WO2022242218A1 - 驱动波形的调整方法、装置、设备及可读存储介质 - Google Patents

驱动波形的调整方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2022242218A1
WO2022242218A1 PCT/CN2022/073174 CN2022073174W WO2022242218A1 WO 2022242218 A1 WO2022242218 A1 WO 2022242218A1 CN 2022073174 W CN2022073174 W CN 2022073174W WO 2022242218 A1 WO2022242218 A1 WO 2022242218A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
vibration
linear motor
description file
resonant frequency
Prior art date
Application number
PCT/CN2022/073174
Other languages
English (en)
French (fr)
Inventor
朱建伟
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US17/796,827 priority Critical patent/US20240185694A1/en
Priority to EP22741141.0A priority patent/EP4325713A1/en
Publication of WO2022242218A1 publication Critical patent/WO2022242218A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • H02P25/034Voice coil motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • the present application relates to the technical field of data processing, and in particular to a driving waveform adjustment method, device, equipment and readable storage medium.
  • linear motors can be divided into X-axis linear motors and Z-axis linear motors. These two types of linear motors need to be driven with different transient waveforms. Moreover, even the same type of linear motor needs to be driven with different transient waveforms when there are differences in its resonant frequency. Therefore, there is a need for a scheme that can mask motor variability to generate transient waveforms.
  • the present application provides a driving waveform adjustment method, device, device and storage medium, so as to generate a transient waveform capable of shielding motor differences to drive a linear motor.
  • the present application provides a driving waveform adjustment method, the adjustment method includes: obtaining a vibration description file, identifying the type of waveform described in the vibration description file; In this case, the driving waveform of the linear motor is generated according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor.
  • the driving waveform of the linear motor is generated according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor, ensuring that The generated driving waveform of the linear motor can adapt to the resonant frequency of the linear motor, so that the transient waveform shielding the difference of the motor can be generated to drive the linear motor.
  • multiple half-period waveforms are generated by using the parameters of the waveform array adapted to the resonant frequency of the linear motor; and then the generated multiple half-period waveforms are combined to obtain the instantaneous vibration described by the vibration description file.
  • the driving waveform of the linear motor can be generated according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor.
  • generating the driving waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor includes: selecting the resonant frequency of the linear motor from a plurality of pre-stored driving waveforms A matching driving waveform, and the driving waveform matching the resonant frequency of the linear motor meets the vibration parameter requirements of the transient waveform described in the vibration description file.
  • multiple driving waveforms are stored in groups, and a group of driving waveforms corresponds to a resonance frequency of the linear motor; each group of driving waveforms includes at least one driving waveform, and each driving waveform is adapted to A frequency requirement for the vibration waveform of the linear motor; on the basis of the above, a set of drive waveforms that match the resonant frequency of the linear motor can be selected from multiple sets of drive waveforms, and then a set of drive waveforms can be selected from the selected set of drive waveforms. , to determine the drive waveform that meets the vibration parameter requirements of the transient waveform described in the vibration description file.
  • the drive waveform that matches the resonant frequency of the linear motor can be selected from the multiple drive waveforms stored in advance.
  • the resonant frequency matches the driving waveform, which meets the vibration parameter requirements of the transient waveform described in the vibration description file.
  • generating the driving waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor includes: selecting from a plurality of pre-stored vibration waveforms that meet the description of the vibration description file The vibration waveform required by the vibration parameters of the transient waveform; the selected vibration waveform is processed to obtain the driving waveform matching the resonant frequency of the linear motor.
  • the present application provides an adjustment device for driving waveforms
  • the adjustment device includes: an acquisition unit, an identification unit and a generation unit, the acquisition unit is used to acquire a vibration description file, and the identification unit is used to identify the waveform described by the vibration description file Type, if the waveform type described in the vibration description file is a transient waveform, the generating unit generates the driving waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor.
  • the generation unit when the waveform type described in the vibration description file is a transient waveform, the generation unit generates the driving waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor. It ensures that the generated driving waveform of the linear motor can adapt to the resonant frequency of the linear motor, and realizes generating a transient waveform shielding the difference of the motor to drive the linear motor.
  • the generation unit when the generation unit generates the drive waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor, it is used to: according to the waveform adapted to the resonant frequency of the linear motor Array parameters to generate multiple half-period waveforms; combine the generated multiple half-period waveforms to obtain the transient waveform described by the vibration description file.
  • the generating unit when the generating unit generates the driving waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor, it is used to: select from a plurality of pre-stored driving waveforms and The driving waveform matching the resonant frequency of the linear motor, the driving waveform matching the resonant frequency of the linear motor, and meeting the vibration parameter requirements of the transient waveform described in the vibration description file.
  • multiple driving waveforms are stored in groups, and a group of driving waveforms corresponds to a resonance frequency of the linear motor; each group of driving waveforms includes at least one driving waveform, and each driving waveform is adapted to A frequency requirement for the vibration waveform of the linear motor; the generation unit executes a drive waveform that matches the resonant frequency of the linear motor from a plurality of pre-stored drive waveforms, and the drive waveform that matches the resonant frequency of the linear motor conforms to When the vibration parameters of the transient waveform described in the vibration description file are required, it is used to: select a set of drive waveforms that match the resonant frequency of the linear motor from multiple sets of drive waveforms; from the selected set of drive waveforms, Determine the driving waveform that meets the vibration parameter requirements of the transient waveform described in the vibration description file.
  • the generation unit when the generation unit generates the drive waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor, it is used to: select from a plurality of pre-stored vibration waveforms The vibration waveform conforms to the vibration parameter requirements of the transient waveform described in the vibration description file; the selected vibration waveform is processed to obtain the driving waveform matching the resonant frequency of the linear motor.
  • the present application provides an electronic device, including: a linear motor; one or more processors; a memory on which a program is stored; when the program is executed by one or more processors, one or more
  • the processor implements the method for adjusting the driving waveform in any one of the first aspect and every possible implementation thereof to generate a driving waveform to drive the linear motor to run.
  • the present application provides a readable storage medium on which a computer program is stored, wherein, when the computer program is executed by a processor, the drive of any one of the first aspect and each possible implementation manner thereof is realized. How to adjust the waveform.
  • Figure 1a is a structure and application example diagram of an X-axis linear motor
  • Figure 1b is a structure and application example diagram of a Z-axis linear motor
  • FIG. 2 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present application.
  • Figure 3a is an example diagram of the software architecture for the application of the vibration waveform adjustment method of the linear motor provided by the embodiment of the present application;
  • Fig. 3b is an example diagram of the process of realizing the function of the software architecture shown in Fig. 3a;
  • 4 to 6 are flow charts of the methods for adjusting the driving waveform provided by the three embodiments of the present application.
  • FIG. 7 is a structural diagram of an apparatus for adjusting a driving waveform provided by another embodiment of the present application.
  • the term "comprises”, “comprises” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes none. other elements specifically listed, or also include elements inherent in such a process, method, article, or apparatus.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
  • the linear motor is arranged in the electronic equipment, and is used to make the electronic equipment output vibration sense through vibration.
  • the linear motor is controlled to vibrate to produce different vibration effects, so that the user can feel the vibration, so as to prompt the user or give feedback on the user's operation, as follows:
  • touch operations applied to different applications may correspond to different vibration effects.
  • Touch operations acting on different areas of the display screen can also correspond to different vibration effects.
  • Linear motors commonly used in electronic equipment include X-axis linear motors (also known as square or transverse linear motors) and Z-axis linear motors (also known as circular or longitudinal linear motors).
  • Fig. 1a shows the structure and application example of the X-axis linear motor
  • Fig. 1b shows the structure and application example of the Z-axis linear motor.
  • the appearance of the X-axis linear motor is long or square. Assuming that the X-axis is a horizontal axis, the Y-axis is a vertical axis, and the Z-axis is a vertical axis perpendicular to the X-axis and Y-axis, the pendulum
  • the mover of the X-axis linear motor can move in the direction of the X-axis or the Y-axis, and a longer stroke can be achieved.
  • the X-axis linear motor is installed in the direction of the X-axis in the electronic device, it can provide vibration in the direction of the X-axis; if it is installed in the direction of the Y-axis, it can provide vibration in the direction of the Y-axis.
  • the appearance of the Z-axis linear motor is cylindrical, and the mover can move in the Z-axis direction.
  • the Z-axis linear motor is arranged in the electronic device, and can bring vibration along the thickness direction of the electronic device.
  • the resonant frequency of the linear motor is a key parameter for the operation of the linear motor.
  • the resonant frequency is also called the resonant frequency. It refers to the situation that a physical system (referring to the linear motor) vibrates at a specific frequency with a larger amplitude than other frequencies. This specific The frequency is called the resonant frequency.
  • a small driving force can cause the linear motor to vibrate greatly, therefore, the linear motor is generally driven to run at the resonant frequency.
  • the vibration description file is one of the key elements to control the vibration of the linear motor: the vibration description file is used to describe the vibration waveform of the linear motor, and the vibration waveform indicates various vibration parameters during the vibration process of the motor, such as amplitude and frequency.
