WO2022241839A1 - 触控显示面板及电子设备 - Google Patents

触控显示面板及电子设备 Download PDF

Info

Publication number
WO2022241839A1
WO2022241839A1 PCT/CN2021/097529 CN2021097529W WO2022241839A1 WO 2022241839 A1 WO2022241839 A1 WO 2022241839A1 CN 2021097529 W CN2021097529 W CN 2021097529W WO 2022241839 A1 WO2022241839 A1 WO 2022241839A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
touch
source
drain
via hole
Prior art date
Application number
PCT/CN2021/097529
Other languages
English (en)
French (fr)
Inventor
舒敏
赵瑜
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/433,992 priority Critical patent/US20240019950A1/en
Publication of WO2022241839A1 publication Critical patent/WO2022241839A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present application relates to the field of display technology, in particular to a touch display panel and electronic equipment.
  • DOT Direct On Cell Touch (directly make the touch layer on the packaging layer) technology is an integrated packaging and touch technology, which directly integrates the touch function layer on the packaging layer, without adding a separate layer of external touch layer. Better transmittance, bending resistance, and can effectively reduce the thickness of the screen and reduce product costs.
  • the high-temperature film-forming process is generally not used to make the touch screen.
  • the touch electrodes and touch traces in the control function layer specifically, the substrate material of the touch traces in the touch function layer is an inorganic packaging layer, and the substrate material of the touch traces in the non-display area is Therefore, during the etching process of the touch electrodes and touch traces, adjacent touch electrodes and/or touch traces are prone to deformation or collapse or even short circuit.
  • the present application provides a touch display panel and electronic equipment, which alleviates the technical problem that the touch structure is prone to poor etching during the etching process.
  • the present application provides a touch display panel, and the touch display panel further includes: a substrate; a thin film transistor array layer disposed on the substrate, including a plurality of thin film transistors; and an organic light emitting layer, the organic light emitting layer is located in the display area , and arranged on the side of the thin film transistor away from the substrate; the touch function layer is arranged on the side of the organic light-emitting layer away from the substrate, the touch function layer includes electrically connected touch electrodes and touch traces, and the touch electrodes are located In the display area, the touch trace extends along the display area to the non-display area; wherein, the thin film transistor array layer further includes a first metal layer, and the first metal layer includes a first wiring in the display area and a touch control line in the non-display area. As for the wiring, the first wiring is electrically connected to the thin film transistor, and the touch wiring is electrically connected to the touch trace in the non-display area.
  • the non-display area includes a first frame sub-area, a bending area and a second frame sub-area distributed in sequence; the first frame sub-area is located between the display area and the bending area; the touch display panel also It includes: a barrier, arranged on the side of the thin film transistor array layer away from the substrate, and arranged in the non-display area; an encapsulation layer, arranged between the organic light-emitting layer and the touch function layer, and the encapsulation layer covers the light-emitting layer in the display area, And extending to cover the retaining wall in the non-display area; wherein, the touch trace and the touch trace are electrically connected through a via hole, and the via hole is arranged between the retaining wall and the bending area.
  • the thin film transistor array layer includes a first gate insulating layer, a first gate layer, a second gate insulating layer, a second gate layer, an interlayer stacked on one side of the substrate, The insulating layer, the first source and drain layer, the first organic planar layer and the second source and drain layer; the touch display panel also includes a second organic planar layer; the second organic planar layer is located between the thin film transistor array layer and the touch function layer Between; the second source and drain layers are far away from the substrate.
  • the first metal layer is the second source and drain layer; the via hole penetrates through the second organic planar layer, and the via hole is connected with the second source and drain layer and the touch function layer.
  • the second source-drain layer includes a plurality of second source-drain wires; the first wires are the second source-drain wires.
  • the first metal layer is the first source and drain layer; the via hole runs through the first organic planar layer, the second source and drain layer, and the second organic planar layer, and the via hole is connected to the first source and drain layer layer and the touch function layer are connected.
  • the first metal layer is the second gate layer; the via hole penetrates through the interlayer insulating layer, the first source-drain layer, the first organic planar layer, the second source-drain layer, and the second organic planar layer. layer, and the via hole is connected to the second gate layer and the touch function layer.
  • the first metal layer is the first gate layer; the via hole penetrates through the second gate insulating layer, the second gate layer, the interlayer insulating layer, the first source and drain layer, the first organic planar layer, the second source and drain layer and the second organic planar layer, and the via hole is connected with the first gate layer and the touch function layer.
  • At least one of the touch electrodes, the touch traces and the touch traces includes a composite film layer of Ti/Al/Ti material, and the touch traces are manufactured by a high-temperature film-forming process. to make.
  • the present application provides an electronic device, which includes the touch display panel in any one of the above implementation manners.
  • the touch display panel and electronic equipment provided by this application can use the preparation process of the thin film transistor array layer to prepare the touch traces in the non-display area on the same layer, which alleviates the problem of touch traces in the display area and touch traces in the non-display area.
  • the substrate materials of the traces are different, resulting in poor etching of the touch traces.
  • FIG. 1 is a schematic structural diagram of a touch display panel in a display area in a conventional technical solution.
  • FIG. 2 is a schematic structural diagram of a touch display panel in a non-display area in a conventional technical solution.
  • FIG. 3 is a schematic flowchart of a method for manufacturing a touch display panel in a conventional technical solution.
  • FIG. 4 is a schematic plan view of a touch display panel provided by an embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional structure diagram of a touch display panel provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a touch display panel in a display area provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a touch display panel in a non-display area provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for manufacturing a touch display panel provided by an embodiment of the present application.
  • FIG. 9 is another schematic flowchart of a method for manufacturing a touch display panel provided by an embodiment of the present application.
  • one of the touch display panels is provided with a first film layer structure in the display area as shown in FIG. 1 and a second film layer structure in the non-display area as shown in FIG. 2 .
  • the first film layer structure is stacked with a first thin film transistor array layer 1 , an organic light emitting layer 2 , an encapsulation layer 3 , a first touch function layer and an organic insulating layer 8 .
  • the second film layer structure is stacked with the first thin film transistor array layer 1, the first drain source layer 9, the first organic planar layer 10, the second drain source layer 11, and the second organic planar layer 12.
  • the first touch function layer and the organic insulating layer 8 It should be noted that the first touch function layer of the touch display panel extends from the display area to the non-display area, and then connects with the touch driving circuit.
  • the first touch function layer includes a first intermediate insulating layer 4 , an electrical bridging layer 5 , a second intermediate insulating layer 6 and a touch electrode layer 7 which are sequentially stacked.
  • the electrical bridging layer 5 is used for bridging the parts of the contact electrode layer 7 that need to intersect but not be electrically connected.
  • the first thin film transistor array layer (Array) is generally produced; then the organic light-emitting layer (EL) and the packaging layer; and then sequentially on the packaging layer Through pre-cleaning (Pre-Clean), chemical vapor deposition (CVD, Chemical Vapor Deposition) process to produce the first intermediate insulating layer; then on the first intermediate insulating layer through pre-cleaning (Pre-Clean), physical vapor deposition (PVD, Physical Vapor Deposition), photolithography (Photo), dry etching (Dry Etch) and stripping (Strip) process to obtain the electrical bridging layer; and then on the electrical bridging layer through pre-cleaning (Pre-Clean), chemical vapor deposition (CVD, Chemical Vapor Deposition), photolithography (Photo), dry Etching (Dry Etch) and stripping (Strip) processes to obtain the second interlayer insulating layer; then on the second interlayer insulating layer through pre-cleaning (Pre-Clean), chemical vapor deposition (CVD, Chemical Vap
  • the touch display panel shown in Fig. 1 to Fig. 3 needs to make the first touch function layer on/after the organic light-emitting layer.
  • the corresponding electrical bridging layer and/or touch electrode layer The metal film layer is generally made at a lower temperature, which can avoid adverse effects of high temperature on the light-emitting material in the organic light-emitting layer.
  • the toughness and/or strength of the metal produced is not as good as that of the high-temperature film-forming process. During the process, the touch electrodes and/or the touch traces may be deformed easily.
  • the present embodiment provides a touch display panel, and the touch display panel has a touch structure located in a display area and a non-display area.
  • the touch structure includes touch electrodes 51, touch traces 52 and touch traces 231; Extending along the display area to the non-display area; the touch trace 231 is electrically connected to the touch trace 52, the touch trace 231 is located in the first metal layer 23 in the non-display area, and the first metal layer 23 is located in the thin film transistor Array layer 20 .
  • the touch display panel is provided with an organic light emitting layer 30 , and the organic light emitting layer 30 is located between the first metal layer 23 and the touch function layer 50 .
  • the touch display panel provided in this embodiment can use the manufacturing process of the thin film transistor array layer 20 to prepare the touch traces 231 in the non-display area on the same layer, so as to ease the contact between the touch traces 52 in the display area.
