WO2022241736A1 - 用于制造磁体的磁性粉末、磁体和磁性元件 - Google Patents

用于制造磁体的磁性粉末、磁体和磁性元件 Download PDF

Info

Publication number
WO2022241736A1
WO2022241736A1 PCT/CN2021/094984 CN2021094984W WO2022241736A1 WO 2022241736 A1 WO2022241736 A1 WO 2022241736A1 CN 2021094984 W CN2021094984 W CN 2021094984W WO 2022241736 A1 WO2022241736 A1 WO 2022241736A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic powder
powder
magnetic material
magnet
Prior art date
Application number
PCT/CN2021/094984
Other languages
English (en)
French (fr)
Inventor
姚骋
刘宁
蒋帆
胡章荣
吴琨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180088670.1A priority Critical patent/CN116670314A/zh
Priority to PCT/CN2021/094984 priority patent/WO2022241736A1/zh
Publication of WO2022241736A1 publication Critical patent/WO2022241736A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Definitions

  • the present application relates to the technical field of semiconductors, in particular to a magnetic powder for manufacturing a magnet, a magnet and a magnetic element.
  • magnetic components such as inductors used in their internal power circuits should also meet the requirements of miniaturization, thinning, and high functionality.
  • the inductors made of magnetic materials meet the requirements of miniaturization and thinning, the inductance performance will usually deteriorate due to the reduction of magnetic materials used in the inductor, such as the decrease of saturation current, the increase of DC resistance, and the high loss. .
  • the embodiment of the present application provides a magnetic powder for manufacturing magnets, which has high saturation magnetic flux density, low magnetic loss factor, high resistivity, and good processability, and can be used to manufacture magnets with high packing density, and then make The inductance of magnetic components such as inductors is improved, the DC resistance is reduced, the loss is reduced, and the efficiency is improved.
  • the first aspect of the embodiment of the present application provides a magnetic powder for manufacturing a magnet, the magnetic powder includes a first soft magnetic powder and a second soft magnetic powder, the first soft magnetic powder is a metal crystal soft magnetic material, The second soft magnetic powder includes at least one of an amorphous soft magnetic material and a nanocrystalline soft magnetic material, and the mass of the first soft magnetic powder accounts for 1% of the mass of the first soft magnetic powder and the second soft magnetic powder 5%-45% of the sum of the masses.
  • Metal crystal soft magnetic materials have good flexibility, strong deformation ability, high saturation magnetic flux density (Bs), low frequency loss of amorphous soft magnetic materials and nanocrystalline soft magnetic materials, through the suitable compounding of the above two types of soft magnetic powders , can combine the advantages of various materials, can ensure that the obtained magnetic powder can achieve better molding effect, and take into account the higher Bs and lower high-frequency loss.
  • Bs saturation magnetic flux density
  • the mass of the first soft magnetic powder accounts for 10%-40% of the sum of the mass of the first soft magnetic powder and the second soft magnetic powder. At this time, the magnetic powder can better balance good molding effect, higher Bs and lower high-frequency loss.
  • the D50 particle size of the second soft magnetic powder is larger than the D50 particle size of the first soft magnetic powder.
  • D50 The first soft magnetic powder with small particle size and good flexibility is easy to fill in the interparticle spaces of the second soft magnetic powder, which is beneficial to increase the compaction density of the magnetic powder.
  • the D50 particle size of the second soft magnetic powder is 2-5 times the D50 particle size of the first soft magnetic powder.
  • the above-mentioned magnetic powder can be compacted to form a relatively dense packing, thereby increasing the density and magnetic permeability of the obtained magnet.
  • the D50 particle size of the first soft magnetic powder is in the range of 1 ⁇ m-10 ⁇ m; the D50 particle size of the second soft magnetic powder is in the range of 5 ⁇ m-20 ⁇ m.
  • the special D50 particle size range of these two soft magnetic powders the above-mentioned magnetic powders can be compacted to form relatively dense packing, which can increase the density and magnetic permeability of the obtained magnets, reduce losses, etc.
  • the mass of the amorphous soft magnetic material is 0.5-1.5 times that of the nanocrystalline soft magnetic material.
  • the magnetic powder composed of the second soft magnetic powder and the first soft magnetic powder can have higher resistivity and lower coercive force, and better high-frequency loss performance.
  • the saturation magnetic flux density of the metal crystal soft magnetic material is greater than or equal to 1.35T.
  • Combining the first soft magnetic powder with high Bs with the second soft magnetic powder is beneficial to increase the Bs of the obtained magnetic powder, which in turn is beneficial to improve the saturation characteristics and inductance of the inductor made from the magnetic powder.
  • the saturation magnetic flux density of the amorphous soft magnetic material and the nanocrystalline soft magnetic material is greater than or equal to 1.2T, and the unit power loss of the amorphous soft magnetic material and the nanocrystalline soft magnetic material is equal to
  • the unit power loss ratio of Fe 95.5 Si 4.5 is less than or equal to 0.5.
  • the second soft magnetic powder cooperates with the above-mentioned first soft magnetic powder to ensure that the magnetic powder has relatively low magnetic loss performance while having a large Bs.
  • the metal crystal soft magnetic material includes at least one of carbonyl iron, iron-silicon alloy, iron-nickel alloy and iron-silicon-chromium alloy.
  • the amorphous soft magnetic material includes at least one of Fe-Ni-B system, Fe-Ni-Si-B-P-C system, and Fe-Si-B-Cr-C system.
  • the constituent elements of the nanocrystalline soft magnetic material include a first element, a second element, and a third element, wherein the first element includes at least one of Fe, Co, and Ni, and Fe must be contained, the second element includes at least one of Si, B, C, and P, and the third element includes at least one of Cr, Cu, Nb, V, and Zr.
  • the nanocrystalline soft magnetic material includes Fe-B-Cu-C system, Fe-Zr-B-Cu system, Fe-Si-B-Cu-P system and Fe-Si-B- At least one of the Cu-Nb system.
  • the surfaces of the first soft magnetic powder and the second soft magnetic powder both have an insulating coating layer.
  • the insulating coating layer can endow each soft magnetic material with good insulation.
  • the material of the insulating coating layer includes one or more of phosphoric acid, sulfuric acid, nitric acid, chromic acid, phosphate, silicate, nitrate, chromate, and inorganic oxides.
  • the second aspect of the embodiment of the present application provides a magnet, which is obtained by molding a magnetic composite material, wherein the magnetic composite material includes the magnetic powder and the binder described in the first aspect of the present application.
  • the binder is selected from at least one of epoxy resin, phenolic resin, silicone resin, acrylic resin, cyanate resin, polyimide, polyphenylene sulfide and their modified products. kind.
  • the existence of the binder can improve the forming effect of the magnetic composite material.
  • the magnet provided in the second aspect of the embodiment of the present application has a high density, and the magnet can be used to realize the preparation of a magnetic element with excellent performance, for example, an inductor with excellent magnetic properties such as high inductance and low high-frequency loss can be produced.
  • the third aspect of the embodiment of the present application provides a magnetic element, the magnetic element includes the magnet as described in the second aspect of the application and a coil arranged in the magnet.
  • the magnetic element includes an inductor.
  • the fourth aspect of the embodiment of the present application provides an electronic device, the electronic device includes the magnetic element and the circuit board according to the third aspect of the application, and the magnetic element is arranged on the circuit board.
  • the electronic equipment can realize high-speed and large-capacity operation and ensure quality and reliability.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • Figure 2a is a schematic structural view of an inductor used in an electronic device
  • Fig. 2b is another schematic structural diagram of the inductor in Fig. 2a;
  • FIG. 3 is a schematic diagram of another structure of an inductor used in an electronic device.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 provided in an embodiment of the present application.
  • the electronic device 100 may be a mobile phone, a tablet computer, a notebook computer, a wearable device (such as a smart watch), a smart TV, a vehicle device (such as a driving recorder), a server and other electronic products.
  • description is made by taking the electronic device 100 as a mobile phone as an example.
  • an electronic device 100 includes a housing 11 assembled outside the electronic device, and components such as circuit boards and batteries inside the housing 11 (not shown in FIG. 1 ).
  • the battery is electrically connected to the circuit board for powering the electronic device 100 .
  • the circuit board of the electronic device 100 may be provided with a magnetic element, and the magnetic element may be an inductor, a wave absorbing sheet, a wireless charging magnetic sheet, an antenna magnetic core, and the like. In the embodiment of the present application, description is made by taking the magnetic element as an inductor as an example.
  • the electronic device 100 generally requires a power supply circuit using a DC (direct current)/DC converter to obtain operating power with various voltage levels required in internal circuits.
  • the DC/DC converter can convert the high-voltage DC voltage into a low-voltage DC voltage for use by the chip.
  • magnetic components such as inductors that can withstand high frequency and high current are required to realize electromagnetic signal and voltage conversion.
  • FIG. 2a, FIG. 2b, and FIG. 3 show several structural schematic diagrams of power inductors (ie, chip inductors).
  • Fig. 2a and Fig. 2b are specifically molded inductors made by compression molding
  • Fig. 3 is a thin film inductor made by tape casting.
  • the power inductor 200 includes a magnet 20 and a coil (or winding) 30 as an electrical conductor.
  • the coil 30 is embedded in the magnet 20 , and the coil 30 may have a pair of lead-out terminals 31 and 32 protruding from the magnet 20 .
  • the inductor 200 may also include an external electrode 240 (see FIG.
  • the external electrode 240 is provided with a coating for connecting with other devices, and the coating may specifically be It is nickel plating and tin plating.
  • the magnets 20 are in sheet shape, and the coil 30 disposed on the base 40 is sandwiched between the two magnets 20 to form a sandwich structure.
  • the magnet 20 is generally made of a magnetic composite material including magnetic material powder and a binder such as resin.
  • a binder such as resin.
  • some magnetic materials that form magnets cannot take into account high saturation magnetic flux density (Bs) and low high-frequency loss. Therefore, the inductance formed by the magnet has low DC resistance, low inductance, and high loss, thereby reducing the electron density.
  • the conversion efficiency of the power supply system of the equipment affects the high-speed and large-capacity operation of its CPU. Based on this, the embodiment of the present application provides a magnetic powder that is more suitable for manufacturing an induction magnet.
  • the magnetic powder provided by this application includes a first soft magnetic powder and a second soft magnetic powder
  • the first soft magnetic powder is a metal crystal soft magnetic material
  • the second soft magnetic powder includes an amorphous soft magnetic material and at least one of the nanocrystalline soft magnetic materials
  • the mass of the first soft magnetic powder accounts for 5%-45% of the sum of the mass of the first soft magnetic powder and the second soft magnetic powder.