  • the function of the vibration description file is to instruct the motor how to vibrate, so the user can configure the expected vibration effect through the vibration description file.
  • the linear motor is the subject of vibration, so the vibration effect is related to the properties of the linear motor. Therefore, although the vibration description file is configured based on the expected vibration effect, the vibration generated by the linear motor controlled by the vibration description file may not necessarily be Can achieve the expected vibration effect.
  • the linear motor cannot provide the expected vibration effect mainly in the following aspects:
  • the vibration description file defines a vibration waveform with a frequency of 230hz, and the resonant frequencies of the linear motor implementing vibration are 150hz and 230hz.
  • the resonant frequency of the linear motor is 150hz
  • the output frequency of the linear motor is a driving waveform of 150hz, which can ensure that the linear motor produces a large vibration with a small driving force.
  • the frequency of the vibration waveform defined by the vibration description file is 230hz
  • the output frequency of a linear motor with a resonance frequency of 150hz is a vibration waveform of 230hz, which will make the vibration sense output by the linear motor fail to meet the requirements. Therefore, it is necessary to adjust the vibration waveform described in the vibration description file, so that the vibration waveform is adapted to each resonance frequency of the linear motor implementing vibration, so as to ensure the expected vibration effect and the expected vibration feeling.
  • the method for adjusting the vibration waveform of the linear motor disclosed in the embodiment of the present application adjusts the vibration waveform described in the vibration description file based on the characteristics of the linear motor implementing vibration, so that the vibration waveform is adapted to the resonant frequency of the linear motor implementing vibration. Guaranteed to obtain the expected vibration effect and vibration feeling.
  • the method for adjusting the vibration waveform of a linear motor disclosed in the embodiment of the present application is applied to an electronic device with a linear motor.
  • the electronic device with a linear motor can be a mobile phone, a tablet computer, a desktop, a laptop, a notebook computer, a super mobile personal Computers (Ultra-mobile Personal Computer, UMPC), handheld computers, netbooks, personal digital assistants (Personal Digital Assistant, PDA), wearable electronic devices, smart watches and other devices.
  • the electronic equipment shown in Figure 2 includes: processor 110, external memory interface 120, internal memory 121, universal serial bus (universal serial bus, USB) interface 130, charging management module 140, power management module 141, battery 142, antenna 1.
  • Antenna 2 mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and a subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and an ambient light sensor. sensor 180L, bone conduction sensor 180M, etc.
  • the structure shown in this embodiment does not constitute a specific limitation on the electronic device.
  • the electronic device may include more or fewer components than shown, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • the controller may be the nerve center and command center of the electronic equipment.
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • the processor 110 executes the method for adjusting the driving waveform proposed in the following embodiments.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flashlight, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the electronic device.
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled to the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 communicates with the camera 193 through the CSI interface to realize the shooting function of the electronic device.
  • the processor 110 communicates with the display screen 194 through the DSI interface to realize the display function of the electronic device.
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193 , the display screen 194 , the wireless communication module 160 , the audio module 170 , the sensor module 180 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface conforming to the USB standard specification, specifically, it can be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device, and can also be used to transmit data between the electronic device and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship among the modules shown in this embodiment is only a schematic illustration, and does not constitute a structural limitation of the electronic device.
  • the electronic device may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 can receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the electronic device. While the charging management module 140 is charging the battery 142 , it can also provide power for electronic devices through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be disposed in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be set in the same device.
  • the wireless communication function of the electronic device can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in an electronic device can be used to cover a single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied to electronic devices.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent from the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite system, etc. (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • general packet radio service general packet radio service
  • CDMA code division multiple access
  • WCDMA broadband Code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • LTE long term evolution
  • BT GNSS
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device realizes the display function through the GPU, the display screen 194, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oled, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the electronic device may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • a series of graphical user interfaces can be displayed on the display screen 194 of the electronic device, and these GUIs are the main screen of the electronic device.
  • GUI graphical user interface
  • the size of the display screen 194 of the electronic device is fixed, and only limited controls can be displayed on the display screen 194 of the electronic device.
  • a control is a GUI element, which is a software component contained in an application that controls all data processed by the application and the interaction of these data. Users can interact with the control through direct manipulation. , so as to read or edit the relevant information of the application.
  • controls may include visual interface elements such as icons, buttons, menus, tabs, text boxes, dialog boxes, status bars, navigation bars, and Widgets.
  • the display screen 194 may display virtual keys.
  • the electronic device can realize the shooting function through ISP, camera 193 , video codec, GPU, display screen 194 and application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the electronic device may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when an electronic device selects a frequency point, a digital signal processor is used to perform Fourier transform on the frequency point energy, etc.
  • Video codecs are used to compress or decompress digital video.
  • An electronic device may support one or more video codecs.
  • the electronic device can play or record video in multiple encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • the NPU is a neural-network (NN) computing processor.
  • NPU neural-network
  • Applications such as intelligent cognition of electronic devices can be realized through NPU, such as: image recognition, face recognition, speech recognition, text understanding, etc.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 121 may be used to store computer-executable program codes including instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the internal memory 121 .
  • the internal memory 121 may include an area for storing programs and an area for storing data.
  • the stored program area can store an operating system, at least one application program required by a function (such as a sound playing function, an image playing function, etc.) and the like.
  • the storage data area can store data created during the use of the electronic device 100 (such as audio data, phonebook, etc.) and the like.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the internal memory 121 stores instructions for executing the method for adjusting the driving waveform.
  • the processor 110 can adjust the driving waveform described by the vibration description file by executing the instructions stored in the internal memory 121, so as to ensure that the video of the driving waveform is compatible with the resonant frequency of each linear motor, and shield different linear motors The difference between different resonant frequencies.
  • the electronic device can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • the audio module 170 may be set in the processor 110 , or some functional modules of the audio module 170 may be set in the processor 110 .
  • Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals.
  • the electronic device can listen to music through speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the electronic device receives a call or a voice message, it can listen to the voice by placing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can put his mouth close to the microphone 170C to make a sound, and input the sound signal to the microphone 170C.
  • the electronic device may be provided with at least one microphone 170C.
  • the electronic device can be provided with two microphones 170C, which can also implement a noise reduction function in addition to collecting sound signals.
  • the electronic device can also be equipped with three, four or more microphones 170C to realize sound signal collection, noise reduction, identify sound sources, and realize directional recording functions, etc.
  • the earphone interface 170D is used for connecting wired earphones.
  • the earphone interface 170D can be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A such as resistive pressure sensors, inductive pressure sensors, and capacitive pressure sensors.
  • a capacitive pressure sensor may be comprised of at least two parallel plates with conductive material.
  • the electronic device detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view short messages is executed. When a touch operation whose intensity is greater than or equal to the first pressure threshold acts on the icon of the short message application, the instruction of creating a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device. In some embodiments, the angular velocity of the electronic device about three axes (ie, x, y, and z axes) may be determined by the gyro sensor 180B.
  • the gyro sensor 180B can be used for image stabilization. Exemplarily, when the shutter is pressed, the gyro sensor 180B detects the shake angle of the electronic device, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shake of the electronic device through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist in positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device may detect opening and closing of the flip holster using the magnetic sensor 180D.
  • the electronic device when the electronic device is a flip machine, the electronic device can detect opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the electronic device in various directions (generally three axes). When the electronic device is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 180F is used to measure the distance.
  • Electronic devices can measure distance via infrared or laser light. In some embodiments, when shooting a scene, the electronic device can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • Electronic devices emit infrared light outwards through light-emitting diodes.
  • Electronic devices use photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object in the vicinity of the electronic device. When insufficient reflected light is detected, the electronic device may determine that there is no object in the vicinity of the electronic device.