  • the substrate materials of the touch traces 231 in the non-display area are different, resulting in poor etching of the touch traces 231 .
  • the touch trace 231 is prepared through a high-temperature film-forming process.
  • the non-display area includes a first frame sub-area, a bending area and a second frame sub-area distributed in sequence; the first frame sub-area is located between the display area and the bending area; the touch trace 52 Located in the first frame sub-area and/or the bending area; and the touch wire 231 is located in the second frame sub-area and/or the bending area.
  • the touch display panel further includes an encapsulation layer 40 and a via hole 80; the encapsulation layer 40 extends from the display area to the first frame sub-area, and forms a barrier in the first frame sub-area.
  • a step is formed at the interruption of the encapsulation layer 40 , and the step is a retaining wall 89 , which can prevent the intrusion of water and oxygen.
  • the via hole 80 is located between the retaining wall 89 and the bending area, which can maximize the length of the touch trace 231 and reduce the length of the touch trace 52.
  • the touch trace prepared on the same layer as the thin film transistor array layer 20 The length ratio of 231 will be larger.
  • the touch structure further includes a via hole 80 ; the via hole 80 is electrically connected to the touch trace 52 and the touch trace 231 , and the via hole 80 is located in the first frame sub-region.
  • the via hole 80 is located in the first frame sub-region, which can maximize the transmission path of the touch trace, and the length of the touch structure that can adopt a high-temperature film-forming process can be further increased, and at the same time shorten the length of the touch control.
  • the length of the trace 52 because the touch trace 52 is located on the organic light-emitting layer 30, so the touch trace 52 is not convenient to adopt a high-temperature film-forming process, so the length of the touch trace 52 is shortened, which can effectively reduce Al migration or Al rot phenomenon.
  • the via hole 80 can be but not limited to the first frame sub-region, and can also be located in the bending region, which can not only play the role of electrically connecting the corresponding touch trace 52 and the touch trace 231, but also Since the via hole 80 is formed in the bending region, the bending stress formed in the bending region during the bending process can be relieved, and the bending performance of the bending region can be improved.
  • At least one of the touch electrodes 51 , the touch traces 52 and the touch traces 231 includes a composite film layer made of Ti/Al/Ti material.
  • the touch conductive material can enhance the bending resistance, which is beneficial to the manufacture of foldable touch products.
  • the touch wiring 231 is provided in the first metal layer 23 in the non-display area, even if this part of the touch wiring 231 adopts a high-temperature film-forming process, it will not affect the light-emitting material in the organic light-emitting layer 30. performance, therefore, the first metal layer 23 is produced through a high-temperature film-forming process, and during the process of etching the touch wiring 231, Al migration or Al corrosion will not occur in the touch wiring 231 during etching.
  • Al is easily corroded by Cl (halogen) ions during or after etching, and once this corrosion occurs, it will continue to react. If the situation is serious, the corresponding touch trace 231 may be hollowed out or Collapses, and its resultant is non-conductive.
  • the touch control structure further includes a touch integrated circuit 90 ; the touch integrated circuit 90 is connected to the touch trace 231 ; and the touch integrated circuit 90 is located in the second frame sub-region.
  • the touch display panel may include a display area AA and a non-display area NA located on one side of the display area AA.
  • the non-display area NA includes the bending area BA.
  • the active layer 27 includes a source 271 , an active region 272 and a drain 273 ; wherein the active region 272 is located between the source 271 and the drain 273 . It can be understood that, in some embodiments, the source 271 and the drain 273 can be interchanged.
  • the first gate layer may include one or more first gates 29 .
  • the second gate layer may include one or more second gates 32 .
  • the source-drain layer may include source wires 341 , drain wires 342 and touch wires 231 located in the non-display area NA.
  • the source lead 341 is electrically connected to the source 271 through the via hole K2.
  • the drain lead 342 is electrically connected to the drain 273 through the via hole K1.
  • the anode layer may include one or more anodes 35 .
  • the anode 35 can be electrically connected to the drain lead 342 through the via hole K3.
  • the metal layer 54 may include one or more touch traces 52 .
  • the metal layer 55 may include one or more touch electrodes 51 .
  • One touch electrode 51 can be electrically connected to one touch trace 52 through one or more via holes 53 .
  • the touch trace 52 may extend from the display area AA to the non-display area NA, but does not extend to the bending area BA. In the non-display area NA, the touch trace 52 can be electrically connected to the touch trace 231 through the via hole 80 .
  • the via hole 80 may be located between the display area AA and the bending area BA, and the via hole 80 may be close to the edge of the encapsulation layer 40 but not in contact with the encapsulation layer 40 .
  • the buffer layer 25, the second polyimide flexible substrate 26, the active layer 27, the insulating layer 28, the first gate layer, and the second gate insulating layer can be hollowed out. 31. At least one of the second gate layer and the interlayer insulating layer 33 is filled with an organic material to form an organic material filling region ODH. It can be understood that this is conducive to improving the bending performance of the bending region and flex life.
  • the touch display panel further includes an encapsulation layer 40 and an organic insulating layer 60; the encapsulation layer 40 is located between the organic light-emitting layer 30 and the touch function layer 50; and the touch function layer 50 is located between the organic insulating layer 60 and the encapsulation layer 40; wherein the encapsulation layer 40 is located in the display area and/or the first frame sub-area.
  • the thin film transistor array layer 20 further includes a second metal layer 21 and a first organic planar layer 22;
  • the touch display panel also includes a second organic planar layer 70 located in the non-display area ;
  • the first metal layer 23 is located between the first organic planar layer 22 and the second organic planar layer 70 ;
  • the second metal layer 21 is located between the thin film transistor array layer 20 and the first organic planar layer 22 .
  • the encapsulation layer 40 may extend from the display area to the first frame sub-area, so as to alleviate the layer difference between the display area and the non-display area of the touch display panel.
  • the touch display panel may include a thin film transistor array layer 20, an organic light emitting layer 30, an encapsulation layer 40, a touch function layer 50 and organic insulating layer 60.
  • the thin film transistor array layer 20 located in the display area includes a first polyimide flexible substrate, a buffer layer, a second polyimide flexible substrate, an active layer, a first gate insulating layer, The first gate layer, the second gate insulating layer, the second gate layer, the interlayer insulating layer, the first source-drain layer, the first organic planar layer 22 and the second source-drain layer.
  • the touch display panel may also include a thin film transistor array layer 20 , a second organic planar layer 70 and an organic insulating layer 60 stacked in sequence.
  • the thin film transistor array layer 20 located in the non-display area includes a first polyimide flexible substrate, a buffer layer, a second polyimide flexible substrate, a first gate insulating layer, a second gate electrode insulating layer, interlayer insulating layer, first source and drain layer, first organic planar layer 22 and second source and drain layer.
  • the reason for the difference in film thickness between the display area and the non-display area of the touch display panel can be obtained.
  • the first metal layer 23 may be any one of the first source-drain layer, the second source-drain layer, the first gate layer and the second gate layer.
  • the via hole 80 penetrates through the second organic planar layer 70, and the via hole 80 is connected with the second source and drain layer and the touch function layer 50 .
  • the via hole 80 runs through the first organic planar layer 22 , the second source and drain layer, and the second organic planar layer 70 , and the via hole 80 It is connected with the first source-drain layer and the touch function layer 50 .
  • the via hole 80 penetrates through the interlayer insulating layer, the first source-drain layer, the first organic planar layer 22, the second source-drain layer and The second organic planar layer 70 , and the via hole 80 is connected with the second gate layer and the touch function layer 50 .
  • the via hole 80 penetrates through the second gate insulating layer, the second gate layer, the interlayer insulating layer, the first source-drain layer, the second An organic planar layer 22 , a second source-drain layer and a second organic planar layer 70 , and the via hole 80 is connected to the first gate layer and the touch function layer 50 .
  • the second source-drain layer includes multiple second source-drain wires; the first source-drain layer includes multiple first source-drain wires; the second gate layer includes multiple second gate wires; A gate layer includes a plurality of first gate wirings; the first wirings may be the second source-drain wirings, the first source-drain wirings, the second gate wirings, and the first gate wirings. of any kind.
  • the via hole 80 located in the bending area can be filled with the second organic planar layer 70 , which can further improve the bending performance of the bending area.
  • the touch electrode 51 is located in the touch function layer 50 ; and the touch electrode 51 and the touch trace 52 are located in the same film layer.
  • the touch electrodes 51 and the touch traces 52 are located in the same layer, which can reduce the number of layers of the touch function layer 50 and simplify the manufacturing process of the touch function layer 50 . Therefore, the film layer structure of the touch function layer 50 in this embodiment includes a touch layer.
  • the manufacturing process of the touch display panel is as follows:
  • the thin film transistor array layer 20 (Array) is generally fabricated; then the organic light-emitting layer 30 (EL) and the encapsulation layer 40;
  • the touch layer is obtained by vapor deposition (PVD, Physical Vapor Deposition), photolithography (Photo), dry etching (Dry Etch) and stripping (Strip).
  • PVD Physical Vapor Deposition
  • Photo photolithography
  • Dry Etch dry etching
  • Stripping stripping
  • the organic insulating layer 60 is obtained on the touch layer through photolithography (Photo) and baking (OVEN) processes in sequence.
  • the touch function layer 50 in this embodiment adopts a self-capacitive touch, so only a single layer structure can realize the corresponding touch function, which can not only reduce the corresponding process, but also save the corresponding equipment
  • the use of the touch display panel improves the production cycle of the touch display panel.