  • nanocrystalline soft magnetic material refers to a soft magnetic material with a grain size of nanoscale (1nm-100nm), and an amorphous structure at the grain boundary; atoms in the amorphous soft magnetic material are long-range disordered and short-range ordered Therefore, the resistivity of amorphous soft magnetic materials and nanocrystalline soft magnetic materials is higher, and the high-frequency loss performance is better than that of metal crystal soft magnetic materials.
  • the metal crystal soft magnetic material has a larger grain size and a crystal structure arranged in a certain period, so the resistivity is lower and the high frequency loss is high; but due to the high content of Fe in the metal crystal soft magnetic material, compared with the amorphous /Nanocrystalline soft magnetic materials are easier to process and shape, while amorphous/nanocrystalline soft magnetic materials have high hardness and low deformation under pressure.
  • the second soft magnetic powder composed of at least one of amorphous soft magnetic material and nanocrystalline soft magnetic material is mixed with the first soft magnetic powder composed of metal crystal soft magnetic material, which can combine the advantages of various materials, Complementing the deficiency when there is a single material powder, wherein, the existence of the first soft magnetic powder can facilitate the molding of the magnetic powder during the compaction process, so that the compaction density of the magnetic powder can be effectively improved, and it is beneficial to improve the sensitivity of the formed magnet. Quantity, improve the mechanical strength, and also help to reduce the gap of the magnetic powder after pressing, and help to reduce the magnetic loss performance.
  • the mass ratio of the first soft magnetic powder is controlled in the range of 5%-45%, which can avoid that the molding effect of the magnetic powder cannot be effectively improved when the content is too low, and the compression molding pressure of the magnetic powder will not be too high , and can avoid that when its content is too high, it is not conducive to reducing the magnetic loss performance of the magnetic powder because of its large loss, and avoiding that its magnetic performance may not be as good as that of a single second soft magnetic powder.
  • the mass of the above-mentioned first soft magnetic powder may account for 6%, 8%, 10%, 12%, 15%, 20% of the sum of the mass of the above-mentioned first soft magnetic powder and the above-mentioned second soft magnetic powder , 25%, 30%, 35%, 40% or 45%, etc.
  • the mass of the first soft magnetic powder may account for 10%-40% of the sum of the mass of the first soft magnetic powder and the second soft magnetic powder.
  • the meaning of “the second soft magnetic powder includes at least one of amorphous soft magnetic material and nanocrystalline soft magnetic material” in this application is explained as follows: the second soft magnetic powder can be made from amorphous soft magnetic material and At least one selected from the group consisting of nanocrystalline soft magnetic materials may specifically include the following three situations: a) the second soft magnetic powder only includes amorphous soft magnetic materials; or b) the second soft magnetic powder only includes It includes nanocrystalline soft magnetic material; or c) the second soft magnetic powder includes both amorphous soft magnetic material and nanocrystalline soft magnetic material.
  • the mass of the amorphous soft magnetic material in the second soft magnetic powder, is 0.5-1.5 times that of the nanocrystalline soft magnetic material.
  • the magnetic powder composed of the second soft magnetic powder and the first soft magnetic powder can have higher resistivity and lower coercive force, and better high-frequency loss performance.
  • the mass of the amorphous soft magnetic material is 0.5-1 times that of the nanocrystalline soft magnetic material.
  • the nanocrystalline soft magnetic material with a larger mass proportion in the second soft magnetic powder is more conducive to the improvement of the magnetic properties of the magnetic powder.
  • the D50 particle size of the second soft magnetic powder is larger than the D50 particle size of the first soft magnetic powder.
  • the first soft magnetic powder with small D50 particle size and good flexibility can be more easily filled into the interparticle spaces of the second soft magnetic powder, which is beneficial to increase the compaction density of the magnetic powder.
  • the term "D50 particle size” is a typical value representing the size of the particle size, which can also be called the median particle size, which specifically refers to the particle size corresponding to when the cumulative particle size distribution percentage of a sample reaches 50%.
  • the D50 particle size of the second soft magnetic powder is 2-5 times the D50 particle size of the first soft magnetic powder.
  • the magnetic powder composed of the first soft magnetic powder and the second soft magnetic powder can be compacted to form a denser packing, with fewer gaps between the magnetic powders, thereby increasing the density and magnetic permeability of the obtained magnet.
  • the D50 particle size of the second soft magnetic powder is 2-4.5 times the D50 particle size of the first soft magnetic powder.
  • the D50 particle size of the first soft magnetic powder is in the range of 1 ⁇ m-10 ⁇ m.
  • the D50 particle size of the second soft magnetic powder is in the range of 5 ⁇ m-20 ⁇ m.
  • the Bs of the metal crystal soft magnetic material is greater than or equal to 1.35T. In some embodiments, the Bs of the metal crystal soft magnetic material is greater than or equal to 1.5T, for example, 1.6-2T. Combining the first soft magnetic powder with high Bs and the second soft magnetic powder is beneficial to increase the Bs of the obtained magnetic powder, which in turn is beneficial to improve the saturation induction characteristics of the inductor made from the magnetic powder.
  • the Bs of the amorphous soft magnetic material and the nanocrystalline soft magnetic material is greater than or equal to 1.2T, and the ratio between the unit power loss of the amorphous soft magnetic material and the nanocrystalline soft magnetic material and the unit power loss of Fe 95.5 Si 4.5
  • the ratios (which may be referred to as loss relative values in this application) are all less than or equal to 0.5.
  • the aforementioned "unit power loss" can be represented by the symbol P cv , and its unit can be kW/m 3 , which is measured at a frequency of 1 MHz and a magnetic flux density of 30 mT.
  • the Bs of the amorphous soft magnetic material and the nanocrystalline soft magnetic material is greater than or equal to 1.4T (such as 1.4T-2T, 1.4T-1.9T, or 1.5T-1.8T), and the relative loss is less than or equal to Equal to 0.35.
  • Amorphous/nanocrystalline soft magnetic materials with large Bs and small relative loss value are combined with the above-mentioned first soft magnetic powder to ensure that the magnetic element made of the above-mentioned magnetic powder will not cause inductance saturation while working under high current. , also has low magnetic loss performance.
  • nanocrystalline soft magnetic materials Due to the existence of nanoscale grains, nanocrystalline soft magnetic materials have a magnetostriction coefficient close to 0, ultra-low coercive force and high resistivity, and their loss characteristics are generally better than those of traditional metal crystal materials and common amorphous soft magnetic materials such as FeSiB. magnetic material. In some embodiments, the relative loss of the nanocrystalline soft magnetic material may be less than or equal to 0.2.
  • the above-mentioned metal crystal soft magnetic material may include at least A sort of.
  • the above-mentioned metal crystal soft magnetic material can be at least one selected from the group consisting of carbonyl iron, iron-silicon alloy, iron-nickel alloy, iron-silicon-chromium alloy, etc., specifically, it can be selected from this group, or Choose two, or three, or all.
  • the constituent elements of the above-mentioned amorphous soft magnetic material include a first element and a second element, wherein the first element includes at least one of Fe, Co and Ni, and must contain Fe, and the The second element includes at least one of Si, B, C, and P. Further, the constituent elements of the amorphous soft magnetic material may further include a third element, wherein the third element may include at least one of Cr, Cu, Nb, V, and Zr. Generally, the amorphous soft magnetic material is not Fe-Si or Fe-Si-Cr system. Exemplarily, the amorphous soft magnetic material may be at least one of Fe-Ni-B system, Fe-Ni-Si-B-P-C system, Fe-Si-B-Cr-C system and the like.
  • the constituent elements of the nanocrystalline soft magnetic material include the first element, the second element and the third element at the same time, wherein the first element includes at least one of Fe, Co and Ni, and must Containing Fe, the second element includes at least one of Si, B, C, and P, and the third element may include at least one of Cr, Cu, Nb, V, and Zr.
  • the first element is Fe
  • the nanocrystalline soft magnetic material at this time may be called "iron-based nanocrystalline alloy”.
  • the nanocrystalline soft magnetic material can be Fe-B-Cu-C system, Fe-Zr-B-Cu system, Fe-Si-B-Cu-P system, Fe-Si-B-Cu-Nb system , Fe-Nb-B-P-Cu system, Fe-Nb-B-P-Si-Cu system, Fe-Nb-B-P-Cu-C system, FeBNbCu system, and the like.
  • Table 1 shows the relative values of Bs and loss Pcv , coercive force (symbol Hc) of some soft magnetic materials.
  • the powders of the above-mentioned various soft magnetic materials can be particles prepared by water atomization or gas atomization. Specifically, high-pressure water or high-pressure gas with a certain speed is used to crush the molten metal liquid column into fine droplets and then rapidly cooled to obtain powder, which is basically composed of approximately spherical particles. Nearly spherical particles have better magnetic properties than other irregularly shaped particles.
  • the surfaces of the first soft magnetic powder and the second soft magnetic powder also have insulating coating layers.
  • each metal crystal soft magnetic material powder, each amorphous soft magnetic material powder and each nanocrystalline soft magnetic material powder can be insulated and coated after being completely or partially mixed, and each soft magnetic material powder can be insulated and coated. Mix again.
  • the insulating coating layer can improve the insulation and heat resistance of each soft magnetic material.
  • the magnetic powder with the insulating coating layer is used in the inductor, it can meet the requirements of voltage breakdown and heat aging resistance during the use of the inductor. demand.
  • the insulating coating layer may cover at least a part of the surface of the soft magnetic material particle, but preferably covers the entire surface.
  • the insulating coating layer may cover the surface of the particles continuously or intermittently.
  • the embodiment of the present application also provides a magnet, which is obtained by molding a magnetic composite material, wherein the magnetic composite material includes the aforementioned magnetic powder and a binder.
  • the magnet can be made from the above-mentioned magnetic composite material through a compression molding method, or through a tape casting method, but is not limited thereto.
  • magnets produced by compression molding have higher densities.
  • the magnetic composite material may be granulated powder (or called "feeding particles") formed by granulating the aforementioned magnetic powder and binder. The granulated powder can be filled in a mold, pressed into shape, and then baked and solidified to obtain a finished product.
  • an integrally formed inductor can be obtained by compression molding at this time, and the inductor can also be called a "molded inductor".
  • the magnetic composite material used can be a viscous fluid, which can be made into a green film (also called a prepreg) with a certain thickness on the tape casting machine, and then baked Bake and solidify to obtain a finished product.
  • the semi-cured magnetic sheet obtained by the casting method and the coil produced by the photolithography process can be hot-pressed, cut, and then baked and solidified to obtain an inductor product.
  • the inductor produced by this process can also be called For "thin film inductor”.
