WO2022241688A1 - Activation of semi-persistent scheduling - Google Patents

Activation of semi-persistent scheduling Download PDF

Info

Publication number
WO2022241688A1
WO2022241688A1 PCT/CN2021/094700 CN2021094700W WO2022241688A1 WO 2022241688 A1 WO2022241688 A1 WO 2022241688A1 CN 2021094700 W CN2021094700 W CN 2021094700W WO 2022241688 A1 WO2022241688 A1 WO 2022241688A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
configuration information
sps
network element
pattern
Prior art date
Application number
PCT/CN2021/094700
Other languages
French (fr)
Inventor
Naizheng ZHENG
Volker PAULI
David NAVRÁTIL
Athul Prasad
Ugur Baran ELMALI
David Bhatoolaul
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2021/094700 priority Critical patent/WO2022241688A1/en
Priority to CN202180100750.4A priority patent/CN117694000A/en
Priority to EP21940144.5A priority patent/EP4342247A1/en
Publication of WO2022241688A1 publication Critical patent/WO2022241688A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to devices, methods, apparatuses and computer readable storage medium for activation of semi-persistent scheduling (SPS) .
  • SPS semi-persistent scheduling
  • SPS is attractive for use of periodic traffic because it saves control signaling overhead.
  • SPS not each transmission on a downlink shared channel is scheduled individually by information transmitted on a corresponding downlink control channel. Instead, a periodic pattern of resources is allocated for repeated use until further notice,
  • control information for activating an SPS transmission process. If the control information is missed and no feedback indicating the miss is provided, all subsequent SPS transmission will be missed.
  • example embodiments of the present disclosure provide a solution for activation of SPS. Embodiments that do not fall under the scope of the claims, if any, are to be interpreted as examples useful for understanding various embodiments of the disclosure.
  • an apparatus comprising at least one processor; and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the device to: receive configuration information from a network element, the configuration information indicating at least a pattern of occasions on which downlink control information (DCI) is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and receive the DCI from the network element based on the configuration information.
  • DCI downlink control information
  • a network element comprising at least one processor; and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the network element to: transmit configuration information to an apparatus, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and transmit the DCI to the apparatus based on the configuration information.
  • a method implemented at an apparatus comprises: receiving configuration information at the apparatus from a network element, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and receiving the DCI from the network element based on the configuration information.
  • DCI downlink control information
  • a method implemented at a network element comprises transmitting configuration information from the network element to an apparatus, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and transmitting the DCI to the apparatus based on the configuration information.
  • DCI downlink control information
  • an apparatus comprises: means for means for receiving configuration information at an apparatus from a network element, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and means for receiving the DCI from the network element based on the configuration information.
  • DCI downlink control information
  • an apparatus comprises: means for means for transmitting configuration information from a network element to an apparatus, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and means for transmitting the DCI to the apparatus based on the configuration information.
  • DCI downlink control information
  • a computer readable medium comprises program instructions for causing an apparatus to perform at least the method according to the third aspect.
  • the computer readable medium comprises program instructions for causing an apparatus to perform at least the method according to the fourth aspect.
  • Fig. 1 illustrates an example communication environment in which example embodiments of the present disclosure can be implemented
  • Fig. 2 illustrates a signaling flow for activation of an SPS transmission process in accordance with some example embodiments of the present disclosure
  • Fig. 3 illustrates an example of a pattern of occasions on which DCI is to be transmitted
  • Fig. 4 illustrates another example of a pattern of occasions on which DCI is to be transmitted
  • Fig. 5A illustrates yet another example of a pattern of occasions on which DCI is to be transmitted
  • Fig. 5B illustrates still another example of a pattern of occasions on which DCI is to be transmitted
  • Fig. 5C illustrates further example of a pattern of occasions on which DCI is to be transmitted
  • Fig. 6 illustrates an example of delay due to mismatch between packet arrival and occasions of the DCI
  • Fig. 7 illustrates a flowchart of a method implemented at an apparatus in accordance with some example embodiments of the present disclosure
  • Fig. 8 illustrates a flowchart of a method implemented at a network element in accordance with some example embodiments of the present disclosure
  • Fig. 9 illustrates a simplified block diagram of an apparatus that is suitable for implementing example embodiments of the present disclosure.
  • Fig. 10 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated and Access Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device, and so forth, depending on the applied terminology and
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • Fig. 1 shows an example communication environment 100 in which example embodiments of the present disclosure can be implemented.
  • a plurality of communication devices including one or more apparatuses 110-1, 110-2, 110-3, 110-4 can communicate with a network element 120.
  • the apparatuses 110-1, 110-2, 110-3 and 110-4 are collectively referred to as apparatuses 110 or individually referred to as apparatus 110.
  • the apparatuses 110 are illustrated as terminal devices, and the network element 120 is illustrated as a network device serving the terminal devices.
  • the serving area of the network element 120 may be called a cell 102.
  • the environment 100 may include any suitable number of devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more additional devices may be located in the cell 102, and one or more additional cells may be deployed in the environment 100. It is noted that although illustrated as terminal devices, the apparatuses 110 may be other devices than the terminal devices.
  • Communications in the communication environment 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • MIMO Multiple-Input Multiple-Output
  • OFDM Orthogonal Frequency Division Multiple
  • DFT-s-OFDM Discrete Fourier Transform spread OFDM
  • the network element 120 may transmit multicast broadcast service (MBS) traffic to the apparatuses 110 on radio resources that are allocated semi-persistently.
  • MBS multicast broadcast service
  • the network element 120 may transmit the MBS traffic using SPS.
  • the network element 120 may transmit configuration information of an SPS transmission process to the apparatuses 110.
  • the configuration information of an SPS transmission process is also referred to as an SPS configuration.
  • Multiple SPS configurations may be configured in one bandwidth part (BWP) of a serving cell.
  • An SPS configuration may be carried by an SPS-Config information element (IE) .
  • Table 1 shows an example of the SPS-Config IE.
  • the configured “periodicity” in Table 1 is for the SPS physical downlink shared channel (PDSCH) transmission.
  • the details of the “periodicity” in Table 1 may be found in TS 38.214 and TS 38.321.
  • the various embodiments in the present disclosure may be applied to SPS transmission of any data channel.
  • Each of the SPS configurations may be signaled to the apparatuses 110 using a radio resource control (RRC) signaling and identified using an SPS configuration index.
  • RRC radio resource control
  • An SPS transmission process may be activated by using a control information such as for example, downlink control information (DCI) .
  • DCI downlink control information
  • the communication environment 100 may support a negative acknowledge (NACK) -only Hybrid Automatic Repeat request (HARQ) feedback mode.
  • NACK negative acknowledge
  • HARQ Hybrid Automatic Repeat request
  • the reliability of activation of an SPS transmission process may be low.
  • the apparatus 110-1 missed the DCI for activating the SPS transmission process, meaning that the network element 120 transmitted the DCI to the apparatuses 110-1, 110-2, 110-3 and 110-4 to activate the SPS group-common transmission process via dynamic signaling, but the apparatus 110-1 has never received it.
  • the apparatus 110-1 who missed the DCI cannot realize the SPS transmission, if some other devices have correctly received the DCI.
  • the positive acknowledge (ACK) /NACK HARQ feedback sent by a device on the assigned physical uplink control channel (PUCCH) resource in response to the periodical PDSCH TB (s) subsequent to a DCI indicates to a network element that the device has successfully received the DCI for activating an SPS transmission process. Therefore, there is no explicit acknowledgement from the device that it received the DCI. Rather, the network element relies on the ACK/NACK feedback of the device provided upon reception of subsequent PDSCH TB (s) that are transmitted in a periodic manner.
  • PUCCH physical uplink control channel
  • the apparatus 110-1 who missed the DCI cannot realize the SPS transmission.
  • the network element cannot distinguish between ACK and discontinuous reception (DTX) because in neither case does the device send HARQ feedback.
  • the PUCCH resource where the HARQ feedback is provided is a group-common PUCCH resource, the network element cannot understand whether a particular device has successfully received the DCI for activating an SPS transmission process.
  • an apparatus receives configuration information from a network element.
  • the configuration information indicates at least a pattern of occasions on which DCI is to be transmitted.
  • the DCI indicates a deactivation status or an activation status of at least one SPS transmission process.
  • the apparatus receives the DCI from the network element based on the configuration information.
  • Fig. 2 shows a signaling flow 200 for activation of an SPS transmission process in accordance with some example embodiments of the present disclosure.
  • the signaling flow 200 will be described with reference to Fig. 1.
  • the signaling flow 200 may involve the apparatus 110 and the network element 120 in Fig. 1.
  • the network element 120 transmits 230 configuration information to the apparatus 110. Accordingly, the apparatus 110 receives 240 the configuration information.
  • the configuration information indicates at least a pattern of occasions on which DCI is to be transmitted.
  • the DCI indicates a deactivation status or an activation status of at least one SPS transmission process.
  • the DCI may comprise a group common scheduling radio network temporary identity (G-CS-RNTI) for the group of the apparatuses 110-1, 110-2, 110-3 and 110-4.
  • G-CS-RNTI group common scheduling radio network temporary identity
  • the network element 120 may transmit 210 at least one SPS configuration to the apparatus 110. Accordingly, the apparatus 110 receives 220 the at least one SPS configuration.
  • the at least one SPS configuration may comprise information as shown in Table 1 as mentioned above.