  • the present application provides a method for manufacturing a touch display panel, which includes the following steps:
  • Step S10 Fabricate the touch wiring 231 in the first metal layer 23 of the thin film transistor array layer 20 , and the touch wiring 231 is located in the non-display area of the touch display panel.
  • Step S20 fabricating an organic light emitting layer 30 on one side of the thin film transistor array layer 20 .
  • Step S30 Fabricate the touch function layer 50 on the side of the organic light emitting layer 30 away from the thin film transistor array layer 20 .
  • Step S40 making via holes 80 in the non-display area.
  • Step S50 Fabricate touch electrodes 51 and touch traces 52 in the touch function layer 50, the touch traces 52 extend from the display area to the non-display area of the touch display panel, and the touch traces 52 pass through via holes 80 is electrically connected to the touch trace 231 .
  • non-display area may be a frame area on one side of the display area, for example, a lower frame area.
  • the preparation method provided in this embodiment can use the preparation process of the thin film transistor array layer 20 to prepare the touch traces 231 in the non-display area on the same layer, which relieves the contact between the touch traces 52 and the non-display area in the display area.
  • the substrate materials of the touch traces 231 in the region are different, resulting in poor etching of the touch traces 231 .
  • the present application provides an electronic device, which includes the touch display panel in any one of the above embodiments.
  • the electronic device provided in this embodiment can use the manufacturing process of the thin film transistor array layer 20 to prepare the touch trace 231 in the non-display area on the same layer, so as to alleviate the contact between the touch trace 52 and the non-display area in the display area.
  • the substrate materials of the touch traces 231 in the region are different, resulting in poor etching of the touch traces 231 .
  • the application provides an electronic device that may be, but is not limited to, a mobile phone, specifically a foldable mobile phone.
  • the touch display panel can be an OLED (Organic Light-Emitting Diode, organic light-emitting diode) display panel.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • the OLED display panel is a display screen made of organic electroluminescent diodes. Since it also has self-luminous organic electroluminescent diodes, no backlight is required, high contrast, thin thickness, wide viewing angle, fast response speed, can be used for flexible panels, wide operating temperature range, simple structure and manufacturing process, etc. , is considered to be the next-generation flat-panel display emerging application technology.
  • OLED displays are becoming more common, most notably in products such as cell phones, media players and small entry-level televisions. Unlike standard liquid crystal displays, OLED pixels are driven by a current source.
  • OLEDs organic materials with suitable chemical structures.
  • OLED technology requires a current-controlled drive method.
  • OLEDs have fairly similar electrical characteristics to standard light-emitting diodes (LEDs), with brightness dependent on LED current.
  • LEDs light-emitting diodes
  • TFTs thin-film transistors
  • Advanced Power-Saving Modes for Maximum Efficiency As with any battery-powered device, long battery standby times can only be achieved when the converter is operating at maximum efficiency over the entire load current range, which is especially important for OLED displays.
  • An OLED display draws the most power when it is fully white, and relatively little current for any other display color because only white requires all red, green, and blue sub-pixels to be fully lit. For example, a 2.7-inch display requires 80mA to display a full white image, but only 5mA to display other icons or graphics. Therefore, OLED power supplies need to achieve high converter efficiency for all load currents. To achieve such efficiencies, advanced power-saving mode techniques are required to reduce load current and reduce converter switching frequency.
  • VCO voltage controlled oscillator
  • white light does not consume the most power, and the power consumption is determined by the brightness value. For example, when red, blue, and green brightness values are 10, they will produce white light with a brightness value of 30. Therefore, adjust the red, blue, and green brightness values to 3.3 to synthesize a white light value of 10 (theoretical value). From the perspective of LED or OLED, the human eye sees the same brightness, and blue light consumes the most power.
  • OLED technology consists of very thin coatings of organic materials and glass substrates. These organic materials emit light when a charge passes through them. The color of OLED light depends on the material of the organic light-emitting layer, so manufacturers can obtain the desired color by changing the material of the light-emitting layer.
  • AMOLEDs have built-in electronic circuitry so that each pixel is driven independently by a corresponding circuit. OLED has the advantages of simple structure, self-illumination without backlight, high contrast, thin thickness, wide viewing angle, fast response, flexible panels, and wide operating temperature range. The technology provides the best way to browse photos and videos. way and imposes fewer constraints on the camera's design.
  • the complexity and information density of automobile information systems are increasing day by day, which makes the car interior display no longer just a basic centralized instrument display, but to meet the increasingly detailed and diverse in-car information display requirements.
  • the in-vehicle display market is segmented by application into in-vehicle navigation devices, in-vehicle TVs, and in-vehicle information systems.
  • the display products required by automotive electronics have high requirements for environmental adaptability.
  • the performance indicators of the generally required automotive display screens are: brightness 20-60 nit, normal temperature working life 50,000 hours, and temperature tolerance range of -40-85 °C.
  • VFDs Vauum Fluorescent Displays
  • OLED and LCD liquid crystal display technologies VFD is gradually losing its advantages. Because VFD has high power consumption, full color and resolution are greatly limited.
  • LCD liquid crystal display technology has gradually begun to be applied in the field of vehicle display.
  • liquid crystal display technology is subject to the influence of ambient temperature, the application field of vehicle display products is limited.
  • the liquid crystal material used to make liquid crystal displays will turn into a liquid when the ambient temperature is too high, and it will cool down and become a crystal when the temperature is too low. No matter what state it becomes, the liquid crystal material will no longer have the photoelectric effect that can be controlled by an electric field. As a result, the liquid crystal display cannot work normally.
  • the contrast, viewing angle, and response speed of the liquid crystal display also change with changes in temperature. Therefore, the liquid crystal is not the best display method for vehicle displays with large environmental changes.
  • OLED organic electroluminescent display technology
  • OLED organic electroluminescent display technology
  • vehicle displays made with OLED technology can have a thinner and more attractive appearance, better color display quality, wider viewing range and greater design flexibility.
  • the environmental adaptability of OLED is far superior to that of LCD display, the tolerable temperature range reaches the temperature range of -40 ⁇ 85°C. And OLED does not contain lead, so it will not pollute the environment. Therefore, OLED display applications have great advantages in the automotive field.
  • OLED displays have brought great advantages to car manufacturers. They can quickly install car dashboard lighting systems without the need for perforated wiring on cars as in the past, and OLED technology can bring a perfect feel to high-end luxury cars. OLED The lifespan of LCD has been greatly improved, and the lifespan of 40,000 ⁇ 50,000 hours in a normal environment is already comparable to that of TFT-LCD. The operating temperature range of automotive display OLED products has reached -40-85°C, and the lifespan of monochrome products has reached 55,000 hours (70nit) and 50,000 hours (80nit), and the operating temperature of automotive chips is still being improved.
  • OLED displays can be applied to POS machines, ATM machines, copiers, game machines, etc. in the commercial field; in the field of communication, they can be applied to mobile phones, mobile network terminals, etc.; Commercial PCs and home PCs, notebook computers; in the field of consumer electronics, it can be applied to audio equipment, digital cameras, and portable DVDs; in the field of industrial applications, it can be used in instruments and meters; in the field of transportation, it can be used in GPS, aircraft instruments first class.
  • Flexible screen refers to flexible OLED.
  • the successful mass production of flexible screens is not only beneficial to the manufacture of a new generation of high-end smartphones, but also has a profound impact on the application of wearable devices due to its low power consumption and bendability. In the future, flexible screens will be Terminal penetration and wide application.
  • a flexible screen mobile phone refers to a mobile phone with a bendable and flexible screen. Because it looks like a mans roll, it is also called a mans roll phone.
  • OLEDs are thin and can be mounted on flexible materials such as plastic or metal foil. Switching from glass to plastic would make the display more durable and lighter.
  • the flexible OLED panel is concave from top to bottom, with a bending radius of up to 700 mm.
  • OLED uses a plastic substrate instead of a common glass substrate. It uses thin film packaging technology and a protective film on the back of the panel to make the panel bendable and not easy to break. Flexible screens can be rolled, but not folded. Future products should be able to be folded, and the shape will be more changeable.
  • Bendable displays also known as flexible screens, are seen as an early stage product of the display revolution, with the ultimate goal of revolutionizing mobile and wearable electronics.
  • the OLED preparation scheme is to use vacuum evaporation technology to prepare organic functional layers and cathode layers, which requires expensive evaporation equipment, high production costs and low production efficiency. At the same time, limited by the size of vacuum evaporation equipment, it is difficult to realize the preparation of large-area display screens. Compared with vacuum thermal evaporation, solution preparation has the advantages of simple operation and low cost, and is suitable for low temperature or room temperature conditions, especially for the preparation of large-size OLED screens. With the rapid iteration of organic electronic technology, the liquid-phase processing technology of soluble organic materials is becoming more and more mature. The liquid-phase method, especially the printing process, is considered to be one of the key methods to solve the bottleneck of the existing OLED development.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种触控显示面板及电子设备,该触控显示面板包括显示区和非显示区;触控显示面板还包括触控功能层、薄膜晶体管阵列层以及有机发光层;可以利用薄膜晶体管阵列层的制备工艺,同层制备非显示区的触控走线,可以缓解显示区中触控迹线与非显示区中触控走线的衬底材料不同,导致触控走线刻蚀不佳的现象。

