WO2022239915A1 - 마이크로니들 패치, 마이크로니들 패치의 제조 방법 및 마이크로니들 패치의 제조 장치 - Google Patents

마이크로니들 패치, 마이크로니들 패치의 제조 방법 및 마이크로니들 패치의 제조 장치 Download PDF

Info

Publication number
WO2022239915A1
WO2022239915A1 PCT/KR2021/015027 KR2021015027W WO2022239915A1 WO 2022239915 A1 WO2022239915 A1 WO 2022239915A1 KR 2021015027 W KR2021015027 W KR 2021015027W WO 2022239915 A1 WO2022239915 A1 WO 2022239915A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
mold
microneedle patch
microneedle
manufacturing
Prior art date
Application number
PCT/KR2021/015027
Other languages
English (en)
French (fr)
Inventor
이재준
전이슬
Original Assignee
주식회사 페로카
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210061417A external-priority patent/KR20220153881A/ko
Priority claimed from KR1020210061451A external-priority patent/KR102611702B1/ko
Application filed by 주식회사 페로카 filed Critical 주식회사 페로카
Priority to US17/628,728 priority Critical patent/US20230364401A1/en
Priority to EP21840769.0A priority patent/EP4338783A1/en
Priority to JP2022505232A priority patent/JP2023529034A/ja
Publication of WO2022239915A1 publication Critical patent/WO2022239915A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/22Making multilayered or multicoloured articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Definitions

  • the present invention relates to a microneedle patch, a method for manufacturing a microneedle patch, and an apparatus for manufacturing a microneedle patch.
  • Drug injection into the human body has traditionally been performed by needle injection, but needle injection causes great pain. Therefore, a non-invasive drug injection method has also been developed, but there is a problem in that the amount of drug required is too large compared to the amount of injection.
  • DDS drug delivery system
  • microneedles can be characterized by painless skin penetration and no trauma.
  • a certain degree of physical hardness may be required because the microneedle must penetrate the stratum corneum of the skin.
  • an appropriate length may be required in order for the physiologically active material to reach the epidermal layer or the dermal layer of the skin.
  • the skin permeability of the "micro" needles must be high and maintained for a certain period of time until they are dissolved after being inserted into the skin.
  • microneedles capable of delivering a drug in a precise amount and accurately setting a target position is increasing.
  • the present invention can provide a microneedle patch, a method for manufacturing a microneedle patch, and a manufacturing apparatus capable of manufacturing a microneedle patch capable of effectively delivering an active ingredient to a target location in a quantitative amount.
  • One aspect of the present invention includes filling a base material in a mold having a plurality of needle grooves, forming a pressure lower than atmospheric pressure in the mold, rotating the mold about a rotational axis, and A method for manufacturing a microneedle patch comprising drying the filled base material is provided.
  • One aspect of the present invention includes filling a buffer solution in a mold having a plurality of needle grooves, disposing a base material on the needle grooves, diffusing the base material into the buffer solution, and the mold. It provides a method for manufacturing a microneedle patch comprising the step of drying.
  • the apparatus for manufacturing a microneedle patch and the method for manufacturing a microneedle patch according to the present invention can manufacture a high-quality microneedle patch.
  • the present invention forms a pressure lower than atmospheric pressure in the mold to remove the gas remaining inside the microneedle patch so that the microneedle does not contain foreign substances and removes the gas between the mold and the base material so that it is easy to attach to the target and drug delivery This effective microneedle patch can be prepared.
  • the apparatus for manufacturing a microneedle patch and the method for manufacturing a microneedle patch according to the present invention can manufacture a high-quality microneedle patch.
  • a vacuum is formed in the mold to remove the gas remaining inside the microneedle patch so that the microneedle does not contain foreign substances, and the gas between the mold and the base material is removed to obtain a microneedle patch that is easy to attach to the target and has effective drug delivery. can be manufactured
  • FIG. 1 is a diagram showing an apparatus for manufacturing a microneedle patch according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating the microneedle patch prepared in FIG. 1 .
  • FIG. 3 is a diagram illustrating injection of a base material in the injection module of FIG. 1 .
  • Figure 4 is a diagram showing the operation of the pressure module of Figure 1;
  • FIG. 5 is an enlarged view of portion A of FIG. 4 .
  • FIG. 6 is a diagram illustrating driving of the rotation module.
  • FIG. 7 is a view showing filling a mold with a base material in part B of FIG. 6 .
  • FIG. 8 is a flowchart illustrating a method of manufacturing a microneedle patch according to another embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a method of manufacturing a microneedle patch according to another embodiment of the present invention.
