the first collection lens 940 and the second collection lens 950.
  • the fluorescent light emitted by the wavelength conversion element 930 and the laser light emitted by the scattering reflection device 920 are overlapped with the fluorescent light spot and the laser light spot formed at a specific distance from the light outlet of the lighting device 900 , so as to obtain an illumination light spot with uniform color.
  • the spectroscopic element 910 by setting the spectroscopic element 910 and the scattering reflection device 920, the spectroscopic element 910 reflects a part of the laser light scattered by the diffusion element 120 to the scattering reflection device 920, and the part of the laser light is scattered by the scattering reflection device 920 and converted to a wavelength.
  • the fluorescence mixture generated by the element 930 can make the color of the light emitted by the illuminating device 900 more uniform.
  • the lighting device 900 in this embodiment can be applied to stage lights and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种照明装置(100),包括激光光源(110)、扩散元件(120)以及波长转换元件(130),激光光源(110)用于发射激光,扩散元件(120)用于对激光进行散射,激光经扩散元件(120)散射后在波长转换元件(130)上形成第一光斑,波长转换元件(130)用于将接收的激光至少部分转换成荧光;第一光斑的中心光强为I 0,第一光斑中存在至少一个第一点,第一点与第一光斑的中心的距离为r 1,其光强I 1等于I 0的m倍,且I 1等于I 0exp(-2(r 1/r 0) 2);第一光斑中存在至少一个第二点,第二点与第一光斑的中心的距离为r 2,其光强I 2等于I 0的n倍,且I 2大于I 0exp(-2(r 2/r 0) 2);其中,m大于0.4且小于0.7,n大于0且小于m,r 2大于r 1。该照明装置(100)能够减小出射光斑边缘的黄光,提高成像品质。

Description

照明装置 技术领域
本发明涉及光学技术领域,具体而言,涉及一种照明装置。
背景技术
利用激光激发荧光体技术可以得到超高亮度的光束,随着人们对车灯、舞台灯、探照灯、手电等特种照明亮度需求的不断提升,激光激发荧光体技术在照明装置上的应用越来越受到重视。通常地,利用激光激发荧光体技术的照明装置包括激光光源和荧光装置,使激光光源出射的激光照射到荧光装置上,部分激光被荧光装置的荧光换材料吸收而产生荧光,该荧光与剩余的未被吸收的激发光一同出射形成照明装置的出射光束。一般由蓝色激光激发黄色荧光装置,产生的黄光与剩余的蓝光混合形成白光。
请参阅图1,图1是现有技术的照明装置中激光激发荧光装置后产生的荧光和剩余的激光的光强分布,其纵轴表示归一化的光强强度,横轴表示与光轴中心的距离,图中的虚线a为剩余的激光的光强分布曲线,实线b为荧光装置产生的荧光的光强分布曲线。由图1可知,剩余的激光分布范围较小,荧光装置产生的荧光分布范围较大,即剩余的激光光斑比荧光光斑小,这主要是因为以下两方面原因:一、被激发的荧光在荧光装置内部是4π的发散角度,一部分角度的荧光直接透射出荧光装置,另一部分角度的荧光被多次反射和散射后再透射出荧光装置,因此荧光光斑扩大,二、激光进入荧光装置内部后不断的被吸收和反射及散射,当激光遇到荧光粉就会被转换成荧光,难以横向传播较远的距离,因此荧光 光斑也会比激光光斑大;从而使得剩余的激光光斑的扩散比荧光光斑的扩散小,因此在混合后的白光的边缘经常会有一圈黄光,严重影响激光荧光光源出射光颜色的均匀性。
发明内容
本发明的目的在于提供一种照明装置,以解决上述问题,本发明提供的照明装置包括:激光光源、扩散元件以及波长转换元件,扩散元件位于激光光源和波长转换元件之间;激光光源用于发射激光,激光为高斯光束;扩散元件用于对激光进行散射,激光经扩散元件散射后在波长转换元件上形成第一光斑,波长转换元件用于将接收的激光至少部分转换成荧光;第一光斑的中心光强为I 0,第一光斑中存在至少一个第一点,第一点与第一光斑的中心的距离为r 1,第一点的光强I 1等于第一光斑的中心光强I 0的m倍,且I 1等于I 0exp(-2(r 1/r 0) 2),r 0为与第一光斑的中心的预设距离;第一光斑中存在至少一个第二点,第二点与第一光斑的中心的距离为r 2,第二点的光强I 2等于第一光斑的中心光强I 0的n倍,且I 2大于I 0exp(-2(r 2/r 0) 2);其中,m大于0.4且小于0.7,n大于0且小于m,r 2大于r 1
在一种实施方式中,第一点和第二点位于过第一光斑的中心的同一直线上。
在一种实施方式中,第一点为多个,多个第一点形成以第一光斑的中心为对称中心的圆形或椭圆形。
在一种实施方式中,第二点为多个,多个第二点形成以第一光斑的中心为对称中心的环形区域。
在一种实施方式中,对于任意的位于所述第一点与所述第一光斑的中心的连 线上且与所述第一光斑的中心的距离r A大于r 1的点,该点的光强大于I 0exp(-2(r A/r 0) 2)。
在一种实施方式中,第一光斑中存在至少一个第三点,第三点与第一光斑的中心的距离为r 3,第三点的光强I 3小于I 0exp(-2(r 3/r 0) 2),其中,r 3小于r 1且大于0。
在一种实施方式中,扩散元件对激光的中心区域的散射度小于对激光的边缘区域的散射度。
在一种实施方式中,照明装置还包括设置于波长转换元件出光面的遮光件,遮光件包括透光区和围绕透光区的遮光区。
在一种实施方式中,透光区的尺寸小于或等于第一光斑的尺寸。
在一种实施方式中,波长转换元件的尺寸等于第一光斑的尺寸。
在一种实施方式中,照明装置还包括汇聚透镜和收集透镜,汇聚透镜设置于激光光源的出光侧,用于对激光光源出射的激光进行汇聚,扩散元件位于汇聚透镜和波长转换元件之间,收集透镜设置于波长转换元件的出光侧,用于对波长转换元件的出射光进行收集。
在一种实施方式中,波长转换元件位于汇聚透镜的焦平面。