  • the electronic device can use the proximity light sensor 180G to detect that the user holds the electronic device close to the ear to make a call, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, automatic unlock and lock screen in pocket mode.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the electronic device can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device is in the pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints. Electronic devices can use the collected fingerprint features to unlock fingerprints, access application locks, take pictures with fingerprints, answer incoming calls with fingerprints, etc.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device uses the temperature detected by the temperature sensor 180J to implement a temperature treatment strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the electronic device may reduce the performance of a processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the electronic device when the temperature is lower than another threshold, the electronic device heats the battery 142 to avoid abnormal shutdown of the electronic device caused by the low temperature.
  • the electronic device boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • the touch sensor 180K is also called “touch device”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device, which is different from the position of the display screen 194 .
  • the bone conduction sensor 180M can acquire vibration signals. In some embodiments, the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human voice. The bone conduction sensor 180M can also contact the human pulse and receive the blood pressure beating signal. In some embodiments, the bone conduction sensor 180M can also be disposed in the earphone, combined into a bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vibrating bone mass of the vocal part acquired by the bone conduction sensor 180M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 180M, so as to realize the heart rate detection function.
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the electronic device can receive key input and generate key signal input related to user settings and function control of the electronic device.
  • the motor 191 can generate a vibrating reminder.
  • the motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations applied to different applications may correspond to different vibration feedback effects.
  • the motor 191 can also correspond to different vibration feedback effects for touch operations on different areas of the flexible screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the motor 191 may be a variety of linear motors, and the processor 110 executes a driving program of the linear motor to drive the linear motor to run.
  • the driving waveform adjustment scheme involved in the operation of the linear motor driven by the driver of the linear motor is, for example, the driving waveform adjustment method provided in the following embodiments of the present application.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 195 is used for connecting a SIM card.
  • the SIM card can be inserted into the SIM card interface 195 or pulled out from the SIM card interface 195 to realize contact and separation with the electronic device.
  • the electronic device can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device interacts with the network through the SIM card to realize functions such as calling and data communication.
  • the electronic device adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device and cannot be separated from the electronic device.
  • Figure 3a is an example of the software architecture of the application of the technical solution disclosed in the embodiment of the present application, combined with the content of Figure 3b, it can be seen that:
  • the generation module of the vibration description file (which can interact with third-party applications) is used to generate the vibration description file; the analysis module analyzes the vibration description file to obtain a file in json format used to describe the vibration waveform, and the waveform processing module is for the json format file, and perform waveform processing operations to obtain the driving waveform.
  • the driving waveform obtained by the waveform processing module after the waveform processing operation is synthesized by the synthesis module to obtain the audio stream in the format of pulse code modulation (Pulse Code Modulation, PCM), etc.
  • PCM pulse code modulation
  • the protocol is transmitted to the integrated circuit (Integrated Circuit, IC), and finally acts on the linear motor to control the operation of the linear motor.
  • the software architecture shown in FIG. 3a can be stored in the internal memory 121, and invoked by the processor 110 to implement the process described in FIG. 3b.
  • the method for adjusting the driving waveform of the linear motor described in the embodiment of the present application can be applied to the waveform processing module in FIG. 3a.
  • the method of adjusting the driving waveform of the linear motor will be described in detail below.
  • FIG. 4 shows a method for adjusting a driving waveform, which is applied to an electronic device, and the electronic device includes a linear motor.
  • the adjustment method of the drive waveform includes:
  • the vibration description file includes various vibration parameters. By analyzing the vibration description file, each vibration parameter included in the vibration description file can be obtained, and the vibration waveform of the linear motor can be generated by using the vibration parameters.
  • the vibration waveform of the linear motor can be understood as a displacement code stream, reflecting the displacement of the linear motor at different time points.
  • the mover of the X-axis linear motor can move in the direction of the X-axis or the Y-axis
  • the mover of the Z-axis linear motor can move in the direction of the Z-axis. Therefore, no matter what kind of linear motor, the operation of the linear motor driven by the waveform refers to the operation of the mover of the linear motor on the corresponding axis (X axis, Y axis or Z axis), and the mover moves on the corresponding axis
  • the form of expression is that the displacement of the mover along the corresponding axis changes at different times, and the vibration felt by the user is brought about by the displacement of the mover at different times.
  • Vibration parameters in a vibration profile may include, but are not limited to: intensity, sharpness (also called frequency), waveform type, start time, and stop time.
  • step S203 is executed.
  • the vibration parameters of the vibration description file include the waveform type. By analyzing the waveform type, it can be determined whether the vibration description file describes a steady-state waveform or a transient waveform.
  • the steady-state waveform is the vibration waveform that drives the linear motor through a rising phase, a stable vibration phase and a stop phase.
  • the rising phase, the stable vibration phase and the stop phase are three phases that the linear motor goes through from the start of vibration to the end of vibration.
  • the vibration form of the linear motor is free attenuation vibration accompanied by forced vibration.
  • the vibration form of the linear motor is steady-state forced vibration with equal amplitude.
  • the vibration form of the linear motor is free attenuation vibration. .
  • the transient waveform is the vibration waveform that drives the linear motor through only the rising phase.
  • the vibration parameters included in the vibration description file define the vibration waveform to be generated. Therefore, based on the vibration parameters of the transient waveform described by the vibration description file, a vibration waveform that meets the requirements of the vibration parameters can be generated.
  • the vibration parameters defined in the vibration description file include: a frequency of 230 Hz, based on the vibration parameters, a vibration waveform with a frequency of 230 Hz can be generated.
  • the transient waveform described by the vibration description file it can be output by linear motors with different resonant frequencies, and the waveform array corresponding to each resonant frequency of the linear motor is predefined and stored in the internal memory of the electronic device.
  • the waveform array includes: multiple half-period waveforms, and each half-period waveform is obtained by splitting the transient waveform adapted to the resonant frequency of the linear motor by taking half a period of the transient waveform as the split unit.
  • storing an array of waveforms in the internal memory of an electronic device stores the frequency and amplitude of the waveform used to generate each half cycle.
  • a transient waveform includes 3 periods of waveforms, and the waveform array of the linear motor of each resonance frequency will include: 6 half-period waveforms corresponding to the frequency and amplitude.
  • the waveform array corresponding to the resonant frequency of the linear motor in the electronic device is selected from the pre-stored waveform array corresponding to each resonant frequency, according to the waveform array
  • the frequency and amplitude of multiple half-cycle waveforms indicated generate each half-cycle waveform, and then combine the generated half-cycle waveforms to obtain the transient waveform.
  • FIG. 5 shows another method for adjusting the driving waveform, which is also applied to electronic devices, and the electronic devices include linear motors.
  • the adjustment method of the drive waveform includes:
  • step S503 is executed.
  • step S501 and step S502 For the specific content of step S501 and step S502, refer to the content of step S501 and step S502 in the embodiment corresponding to FIG. 4 .
  • selecting a drive waveform that matches the resonant frequency of the linear motor from multiple pre-stored drive waveforms also needs to meet the vibration parameter requirements of the transient waveform described in the vibration description file.
  • This method of pre-storing multiple driving waveforms and selecting a driving waveform to drive the linear motor according to the vibration parameters of the transient waveform described in the vibration description file and the resonant frequency of the linear motor can also realize the shielding of the linear motor.
  • the efficiency of obtaining the driving waveform is higher.
  • the driving waveforms of each resonance frequency involved in the linear motor are used as atomic driving waveforms. In this way, it can be ensured that each resonant frequency of the linear motor can find a matching atomic driving fluctuation from the stored atomic driving waveform.
  • this generation method requires a relatively large storage space.
  • the second is to use the driving waveform of each frequency in a frequency range within the frequency range involved in the linear motor as an atomic driving waveform, for example: the frequency range of all frequencies involved in the linear motor is 70hz to 185hz, and the The driving waveform of each frequency in this frequency range is used as the atomic driving waveform; or the driving waveform of each frequency of 165hz to 175hz in the range of 70hz to 185hz is used as the atomic driving waveform.
  • the selection criteria for a frequency range within the frequency range involved in the linear motor may also be: a frequency range with a higher hit rate, and a higher hit rate also refers to the frequency range used by most linear motors.
  • the number of atomic drive waveforms generated by this generation method is less than that of the first one, and does not need to occupy a large storage space. It brings that there may be atomic drive waveforms corresponding to a resonance frequency of the linear motor that cannot be found.
  • the third one is to use the drive waveform of the resonant frequency of the linear motor with a high hit rate as the atomic drive waveform.
  • the resonant frequency with a high hit rate refers to a resonant frequency used by most linear motors among a series of resonant frequencies of the linear motor. For example: in the frequency range from 70hz to 185hz, the frequencies of 70, 80, 90, 100, 120, 130, 150 and 170 belong to the resonance frequency set by most linear motors, and will be set to have a higher hit rate the resonant frequency.