  • the adhesive can be a resin, specifically including epoxy resin, phenolic resin, silicone resin, acrylic resin, cyanate resin, polyimide, polyphenylene sulfide and its modified products, etc. at least one of .
  • the presence of binder can improve the forming effect of magnetic composite materials. In particular, it can make the granulated powdery magnetic composite material have a certain fluidity, and improve the molding effect and the uniformity of cavity filling during compression molding.
  • the mass of the binder may be 2%-6% of the mass of the aforementioned magnetic powder. In this way, the presence of more binders can avoid reducing the molding density of the obtained magnet and reducing its magnetic loss performance. In some embodiments, the mass of the binder may be 2%-5% of the aforementioned magnetic powder.
  • the compression molding pressure of the granulated powdery magnetic composite material will not be too high, which can avoid the excessive pressure and cause the granulated powder to be damaged (such as the insulating coating layer is destroyed) and placed in the granulated powder
  • the deformation or damage of the coil structure in the coil prevents the short circuit of the manufactured inductor and the attenuation of the initial withstand voltage capacity of the coil, and improves the reliability of the manufactured inductor.
  • the mass of the binder may be 3%-6% of the aforementioned magnetic powder. This ensures proper flow of magnetic composites for viscous fluids.
  • the preparation method of the above-mentioned magnetic composite material includes:
  • the above-mentioned preparation method of the magnetic composite material further includes: before mixing the first soft magnetic powder and the second soft magnetic powder, separately performing the first soft magnetic powder and the second soft magnetic powder annealing treatment; or annealing the magnetic powder mixed with the first soft magnetic powder and the second soft magnetic powder.
  • the annealing treatment can eliminate the internal stress and some impurities (such as carbon, oxygen, etc.) of the soft magnetic material, and improve the magnetic properties of the soft magnetic material to meet the requirements of the inductor working at high frequency and high current.
  • the temperature of the annealing treatment may be 300° C.-900° C., and the annealing treatment may be performed in an atmosphere containing at least one of nitrogen, hydrogen, argon, air and the like.
  • the annealing temperature should be above 300°C, which can ensure that the internal stress of each material can be fully removed and improve the magnetic properties.
  • the annealing temperature should not exceed the crystallization temperature of the soft magnetic material to avoid deterioration of loss characteristics.
  • the annealing temperature for the second soft magnetic powder generally does not exceed 550° C., so as not to exceed the crystallization temperature of the second soft magnetic powder.
  • before mixing the magnetic powder and the binder it also includes: before or after the mixing of the first soft magnetic powder and the second soft magnetic powder, mixing the first soft magnetic powder and the second soft magnetic powder The surfaces of the second soft magnetic powder form insulating coating layers respectively.
  • the preparation method of the magnetic composite material includes:
  • a first insulating coating layer wrapping the surface of the first soft magnetic powder is formed; after annealing the second soft magnetic powder, forming a coating layer wrapping the A second insulating coating layer on the surface of the second soft magnetic powder;
  • the magnetic powder and the binder are mixed to prepare a magnetic composite material.
  • each soft magnetic material is well wrapped by the insulating coating layer, and the insulation is better.
  • the subsequent magnetic components such as inductors made of the magnetic powder are applied with voltage, the eddy current between the contact particles is small.
  • the inductance loss caused by it is small, and the inductance has a strong ability to withstand voltage breakdown.
  • the preparation method of the above-mentioned magnetic composite material includes:
  • the magnetic powder is mixed with a binder to obtain a magnetic composite material. At this time, the operation of the preparation method of the magnetic composite material is simpler.
  • the material of the insulating coating layer includes one or more of phosphoric acid, sulfuric acid, nitric acid, chromic acid, phosphate, silicate, nitrate, chromate, inorganic oxide, and the like.
  • the phosphate may be at least one selected from the group consisting of sodium hydrogen phosphate, aluminum dihydrogen phosphate and aluminum phosphate.
  • the silicate may be at least one selected from the group consisting of sodium silicate, magnesium silicate, magnesium aluminum silicate and the like.
  • the inorganic oxide may be at least one selected from the group consisting of silica, iron oxide, titania, alumina, calcium oxide, zinc oxide, zirconia and the like.
  • the method for forming the insulating coating layer may include at least one of physical fusion, coating, physical vapor deposition, chemical vapor deposition, and in-situ heat treatment.
  • physical fusion may include ball milling, sand milling, etc.
  • the coating method may specifically include one or a combination of dripping, brushing, spraying, dipping, etc. methods.
  • the physical vapor deposition may include vapor deposition, sputtering, and the like.
  • the in-situ heat treatment method is to chemically react with the surface of the soft magnetic material to be coated to form an insulating coating layer.
  • the in-situ heat treatment method can be performed by placing the soft magnetic material to be coated in a dry air or oxygen atmosphere In situ oxidation is carried out.
  • elements such as iron and silicon in the soft magnetic material undergo oxidation reactions, and the insulating coating layer formed at this time may include at least one of silicon dioxide, iron oxide, and the like.
  • the method for forming the insulating coating layer can be selected according to its specific material. Among them, silicon dioxide, iron oxide, etc. are particularly suitable for in-situ oxidation.
  • the method of physical fusion and coating is suitable for the construction of insulating coatings of various materials. Exemplarily, the material includes phosphoric acid, sulfuric acid, nitric acid, chromic acid, phosphate, silicate, nitrate, chromate, etc.
  • the insulating coating layer is more suitable for soaking the soft magnetic material in the insulating coating layer material and water. , alcohol, acetone, etc., and then dried to form.
  • the insulating coating layer made of inorganic oxide is more suitable to be formed by performing dry or wet ball milling with the soft magnetic material.
  • the aforementioned magnetic composite material may further include at least one of a lubricant, a silane coupling agent, a curing agent, a dispersant, a plasticizer, and the like.
  • the lubricant is generally used in the magnetic composite material in the form of granulated powder to improve its compression molding effect.
  • the lubricant can be selected from zinc stearate, magnesium stearate, calcium stearate, amide wax micropowder, etc. at least one.
  • the curing agent is generally used when the adhesive includes epoxy resin, and generally includes one or more of imidazole curing agents, dicyandiamide curing agents, organic amine curing agents, polyisocyanates and the like.
  • the imidazole curing agent may include one or more of imidazole, 2-methylimidazole, 2-ethylimidazole, 2,4-dimethylimidazole and 2-ethyl 4-methylimidazole.
  • the dicyandiamide curing agent may include one or more of dicyandiamide and aniline-modified dicyandiamide.
  • organic amine curing agents include aliphatic amines, alicyclic amines, aromatic amines, polyamides, and the like.
  • Dispersants, silane coupling agents, and plasticizers are generally used in magnetic composite materials in the form of viscous fluids. Of course, the magnetic composite materials also contain solvents at this time, acting as diluents.
  • the dispersant may be at least one of phosphoric acid ester, triolein, triethanolamine and the like.
  • the plasticizer can be at least one of glycerin, dioctyl phthalate, polyethylene glycol, phthalic acid and the like.
  • the magnetic composite material in the form of granulated powder can be molded into a magnet first, and then assembled with a coil to form an inductor, or the granulated powder can also be molded together with the coil to form an integrated body.
  • the molded inductor body is then baked and solidified to produce an inductor (the inductor made by this method can be called a "molded inductor").
  • the granulated powder can be filled into a mold in which coils have been placed in advance, and shaped under pressure.
  • the molding pressure of compression molding is 3-10 ton/cm 2 ; the baking temperature is 160°C-220°C, and the holding time is 0.1h-3h.
  • the above-mentioned viscous fluid-like magnetic composite material can be formed into a semi-cured magnetic sheet after tape-casting.
  • the casting speed may be 0.1-2 m/min, and the casting temperature may be 50-90°C.
  • the semi-cured magnetic sheet needs to be made into an inductor later, it can be hot-pressed and pressed with the coil made by the photolithography process. After cutting, the inductor body of the required size is obtained, and then baked and solidified to obtain inductance. At this time, the inductor manufactured by this method can be called "thin film inductor".
  • the baking temperature is 160-220°C
  • the holding time is 0.1h-3h.
  • the magnet provided in the embodiment of the present application uses the above-mentioned magnetic powder with good molding effect, high saturation magnetic flux density and low relative magnetic loss value, so that the magnet has a high packing density, a large saturation magnetic flux under high current, and low eddy current loss. .
  • the magnet is used to prepare the inductance, the inductance has large inductance, low DC resistance, low loss and high efficiency.
  • the preparation method of the above-mentioned magnetic composite material has a simple process, high efficiency and environmental protection, and can be produced on a large scale.
  • the method of molding the magnetic composite material into a magnet is also relatively convenient.
  • a method for preparing magnetic powder for manufacturing magnets comprising:
  • metal crystal powder specifically carbonyl iron powder, D50 particle size is 3 ⁇ m
  • 55wt.% amorphous soft magnetic material powder specifically Fe 87.8 Si 6.6 B 2.5 Cr 2.5 C 0.6 , D50 particle size is 10 ⁇ m
  • a method for preparing an inductor comprising:
  • the above-mentioned magnetic powder is mixed with a thermosetting epoxy resin and a curing agent (specifically dicyandiamide) and diluent acetone with a mass of 4wt.% of the above-mentioned magnetic powder, and the obtained mixed slurry is sent into a granulator for granulation, After drying, a granulated powder with a particle size of 100-300 ⁇ m is obtained, and the granulated powder is used to manufacture an inductor magnet;
  • a thermosetting epoxy resin and a curing agent specifically dicyandiamide
  • diluent acetone with a mass of 4wt.% of the above-mentioned magnetic powder
  • a method for preparing magnetic powder for manufacturing magnets comprising:
  • Get 20wt.% metal crystal soft magnetic material powder (specifically Fe 92 Si 3.5 Cr 4.5 alloy powder, D50 particle size is 5 ⁇ m) and 40wt.% amorphous soft magnetic material powder (specifically Fe 87.5 Si 6.6 B 2.7 Cr 2.7 C 0.5 , D50 particle size is 14 ⁇ m), 40wt.% nanocrystalline soft magnetic material powder (specifically Fe 83.4 Si 7.7 B 2 Cu 1.3 Nb 5.6 , D50 particle size is 16 ⁇ m), the above-mentioned various soft magnetic materials
  • the annealing procedure of Fe 92 Si 3.5 Cr 4.5 alloy powder is annealing at 700°C for 3 hours under nitrogen atmosphere, and the annealing procedure of Fe 87.5 Si 6.6 B 2.7 Cr 2.7 C 0.5 amorphous powder is annealing at 450°C under nitrogen atmosphere 1h, the annealing procedure of Fe 83.4 Si 7.7 B 2 Cu 1.3 Nb 5.6 nanocrystalline powder is annealing at 550°C for 0.5h under
  • a method for preparing an inductor comprising:
  • the above-mentioned magnetic powder is mixed with a binder (specifically epoxy resin and silicone resin with a mass ratio of 1:1) and a curing agent (specifically imidazole) and a diluent acetone whose mass is 3.5wt.% of the above-mentioned magnetic powder, Send the obtained mixed slurry into a granulator for granulation, and after drying, obtain a granulated powder with a particle size of 100-300 ⁇ m, which is used to manufacture an inductor magnet;