  • FIGS. 10 to 12 are views showing microneedle patches manufactured by the method of manufacturing a microneedle patch according to the present invention.
  • FIG. 13 and 14 are diagrams showing a microneedle patch manufactured by the method of manufacturing a microneedle patch according to the present invention and a comparative example.
  • 15 is a diagram showing an apparatus for manufacturing a microneedle patch according to another embodiment of the present invention.
  • 16 is a flowchart illustrating a method of manufacturing a microneedle patch according to another embodiment of the present invention.
  • 17 to 21 are diagrams illustrating manufacturing steps of microneedles by the method of manufacturing the microneedle patch of FIG. 16 .
  • FIG. 22 is a view showing a microneedle patch manufactured by the method of manufacturing the microneedle patch of FIG. 16 .
  • 23 to 25 are diagrams illustrating other embodiments of the microneedle patch of FIG. 22 .
  • One aspect of the present invention includes filling a base material in a mold having a plurality of needle grooves, forming a pressure lower than atmospheric pressure in the mold, rotating the mold about a rotational axis, and A method for manufacturing a microneedle patch comprising drying the filled base material is provided.
  • the base material may be brought into close contact with the needle groove in the axial direction by centrifugal force.
  • the method may further include pre-rotating the mold filled with the base material with respect to the rotation shaft before the step of forming a pressure lower than atmospheric pressure in the mold.
  • rotation axis may be perpendicular to the axial direction of the needle groove.
  • Another aspect of the present invention is a mold having a plurality of needle grooves into which a base material is injected, a pressure module for forming a pressure lower than atmospheric pressure in the mold, a rotation module for rotating the mold around a rotation axis, and the needle
  • An apparatus for manufacturing a microneedle patch including a drying module for drying the base material filled in the groove is provided.
  • the base material is generated by the centrifugal force generated by driving the rotation module after internal bubbles of the base material are removed from the pressure module or gas between the base material and the needle groove is removed. It can be closely adhered to in the axial direction of the needle groove.
  • One aspect of the present invention includes filling a buffer solution in a mold having a plurality of needle grooves, disposing a base material on the needle grooves, diffusing the base material into the buffer solution, and the mold. It provides a method for manufacturing a microneedle patch comprising the step of drying.
  • the base material may be injected into the needle groove.
  • the buffer solution may dissolve the base material.
  • the buffer solution may include water
  • the base material may include hyaluronic acid
  • an active ingredient may be disposed inside the base material.
  • the buffer solution may be removed and the base material may be hardened in the needle groove.
  • microneedle patch comprising a base and a plurality of microneedles mounted on the base, wherein the microneedle dissolves a base material in a buffer solution and then dries the buffer solution.
  • the buffer solution may include water
  • the base material may include hyaluronic acid
  • an active ingredient may be disposed inside the base material.
  • FIG. 1 is a diagram showing an apparatus for manufacturing a microneedle patch according to an embodiment of the present invention.
  • an apparatus 1 for manufacturing a microneedle patch may include an injection module 10 , a pressure module 20 , a rotation module 30 , and a drying module 40 .
  • the microneedle patch manufacturing apparatus 1 shows that the injection module 10, the pressure module 20, the rotation module 30, and the drying module 40 are sequentially disposed one by one, but it is not limited thereto. and may be variously modified according to the manufacturing process of the microneedle patch.
  • the microneedle patch manufacturing apparatus 1 may include a plurality of at least one of the injection module 10 , the pressure module 20 , the rotation module 30 , and the drying module 40 .
  • the rotation module 30 may be disposed prior to the pressure module 20 .
  • microneedle patch 100 manufactured by the microneedle patch manufacturing apparatus 1 a plurality of microneedles 120 may be disposed on the base 110.
  • the microneedle patch 100 may be attached to an object to deliver drugs or cosmetic substances.
  • FIG. 2 is a perspective view illustrating the microneedle patch prepared in FIG. 1 .
  • the microneedle patch 100 may include a base 110 and microneedles 120 .
  • the base 110 supports the microneedles 120 and may have a plurality of microneedles 120 on one surface. One side of the base 110 may be in contact with the skin, and the other side of the base 110 may be exposed to the outside.
  • the base 110 may be removed when the microneedle 120 is implanted into the skin.
  • the base may be removed from the skin by applying force by the user.
  • a portion where the base 110 and the microneedle 120 are connected is first dissolved, and the base 110 may be removed after a predetermined time has elapsed after attachment.
  • the base 110 may be dissolved.
  • the base 110 may be removed by a user applying a material for dissolution.
  • the base 110 may include any one of the materials included in the microneedle 120 .
  • the base 110 may include a biodegradable material like the microneedle 120 .