  • this generation method further reduces the storage space requirement, and also increases the probability that the atomic drive waveform corresponding to a resonant frequency of the linear motor cannot be found.
  • the frequency of the transient waveform described by the vibration description file is diverse, that is, the linear motor can be required to operate according to waveforms of different frequencies. Based on this, the number of driving waveforms to be included in each atomic driving waveform is multiple, and each driving waveform is adapted to a frequency requirement of the transient waveform described in the vibration description file.
  • the atomic drive waveform of a linear motor with a resonant frequency of 165hz includes: the drive waveform corresponding to the transient waveform with a frequency of 80hz, the drive waveform corresponding to the transient waveform with a frequency of 81hz, and the drive waveform corresponding to the transient waveform with a frequency of 82hz ...
  • the adaptive atomic drive waveform can be selected from the stored atomic drive waveforms. waveform, and, since each atomic driving waveform includes a driving waveform that adapts to various frequency requirements of the transient waveform described in the vibration description file, it is possible to further filter out the matching vibration from the filtered atomic driving waveform.
  • the driving waveform of the frequency of the transient waveform described in the description file so that the linear motor with multiple resonance frequencies can be guaranteed to output the transient waveform described in the same vibration description file, which realizes the shielding of the difference in the resonance frequency of the linear motor .
  • the pre-stored multiple driving waveforms are stored in groups, and a group of driving waveforms (that is, a kind of atomic driving waveform in the above content) corresponds to a resonance frequency of the linear motor; each group
  • the driving waveform includes at least one driving waveform, and each driving waveform is adapted to a frequency requirement of the transient waveform described by the vibration description file.
  • step S503 an implementation manner of step S503 is:
  • a set of drive waveforms whose frequency matches the resonant frequency of the linear motor is selected.
  • the vibration parameters of the vibration description file include: the vibration frequency is 82 Hz; the resonant frequency of the linear motor is 165 Hz, and a group of driving waveforms with a frequency of 165 Hz is screened out from multiple groups of driving waveforms in the manner of this step.
  • the driving waveform is selected according to the vibration parameters of the transient waveform described in the vibration description file.
  • a group of driving waveforms of 165 Hz includes multiple driving waveforms, and each driving waveform corresponds to a frequency of the vibration waveform. Based on this, a driving waveform with a frequency of 82 Hz is selected from the group of driving waveforms of 165 Hz.
  • the atomic driving waveforms are generated and stored using the second and third atomic driving waveforms proposed above. If among the various pre-stored atomic driving waveforms, the The atomic drive waveform that matches the resonant frequency of the linear motor, first select the atomic drive waveform that is closest to the resonant frequency of the linear motor from the stored multiple atomic drive waveforms, and then select the atomic drive waveform according to the vibration description file The vibration parameters of the described transient waveform After the driving waveform is selected, the selected driving waveform is interpolated according to the resonant frequency of the linear motor to obtain the driving waveform matching the resonant frequency of the linear motor.
  • the closest to the resonant frequency of the linear motor can be understood as the same or the smallest difference between the frequency and the resonant frequency of the linear motor.
  • an interpolation operation is performed on the selected driving waveform, which may be to use a resampling algorithm to sample the driving waveform to obtain the values of multiple sampling points, and then the values of the multiple sampling points Insert it into the drive waveform to complete the adjustment of the drive waveform to obtain a drive waveform that matches the resonant frequency of the linear motor.
  • FIG. 6 shows another method for adjusting the driving waveform, which is also applied to electronic devices, and the electronic devices include linear motors.
  • the adjustment method of the drive waveform includes:
  • step S603 is executed.
  • step S601 and step S602 For the specific content of step S601 and step S602, refer to the content of step S401 and step S402 in the embodiment corresponding to FIG. 4 .
  • transient vibration waveforms To drive linear motors to output vibration waveforms at different frequencies, pre-store vibration waveforms of multiple frequencies (transient vibration waveforms). If the waveform type described in the vibration description file is a transient waveform, then follow the vibration description file The described vibration parameters of the transient waveform are screened from multiple pre-stored vibration waveforms, and the vibration waveform matching the vibration parameters of the transient waveform described by the vibration description file is selected.
  • the vibration waveform will be adjusted according to the resonant frequency of the linear motor to obtain a drive waveform that matches the resonant frequency of the linear motor.
  • the inverse motor voltage drive algorithm itself has the function of inverting the vibration waveform into a resonant frequency suitable for the linear motor.
  • the purpose of shielding the difference in the resonant frequency of the linear motor is achieved by using this function of the algorithm.
  • the pre-stored vibration waveforms of multiple frequencies are not enough to cover the requirement of driving the linear motor to output according to the waveforms of all frequencies, then among the multiple pre-stored vibration waveforms, it is impossible to select a vibration waveform that meets the vibration description.
  • the vibration waveform of the vibration parameters of the transient waveform described in the file for example: the vibration waveform from 100hz to 130hz is pre-stored, the frequency of the transient waveform described in the vibration description file is 135hz, and the frequency of the transient waveform described in the vibration description file is 135hz Requirements, the vibration waveform of the same frequency cannot be found in the vibration waveform of 100hz to 130hz.
  • the vibration waveform closest to the vibration parameters of the transient waveform described by the vibration description file it is necessary to select the vibration waveform closest to the vibration parameters of the transient waveform described by the vibration description file from the multiple pre-stored vibration waveforms.
  • this closest refers to the frequency and vibration description.
  • the transient waveform described by the file has the smallest difference in vibration parameters.
  • the selected vibration waveform is interpolated to obtain a vibration waveform matching the vibration parameters of the transient waveform described in the vibration description file.
  • the interpolation operation is performed on the selected vibration waveform according to the vibration parameters of the transient waveform described in the vibration description file, which may be to use a resampling algorithm to sample the vibration waveform to obtain multiple sampling points. Then insert the values of multiple sampling points into the vibration waveform to complete the adjustment of the vibration waveform, and obtain the vibration waveform that matches the vibration parameters of the transient waveform described in the vibration description file.
  • the vibration waveform processing module and the driving waveform processing module use the content of the three embodiments corresponding to Fig. 2, Fig. 3 or Fig. 4 to generate driving waveforms, and the realization principle can be understood as: the vibration described in the vibration description file parameters and the resonant frequency of the linear motor to generate the drive waveform of the linear motor.
  • the waveform type described in the vibration description file is a transient waveform
  • the driving waveform of the linear motor is generated according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor, which ensures the performance of the generated linear motor.
  • the driving waveform can be adapted to the resonant frequency of the linear motor, so that the transient waveform shielding the difference of the motor can be generated to drive the linear motor.
  • the embodiment of the present application provides a driving waveform adjustment device, as shown in FIG. 7 , including:
  • the obtaining unit 701 is configured to obtain a vibration description file.
  • the identification unit 702 is configured to identify the waveform type described by the vibration description file.
  • the generating unit 703 is configured to generate the driving waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor if the waveform type described in the vibration description file is a transient waveform.
  • the generating unit 703 when generating the drive waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor by the generating unit 703, it is used to: according to the resonant frequency of the linear motor
  • the parameters of the matched waveform array are used to generate multiple half-period waveforms; and then the generated multiple half-period waveforms are combined to obtain the transient waveform described by the vibration description file.
  • the generating unit 703 when generating the driving waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor, the generating unit 703 is used to: Among the waveforms, select the driving waveform that matches the resonant frequency of the linear motor, and the driving waveform that matches the resonant frequency of the linear motor meets the vibration parameter requirements of the transient waveform described in the vibration description file.
  • multiple drive waveforms are stored in groups, and a set of drive waveforms corresponds to a resonant frequency of the linear motor; each set of drive waveforms contains at least one drive waveform, and each The drive waveform is adapted to a frequency requirement of the vibration waveform of the linear motor;
  • the generating unit 703 selects a drive waveform that matches the resonant frequency of the linear motor from a plurality of pre-stored drive waveforms, a drive waveform that matches the resonant frequency of the linear motor, and a vibration that conforms to the transient waveform described by the vibration description file.
  • the parameters are required, it is used to: select a set of drive waveforms that match the resonant frequency of the linear motor from multiple sets of drive waveforms; determine the transient state described in the vibration description file from the selected set of drive waveforms The drive waveform required by the vibration parameter of the waveform.
  • the generation unit 703 when generating the driving waveform of the linear motor according to the vibration parameters described in the vibration description file and the resonant frequency of the linear motor, the generation unit 703 is used to:
  • the specific working process of the acquisition unit 701 , the identification unit 702 and the generation unit 703 can be found in the content of the corresponding method embodiments, and will not be repeated here.
  • Another embodiment of the present application provides a readable storage medium.
  • the instructions in the readable storage medium are executed by the processor of the electronic device, the electronic device can execute the driving waveform adjustment method in any of the above-mentioned embodiments. .
  • the readable storage medium may be a non-transitory computer-readable storage medium, for example, the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage equipment etc.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage equipment etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Telephone Function (AREA)