在一种实施方式中,照明装置还包括折射光学元件,折射光学元件位于扩散元件和波长转换元件之间,折射光学元件包括入射面和折射面,经扩散元件散射后的激光从入射面入射至折射光学元件,并经折射面折射偏转至波长转换元件。
在一种实施方式中,照明装置还包括第一偏转光学元件和第二偏转光学元件;第一偏转光学元件位于汇聚透镜和扩散元件之间,用于将汇聚透镜出射的激光偏转并引导至扩散元件,第二偏转光学元件位于扩散元件和波长转换元件之间,用 于将扩散元件出射的激光偏转并引导至波长转换元件;或者,第一偏转光学元件和第二偏转光学元件依次位于汇聚透镜和扩散元件之间,第一偏转光学元件用于将汇聚透镜出射的激光偏转并引导至第二偏转光学元件,第二偏转光学元件用于将第一偏转光学元件出射的激光偏转并引导至扩散元件。
在一种实施方式中,波长转换元件为反射式波长转换元件,扩散元件位于波长转换元件的出射光的光路上。
在一种实施方式中,扩散元件为反射式扩散元件,照明装置还包括第一偏转光学元件,第一偏转光学元件位于汇聚透镜和扩散元件之间,第一偏转光学元件用于将汇聚透镜出射的激光偏转并引导至扩散元件,扩散元件用于将第一偏转光学元件出射的激光进行散射并反射至波长转换元件。
在一种实施方式中,照明装置还包括分光元件和散射反射装置,分光元件位于扩散元件和波长转换元件之间,分光元件用于将经扩散元件散射后的激光的一部分透射至波长转换元件上形成第一光斑,另一部分反射至散射反射装置上形成第二光斑,波长转换元件为反射式波长转换元件,波长转换元件还用于荧光并反射至分光元件,散射反射装置用于将接收的激光进行散射并反射至分光元件,分光元件还用于反射荧光,以使波长转换元件出射的荧光和散射反射装置出射的激光合光。
相较于现有技术,本发明提供的照明装置包括:激光光源、扩散元件以及波长转换元件,扩散元件位于激光光源和波长转换元件之间;激光光源用于发射激光,激光为高斯光束;扩散元件用于对激光进行散射,激光经扩散元件散射后在波长转换元件上形成第一光斑,波长转换元件用于将接收的激光至少部分转换成荧光;第一光斑的中心光强为I 0,第一光斑中存在至少一个第一点,第一点与第 一光斑的中心的距离为r 1,第一点的光强I 1等于第一光斑的中心光强I 0的m倍,且I 1等于I 0exp(-2(r 1/r 0) 2),r 0为与第一光斑的中心的预设距离;第一光斑中存在至少一个第二点,第二点与第一光斑的中心的距离为r 2,第二点的光强I 2等于第一光斑的中心光强I 0的n倍,且I 2大于I 0exp(-2(r 2/r 0) 2);其中,m大于0.4且小于0.7,n大于0且小于m,r 2大于r 1。上述方案能够提高波长转换元件上形成的第一光斑的边缘区域的光强,使波长转换元件上的第一光斑的边缘区域有足够的激光与荧光进行混合,从而提高波长转换元件出射光的颜色均匀性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术的照明装置中激光激发荧光装置后产生的荧光和剩余的激光的光强分布曲线图;
图2是本发明第一实施例提供的照明装置的光路示意图;
图3是本发明第一实施例中激光光源出射的激光经扩散元件散射后的光强分布曲线图;
图4是本发明第二实施例提供的照明装置的光路示意图;
图5是本发明第二实施例中的遮光件的结构示意图;
图6是本发明第三实施例提供的照明装置的光路示意图;
图7是本发明第四实施例提供的照明装置的光路示意图;
图8是本发明第五实施例提供的照明装置的光路示意图;
图9是本发明第六实施例提供的照明装置的光路示意图;
图10是本发明第七实施例提供的照明装置的光路示意图;
图11是本发明第八实施例提供的照明装置的光路示意图;
图12是本发明第九实施例提供的照明装置的光路示意图。
具体实施方式
为了便于理解本发明实施例,下面将参照相关附图对本发明实施例进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明实施例中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
请参阅图2,图2是本发明第一实施例提供的照明装置100的光路示意图,照明装置100包括激光光源110、扩散元件120以及波长转换元件130,扩散元件120位于激光光源110和波长转换元件130之间,激光光源110用于发射激光,激光为高斯光束;扩散元件120用于对激光进行散射,激光经扩散元件120散射后在波长转换元件130上形成第一光斑,波长转换元件130用于将接收的激光至少部分转换成荧光;第一光斑的中心光强为I 0,第一光斑中存在至少一个第一点,第一点与第一光斑的中心的距离为r 1,第一点的光强I 1等于第一光斑的中心光强I 0的m倍,且I 1等于I 0exp(-2(r 1/r 0) 2),r 0为与第一光斑的中心的预设 距离;第一光斑中存在至少一个第二点,第二点与第一光斑的中心的距离为r 2,第二点的光强I 2等于第一光斑的中心光强I 0的n倍,且I 2大于I 0exp(-2(r 2/r 0) 2);其中,m大于0.4且小于0.7,n大于0且小于m,r 2大于r 1
具体地,在本实施例中,激光光源110用于出射激光,该激光为高斯光束,其光强分布中心最强,边缘较弱,光强集中于激光的轴线及其附近。激光光源110可以包括激光器,激光器可以是单个的激光器、激光芯片或者激光二极管(LD)等,或者其他激光发射装置。可以理解地,激光光源110也可以包括两个、三个或者多个激光器,多个激光器可以阵列设置,以增加激光的光强。
在本实施例中,激光光源110可以为蓝光光源。在其他实施方式中,激光光源110还可以是紫光光源或绿光光源等,满足发出激光的条件即可。还可以是多种颜色激光发光单元的组合。
扩散元件120用于对激光光源110发射的激光进行散射处理,改变激光的角分布,使激光经散射后的发散角扩大,而且由于激光光源110发射的激光具有相干性,扩散元件120还可以起到消相干的作用,避免了照明装置100出射光的照明图案中存在散斑。在本申请中,激光散射后的发散角指激光光线与激光光轴中心线的夹角。扩散元件120可以为透射式,也可以是反射式,扩散元件120的形状可以是圆形、矩形、椭圆形、梯形或者其他多边形中的一种。本实施例中,以扩散元件120为透射式、形状为圆形为例进行说明。
现有技术中使用激光激发荧光体技术的照明装置,为了提高出射光颜色的均匀性,通常采用高斯扩散片对激光光源发射的激光进行散射。然而,由于激光光源发射的激光为高斯光束,激光经高斯扩散片散射后其光强分布仍满足高斯分布,其光强公式为:
I(r)=A exp(-2(r/ω) 2)      (1)
其中,A为激光经高斯扩散片散射后的中心光强(或峰值光强),ω为激光经高斯扩散片散射后的半径,r为激光经高斯扩散片散射后截面内离中心光轴的距离。经高斯扩散片散射后的激光入射在波长转换装置上形成的激光光斑的光强分布也为高斯分布。
扩散元件120不同于高斯扩散片对激光进行散射得的高斯分布的光强,扩散元件120使激光光源110发射的激光散射后形成非高斯分布的光强。在判断扩散元件120是否满足本发明的设计要求时,使激光光源110发射的激光经扩散元件120散射后在波长转换元件130上形成的第一光斑,测量获得该第一光斑的中心的中心光强(即峰值光强)为I 0,再测量与该第一光斑中心的距离为r 1的第一点的光强I 1,并保证I 1等于m倍的I 0,其中m大于0.4且小于0.7。根据该第一光斑中心的光强为I 0、半径为0以及第一点的光强为I 1、半径为r 1,通过上述公式(1),可以计算得到上述公式(1)中待确定的参数A等于I 0以及激光光斑的半径ω的特定值,将该激光光斑的半径ω的特定值定义为r 0(即r 0为形成在波长转换元件130上的中心与第一光斑的中心重合、且在中心和第一点处的光强与第一光斑相同的高斯分布的激光光斑的半径),从而得到一光强为高斯分布的激光光斑的光强公式:
I(r)=I 0exp(-2(r/r 0) 2)        (2)
进一步再测量与该第一光斑中心的距离为r 2的第二点的光强I 2,并保证I 2等于n倍的I 0,其中n大于0且小于m,r 2大于r 1;通过比较第二点的光强I 2与I 0exp(-2(r 2/r 0) 2)的大小,若第二点的光强I 2大于I 0exp(-2(r 2/r 0) 2),表明激光光源110发射的激光经扩散元件120散射后在波长转换元件130上形成的第一光斑的边缘 区域,较对比的光强为高斯分布的激光光斑的边缘区域有更大的光强,则扩散元件120能够满足本发明的设计要求。优选地,在选取第一点及第二点时,使第一点和第二点位于过第一光斑的中心的同一直线上。
为了便于对本发明的设计原理进行说明,选择散射度适当的预设高斯扩散片作为对比,在相同的条件下,使激光光源110发射的激光经该预设高斯扩散片散射后在波长转换元件130上形成的对比光斑,该对比光斑的中心光强(即峰值光强)为I 0,与第一光斑的中心光强I 0相同且其中心第一光斑的中心重合,该对比光斑的半径为r 0,其光强分布呈高斯分布,即该对比光斑的光强分布满足上述公式(2)。
请参阅图3,图3表示激光光源110发射的激光分别经扩散元件120和预设高斯扩散片散射后在波长转换元件130上形成的第一光斑和对比光斑的光强分布曲线,图中的横坐标表示与光斑中心的距离,纵坐标表示归一化后的光强,实线c表示激光光源110发射的激光经预设高斯扩散片的散射后在波长转换元件130上形成的对比光斑的光强分布曲线,其呈高斯分布,图中的虚线d表示激光光源110发射的激光经扩散元件120散射后在波长转换元件130上形成的第一光斑的光强分布曲线,其呈非高斯分布。
激光光源110发射的激光经扩散元件120散射后在波长转换元件130上形成的第一光斑中,存在至少一个第一点,该第一点与该第一光斑的中心的距离为r 1,该第一点的光强I 1等于该第一光斑的中心光强I 0的m倍,且I 1等于I 0exp(-2(r 1/r 0) 2)。即激光经扩散元件120散射后形成的非高斯分布的第一光斑中在距离其中心r 1的位置至少存在一个第一点的光强I 1,等于该激光经预设高斯扩散片的散射后形成的高斯分布的对比光斑中在距离其中心r 1的位置的光强。可以理解的 是,激光经扩散元件120散射后在波长转换元件130上形成的第一光斑的形状为圆形或椭圆形,第一光斑中存在多个第一点,多个第一点形成以第一光斑的中心为对称中心的圆形或椭圆形。
在本实施例中,m为0.43,即第一点的光强为中心光强I 0的0.43倍。在光学实际工程应用中,半峰全度FWHM(Full width at half maximum)是一重要的参数,此时的光强为峰值光强的一半,因此m可以为0.5。m的取值并不仅限于上述列举,当m大于0.4且小于0.7时均可以实现本发明的效果。相比于预设高斯扩散片,扩散元件120能够对散射的激光的光强分布进行调整,将激光光束中心区域的光强调整到边缘区域,当m取较大值时,可将激光光束中心区域较多的光强调整到边缘区域,使得波长转换元件130上形成的第一光斑的边缘区域具有更高的光强,当m取较小值时,可将激光光束中心区域较少的光强调整到边缘区域,能够使得波长转换元件130上形成的第一光斑的中心区域的光强减少的较少,保证了波长转换元件130出射光的中心亮度,通过使m大于0.4且小于0.7,使激光光源110发射的激光经扩散元件120散射后的第一光斑从中心到r 1范围内的光强分布曲线,相比于对比的高斯分布的光强分布曲线较为尖锐,而在大于r 1时的光强分布曲线则比对比的高斯分布的光强曲线平坦,如此既能够使波长转换元件130上形成的第一光斑的边缘区域具有足够的光强,又能够保证波长转换元件130出射光的中心亮度。
激光光源110发射的激光经扩散元件120散射后的光强从中心到边缘逐渐减小,相应地,波长转换元件130上形成的第一光斑的光强从其中心到边缘逐渐减小。为了提高波长转换元件130出射光的颜色均匀性,本发明采用的方案是使波长转换元件130上形成的第一光斑的边缘区域的光强大于光强为高斯分布的对比 光斑的边缘区域的光强。具体地,激光光源110发射的激光经扩散元件120散射后在波长转换元件130上形成的第一光斑中,还存在至少一个第二点,该第二点与该第一光斑的中心的距离为r 2,且r 2大于r 1,即第二点位于第一点的径向外侧,该第二点的光强I 2等于该第一光斑的中心光强I 0的n倍,且I 2大于I 0exp(-2(r 2/r 0) 2)。即激光经扩散元件120散射后形成的非高斯分布的第一光斑中在距离其中心r 2的位置至少存在有一个点的光强为I 2,I 2大于该激光经预设高斯扩散片的散射后形成的高斯分布的对比光斑中在距离其中心r 2的位置的光强。换言之,与激光经预设高斯扩散片散射后形成的光强呈高斯分布的第一光斑相比,激光经扩散元件120散射后形成的光强呈非高斯分布的第一光斑在与光斑中心的距离为r 2时,具有更大的光强。同样地,激光经扩散元件120散射后在波长转换元件130上形成的第一光斑中存在多个第二点,多个第二点形成以第一光斑的中心为对称中心的环形区域,该环形区域的内侧边缘为多个第一点所形成的圆形或椭圆形,外侧边缘为第一光斑的边缘,在该环形区域中每一个点的位置,第一光斑的光强均大于对比光斑的光强,即对于任意的位于所述第一点径向外侧的点,该点与第一光斑的中心的距离为r A,其光强大于I 0exp(-2(r A/r 0) 2),也就是说,任意的位于所述第一点与所述第一光斑的中心的连线上且与所述第一光斑的中心的距离r A大于r 1的点,该点的光强大于I 0exp(-2(r A/r 0) 2)。通过本发明的方案,使得激光光源110发射的激光经扩散元件120散射后在波长转换元件130上形成的第一光斑的边缘区域的光强比经预设高斯扩散片高斯散射后在波长转换元件130上形成的对比光斑的边缘区域的光强更大。
优选地,激光光源110发射的激光经扩散元件120散射后在波长转换元件130上形成的第一光斑中,还存在至少一个第三点,该第三点与该第一光斑的中 心的距离为r 3,且r 3大于r 1,第三点所在的区域为散射后激光的中心区域,该第三点的光强I 3小于I 0exp(-2(r 3/r 0) 2)。即激光经扩散元件120散射后形成的非高斯分布的第一光斑中在距离其中心r 3的位置至少存在有一个点的光强为I 3,I 3小于该激光经预设高斯扩散片的散射后形成的高斯分布的第一光斑中在距离其中心r 3的位置的光强。换言之,与激光经预设高斯扩散片散射后形成的光强呈高斯分布的对比光斑相比,激光经扩散元件120散射后形成的光强呈非高斯分布的第一光斑在与光斑中心的距离为r 3时,对应着较小的光强。同样地,激光经扩散元件120散射后在波长转换元件130上形成的第一光斑中存在多个第三点,多个第三点形成第一光斑的中心区域,在该中心区域中每一个点的位置,第一光斑的光强均小于对比光斑的光强。通过上述设置,能够使激光光源110发射的激光经扩散元件120散射后在中心区域的光强分布减少的较少,保证了照明装置100出射光的亮度。