  • the network element 120 may transmit the at least one SPS configuration and the configuration information according to the present disclosure simultaneously. In other words, the network element 120 may transmit the configuration information according to the present disclosure as part of the at least one SPS configuration.
  • the configuration information indicates start time and periodicity of the pattern.
  • the network element 120 Upon transmitting the configuration information, the network element 120 transmits the DCI based on the configuration information.
  • the DCI indicates a deactivation status of the at least one SPS transmission process.
  • the DCI may indicate that the SPS transmission process does not start.
  • the network element 120 transmits 2410 to the apparatus 110 the DCI indicating a deactivation status of the at least one SPS transmission process.
  • the apparatus 110 receives 2420 the DCI indicating a deactivation status of the at least one SPS transmission process.
  • the DCI indicating a deactivation status of the at least one SPS transmission process is also referred to as “deactivation status DCI” .
  • the apparatus 110 may transmit 2430 a NACK to the network element 120.
  • the apparatus 110 may transmit the NACK on at least one resource configured specifically for this purpose.
  • the at least one resource may be at least one group-common uplink resource for the apparatuses 110-1, 110-2, 110-3 and 110-4.
  • the network element 120 may transmit 2450 to the apparatus 110 one or more repetition or re-transmission of the DCI. Accordingly, the apparatus 110 receives 2460 the one or more repetition or re-transmission of the DCI. In another example embodiment, the network element 120 may not respond to the NACK if the corresponding DCI is a deactivation status DCI .
  • the network element 120 may transmit the one or more repetition without receiving any NACK from the apparatus 110.
  • the network element 120 may transmit the one or more re-transmission in response to receiving one or more NACK from the apparatus 110.
  • the configuration information may indicate a pattern of the at least one repetition or re-transmission of the DCI.
  • the SPS configuration may indicate the pattern of the at least one repetition or re-transmission of the DCI.
  • the pattern may indicate an interval between the DCI and the starting repetition, or an interval between any two consecutive repetitions.
  • the interval may be equal to one or more ARQ Round-Trip Time (RTT) . Since the interval is pre-configured, there can be a whole sequence of NACKs and DCI re-transmissions.
  • RTT ARQ Round-Trip Time
  • the apparatus 110 could deduce the proper timing to be applied for the pattern of DCI transmission when only receiving the DCI in one of the re-transmissions. In this way, the network element 120 can guarantee that no more NACK-only feedback is received from any one of the apparatuses 110 before the SPS PDSCH transmission.
  • the network element 120 may transmit to the apparatus 110 the one or more repetition or re-transmission of the DCI without receiving the NACK from the apparatus 110.
  • the network element 120 may or may not transmit 2450 to the apparatus 110 the one or more repetition or re-transmission of the DCI.
  • the apparatus 110 may transmit a further NACK to the network element 120. In some example embodiments, the apparatus 110 may transmit the further NACK on at least one resource configured
  • the feedback rate of the NACK may be low.
  • the network element 120 could also rely on an inactivity timer.
  • the apparatus 110 does not decode an SPS transmission in a period of time set by this inactivity timer, then it assumes that SPS may have been deactivated and stops trying to decode the SPS PDSCH resources for PTM transport blocks and also stops sending NACKs. The apparatus 110 would then only keep looking out for activation DCI on the occasions and possibly respond with NACK as proposed in present disclosure.
  • the network element 120 may transmit 2470 to the apparatus 110 next DCI indicating a deactivation status of the at least one SPS transmission process based on the periodicity of the DCI. Accordingly, the apparatus 110 receives 2480 the next DCI.
  • the network element 120 may transmit 2490 to the apparatus 110 DCI indicating an activation status of the at least one SPS transmission process. Accordingly, the apparatus 110 receives 2500 the DCI.
  • the DCI indicating an activation status of the at least one SPS transmission process is also referred to as “activation status DCI” .
  • the apparatus 110 may transmit a NACK to the network element 120.
  • the network element 120 may transmit to the apparatus 110 one or more repetition or re-transmission of the “activation status DCI” .
  • the network element 120 may transmit to the apparatus 110 the one or more repetition or re-transmission of the DCI without receiving the NACK from the apparatus 110.
  • the apparatus 110 may transmit a further NACK to the network element 120.
  • the network element 120 may transmit to the apparatus 110 one or more further repetition or re-transmission of the DCI.
  • the network element 120 performs 260 the SPS transmission to the apparatus 110. Accordingly, the apparatus 110 receives 270 the SPS transmission.
  • the SPS transmission may be performed on PDSCH with no PDCCH. In other words, the apparatus 110 may receive the SPS transmission without monitoring PDCCH.
  • the “activation status DCI” may have the same format as that of the “deactivation status DCI” , but one or more field of the “activation status DCI” may be set to be different values than that of the “deactivation status DCI” .
  • the periodicity of the pattern may be associated with a periodicity of the SPS transmission process.
  • the periodicity of the DCI may be configured by an order of magnitude greater than the periodicity of the SPS transmission process, which will be described with reference to Fig. 3.
  • Fig. 3 illustrates an example 300 of a pattern of occasions on which DCI is to be transmitted.
  • the periodicity of DCI is greater than the periodicity of the SPS transmission process. In other words, there is a long-period occurrence of the DCI.
  • the apparatus 110 receives an SPS configuration 310 from the network element 120.
  • the SPS configuration 310 indicates start time and a periodicity of DCI.
  • the SPS configuration 310 also indicates a periodicity of the SPS data transmission such as for example SPS PDSCH transmission.
  • the periodicity of DCI is 200ms
  • the periodicity of the SPS PDSCH transmission is 50ms.
  • the apparatus 110 may receive a “deactivation status DCI” 320 and subsequent “deactivation status DCI” 322.
  • the network element 120 informs the apparatuses 110 that the configured SPS PDSCH transmission starts to be “kicked-off” and can be monitored, but currently it is under the status of “deactivating” with no group-common PDSCH transmission yet.
  • the network element 120 transmits “activation status DCI” 324 to the apparatus 110, and at the same time, the network element 120 starts SPS transmission to the apparatus 110 on PDSCH. Subsequently, the network element 120 performs SPS transmissions 330, 332, 334 and so on to the apparatus 110.
  • the network element 120 transmits at least one repetition or re-transmission of the “activation status DCI” 324 to the apparatus 110.
  • the number of the at least one repetition or re-transmission may be configured by the network element 120 or predefined. In the example 300, the number of the at least one repetition or re-transmission is three. It is noted that any appropriate number of the at least one repetition or re-transmission may be applied.
  • the apparatus 110 may transmit a NACK to the network element 120.
  • the network element 120 transmits the at least one repetition or re-transmission of the “activation status DCI” 324 to the apparatus 110.
  • the network element 120 may perform such repetitions or re-transmissions of the “activation status DCI” 324 until no apparatus 110 responds with NACK.
  • the network element 120 transmits DCI 340 for deactivating the SPS PDSCH transmission process to the apparatus 110.
  • the periodicity of the DCI may be configured to be the same as the periodicity of the SPS transmission process, which will be described with reference to Fig. 4.
  • Fig. 4 illustrates another example 400 of a pattern of occasions on which DCI is to be transmitted.
  • the example 400 is similar to the example 300.
  • the periodicity of DCI is the same as the periodicity of the SPS PDSCH transmission process.
  • the periodicity of DCI is 50ms, and the periodicity of the SPS PDSCH transmission is 50ms, too.
  • the periodicity of the DCI may be configured by an order of magnitude smaller than the periodicity of the SPS transmission process, which will be described with reference to Fig. 5A.
  • Fig. 5A illustrates yet another example 500 of a pattern of occasions on which DCI is to be transmitted.
  • the example 500 is similar to the example 300.
  • the periodicity of DCI is smaller than the periodicity of the SPS PDSCH transmission process.
  • the periodicity of DCI is 25ms, and the periodicity of the SPS PDSCH transmission is 50ms.
  • the network element 120 may use “several” configured long-period occurrences of DCI as repetition or re-transmissions of the “activation status DCI” . This will be described with reference to Fig. 5B.
  • Fig. 5B illustrates still another example 505 of a pattern of occasions on which DCI is to be transmitted.
  • the configured long-period occurrences is 25ms, and it is repeatedly used for transmission of “activation status DCI” .
  • the example 505 is different from the example 500 in Fig. 5A in that in the example 505, the network element 120 applies long-period occurrences 510, 512 and 514 of the “activation status DCI” as the repetition or re-transmission of 324.
  • the “activation status DCI” 324 may include the start of SPS PDSCH transmission and the long-period occurrences 510, 512 and 514 of the “activation status DCI” may be repetition or re-transmission of 324.
  • the starting SPS PDSCH transmission is repeated in each of the long-period occurrences 510, 512 and 514.
  • the periodicity of the SPS PDSCH transmission is 25ms.
  • the network element 120 may not start SPS PDSCH transmission while transmitting the “activation status DCI” 324 and at occurrences 510, 512. In this case, the network element 120 may start SPS PDSCH transmission after the transmission of the “activation status DCI” 514 at an occasion 516 as shown in Fig. 5B.
  • the combination of using “long-period occurrences of DCI” and “short-period occurrences of DCI” may be also applied by the network element 120.
  • the short-period occurrences of DCI may be only used if the network element 120 received a NACK from any of apparatuses 110 in response to the preceding DCI occurrence. Any of apparatuses 110 that successfully received the DCI needs not try to decode the retransmitted DCI on subsequent short-period occurrences and must not send NACK on those. This will be described with reference to Fig. 5C.
  • Fig. 5C illustrates further example 525 of a pattern of occasions on which DCI is to be transmitted.
  • the example 525 is similar to the example 505.
  • the example 525 is different from the example 505 in that, in the example 525, after transmitting each of the “activation status DCI” 324, and long-period occurrences 510, 512 and 514 of the “activation status DCI” , the network element 120 applies short-period occurrences of DCI as shown by dotted arrows.
  • the “activation status DCI” 324 and the long-period occurrences 510, 512 and 514 of the “activation status DCI” may include start of SPS PDSCH transmission.
  • the network element 120 may not start SPS PDSCH transmission while transmitting the “activation status DCI” 324. In this case, the network element 120 may start SPS PDSCH transmission at an occasion 516 as shown in Fig. 5C.
  • Fig. 6 illustrates an example 600 of delay due to mismatch between packet arrival and occasions of the DCI.