Abstract

本申请实施例提供一种驱动波形的调整方法、装置、设备及存储介质。驱动波形的调整方法中,获取振动描述文件,识别振动描述文件描述的波形类型;在识别出振动描述文件描述的波形类型为瞬态波形的情况下,依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形,由此可以看出在振动描述文件描述的波形类型为瞬态波形的情况下,依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形,保证了生成的线性马达的驱动波形能够适配该线性马达的谐振频率,实现了生成屏蔽马达差异性的瞬态波形来驱动线性马达。

Description

驱动波形的调整方法、装置、设备及可读存储介质
本申请要求于2021年5月20日提交中国专利局、申请号为202110552989.7、发明名称为“瞬态驱动波形的调整方法、装置、设备及可读存储介质”,于2021年06月16日提交中国国家知识产权局、申请号为202110668265.9、发明名称为“驱动波形的调整方法、装置、设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据处理技术领域,尤其涉及一种驱动波形的调整方法、装置、设备及可读存储介质。
背景技术
根据行程方向的不同,线性马达可分为X轴线性马达和Z轴线性马达,这两种的线性马达,需要采用不同的瞬态波形进行驱动。并且,即便是同一种类的线性马达,在其谐振频率存有差异时,也需要以不同的瞬态波形来驱动。因此,就需要一种能够屏蔽马达差异性的方案,来生成瞬态波形。
发明内容
本申请提供了一种驱动波形的调整方法、装置、设备及存储介质,以实现生成能够屏蔽马达差异性的瞬态波形来驱动线性马达。
为了实现上述目的,本申请提供了以下技术方案:
第一方面,本申请提供了一种驱动波形的调整方法,该调整方法包括:获取振动描述文件,识别振动描述文件描述的波形类型;在识别出振动描述文件描述的波形类型为瞬态波形的情况下,依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形。
从第一方面的内容可以看出:在振动描述文件描述的波形类型为瞬态波形的情况下,依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形,保证了生成的线性马达的驱动波形能够适配该线性马达的谐振频率,实现了生成屏蔽马达差异性的瞬态波形来驱动线性马达。
在一种可能的实现方式中,采用按照与线性马达的谐振频率相适配的波形数组的参数,生成多个半周期波形;再组合生成的多个半周期波形,得到振动描述文件描述的瞬态波形的方式,实现依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形。
在一种可能的实现方式中,依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形,包括:从预先存储的多个驱动波形中,选择与线性马达的谐振频率相匹配的驱动波形,并且,该与线性马达的谐振频率相匹配的驱动波形,符合振动描述文件描述的瞬态波形的振动参数要求。
在一种可能的实现方式中,多个驱动波形以成组方式保存,一组驱动波形对应线性马达的一种谐振频率;每一组驱动波形中包含至少一个驱动波形,每一个驱动波形适应于线 性马达的振动波形的一种频率需求;在上述基础上,可以从多组驱动波形中,选择出与线性马达的谐振频率相匹配的一组驱动波形,再从选择出的一组驱动波形中,确定出符合振动描述文件描述的瞬态波形的振动参数要求的驱动波形,如此方式能够实现从预先存储的多个驱动波形中,选择与线性马达的谐振频率相匹配的驱动波形,与线性马达的谐振频率相匹配的驱动波形,符合振动描述文件描述的瞬态波形的振动参数要求。
在一种可能的实现方式中,依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形,包括:从预先存储的多个振动波形中,选择出符合振动描述文件描述的瞬态波形的振动参数要求的振动波形;处理选择出的振动波形,得到与线性马达的谐振频率相匹配的驱动波形。
第二方面,本申请提供了一种驱动波形的调整装置,该调整装置包括:获取单元、识别单元和生成单元,获取单元用于获取振动描述文件,识别单元用于识别振动描述文件描述的波形类型,若振动描述文件描述的波形类型为瞬态波形,生成单元依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形。
从第二方面的内容可以看出:在振动描述文件描述的波形类型为瞬态波形的情况下,生成单元依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形,保证了生成的线性马达的驱动波形能够适配该线性马达的谐振频率,实现了生成屏蔽马达差异性的瞬态波形来驱动线性马达。
在一种可能的实现方式中,生成单元执行依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形时,用于:按照与线性马达的谐振频率相适配的波形数组的参数,生成多个半周期波形;组合生成的多个半周期波形,得到振动描述文件描述的瞬态波形。
在一种可能的实现方式中,生成单元执行依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形时,用于:从预先存储的多个驱动波形中,选择与线性马达的谐振频率相匹配的驱动波形,与线性马达的谐振频率相匹配的驱动波形,符合振动描述文件描述的瞬态波形的振动参数要求。
在一种可能的实现方式中,多个驱动波形以成组式保存,一组驱动波形对应线性马达的一种谐振频率;每一组驱动波形中包含至少一个驱动波形,每一个驱动波形适应于线性马达的振动波形的一种频率需求;生成单元执行从预先存储的多个驱动波形中,选择与线性马达的谐振频率相匹配的驱动波形,与线性马达的谐振频率相匹配的驱动波形,符合振动描述文件描述的瞬态波形的振动参数要求时,用于:从多组驱动波形中,选择出与线性马达的谐振频率相匹配的一组驱动波形;从选择出的一组驱动波形中,确定出符合振动描述文件描述的瞬态波形的振动参数要求的驱动波形。
在一种可能的实现方式中,生成单元执行依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形时,用于:从预先存储的多个振动波形中,选择出符合振动描述文件描述的瞬态波形的振动参数要求的振动波形;处理选择出的振动波形,得到与线性马达的谐振频率相匹配的驱动波形。
第三方面,本申请提供了一种电子设备,包括:线性马达;一个或多个处理器;存储器,其上存储有程序;当程序被一个或多个处理器执行时,使得一个或多个处理器实现第 一方面及其每一种可能的实现方式中任意一项的驱动波形的调整方法生成驱动波形,以驱动线性马达运行。
第四方面,本申请提供了一种可读存储介质,其上存储有计算机程序,其中,计算机程序被处理器执行时实现第一方面及其每一种可能的实现方式中任意一项的驱动波形的调整方法。
本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
附图说明
为了更清楚地说明本申请实施例的技术方法,下面将对实施例中所需使用的附图作以简单地介绍。
图1a为X轴线性马达的结构以及应用示例图;
图1b为Z轴线性马达的结构以及应用示例图;
图2为本申请实施例公开的一种电子设备的结构示意图;
图3a为本申请实施例提供的线性马达的振动波形调整方法应用的软件架构示例图;
图3b为图3a所示的软件架构的实现功能的流程示例图;
图4至图6为本申请三个实施例提供的驱动波形的调整方法的流程图;
图7为本申请另一实施例提供的驱动波形的调整装置的结构图。
具体实施方式
本申请说明书和权利要求书及附图说明中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
线性马达设置在电子设备中,用于通过振动使得电子设备输出振感。在电子设备的不同场景下,线性马达被控制发生振动产生不同的振动效果,使得用户感知到振感,以提示用户或对用户操作进行反馈,具体如下:
1、对应于不同的业务场景(例如:时间提醒,接收信息,来电,闹钟,游戏等),可以对应不同的振动效果。
2、作为对触摸的反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动效果。作用于显示屏不同区域的触摸操作,也可对应不同的振动效果。
电子设备中常用的线性马达包括X轴线性马达(又称方形或横向线性马达)以及Z轴线性马达(又称圆形或纵向线性马达)两种。图1a为X轴线性马达的结构以及应用示例,图1b为Z轴线性马达的结构以及应用示例。
如图1a所示,X轴线性马达的外观呈长条或方块形,假设X轴为水平轴,Y轴为竖直轴,Z轴为垂直于X轴和Y轴的垂直轴,则依据摆放方向,X轴线性马达的动子可以在X 轴或Y轴方向运动,可以做到更长的行程。X轴线性马达在电子设备中沿X轴方向安装,则能够提供X轴方向的振感,若沿Y轴方向安装,则能提供Y轴方向的振感。
如图1b所示,Z轴线性马达的外观呈圆柱形,动子可以在Z轴方向运动。Z轴线性马达设置在电子设备中,能够带来沿电子设备的厚度方向的振感。
线性马达的谐振频率是线性马达运行的关键参数,谐振频率也称共振频率,是指一物理***(指线性马达)在特定频率下,比其他频率以更大的振幅做振动的情形,此特定频率被称之为共振频率。在共振频率下,很小的驱动力便可使线性马达产生很大的振动,因此,一般驱动线性马达以谐振频率运行。
振动描述文件是控制线性马达发生振动的关键要素之一:振动描述文件用于描述线性马达的振动波形,振动波形指示马达振动过程中的各项振动参数,例如振幅和频率等。
可见,振动描述文件的作用是指示马达如何进行振动,因此用户可以通过振动描述文件配置预期的振动效果。而实际中,线性马达是振动的实施主体,因此,振动效果与线性马达的属性相关,所以,虽然基于预期的振动效果配置振动描述文件,但振动描述文件控制的线性马达产生的振动,不一定能够实现预期的振动效果。
基于上述不同种类的线性马达的特点,申请人在研究的过程中发现:线性马达不能提供预期的振动效果主要体现在:
不同种的线性马达或者同种线性马达,其谐振频率是有差异的。不同谐振频率的线性马达均会应用到电子设备中,因此,同一种振动描述文件描述的瞬态驱动波形的频率,并不能与实施振动的每一种线性马达的谐振频率相适配。例如:振动描述文件定义频率为230hz的振动波形,实施振动的线性马达的谐振频率为150hz和230hz。如前所述,线性马达的谐振频率为150hz,线性马达输出频率为150hz的驱动波形,才能保证在很小的驱动力促使线性马达产生很大的振动。振动描述文件定义的振动波形的频率为230hz,谐振频率为150hz的线性马达输出频率为230hz振动波形,会使得线性马达输出的振感达不到要求。因此,有必要对振动描述文件描述的振动波形进行调整,使振动波形与实施振动的线性马达的每一种谐振频率适配,以保证获得预期的振动效果,并获得预期的振感。