  • the base 110 may include a physiologically active material. After attaching the microneedle patch 100 to the skin, an effective drug can be effectively delivered to the patient by the physiologically active substance coming out of the base 110. In addition, the base 110 and the microneedle 120 can be easily separated by the physiologically active substance coming out of the base 110 .
  • the base 110 may have a lower solubility than the layer most adjacent to the microneedle 120, that is, the layer most spaced apart from the tip of the microneedle 120. Since a portion of the microneedle 120 adjacent to the base 110 dissolves the fastest, the base 110 can be easily separated from the microneedle 120 .
  • the base 110 may include a water-soluble polymer.
  • the base 110 may be composed of a water-soluble polymer or may contain other additives (eg, disaccharides).
  • the base 110 preferably does not contain drugs or active ingredients.
  • Base 110 may include a biocompatible material.
  • the base 110 may select a biocompatible material selected as a base material of the microneedle 120 to be described later as a base material.
  • the microneedles 120 protrude from the surface of the base 110 and may be provided in plurality.
  • the microneedle 120 is formed of a base material (BM), and the base material (BM) may include a biocompatible material and an additive.
  • Biocompatible materials include carboxymethyl cellulose (CMC), hyaluronic acid (HA), alginic acid, pectin, carrageenan, chondroitin sulfate, dex Tran Sulfate, Chitosan, Polylysine, Carboxymethyl Chitin, Fibrin, Agarose, Pullulan, Polyanhydride , polyorthoester, polyetherester, polyesteramide, poly butyric acid, poly valeric acid, polyacrylate, Ethylene-vinyl acetate polymer, acrylic substituted cellulose acetate, polyvinyl chloride, polyvinyl fluoride, polyvinyl imidazole, chlorosulphonate polyolefins , polyethylene oxide, polyvinylpyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC), ethylcellulose (EC), hydroxypropylcellulose (HPC), carboxymethylcellulose, cyclodextrin (Cyclodextrin),
  • the additives are trehalose, oligosaccharide, sucrose, maltose, lactose, cellobiose, hyaluronic acid, alginic Alginic acid, Pectin, Carrageenan, Chondroitin Sulfate, Dextran Sulfate, Chitosan, Polylysine, Collagen, Gelatin, Carboxymethyl Chitin ( carboxymethyl chitin), fibrin, agarose, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polymethacrylate, hydroxypropylmethylcellulose (HPMC), ethylcellulose (EC), Hydroxypropylcellulose (HPC), carboxymethyl cellulose, cyclodextrin, gentiobiose, alkyltrimethylammonium bromide (Cetrimide), hexadecyltrimethylammoniumbromide (CTAB) , Gentian Violet, benzethonium chloride, docus
  • Hyaluronic acid is used to include not only hyaluronic acid but also hyaluronic acid salts (eg, sodium hyaluronate, potassium hyaluronate, magnesium hyaluronate and calcium hyaluronate) and mixtures thereof.
  • Hyaluronic acid is used as a meaning including cross-linked hyaluronic acid and/or non-cross-linked hyaluronic acid.
  • the hyaluronic acid of the present invention has a molecular weight of 2 kDa to 5000 kDa.
  • the hyaluronic acid of the present invention has a molecular weight of 100-4500, 150-3500, 200-2500 kDa, 220-1500 kDa, 240-1000 kDa or 240-490 kDa.
  • Carboxymethyl cellulose may use CMC of various known molecular weights.
  • the average molecular weight of CMC used in the present invention is 90,000 kDa, 250,000 kDa or 700,000 kDa.
  • the disaccharide may include sucrose, lactulose, lactose, maltose, trehalose, or cellobiose, and may include sucrose, maltose, or trehalose in particular.
  • an adhesive may be included.
  • the adhesive is at least one adhesive selected from the group consisting of silicone, polyurethane, hyaluronic acid, physical adhesive (Gecko), poly acrylic, ethyl cellulose, hydroxy methyl cellulose, ethylene vinyl acetate and polyisobutylene.
  • the microneedle 120 may additionally include metal, a high molecular weight polymer, or an adhesive.
  • the microneedle 120 may contain an active ingredient (EM). At least a portion of the microneedle 120 may include a pharmaceutical, medical or cosmetic active ingredient (EM).
  • active ingredients include, but are not limited to, protein/peptide drugs, hormones, hormone analogues, enzymes, enzyme inhibitors, signaling proteins or parts thereof, antibodies or parts thereof, single chain antibodies, binding It includes at least one of proteins or binding domains thereof, antigens, adhesion proteins, structural proteins, regulatory proteins, toxin proteins, cytokines, transcriptional regulators, blood coagulation factors, and vaccines.