Description

触控显示面板及电子设备 技术领域
本申请涉及显示技术领域,具体涉及一种触控显示面板及电子设备。
背景技术
DOT(Direct On Cell Touch,直接将触控层制作于封装层上)技术是一种封装触控一体化技术,其将触控功能层直接集成在封装层上,不用再单独增加一层外挂触控层,具有更好的透过率、耐弯折性能,且可以有效减小屏幕的厚度,降低产品成本。
当前的DOT技术中,需要依次先后制备有机发光层、封装层以及触控功能层,而为了防止在DOT制程中高温成膜对有机发光层造成不良影响,一般不采用高温成膜工艺来制作触控功能层中的触控电极和触控迹线,具体地,触控功能层中的触控迹线的衬底材料为无机封装层,非显示区中的触控走线的衬底材料为有机层,因此,在触控电极和触控迹线的蚀刻过程中,相邻的触控电极和/或触控迹线容易出现变形或者坍塌甚至短路的现象。
需要注意的是,上述关于背景技术的介绍仅仅是为了便于清楚、完整地理解本申请的技术方案。因此,不能仅仅由于其出现在本申请的背景技术中,而认为上述所涉及到的技术方案为本领域所属技术人员所公知。
技术问题
本申请提供一种触控显示面板及电子设备,缓解了触控结构在蚀刻过程中容易出现刻蚀不佳的技术问题。
技术解决方案
第一方面,本申请提供一种触控显示面板,触控显示面板还包括:基板;薄膜晶体管阵列层,设置在基板上,包括多个薄膜晶体管;以及有机发光层,有机发光层位于显示区,且设置在薄膜晶体管远离基板的一侧;触控功能层,设置在有机发光层远离基板的一侧,触控功能层包括电性连接的触控电极和触控迹线,触控电极位于显示区,触控迹线沿显示区延伸至非显示区;其中,薄膜晶体管阵列层还包括第一金属层,第一金属层包括位于显示区的第一走线和位于非显示区的触控走线,第一走线与薄膜晶体管电连接,触控走线与触控迹线在非显示区电连接。
在其中一个实施方式中,非显示区包括依次分布的第一边框子区、弯折区以及第二边框子区;第一边框子区位于显示区与弯折区之间;触控显示面板还包括:挡墙,设置在薄膜晶体管阵列层远离基板的一侧,且设置在非显示区;封装层,设置在有机发光层和触控功能层之间,封装层覆盖显示区中的发光层,并延伸覆盖非显示区中的挡墙;其中,触控迹线与触控走线通过过孔电连接,过孔设置在挡墙和弯折区之间。
在其中一个实施方式中,薄膜晶体管阵列层包括位于基板的一侧且叠层设置的第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层、层间绝缘层、第一源漏极层、第一有机平坦层以及第二源漏极层;触控显示面板还包括第二有机平坦层;第二有机平坦层位于薄膜晶体管阵列层与触控功能层之间;第二源漏极层远离基板。
在其中一个实施方式中,第一金属层为第二源漏极层;过孔贯穿第二有机平坦层,且过孔与第二源漏极层和触控功能层连接。
在其中一个实施方式中,第二源漏极层包括多个第二源漏极走线;第一走线为第二源漏极走线。
在其中一个实施方式中,第一金属层为第一源漏极层;过孔贯穿第一有机平坦层、第二源漏极层以及第二有机平坦层,且过孔与第一源漏极层和触控功能层连接。
在其中一个实施方式中,第一金属层为第二栅极层;过孔贯穿层间绝缘层、第一源漏极层、第一有机平坦层、第二源漏极层以及第二有机平坦层,且过孔与第二栅极层和触控功能层连接。
在其中一个实施方式中,第一金属层为第一栅极层;过孔贯穿第二栅极绝缘层、第二栅极层、层间绝缘层、第一源漏极层、第一有机平坦层、第二源漏极层以及第二有机平坦层,且过孔与第一栅极层与触控功能层连接。
在其中一个实施方式中,触控电极、触控迹线以及触控走线中的至少一种包括具有Ti/Al/Ti材料的复合膜层,且触控走线经高温成膜工艺制作而成。
第二方面,本申请提供一种电子设备,其包括上述任一实施方式中的触控显示面板。
有益效果
本申请提供的触控显示面板及电子设备,可以利用薄膜晶体管阵列层的制备工艺,同层制备非显示区的触控走线,缓解了显示区中触控迹线与非显示区中触控走线的衬底材料不同,导致触控走线刻蚀不佳的现象。
附图说明
图1为传统技术方案中显示区中的触控显示面板的结构示意图。
图2为传统技术方案中非显示区中的触控显示面板的结构示意图。
图3为传统技术方案中触控显示面板的制备方法的流程示意图。
图4为本申请实施例提供的触控显示面板的平面结构示意图。
图5为本申请实施例提供的触控显示面板的截面结构示意图。
图6为本申请实施例提供的显示区中的触控显示面板的结构示意图。
图7为本申请实施例提供的非显示区中的触控显示面板的结构示意图。
图8为本申请实施例提供的触控显示面板的制备方法的一种流程示意图。
图9为本申请实施例提供的触控显示面板的制备方法的另一种流程示意图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
如图1和图2所示,其中一种触控显示面板设置有如图1所示的显示区中的第一膜层结构和如图2所示的非显示区中的第二膜层结构。在显示区中,第一膜层结构层叠设置有第一薄膜晶体管阵列层1、有机发光层2、封装层3、第一触控功能层以及有机绝缘层8。在非显示区中,第二膜层结构层叠设置有第一薄膜晶体管阵列层1、第一漏源极层9、第一有机平坦层10、第二漏源极层11、第二有机平坦层12、第一触控功能层以及有机绝缘层8。需要进行说明的是,该触控显示面板的第一触控功能层从显示区延伸至非显示区,进而与触控驱动电路进行连接。
具体地,第一触控功能层包括依次叠层设置的第一中间绝缘层4、电性桥接层5、第二中间绝缘层6以及触控电极层7。其中,电性桥接层5用于桥接触控电极层7中需要交叉而不进行电性连接之处。
如图3所示,在该种触控显示面板的制作过程中,首先,一般制作第一薄膜晶体管阵列层(Array);然后是有机发光层(EL)和封装层;然后在封装层上依次通过预清洗(Pre-Clean)、化学气相沉积(CVD,Chemical Vapor Deposition)工艺制作第一中间绝缘层;然后在第一中间绝缘层上依次通过预清洗(Pre-Clean)、物理气相沉积(PVD,Physical Vapor Deposition)、光刻技术(Photo)、干蚀刻(Dry Etch)以及剥离(Strip)工艺得到电性桥接层;然后在电性桥接层上依次通过预清洗(Pre-Clean)、化学气相沉积(CVD,Chemical Vapor Deposition)、光刻技术(Photo)、干蚀刻(Dry Etch)以及剥离(Strip)工艺得到第二中间绝缘层;然后在第二中间绝缘层上依次通过预清洗(Pre-Clean)、物理气相沉积(PVD,Physical Vapor Deposition)、光刻技术(Photo)、干蚀刻(Dry Etch)以及剥离(Strip)工艺得到触控电极层;然后在触控电极层上依次通过光刻技术(Photo)、烘烤(OVEN)得到有机绝缘层。
基于上述可知,图1至图3所示的这种触控显示面板需要在有机发光层之上/之后制作第一触控功能层,此时对应的电性桥接层和/或触控电极层的金属膜层一般采用较低的温度制作,可以避免高温对有机发光层中的发光材料产生不良影响。然而,正是由于采用较低温度制作第一触控功能层,制作出来的金属韧性和/或强度并没有高温成膜工艺的效果好,所以在蚀刻制作触控电极和/或触控走线的过程中,容易出现触控电极和/或触控走线出现不良变形等情况。
基于此,请参阅图4至图8,如图4所示,本实施例提供了一种触控显示面板,触控显示面板具有位于显示区和非显示区中的触控结构。触控结构包括触控电极51、触控迹线52以及触控走线231;触控迹线52与触控电极51连接,触控迹线52位于触控功能层50,触控迹线52沿显示区延伸至非显示区;触控走线231与触控迹线52电性连接,触控走线231位于非显示区中的第一金属层23,且第一金属层23位于薄膜晶体管阵列层20。其中,在显示区中,触控显示面板设置有有机发光层30,有机发光层30位于第一金属层23与触控功能层50之间。
可以理解的是,本实施例提供的触控显示面板,可以利用薄膜晶体管阵列层20的制备工艺,同层制备非显示区的触控走线231,缓解了显示区中触控迹线52与非显示区中触控走线231的衬底材料不同,导致触控走线231刻蚀不佳的现象。