  • a binder specifically epoxy resin and silicone resin with a mass ratio of 1:1
  • a curing agent specifically imidazole
  • a diluent acetone whose mass is 3.5wt.% of the above-mentioned magnetic powder
  • a method for preparing magnetic powder for manufacturing magnets comprising:
  • Get 10wt.% metal crystal soft magnetic material powder (specifically Fe 95.5 Si 4.5 alloy powder, D50 particle size is 1 ⁇ m) and 50wt.% amorphous soft magnetic material powder (specifically Fe 80 Ni 11 Si 4.5 B 2.6 P 1.4 C 0.5 , D50 particle size is 20 ⁇ m), 40wt.% nanocrystalline soft magnetic material powder (specifically Fe 92 Si 2.2 B 1.7 Cu 1.6 P 2.5 , D50 particle size is 5 ⁇ m), first the above-mentioned various soft magnetic materials The powders were annealed.
  • the annealing procedure for Fe 95.5 Si 4.5 alloy powder was annealing at 700°C for 0.5h in nitrogen atmosphere, and the annealing procedure for Fe 80 Ni 11 Si 4.5 B 2.6 P 1.4 C 0.5 amorphous powder was at 550°C in hydrogen atmosphere.
  • Annealing for 0.5h the annealing procedure for Fe 92 Si 2.2 B 1.7 Cu 1.6 P 2.5 nanocrystalline powder is annealing at 530°C for 1h under argon atmosphere;
  • Insulate and coat the annealed Fe 95.5 Si 4.5 alloy powder add phosphoric acid in acetone solution, wherein the mass of phosphoric acid accounts for 0.1% of the mass of Fe 95.5 Si 4.5 powder after annealing, stir at 150°C for 1 hour, mix the materials evenly and Completely volatilize propanol; Fe 80 Ni 11 Si 4.5 B 2.6 P 1.4 C 0.5 amorphous powder and Fe 92 Si 2.2 B 1.7 Cu 1.6 P 2.5 nanocrystalline powder are simultaneously insulated and coated: air is introduced, and thermal oxidation is carried out at 300°C 1h: Mix various soft magnetic material powders coated with insulation according to the above ratio to obtain magnetic powder.
  • a method for preparing an inductor comprising:
  • the above-mentioned magnetic powder is mixed with a binder (specifically, a silicone resin) and a diluent acetone whose mass is 3wt.% of the above-mentioned magnetic powder, and the obtained mixed slurry is sent into a granulator for granulation, and after drying, the obtained Granulated powder with a particle size of 100-300 ⁇ m, which is used to manufacture inductor magnets;
  • a binder specifically, a silicone resin
  • a diluent acetone whose mass is 3wt.% of the above-mentioned magnetic powder
  • the above-mentioned granulated powder and coil were molded under a molding pressure of 10 ton/cm 2 to obtain an inductor green body, and then the inductor green body was baked at a temperature of 160°C for 1 hour to obtain an inductor.
  • a method for preparing magnetic powder for manufacturing magnets comprising:
  • Get 40wt.% metal crystal soft magnetic material powder (specifically Fe 50 Ni 50 powder and Fe 91 Si 3.5 Cr 5.5 powder with a mass ratio of 1:1, the D50 particle size of FeNi powder is 5 ⁇ m, Fe 91 Si 3.5 Cr 5.5
  • the D50 particle size of the powder is 2 ⁇ m), and 20wt.% of the amorphous soft magnetic material powder (specifically Fe 78 Ni 15 B 7 , the D50 particle size is 17 ⁇ m), 40wt.% of the nanocrystalline soft magnetic material powder (specifically 10wt .% Fe 87.5 Zr 6 B 5.5 Cu and 30wt.% Fe 94.2 Si 0.3 B 2 CuP 2.5 , the D50 particle size of Fe 87.5 Zr 6 B 5.5 Cu nanocrystalline powder is 8 ⁇ m, Fe 94.2 Si 0.3 B 2 CuP 2.5 nm
  • the D50 particle size of the crystal powder is 10 ⁇ m), and the above-mentioned various soft magnetic material powders are first annealed.
  • the annealing procedure of Fe 50 Ni 50 powder is annealing at 800°C for 3 hours in a hydrogen atmosphere, and Fe 91 Si 3.5 Cr 5.5 powder
  • the annealing procedure for Fe 78 Ni 15 B 7 amorphous powder is annealing at 400°C for 0.5 hours in a mixed atmosphere of hydrogen and nitrogen.
  • Fe 87.5 Zr 6 B 5.5 Cu nanocrystalline powder The annealing procedure for the annealing procedure is 500°C for 1 hour under a nitrogen atmosphere, and the annealing procedure for Fe 94.2 Si 0.3 B 2 CuP 2.5 nanocrystalline powder is annealing at 530°C for 1 hour under an argon atmosphere;
  • Insulate and coat the annealed Fe 50 Ni 50 powder and Fe 91 Si 3.5 Cr 5.5 powder first add sulfuric acid in acetone solution, where the mass of sulfuric acid accounts for 0.2% of the powder mass, stir at 150°C for 1 hour, and mix the materials Homogenize and completely volatilize the propanol, then add 0.3% of the powder mass to the silica sol of nano-SiO 2 to stir and mix, and dry; Fe 87.5 Zr 6 B 5.5 Cu nanocrystalline powder and Fe 78 Ni 15 B 7 amorphous powder
  • Simultaneous insulation coating use phosphoric acid in acetone solution for insulation coating, the mass of phosphoric acid accounts for 0.5% of the powder weight, stir at 120°C for 1 hour to mix the materials evenly and completely volatilize the propanol; Fe 94.2 Si 0.3 B 2 CuP 2.5
  • the nanocrystalline powder is insulated and coated by air thermal oxidation: air is introduced, and thermal oxidation is performed at 400°C for 0.5h; the above-ment
  • a method for preparing an inductor comprising:
  • the above-mentioned magnetic powder is mixed with a binder (specifically, a phenolic resin and a silicone resin with a mass ratio of 1:2) and a diluent (specifically, acetone) that is 3.5wt.% of the above-mentioned magnetic powder, and the resulting mixed slurry
  • a binder specifically, a phenolic resin and a silicone resin with a mass ratio of 1:2
  • a diluent specifically, acetone
  • the above-mentioned granulated powder and coil were molded at a molding pressure of 5 ton/cm 2 to obtain an inductor green body, and then the inductor green body was baked at a temperature of 190°C for 1.5 hours to obtain an inductor.
  • a method for preparing magnetic powder for manufacturing magnets comprising:
  • Get 50wt.% metal crystal soft magnetic material powder (specifically 30wt.% carbonyl iron powder and 5wt .% Fe 5 5 Ni 45 powder, the D50 particle diameter of carbonyl iron powder is 2 ⁇ m, the D50 grain of Fe 5 5 Ni 45 powder diameter is 4 ⁇ m) and 50wt.% nanocrystalline soft magnetic material powder (specifically 30wt.% Fe 89.3 Si 1.1 B 2.8 Cu 1.3 Nb 5.5 and 35wt.% Fe 93.5 Si 1.1 B 1.7 Cu 1.3 P 2.4 , both The D50 particle size is 12 ⁇ m and 15um respectively).
  • the above-mentioned soft magnetic material powders are annealed.
  • the annealing procedure of the carbonyl iron powder is annealing at 450°C for 3 hours in a nitrogen atmosphere
  • the annealing procedure of the Fe 55 Ni 45 powder is in Annealing at 800°C for 3h in hydrogen atmosphere
  • P 2.4 nanocrystalline powder is annealing at 530°C for 1h in argon atmosphere;
  • the annealed carbonyl iron powder, Fe 55 Ni 45 powder, Fe 89.3 Si 1.1 B 2.8 Cu 1.3 Nb 5.5 powder were respectively insulated and coated: adding phosphoric acid in acetone solution, wherein the mass of phosphoric acid accounted for 0.15% of the mass of each powder.
  • P 2.4 nanocrystalline powder air is introduced, and thermal oxidation is carried out at 300°C for 1 hour;
  • Various soft magnetic material powders coated with insulation are mixed according to the above ratio to obtain the desired magnetic powder.
  • a method for preparing an inductor comprising:
  • the above-mentioned magnetic powder is mixed with a binder (specifically, acrylic resin and silicone resin with a mass ratio of 1:2.5) and a diluent (specifically, acetone) that is 4wt.% of the above-mentioned magnetic powder, and the resulting mixed slurry Send it into a granulator for granulation, and after drying, a granulated powder with a particle size of 100-300 ⁇ m is obtained, and the granulated powder is used to manufacture an inductor magnet;
  • a binder specifically, acrylic resin and silicone resin with a mass ratio of 1:2.5
  • a diluent specifically, acetone
  • the above-mentioned granulated powder and coil were molded at a molding pressure of 7 ton/cm 2 to obtain an inductor green body, and then the inductor green body was baked at a temperature of 200°C for 1 hour to obtain an inductor.
  • a method for preparing magnetic powder for manufacturing magnets comprising:
  • metal crystal soft magnetic material powder (specifically Fe 53 Ni 47 powder, its D50 particle size is 3.6 ⁇ m), 30wt.% amorphous soft magnetic material powder (specifically Fe 82.5 Ni 10.5 Si 3.5 B 1.5 P 1.5 C 0.5 , D50 particle size is 11.3 ⁇ m) and 30wt.% nanocrystalline soft magnetic material powder (specifically Fe 92.5 Si 1.6 B 2 Cu 1.4 P 2.5 , and its D50 particle size is 18.2 ⁇ m), the above-mentioned All kinds of soft magnetic material powders are annealed.
  • the annealing procedure of FeNi powder is annealing at 800 ° C for 3 hours under hydrogen atmosphere
  • the annealing procedure of Fe 82.5 Ni 10.5 Si 3.5 B 1.5 P 1.5 C 0.5 amorphous powder is 550 ° C under hydrogen atmosphere.
  • °C annealing for 0.5h the annealing procedure for Fe 92.5 Si 1.6 B 2 Cu 1.4 P 2.5 nanocrystalline powder is annealing at 530°C for 1h under argon atmosphere;
  • Insulate and coat the annealed Fe 53 Ni 47 powder add phosphoric acid in acetone solution, wherein the mass of phosphoric acid accounts for 0.15% of the mass of Fe 53 Ni 47 powder, stir at 150°C for 1 hour, mix the materials evenly and make the propanol Completely volatilize; Insulate Fe 82.5 Ni 10.5 Si 3.5 B 1.5 P 1.5 C 0.5 amorphous powder and Fe 92.5 Si 1.6 B 2 Cu 1.4 P 2.5 nanocrystalline powder at the same time for insulation coating: first pass air, thermal oxidation at 300°C 1h, then add 0.2% of the powder mass nano-alumina sol for stirring and mixing, and dry; mix various soft magnetic material powders coated with insulation according to the above ratio to obtain magnetic powder.
  • a method for preparing an inductor comprising:
  • the above-mentioned magnetic powder is mixed with a binder (specifically phenolic resin and epoxy resin with a mass ratio of 1:1) and a curing agent (specifically polyamide) and diluent butanone that are 5wt.% of the above-mentioned magnetic powder, And the obtained mixed slurry is defoamed;
  • a binder specifically phenolic resin and epoxy resin with a mass ratio of 1:1
  • a curing agent specifically polyamide
  • a method for preparing magnetic powder for manufacturing magnets comprising:
  • Get 20wt.% metal crystal soft magnetic material powder (specifically Fe 96.5 Si 3.5 powder, its D50 particle size is 1.5 ⁇ m), 30wt.% amorphous soft magnetic material powder (specifically Fe 86.5 Si 6.6 B 3.2 Cr 3 C 0.7 , D50 particle size is 8.4 ⁇ m) and 50wt.% nanocrystalline soft magnetic material powder (specifically Fe 94 Si 0.3 B 2 CuP 2.4 C 0.3 , whose D50 particle size is 14.8 ⁇ m), the above-mentioned various The soft magnetic material powder is annealed.
  • the annealing procedure for FeSi alloy powder is annealing at 700°C for 0.5h in a nitrogen atmosphere, and the annealing procedure for Fe 86.5 Si 6.6 B 3.2 Cr 3 C 0.7 amorphous powder is annealing at 450°C for 1h in a nitrogen atmosphere.
  • the annealing procedure of Fe 94 Si 0.3 B 2 CuP 2.4 C 0.3 nanocrystalline powder is annealing at 550°C for 0.5h under argon atmosphere;
  • Example 6 According to the inductor preparation method described in Example 6, the magnetic powder in Example 7 was prepared into an inductor.
  • the saturation magnetic flux density (Bs) of the magnetic powder in each embodiment is tested and its relative value with the loss of Fe 95.5 Si 4.5 , and the specifications obtained by the test are
  • the saturation current (Isat) and DC resistance (Rdc) of the inductor of 201208-240nH, and the test specifications of each inductor of 201208-240nH are used for step-down DC/DC converters with 5V-1V (switching frequency is 3MHz) Efficiency ( ⁇ ) measured on the circuit test board, the results are summarized in Table 2 below.
  • the parameter Rdc refers to the resistance value of the inductor under direct current.
  • the above parameter ⁇ refers to the ratio of the output power of the inductor to the power input to the inductor.
  • the magnetic powder provided by the embodiment of the present application can have a higher Bs, compared with the relative loss of Fe 95.5 Si 4.5 , the saturation current of the inductor made by using this magnetic powder.
  • Large, small DC resistance, large inductance, low loss, high inductance conversion efficiency, can improve the quality and reliability of electronic equipment using this inductance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本申请实施例提供了一种用于制造磁体的磁性粉末,该磁性粉末包括第一软磁粉末和第二软磁粉末,其中,第一软磁粉末为金属晶体软磁材料,第二软磁粉末包括非晶软磁材料和纳米晶软磁材料中的至少一种,第一软磁粉末的质量占第一软磁粉末和第二软磁粉末质量之和的5%-45%。该磁性粉末能实现较好的成型效果,并兼顾较高的饱和磁通密度及较低的高频损耗等。本申请还提供了一种磁体、磁性元件和电子设备。