  • the protein / peptide drug is insulin, IGF- 1 (insulinlike growth factor 1), growth hormone, erythropoietin, G-CSFs (granulocyte-colony stimulating factors), GM-CSFs (granulocyte / macrophage- colony stimulating factors), interferon alpha, interferon beta, interferon gamma, interleukin-1 alpha and beta, interleukin-3, interleukin-4, interleukin-6, interleukin-2, epidermal growth factors (EGFs), calcitonin , adrenocorticotropic hormone (ACTH), tumor necrosis factor (TNF), atobisban, buserelin, cetrorelix, deslorelin, desmopressin , dynorphin A (1-13), elcatonin, eleidosin, eptifibatide, growth hormone releasing hormone-II (GHRHII), gonadorelin ), goserelin, his
  • the active ingredient (EM) may be a colloid dispersed in a solvent forming the microneedles 120 in the form of particulates.
  • the fine particles themselves may be an active ingredient (EM) or may include a coating material carrying the active ingredient (EM).
  • the active ingredient (EM) may be intensively distributed on a partial layer of the microneedle 120 . That is, since the active ingredient (EM) is disposed at a specific height in the microneedle 120, the active ingredient (EM) can be effectively delivered.
  • the active ingredient (EM) may be dissolved in the microneedle 120 .
  • the active ingredient (EM) may be dissolved in a base material of the microneedle 120 such as the aforementioned biodegradable materials to form the microneedle 120 .
  • the active ingredient (EM) may be dissolved in the base material at a uniform concentration, and may be intensively distributed at a specific height of the microneedle 120 like the above-described fine particles.
  • the microneedle patch 100 may have a plurality of active ingredients (EM) according to regions.
  • EM active ingredients
  • a microneedle of a first group contains a first active ingredient among the plurality of active ingredients
  • a microneedle of a second group different from the first group contains a second active ingredient among the plurality of active ingredients.
  • a pharmaceutical, medical or cosmetic active ingredient may be coated on the microneedle 120 .
  • the active ingredients (EM) may be coated on the entire microneedle 120 or only a portion of the microneedle 120 .
  • a portion of the coating layer of the microneedle 120 may be coated with the first active ingredient, and the other portion may be coated with the second active ingredient.
  • the microneedle 120 may have various shapes.
  • the microneedle 120 may have a cone shape.
  • the microneedle 120 may have a polygonal shape such as a cone shape, a triangular pyramid shape, or a quadrangular pyramid shape.
  • the microneedle 120 may have a layered structure.
  • the microneedle 120 may have a plurality of stacked layers.
  • the number of layers forming the microneedle 120 is not limited to a specific number.
  • FIG. 3 is a diagram illustrating injection of a base material in the injection module of FIG. 1 .
  • the base material BM may be injected into the mold M in the injection module 10 .
  • the mold (M) has a base groove (BG) and a plurality of needle grooves (NG).
  • the base groove BG is an area where the base 110 is manufactured
  • the needle groove NG is an area where the microneedle 120 is manufactured, and the base material BM is injected into the needle groove NG.
  • the base material BM is disposed on top of the needle groove NG and is injected into the needle groove NG.
  • the base material BM may be injected into the mold M in various ways.
  • the base material BM is a liquid, and may be sprayed from the nozzle 11 and injected into the mold M.
  • the base material BM may be injected into the needle groove NG by dropping a droplet of the base material BM into the needle groove NG.
  • the base material BM is in the form of a gel and may be disposed on the mold M using a spatula. Thereafter, the base material BM may be injected into the needle groove NG while being compressed by a squeezing device (not shown).
  • Bubbles may be formed inside the base material BM injected into the mold M. Bubbles may be formed in the process of manufacturing the base material (BM), and bubbles may be formed in the process of injecting the base material (BM) into the mold (M). In addition, gas may be stored between the base material BM and the needle groove NG. In the process of injecting the base material BM, the gas may not be completely removed and may remain in the space between the needle groove NG and the base material BM.
  • FIG. 4 is a view illustrating the operation of the pressure module of FIG. 1
  • FIG. 5 is an enlarged view of portion A of FIG. 4 .
  • the pressure module 20 is operated to remove gas remaining in the needle groove NG or to remove internal bubbles of the base material BM.
  • forming the mold M at a low pressure by driving the pressure module 20 is a relatively low pressure to remove the gas inside the needle groove NG or to remove the bubbles inside the base material BM.
  • forming the mold M at a low pressure by driving the pressure module 20 may mean forming the inside of the pressure chamber at a pressure lower than atmospheric pressure.
  • forming the mold M at a low pressure by driving the pressure module 20 may mean setting the inside of the pressure chamber to 1 atm or less.