  • the network element 120 may transmit the SPS PDSCH transmission at the time occasion that matched the packet arrival timing.
  • the apparatus 110 may receive the SPS PDSCH transmission based on the time offset and configuration information of the SPS transmission process.
  • the apparatus 110 may adjust its configured SPS PDSCH periodicity timing, and match to the SPS PDSCH transmission timing corresponding to the packet arrival timing.
  • the apparatus 110 may receive the SPS transmissions 330, 332, 334 on occasions 618, 620 and 622, respectively.
  • a starting packet 610 arrived before the occasion of the “activation status DCI” 324 may be transmitted via conventional dynamic scheduling.
  • the subsequent packet arrived on an occasion 616 may be transmitted via SPS.
  • the starting packet 610 arrived before the occasion of the “activation status DCI” 324 may be transmitted after the “activation status DCI” 324.
  • the apparatus 110 may receive the starting packet on the occasion 616.
  • the packets subsequent to the starting packet may be transmitted via SPS.
  • Fig. 7 shows a flowchart of an example method 700 implemented at an apparatus in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 700 will be described from the perspective of the apparatus 110 with respect to Fig. 1.
  • the apparatus 110 receives configuration information from the network element 120.
  • the configuration information indicates at least a pattern of occasions on which DCI is to be transmitted.
  • the DCI indicates a deactivation status or an activation status of at least one SPS data transmission process.
  • the apparatus 110 receives the DCI from the network element 120 based on the configuration information.
  • the configuration information indicates start time and periodicity of the pattern.
  • the apparatus 110 receives the DCI by receiving at least one repetition or re-transmission of the DCI.
  • the apparatus 110 transmits a negative acknowledgement to the network element 120 in response to a failure of reception of the DCI on one of the occasions.
  • the reception of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
  • the configuration information indicates at least one resource for transmitting the negative acknowledgement.
  • the apparatus 110 transmits a further negative acknowledgement to the network element 120 in response to a failure of reception of the at least one repetition or re-transmission of the DCI.
  • the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
  • the apparatus 110 receives packet transmissions from the network element 120 based on a time offset and configuration information of the SPS data transmission process.
  • the DCI indicating the activation status of the SPS transmission process further indicates the time offset.
  • the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
  • Fig. 8 shows a flowchart of an example method 800 implemented at a device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 800 will be described from the perspective of the network element 120 with respect to Fig. 1.
  • the network element 120 transmits configuration information to the apparatus 110.
  • the configuration information indicates at least a pattern of occasions on which DCI is to be transmitted.
  • the DCI indicates a deactivation status or an activation status of at least one SPS data transmission process.
  • the network element 120 transmits the DCI to the apparatus 110 based on the configuration information.
  • the configuration information indicates start time and periodicity of the pattern.
  • the network element 120 transmits the DCI by transmitting at least one repetition or re-transmission of the DCI.
  • the network element 120 receives a negative acknowledgement from the apparatus 110.
  • the negative acknowledgement indicates a failure of reception of the DCI on one of the occasions.
  • the transmission of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
  • the configuration information indicates at least one resource for transmitting the negative acknowledgement.
  • the network element 120 receives a further negative acknowledgement from the apparatus 110.
  • the further negative acknowledgement indicates a failure of reception of the at least one repetition or re-transmission of the DCI.
  • the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
  • the network element 120 performs packet transmissions to the apparatus 110 based on a time offset and configuration information of the SPS data transmission process.
  • the DCI indicating the activation status of the SPS data transmission process further indicates the time offset.
  • the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
  • a first apparatus capable of performing any of the method 700 may comprise means for performing the respective operations of the method 700.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the first apparatus may be implemented as or included in the apparatus 110.
  • the means may comprise a processor and a memory.
  • the apparatus comprises: means for receiving configuration information from a network element, the configuration information indicating at least a pattern of occasions on which DCI is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and means for receiving the DCI from the network element based on the configuration information.
  • the configuration information indicates start time and periodicity of the pattern.
  • the means for receiving the DCI comprises means for receiving at least one repetition or re-transmission of the DCI.
  • the apparatus further comprises means for transmitting a negative acknowledgement to the network element 120 in response to a failure of reception of the DCI on one of the occasions.
  • the reception of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
  • the configuration information indicates at least one resource for transmitting the negative acknowledgement.
  • the apparatus further comprises means for transmitting a further negative acknowledgement to the network element 120 in response to a failure of reception of the at least one repetition or re-transmission of the DCI.
  • the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
  • the apparatus further comprises means for receiving packet transmissions from the network element 120 based on a time offset and configuration information of the SPS data transmission process.
  • the DCI indicating the activation status of the SPS data transmission process further indicates the time offset.
  • the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
  • a first apparatus capable of performing any of the method 800 may comprise means for performing the respective operations of the method 800.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the first apparatus may be implemented as or included in the network element 120.
  • the means may comprise a processor and a memory.
  • the apparatus comprises: means for transmitting configuration information from a network element 120 to an apparatus 110, the configuration information indicating at least a pattern of occasions on which DCI is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and means for transmitting the DCI to the apparatus 110 based on the configuration information.
  • the configuration information indicates start time and periodicity of the pattern.
  • the means for transmitting the DCI comprises means for transmitting at least one repetition or re-transmission of the DCI.
  • the apparatus further comprises means for receiving a negative acknowledgement from the apparatus 110.
  • the negative acknowledgement indicates a failure of reception of the DCI on one of the occasions.
  • the transmission of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
  • the configuration information indicates at least one resource for transmitting the negative acknowledgement.
  • the apparatus further comprises means for receiving a further negative acknowledgement from the apparatus 110.
  • the further negative acknowledgement indicates a failure of reception of the at least one repetition or re-transmission of the DCI.
  • the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
  • the apparatus further comprises means for performing packet transmissions to the apparatus 110 based on a time offset and configuration information of the SPS data transmission process.
  • the DCI indicating the activation status of the SPS data transmission process further indicates the time offset.
  • the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
  • Fig. 9 is a simplified block diagram of an apparatus 900 that is suitable for implementing example embodiments of the present disclosure.
  • the apparatus 900 may be provided to implement a communication device, for example, the apparatus 110 or the network element 120 as shown in Fig. 1.
  • the apparatus 900 includes one or more processors 910, one or more memories 920 coupled to the processor 910, and one or more communication modules 940 coupled to the processor 910.
  • the communication module 940 is for bidirectional communications.
  • the communication module 940 has one or more communication interfaces to facilitate communication with one or more other modules or devices.
  • the communication interfaces may represent any interface that is necessary for communication with other network elements.
  • the communication module 940 may include at least one antenna.
  • the processor 910 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the apparatus 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 920 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 924, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , an optical disk, a laser disk, and other magnetic storage and/or optical storage.
  • ROM Read Only Memory
  • EPROM electrically programmable read only memory
  • flash memory a hard disk
  • CD compact disc
  • DVD digital video disk
  • optical disk a laser disk
  • RAM random access memory
  • a computer program 930 includes computer executable instructions that could be executed by the associated processor 910.
  • the program 930 may be stored in the memory, e.g., ROM 924.
  • the processor 910 may perform any suitable actions and processing by loading the program 930 into the RAM 922.
  • the example embodiments of the present disclosure may be implemented by means of the program 930 so that the apparatus 900 may perform any process of the disclosure as discussed with reference to Figs. 2 to 8.
  • the example embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 930 may be tangibly contained in a computer readable medium which may be included in the apparatus 900 (such as in the memory 920) or other storage devices that are accessible by the apparatus 900.
  • the apparatus 900 may load the program 930 from the computer readable medium to the RAM 922 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 10 shows an example of the computer readable medium 1000 which may be in form of CD, DVD or other optical storage disk.
  • the computer readable medium has the program 930 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in an apparatus on a target physical or virtual processor, to carry out any of the methods as described above with reference to Figs. 2 to 8.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program code or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Example embodiments of the present disclosure relate to activation of semi-persistent scheduling (SPS). An apparatus receives configuration information from a network element. The configuration information indicates at least a pattern of occasions on which DCI is to be transmitted. The DCI indicates a deactivation status or an activation status of at least one SPS data transmission process. The apparatus receives the DCI from the network element based on the configuration information. Through this solution, the reliability of SPS activation may be improved.