在其中一个实施例中,触控走线231经高温成膜工艺制备而成。
在其中一个实施例中,非显示区包括依次分布的第一边框子区、弯折区以及第二边框子区;第一边框子区位于显示区与弯折区之间;触控迹线52位于第一边框子区和/或弯折区;且触控走线231位于第二边框子区和/或弯折区。
如图4所示,在其中一个实施例中,触控显示面板还包括封装层40和过孔80;封装层40从显示区延伸至第一边框子区,并在第一边框子区形成挡墙89;过孔80与触控迹线52和触控走线231电性连接;过孔80位于挡墙89与弯折区之间。
需要进行说明的是,由于封装层40的延伸突然中断,因此,在封装层40的中断处会形成台阶,该台阶即为挡墙89,其可以防水水氧入侵。而过孔80位于挡墙89与弯折区之间,可以最大化触控走线231的长度,并减少触控迹线52的长度,与薄膜晶体管阵列层20同层制备的触控走线231的长度占比会更大。
在其中一个实施例中,触控结构还包括过孔80;过孔80与触控迹线52和触控走线231电性连接,且过孔80位于第一边框子区。
需要进行说明的是,该过孔80位于第一边框子区,可以最大化触控走线的传输路径,触控结构中可以采用高温成膜工艺的长度可以得到进一步增加,同时缩短了触控迹线52的长度,由于触控迹线52位于有机发光层30之上,所以触控迹线52不便于采用高温成膜工艺,那么触控迹线52的长度缩短,可以有效降低Al迁移或者Al腐现象。
可以理解的是,该过孔80可以但不限于第一边框子区,也可以位于弯折区,不仅可以起到电性连接对应的触控迹线52和触控走线231的作用,同时由于在弯折区中形成过孔80,能够缓解弯折区在弯折过程中形成的弯折应力,可以提高弯折区的弯折性能。
在其中一个实施例中,触控电极51、触控迹线52以及触控走线231中的至少一种包括具有Ti/Al/Ti材料的复合膜层。
可以理解的是,采用具有Ti(钛)/Al(铝)/Ti材料的复合膜层作为触控导电材料,可以增强耐弯折性能,有利于制作折叠型触控产品。但也正是由于在非显示区中的第一金属层23中设置触控走线231,该部分触控走线231即使采用高温成膜工艺也不会影响到有机发光层30中发光材料的性能,因此,经高温成膜工艺制作出来第一金属层23,在蚀刻制作触控走线231的过程中,这些刻蚀中的触控走线231并不会出现Al迁移或者Al腐现象,具体地,在刻蚀中或刻蚀后Al容易被Cl(卤)离子腐蚀,且这种腐蚀一旦发生会不断反应下去,这种情况严重的话,对应的触控走线231可能被掏空或者坍塌,且其生成物不导电。
如图4所示,在其中一个实施例中,触控结构还包括触控集成电路90;触控集成电路90与触控走线231连接;且触控集成电路90位于第二边框子区。
如图5所示,在其中一个实施例中,触控显示面板可以包括显示区AA和位于显示区AA一侧的非显示区NA。其中,非显示区NA包括弯折区BA。
在该触控显示面板中,可以从下至上依次叠层设置有:第一聚酰亚胺柔性基板24、缓冲层25、第二聚酰亚胺柔性基板26、有源层27、绝缘层28、第一栅极层、第二栅极绝缘层31、第二栅极层、层间绝缘层33、源漏极层、有机平坦层239、阳极层、像素定义层PLD、封装层40、金属层54、金属层55以及有机绝缘层60。
其中,有源层27包括源极271、有源区272以及漏极273;其中,有源区272位于源极271与漏极273之间。可以理解的是,在一些实施例中,源极271与漏极273可以进行互换。
其中,第一栅极层可以包括一个或者多个第一栅极29。第二栅极层可以包括一个或者多个第二栅极32。
其中,源漏极层可以包括源极引线341、漏极引线342以及位于非显示区NA中的触控走线231。源极引线341通过过孔K2与源极271电性连接。漏极引线342通过过孔K1与漏极273电性连接。
其中,阳极层可以包括一个或者多个阳极35。阳极35可以通过过孔K3与漏极引线342电性连接。
其中,金属层54可以包括一个或者多个触控迹线52。金属层55可以包括一个或者多个触控电极51。一个触控电极51可以通过一个或者多个过孔53与一个触控迹线52对应电性连接。该触控迹线52可以从显示区AA延伸至非显示区NA,但是并未延伸至弯折区BA。在非显示区NA中,触控迹线52可以通过过孔80与触控走线231对应电性连接。该过孔80可以位于显示区AA与弯折区BA之间,且该过孔80可以靠近封装层40的边缘,但并不接触该封装层40。
需要说明的是,在弯折区BA中,可以挖空缓冲层25、第二聚酰亚胺柔性基板26、有源层27、绝缘层28、第一栅极层、第二栅极绝缘层31、第二栅极层以及层间绝缘层33中的至少一层,并以有机材料进行填充,以形成有机材料填充区ODH,可以理解的是,这样有利于提高弯折区的弯折性能以及弯折寿命。
如图6所示,在其中一个实施例中,触控显示面板还包括封装层40和有机绝缘层60;封装层40位于有机发光层30与触控功能层50之间;且触控功能层50位于有机绝缘层60与封装层40之间;其中,封装层40位于显示区和/或第一边框子区。
如图7所示,在其中一个实施例中,薄膜晶体管阵列层20还包括第二金属层21和第一有机平坦层22;触控显示面板还包括位于非显示区的第二有机平坦层70;第一金属层23位于第一有机平坦层22与第二有机平坦层70之间;第二金属层21位于薄膜晶体管阵列层20与第一有机平坦层22之间。
可以理解的是,封装层40可能会从显示区延伸至第一边框子区,以缓解触控显示面板在显示区与非显示区之间的膜层差异。
具体地,这种膜层差异的形成过程为:在显示区或者非显示区中,触控显示面板可以包括依次层叠设置的薄膜晶体管阵列层20、有机发光层30、封装层40、触控功能层50以及有机绝缘层60。其中,位于显示区中的薄膜晶体管阵列层20包括依次叠层设置的第一聚酰亚胺柔性基板、缓冲层、第二聚酰亚胺柔性基板、有源层、第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层、层间绝缘层、第一源漏极层、第一有机平坦层22以及第二源漏极层。
而在非显示区或者显示区中,触控显示面板也可以包括依次层叠设置的薄膜晶体管阵列层20、第二有机平坦层70以及有机绝缘层60。其中,位于非显示区中的薄膜晶体管阵列层20包括依次叠层设置的第一聚酰亚胺柔性基板、缓冲层、第二聚酰亚胺柔性基板、第一栅极绝缘层、第二栅极绝缘层、层间绝缘层、第一源漏极层、第一有机平坦层22以及第二源漏极层。
通过上述显示区与非显示区中触控显示面板之间膜层结构的差异化对比,可以得到触控显示面板在显示区与非显示区中的膜层厚度差异的形成原由。
其中,第一金属层23可以为第一源漏极层、第二源漏极层、第一栅极层以及第二栅极层中的任一个。
需要进行说明的是,当第一金属层23为第二源漏极层时,过孔80贯穿第二有机平坦层70,且过孔80与第二源漏极层和触控功能层50连接。
需要进行说明的是,当第一金属层23为第一源漏极层时,过孔80贯穿第一有机平坦层22、第二源漏极层以及第二有机平坦层70,且过孔80与第一源漏极层和触控功能层50连接。
需要进行说明的是,当第一金属层23为第二栅极层时,过孔80贯穿层间绝缘层、第一源漏极层、第一有机平坦层22、第二源漏极层以及第二有机平坦层70,且过孔80与第二栅极层和触控功能层50连接。
需要进行说明的是,当第一金属层23为第一栅极层时,过孔80贯穿第二栅极绝缘层、第二栅极层、层间绝缘层、第一源漏极层、第一有机平坦层22、第二源漏极层以及第二有机平坦层70,且过孔80与第一栅极层与触控功能层50连接。
第二源漏极层包括多个第二源漏极走线;第一源漏极层包括多个第一源漏极走线;第二栅极层包括多个第二栅极走线;第一栅极层包括多个第一栅极走线;第一走线可以为第二源漏极走线、第一源漏极走线、第二栅极走线以及第一栅极走线中的任一种。
其中,需要进行说明的是,位于弯折区的过孔80可以通过第二有机平坦层70进行填充,可以进一步提升弯折区的弯折性能。
在其中一个实施例中,触控电极51位于触控功能层50;且触控电极51与触控迹线52位于同一膜层。