上述的说明中,采用预设高斯扩散片作为对比,来说明扩散元件120所具有的特性,通过使激光光源110发射的激光分别经过扩散元件120和选取的预设高斯扩散片,分别通过测量经过扩散元件120和该预设高斯扩散片后光强得到两者的光强分布曲线,再比较两者的中心光强、距离光斑中心r 1时两者的光强、距离光斑中心r 2时两者的光强的大小,从而确定激光经扩散元件120散射后的光强分布是否满足要求。需要说明的是,应当在相同的条件下分别测量激光经过扩散元件120和预设高斯扩散片散射后的光强,例如激光光源110的功率、激光光源110与扩散元件120和预设高斯扩散片的距离、测量的位置等条件相同。
扩散元件120对激光的中心区域的散射度小于对激光的边缘区域的散射度,从而使激光光源110发射的激光经扩散元件120的散射后形成非高斯分布光强曲 线。散射度是指偏离入射光预设角度(例如1.5°)以上的透射光强占总透射光强的百分数,散射度越大意味着扩散片对入射光的偏离角度越大。扩散元件120可以是在其基板表面形成散射光的微结构,由于激光具有一定的发散角,激光中心区域的光束入射到扩散元件120上的入射角与边缘区域的光束入射到扩散元件120上的入射角具有一定的差异,通过设置微结构的形状及尺寸,使扩散元件120对激光的中心区域的散射度小于对激光的边缘区域的散射度;扩散元件120也可以在中心区域微结构的密度小于边缘区域微结构的密度,或者扩散元件120在中心区域为透明设置或具有开孔,从而使得扩散元件120中心区域对激光的散射度小于边缘区域对激光的散射度;扩散元件120也可以是中心区域的厚度小于边缘区域的厚度,从而使得扩散元件120中心区域对激光的散射度小于边缘区域对激光的散射度;扩散元件120也可以包括基材以及分散于基材中的散射粒子,在中心区域散射粒子的密度小于边缘区域散射粒子的密度,从而使得扩散元件120中心区域对激光的散射度小于边缘区域对激光的散射度;也可以通过调节散射粒子和微结构的尺寸、形状等参数,使得扩散元件120中心区域对激光的散射度小于边缘区域对激光的散射度。
波长转换元件130用于将接收的激发光至少部分转换为荧光。具体而言,波长转换元件130包括波长转换材料,当激光光源110发射的激光经扩散元件120散射后入射至波长转换元件130上时,波长转换元件130对接收的激光进行波长转换从而产生荧光,然后出射包括荧光和剩余未被吸收的激光的混合光。波长转换元件130可以为透射式波长转换元件,也可以为反射式波长转换元件。例如,波长转换元件130可以是荧光陶瓷或荧光玻璃,荧光陶瓷或荧光玻璃的出光效率高、性能稳定、耐高温,从而能够提高照明装置100的出光质量和使用寿命。在 本实施例中,波长转换元件130可以包括黄光荧光粉,其能够在蓝色激光的激发下产生黄色的荧光,波长转换元件130出射黄色的荧光和剩余未被吸收的蓝色激光混合而成白光。当然,波长转换元件130也可以包括能够产生其他颜色光的波长转换材料,从而在激光的激发下产生其他颜色的荧光。
在本实施例中,照明装置100包括激光光源110、扩散元件120以及波长转换元件130,扩散元件120位于激光光源110和波长转换元件130之间;激光光源110用于发射激光,激光为高斯光束;扩散元件120用于对激光进行散射,激光经扩散元件120散射后在波长转换元件130上形成第一光斑,波长转换元件130用于将接收的激光至少部分转换成荧光;第一光斑的中心光强为I 0,第一光斑中存在至少一个第一点,第一点与第一光斑的中心的距离为r 1,第一点的光强I 1等于第一光斑的中心光强I 0的m倍,且I 1等于I 0exp(-2(r 1/r 0) 2),r 0为与第一光斑的中心的预设距离;第一光斑中存在至少一个第二点,第二点与第一光斑的中心的距离为r 2,第二点的光强I 2等于第一光斑的中心光强I 0的n倍,且I 2大于I 0exp(-2(r 2/r 0) 2);其中,m大于0.4且小于0.7,n大于0且小于m,r 2大于r 1。本发明的方案能够提高激光经散射后在其横截面的边缘区域的光强,使波长转换元件130上的第一光斑的边缘区域有足够的激光与荧光进行混合,从而提高波长转换元件130出射光的颜色均匀性。
请参阅图4,图4是本发明第二实施例提供的照明装置200的光路示意图,照明装置200包括激光光源110、扩散元件120、波长转换元件130以及遮光件210。本实施例的照明装置200中与实施例一的照明装置100中相同的部件用相同的序号表示。本实施例的照明装置200与实施例一的照明装置100的不同在于,照明装置200还包括设置于波长转换元件130出光面的遮光件210,如图5 所示,遮光件210包括透光区211和围绕透光区的遮光区212,遮光件210和波长转换元件130出光面紧密连接,遮光件210可以是由带孔的不透光的金属片制成,此时通过胶水将遮光件210粘接在波长转换元件130出光面;遮光件210也可以是直接涂覆在波长转换元件130出光面的遮光涂层。遮光件210透光区211与第一光斑相对。在本实施例中,通过设置遮光件210,使长转换元件130出射的混合光中心区域颜色均匀的部分光线穿过遮光件210透光区211,波长转换元件130出射的混合光边缘区域多余的荧光被遮光件210的遮光区212遮挡,从而提高照明装置200出射光颜色的均匀性。由于遮光件210和波长转换元件130出光面紧密连接,两者之间没有光线的传播距离,使得遮光区212的遮挡效果更准确。优选地,使遮光件210的透光区211的尺寸小于或等于第一光斑的尺寸,能够对在波长转换元件130中横向传播至透光区211以外的光线均进行遮挡,从而进一步地提高照明装置200出射光颜色的均匀性。
请参阅图6,图6是本发明第三实施例提供的照明装置300的光路示意图,照明装置300包括激光光源110、扩散元件120、以及波长转换元件330。本实施例的照明装置300中与实施例一的照明装置100中相同的部件用相同的序号表示。本实施例的照明装置300与实施例一的照明装置100的不同在于,波长转换元件330的尺寸等于第一光斑的尺寸。照明装置300还可以包括一基板310,基板310的尺寸大于波长转换元件330的尺寸,基板310用于承载波长转换元件330,基板310可以由玻璃、石英、蓝宝石等透光材料制成。本实施例中,通过使波长转换元件330的尺寸等于第一光斑的尺寸,避免了激光和荧光在波长转换元件330内部的第一光斑以外的区域的散射和传播,使波长转换元件330能够将荧光和剩余未被吸收的激光混合均匀,从而提高照明装置300出射光颜色的均匀性。
请参阅图7,图7是本发明第四实施例提供的照明装置400的光路示意图,照明装置100包括激光光源110、扩散元件120、波长转换元件130、汇聚透镜410以及收集透镜420。本实施例的照明装置400中与实施例一的照明装置100中相同的部件用相同的序号表示。本实施例的照明装置400与实施例一的照明装置100的不同在于,照明装置还包括汇聚透镜410和收集透镜420,汇聚透镜410设置于激光光源110的出光侧,用于对激光光源110发射的激光进行汇聚,扩散元件120位于汇聚透镜410和波长转换元件130之间;收集透镜420设置于波长转换元件130的出光侧,用于对波长转换元件130的出射光进行收集,将波长转换元件130的出射光由大的发散角度光压缩为小的发散角度。