Description

ACTIVATION OF SEMI-PERSISTENT SCHEDULING FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to devices, methods, apparatuses and computer readable storage medium for activation of semi-persistent scheduling (SPS) .
BACKGROUND
SPS is attractive for use of periodic traffic because it saves control signaling overhead. In accordance with the SPS, not each transmission on a downlink shared channel is scheduled individually by information transmitted on a corresponding downlink control channel. Instead, a periodic pattern of resources is allocated for repeated use until further notice,
In the SPS, what still needs to be transmitted on the control channel is control information for activating an SPS transmission process. If the control information is missed and no feedback indicating the miss is provided, all subsequent SPS transmission will be missed.
SUMMARY
In general, example embodiments of the present disclosure provide a solution for activation of SPS. Embodiments that do not fall under the scope of the claims, if any, are to be interpreted as examples useful for understanding various embodiments of the disclosure.
In a first aspect, there is provided an apparatus. The apparatus comprises at least one processor; and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the device to: receive configuration information from a network element, the configuration information indicating at least a pattern of occasions on which downlink control information (DCI) is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and receive the DCI from the network element based on the configuration information.
In a second aspect, there is provided a network element. The network element  comprises at least one processor; and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the network element to: transmit configuration information to an apparatus, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and transmit the DCI to the apparatus based on the configuration information.
In a third aspect, there is provided a method implemented at an apparatus. The method comprises: receiving configuration information at the apparatus from a network element, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and receiving the DCI from the network element based on the configuration information.
In a fourth aspect, there is provided a method implemented at a network element. The method comprises transmitting configuration information from the network element to an apparatus, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and transmitting the DCI to the apparatus based on the configuration information.
In a fifth aspect, there is provided an apparatus. The apparatus comprises: means for means for receiving configuration information at an apparatus from a network element, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and means for receiving the DCI from the network element based on the configuration information.
In a sixth aspect, there is provided an apparatus. The apparatus comprises: means for means for transmitting configuration information from a network element to an apparatus, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and means for transmitting the DCI to the apparatus based on the configuration information.
In a seventh aspect, there is provided a computer readable medium. The  computer readable medium comprises program instructions for causing an apparatus to perform at least the method according to the third aspect.
In an eighth aspect, there is provided a computer readable medium. The computer readable medium comprises program instructions for causing an apparatus to perform at least the method according to the fourth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates an example communication environment in which example embodiments of the present disclosure can be implemented;
Fig. 2 illustrates a signaling flow for activation of an SPS transmission process in accordance with some example embodiments of the present disclosure;
Fig. 3 illustrates an example of a pattern of occasions on which DCI is to be transmitted;
Fig. 4 illustrates another example of a pattern of occasions on which DCI is to be transmitted;
Fig. 5A illustrates yet another example of a pattern of occasions on which DCI is to be transmitted;
Fig. 5B illustrates still another example of a pattern of occasions on which DCI is to be transmitted;
Fig. 5C illustrates further example of a pattern of occasions on which DCI is to be transmitted;
Fig. 6 illustrates an example of delay due to mismatch between packet arrival and occasions of the DCI;
Fig. 7 illustrates a flowchart of a method implemented at an apparatus in  accordance with some example embodiments of the present disclosure;
Fig. 8 illustrates a flowchart of a method implemented at a network element in accordance with some example embodiments of the present disclosure;
Fig. 9 illustrates a simplified block diagram of an apparatus that is suitable for implementing example embodiments of the present disclosure; and
Fig. 10 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. Embodiments described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example,  a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for  a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated and Access Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device, and so forth, depending on the applied terminology and technology.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer,  image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Fig. 1 shows an example communication environment 100 in which example embodiments of the present disclosure can be implemented. In the communication environment 100, a plurality of communication devices, including one or more apparatuses 110-1, 110-2, 110-3, 110-4 can communicate with a network element 120. For the purpose of discussion, the apparatuses 110-1, 110-2, 110-3 and 110-4 are collectively referred to as apparatuses 110 or individually referred to as apparatus 110.
In the example of Fig. 1, the apparatuses 110 are illustrated as terminal devices, and the network element 120 is illustrated as a network device serving the terminal devices. The serving area of the network element 120 may be called a cell 102.
It is to be understood that the number of devices and their connections shown in Fig. 1 are only for the purpose of illustration without suggesting any limitation. The environment 100 may include any suitable number of devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more additional devices may be located in the cell 102, and one or more additional cells may be deployed in the environment 100. It is noted that although illustrated as terminal devices, the apparatuses 110 may be other devices than the terminal devices.
Communications in the communication environment 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and  Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
In the communication environment 100, the network element 120 may transmit multicast broadcast service (MBS) traffic to the apparatuses 110 on radio resources that are allocated semi-persistently. For example, the network element 120 may transmit the MBS traffic using SPS.
In order to enable an SPS transmission process, the network element 120 may transmit configuration information of an SPS transmission process to the apparatuses 110. For the purpose of description, hereinafter, the configuration information of an SPS transmission process is also referred to as an SPS configuration. Multiple SPS configurations may be configured in one bandwidth part (BWP) of a serving cell. An SPS configuration may be carried by an SPS-Config information element (IE) . Table 1 shows an example of the SPS-Config IE.
Table 1
Figure PCTCN2021094700-appb-000001
Figure PCTCN2021094700-appb-000002
It is to be noted that the configured “periodicity” in Table 1 is for the SPS physical downlink shared channel (PDSCH) transmission. The details of the “periodicity” in Table 1 may be found in TS 38.214 and TS 38.321. However, the various embodiments in the present disclosure may be applied to SPS transmission of any data channel.
Each of the SPS configurations may be signaled to the apparatuses 110 using a radio resource control (RRC) signaling and identified using an SPS configuration index. An SPS transmission process may be activated by using a control information such as for example, downlink control information (DCI) . Once the SPS configuration is signaled to the apparatuses 110 and the SPS transmission process is activated, the apparatuses 110 would monitor PDSCH occasions with a configured periodicity and would require no further control signaling from the network element 120 until the SPS configuration is modified or disabled.
The communication environment 100 may support a negative acknowledge (NACK) -only Hybrid Automatic Repeat request (HARQ) feedback mode. However, with the NACK-only HARQ feedback mode, the reliability of activation of an SPS transmission process may be low.
For instance, if one of the apparatuses 110 (for example, the apparatus 110-1) missed the DCI for activating the SPS transmission process, meaning that the network element 120 transmitted the DCI to the apparatuses 110-1, 110-2, 110-3 and 110-4 to activate the SPS group-common transmission process via dynamic signaling, but the  apparatus 110-1 has never received it. For the worst case with NACK-only HARQ feedback mode, the apparatus 110-1 who missed the DCI cannot realize the SPS transmission, if some other devices have correctly received the DCI.
Conventionally, the positive acknowledge (ACK) /NACK HARQ feedback sent by a device on the assigned physical uplink control channel (PUCCH) resource in response to the periodical PDSCH TB (s) subsequent to a DCI indicates to a network element that the device has successfully received the DCI for activating an SPS transmission process. Therefore, there is no explicit acknowledgement from the device that it received the DCI. Rather, the network element relies on the ACK/NACK feedback of the device provided upon reception of subsequent PDSCH TB (s) that are transmitted in a periodic manner.
However, in case of point to multipoint (PTM) and if the NACK-only HARQ feedback mode is used as the HARQ feedback mechanism, the apparatus 110-1 who missed the DCI cannot realize the SPS transmission. Thus, the network element cannot distinguish between ACK and discontinuous reception (DTX) because in neither case does the device send HARQ feedback. In addition, since the PUCCH resource where the HARQ feedback is provided is a group-common PUCCH resource, the network element cannot understand whether a particular device has successfully received the DCI for activating an SPS transmission process.
In accordance with some example embodiments of the present disclosure, there is provided a solution for activation of an SPS transmission process. In this solution, an apparatus receives configuration information from a network element. The configuration information indicates at least a pattern of occasions on which DCI is to be transmitted. The DCI indicates a deactivation status or an activation status of at least one SPS transmission process. The apparatus receives the DCI from the network element based on the configuration information. Through this solution, the reliability of SPS activation may be improved.
Example embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
Reference is now made to Fig. 2, which shows a signaling flow 200 for activation of an SPS transmission process in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the signaling flow 200 will be described with reference to Fig. 1. The signaling flow 200 may involve the apparatus 110 and the  network element 120 in Fig. 1.
In the signaling flow 200, the network element 120 transmits 230 configuration information to the apparatus 110. Accordingly, the apparatus 110 receives 240 the configuration information. The configuration information indicates at least a pattern of occasions on which DCI is to be transmitted. The DCI indicates a deactivation status or an activation status of at least one SPS transmission process.
In some example embodiments, the DCI may comprise a group common scheduling radio network temporary identity (G-CS-RNTI) for the group of the apparatuses 110-1, 110-2, 110-3 and 110-4.
In some example embodiments, before or after transmitting the configuration information, the network element 120 may transmit 210 at least one SPS configuration to the apparatus 110. Accordingly, the apparatus 110 receives 220 the at least one SPS configuration. For example, the at least one SPS configuration may comprise information as shown in Table 1 as mentioned above.
In some example embodiments, in order to save signaling overhead, the network element 120 may transmit the at least one SPS configuration and the configuration information according to the present disclosure simultaneously. In other words, the network element 120 may transmit the configuration information according to the present disclosure as part of the at least one SPS configuration.
In some example embodiments, the configuration information indicates start time and periodicity of the pattern.
Upon transmitting the configuration information, the network element 120 transmits the DCI based on the configuration information.
In some example embodiments, the DCI indicates a deactivation status of the at least one SPS transmission process. In other words, the DCI may indicate that the SPS transmission process does not start. For example, as shown in Fig. 2, the network element 120 transmits 2410 to the apparatus 110 the DCI indicating a deactivation status of the at least one SPS transmission process. Accordingly, the apparatus 110 receives 2420 the DCI indicating a deactivation status of the at least one SPS transmission process. Hereinafter, for the purpose of discussion, the DCI indicating a deactivation status of the at least one SPS transmission process is also referred to as “deactivation status DCI” .