  • forming the mold M at a low pressure by driving the pressure module 20 includes setting the inside of the pressure chamber to 1 mbar or less to create a substantially vacuum-like environment.
  • the mold M is placed on the support 21 of the pressure module 20, and the pressure pump 22 is driven to form the inside of the pressure chamber at a low pressure.
  • the low pressure may be set to a pressure lower than atmospheric pressure. Since a relatively low pressure is also formed in the needle groove NG of the mold M, the gas g in the internal bubble BU of the base material BM is removed. In addition, the gas (g) in the space between the base material (BM) and the needle groove (NG) is also removed.
  • the pressure module 20 removes the gas (g) inside the base material (BM) or removes the gas (g) between the base material (BM) and the needle groove (NG), so that the microneedle ( 120) can be improved.
  • the driving of the pressure pump 22 is stopped to release the pressure state of the mold (M) lower than atmospheric pressure.
  • the internal bubble BU of the base material BM is maintained as an empty space, and the space between the surface of the needle groove NG and the base material BM is also maintained as an empty space.
  • the mold M may maintain a pressure lower than atmospheric pressure. Thereafter, the base material BM may be filled in the empty space by driving the rotation module 30 while maintaining a low pressure state.
  • FIG. 6 is a view showing the driving of the rotation module
  • FIG. 7 is a view showing filling the mold with a base material in part B of FIG. 6 .
  • the rotation module 30 rotates the mold M around the rotation axis RX to provide centrifugal force to the mold M.
  • the axis of rotation (RX) is different from the longitudinal direction of the needle groove (NG).
  • the longitudinal direction of the rotation axis (RX) and the needle groove (NG) is set to be different from each other.
  • the longitudinal directions of the rotating shaft RX and the needle groove NG may be set perpendicular to each other.
  • Centrifugal force (Fc) is formed along the longitudinal direction of the needle groove (NG), so that the base material (BM) completely fills the needle groove (NG).
  • the base material BM By the centrifugal force, the base material BM is pushed to the end of the needle groove NG. At this time, the base material BM is also filled in the area of the needle groove NG where the base material BM was not previously filled. In addition, the base material BM is brought into close contact with the inside of the base material BM by the centrifugal force Fc, and the internal bubbles BU are removed.
  • the gas g is removed from the area not filled with the base material BM and the internal bubble BU, so that the pressure is lower than that of the outside.
  • the base material BM can quickly and simply fill the needle groove NG and the internal bubble BU.
  • the rotation module 30 provides a centrifugal force (Fc) to the mold (M), so that the base material (BM) can be completely filled in the needle groove (NG).
  • Fc centrifugal force
  • the mold M can manufacture the sophisticated microneedles 120, and pores inside the microneedles 120 can be removed.
  • the rotation module 30 may be driven prior to the pressure module 20 . That is, in the injection module 10, the base material BM is injected into the mold M, and the rotation module 30 is driven. By the centrifugal force (Fc) generated by the rotation module 30, the base material (BM) can be filled up to the tip of the needle groove (NG).
  • Fc centrifugal force
  • the pressure chamber described above is driven to remove the gas in the internal bubble of the base material BM or the gas between the base material BM and the needle groove NG. Then, the rotation module 30 is driven again, so that the needle groove NG can be completely filled with the base material BM.
  • the drying module 40 dries the base material BM.
  • the dried base material BM is completed with microneedles 120 .
  • the microneedle patch 100 is separated from the mold M.
  • FIG. 8 is a flowchart illustrating a method of manufacturing a microneedle patch according to another embodiment of the present invention.
  • the method of manufacturing a microneedle patch includes filling a mold having a plurality of needle grooves with a base material (S10), forming a pressure lower than atmospheric pressure in the mold (S20), and turning the mold into a rotating shaft. rotating with respect to (S30), and drying the base material filled in the needle groove (S40).
  • step S10 of filling a mold having a plurality of needle grooves with a base material the base material BM is injected into the mold M.
  • the chamber in which the mold M is installed may be set to a low pressure. That is, even in the step of filling the mold having a plurality of needle grooves with the base material (S10), the internal pressure of the chamber may be maintained at a pressure lower than atmospheric pressure. As a result, it is possible to minimize the generation of bubbles inside the base material BM.
  • a gas such as air may be stored therein in the form of a bubble BU. Even when the base material BM is injected into the needle groove NG, internal bubbles BU may still exist in the needle groove NG.
  • the gas g remaining in the internal bubble BU of the base material BM may seriously degrade the quality of the microneedle 120 . Since the microneedle 120 is a part to be implanted into the skin of a subject, it should not contain foreign substances including gas. If the gas g in the bubble BU is injected into the object, it may threaten the safety of the object.