Description

用于制造磁体的磁性粉末、磁体和磁性元件 技术领域
本申请涉及半导体技术领域,具体涉及一种用于制造磁体的磁性粉末、磁体和磁性元件。
背景技术
手机、平板电脑、笔记本电脑等电子设备正朝着轻薄化的方向发展,相应地用于其内部电源电路的电感等磁性元件也应符合小型化、薄型化及高功能化。然而,目前采用磁性材料制得的电感在达到小型化、薄型化的要求时,因电感中所用磁性材料的减少,其电感性能通常会发生劣化,如饱和电流下降、直流电阻升高、损耗高。
发明内容
鉴于此,本申请实施例提供了一种用于制造磁体的磁性粉末,其饱和磁通密度高、磁损耗因数低、电阻率高、加工性能好,可用于制造高堆积密度的磁体,进而使电感等磁性元件的感量提升、直流电阻降低、损耗降低,效率提升。
本申请实施例第一方面提供了一种用于制造磁体的磁性粉末,所述磁性粉末包括第一软磁粉末和第二软磁粉末,所述第一软磁粉末为金属晶体软磁材料,所述第二软磁粉末包括非晶软磁材料和纳米晶软磁材料中的至少一种,所述第一软磁粉末的质量占所述第一软磁粉末和所述第二软磁粉末的质量之和的5%-45%。
金属晶体软磁材料的柔韧性好,变形能力强,饱和磁通密度(Bs)高,非晶软磁材料和纳米晶软磁材料的高频损耗低,通过上述两类软磁粉末的适合复合,可综合各类材料的优点,可保证所得磁性粉末能实现较好的成型效果,并兼顾较高的Bs及较低的高频损耗等。
本申请一些实施方式中,所述第一软磁粉末的质量占所述第一软磁粉末和所述第二软磁粉末的质量之和的10%-40%。此时,该磁性粉末可以更好地兼顾良好的成型效果及较高的Bs及较低的高频损耗。
本申请实施方式中,所述第二软磁粉末的D50粒径大于所述第一软磁粉末的D50粒径。D50粒径小、柔韧性好的第一软磁粉末容易填入第二软磁粉末的颗粒间空隙,利于提高所述磁性粉末的压制密度。
本申请实施方式中,所述第二软磁粉末的D50粒径是所述第一软磁粉末的D50粒径的2-5倍。此时,上述磁性粉末能经压制形成较密堆积,提升所得磁体的密度及导磁率。
本申请实施方式中,所述第一软磁粉末的D50粒径在1μm-10μm的范围内;所述第二软磁粉末的D50粒径在5μm-20μm的范围内。借助这两种软磁粉末的特殊D50粒径范围,上述磁性粉末能经压制形成较密堆积,提高所得磁体的密度及导磁率、降低损耗等。
本申请一些实施方式中,所述第二软磁粉末中,所述非晶软磁材料的质量是纳米晶软磁材料的0.5-1.5倍。此时,通过该第二软磁粉末与第一软磁粉末构成的磁性粉末可具有更高的电阻率和较低的矫顽力,高频损耗性能更优。
本申请实施方式中,所述金属晶体软磁材料的饱和磁通密度大于或等于1.35T。高Bs 的第一软磁粉末与第二软磁粉末进行复合,利于提升所得磁性粉末的Bs,进而利于提升由该磁性粉末制得的电感的饱和特性、感量等。
本申请实施方式中,所述非晶软磁材料和所述纳米晶软磁材料的饱和磁通密度大于或等于1.2T,所述非晶软磁材料和纳米晶软磁材料的单位功率损耗与Fe 95.5Si 4.5的单位功率损耗之比小于或等于0.5。此时,第二软磁粉末与上述第一软磁粉末相配合,可保证磁性粉末在具有较大Bs的同时,还具有较低的磁损耗性能。
本申请实施方式中,所述金属晶体软磁材料包括羰基铁、铁硅合金、铁镍合金和铁硅铬合金中的至少一种。
本申请一些实施方式中,所述非晶软磁材料包括Fe-Ni-B系、Fe-Ni-Si-B-P-C系、Fe-Si-B-Cr-C系中的至少一种。
本申请实施方式中,所述纳米晶软磁材料的组成元素同时包括第一元素、第二元素和第三元素,其中,所述第一元素包括Fe、Co和Ni中的至少一种,且必须含Fe,所述第二元素包括Si、B、C、P中的至少一种,第三元素包括Cr、Cu、Nb、V、Zr中的至少一种。
本申请一些实施方式中,所述纳米晶软磁材料包括Fe-B-Cu-C系、Fe-Zr-B-Cu系、Fe-Si-B-Cu-P系和Fe-Si-B-Cu-Nb系中的至少一种。
本申请实施方式中,所述第一软磁粉末和所述第二软磁粉末的表面均具有绝缘包覆层。绝缘包覆层可赋予各软磁材料良好的绝缘性,后续由该磁性粉末制得的电感等磁性元件在被施加电压时,接触的颗粒间涡电流小,由其引起的电感损耗较小,且电感的耐电压击穿能力强。
本申请实施方式中,所述绝缘包覆层的材质包括磷酸、硫酸、硝酸、铬酸、磷酸盐、硅酸盐、硝酸盐、铬酸盐、无机氧化物中的一种或多种。
本申请实施例第二方面提供了一种磁体,所述磁体通过磁性复合材料成型得到,其中,所述磁性复合材料包括本申请第一方面所述的磁性粉末及粘结剂。
本申请实施方式中,所述粘结剂选自环氧树脂、酚醛树脂、有机硅树脂、丙烯酸树脂、氰酸酯树脂、聚酰亚胺、聚苯硫醚及其改性物中的至少一种。粘结剂的存在可提高磁性复合材料的成型效果。
本申请实施例第二方面提供的磁体的密度较高,采用该磁体可实现性能优异的磁性元件的制备,例如可制得感量高、高频损耗低等磁性能优异的电感。
本申请实施例第三方面提供了一种磁性元件,所述磁性元件包括如本申请第二方面所述的磁体及设置在所述磁体内的线圈。
本申请实施方式中,所述磁性元件包括电感。
本申请实施例第四方面提供了一种电子设备,所述电子设备包括如本申请第三方面所述的磁性元件和电路板,所述磁性元件设置在所述电路板上。
由于电子设备中采用了上述性能优异的电感等磁性元件,可使电子设备实现高速、大容量运转,保证质量可靠性。
附图说明
图1为本申请实施例提供的电子设备的结构示意图;
图2a为电子设备中使用的电感的一种结构示意图;
图2b为图2a中电感的另一种结构示意图;
图3为电子设备中使用的电感的另一种结构示意图。
具体实施方式
请参阅图1,图1是本申请实施例提供的电子设备100的一种结构示意图。电子设备100可以是手机、平板电脑、笔记本电脑、可穿戴设备(如智能手表)、智能电视、车载设备(如行车记录仪)、服务器等电子产品。在本申请实施例中,以电子设备100是手机为例来进行描写。
如图1所示,在一些实施例中,电子设备100包括组装在电子设备外侧的壳体11,以及位于壳体11内部的电路板、电池等部件(图1中未示出)。电池与电路板电性连接,用于为电子设备100供电。其中,电子设备100的电路板上可设置有磁性元件,磁性元件可以是电感、吸波片、无线充电磁片、天线磁芯等。在本申请实施例中,以磁性元件是电感为例来进行描写。
举例来说,电子设备100通常需要使用DC(直流)/DC转换器的电源电路,以获得内电路中所需的具有各种电压电平的工作功率。其中,DC/DC转换器可将高压直流电压转换为低压直流电压,以供给芯片使用。在这样的电源电路中就需要能承受高频和大电流的电感等磁性元件,以实现电磁信号及电压转换。
图2a、图2b、图3示出了功率电感(即,贴片电感)的几种结构示意图。其中,图2a、图2b具体是通过模压成型法制得的模压电感,图3为通过流延法制得的薄膜电感。总的来说,功率电感200包括磁体20和作为电导体的线圈(或称绕组)30。图2a中,线圈30内嵌在磁体20中,线圈30可具有伸出磁体20外的一对引出端子31和32。电感200还可以包括外电极240(参见图2b),外电极240可连接到线圈30暴露于外部的引出端子31和32,外电极240上设置有用于与其它器件连接的镀层,该镀层具体可以是镍镀层和锡镀层。图3中,磁体20呈片状,设置在基底40上的线圈30夹设在两磁体20之间,形成三明治结构。
磁体20一般通过包含磁性材料粉末和粘结剂(如树脂)的磁性复合材料制成。目前形成磁体的一些磁性材料不能兼顾较高的饱和磁通密度(Bs)及较低的高频损耗,因此由该磁体形成的电感的直流电阻低、电感量低、损耗高,进而降低了电子设备的电源***的转换效率,影响了其CPU的高速、大容量运转。基于此,本申请实施例提供了一种更适合制造电感磁体的磁性粉末。
具体地,本申请提供的磁性粉末,包括第一软磁粉末和第二软磁粉末,所述第一软磁粉末为金属晶体软磁材料,所述第二软磁粉末包括非晶软磁材料和纳米晶软磁材料中的至少一种,所述第一软磁粉末的质量占所述第一软磁粉末和所述第二软磁粉末的质量之和的5%-45%。
本申请中,纳米晶软磁材料是指晶粒尺寸在纳米级(1nm-100nm)的软磁材料,晶界处是非晶态结构;非晶软磁材料中原子是长程无序、短程有序的状态,无晶界存在,因此非晶软磁材料和纳米晶软磁材料的电阻率较高、高频损耗性能优于金属晶体软磁材料。而 金属晶体软磁材料的晶粒尺寸较大,具有一定周期排列的晶体结构,因此电阻率较低,高频损耗高;但由于金属晶体软磁材料因Fe含量高,其相比于非晶/纳米晶软磁材料更容易加工成型,而非晶/纳米晶软磁材料的硬度大,受压时变形度低。
本申请通过非晶软磁材料和纳米晶软磁材料中的至少一种构成的第二软磁粉末与金属晶体软磁材料构成的第一软磁粉末进行混合,可综合各类材料的优点,补全单一材料粉末存在时的不足,其中,第一软磁粉末的存在可利于所述磁性粉末在压制过程中成型,使所述磁性粉末的压制密度得到有效提高,利于提升形成的磁体的感量,提升力学强度,且还利于减少磁性粉末经压制后的间隙,利于降低磁损耗性能。而第一软磁粉末的质量占比控制在5%-45%的范围,可避免其含量过低时不能有效提高所述磁性粉末的成型效果,且使磁性粉末的压制成型压力不会过高,又可避免其含量过高时,因其自身损耗较大而不利于降低所述磁性粉末的磁损耗性能、避免其磁性能可能不如单一的第二软磁粉末。
本申请中,上述第一软磁粉末的质量可以占上述述第一软磁粉末和上述第二软磁粉末的质量之和的6%、8%、10%、12%、15%、20%、25%、30%、35%、40%或45%等。在一些实施方式中,第一软磁粉末的质量可以占第一软磁粉末和第二软磁粉末的质量之和的10%-40%。此时,通过第一软磁粉末和第二软磁粉末构成的磁性粉末可以更好地综合各类材料的优点,更好地兼顾良好的成型效果及较高的Bs及较低的高频损耗。
其中,对于本申请中“所述第二软磁粉末包括非晶软磁材料和纳米晶软磁材料中的至少一种”的含义解释如下:第二软磁粉末可以从非晶软磁材料和纳米晶软磁材料构成的组中选择至少一种,具体可包括以下三种情况:a)所述第二软磁粉末仅包括非晶软磁材料;或b)所述第二软磁粉末仅包括纳米晶软磁材料;或c)所述第二软磁粉末同时包括非晶软磁材料和纳米晶软磁材料。类似地,当本申请中出现“包括A,B和C中的至少一种”的类似表达时,均是指可以从A、B和C构成的组中选择至少一种,具体可以是任选一种,或任选两种,…,或者全选。
本申请一些实施方式中,第二软磁粉末中,非晶软磁材料的质量是纳米晶软磁材料的0.5-1.5倍。此时,通过该第二软磁粉末与第一软磁粉末构成的磁性粉末可具有更高的电阻率和较低的矫顽力,高频损耗性能更优。在一些实施例中,非晶软磁材料的质量是纳米晶软磁材料的0.5-1倍。在存在一定第一软磁粉末的情况下,第二软磁粉末中质量占比较多的纳米晶软磁材料更利于所述磁性粉末的磁性能提高。
本申请实施方式中,所述第二软磁粉末的D50粒径大于所述第一软磁粉末的D50粒径。这样,D50粒径小、柔韧性好的第一软磁粉末就更容易填入第二软磁粉末的颗粒间空隙,利于提高所述磁性粉末的压制密度。其中词语“D50粒径”是一个表示粒度大小的典型值,也可称为中值粒径,其具体是指一个样品的累计粒度分布百分数达到50%时所对应的粒径。
本申请一些实施方式中,所述第二软磁粉末的D50粒径是所述第一软磁粉末的D50粒径的2-5倍。此时,通过第一软磁粉末和第二软磁粉末构成的磁性粉末能经压制形成更密堆积,磁性粉末间的空隙少,进而提升所得磁体的密度及导磁率。在一些实施例中,第二软磁粉末的D50粒径是第一软磁粉末的D50粒径的2-4.5倍。
本申请一些实施方式中,所述第一软磁粉末的D50粒径在1μm-10μm的范围内。所述第二软磁粉末的D50粒径在5μm-20μm的范围内。借助这两种软磁粉末的特殊D50粒径范围, 在所述磁性粉末的压制过程中,这两种软磁粉末能形成较密堆积,可大幅提高磁性粉末的压制密度,提高所得磁体的密度及导磁率、降低损耗。
本申请实施方式中,金属晶体软磁材料的Bs大于或等于1.35T。在一些实施方式中,金属晶体软磁材料的Bs大于或等于1.5T,例如为1.6-2T。高Bs的第一软磁粉末与第二软磁粉末进行复合,利于提升所得磁性粉末的Bs,进而利于提升由该磁性粉末制得的电感的饱和感应特性。