In some example embodiments, if the apparatus 110 fails to receive the DCI on one of the occasions, the apparatus 110 may transmit 2430 a NACK to the network element 120. In some example embodiments, the apparatus 110 may transmit the NACK on at least one resource configured specifically for this purpose. For example, the at least one resource may be at least one group-common uplink resource for the apparatuses 110-1, 110-2, 110-3 and 110-4.
Upon receiving 2440 the NACK, the network element 120 may transmit 2450 to the apparatus 110 one or more repetition or re-transmission of the DCI. Accordingly, the apparatus 110 receives 2460 the one or more repetition or re-transmission of the DCI. In another example embodiment, the network element 120 may not respond to the NACK if the corresponding DCI is a deactivation status DCI .
It will be understood that in embodiments where the network element 120 transmits one or more repetition of the DCI, the network element 120 may transmit the one or more repetition without receiving any NACK from the apparatus 110. In embodiments where the network element 120 transmits one or more re-transmission of the DCI, the network element 120 may transmit the one or more re-transmission in response to receiving one or more NACK from the apparatus 110.
In some example embodiments, the configuration information may indicate a pattern of the at least one repetition or re-transmission of the DCI. Alternatively, the SPS configuration may indicate the pattern of the at least one repetition or re-transmission of the DCI. For example, the pattern may indicate an interval between the DCI and the starting repetition, or an interval between any two consecutive repetitions. For example, the interval may be equal to one or more ARQ Round-Trip Time (RTT) . Since the interval is pre-configured, there can be a whole sequence of NACKs and DCI re-transmissions. Based on the fact that the apparatus 110 would know the timing of the initial DCI transmission, the apparatus 110 could deduce the proper timing to be applied for the pattern of DCI transmission when only receiving the DCI in one of the re-transmissions. In this way, the network element 120 can guarantee that no more NACK-only feedback is received from any one of the apparatuses 110 before the SPS PDSCH transmission.
In some example embodiments, in order to improve the reliability and robustness of the reception of the DCI, the network element 120 may transmit to the apparatus 110 the one or more repetition or re-transmission of the DCI without receiving the NACK from the  apparatus 110.
In some example embodiments, upon receiving 2440 the NACK, the network element 120 may or may not transmit 2450 to the apparatus 110 the one or more repetition or re-transmission of the DCI.
In some example embodiments, in order to improve the reliability and robustness of the reception of the DCI, if the apparatus 110 fails to receive the at least one repetition or re-transmission of the DCI, the apparatus 110 may transmit a further NACK to the network element 120. In some example embodiments, the apparatus 110 may transmit the further NACK on at least one resource configured
In some example embodiments, for continuous adaptation of the Modulation and Coding Scheme (MCS) or aggregation level of the PDCCH nicely tuned to the channel conditions, the feedback rate of the NACK may be low.
In some example embodiments, instead of transmission of DCI indicating stop of the SPS PDSCH transmission, the network element 120 could also rely on an inactivity timer. Here, if the apparatus 110 does not decode an SPS transmission in a period of time set by this inactivity timer, then it assumes that SPS may have been deactivated and stops trying to decode the SPS PDSCH resources for PTM transport blocks and also stops sending NACKs. The apparatus 110 would then only keep looking out for activation DCI on the occasions and possibly respond with NACK as proposed in present disclosure.
With continued reference to Fig. 2, the network element 120 may transmit 2470 to the apparatus 110 next DCI indicating a deactivation status of the at least one SPS transmission process based on the periodicity of the DCI. Accordingly, the apparatus 110 receives 2480 the next DCI.
If there is one or more packet to be transmitted to the apparatus 110, the network element 120 may transmit 2490 to the apparatus 110 DCI indicating an activation status of the at least one SPS transmission process. Accordingly, the apparatus 110 receives 2500 the DCI. Hereinafter, for the purpose of discussion, the DCI indicating an activation status of the at least one SPS transmission process is also referred to as “activation status DCI” .
In some example embodiments, similar to the “deactivation status DCI” , if the apparatus 110 fails to receive the “activation status DCI” on one of the occasions, the apparatus 110 may transmit a NACK to the network element 120. Upon receiving the NACK, the network element 120 may transmit to the apparatus 110 one or more repetition  or re-transmission of the “activation status DCI” . Alternatively, the network element 120 may transmit to the apparatus 110 the one or more repetition or re-transmission of the DCI without receiving the NACK from the apparatus 110.
In some example embodiments, in order to improve the reliability and robustness of the reception of the DCI, if the apparatus 110 fails to receive the at least one repetition or re-transmission of the DCI, the apparatus 110 may transmit a further NACK to the network element 120. Upon receiving the further NACK, the network element 120 may transmit to the apparatus 110 one or more further repetition or re-transmission of the DCI.
In some example embodiments, if no more NACKs are received from the apparatus 110, the network element 120 performs 260 the SPS transmission to the apparatus 110. Accordingly, the apparatus 110 receives 270 the SPS transmission. In some example embodiments, the SPS transmission may be performed on PDSCH with no PDCCH. In other words, the apparatus 110 may receive the SPS transmission without monitoring PDCCH.
In some example embodiments, the “activation status DCI” may have the same format as that of the “deactivation status DCI” , but one or more field of the “activation status DCI” may be set to be different values than that of the “deactivation status DCI” .
In some example embodiments, the periodicity of the pattern may be associated with a periodicity of the SPS transmission process. For example, the periodicity of the DCI may be configured by an order of magnitude greater than the periodicity of the SPS transmission process, which will be described with reference to Fig. 3.
Fig. 3 illustrates an example 300 of a pattern of occasions on which DCI is to be transmitted. In the example 300, the periodicity of DCI is greater than the periodicity of the SPS transmission process. In other words, there is a long-period occurrence of the DCI.
As shown, the apparatus 110 receives an SPS configuration 310 from the network element 120. The SPS configuration 310 indicates start time and a periodicity of DCI. The SPS configuration 310 also indicates a periodicity of the SPS data transmission such as for example SPS PDSCH transmission. In the example 300, the periodicity of DCI is 200ms, and the periodicity of the SPS PDSCH transmission is 50ms.
Based on the start time and the periodicity of DCI, the apparatus 110 may receive a “deactivation status DCI” 320 and subsequent “deactivation status DCI” 322. At the “start time” occasion of transmitting the “deactivation status DCI” 320 with G-CS-RNTI for  activation of group-common SPS PDSCH transmission, the network element 120 informs the apparatuses 110 that the configured SPS PDSCH transmission starts to be “kicked-off” and can be monitored, but currently it is under the status of “deactivating” with no group-common PDSCH transmission yet.
If there is one or more packet to be transmitted to the apparatus 110, the network element 120 transmits “activation status DCI” 324 to the apparatus 110, and at the same time, the network element 120 starts SPS transmission to the apparatus 110 on PDSCH. Subsequently, the network element 120 performs SPS transmissions 330, 332, 334 and so on to the apparatus 110.
Moreover, in order to improve the reliability and robustness of the activation, the network element 120 transmits at least one repetition or re-transmission of the “activation status DCI” 324 to the apparatus 110. The number of the at least one repetition or re-transmission may be configured by the network element 120 or predefined. In the example 300, the number of the at least one repetition or re-transmission is three. It is noted that any appropriate number of the at least one repetition or re-transmission may be applied.
In addition, if the apparatus 110 fails to receive the “activation status DCI” 324, the apparatus 110 may transmit a NACK to the network element 120. In response to the NACK, the network element 120 transmits the at least one repetition or re-transmission of the “activation status DCI” 324 to the apparatus 110. The network element 120 may perform such repetitions or re-transmissions of the “activation status DCI” 324 until no apparatus 110 responds with NACK.
If there are no more packets to be transmitted to the apparatus 110, the network element 120 transmits DCI 340 for deactivating the SPS PDSCH transmission process to the apparatus 110.
In some example embodiments, the periodicity of the DCI may be configured to be the same as the periodicity of the SPS transmission process, which will be described with reference to Fig. 4.
Fig. 4 illustrates another example 400 of a pattern of occasions on which DCI is to be transmitted. The example 400 is similar to the example 300. However, in the example 400, the periodicity of DCI is the same as the periodicity of the SPS PDSCH transmission process. Specifically, in the example 400, the periodicity of DCI is 50ms, and the periodicity of the SPS PDSCH transmission is 50ms, too.
In some example embodiments, the periodicity of the DCI may be configured by an order of magnitude smaller than the periodicity of the SPS transmission process, which will be described with reference to Fig. 5A.
Fig. 5A illustrates yet another example 500 of a pattern of occasions on which DCI is to be transmitted. The example 500 is similar to the example 300. However, in the example 500, the periodicity of DCI is smaller than the periodicity of the SPS PDSCH transmission process. Specifically, in the example 500, the periodicity of DCI is 25ms, and the periodicity of the SPS PDSCH transmission is 50ms.
In some example embodiments, to improve the reliability so as to guarantee all apparatuses 110 could receive the “activation status DCI” before start of SPS PDSCH transmission, the network element 120 may use “several” configured long-period occurrences of DCI as repetition or re-transmissions of the “activation status DCI” . This will be described with reference to Fig. 5B.
Fig. 5B illustrates still another example 505 of a pattern of occasions on which DCI is to be transmitted. In the example 505, the configured long-period occurrences is 25ms, and it is repeatedly used for transmission of “activation status DCI” . The example 505 is different from the example 500 in Fig. 5A in that in the example 505, the network element 120 applies long-period occurrences 510, 512 and 514 of the “activation status DCI” as the repetition or re-transmission of 324.
In some example embodiments, the “activation status DCI” 324 may include the start of SPS PDSCH transmission and the long-period occurrences 510, 512 and 514 of the “activation status DCI” may be repetition or re-transmission of 324. In other words, the starting SPS PDSCH transmission is repeated in each of the long-period occurrences 510, 512 and 514. During this time period, the periodicity of the SPS PDSCH transmission is 25ms.
Alternatively, the network element 120 may not start SPS PDSCH transmission while transmitting the “activation status DCI” 324 and at occurrences 510, 512. In this case, the network element 120 may start SPS PDSCH transmission after the transmission of the “activation status DCI” 514 at an occasion 516 as shown in Fig. 5B.
In some example embodiments, to further improve the reliability of activation and to guarantee all apparatuses 110 receive the “activation status DCI” before start of SPS PDSCH transmission, the combination of using “long-period occurrences of DCI” and  “short-period occurrences of DCI” may be also applied by the network element 120. Hereby, the short-period occurrences of DCI may be only used if the network element 120 received a NACK from any of apparatuses 110 in response to the preceding DCI occurrence. Any of apparatuses 110 that successfully received the DCI needs not try to decode the retransmitted DCI on subsequent short-period occurrences and must not send NACK on those. This will be described with reference to Fig. 5C.
Fig. 5C illustrates further example 525 of a pattern of occasions on which DCI is to be transmitted. The example 525 is similar to the example 505. However, the example 525 is different from the example 505 in that, in the example 525, after transmitting each of the “activation status DCI” 324, and long-period occurrences 510, 512 and 514 of the “activation status DCI” , the network element 120 applies short-period occurrences of DCI as shown by dotted arrows.