  • the needle groove NG has a very small volume and the base material BM has a predetermined viscosity, it is difficult for the base material BM to completely fill the needle groove NG. Even when the base material BM is disposed in the needle groove NG, gas g may remain between the base material BM and the surface of the needle groove NG.
  • the internal bubbles BU of the base material BM filled in the needle groove NG are removed or between the base material BM and the needle groove NG.
  • of gas (g) can be removed.
  • a pressure lower than atmospheric pressure is formed in the mold M, that is, the internal pressure of the chamber in which the mold M is mounted is set to a pressure lower than 1 atmosphere, so that the internal bubbles of the base material BM ( Gas (g) in the BU may be removed, and gas (g) remaining in the needle groove (NG) may be removed.
  • the gas in the internal bubble (BU) is discharged to the outside of the mold (M).
  • the gas stored between the surface of the base material (BM) and the needle groove (NG) is also discharged to the outside of the mold (M).
  • step S30 In the step of rotating the mold with respect to the rotational axis (S30), centrifugal force is formed in the mold (M), so that the base material (BM) can be completely filled in the needle groove (NG).
  • step S30 the base material BM is brought into close contact with the needle groove NG in the axial direction by centrifugal force.
  • the low pressure state of the mold (M) is released before applying the centrifugal force to the mold (M). Thereafter, when the mold M is rotated about the rotational axis RX, the base material BM is deeply injected into the needle groove NG by centrifugal force.
  • the mold M may be rotated about the rotational axis RX while maintaining the mold M at a pressure lower than atmospheric pressure. Since the mold M continuously maintains a low-pressure atmosphere, the base material BM is deeply injected into the needle groove NG by centrifugal force.
  • the microneedle 120 is created by drying the base material BM filled in the mold M. Thereafter, the manufactured microneedle 120 may be removed from the mold M.
  • FIG. 9 is a flowchart illustrating a method of manufacturing a microneedle patch according to another embodiment of the present invention.
  • a step of rotating the mold filled with the base material (S15) may be further included.
  • the mold (M) After injecting the base material (BM) into the mold (M), the mold (M) is rotated with respect to the rotation axis. Then, the base material BM is pushed deep into the needle groove NG by the generated centrifugal force.
  • the base material BM When centrifugal force is primarily applied to the mold M filled with the base material BM, the base material BM may be uniformly distributed in the needle groove NG by the centrifugal force.
  • the inside of the chamber in which the mold M is installed is set to a low pressure, the gas g is removed from the needle groove NG or the base material BM.
  • centrifugal force is secondarily applied to the mold M again, the base material BM is completely brought into close contact with the needle groove NG by the centrifugal force, so that the quality of the microneedle 120 can be improved.
  • a method of manufacturing a microneedle patch according to another embodiment of the present invention includes filling a mold having a plurality of needle grooves with a base material (S10), forming a pressure lower than atmospheric pressure in the mold (S20), All of the steps of rotating the mold about the axis of rotation (S30) may be performed in the same chamber.
  • FIGS. 10 to 12 are views showing microneedle patches manufactured by the method of manufacturing a microneedle patch according to the present invention.
  • the microneedle patch 100 may include a base 110 and single-layer microneedles 120 using the above-described microneedle patch manufacturing apparatus 1 or the microneedle patch manufacturing method.
  • the microneedle 120 may contain an active ingredient (EM) therein.
  • the microneedle patch 200 may be manufactured by the above-described microneedle patch manufacturing apparatus 1 or the microneedle patch manufacturing method.
  • the microneedle patch 200 may have a base 210 and microneedles 220 having a multilayer structure.
  • the microneedle patch 200 having a multilayer structure can be manufactured.
  • the first layer is first layered by injecting the first base material into the needle groove NG, first forming a pressure lower than atmospheric pressure in the mold M, rotating the mold M, and drying the first base material. (221).
  • the pressure primarily formed in the mold (M) and the pressure formed secondarily may be set to be different from each other.
  • the secondly formed pressure has a lower pressure than the firstly formed pressure, so that the gas (g) remaining in the base material (BM) or the needle groove (NG) can be completely removed.
  • the microneedles 220 disposed on one surface of the base 210 have a multi-layered structure, so that the active ingredient (EM) can be accurately delivered to the target point. Since the microneedle 220 has a multi-layered structure, active ingredients can be loaded into each layer. For example, the first active ingredient EM1 may be loaded on the first layer 221 and the second active ingredient EM2 may be loaded on the second layer 222 . Thus, the microneedle patch 100 can adjust the active depth of each active ingredient according to the height of the layer. That is, the microneedle patch 200 can deliver active ingredients to any one of epidermis, dermis, subcutaneous fat, and muscle.