需要进行说明的是,触控电极51与触控迹线52位于同一膜层可以减少触控功能层50的膜层数量,简化触控功能层50的制程工艺。因此,本实施例中触控功能层50的膜层结构包括触控层。触控显示面板的制程工艺具体如下:
如图8所示,首先,一般制作薄膜晶体管阵列层20(Array);然后是有机发光层30(EL)和封装层40;然后在封装层40上依次通过预清洗(Pre-Clean)、物理气相沉积(PVD,Physical Vapor Deposition)、光刻技术(Photo)、干蚀刻(Dry Etch)以及剥离(Strip)工艺得到该触控层。然后在触控层上依次通过光刻技术(Photo)、烘烤(OVEN)工艺得到有机绝缘层60。
可以理解的是,本实施例中触控功能层50采用自容式触控,因此仅用单膜层结构即可实现对应的触控功能,不仅可以减少对应的工艺制程,同时可以节省对应设备的使用,提高触控显示面板的生产周期。
如图9所示,在其中一个实施例中,本申请提供一种触控显示面板的制备方法,其包括以下步骤:
步骤S10:在薄膜晶体管阵列层20的第一金属层23中制作触控走线231,触控走线231位于触控显示面板的非显示区。
步骤S20:在薄膜晶体管阵列层20的一侧制作有机发光层30。
步骤S30:在有机发光层30远离薄膜晶体管阵列层20的一侧制作触控功能层50。
步骤S40:在非显示区中制作过孔80。
步骤S50:在触控功能层50中制作触控电极51和触控迹线52,触控迹线52沿触控显示面板的显示区延伸至非显示区,且触控迹线52通过过孔80与触控走线231电性连接。
需要进行说明的是,该非显示区可以为显示区一侧的边框区,例如,下边框区。
可以理解的是,本实施例提供的制备方法,可以利用薄膜晶体管阵列层20的制备工艺,同层制备非显示区的触控走线231,缓解了显示区中触控迹线52与非显示区中触控走线231的衬底材料不同,导致触控走线231刻蚀不佳的现象。
在其中一个实施例中,本申请提供一种电子设备,其包括上述任一实施例中的触控显示面板。
可以理解的是,本实施例提供的电子设备,可以利用薄膜晶体管阵列层20的制备工艺,同层制备非显示区的触控走线231,缓解了显示区中触控迹线52与非显示区中触控走线231的衬底材料不同,导致触控走线231刻蚀不佳的现象。
在其中一个实施例中,本申请提供一种电子设备可以但不限于为手机,具体还可以为可折叠式手机。
在其中一个实施例中,触控显示面板可以为OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板。
该OLED显示面板是利用有机电自发光二极管制成的显示屏。由于同时具备自发光有机电激发光二极管,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一代的平面显示器新兴应用技术。
有机发光二极管(OLED)显示器越来越普遍,在手机、媒体播放器及小型入门级电视等产品中最为显著。不同于标准的液晶显示器,OLED像素是由电流源所驱动。
OLED采用的材质属于化学结构适用的有机材质。OLED技术需要电流控制驱动方法。OLED具有与标准发光二极管(LED)相当类似的电气特性,亮度均取决于LED电流。若要开启和关闭OLED并控制OLED电流,需要使用薄膜晶体管(TFT)的控制电路。
进阶节能模式可达到最高效率和任何电池供电的设备一样,只有在转换器以整体负载电流范围的最高效率进行运作时,才能达到较长的电池待机时间,这对于OLED显示器尤其重要。OLED显示器呈现全白时会耗用最大的电源,对于其它任何显示色彩则电流相对较小,这是因为只有白色需要所有红、绿、蓝子像素都全亮。举例来说,2.7吋显示器需要80mA电流来呈现全白影像,但只需要5mA电流显示其它图标或图形。因此,OLED电源供应需要针对所有负载电流达到高转换器效率。为了达到如此的效率,需要运用进阶的节能模式技术来减少负载电流,以降低转换器切换频率。由于这是透过电压控制震荡器(VCO)完成,因此能够将可能的EMI问题降至最低,并且能够将最低切换频率控制在一般40kHz的音讯范围以外,这可避免陶瓷输入或输出电容产生噪音。在手机应用中使用这类装置时,这特别重要,而且可简化设计流程。
按发光特性来说白光不是耗电最大,是以亮度值来决定耗电量的。如红,蓝,绿亮度值是10的一起亮时会产生30亮度值的白光。因此将红,蓝,绿亮度值调成3.3合成一个10的白光值(理论值)。从LED或OLED来说人眼看到同样的亮度,蓝光耗电最大。
有机发光显示技术由非常薄的有机材料涂层和玻璃基板构成。当有电荷通过时这些有机材料就会发光。OLED发光的颜色取决于有机发光层的材料,故厂商可由改变发光层的材料而得到所需之颜色。有源阵列有机发光显示屏具有内置的电子电路***因此每个像素都由一个对应的电路独立驱动。OLED具备有构造简单、自发光不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广等优点,技术提供了浏览照片和视频的最佳方式而且对相机的设计造成的限制较少。
汽车信息***的复杂性和信息密度在日益上升,这使得汽车内部显示器不再仅仅是基本的集中仪表显示,而是要满足越来越详细和多样化的车内信息显示需求。车载显示器市场按应用分为车载导航装置、车载电视,以及车载信息***。
汽车电子需要的显示产品,对于环境适应性要求高,普遍需求的车载显示屏的性能指标为:亮度20~60nit,常温工作寿命50000小时,耐受温度范围-40~85℃。在北美汽车显示市场,VFD(真空荧光显示器)长期以来很受欢迎,因为它们具有出色的亮度可以保证良好的可见度。但随着OLED、LCD液晶显示技术的兴起,VFD正在逐渐丧失优势。因为VFD功耗大、全彩化和解析度受到极大限制。
LCD液晶显示技术逐渐开始应用在车载显示领域,然而由于液晶显示技术受制于环境温度的影响,限制了车载显示产品的应用领域。制作液晶显示屏的液晶材料在环境温度过高时会变成液体,而温度过低时会冷却变成晶体,无论变成哪种状态,液晶材料都不再具有能受电场控制的光电效应,导致液晶显示屏不能正常工作,此外液晶显示的对比度、视角、响应速度也随温度的变化而变化,因此,对环境变化大的车载显示而言,液晶并不是最好的显示方式。
同成熟的TFT-LCD相比,OLED(有机电致发光显示技术)是主动发光的显示器,具有高对比度、宽视角(达170°)、快速响应(~1μs)、高发光效率、低操作电压(3~10V)、超轻薄(厚度小于2mm)等优势。利用OLED技术制作的车载显示器,可具有更轻薄迷人的外观、更优异的彩色显示画质、更宽广的观看范围和更大的设计灵活性,更重要的是OLED环境适应性要远远优越于液晶显示,可耐受的温度区间达到-40~85℃温度范围。并且OLED不含铅,不会对环境造成污染。因此OLED显示应用在车载领域具有极大的优势。
OLED显示屏给汽车制造商带来了巨大的优势,他们不需要和过去一样在汽车上穿孔布线,就可以迅速安装汽车仪表盘照明***,并且OLED技术能够给高端豪华汽车带来完美感觉,OLED的寿命已经有了大幅度提高,常规环境下40000~50000小时的寿命已经和TFT-LCD的寿命水平相当。车载显示OLED产品,工作温度范围都达到了-40~85℃,单色产品的寿命达到了55000小时(70nit)和50000小时(80nit),车载芯片的工作温度还在进一步提高中。
由于上述优点,在商业领域OLED显示屏可以适用于POS机和ATM机、复印机、游戏机等;在通讯领域则可适用于手机、移动网络终端等领域;在计算机领域则可大量应用在PDA、商用PC和家用PC、笔记本电脑上;消费类电子产品领域,则可适用于音响设备、数码相机、便携式DVD;在工业应用领域则适用于仪器仪表等;在交通领域则用在GPS、飞机仪表上等。
柔性屏幕,指的是柔性OLED。柔性屏幕的成功量产不仅重大利好于新一代高端智能手机的制造,也因其低功耗、可弯曲的特性对可穿戴式设备的应用带来深远的影响,未来柔性屏幕将随着个人智能终端的不断渗透而广泛应用。