Similar to the example 505, in some example embodiments, the “activation status DCI” 324 and the long-period occurrences 510, 512 and 514 of the “activation status DCI” may include start of SPS PDSCH transmission. Alternatively, the network element 120 may not start SPS PDSCH transmission while transmitting the “activation status DCI” 324. In this case, the network element 120 may start SPS PDSCH transmission at an occasion 516 as shown in Fig. 5C.
In embodiments where the pattern of the DCI in accordance with the present disclosure is applied, there may be delay due to mismatch between packet arrival and occasions of the DCI. This will be described with reference to Fig. 6.
Fig. 6 illustrates an example 600 of delay due to mismatch between packet arrival and occasions of the DCI. As shown, there is a delay 612 due to mismatch between packet arrival 610 and an occasion of the “activation status DCI” 324. To eliminate or overcome the delay, a “time offset” 614 may be indicated by the “activation status DCI” 324. The network element 120 may transmit the SPS PDSCH transmission at the time occasion that matched the packet arrival timing. Accordingly, the apparatus 110 may receive the SPS PDSCH transmission based on the time offset and configuration information of the SPS transmission process. In other words, the apparatus 110 may adjust its configured SPS PDSCH periodicity timing, and match to the SPS PDSCH transmission timing corresponding to the packet arrival timing. Specifically, in the example 600, after adjusting its configured SPS PDSCH periodicity timing, the apparatus 110 may receive the SPS  transmissions 330, 332, 334 on  occasions  618, 620 and 622, respectively.
In some example embodiments, a starting packet 610 arrived before the occasion of the “activation status DCI” 324 may be transmitted via conventional dynamic scheduling. The subsequent packet arrived on an occasion 616 may be transmitted via SPS.
In other example embodiments, the starting packet 610 arrived before the occasion of the “activation status DCI” 324 may be transmitted after the “activation status DCI” 324. The apparatus 110 may receive the starting packet on the occasion 616. The packets subsequent to the starting packet may be transmitted via SPS.
Fig. 7 shows a flowchart of an example method 700 implemented at an apparatus in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 700 will be described from the perspective of the apparatus 110 with respect to Fig. 1.
At block 710, the apparatus 110 receives configuration information from the network element 120. The configuration information indicates at least a pattern of occasions on which DCI is to be transmitted. The DCI indicates a deactivation status or an activation status of at least one SPS data transmission process.
At block 720, the apparatus 110 receives the DCI from the network element 120 based on the configuration information.
In some example embodiments, the configuration information indicates start time and periodicity of the pattern.
In some example embodiments, the apparatus 110 receives the DCI by receiving at least one repetition or re-transmission of the DCI.
In some example embodiments, the apparatus 110 transmits a negative acknowledgement to the network element 120 in response to a failure of reception of the DCI on one of the occasions.
In some example embodiments, the reception of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
In some example embodiments, the configuration information indicates at least one resource for transmitting the negative acknowledgement.
In some example embodiments, the apparatus 110 transmits a further negative acknowledgement to the network element 120 in response to a failure of reception of the at  least one repetition or re-transmission of the DCI.
In some example embodiments, the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
In some example embodiments, the apparatus 110 receives packet transmissions from the network element 120 based on a time offset and configuration information of the SPS data transmission process.
In some example embodiments, the DCI indicating the activation status of the SPS transmission process further indicates the time offset.
In some example embodiments, the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
Fig. 8 shows a flowchart of an example method 800 implemented at a device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 800 will be described from the perspective of the network element 120 with respect to Fig. 1.
At block 810, the network element 120 transmits configuration information to the apparatus 110. The configuration information indicates at least a pattern of occasions on which DCI is to be transmitted. The DCI indicates a deactivation status or an activation status of at least one SPS data transmission process.
At block 820, the network element 120 transmits the DCI to the apparatus 110 based on the configuration information.
In some example embodiments, the configuration information indicates start time and periodicity of the pattern.
In some example embodiments, the network element 120 transmits the DCI by transmitting at least one repetition or re-transmission of the DCI.
In some example embodiments, the network element 120 receives a negative acknowledgement from the apparatus 110. The negative acknowledgement indicates a failure of reception of the DCI on one of the occasions.
In some example embodiments, the transmission of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
In some example embodiments, the configuration information indicates at least  one resource for transmitting the negative acknowledgement.
In some example embodiments, the network element 120 receives a further negative acknowledgement from the apparatus 110. The further negative acknowledgement indicates a failure of reception of the at least one repetition or re-transmission of the DCI.
In some example embodiments, the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
In some example embodiments, the network element 120 performs packet transmissions to the apparatus 110 based on a time offset and configuration information of the SPS data transmission process.
In some example embodiments, the DCI indicating the activation status of the SPS data transmission process further indicates the time offset.
In some example embodiments, the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
In some example embodiments, a first apparatus capable of performing any of the method 700 (for example, the apparatus 110) may comprise means for performing the respective operations of the method 700. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module. The first apparatus may be implemented as or included in the apparatus 110. In some example embodiments, the means may comprise a processor and a memory.
In some example embodiments, the apparatus comprises: means for receiving configuration information from a network element, the configuration information indicating at least a pattern of occasions on which DCI is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and means for receiving the DCI from the network element based on the configuration information.
In some example embodiments, the configuration information indicates start time and periodicity of the pattern.
In some example embodiments, the means for receiving the DCI comprises means for receiving at least one repetition or re-transmission of the DCI.
In some example embodiments, the apparatus further comprises means for transmitting a negative acknowledgement to the network element 120 in response to a  failure of reception of the DCI on one of the occasions.
In some example embodiments, the reception of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
In some example embodiments, the configuration information indicates at least one resource for transmitting the negative acknowledgement.
In some example embodiments, the apparatus further comprises means for transmitting a further negative acknowledgement to the network element 120 in response to a failure of reception of the at least one repetition or re-transmission of the DCI.
In some example embodiments, the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
In some example embodiments, the apparatus further comprises means for receiving packet transmissions from the network element 120 based on a time offset and configuration information of the SPS data transmission process.
In some example embodiments, the DCI indicating the activation status of the SPS data transmission process further indicates the time offset.
In some example embodiments, the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
In some example embodiments, a first apparatus capable of performing any of the method 800 (for example, the network element 120) may comprise means for performing the respective operations of the method 800. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module. The first apparatus may be implemented as or included in the network element 120. In some example embodiments, the means may comprise a processor and a memory.
In some example embodiments, the apparatus comprises: means for transmitting configuration information from a network element 120 to an apparatus 110, the configuration information indicating at least a pattern of occasions on which DCI is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one SPS data transmission process; and means for transmitting the DCI to the apparatus 110 based on the configuration information.
In some example embodiments, the configuration information indicates start time and periodicity of the pattern.
In some example embodiments, the means for transmitting the DCI comprises means for transmitting at least one repetition or re-transmission of the DCI.
In some example embodiments, the apparatus further comprises means for receiving a negative acknowledgement from the apparatus 110. The negative acknowledgement indicates a failure of reception of the DCI on one of the occasions.
In some example embodiments, the transmission of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
In some example embodiments, the configuration information indicates at least one resource for transmitting the negative acknowledgement.
In some example embodiments, the apparatus further comprises means for receiving a further negative acknowledgement from the apparatus 110. The further negative acknowledgement indicates a failure of reception of the at least one repetition or re-transmission of the DCI.
In some example embodiments, the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
In some example embodiments, the apparatus further comprises means for performing packet transmissions to the apparatus 110 based on a time offset and configuration information of the SPS data transmission process.
In some example embodiments, the DCI indicating the activation status of the SPS data transmission process further indicates the time offset.
In some example embodiments, the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
Fig. 9 is a simplified block diagram of an apparatus 900 that is suitable for implementing example embodiments of the present disclosure. The apparatus 900 may be provided to implement a communication device, for example, the apparatus 110 or the network element 120 as shown in Fig. 1. As shown, the apparatus 900 includes one or more processors 910, one or more memories 920 coupled to the processor 910, and one or more communication modules 940 coupled to the processor 910.
The communication module 940 is for bidirectional communications. The communication module 940 has one or more communication interfaces to facilitate communication with one or more other modules or devices. The communication  interfaces may represent any interface that is necessary for communication with other network elements. In some example embodiments, the communication module 940 may include at least one antenna.
The processor 910 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The apparatus 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 920 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 924, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , an optical disk, a laser disk, and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 922 and other volatile memories that will not last in the power-down duration.
computer program 930 includes computer executable instructions that could be executed by the associated processor 910. The program 930 may be stored in the memory, e.g., ROM 924. The processor 910 may perform any suitable actions and processing by loading the program 930 into the RAM 922.
The example embodiments of the present disclosure may be implemented by means of the program 930 so that the apparatus 900 may perform any process of the disclosure as discussed with reference to Figs. 2 to 8. The example embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 930 may be tangibly contained in a computer readable medium which may be included in the apparatus 900 (such as in the memory 920) or other storage devices that are accessible by the apparatus 900. The apparatus 900 may load the program 930 from the computer readable medium to the RAM 922 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 10 shows an example of the computer readable medium 1000 which may be  in form of CD, DVD or other optical storage disk. The computer readable medium has the program 930 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in an apparatus on a target physical or virtual processor, to carry out any of the methods as described above with reference to Figs. 2 to 8. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program code or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
It should be appreciated that though some embodiments may be implemented by/at IAB nodes, solutions including methods and apparatus proposed in this disclosure could also be applied in other communication systems where similar technical problems exist. Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (28)