  • the microneedle patch 200 has a multi-layer structure, and the biodegradation rate of each layer can be set differently.
  • the microneedle 220 sets the decomposition rate of the first layer 221 and the second layer 222 differently, so that the first active ingredient EM1 and the second active ingredient EM2 can have different active times. have.
  • the microneedle patch 200 has a multi-layer structure, and the strength of each layer can be set differently. By setting the strength of the first layer 221 higher than that of the second layer 222, the microneedle 220 can be easily injected into the skin.
  • the microneedle patch 200' may be manufactured by the above-described microneedle patch manufacturing apparatus 1 or the microneedle patch manufacturing method.
  • the microneedle patch 200' may have a base 210 and microneedles 220' having a multilayer structure.
  • the microneedle 220' may include a first layer 221' and a second layer 222'.
  • a first base material is injected into the mold M to form the first layer 221'.
  • the first layer 221' may have a curved surface.
  • a second base material is injected onto the first layer 221' to form a second layer 222'.
  • FIG. 13 and 14 are diagrams showing a microneedle patch manufactured by the method of manufacturing a microneedle patch according to the present invention and a comparative example.
  • FIG. 13 shows 200 kDa 10% HA selected as a base material
  • (a) is a microneedle patch manufactured by the manufacturing method of a microneedle patch according to an embodiment of the present invention
  • (b) is a mold as a comparative example of the present invention. It is a microneedle patch manufactured by rotating to form only centrifugal force.
  • the tip of the microneedle is very fine and pointed.
  • the tip of the microneedle is blunt in the comparative example, it is difficult to attach the microneedle patch to the object.
  • Comparative Example since the mold was not formed at a pressure lower than atmospheric pressure, the hyaluronic acid was not completely injected into the needle groove of the mold, and gas remained inside the injected hyaluronic acid, so the quality of the microneedle patch was low.
  • FIG. 14 shows 1.4 MDa 10% HA selected as a base material
  • (a) is a microneedle patch manufactured by the method for manufacturing a microneedle patch according to an embodiment of the present invention
  • (b) is a first comparative example of the present invention.
  • a microneedle patch manufactured by forming only low pressure in the mold is a microneedle patch manufactured by rotating the mold and forming only centrifugal force as a second comparative example of the present invention.
  • the 1.4 MDa 10% HA of FIG. 14 has higher viscosity and higher strength than the 200 kDa 10% HA of FIG. 13 . Therefore, manufacturing a microneedle using 1.4MDa 10%HA having high viscosity is relatively more difficult than manufacturing a microneedle using 200kDa 10%HA.
  • the tip of the microneedle is very fine and pointed.
  • the ends of the microneedles in Comparative Example 1 and Comparative Example 2 are blunt, it is difficult to attach the microneedle patch to the object.
  • the manufacturing method of the microneedle patch according to the present invention completely injects the high-molecular hyaluronic acid into the groove of the needle, thereby improving the quality of the microneedle patch.
  • 1.4MDa 10%HA which is a polymer, is difficult to completely inject into the needle groove due to its high viscosity. The quality of the needle patch can be improved.
  • 15 is a diagram showing an apparatus for manufacturing a microneedle patch according to another embodiment of the present invention.
  • the microneedle patch manufacturing apparatus 2 may include a first injection module 10A, a second injection module 20A, and a drying module 30A.
  • the apparatus 2 for manufacturing a microneedle patch shows that a first injection module 10A, a second injection module 20A, and a drying module 30A are sequentially disposed one by one, but the microneedle patch is not limited thereto. It may be variously modified according to the manufacturing process of the needle patch.
  • the microneedle patch manufacturing apparatus 2 may include a plurality of at least one of the first injection module 10A, the second injection module 20A, and the drying module 30A.
  • the drying module 30A may be disposed before the second injection module 20A.
  • the first injection module 10A may inject the buffer solution BS into the mold M, and the second injection module 20A may place the base material BM in the mold M. . As shown in FIG. 15 , the first injection module 10A and the second injection module 20A may be provided respectively.
  • the first injection module 10A may inject both the buffer solution BS and the base material BM into the mold M.
  • the first injection module 10A may be integrated to inject both the buffer solution BS and the base material BM.
  • the drying module 30A dries the mold M after the mold M is mounted therein.
  • the buffer solution BS may be removed.
  • FIG. 16 is a flowchart illustrating a method for manufacturing a microneedle patch according to another embodiment of the present invention
  • FIGS. 17 to 21 are diagrams illustrating steps for manufacturing a microneedle by the method for manufacturing a microneedle patch of FIG. 16
  • the method of manufacturing a microneedle patch includes filling a mold having a plurality of needle grooves with a buffer solution (S100), disposing a base material on the needle grooves (S200), and the base material. diffusing into the buffer solution (S300), and drying the mold (S400).