波长转换元件130位于汇聚透镜410的焦平面。当不设置扩散元件120时,激光光源110发射的激光经汇聚透镜410,直接聚焦于波长转换元件130,形成面积很小的聚焦光斑。该汇聚光斑的光能量密度很高,激发荧光材料时容易出现热猝灭现象,而且由于波长转换元件130上入射的聚焦光斑面积很小,波长转换元件130出光侧的荧光光斑比剩余未被转换的激光光斑大的多,造成波长转换元件130出射光的边缘区域颜色不均匀现象严重。本实施例中,扩散元件120位于汇聚透镜410和波长转换元件130之间,且波长转换元件130位于汇聚透镜410的焦平面,使激光光源110发射的激光经汇聚透镜410汇聚后,通过扩散元件120散射处理,改变激光的角分布,使激光的发散角扩大,从而在波长转换元件130上形成面积扩大的第一光斑,该第一光斑具有非高斯分布的光强。一方面减小了入射到波长转换元件130的激光光斑的光能量密度,提高了波长转换元件130的光转换效率,另一方面第一光斑的光强为非高斯分布,在第一光斑的边缘区域具有比对比的光强为高斯分布的激光光斑的边缘区域更大的光强,使得第一光斑的 边缘区域有足够的激光与荧光混合,提高了波长转换元件130出射光的颜色均匀性。
其中,扩散元件120在汇聚透镜410和波长转换元件130之间的具***置可以实际需要设定,例如,扩散元件120与波长转换元件130的距离较远时,波长转换元件130上形成的第一光斑具有较大的面积,扩散元件120与波长转换元件130的距离较近时,波长转换元件130上形成的第一光斑具有较小的面积。但是相比于不设置扩散元件120的情况,将扩散元件120设置于汇聚透镜410和波长转换元件130之间,能够扩大激光在波长转换元件130上形成的入射光斑的面积。
收集透镜420设置于波长转换元件130的出光侧,用于对波长转换元件130的出射光进行收集。波长转换元件130的出射光具有较大的发散角度,其范围通常为120°~160°,通过收集透镜420的收集,将大角度的出射光压缩为小角度的出射光,经收集透镜420的收集、压缩后,收集透镜420出射光的发散角度的60°~80°。收集透镜420与波长转换元件130出光面之间的间隔可以根据实际情况而定,在此不做具体的限定。进一步地,照明装置400还可以包括设置在收集透镜420出光侧的准直透镜,对收集透镜420的出射光进行准直处理,得到准直光束,其发散角度在1°以内,从而可以应用于远距离照明、光束灯照明等。
汇聚透镜410和收集透镜420可以分别为双凸透镜、平凸透镜或者凹凸透镜中的一种。在本实施例中,汇聚透镜410和收集透镜420均为双凸透镜,且收集透镜420的曲率大于汇聚透镜410的曲率,以增强对波长转换元件130出射光的收集作用。
请参阅图8,图8是本发明第五实施例提供的照明装置500的光路示意图, 照明装置500包括激光光源110、扩散元件120、波长转换元件530、汇聚透镜410、收集透镜420、以及折射光学元件510。本实施例的照明装置500中与实施例四的照明装置400中相同的部件用相同的序号表示。本实施例的照明装置500与实施例四的照明装置400的不同在于,波长转换元件530为反射式波长转换元件,照明装置500还包括折射光学元件510,折射光学元件510位于扩散元件120和波长转换元件530之间,折射光学元件包括入射面511和折射面512,经扩散元件120散射后的激光从入射面511入射至折射光学元件510,并经折射面512折射偏转至波长转换元件530。
具体地,折射光学元件510为梯形棱镜,折射光学元件510包括入射面511、折射面512以及全反射面513,入射面511与全反射面513的夹角为锐角,入射面511与折射面512的夹角也为锐角,激光光源110发射的激光经汇聚透镜410汇聚后从入射面511入射至,折射光学元件510,经全反射面513的全反射后从折射面512折射偏转至波长转换元件530。折射光学元件510也可以为直角梯形棱镜、三角形棱镜等其他,此时不用包括全反射面,就能够实现对激光光线的偏折。
其中,波长转换元件530为反射式波长转换元件,波长转换元件530的背离入光面的表面设有反射层,波长转换元件530的入光面与出光面为波长转换元件530同一表面。通过设置反射层可以使波长转换元件530产生的荧光和剩余未被吸收的激光均从同一侧出射,提高出光效率,也方便在波长转换元件530的反射层上设置散射器进行散热。
本实施例中,通过在扩散元件120和波长转换元件530之间设置折射光学元件510,可以改变激光的传输方向,从而使激光光光路折叠,减少照明装置500 的体积。
请参阅图9,图9是本发明第六实施例提供的照明装置600的光路示意图,照明装置600包括激光光源110、扩散元件120、波长转换元件530、汇聚透镜410、收集透镜420、第一偏转光学元件610以及第二偏转光学元件620。本实施例的照明装置600中与实施例四的照明装置400中相同的部件用相同的序号表示。本实施例的照明装置600与实施例四的照明装置400的不同在于,照明装置600还包括第一偏转光学元件610以及第二偏转光学元件620。第一偏转光学元件610位于汇聚透镜410和扩散元件420之间,用于将汇聚透镜410出射的激光偏转并引导至扩散元件120;第二偏转光学元件620位于扩散元件120和波长转换元件530之间,用于将扩散元件120出射的激光偏转并引导至波长转换元件530。
具体地,第一偏转光学元件610以及第二偏转光学元件620可以为反射平面镜、反射棱镜或者能够反射激光的镀膜膜片中的一种,能够对激光进行反射而使激光发生偏转。在本实施例中,第一偏转光学元件610和第二偏转光学元件620的反射面均与入射的激光呈45°的夹角,使得入射的激光和反射偏折后的激光呈90°的夹角。
其中,波长转换元件530为反射式波长转换元件,波长转换元件530的背离入光面的表面5设有反射层,波长转换元件530的入光面与出光面为波长转换元件530同一表面。通过设置反射层可以使波长转换元件530产生的荧光和剩余未被吸收的激光均从同一侧出射,提高了出光效率,也方便在波长转换元件530的反射层上设置散射器进行散热。此时,收集透镜420和第二偏转光学元件620依次设置在波长转换元件530的出射光的光路上,为了减少第二偏转光学元件620 对波长转换元件530出射光造成的遮挡损失,使第二偏转光学元件620在波长转换元件530出射光光轴方面上的投影尺寸小于收集透镜420直径的1/3。
本实施例中,通过在汇聚透镜410和扩散元件120之间设置第一偏转光学元件610、在扩散元件120和波长转换元件530之间设置第二偏转光学元件620,可以改变激光的传输方向,从而使激光光光路折叠,减少照明装置600的体积。
请参阅图10,图10是本发明第七实施例提供的照明装置700的光路示意图,照明装置700包括激光光源110、扩散元件120、波长转换元件530、汇聚透镜410、收集透镜420、第一偏转光学元件710以及第二偏转光学元件720。本实施例的照明装置700中与实施例四的照明装置400中相同的部件用相同的序号表示。本实施例的照明装置700与实施例四的照明装置400的不同在于,照明装置700还包括第一偏转光学元件710以及第二偏转光学元件720。第一偏转光学元件710和第二偏转光学元件720依次位于汇聚透镜410和扩散元件120之间,第一偏转光学元件710用于将汇聚透镜410出射的激光偏转并引导至第二偏转光学元件720,第二偏转光学元件720用于将第一偏转光学元件710出射的激光偏转并引导至扩散元件120。