柔性屏手机是指采用可弯曲、柔韧性佳屏幕的手机,因为形似芒卷,又被称为卷芒手机。
OLED很薄,可以装在塑料或金属箔片等柔性材料上。不用玻璃而改用塑料的话,会让显示屏更耐用、更轻。柔性OLED面板从顶部到底部呈凹型,弯曲半径可达700毫米。
OLED采用塑料基板,而非常见的玻璃基板,其借助薄膜封装技术,并在面板背面粘贴保护膜,让面板变得可弯曲,不易折断。柔性屏可以卷曲,但不能折叠,未来的产品应该可以折叠,外形会更多变。
显示屏由面板切割而来。可弯曲的显示屏又称为柔性屏,其被视作显示屏革命的初级阶段产物,最终目标是让移动和可穿戴电子设备改头换面。
OLED制备方案是采用真空蒸镀技术制备有机功能层和阴极层,这就需要昂贵的蒸镀设备,生产成本高且生产效率低。同时,受限于真空蒸镀设备的尺寸,难以实现大面积显示屏的制备。相比于真空热蒸镀,溶液法制备具有操作简单、成本低等优势,并且适用于低温或室温条件下,特别是对于大尺寸OLED屏幕的制备。随着有机电子技术的快速迭代,可溶性的有机材料的液相加工技术也日益成熟,液相法特别是印刷工艺制备OLED被认为是解决现有OLED发展瓶颈的关键方法之一。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种触控显示面板,所述触控显示面板包括显示区和非显示区;所述触控显示面板还包括:
    基板;
    薄膜晶体管阵列层,设置在所述基板上,包括多个薄膜晶体管;
    有机发光层,所述有机发光层位于所述显示区,且设置在所述薄膜晶体管远离所述基板的一侧;以及
    触控功能层,设置在所述有机发光层远离所述基板的一侧,所述触控功能层包括电性连接的触控电极和触控迹线,所述触控电极位于所述显示区,所述触控迹线沿所述显示区延伸至所述非显示区;
    其中,所述薄膜晶体管阵列层还包括第一金属层,所述第一金属层包括位于显示区的第一走线和位于非显示区的触控走线,所述第一走线与所述薄膜晶体管电连接,所述触控走线与所述触控迹线在所述非显示区电连接。
  2. 根据权利要求1所述的触控显示面板,其中,所述非显示区包括依次分布的第一边框子区、弯折区以及第二边框子区;所述第一边框子区位于所述显示区与所述弯折区之间;
    所述触控显示面板还包括:
    挡墙,设置在所述薄膜晶体管阵列层远离所述基板的一侧,且设置在所述非显示区;
    封装层,设置在所述有机发光层和所述触控功能层之间,所述封装层覆盖所述显示区中的所述发光层,并延伸覆盖所述非显示区中的所述挡墙;
    其中,所述触控迹线与所述触控走线通过过孔电连接,所述过孔设置在所述挡墙和所述弯折区之间。
  3. 根据权利要求2所述的触控显示面板,其中,所述薄膜晶体管阵列层包括位于所述基板的一侧且叠层设置的第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层、层间绝缘层、第一源漏极层、第一有机平坦层以及第二源漏极层;
    所述触控显示面板还包括第二有机平坦层;所述第二有机平坦层位于所述薄膜晶体管阵列层与所述触控功能层之间;所述第二源漏极层远离所述基板。
  4. 根据权利要求3所述的触控显示面板,其中,所述第一金属层为所述第二源漏极层;所述过孔贯穿所述第二有机平坦层,且所述过孔与所述第二源漏极层和所述触控功能层连接。
  5. 根据权利要求4所述的触控显示面板,其中,所述第二源漏极层包括多个第二源漏极走线;所述第一走线为所述第二源漏极走线。
  6. 根据权利要求3所述的触控显示面板,其中,所述第一金属层为所述第一源漏极层;所述过孔贯穿所述第一有机平坦层、所述第二源漏极层以及所述第二有机平坦层,且所述过孔与所述第一源漏极层和所述触控功能层连接。
  7. 根据权利要求3所述的触控显示面板,其中,所述第一金属层为第二栅极层;所述过孔贯穿所述层间绝缘层、所述第一源漏极层、所述第一有机平坦层、所述第二源漏极层以及所述第二有机平坦层,且所述过孔与所述第二栅极层和所述触控功能层连接。
  8. 根据权利要求3所述的触控显示面板,其中,所述第一金属层为第一栅极层;所述过孔贯穿所述第二栅极绝缘层、所述第二栅极层、所述层间绝缘层、所述第一源漏极层、所述第一有机平坦层、所述第二源漏极层以及所述第二有机平坦层,且所述过孔与所述第一栅极层和所述触控功能层连接。
  9. 根据权利要求1所述的触控显示面板,其中,所述触控电极、所述触控迹线以及所述触控走线中的至少一种包括具有Ti/Al/Ti材料的复合膜层。
  10. 一种电子设备,包括如权利要求1所述的触控显示面板。
  11. 根据权利要求10所述的电子设备,其中,所述触控走线经高温成膜工艺制作而成。
  12. 根据权利要求11所述的电子设备,其中,所述非显示区包括依次分布的第一边框子区、弯折区以及第二边框子区;所述第一边框子区位于所述显示区与所述弯折区之间;
    所述触控显示面板还包括:
    挡墙,设置在所述薄膜晶体管阵列层远离所述基板的一侧,且设置在所述非显示区;
    封装层,设置在所述有机发光层和所述触控功能层之间,所述封装层覆盖所述显示区中的所述发光层,并延伸覆盖所述非显示区中的所述挡墙;
    其中,所述触控迹线与所述触控走线通过过孔电连接,所述过孔设置在所述挡墙和所述弯折区之间。
  13. 根据权利要求12所述的电子设备,其中,所述薄膜晶体管阵列层包括位于所述基板的一侧且叠层设置的第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层、层间绝缘层、第一源漏极层、第一有机平坦层以及第二源漏极层;
    所述触控显示面板还包括第二有机平坦层;所述第二有机平坦层位于所述薄膜晶体管阵列层与所述触控功能层之间;所述第二源漏极层远离所述基板。
  14. 根据权利要求13所述的电子设备,其中,所述第一金属层为所述第二源漏极层;所述过孔贯穿所述第二有机平坦层,且所述过孔与所述第二源漏极层和所述触控功能层连接。
  15. 根据权利要求14所述的电子设备,其中,所述第二源漏极层包括多个第二源漏极走线;所述第一走线为所述第二源漏极走线。
  16. 根据权利要求13所述的电子设备,其中,所述第一金属层为所述第一源漏极层;所述过孔贯穿所述第一有机平坦层、所述第二源漏极层以及所述第二有机平坦层,且所述过孔与所述第一源漏极层和所述触控功能层连接。
  17. 根据权利要求13所述的电子设备,其中,所述第一金属层为第二栅极层;所述过孔贯穿所述层间绝缘层、所述第一源漏极层、所述第一有机平坦层、所述第二源漏极层以及所述第二有机平坦层,且所述过孔与所述第二栅极层和所述触控功能层连接。
  18. 根据权利要求13所述的电子设备,其中,所述第一金属层为第一栅极层;所述过孔贯穿所述第二栅极绝缘层、所述第二栅极层、所述层间绝缘层、所述第一源漏极层、所述第一有机平坦层、所述第二源漏极层以及所述第二有机平坦层,且所述过孔与所述第一栅极层和所述触控功能层连接。
  19. 根据权利要求11所述的电子设备,其中,所述触控电极、所述触控迹线以及所述触控走线中的至少一种包括具有Ti/Al/Ti材料的复合膜层。
  20. 根据权利要求11所述的电子设备,其中,所述电子设备为可折叠式手机。
PCT/CN2021/097529 2021-05-19 2021-05-31 触控显示面板及电子设备 WO2022241839A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/433,992 US20240019950A1 (en) 2021-05-19 2021-05-31 Touch display panel and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110547899.9A CN113296631B (zh) 2021-05-19 2021-05-19 触控显示面板及电子设备
CN202110547899.9 2021-05-19