本申请实施方式中,非晶软磁材料和纳米晶软磁材料的Bs大于或等于1.2T,非晶软磁材料和纳米晶软磁材料的单位功率损耗与Fe 95.5Si 4.5的单位功率损耗之比(本申请中可称为损耗相对值)均小于或等于0.5。其中,前述“单位功率损耗”可以符号P cv表示,其单位可以是kW/m 3,其在频率为1MHz下、磁通密度为30mT下测得。在一些实施方式中,非晶软磁材料和纳米晶软磁材料的Bs大于或等于1.4T(例如1.4T-2T、1.4T-1.9T、或1.5T-1.8T),损耗相对值小于或等于0.35。Bs较大且损耗相对值小的非晶/纳米晶软磁材料与上述第一软磁粉末相配合,可保证由上述磁性粉末制成的磁性元件在大电流下工作不会引起电感饱和的同时,还具有较低的磁损耗性能。纳米晶软磁材料因其纳米级晶粒的存在,其磁致伸缩系数接近0,矫顽力超低和电阻率较高,其损耗特性一般优于传统金属晶体材料和FeSiB等常见非晶软磁材料。在一些实施例中,纳米晶软磁材料的损耗相对值可以小于或等于0.2。
本申请实施方式中,上述金属晶体软磁材料可以包括羰基铁、铁硅合金(Fe-Si)、铁镍合金(Fe-Ni)、铁硅铬合金(Fe-Si-Cr)等中的至少一种。换句话说,上述金属晶体软磁材料可以从羰基铁、铁硅合金、铁镍合金、铁硅铬合金等构成的组中选择至少一种,具体可以是从该组中任选一种,或任选两种,或任选三种,或者全选。
本申请实施方式中,上述非晶软磁材料的组成元素包括第一元素和第二元素,其中,所述第一元素包括Fe、Co和Ni中的至少一种,且必须含Fe,所述第二元素包括Si、B、C、P中的至少一种。进一步地,所述非晶软磁材料的组成元素还可以包括第三元素,其中,第三元素可以包括Cr、Cu、Nb、V、Zr中的至少一种。一般地,非晶软磁材料不为Fe-Si或Fe-Si-Cr系。示例性的,非晶软磁材料可以是Fe-Ni-B系、Fe-Ni-Si-B-P-C系、Fe-Si-B-Cr-C系等中的至少一种。
本申请实施方式中,上述纳米晶软磁材料的组成元素同时包括第一元素、第二元素和第三元素,其中,所述第一元素包括Fe、Co和Ni中的至少一种,且必须含Fe,所述第二元素包括Si、B、C、P中的至少一种,第三元素可以包括Cr、Cu、Nb、V、Zr中的至少一种。在一些实施方式中,第一元素为Fe,此时的纳米晶软磁材料可称为“铁基纳米晶合金”。示例性的,纳米晶软磁材料可以是Fe-B-Cu-C系、Fe-Zr-B-Cu系、Fe-Si-B-Cu-P系、Fe-Si-B-Cu-Nb系、Fe-Nb-B-P-Cu系、Fe-Nb-B-P-Si-Cu系、Fe-Nb-B-P-Cu-C系、FeBNbCu系等中的至少一种。
下表1示出了一些软磁材料的Bs及损耗P cv相对值、矫顽力(符号Hc)。
Figure PCTCN2021094984-appb-000001
Figure PCTCN2021094984-appb-000002
需要说明的是,本文中所列举的各软磁材料的结构式中,各合金元素的下标均代表其质量分数百分比。
除羰基铁粉外,上述各类软磁材料的粉末可以是用水雾化法或气雾化法制得的粒子。具体是利用具有一定速度的高压水或高压气体将熔融金属液柱击碎成细小液滴再经快速冷却而制得粉末,基本是由近似球形的粒子组成。近似球形的粒子比其他不规则形状的粒子的磁性能更优异。
本申请一些实施方式中,所述第一软磁粉末和所述第二软磁粉末的表面还均具有绝缘包覆层。此时,各金属晶体软磁材料粉末、各非晶软磁材料粉末和各纳米晶软磁材料粉末可以在全部或部分混合后进行绝缘包覆,可以对各软磁材料粉末进行绝缘包覆后再混合。所述绝缘包覆层可以提高各软磁材料的绝缘性和耐热性,当带绝缘包覆层的磁性粉末用于电感中,其能满足电感使用过程中对耐电压击穿及耐热老化的需求。其中,绝缘包覆层可以包覆软磁材料颗粒的至少一部分表面,但优选覆盖其全部表面。另外,绝缘包覆层可以连续地覆盖颗粒的表面,也可以间断地覆盖。
本申请实施例还提供了一种磁体,该磁体通过磁性复合材料成型得到,其中,所述磁性复合材料包括前述磁性粉末和粘结剂。
本申请实施方式中,该磁体可以通过上述磁性复合材料经模压成型法制得,或者经流延成型法制得,但不限于此。特别地,经过模压成型法制得的磁体的密度较高。其中,当采用模压成型法制备磁体时,该磁性复合材料可以是前述磁性粉末和粘结剂经造粒形成的造粒粉(或称“喂料颗粒”)。可将该造粒粉填充在模具内,经压制成型,再经烘烤固化,制得成品。当将线圈提前放置在待填充造粒粉的模具中,此时可经模压成型得到一体成型电感,该电感也可被称为“模压电感”。而当采用流延成型法制备磁体时,所用磁性复合材料可以是粘稠流体,可将其在流延机上制得一定厚度的素坯膜(也可称为半固化磁片),再经烘烤固化,制得成品。后续可将该流延法得到的半固化磁片与光刻工艺制得的线圈进行热压、分切,再经烘烤固化,得到电感产品,通过该工艺制得的该电感也可被称为“薄膜电感”。
本申请实施方式中,粘合剂可以为树脂,具体包括环氧树脂、酚醛树脂、有机硅树脂、丙烯酸树脂、氰酸酯树脂、聚酰亚胺、聚苯硫醚及其改性物等中的至少一种。粘结剂的存 在可提高磁性复合材料的成型效果。特别是可使造粒粉状的磁性复合材料能够具有一定的流动性,提高其模压成型时的成型效果及模腔填充的均匀性。
本申请实施方式中,粘结剂的质量可以为前述磁性粉末质量的2%-6%。这样可避免存在较多的粘结剂而降低所得磁体的成型密度,降低其磁损耗性能。在一些实施方式中,粘结剂的质量可以是前述磁性粉末的2%-5%。由于含有前述磁性粉末,造粒粉状的磁性复合材料的压制成型压力不会过高,可避免压力过高而导致造粒粉受损(如绝缘包覆层被破坏)以及置于造粒粉中的线圈结构的变形或受损(如绝缘层破损),防止制得的电感短路、线圈发生初始耐压能力衰减,提高制得的电感的可靠性。在本申请其他实施方式中,采用流延成型法制备磁体时,粘结剂的质量可以是前述磁性粉末的3%-6%。这样可保证粘稠流体的磁性复合材料具有合适的流动效果。
其中,上述磁性复合材料的制备方法,包括:
将第一软磁粉末和第二软磁粉末混合,得到磁性粉末;
将所述磁性粉末和粘结剂混合后,制成磁性复合材料。
本申请实施方式中,上述磁性复合材料的制备方法还包括:在将所述第一软磁粉末和第二软磁粉末混合之前,分别对所述第一软磁粉末和第二软磁粉末进行退火处理;或者对所述第一软磁粉末和第二软磁粉末混合的所述磁性粉末进行退火。
其中,退火处理可消除软磁材料的内应力和一些杂质(如碳、氧等),提升软磁材料的磁性能,以满足电感在高频大电流下工作的要求。其中,退火处理的温度可以为300℃-900℃,退火处理可在含氮气、氢气、氩气、空气等中至少一种的气氛下进行。其中,退火处理的温度应在300℃以上,可保证各材料的内应力能充分去除,提升磁性能,同时需要注意退火处理的温度不能超过软磁材料的结晶化温度,避免劣化损耗特性。特别地,对第二软磁粉末的退火处理温度一般不超过550℃,以免超过第二软磁粉末的结晶化温度。
本申请实施方式中,在将所述磁性粉末和粘结剂混合之前,还包括:在所述第一软磁粉末和第二软磁粉末混合之前或之后,在所述第一软磁粉末和所述第二软磁粉末的表面分别形成绝缘包覆层。
本申请一些实施方式中,所述磁性复合材料的制备方法包括:
对所述第一软磁粉末进行退火处理后,再形成包裹所述第一软磁粉末表面的第一绝缘包覆层;对所述第二软磁粉末进行退火处理后,再形成包裹所述第二软磁粉末表面的第二绝缘包覆层;
将带所述第一绝缘包覆层的第一软磁粉末与带所述第二绝缘包覆层的第二软磁粉末混合,得到磁性粉末;
将所述磁性粉末和粘结剂混合,制得磁性复合材料。
此时,各软磁材料的表面均被绝缘包覆层较好包裹,绝缘性较好,后续由该磁性粉末制得的电感等磁性元件在被施加电压时,接触的颗粒间涡电流小,由其引起的电感损耗较小,且电感的耐电压击穿能力强。
本申请另外一些实施方式中,上述磁性复合材料的制备方法包括:
对所述第一软磁粉末和第二软磁粉末混合后再进行退火处理,或者分别进行退火处理后再混合,得到混合粉末;
对所述混合粉末进行绝缘包覆,以使所述第一软磁粉末和所述第二软磁粉末的表面均形成绝缘包覆层,得到磁性粉末;
将所述磁性粉末与粘结剂混合,得到磁性复合材料。此时,磁性复合材料的制备方法操作更简洁。
其中,上述绝缘包覆层的材质包括磷酸、硫酸、硝酸、铬酸、磷酸盐、硅酸盐、硝酸盐、铬酸盐、无机氧化物等中的一种或多种。示例性的,磷酸盐可以选自磷酸氢钠、磷酸二氢铝和磷酸铝等构成的组中的至少一种。硅酸盐可以选自硅酸钠、硅酸镁、硅酸镁铝等构成的组中的至少一种。无机氧化物可以选自二氧化硅、氧化铁、二氧化钛、氧化铝、氧化钙、氧化锌、氧化锆等构成的组中的至少一种。
具体地,绝缘包覆层的形成方法可以包括物理融合、涂覆、物理气相沉积、化学气相沉积、原位热处理法中的至少一种。其中,物理融合可以包括球磨、砂磨等,涂覆的方式可以具体包括滴涂、刷涂、喷涂、浸涂等中的一种或多种方式的组合。其中的物理气相沉积可以包括蒸镀沉积、溅射等。原位热处理法是与待包覆的软磁材料表面发生化学反应而形成绝缘包覆层,示例性的,原位热处理法可通过将待包覆的软磁材料置于干燥空气或氧气气氛中进行原位氧化实现。在该过程中,具体是软磁材料中的铁、硅等元素发生氧化反应,此时形成的绝缘包覆层可包括二氧化硅、氧化铁等中的至少一种。
绝缘包覆层的形成方法可根据其具体材质来选择。其中,二氧化硅、氧化铁等特别适合原位氧化法形成。物理融合与涂覆的方式适合制备各种材质的绝缘包覆层的构建。示例性的,材质包括磷酸、硫酸、硝酸、铬酸、磷酸盐、硅酸盐、硝酸盐、铬酸盐等绝缘包覆层较适合通过将软磁磁料浸润在绝缘包覆层材料与水、酒精、丙酮等的溶液中、再经干燥形成。材质为无机氧化物的绝缘包覆层较适合通过其与软磁材料进行干法或湿法球磨形成。
本申请一些实施方式中,前述磁性复合材料中还可以包括润滑剂、硅烷偶联剂、固化剂、分散剂、增塑剂等中的至少一种。其中,润滑剂一般在造粒粉形式的磁性复合材料中使用,以提高其压制成型效果,润滑剂可以选自硬脂酸锌、硬脂酸镁、硬脂酸钙、酰胺蜡微粉等中的至少一种。固化剂一般在粘结剂包括环氧树脂时使用,其一般包括咪唑类固化剂、双氰胺类固化剂、有机胺类固化剂、多异氰酸酯等中的一种或多种。示例性的,咪唑类固化剂可以包括咪唑、2-甲基咪唑、2-乙基咪唑、2、4-二甲基咪唑和2-乙基4-甲基咪唑中的一种或多种。双氰胺类固化剂可以包括双氰胺、苯胺改性双氰胺中的一种或几种。有机胺类固化剂可以列举脂肪胺、脂环胺、芳香胺、聚酰胺等。分散剂、硅烷偶联剂、增塑剂一般在粘稠流体形式的磁性复合材料中使用,当然此时的磁性复合材料中还含有溶剂,充当稀释剂。示例性的,分散剂可以为磷酸酯、三油酸甘酯、三乙醇胺等中的至少一种。增塑剂可以为甘油、邻苯二甲酸二辛酯、聚乙二醇、邻苯二甲酸等中的至少一种。
其中,在采用模压延成型法制备磁体时,前述造粒粉形式的磁性复合材料可以先模压成型为磁体,再与线圈组装形成电感,或者该造粒粉还可以与线圈一起模型成型制得一体成型的电感坯体,再经烘烤固化制得电感(通过该方法制得的电感可称为“模压电感”)。具体地,可将该造粒粉填充在提前放置好线圈的模具中,在压力作用下而成型。示例性的,模压成型的成型压力为3-10ton/cm 2;烘烤的温度为160℃-220℃,保温时间为0.1h-3h。
在采用流延成型法制备磁体时,前述粘稠流体状的磁性复合材料经流延后形成的可以 是半固化的磁片。示例性的,流延速度可以是0.1-2m/min,流延温度可以是50-90℃。后续需要将该半固化磁片制成电感时,可将其与光刻工艺制得的线圈进行热压压合,分切后,得到所需尺寸的电感坯体,再经烘烤固化,得到电感。此时,通过该方法制得的电感可以称为“薄膜电感”。示例性的,烘烤的温度为160-220℃,保温时间为0.1h-3h。
本申请实施例提供的磁体由于采用了上述成型效果好、饱和磁通密度高、相对磁损耗值低的磁性粉末,使得该磁体的堆积密度高,在大电流下的饱和磁通量大、涡流损耗低。采用该磁体制备电感时,电感的感量较大、直流电阻低、损耗低、效率高。此外,上述磁性复合材料的制备方法,工艺简单,高效环保,可大规模化生产。由该磁性复合材料成型为磁体的方法也较便捷。
下面分多个具体实施例对本申请实施例进行进一步的说明。其中,本申请实施例不限定于以下的具体实施例。
实施例1
一种用于制造磁体的磁性粉末的制备方法,包括:
将45wt.%的金属晶体粉(具体是羰基铁粉,D50粒径是3μm)和55wt.%的非晶软磁材料粉(具体是Fe 87.8Si 6.6B 2.5Cr 2.5C 0.6,D50粒径是10μm)混合,之后将所得混合粉末在氮气气氛下,于430℃下进行退火处理3h,自然冷却;
向退火后的混合粉末中加入磷酸水溶液进行绝缘包覆,其中,磷酸的质量占退火后混合粉末的质量的0.5%;在150℃下搅拌1h,使混合粉末和磷酸水溶液混合均匀,并使水分烘干,得到磁性粉末。
一种电感的制备方法,包括:
将上述磁性粉末与质量是上述磁性粉末4wt.%的热固性环氧树脂及固化剂(具体是双氰胺)、稀释剂丙酮混合,将得到的混合浆料送入造粒机中进行造粒,干燥后,得到粒度是100-300μm的造粒粉,该造粒粉用于制造电感的磁体;
将上述造粒粉填充提前放置好线圈的模具中,在成型压力为6.6ton/cm 2下进行模压成型,得到电感坯体;之后在温度为180℃下对电感坯体进行保温烘烤1h,得到线圈内嵌式一体成型电感。
实施例2
一种用于制造磁体的磁性粉末的制备方法,包括:
取20wt.%的金属晶体软磁材料粉(具体是Fe 92Si 3.5Cr 4.5合金粉,D50粒径是5μm)和40wt.%的非晶软磁材料粉(具体是Fe 87.5Si 6.6B 2.7Cr 2.7C 0.5,D50粒径是14μm)、40wt.%的纳米晶软磁材料粉(具体是Fe 83.4Si 7.7B 2Cu 1.3Nb 5.6,D50粒径是16μm),先将上述各类软磁材料粉进行退火处理,其中,Fe 92Si 3.5Cr 4.5合金粉的退火程序是氮气氛围下700℃退火3h,Fe 87.5Si 6.6B 2.7Cr 2.7C 0.5非晶粉的退火程序是氮气氛围下450℃退火1h,Fe 83.4Si 7.7B 2Cu 1.3Nb 5.6纳米晶粉的退火程序是氩气氛围下550℃退火0.5h;
将上述经退火处理后的各种软磁材料粉混合,得到混合粉末,向其中加入磷酸二氢铝水溶液进行绝缘包覆,其中,磷酸二氢铝的质量是混合粉末质量的0.8%;在150℃下搅拌 1h,使物料混合均匀并使水分烘干,得到磁性粉末。
一种电感的制备方法,包括:
将上述磁性粉末与质量是上述磁性粉末3.5wt.%的粘结剂(具体是质量比为1:1的环氧树脂和有机硅树脂)及固化剂(具体是咪唑)、稀释剂丙酮混合,将得到的混合浆料送入造粒机中进行造粒,干燥后,得到粒度是100-300μm的造粒粉,该造粒粉用于制造电感的磁体;
将上述造粒粉填充提前放置好线圈的模具中,在成型压力为8ton/cm 2下进行模压成型,得到电感坯体;之后在温度为220℃下对电感坯体进行保温烘烤3h,得到线圈内嵌式一体成型电感。
实施例3
一种用于制造磁体的磁性粉末的制备方法,包括:
取10wt.%的金属晶体软磁材料粉(具体是Fe 95.5Si 4.5合金粉,D50粒径是1μm)和50wt.%的非晶软磁材料粉(具体是Fe 80Ni 11Si 4.5B 2.6P 1.4C 0.5,D50粒径是20μm)、40wt.%的纳米晶软磁材料粉(具体是Fe 92Si 2.2B 1.7Cu 1.6P 2.5,D50粒径是5μm),先将上述各类软磁材料粉进行退火处理,其中,Fe 95.5Si 4.5合金粉的退火程序是氮气氛围下700℃退火0.5h,Fe 80Ni 11Si 4.5B 2.6P 1.4C 0.5非晶粉的退火程序是氢气氛围下550℃退火0.5h,Fe 92Si 2.2B 1.7Cu 1.6P 2.5纳米晶粉的退火程序是氩气氛围下530℃退火1h;
将退火后的Fe 95.5Si 4.5合金粉进行绝缘包覆:加入磷酸的丙酮溶液,其中磷酸的质量占退火后Fe 95.5Si 4.5粉质量的0.1%,在150℃下搅拌1h,使物料混合均匀并使丙醇完全挥发;Fe 80Ni 11Si 4.5B 2.6P 1.4C 0.5非晶粉和Fe 92Si 2.2B 1.7Cu 1.6P 2.5纳米晶粉同时绝缘包覆:通入空气,300℃下进行热氧化1h;将经绝缘包覆的各种软磁材料粉按上述比例混合,得到磁性粉末。
一种电感的制备方法,包括:
将上述磁性粉末与质量是上述磁性粉末3wt.%的粘结剂(具体是有机硅树脂)及稀释剂丙酮混合,将得到的混合浆料送入造粒机中进行造粒,干燥后,得到粒度是100-300μm的造粒粉,该造粒粉用于制造电感的磁体;
将上述造粒粉与线圈在成型压力为10ton/cm 2下通过模压成型制得电感坯体,之后在温度为160℃下对电感坯体进行保温烘烤1h,得到电感。
实施例4
一种用于制造磁体的磁性粉末的制备方法,包括:
取40wt.%的金属晶体软磁材料粉(具体是质量比为1:1的Fe 50Ni 50粉和Fe 91Si 3.5Cr 5.5粉,FeNi粉的D50粒径是5μm,Fe 91Si 3.5Cr 5.5粉的D50粒径是2μm)和20wt.%的非晶软磁材料粉(具体是Fe 78Ni 15B 7,D50粒径是17μm)、40wt.%的纳米晶软磁材料粉(具体是10wt.%的Fe 87.5Zr 6B 5.5Cu和30wt.%的Fe 94.2Si 0.3B 2CuP 2.5,Fe 87.5Zr 6B 5.5Cu纳米晶粉的D50粒径是8μm,Fe 94.2Si 0.3B 2CuP 2.5纳米晶粉的D50粒径是10μm),先将上述各类软磁材料粉进行退火处理,其中,Fe 50Ni 50粉的退火程序是在氢气氛围下800℃退火3h,Fe 91Si 3.5Cr 5.5粉的退火程序是氮气氛围下700℃退火2h,Fe 78Ni 15B 7非晶粉的退火程序是在氢气和氮气的混合氛围 下于400℃退火0.5h,Fe 87.5Zr 6B 5.5Cu纳米晶粉的退火程序是在氮气氛围下500℃退火1h,Fe 94.2Si 0.3B 2CuP 2.5纳米晶粉的退火程序是氩气氛围下530℃退火1h;
将退火后的Fe 50Ni 50粉、Fe 91Si 3.5Cr 5.5粉进行绝缘包覆:先加入硫酸的丙酮溶液,其中硫酸的质量占粉末质量的0.2%,在150℃下搅拌1h,使物料混合均匀并使丙醇完全挥发,再加入占粉末质量的0.3%的纳米SiO 2的硅溶胶进行搅拌混合,并干燥;Fe 87.5Zr 6B 5.5Cu纳米晶粉和Fe 78Ni 15B 7非晶粉同时绝缘包覆:采用磷酸的丙酮溶液进行绝缘包覆,磷酸的质量占粉末重量的0.5%,在120℃下搅拌1h,使物料混合均匀并使丙醇完全挥发;Fe 94.2Si 0.3B 2CuP 2.5纳米晶粉采用空气热氧化方式进行绝缘包覆:通入空气,400℃下进行热氧化0.5h;将上述经绝缘包覆的5种软磁材料粉按上述比例混合,得到磁性粉末。
一种电感的制备方法,包括:
将上述磁性粉末与质量是上述磁性粉末3.5wt.%的粘结剂(具体是质量比为1:2的酚醛树脂和有机硅树脂)及稀释剂(具体是丙酮)混合,将得到的混合浆料送入造粒机中进行造粒,干燥后,得到粒度是100-300μm的造粒粉,该造粒粉用于制造电感的磁体;
将上述造粒粉与线圈在成型压力为5ton/cm 2下通过模压成型制得电感坯体,之后在温度为190℃下对电感坯体进行保温烘烤1.5h,得到电感。
实施例5
一种用于制造磁体的磁性粉末的制备方法,包括:
取50wt.%的金属晶体软磁材料粉(具体是30wt.%的羰基铁粉和5wt.%的Fe 55Ni 45粉,羰基铁粉的D50粒径是2μm,Fe 55Ni 45粉的D50粒径是4μm)和50wt.%的纳米晶软磁材料粉(具体是30wt.%的Fe 89.3Si 1.1B 2.8Cu 1.3Nb 5.5和35wt.%的Fe 93.5Si 1.1B 1.7Cu 1.3P 2.4,二者D50粒径分别是12μm、15um),先将上述各类软磁材料粉进行退火处理,其中,羰基铁粉的退火程序是氮气氛围下450℃退火3h,Fe 55Ni 45粉的退火程序是在氢气氛围下800℃退火3h,Fe 89.3Si 1.1B 2.8Cu 1.3Nb 5.5纳米晶粉和Fe 93.5Si 1.1B 1.7Cu 1.3P 2.4纳米晶粉的退火程序均是在氩气氛围下530℃退火1h;
将退火后的羰基铁粉、Fe 55Ni 45粉、Fe 89.3Si 1.1B 2.8Cu 1.3Nb 5.5粉分别进行绝缘包覆:加入磷酸的丙酮溶液,其中磷酸的质量占各粉末质量的0.15%,在150℃下搅拌1h,使物料混合均匀并使丙醇完全挥发;将Fe 93.5Si 1.1B 1.7Cu 1.3P 2.4纳米晶粉进行绝缘包覆:通入空气,300℃下进行热氧化1h;将经绝缘包覆的各种软磁材料粉按上述比例混合,得到所需磁性粉末。
一种电感的制备方法,包括:
将上述磁性粉末与质量是上述磁性粉末4wt.%的粘结剂(具体是质量比为1:2.5的丙烯酸树脂和有机硅树脂)及稀释剂(具体是丙酮)混合,将得到的混合浆料送入造粒机中进行造粒,干燥后,得到粒度是100-300μm的造粒粉,该造粒粉用于制造电感的磁体;
将上述造粒粉与线圈在成型压力为7ton/cm 2下通过模压成型制得电感坯体,之后在温度为200℃下对电感坯体进行保温烘烤1h,得到电感。
实施例6
一种用于制造磁体的磁性粉末的制备方法,包括:
取40wt.%的金属晶体软磁材料粉(具体是Fe 53Ni 47粉,其D50粒径是3.6μm)、30wt.%的非晶软磁材料粉(具体是Fe 82.5Ni 10.5Si 3.5B 1.5P 1.5C 0.5,D50粒径是11.3μm)和30wt.%的纳米晶软磁材料粉(具体是Fe 92.5Si 1.6B 2Cu 1.4P 2.5,其D50粒径分别是18.2μm),先将上述各类软磁材料粉进行退火处理,其中,FeNi粉的退火程序是在氢气氛围下800℃退火3h,Fe 82.5Ni 10.5Si 3.5B 1.5P 1.5C 0.5非晶粉的退火程序是氢气氛围下550℃退火0.5h,Fe 92.5Si 1.6B 2Cu 1.4P 2.5纳米晶粉的退火程序是在氩气氛围下530℃退火1h;
将退火后的Fe 53Ni 47粉进行绝缘包覆:加入磷酸的丙酮溶液,其中磷酸的质量占Fe 53Ni 47粉质量的0.15%,在150℃下搅拌1h,使物料混合均匀并使丙醇完全挥发;将Fe 82.5Ni 10.5Si 3.5B 1.5P 1.5C 0.5非晶粉和Fe 92.5Si 1.6B 2Cu 1.4P 2.5纳米晶粉同时进行绝缘包覆:先通入空气,300℃下进行热氧化1h,再加入占粉末质量的0.2%的纳米氧化铝溶胶进行搅拌混合,并干燥;将经绝缘包覆的各种软磁材料粉按上述比例混合,得到磁性粉末。
一种电感的制备方法,包括:
将上述磁性粉末与质量是上述磁性粉末5wt.%的粘结剂(具体是质量比为1:1的酚醛树脂和环氧树脂)及固化剂(具体为聚酰胺)、稀释剂丁酮混合,并将得到的混合浆料进行除泡;
在流延机上将上述混合浆料经流延形成一定厚度的半固化磁片,其中流延速度:1m/min,温度65℃;将半固化磁片与光刻工艺制得的线圈进行热压压合,再进行分切,得到所需尺寸的电感坯体,再对该电感坯体在200℃下进行烘烤0.2h,得到电感。
实施例7
一种用于制造磁体的磁性粉末的制备方法,包括:
取20wt.%的金属晶体软磁材料粉(具体是Fe 96.5Si 3.5粉,其D50粒径是1.5μm)、30wt.%的非晶软磁材料粉(具体是Fe 86.5Si 6.6B 3.2Cr 3C 0.7,D50粒径是8.4μm)和50wt.%的纳米晶软磁材料粉(具体是Fe 94Si 0.3B 2CuP 2.4C 0.3,其D50粒径分别是14.8μm),先将上述各类软磁材料粉进行退火处理,其中,FeSi合金粉的退火程序是氮气氛围下700℃退火0.5h,Fe 86.5Si 6.6B 3.2Cr 3C 0.7非晶粉的退火程序是氮气氛围下450℃退火1h,Fe 94Si 0.3B 2CuP 2.4C 0.3纳米晶粉的退火程序是在氩气氛围下550℃退火0.5h;
将上述经退火处理后的各种软磁材料粉,得到混合粉末,向其中加入磷酸氢钠水溶液进行绝缘包覆,其中,磷酸氢钠的质量是混合粉末质量的0.6%;在150℃下搅拌1h,使物料混合均匀并使水分烘干,得到磁性粉末。
根据实施例6记载的电感制备方法,将实施例7的磁性粉末制备成电感。
为对本申请实施例技术方案带来的有益效果进行有力支持,测试各实施例中磁性粉末的饱和磁通密度(Bs)及其与Fe 95.5Si 4.5的损耗相对值,以及测试制得的规格为201208-240nH的电感的饱和电流(Isat)、直流电阻(Rdc),以及测试规格为201208-240nH的各电感用于带5V-1V的降压型DC/DC转换器(开关频率是3MHz)的电路测试板时测得的效率(η),结果汇总在下表2中。其中,参数Rdc是指电感在直流下的电阻值。上述参数η是指电感的输出功率与输入电感的功率的比值。
表2
Figure PCTCN2021094984-appb-000003
由上述表1及表2可以获知,本申请实施例提供的磁性粉末可以具有较高的Bs,相较于Fe 95.5Si 4.5的损耗相对值较低,采用该磁性粉末制得的电感的饱和电流较大、直流电阻小,其电感量较大、损耗小,电感的转换效率高,能提高采用该电感的电子设备的质量可靠性。