  1. An apparatus, comprising:
    at least one processor; and
    at least one memory including computer program code;
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to:
    receive configuration information from a network element, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one semi-persistent scheduling, SPS, data transmission process; and
    receive the DCI from the network element based on the configuration information.
  2. The apparatus of claim 1, wherein the configuration information indicates start time and periodicity of the pattern.
  3. The apparatus of claim 1 or 2, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to receive the DCI by:
    receiving at least one repetition or re-transmission of the DCI.
  4. The apparatus of any of claims 1-3, wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the apparatus to:
    in response to a failure of reception of the DCI on one of the occasions, transmit a negative acknowledgement to the network element.
  5. The apparatus of claim 4, wherein the reception of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
  6. The apparatus of claim 4 or 5, wherein the configuration information indicates at least one resource for transmitting the negative acknowledgement.
  7. The apparatus of any of claims 3-6, wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the apparatus to:
    in response to a failure of reception of the at least one repetition or re-transmission of the DCI, transmit a further negative acknowledgement to the network element.
  8. The apparatus of any of claims 3-7, wherein the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
  9. The apparatus of any of claims 1-8, wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the apparatus to:
    receive packet transmissions from the network element based on a time offset and configuration information of the SPS data transmission process.
  10. The apparatus of claim 9, wherein the DCI indicating the activation status of the SPS data transmission process further indicates the time offset.
  11. The apparatus of any of claims 2-10, wherein the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
  12. An apparatus, comprising:
    at least one processor; and
    at least one memory including computer program code;
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the network element to:
    transmit configuration information to a user equipment, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one semi-persistent scheduling, SPS, data transmission process; and
    transmit the DCI to the user equipment based on the configuration information.
  13. The apparatus of claim 12, wherein the configuration information indicates start time and periodicity of the pattern.
  14. The apparatus of claim 12 or 13, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to transmit the DCI by:
    transmitting at least one repetition or re-transmission of the DCI.
  15. The apparatus of any of claims 12-14, wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the apparatus to:
    receive a negative acknowledgement from the user equipment, the negative acknowledgement indicating a failure of reception of the DCI on one of the occasions.
  16. The apparatus of claim 15, wherein the transmission of the at least one repetition or re-transmission of the DCI is in response to the negative acknowledgement.
  17. The apparatus of claim 15 or 16, wherein the configuration information indicates at least one resource for transmitting the negative acknowledgement.
  18. The apparatus of any of claims 14-17, wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the apparatus to:
    receive a further negative acknowledgement from the user equipment, the further negative acknowledgement indicating a failure of reception of the at least one repetition or re-transmission of the DCI.
  19. The apparatus of any of claims 14-18, wherein the configuration information indicates a pattern of the at least one repetition or re-transmission of the DCI.
  20. The apparatus of any of claims 12-19, wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the apparatus to:
    perform packet transmissions to the user equipment based on a time offset and configuration information of the SPS data transmission process.
  21. The apparatus of claim 20, wherein the DCI indicating the activation status of the SPS data transmission process further indicates the time offset.
  22. The apparatus of any of claims 13-21, wherein the periodicity of the pattern is associated with a periodicity of the SPS data transmission process.
  23. A method, comprising:
    receiving configuration information at a user equipment from a network element, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one semi-persistent scheduling, SPS, data transmission process; and
    receiving the DCI from the network element based on the configuration information.
  24. A method, comprising:
    transmitting configuration information from a network element to a user equipment, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one semi-persistent scheduling, SPS, data transmission process; and
    transmitting the DCI to the user equipment based on the configuration information.
  25. An apparatus, comprising:
    means for receiving configuration information from a network element, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one semi-persistent scheduling, SPS, data transmission process; and
    means for receiving the DCI from the network element based on the configuration information.
  26. An apparatus, comprising:
    means for transmitting configuration information to a user equipment, the configuration information indicating at least a pattern of occasions on which downlink control information, DCI, is to be transmitted, the DCI indicating a deactivation status or an activation status of at least one semi-persistent scheduling, SPS, data transmission process; and
    means for transmitting the DCI to the user equipment based on the configuration information.
  27. A computer readable medium comprising program instructions for causing an apparatus to perform at least the method of claim 23.
  28. A computer readable medium comprising program instructions for causing an apparatus to perform at least the method of claim 24.
PCT/CN2021/094700 2021-05-19 2021-05-19 Activation of semi-persistent scheduling WO2022241688A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/094700 WO2022241688A1 (en) 2021-05-19 2021-05-19 Activation of semi-persistent scheduling
CN202180100750.4A CN117694000A (en) 2021-05-19 2021-05-19 Activation of semi-persistent scheduling
EP21940144.5A EP4342247A1 (en) 2021-05-19 2021-05-19 Activation of semi-persistent scheduling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/094700 WO2022241688A1 (en) 2021-05-19 2021-05-19 Activation of semi-persistent scheduling