Publications (1)

Publication Number Publication Date
WO2022241839A1 true WO2022241839A1 (zh) 2022-11-24

Family

ID=77322935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097529 WO2022241839A1 (zh) 2021-05-19 2021-05-31 触控显示面板及电子设备

Country Status (3)

Country Link
US (1) US20240019950A1 (zh)
CN (1) CN113296631B (zh)
WO (1) WO2022241839A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170003786A1 (en) * 2015-06-30 2017-01-05 Lg Display Co., Ltd. Touch sensor integrated display device
CN106803514A (zh) * 2017-02-22 2017-06-06 上海天马微电子有限公司 一种集成触控的机发光二极管显示装置
CN106951125A (zh) * 2017-03-30 2017-07-14 上海天马微电子有限公司 一种触控显示面板及触控显示装置
CN112582381A (zh) * 2020-12-10 2021-03-30 武汉华星光电半导体显示技术有限公司 触控显示面板及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209641657U (zh) * 2019-03-15 2019-11-15 福建华佳彩有限公司 一种tft自容式触控阵列基板
CN110265409B (zh) * 2019-06-20 2021-07-23 武汉华星光电半导体显示技术有限公司 一种tft阵列基板、其制备方法及其显示面板
CN112768495B (zh) * 2021-01-06 2024-03-05 京东方科技集团股份有限公司 显示基板、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170003786A1 (en) * 2015-06-30 2017-01-05 Lg Display Co., Ltd. Touch sensor integrated display device
CN106803514A (zh) * 2017-02-22 2017-06-06 上海天马微电子有限公司 一种集成触控的机发光二极管显示装置
CN106951125A (zh) * 2017-03-30 2017-07-14 上海天马微电子有限公司 一种触控显示面板及触控显示装置
CN112582381A (zh) * 2020-12-10 2021-03-30 武汉华星光电半导体显示技术有限公司 触控显示面板及其制备方法

Also Published As

Publication number Publication date
CN113296631B (zh) 2024-04-23
CN113296631A (zh) 2021-08-24
US20240019950A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
JP7112580B2 (ja) 表示装置
CN100483731C (zh) 包含电致发光装置的影像显示***及其制造方法
CN102569675B (zh) 有机发光二极管显示装置及其制造方法
JP3195570U (ja) 薄膜トランジスタ基板
US11778886B2 (en) Display substrate and preparation method thereof, and display apparatus
WO2020259030A1 (zh) 显示面板及其制造方法和显示装置
TW200536433A (en) Organic light-emitting diode, display device, and telecommunication employing the same
WO2013104220A1 (zh) 一种电路、阵列基板及制作方法、显示器
US11112918B2 (en) Touch display device having fingerprint recognition function
WO2011104893A1 (ja) 有機elディスプレイ及び有機elディスプレイの製造方法
TWI606771B (zh) 顯示面板
WO2022116306A1 (zh) 像素电路及显示面板
CN109671722B (zh) 有机发光二极管阵列基板及其制造方法
WO2021169608A1 (zh) 显示面板及其制造方法、显示装置
CN112837651A (zh) 像素驱动电路及显示面板
CN110416274B (zh) 一种基板及其制备方法和oled显示面板
WO2021258458A1 (zh) 阵列基板及其制造方法
CN213583795U (zh) 显示面板与显示装置
CN111129089A (zh) 显示面板及显示面板的制备方法
US20240056096A1 (en) Decoding method, decoding device, and readable storage medium
US20220013745A1 (en) Encapsulating cover plate, fabrication method thereof, display panel and fabrication method thereof
US11302887B2 (en) Organic electroluminescent diode device having light-emitting layer disposed on electron injection layer, display panel, and manufacturing method thereof
WO2022241839A1 (zh) 触控显示面板及电子设备
CN112310183B (zh) 显示基板及其制备方法、显示装置
CN207409495U (zh) 用于有机发光显示器件的背板以及有机发光显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17433992

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940291

Country of ref document: EP

Kind code of ref document: A1