本申请实施例公开的线性马达的振动波形调整方法,基于实施振动的线性马达的特点,对振动描述文件描述的振动波形进行调整,使振动波形与实施振动的线性马达的谐振频率适配,以保证获得预期的振动效果以及振感。
本申请实施例公开的线性马达的振动波形的调整方法,应用在设置线性马达的电子设备,设置线性马达的电子设备可以是手机、平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、可穿戴电子设备、智能手表等设备。
图2所示的电子设备包括:处理器110、外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B, 气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本实施例示意的结构并不构成对电子设备的具体限定。在另一些实施例中,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
本申请实施例中,处理器110执行下述实施例提出的驱动波形的调整方法。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块 170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等***器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备充电,也可以用于电子设备与***设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备的结构限定。在本申请另一些实施例中,电子设备也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
电子设备通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oled,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备的显示屏194上可以显示一系列图形用户界面(graphical user interface,GUI),这些GUI都是该电子设备的主屏幕。一般来说,电子设备的显示屏194的尺寸是固定的,只能在该电子设备的显示屏194中显示有限的控件。控件是一种GUI元素,它是一种软件组件,包含在应用程序中,控制着该应用程序处理的所有数据以及关于这些数据的交互操作,用户可以通过直接操作(direct manipulation)来与控件交互,从而对应用程序的有关信息进行读取或者编辑。一般而言,控件可以包括图标、按钮、菜单、选项卡、文本框、对话框、状态栏、导航栏、Widget等可视的界面元素。例如,在本申请实施例中,显示屏194可以显示虚拟按键。
电子设备可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备可以支持一种或多种视频编解码器。这样,电子设备可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
本申请实施例中,内部存储器121存储的是用于执行驱动波形的调整方法的指令。处理器110可以通过执行存储在内部存储器121中的指令,对振动描述文件描述的驱动波形进行调整,以保证驱动波形的视频与每一种线性马达的谐振频率相适配,屏蔽掉不同线性马达不同谐振频率的差异。
电子设备可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备可以设置至少一个麦克风170C。在另一些实施例中,电子设备可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备根据压 力传感器180A检测所述触摸操作强度。电子设备也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备是翻盖机时,电子设备可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备在各个方向上(一般为三轴)加速度的大小。当电子设备静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备通过发光二极管向外发射红外光。电子设备使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备附近有物体。当检测到不充分的反射光时,电子设备可以确定电子设备附近没有物体。电子设备可以利用接近光传感器180G检测用户手持电子设备贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备对电池142加热,以避免低温导致电子设备 异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备可以接收按键输入,产生与电子设备的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于柔性屏幕194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
本申请实施例中,马达191可以采用多种线性马达,处理器110执行线性马达的驱动程序以驱动线性马达运行。并且,线性马达的驱动程序驱动线性马达运行时所涉及到的驱动波形的调整方案,如本申请下述实施例提供的驱动波形的调整方法。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过***SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备的接触和分离。电子设备可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时***多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备中,不能和电子设备分离。
进一步的,图3a为本申请实施例公开的技术方案应用的软件架构的示例,结合图3b内容可知:
振动描述文件的生成模块(可与第三方应用进行交互),用于生成振动描述文件;解析模块对振动描述文件进行解析,得到用于描述振动波形的json格式的文件,波形处理模块针对json格式的文件,进行波形处理操作,得到驱动波形。波形处理模块进行波形处理操作后得到的驱动波形经合成模块合成处理,得到脉冲编码调制(Pulse Code Modulation, PCM)等格式的音频码流,以实时传输协议(Real-time Transport Protocol,RTP)等协议传输至集成电路(Integrated Circuit,IC),并最终作用于线性马达,控制线性马达运行。
结合以上电子设备的结构,图3a所示的软件架构,可以存储在内部存储器121中,由处理器110调用实现图3b所述的流程。
本申请实施例所述的线性马达的驱动波形的调整方法,可以应用在图3a中的波形处理模块。以下将对线性马达的驱动波形的调整方法进行详细说明。
图4示出了一种驱动波形的调整方法,应用于电子设备,电子设备包括线性马达。该驱动波形的调整方法包括:
S401、获取振动描述文件。
振动描述文件包括多种振动参数,通过解析振动描述文件,可得到振动描述文件包括的每一种振动参数,且利用振动参数可生成线性马达的振动波形。线性马达的振动波形可以理解为一种位移码流,体现出线性马达在不同时间点下的位移。
如前所述,X轴线性马达的动子可以在X轴或Y轴方向运动,Z轴线性马达的动子可以在Z轴方向运动。因此,无论是哪一种线性马达,线性马达受波形驱动的运行,都是指线性马达的动子在对应轴(X轴、Y轴或Z轴)上的运行,动子在对应轴上运动的表现形式就是动子在不同时刻沿对应轴发生位移变化,通过动子沿在不同时刻的位移变化,带来被用户感受到的振感。
振动描述文件中的振动参数可以包括但不限于:强度、锐度(也称为频率)、波形类型、启动时间以及停止时间。
S402、识别振动描述文件描述的波形类型。
若振动描述文件描述的波形类型为瞬态波形,则执行步骤S203。
振动描述文件的振动参数包括波形类型,通过分析波形类型,可以确定出振动描述文件描述的是稳态波形还是瞬态波形。
可以理解的是:稳态波形为驱动线性马达经历上升阶段、稳定振动阶段和停止阶段的振动波形。上升阶段、稳定振动阶段和停止阶段为线性马达从开始振动到结束振动经历的三个阶段。在上升阶段,线性马达的振动形式表现为自由衰减振动伴随强迫振动,在稳定振动阶段线性马达的振动形式表现为等幅的稳态强迫振动,在停止阶段线性马达的振动形式表现为自由衰减振动。
瞬态波形为驱动线性马达仅经历上升阶段的振动波形。
S403、按照与线性马达的谐振频率相适配的波形数组的参数,生成多个半周期波形,并组合生成的多个半周期波形,得到振动描述文件描述的瞬态波形。
振动描述文件包括的振动参数,定义出要需要生成的振动波形。因此,基于振动描述文件描述的瞬态波形的振动参数,可以生成满足振动参数需求的振动波形。例如:振动描述文件定义的振动参数包括:频率为230hz,基于该振动参数,可以生成频率为230hz的振动波形。
但是,如前所述,由于不同的线性马达,其适配的频率(也称谐振频率)是有差异性的。振动描述文件描述的瞬态波形的频率,在与线性马达的谐振频率不匹配时,会带来线 性马达振感达不到振动描述文件描述的瞬态波形振感要求。因此,需要处理振动描述文件描述的瞬态波形的振动参数,生成与线性马达的适配的每一种谐振频率相匹配的驱动波形。也可以理解成:需要屏蔽掉线性马达的谐振频率的差异,控制多个不同谐振频率的线性马达,均能输出同种振动描述文件描述的瞬态波形。例如:针对振动描述文件定义频率为230hz的振动波形,需要由谐振频率为230hz的线性马达以及150hz的线性马达来输出。
为了保证振动描述文件描述的瞬态波形,可以由不同谐振频率的线性马达来输出,预先定义出线性马达的每一种谐振频率对应的波形数组,并存储在电子设备的内部存储器。波形数组包括:多个半周期波形,每个半周期波形是以瞬态波形的半个周期为拆分单位,对线性马达谐振频率适配的瞬态波形进行拆分得到。当然,在电子设备的内部存储器存***形数组,是存储用于生成每半个周期的波形的频率和振幅。
另外,振动描述文件描述的瞬态波形周期是固定的,例如,一个瞬态波形包括3个周期的波形,每种谐振频率的线性马达的波形数组则会包括:6个半周期波形对应的频率和振幅。
在振动描述文件描述的波形类型为瞬态波形的情况下,从预先存储的每一种谐振频率对应的波形数组中,筛选出电子设备中线性马达的谐振频率对应的波形数组,按照波形数组中指示的多个半周期波形的频率和振幅,生成每一个半周期波形,再组合生成的每一个半周期波形,得到瞬态波形。
图5示出了另一种驱动波形的调整方法,也应用于电子设备,电子设备包括线性马达。该驱动波形的调整方法包括:
S501、获取振动描述文件。
S502、识别振动描述文件描述的波形类型。
若振动描述文件描述的波形类型为瞬态波形,则执行步骤S503。
步骤S501和步骤S502的具体内容,可参见图4对应实施例中步骤S501和步骤S502的内容。