具体地,第一偏转光学元件710以及第二偏转光学元件720可以为反射平面镜、反射棱镜或者能够反射激光的镀膜膜片中的一种,它们能够对激光进行反射而使激光发生偏转。在本实施例中,第一偏转光学元件710和第二偏转光学元件720的反射面均与入射的激光呈45°的夹角,使得入射的激光和反射偏折后的激光呈90°的夹角。
其中,波长转换元件530为反射式波长转换元件,波长转换元件530的背离入光面的表面设有反射层,波长转换元件530的入光面与出光面为波长转换元件 530同一表面。通过设置反射层可以使波长转换元件530产生的荧光和剩余未被吸收的激光均从同一侧出射,提高出光效率,也方便在波长转换元件530的反射层上设置散射器进行散热。此时,收集透镜420、扩散元件120和第二偏转光学元件620依次设置在波长转换元件530的出射光的光路上,为了减少第二偏转光学元件620对波长转换元件530出射光造成的遮挡损失,使第二偏转光学元件620在波长转换元件530出射光光轴方面上的投影尺寸小于收集透镜420直径的1/3。由于扩散元件120同时位于激光光源110发射的激光和波长转换元件530出射的荧光的光路上,能够进一步地提供照明装置700出射光颜色的均匀性。
本实施例中,通过在汇聚透镜410和扩散元件120之间依次设置第一偏转光学元件710、第二偏转光学元件720,可以改变激光的传输方向,从而使激光光光路折叠,减少照明装置700的体积,并且使扩散元件120位于波长转换元件530的出射光的光路上,能够进一步地提供照明装置700出射光颜色的均匀性。
请参阅图11,图11是本发明第八实施例提供的照明装置800的光路示意图,照明装置800包括激光光源110、扩散元件820、波长转换元件530、汇聚透镜410、收集透镜420、第一偏转光学元件810。本实施例的照明装置800中与实施例四的照明装置800中相同的部件用相同的序号表示。本实施例的照明装置800与实施例四的照明装置400的不同在于,扩散元件820为反射式扩散元件,照明装置800还包括第一偏转光学元件810,第一偏转光学元件810位于汇聚透镜410和扩散元件820之间,第一偏转光学元件810用于将汇聚透镜410出射的激光偏转并引导至扩散元件820,扩散元件820用于将第一偏转光学元件810出射的激光进行散射并反射至波长转换元件530。
具体地,第一偏转光学元件810可以为反射平面镜、反射棱镜或者能够反射 激光的镀膜膜片中的一种,其能够对激光进行反射而使激光发生偏转。扩散元件820背离入光面的表面还设有反射层或者反射镜,使扩散元件820为反射式扩散元件。在本实施例中,第一偏转光学元件810的反射面和扩散元件820的入光面均与入射的激光呈45°的夹角,使得入射的激光和反射偏折后的激光呈90°的夹角。
其中,波长转换元件530为反射式波长转换元件,波长转换元件530的背离入光面的表面设有反射层,波长转换元件530的入光面与出光面为波长转换元件530同一表面。通过设置反射层可以使波长转换元件530产生的荧光和剩余未被吸收的激光均从同一侧出射,提高了出光效率,也方便在波长转换元件530的反射层上设置散射器进行散热。此时,收集透镜420和扩散元件820依次设置在波长转换元件530的出射光的光路上,为了减少扩散元件820对波长转换元件530出射光造成的遮挡损失,使扩散元件820在波长转换元件530出射光光轴方面上的投影尺寸小于收集透镜420直径的1/3。
本实施例中,通过设置反射式的扩散元件820、以及在汇聚透镜410和扩散元件820之间设置第一偏转光学元件810,可以改变激光的传输方向,从而使激光光光路折叠,减少照明装置800的体积。
请参阅图12,图12是本发明第九实施例提供的照明装置900的光路示意图,照明装置900包括激光光源110、扩散元件120、波长转换元件930、分光元件910以及散射反射装置920。本实施例的照明装置900中与实施例一的照明装置100中相同的部件用相同的序号表示。本实施例的照明装置900与实施例一的照明装置100的不同在于,波长转换元件930为反射式波长转换元件,波长转换元件930的背离入光面的表面还设有反射层,使波长转换元件930产生的荧光能够 反射出射;照明装置900还包括分光元件910和散射反射装置920,分光元件910位于扩散元件120和波长转换元件930之间,分光元件910用于将经扩散元件120散射后的激光的一部分透射至波长转换元件930上形成第一光斑,另一部分反射至散射反射装置920上形成第二光斑,波长转换元件930还用于产生的荧光并反射至分光元件910,散射反射装置920用于将接收的激光进行散射并反射至分光元件910,分光元件910还用于反射荧光,以使波长转换元件930出射的荧光和散射反射装置920出射的激光合光。
分光元件910为波长分光片,分光元件910上设置有镀膜,从而能够透射部分激光光源110发射的激光,并反射部分激光光源110发射的激光,波长转换元件930设置在经透射部分的激光光路上,散射反射装置920经反射部分的激光光路上。具体地,本实施例中,激光光源110出射准直的激光,扩散元件120准直的激光进行散射处理,使得经扩散元件120散射后的激光具有一定的发散角度,且其光强分布为非高斯分布。经扩散元件120散射后的激光入射至分光元件910,分光元件910将散射后的激光的一部分透射至波长转换元件930,另一部分反射至散射反射装置920。照明装置900还包括位于分光元件910和波长转换元件930之间且临近波长转换元件930设置的第一收集透镜940、以及分光元件910和散射反射装置920之间且临近散射反射装置920设置的第二收集透镜950,第一收集透镜940和第二收集透镜950分别可以为一个透镜,也可以为透镜组。分光元件910透射的一部分散射后的激光经第一收集透镜940的汇聚作用,将该部分散射后的激光的角分布转换为面分布,在波长转换元件130上形成第一光斑,该第一光斑的光强分布为非高斯分布。分光元件910反射的另一部分散射后的激光经第二收集透镜950的汇聚作用,将其角分布转换为面分布,在散射反射装置920 上形成第二光斑,该第二光斑的光强分布为非高斯分布。第一光斑和第二光斑的光强分布如实施例一中的说明,此处不再赘述。由于激光光源110出射激光经过扩散元件的散射处理,第一光斑和第二光斑的面积相比于不设置扩散元件120时都有所扩大。波长转换元件930将第一光斑处的激光转换为荧光,并反射出射,第一收集透镜940对波长转换元件930出射的荧光进行收集并对其发散角度进行压缩,再出射至分光元件910;散射反射装置920将第二光斑处的激光进行散射处理,并反射出射,第二收集透镜950对散射反射装置920出射的激光进行收集并对其发散角度进行压缩,再出射至分光元件910;第一收集透镜940出射的荧光和第二收集透镜950出射的激光在分光元件910处进行合光。分光元件910的出射光路上还可以设置中继透镜、投影镜头等。通过合理设置波长转换元件930上形成的第一光斑的大小和散射反射装置920上形成的第二光斑的大小、波长转换元件930与第一收集透镜940之间的距离与散射反射装置920与第二收集透镜950的距离等条件,使波长转换元件930出射的荧光和散射反射装置920出射的激光在距照明装置900出光口的特定的距离处形成的荧光光斑和激光光斑重合,且荧光光斑和激光光斑具有相匹配的光强分布,从而在特定的距离处形成颜色均匀的照明光斑。例如,在照明装置900的装配时,首先使波长转换元件930与第一收集透镜940之间的距离与散射反射装置920与第二收集透镜950的距离大致相等,使得波长转换元件130上形成的第一光斑的大小与散射反射装置920上形成的第二光斑的大小也会大致相等;由于波长转换元件930转换生成的荧光的横向传输,波长转换元件930上的荧光出射光斑会略大于第一光斑,此外第一收集透镜940对荧光的色散与第一收集透镜940对激光的色散不同、第一收集透镜940和第二收集透镜950之间可能存在误差,通过调节散射反射装置920的位置, 使波长转换元件930出射的荧光和散射反射装置920出射的激光在距照明装置900出光口的特定的距离处形成的荧光光斑和激光光斑重合,从而得到颜色均匀的照明光斑。