Publications (1)

Publication Number Publication Date
WO2022241688A1 true WO2022241688A1 (en) 2022-11-24

Family

ID=84140105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094700 WO2022241688A1 (en) 2021-05-19 2021-05-19 Activation of semi-persistent scheduling

Country Status (3)

Country Link
EP (1) EP4342247A1 (en)
CN (1) CN117694000A (en)
WO (1) WO2022241688A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200267755A1 (en) * 2019-02-15 2020-08-20 Mediatek Inc. Multiple Semi-Static Grant Activation And Deactivation By Single DCI In Mobile Communications
WO2020172764A1 (en) * 2019-02-25 2020-09-03 Qualcomm Incorporated Group activation and deactivation for semi-persistent scheduling
WO2020228537A1 (en) * 2019-05-10 2020-11-19 维沃移动通信有限公司 Resource determination method, resource indication method, terminal and network side device
WO2020228529A1 (en) * 2019-05-10 2020-11-19 维沃移动通信有限公司 Configuration method, device and system for semi-static scheduling configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200267755A1 (en) * 2019-02-15 2020-08-20 Mediatek Inc. Multiple Semi-Static Grant Activation And Deactivation By Single DCI In Mobile Communications
WO2020172764A1 (en) * 2019-02-25 2020-09-03 Qualcomm Incorporated Group activation and deactivation for semi-persistent scheduling
WO2020228537A1 (en) * 2019-05-10 2020-11-19 维沃移动通信有限公司 Resource determination method, resource indication method, terminal and network side device
WO2020228529A1 (en) * 2019-05-10 2020-11-19 维沃移动通信有限公司 Configuration method, device and system for semi-static scheduling configuration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "PDCCH enhancements for URLLC", 3GPP DRAFT; R1-1906327 PDCCH ENHANCEMENTS FOR URLLC-FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727777 *
ZTE: "Enhancements for DL SPS configurations", 3GPP DRAFT; R1-1904150 ENHANCEMENTS FOR DL SPS CONFIGURATIONS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051707150 *

Also Published As

Publication number Publication date
CN117694000A (en) 2024-03-12
EP4342247A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US20220286235A1 (en) Dynamic Retransmission Configuration
WO2021088015A1 (en) Discontinuous reception mechanism supporting blind retransmission
FI129385B (en) Determination of contention resolution timer
US20220294572A1 (en) Sharing harq processes by multiple configured grants resources
WO2020220322A1 (en) Timer control in discontinuous reception
US11963104B2 (en) Mechanism for interactions for entering into sleep mode
CN110582966B (en) Method and apparatus for transmitting feedback information
WO2022151456A1 (en) Semi-static harq-ack codebook construction for frequency-multiplexed downlink data transmission
WO2022241688A1 (en) Activation of semi-persistent scheduling
WO2023216271A1 (en) Method and apparatus for small data transmission
WO2024092672A1 (en) Enabling (re) transmissions with network discontinuous reception/discontinuous transmission
WO2022133758A1 (en) Enhancement on autonomous retransmission
WO2022222062A1 (en) Sidelink assistance mechanism
WO2023184354A1 (en) Harq retransmissions for harq feedback
WO2023133903A1 (en) Mechanism for configured grant transmission
WO2024031665A1 (en) Transmission reception point adaptation
US20240155311A1 (en) Reliable sps configuration for mbs
WO2024065855A1 (en) Fractional rate harq feedback
US20210306124A1 (en) Scheduling release feedback
WO2022204957A1 (en) Harq process selection
WO2023010585A1 (en) Configuration and interpretation of control information for retransmission
WO2022147841A1 (en) Rrc state transition reporting
WO2022267064A1 (en) Latency reduction in semi-static channel access
WO2021087884A1 (en) Dynamic active time trigger in contention free random access
KR20220154609A (en) Method for transmitting uplink data considering survival time

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021940144

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021940144

Country of ref document: EP

Effective date: 20231219

WWE Wipo information: entry into national phase

Ref document number: 202180100750.4

Country of ref document: CN