S503、按照振动描述文件描述的瞬态波形的振动参数,从预先存储的多个驱动波形中,选择与线性马达的谐振频率相匹配的驱动波形。
可以理解的是:从预先存储的多个驱动波形中,选择与线性马达的谐振频率相匹配的驱动波形,也需要符合振动描述文件描述的瞬态波形的振动参数要求。这种预先存储多个驱动波形,按照振动描述文件描述的瞬态波形的振动参数和线性马达的谐振频率的要求,选择出一个驱动波形来驱动线性马达的方式,也可以实现屏蔽掉线性马达的谐振频率的差异性,当然,由于是直接选择,能够做到得到驱动波形的效率更高。
由于线性马达的谐振频率需求是有限的,不同的线性马达需要不同谐振频率的驱动波形。因此,可以预先生成适应不同谐振频率的线性马达的驱动波形,存储至电子设备的内部存储器,这些预先生成的驱动波形,就称之为原子驱动波形。
原子驱动波形的生成方式,由下述三种:
第一种,将线性马达所涉的每一种谐振频率的驱动波形,均作为原子驱动波形。如此,可以保证线性马达的每一种谐振频率,均能从存储的原子驱动波形中,找到相适配的原子驱动波动。但是本生成方式需要占用较大的存储空间。
第二种,将线性马达所涉的频率范围内中的一段频率范围中的每一个频率的驱动波形,作为原子驱动波形,例如:线性马达所涉的所有频率的频率范围为70hz到185hz,将本频率范围内的每一个频率的驱动波形,作为原子驱动波形;或者将70hz到185hz中的165hz到175hz中的每一个频率的驱动波形,作为原子驱动波形。当然,线性马达所涉的频率范围内中的一段频率范围的选定标准也可以是:命中率较高的频率范围,命中率较高同样指代被多数线性马达所采用的频率组成的范围。本生成方式生成的原子驱动波形数量相对第一种较少,不需要占用较大的存储空间,随之带来的是有可能存在无法找到线性马达的一种谐振频率对应的原子驱动波形。
第三种,将命中率较高的线性马达的谐振频率的驱动波形,作为原子驱动波形。命中率较高的谐振频率是指:在一系列的线性马达的谐振频率中,属于被多数线性马达所采用的谐振频率。例如:频率范围由70hz到185hz中,70、80、90、100、120、130、150和170这几个频率属于被多数线性马达所设定的谐振频率,会被设定为命中率较高的谐振频率。本生成方式在第二种的基础上,又进一步降低了存储空间的要求,同样无法找到线性马达的一种谐振频率对应的原子驱动波形的概率也增加了。
振动描述文件描述的瞬态波形频率是多样化的,即可以要求线性马达按照不同频率的波形来运行。基于此,在每一种原子驱动波形要包含的驱动波形的数量为多个,每一个驱动波形适配振动描述文件描述的瞬态波形的一种频率需求。例如:谐振频率为165hz的线性马达的原子驱动波形包括:频率为80hz的瞬态波形对应的驱动波形,频率为81hz的瞬态波形对应的驱动波形,频率为82hz的瞬态波形对应的驱动波形……
由上述内容可以看出:预先存储了适配线性马达不同谐振频率的原子驱动波形,因此,针对线性马达的每一种谐振频率,均能从存储的原子驱动波形中筛选出适配的原子驱动波形,并且,由于每一种原子驱动波形包括适配振动描述文件描述的瞬态波形的多种频率需求的驱动波形,因此,从筛选出适配的原子驱动波形中还可以进一步筛选出符合振动描述文件描述的瞬态波形的频率的驱动波形,如此,可以保证多种谐振频率的线性马达,可以输出同一个振动描述文件描述的瞬态波形,实现了对线性马达的谐振频率差异性的屏蔽。
基于上述内容可知:预先存储的多个驱动波形是以成组的方式进行保存的,一组驱动波形(也就是上述内容的一种原子驱动波形)对应线性马达的一种谐振频率;每一组驱动波形中包含至少一个驱动波形,每一个驱动波形适应于振动描述文件描述的瞬态波形的一种频率需求。
因此,步骤S503的一种实施方式为:
从多组驱动波形中,选择出频率与线性马达的谐振频率相匹配的一组驱动波形。
在一个示例中:振动描述文件的振动参数包括:振动频率为82hz;线性马达的谐振频率为165hz,按照本步骤的方式从多组驱动波形中,筛选出频率为165hz的一组驱动波形。
从选择出的一组驱动波形中,按照振动描述文件描述的瞬态波形的振动参数选择驱动波形。
续接上述示例:165hz的一组驱动波形包括多个驱动波形,每一个驱动波形是对应振动波形的一个频率,基于此,从165hz的一组驱动波形,筛选出频率为82hz的驱动波形。
在一个可能的实施方式中,采用上述提出的第二种和第三种原子驱动波形的生成方式生成原子驱动波形并存储,若在预先存储的多种原子驱动波形中,无法筛选出与线性马达的谐振频率相匹配的原子驱动波形,先从存储的多种原子驱动波形中,选择出与线性马达的谐振频率最接近的原子驱动波形,再从选择出的原子驱动波形中,按照振动描述文件描述的瞬态波形的振动参数选择驱动波形之后,按照线性马达的谐振频率,对选择出的驱动波形进行插值运算,得到与线性马达的谐振频率相匹配的驱动波形。与线性马达的谐振频率最接近,可以理解成频率与线性马达的谐振频率相同或者差值最小。
可选地,按照线性马达的谐振频率,对选择出的驱动波形进行插值运算,可以是采用重采样算法,对驱动波形进行采样,得到多个采样点的数值,再将多个采样点的数值***到驱动波形,完成对驱动波形的调整,得到与线性马达的谐振频率相匹配的驱动波形。
图6示出了另一种驱动波形的调整方法,也应用于电子设备,电子设备包括线性马达。该驱动波形的调整方法包括:
S601、获取振动描述文件。
S602、识别振动描述文件描述的波形类型。
若振动描述文件描述的波形类型为瞬态波形,则执行步骤S603。
步骤S601和步骤S602的具体内容,可参见图4对应实施例中步骤S401和步骤S402的内容。
S603、从预先存储的多个振动波形中,选择出符合振动描述文件描述的瞬态波形的振动参数要求的振动波形。
针对驱动线性马达按照不同频率下的振动波形进行输出的需求,预先存储多个频率的振动波形(为瞬态振动波形),若振动描述文件描述的波形类型是瞬态波形,则按照振动描述文件描述的瞬态波形的振动参数,从预先存储的多个振动波形进行筛选,选择出与振动描述文件描述的瞬态波形的振动参数相匹配的振动波形。
S604、处理选择出的振动波形,得到与线性马达的谐振频率相匹配的驱动波形。
在选择出符合振动描述文件描述的瞬态波形的振动参数要求的振动波形后,利用反解马达电压驱动算法对振动波形进行反解运算,得到与线性马达的谐振频率相匹配的驱动波形。
在利用反解马达电压驱动算法对振动波形进行反解运算过程中,会按照线性马达的谐振频率对振动波形进行调整,以得到与线性马达的谐振频率相匹配的驱动波形。
反解马达电压驱动算法本身具有将振动波形反解成适配线性马达的谐振频率的功能,本实施例中,利用该算法的此种功能,实现了屏蔽掉线性马达的谐振频率差异性的目的。
还需要说明的是,若预先存储的多个频率的振动波形,不足以覆盖驱动线性马达按照所有频率的波形进行输出的需求,那在预先存储的多个振动波形中,无法选择出符合振动描述文件描述的瞬态波形的振动参数的振动波形,例如:预先存储了100hz到130hz的振 动波形,振动描述文件描述的瞬态波形的频率为135hz,针对振动描述文件描述的瞬态波形的135hz频率需求,在100hz到130hz的振动波形中不能找对等同频率的振动波形。
在此种情况下,需要从预先存储的多个振动波形中,选择出与振动描述文件描述的瞬态波形的振动参数最接近的振动波形,当然,这种最接近就是指代频率与振动描述文件描述的瞬态波形的振动参数差值最小。按照振动描述文件描述的瞬态波形的振动参数,对选择出的振动波形进行插值运算,以得到与振动描述文件描述的瞬态波形的振动参数相匹配的振动波形。
在一个可能的实施方式中,按照振动描述文件描述的瞬态波形的振动参数,对选择出的振动波形进行插值运算,可以是采用重采样算法,对振动波形进行采样,得到多个采样点的数值,再将多个采样点的数值***到振动波形,完成对振动波形的调整,得到与振动描述文件描述的瞬态波形的振动参数相匹配的振动波形。
还需要说明的是,振动波形处理模块和驱动波形处理模块采用图2、图3或者图4对应的三个实施例内容,生成驱动波形,其实现原理可以理解成:依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形。如此可以看出:在振动描述文件描述的波形类型为瞬态波形的情况下,依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形,保证了生成的线性马达的驱动波形能够适配该线性马达的谐振频率,实现了生成屏蔽马达差异性的瞬态波形来驱动线性马达。
本申请实施例提供了一种驱动波形的调整装置,如图7所示,包括:
获取单元701,用于获取振动描述文件。
识别单元702,用于识别振动描述文件描述的波形类型。
生成单元703,用于若振动描述文件描述的波形类型为瞬态波形,依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形。
可选地,本申请的另一实施例中,生成单元703执行依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形时,用于:按照与线性马达的谐振频率相适配的波形数组的参数,生成多个半周期波形;再组合生成的多个半周期波形,得到振动描述文件描述的瞬态波形。
可选地,本申请的另一实施例中,生成单元703执行依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形时,用于:从预先存储的多个驱动波形中,选择与线性马达的谐振频率相匹配的驱动波形,与线性马达的谐振频率相匹配的驱动波形,符合振动描述文件描述的瞬态波形的振动参数要求。
可选地,本申请的另一实施例中,多个驱动波形以成组方式保存,一组驱动波形对应线性马达的一种谐振频率;每一组驱动波形中包含至少一个驱动波形,每一个驱动波形适应于线性马达的振动波形的一种频率需求;
生成单元703执行从预先存储的多个驱动波形中,选择与线性马达的谐振频率相匹配的驱动波形,与线性马达的谐振频率相匹配的驱动波形,符合振动描述文件描述的瞬态波形的振动参数要求时,用于:从多组驱动波形中,选择出与线性马达的谐振频率相匹配的 一组驱动波形;从选择出的一组驱动波形中,确定出符合振动描述文件描述的瞬态波形的振动参数要求的驱动波形。
可选地,本申请的另一实施例中,生成单元703执行依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成线性马达的驱动波形时,用于:
从预先存储的多个振动波形中,选择出符合振动描述文件描述的瞬态波形的振动参数要求的振动波形;处理选择出的振动波形,得到与线性马达的谐振频率相匹配的驱动波形。
本申请上述几个实施例提供的驱动波形的调整装置中,获取单元701、识别单元702和生成单元703的具体工作过程,可参见对应方法实施例内容,此处不再赘述。
本申请另一实施例提供了一种可读存储介质,当可读存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行如上述任一实施例中的驱动波形的调整方法。
可选地,可读存储介质可以是非临时性计算机可读存储介质,例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。