本实施例中,通过设置分光元件910和散射反射装置920,分光元件910将经扩散元件120散射后的激光的一部分反射至散射反射装置920,该部分激光经散射反射装置920散射后与波长转换元件930产生的荧光混合,能够使照明装置900出射光的颜色更加均匀。本实施例中的照明装置900可以应用于舞台灯等。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种照明装置,其特征在于,包括:激光光源、扩散元件以及波长转换元件,所述扩散元件位于所述激光光源和所述波长转换元件之间;
    所述激光光源用于发射激光,所述激光为高斯光束;
    所述扩散元件用于对所述激光进行散射,所述激光经所述扩散元件散射后在所述波长转换元件上形成第一光斑,所述波长转换元件用于将接收的激光至少部分转换成荧光;
    所述第一光斑的中心光强为I 0,所述第一光斑中存在至少一个第一点,所述第一点与所述第一光斑的中心的距离为r 1,所述第一点的光强I 1等于所述第一光斑的中心光强I 0的m倍,且I 1等于I 0exp(-2(r 1/r 0) 2),r 0为与所述第一光斑的中心的预设距离;
    所述第一光斑中存在至少一个第二点,所述第二点与所述第一光斑的中心的距离为r 2,所述第二点的光强I 2等于所述第一光斑的中心光强I 0的n倍,且I 2大于I 0exp(-2(r 2/r 0) 2);
    其中,m大于0.4且小于0.7,n大于0且小于m,r 2大于r 1
  2. 根据权利要求1所述的照明装置,其特征在于,所述第一点和所述第二点位于过所述第一光斑的中心的同一直线上。
  3. 根据权利要求1所述的照明装置,其特征在于,所述第一点为多个,多个所述第一点形成以所述第一光斑的中心为对称中心的圆形或椭圆形。
  4. 根据权利要求1所述的照明装置,其特征在于,所述第二点为多个,多个所述第二点形成以所述第一光斑的中心为对称中心的环形区域。
  5. 根据权利要求1所述的照明装置,其特征在于,对于任意的位于所述第一点与所述第一光斑的中心的连线上且与所述第一光斑的中心的距离r A大于r 1的 点,该点的光强大于I 0exp(-2(r A/r 0) 2)。
  6. 根据权利要求1所述的照明装置,其特征在于,所述第一光斑中存在至少一个第三点,所述第三点与所述第一光斑的中心的距离为r 3,所述第三点的光强I 3小于I 0exp(-2(r 3/r 0) 2),其中,r 3小于r 1且大于0。
  7. 根据权利要求1所述的照明装置,其特征在于,所述扩散元件对所述激光的中心区域的散射度小于对所述激光的边缘区域的散射度。
  8. 根据权利要求1所述的照明装置,其特征在于,所述照明装置还包括设置于所述波长转换元件出光面的遮光件,所述遮光件包括透光区和围绕所述透光区的遮光区。
  9. 根据权利要求5所述的照明装置,其特征在于,所述透光区的尺寸小于或等于所述第一光斑的尺寸。
  10. 根据权利要求1所述的照明装置,其特征在于,所述波长转换元件的尺寸等于所述第一光斑的尺寸。
  11. 根据权利要求1-7任一项所述的照明装置,其特征在于,所述照明装置还包括汇聚透镜和/或收集透镜,所述汇聚透镜设置于所述激光光源的出光侧,用于对所述激光光源出射的激光进行汇聚,所述扩散元件位于所述汇聚透镜和所述波长转换元件之间;所述收集透镜设置于所述波长转换元件的出光侧,用于对所述波长转换元件出射的荧光进行收集。
  12. 根据权利要求11所述的照明装置,其特征在于,所述波长转换元件位于所述汇聚透镜的焦平面。
  13. 根据权利要求8所述的照明装置,其特征在于,所述照明装置还包括折射光学元件,所述折射光学元件位于所述扩散元件和所述波长转换元件之间,所述折射光学元件包括入射面和折射面,经所述扩散元件散射后的激光从所述入 射面入射至所述折射光学元件,并经所述折射面折射偏转至所述波长转换元件。
  14. 根据权利要求8所述的照明装置,其特征在于,所述照明装置还包括第一偏转光学元件和第二偏转光学元件;
    所述第一偏转光学元件位于所述汇聚透镜和所述扩散元件之间,用于将所述汇聚透镜出射的激光偏转并引导至所述扩散元件,所述第二偏转光学元件位于所述扩散元件和所述波长转换元件之间,用于将所述扩散元件出射的激光偏转并引导至所述波长转换元件;或者,所述第一偏转光学元件和第二偏转光学元件依次位于所述汇聚透镜和所述扩散元件之间,所述第一偏转光学元件用于将所述汇聚透镜出射的激光偏转并引导至所述第二偏转光学元件,所述第二偏转光学元件用于将所述第一偏转光学元件出射的激光偏转并引导至所述扩散元件。
  15. 根据权利要求11所述的照明装置,其特征在于,所述波长转换元件为反射式波长转换元件,所述扩散元件位于所述波长转换元件的出射光的光路上。
  16. 根据权利要求11所述的照明装置,其特征在于,所述扩散元件为反射式扩散元件,所述照明装置还包括第一偏转光学元件,所述第一偏转光学元件位于所述汇聚透镜和所述扩散元件之间,所述第一偏转光学元件用于将所述汇聚透镜出射的激光偏转并引导至所述扩散元件,所述扩散元件用于将第一偏转光学元件出射的激光进行散射并反射至所述波长转换元件。
  17. 根据权利要求11所述的照明装置,其特征在于,所述照明装置还包括分光元件和散射反射装置,所述分光元件位于所述扩散元件和所述波长转换元件之间,所述分光元件用于将经所述扩散元件散射后的激光的一部分透射至所述波长转换元件上形成所述第一光斑,另一部分反射至所述散射反射装置上形成第二光斑,所述波长转换元件为反射式波长转换元件,所述波长转换元件还用于所述荧光并反射至所述分光元件,所述散射反射装置用于将接收的激光进行散 射并反射至所述分光元件,所述分光元件还用于反射所述荧光,以使所述波长转换元件出射的荧光和所述散射反射装置出射的激光合光。
PCT/CN2022/085693 2021-05-19 2022-04-08 照明装置 WO2022242355A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110543268.X 2021-05-19
CN202110543268.XA CN115388348A (zh) 2021-05-19 2021-05-19 照明装置

Publications (1)

Publication Number Publication Date
WO2022242355A1 true WO2022242355A1 (zh) 2022-11-24

Family