Claims (18)

  1. 一种用于制造磁体的磁性粉末,其特征在于,所述磁性粉末包括第一软磁粉末和第二软磁粉末,所述第一软磁粉末为金属晶体软磁材料,所述第二软磁粉末包括非晶软磁材料和纳米晶软磁材料中的至少一种,所述第一软磁粉末的质量占所述第一软磁粉末和所述第二软磁粉末质量之和的5%-45%。
  2. 如权利要求1所述的磁性粉末,其特征在于,所述第一软磁粉末的质量占所述第一软磁粉末和所述第二软磁粉末质量之和的10%-40%。
  3. 如权利要求1或2所述的磁性粉末,其特征在于,所述第二软磁粉末中,所述非晶软磁材料的质量是所述纳米晶软磁材料质量的0.5-1.5倍。
  4. 如权利要求1所述的磁性粉末,其特征在于,所述非晶软磁材料和所述纳米晶软磁材料的饱和磁通密度大于或等于1.2T,所述非晶软磁材料和纳米晶软磁材料的单位功率损耗与Fe 95.5Si 4.5的单位功率损耗之比均小于或等于0.5。
  5. 如权利要求1所述的磁性粉末,其特征在于,所述金属晶体软磁材料的饱和磁通密度大于或等于1.35T。
  6. 如权利要求1-5任一项所述的磁性粉末,其特征在于,所述第二软磁粉末的D50粒径大于所述第一软磁粉末的D50粒径。
  7. 如权利要求6所述的磁性粉末,其特征在于,所述第二软磁粉末的D50粒径是所述第一软磁粉末的D50粒径的2-5倍。
  8. 如权利要求6所述的磁性粉末,其特征在于,所述第一软磁粉末的D50粒径在1μm-10μm的范围内;所述第二软磁粉末的D50粒径在5μm-20μm的范围内。
  9. 如权利要求1-8任一项所述的磁性粉末,其特征在于,所述金属晶体软磁材料包括羰基铁、铁硅合金、铁镍合金和铁硅铬合金中的至少一种。
  10. 如权利要求1-8任一项所述的磁性粉末,其特征在于,所述非晶软磁材料包括Fe-Ni-B系、Fe-Ni-Si-B-P-C系、Fe-Si-B-Cr-C系中的至少一种。
  11. 如权利要求1-8任一项所述的磁性粉末,其特征在于,所述纳米晶软磁材料的组成元素同时包括第一元素、第二元素和第三元素,其中,所述第一元素包括Fe、Co和Ni中的至少一种,且必须含Fe,所述第二元素包括Si、B、C、P中的至少一种,第三元素包括Cr、Cu、Nb、V、Zr中的至少一种。
  12. 如权利要求11所述的磁性粉末,其特征在于,所述纳米晶软磁材料包括Fe-B-Cu-C系、Fe-Zr-B-Cu系、Fe-Si-B-Cu-P系和Fe-Si-B-Cu-Nb系中的至少一种。
  13. 如权利要求1-12任一项所述的磁性粉末,其特征在于,所述第一软磁粉末和所述第二软磁粉末的表面均具有绝缘包覆层。
  14. 如权利要求13所述的磁性粉末,其特征在于,所述绝缘包覆层的材质独立地选自磷酸、硫酸、硝酸、铬酸、磷酸盐、硅酸盐、硝酸盐、铬酸盐、无机氧化物中的一种或多种。
  15. 一种磁体,其特征在于,所述磁体通过磁性复合材料成型得到,其中,所述磁性复合材料包括如权利要求1-14任一项所述的磁性粉末及粘结剂。
  16. 一种磁性元件,其特征在于,包括如权利要求15所述的磁体及设置在所述磁体内的 线圈。
  17. 如权利要求16所述的磁性元件,其特征在于,所述磁性元件包括电感。
  18. 一种电子设备,其特征在于,包括如权利要求16-17任一项所述的磁性元件和电路板,所述磁性元件设置在所述电路板上。
PCT/CN2021/094984 2021-05-20 2021-05-20 用于制造磁体的磁性粉末、磁体和磁性元件 WO2022241736A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180088670.1A CN116670314A (zh) 2021-05-20 2021-05-20 用于制造磁体的磁性粉末、磁体和磁性元件
PCT/CN2021/094984 WO2022241736A1 (zh) 2021-05-20 2021-05-20 用于制造磁体的磁性粉末、磁体和磁性元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/094984 WO2022241736A1 (zh) 2021-05-20 2021-05-20 用于制造磁体的磁性粉末、磁体和磁性元件

Publications (1)

Publication Number Publication Date
WO2022241736A1 true WO2022241736A1 (zh) 2022-11-24

Family

ID=84140264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094984 WO2022241736A1 (zh) 2021-05-20 2021-05-20 用于制造磁体的磁性粉末、磁体和磁性元件

Country Status (2)

Country Link
CN (1) CN116670314A (zh)
WO (1) WO2022241736A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497278A (zh) * 2023-12-29 2024-02-02 天通控股股份有限公司 一种高磁导率低损耗铁基非晶复合磁粉心及制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936217B (zh) * 2024-03-25 2024-05-24 天通控股股份有限公司 一种高磁导率低损耗纳米晶复合磁粉心及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226802A (zh) * 2007-11-16 2008-07-23 中国计量学院 软磁磁粉芯及其生产方法
CN104036905A (zh) * 2014-05-28 2014-09-10 浙江大学 一种软磁复合材料及其制备方法
CN104078180A (zh) * 2014-05-28 2014-10-01 浙江大学 一种纳米晶软磁复合材料及其制备方法
CN106229104A (zh) * 2016-08-31 2016-12-14 北京康普锡威科技有限公司 一种软磁复合粉末及其磁粉芯制备方法
CN106971804A (zh) * 2017-03-17 2017-07-21 华南理工大学 一种FeSiB非晶磁粉芯及其制备方法
CN108010654A (zh) * 2017-10-27 2018-05-08 东莞理工学院 一种新型球形铁基非晶合金粉末及非晶磁粉芯的制备方法
US20200306831A1 (en) * 2019-03-28 2020-10-01 Tdk Corporation Soft magnetic metal powder and magnetic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226802A (zh) * 2007-11-16 2008-07-23 中国计量学院 软磁磁粉芯及其生产方法
CN104036905A (zh) * 2014-05-28 2014-09-10 浙江大学 一种软磁复合材料及其制备方法
CN104078180A (zh) * 2014-05-28 2014-10-01 浙江大学 一种纳米晶软磁复合材料及其制备方法
CN106229104A (zh) * 2016-08-31 2016-12-14 北京康普锡威科技有限公司 一种软磁复合粉末及其磁粉芯制备方法
CN106971804A (zh) * 2017-03-17 2017-07-21 华南理工大学 一种FeSiB非晶磁粉芯及其制备方法
CN108010654A (zh) * 2017-10-27 2018-05-08 东莞理工学院 一种新型球形铁基非晶合金粉末及非晶磁粉芯的制备方法
US20200306831A1 (en) * 2019-03-28 2020-10-01 Tdk Corporation Soft magnetic metal powder and magnetic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497278A (zh) * 2023-12-29 2024-02-02 天通控股股份有限公司 一种高磁导率低损耗铁基非晶复合磁粉心及制备方法
CN117497278B (zh) * 2023-12-29 2024-03-12 天通控股股份有限公司 一种高磁导率低损耗铁基非晶复合磁粉心及制备方法

Also Published As

Publication number Publication date
CN116670314A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US20140104023A1 (en) Composite soft magnetic powder, composite soft magnetic powder core, and preparation method therefor
US8974608B2 (en) Powder magnetic core and the method of manufacturing the same
JP4308864B2 (ja) 軟磁性合金粉末、圧粉体及びインダクタンス素子
WO2022241736A1 (zh) 用于制造磁体的磁性粉末、磁体和磁性元件
CN102623121B (zh) 一种铁硅材料及μ90铁硅磁粉芯的制造方法
CN104919551A (zh) 压粉磁芯的制造方法、压粉磁芯以及线圈部件
JP5974803B2 (ja) 軟磁性合金粉末、圧粉体、圧粉磁芯および磁性素子
CN109754972A (zh) 一种高频率模压电感用软磁粉料及其制备方法
JP2016012715A (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電子・電気部品、および該電子・電気部品が実装された電子・電気機器
US20040113744A1 (en) Complex magnetic material, and core and magnetic element using the complex magnetic material
CN109216006A (zh) 软磁合金粉芯及其制备方法
KR102104701B1 (ko) 압분 코어, 당해 압분 코어의 제조 방법, 그 압분 코어를 구비하는 인덕터, 및 그 인덕터가 실장된 전자·전기 기기
Peng et al. Preparation and magnetic properties of Fe4N/Fe soft magnetic composites fabricated by gas nitridation
TW201738908A (zh) 壓粉芯、該壓粉芯之製造方法、具該壓粉芯之電感器、及安裝有該電感器之電子・電氣機器
TW201712699A (zh) 壓粉磁芯、該壓粉磁芯之製造方法、具備該壓粉磁芯之電氣.電子零件及安裝有該電氣.電子零件之電氣.電子機器
CN113223843B (zh) 一种复合软磁粉末的绝缘包覆方法
CN113223844B (zh) 一种粉末包覆方法
EP3579254B1 (en) Powder compact core, method for manufacturing powder compact core, electric/electronic component provided with powder compact core, and electric/electronic apparatus having electric/electronic component mounted therein
EP3605567B1 (en) Powder magnetic core with attached terminals and method for manufacturing the same
JP2021163855A (ja) 圧粉磁心用材料、圧粉磁心、およびインダクタ
CN113223845B (zh) 一种软磁合金粉末的绝缘包覆方法
CN111974987B (zh) 一种Fe基软磁粉末的绝缘包覆层及其包覆方法
JP2010238930A (ja) 複合軟磁性材料、複合軟磁性材料の製造方法及び電磁気回路部品
JPH10208923A (ja) 複合磁性体およびその製造方法
CN111755200A (zh) 包含金属磁性颗粒的复合磁性颗粒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180088670.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940190

Country of ref document: EP

Kind code of ref document: A1