Claims (12)

  1. 一种驱动波形的调整方法,应用于电子设备,所述电子设备包括线性马达,其特征在于,包括:
    获取振动描述文件;
    识别所述振动描述文件描述的波形类型;
    若所述振动描述文件描述的波形类型为瞬态波形,依据所述振动描述文件描述的振动参数以及线性马达的谐振频率,生成所述线性马达的驱动波形。
  2. 根据权利要求1所述的驱动波形的调整方法,其特征在于,所述依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成所述线性马达的驱动波形,包括:
    按照与所述线性马达的谐振频率相适配的波形数组的参数,生成多个半周期波形;
    组合生成的多个半周期波形,得到所述振动描述文件描述的瞬态波形。
  3. 根据权利要求1所述的驱动波形的调整方法,其特征在于,所述依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成所述线性马达的驱动波形,包括:
    从预先存储的多个驱动波形中,选择与所述线性马达的谐振频率相匹配的驱动波形,所述与所述线性马达的谐振频率相匹配的驱动波形,符合所述振动描述文件描述的瞬态波形的振动参数要求。
  4. 根据权利要求3所述的驱动波形的调整方法,其特征在于,所述预先存储的多个驱动波形以成组方式保存,一组驱动波形对应线性马达的一种谐振频率;每一组驱动波形中包含至少一个驱动波形,每一个驱动波形适应于线性马达的振动波形的一种频率需求;
    所述从预先存储的多个驱动波形中,选择与所述线性马达的谐振频率相匹配的驱动波形,所述与所述线性马达的谐振频率相匹配的驱动波形,符合所述振动描述文件描述的瞬态波形的振动参数要求,包括:
    从多组驱动波形中,选择出与所述线性马达的谐振频率相匹配的一组驱动波形;
    从选择出的一组驱动波形中,确定出符合所述振动描述文件描述的瞬态波形的振动参数要求的驱动波形。
  5. 根据权利要求1所述的驱动波形的调整方法,其特征在于,所述依据振动描述文件描述的振动参数以及线性马达的谐振频率,生成所述线性马达的驱动波形,包括:
    从预先存储的多个振动波形中,选择出符合所述振动描述文件描述的瞬态波形的振动参数要求的振动波形;
    处理选择出的振动波形,得到与所述线性马达的谐振频率相匹配的驱动波形。
  6. 一种驱动波形的调整装置,其特征在于,包括:
    获取单元,用于获取振动描述文件;
    识别单元,用于识别所述振动描述文件描述的波形类型;
    生成单元,用于若所述振动描述文件描述的波形类型为瞬态波形,依据所述振动描述文件描述的振动参数以及线性马达的谐振频率,生成所述线性马达的驱动波形。
  7. 根据权利要求6所述的驱动波形的调整装置,其特征在于,所述生成单元执行依据所述振动描述文件描述的振动参数以及线性马达的谐振频率,生成所述线性马达的驱动波 形时,用于:按照与所述线性马达的谐振频率相适配的波形数组的参数,生成多个半周期波形;组合生成的多个半周期波形,得到所述振动描述文件描述的瞬态波形。
  8. 根据权利要求6所述的驱动波形的调整装置,其特征在于,所述生成单元执行依据所述振动描述文件描述的振动参数以及线性马达的谐振频率,生成所述线性马达的驱动波形时,用于:从预先存储的多个驱动波形中,选择与所述线性马达的谐振频率相匹配的驱动波形,所述与所述线性马达的谐振频率相匹配的驱动波形,符合所述振动描述文件描述的瞬态波形的振动参数要求。
  9. 根据权利要求8所述的驱动波形的调整装置,其特征在于,所述预先存储的多个驱动波形以成组式保存,一组驱动波形对应线性马达的一种谐振频率;每一组驱动波形中包含至少一个驱动波形,每一个驱动波形适应于线性马达的振动波形的一种频率需求;
    所述生成单元执行从预先存储的多个驱动波形中,选择与所述线性马达的谐振频率相匹配的驱动波形,所述与所述线性马达的谐振频率相匹配的驱动波形,符合所述振动描述文件描述的瞬态波形的振动参数要求时,用于:从多组驱动波形中,选择出与所述线性马达的谐振频率相匹配的一组驱动波形;
    从选择出的一组驱动波形中,确定出符合所述振动描述文件描述的瞬态波形的振动参数要求的驱动波形。
  10. 根据权利要求6所述的驱动波形的调整装置,其特征在于,所述生成单元执行依据所述振动描述文件描述的振动参数以及线性马达的谐振频率,生成所述线性马达的驱动波形时,用于:
    从预先存储的多个振动波形中,选择出符合所述振动描述文件描述的瞬态波形的振动参数要求的振动波形;
    处理选择出的振动波形,得到与所述线性马达的谐振频率相匹配的驱动波形。
  11. 一种电子设备,其特征在于,包括:
    线性马达;
    一个或多个处理器;
    存储器,其上存储有程序;
    当所述程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至5中任意一项所述的驱动波形的调整方法生成驱动波形,以驱动所述线性马达运行。
  12. 一种可读存储介质,其特征在于,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至5中任意一项所述的驱动波形的调整方法。
PCT/CN2022/073174 2021-05-20 2022-01-21 驱动波形的调整方法、装置、设备及可读存储介质 WO2022242218A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/796,827 US20240185694A1 (en) 2021-05-20 2022-01-21 Adjustment Method and Apparatus for Driving Waveform, Device, and Readable Storage Medium
EP22741141.0A EP4325713A1 (en) 2021-05-20 2022-01-21 Method and apparatus for adjusting driving waveform, and device and readable storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110552989.7 2021-05-20
CN202110552989 2021-05-20
CN202110668265.9 2021-06-16
CN202110668265.9A CN115395827A (zh) 2021-05-20 2021-06-16 驱动波形的调整方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022242218A1 true WO2022242218A1 (zh) 2022-11-24

Family

ID=84114799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073174 WO2022242218A1 (zh) 2021-05-20 2022-01-21 驱动波形的调整方法、装置、设备及可读存储介质

Country Status (4)

Country Link
US (1) US20240185694A1 (zh)
EP (1) EP4325713A1 (zh)
CN (1) CN115395827A (zh)
WO (1) WO2022242218A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117578949A (zh) * 2023-05-29 2024-02-20 荣耀终端有限公司 一种线性马达的控制方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160132117A1 (en) * 2013-10-25 2016-05-12 Panasonic Intellectual Property Management Co., Ltd. Electronic device
CN109274309A (zh) * 2018-09-28 2019-01-25 Oppo广东移动通信有限公司 马达控制方法、装置、电子设备及存储介质
CN109874398A (zh) * 2017-01-04 2019-06-11 华为技术有限公司 一种线性马达的驱动方法及终端
CN109887528A (zh) * 2019-02-15 2019-06-14 上海艾为电子技术股份有限公司 马达随音频振动的方法及装置、存储介质及电子设备
CN111030412A (zh) * 2019-12-04 2020-04-17 瑞声科技(新加坡)有限公司 一种振动波形的设计方法及振动马达
CN111954861A (zh) * 2018-03-22 2020-11-17 思睿逻辑国际半导体有限公司 驱动波形调整以补偿换能器谐振频率

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160132117A1 (en) * 2013-10-25 2016-05-12 Panasonic Intellectual Property Management Co., Ltd. Electronic device
CN109874398A (zh) * 2017-01-04 2019-06-11 华为技术有限公司 一种线性马达的驱动方法及终端
CN111954861A (zh) * 2018-03-22 2020-11-17 思睿逻辑国际半导体有限公司 驱动波形调整以补偿换能器谐振频率
CN109274309A (zh) * 2018-09-28 2019-01-25 Oppo广东移动通信有限公司 马达控制方法、装置、电子设备及存储介质
CN109887528A (zh) * 2019-02-15 2019-06-14 上海艾为电子技术股份有限公司 马达随音频振动的方法及装置、存储介质及电子设备
CN111030412A (zh) * 2019-12-04 2020-04-17 瑞声科技(新加坡)有限公司 一种振动波形的设计方法及振动马达

Also Published As

Publication number Publication date
US20240185694A1 (en) 2024-06-06
EP4325713A1 (en) 2024-02-21
CN115395827A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US11775135B2 (en) Application icon displaying method and terminal
CN112686981A (zh) 画面渲染方法、装置、电子设备及存储介质
EP4024189A1 (en) Electronic device control method and electronic device
WO2022001258A1 (zh) 多屏显示方法、装置、终端设备及存储介质
EP4113820A1 (en) Linear motor control method and apparatus, device, and readable storage medium
WO2022257563A1 (zh) 一种音量调节的方法,电子设备和***
CN110058729B (zh) 调节触摸检测的灵敏度的方法和电子设备
CN111372329B (zh) 一种连接建立方法及终端设备
WO2022242218A1 (zh) 驱动波形的调整方法、装置、设备及可读存储介质
CN115714890A (zh) 供电电路和电子设备
WO2022242300A1 (zh) 线性马达的振动波形调整方法及装置
WO2023216930A1 (zh) 基于穿戴设备的振动反馈方法、***、穿戴设备和电子设备
CN112527220B (zh) 一种电子设备显示方法及电子设备
CN114089902A (zh) 手势交互方法、装置及终端设备
WO2022247324A1 (zh) 马达阻尼的测算方法和***
CN115459643A (zh) 线性马达的振动波形调整方法及装置
EP4206865A1 (en) Brush effect picture generation method, image editing method and device, and storage medium
CN114257680B (zh) 来电显示的方法、用户设备、存储介质及电子设备
WO2022242216A1 (zh) 振动波形的处理方法、装置、设备及可读存储介质
WO2022242299A1 (zh) 驱动波形的调整方法及装置、电子设备、可读存储介质
WO2022242301A1 (zh) 振动描述文件的生成方法、装置、设备及可读存储介质
US20240212463A1 (en) Adjustment method and apparatus for driving waveform, electronic device, and readable storage medium
CN110737916A (zh) 通信终端及处理方法
WO2023020420A1 (zh) 音量显示方法、电子设备及存储介质
WO2024114212A1 (zh) 跨设备切换焦点的方法、电子设备及***

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17796827

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22741141

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022741141

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022741141

Country of ref document: EP

Effective date: 20231220