ID=84113858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085693 WO2022242355A1 (zh) 2021-05-19 2022-04-08 照明装置

Country Status (2)

Country Link
CN (1) CN115388348A (zh)
WO (1) WO2022242355A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118031152A (zh) * 2024-04-15 2024-05-14 常州星宇车灯股份有限公司 提升点亮均匀性的光学***及使用其的车灯及车辆

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890398A (zh) * 2012-09-27 2013-01-23 深圳市绎立锐光科技开发有限公司 发光装置及相关投影***
CN103293680A (zh) * 2013-06-17 2013-09-11 山东神戎电子股份有限公司 一种用于激光照明的腔内反射匀光照明装置
CN103913937A (zh) * 2013-01-01 2014-07-09 深圳市光峰光电技术有限公司 发光装置及其相关投影***
CN105093794A (zh) * 2015-06-03 2015-11-25 海信集团有限公司 一种双色激光光源
CN105116675A (zh) * 2015-06-03 2015-12-02 海信集团有限公司 一种激光光源和投影显示设备
CN204986566U (zh) * 2015-09-23 2016-01-20 深圳市绎立锐光科技开发有限公司 一种发光装置
US20160291216A1 (en) * 2015-03-31 2016-10-06 Samsung Display Co., Ltd. Optical film and display device comprising the same
CN106569378A (zh) * 2015-10-08 2017-04-19 海信集团有限公司 一种激光消散斑光路及双色激光光源、三色激光光源
JP2017107776A (ja) * 2015-12-10 2017-06-15 パナソニック株式会社 発光装置および照明装置
CN107940257A (zh) * 2017-12-21 2018-04-20 超视界激光科技(苏州)有限公司 发光模组及激光照明灯
CN208670636U (zh) * 2018-09-12 2019-03-29 广州光联电子科技有限公司 一种led光源的光学***

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890398A (zh) * 2012-09-27 2013-01-23 深圳市绎立锐光科技开发有限公司 发光装置及相关投影***
CN103913937A (zh) * 2013-01-01 2014-07-09 深圳市光峰光电技术有限公司 发光装置及其相关投影***
CN103293680A (zh) * 2013-06-17 2013-09-11 山东神戎电子股份有限公司 一种用于激光照明的腔内反射匀光照明装置
US20160291216A1 (en) * 2015-03-31 2016-10-06 Samsung Display Co., Ltd. Optical film and display device comprising the same
CN105093794A (zh) * 2015-06-03 2015-11-25 海信集团有限公司 一种双色激光光源
CN105116675A (zh) * 2015-06-03 2015-12-02 海信集团有限公司 一种激光光源和投影显示设备
CN204986566U (zh) * 2015-09-23 2016-01-20 深圳市绎立锐光科技开发有限公司 一种发光装置
CN106569378A (zh) * 2015-10-08 2017-04-19 海信集团有限公司 一种激光消散斑光路及双色激光光源、三色激光光源
JP2017107776A (ja) * 2015-12-10 2017-06-15 パナソニック株式会社 発光装置および照明装置
CN107940257A (zh) * 2017-12-21 2018-04-20 超视界激光科技(苏州)有限公司 发光模组及激光照明灯
CN208670636U (zh) * 2018-09-12 2019-03-29 广州光联电子科技有限公司 一种led光源的光学***

Also Published As

Publication number Publication date
CN115388348A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US10338461B2 (en) Light-emitting device and related light source system
US11402736B2 (en) Light source system and projection device
JP2010040296A (ja) アレイ光源用光学素子及びそれを用いた発光装置
CN104791717B (zh) 带有初级光单元和荧光材料元件的照明装置
TW201235620A (en) Colour-tunable light source unit with phosphor element
KR20150143656A (ko) 발광 장치 및 프로젝션 시스템
JP7123231B2 (ja) 光源装置
US20220186910A1 (en) Light Source System and Lighting Apparatus
WO2013140484A1 (ja) 発光装置
WO2022242355A1 (zh) 照明装置
CN108107658B (zh) 光源***、投影***及照明装置
CN113359379A (zh) 光源组件及投影设备
WO2021184842A1 (zh) 照明装置
CN106950785B (zh) 一种光源装置及照明装置
CN213686323U (zh) 一种消色差的准直发光装置及一种灯具
WO2021031474A1 (zh) 一种便携式多色激光照明***
WO2021027212A1 (zh) 一种激光照明光源
WO2021121073A1 (zh) 光束灯光源***
CN211574811U (zh) 一种光色均匀的激光照明结构
CN112503416A (zh) 一种消色差的准直发光装置及一种灯具
CN215259326U (zh) 照明装置
CN112628617A (zh) 一种折反式激光发光装置
CN220828786U (zh) 光源***和灯具
CN216361908U (zh) 波长转换元件与投影装置
CN217787501U (zh) 一种光源装置及内窥镜***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803680

Country of ref document: EP

Kind code of ref document: A1