  • the buffer solution (BS) is defined as a solution capable of dissolving the base material (BM).
  • the buffer solution (BS) is a material capable of dissolving the base material (BM) forming the microneedle.
  • the buffer solution BS has solubility in the base material BM and depends on the type of the base material BM.
  • the buffer solution (BS) may be set as a solution capable of dissolving the base material of A.
  • the buffer solution (BS) may be set to b solution capable of dissolving the base material of B.
  • the buffer solution BS may be set to water, particularly purified water.
  • the buffer solution (BS) may not dissolve the active ingredient (EM).
  • the active ingredient (EM) is disposed inside the base material (BM), and the base material (BM) is dissolved in the buffer solution (BS), but the active ingredient (EM) is not dissolved in the buffer solution (BS).
  • the active ingredient EM may be injected into the needle groove NG together with the base material BM and disposed inside the microneedle.
  • the buffer solution (BS) may dissolve the active ingredient (EM).
  • the active ingredient (EM) is disposed inside the base material (BM), and both the base material (BM) and the active ingredient (EM) are dissolved in the buffer solution (BS).
  • the buffer solution (BS) is water and the active ingredient (EM) is water-soluble, the active ingredient (EM) may be dissolved in the buffer solution (BS).
  • step S100 of filling a mold having a plurality of needle grooves with a buffer solution the mold M is filled with the buffer solution BS, and the needle groove NG is filled with the buffer solution BS (see FIG. 17 ).
  • the buffer solution BS may be filled in the mold M.
  • the mold M may have a base groove BG and a needle groove NG.
  • the base 110 may be formed in the base groove BG, and the microneedle 320 may be formed in the needle groove NG.
  • the buffer solution BS may fill the entire needle groove NG.
  • the buffer solution BS may be filled only in the plurality of needle grooves NG.
  • the buffer solution BS is injected only into the needle groove NG.
  • the buffer solution BS may fill both the needle groove NG and the base groove BG.
  • the buffer solution BS is filled in both the needle groove NG and the base groove BG, and the base material BM It can fill the entire mold (M).
  • the buffer solution BS may fill only a portion of the needle groove NG.
  • the buffer solution BS is injected into only a portion of the needle groove NG, and then the buffer solution BS is filled again to sequentially form the microneedle 320. can be manufactured This will be described in detail below.
  • the base material BM is disposed in the mold M (see FIG. 18).
  • the base material BM By disposing the base material BM on the needle groove NG, the base material BM is set to be easily dissolved in the buffer solution BS stored in the needle groove NG.
  • the base material BM may be injected into the base groove BG by the nozzle 21A of the second injection module 20A.
  • the base material BM Since the base material BM has a predetermined viscosity, it is difficult to directly inject it into the needle groove NG. However, since fluidity is increased when the base material BM is dissolved in the buffer solution BS, the base material BM may fill the needle groove NG.
  • the base material BM is injected into the base groove BG of the mold M.
  • the base material BM may completely fill the base groove BG or may be convex beyond the capacity of the base groove BG so that the base material BM sufficiently fills the needle groove NG.
  • the base material BM may be dissolved in the buffer solution BS.
  • the base material BM is dissolved in the buffer solution BS and injected into each needle groove NG.
  • the base material BM is initially diffused from the top of the needle groove NG, and the base material BM is gradually diffused to the tip of the needle groove NG.
  • the base material BM is filled in the mold M as a whole.
  • the concentration of the base material BM decreases and the viscosity decreases.
  • the base material BM completely fills the needle groove NG while being dissolved in the buffer solution BS. Since the base material BM completely fills the needle groove NG, the microneedle 120 may be manufactured in the shape of the needle groove NG.
  • the base material BM is hyaluronic acid
  • water particularly purified water
  • BS buffer solution
  • hyaluronic acid dissolves in water
  • hyaluronic acid fills the needle groove NG.
  • hyaluronic acid is a viscous material, there is a limit to filling the needle groove NG with hyaluronic acid alone.
  • hyaluronic acid dissolved in water has low viscosity and high fluidity, it can fill the needle groove NG.
  • the active ingredient EM may be disposed inside the base material BM.
  • the base material (BM) and the active ingredient (EM) exist in a mixed form, and while the base material (BM) is dissolved in the buffer solution (BS), the active ingredient (EM) can be injected into the needle groove (NG) together. have.
  • the active ingredient (EM) is not dissolved in the buffer solution (BS). Therefore, the active ingredient EM mixed in the base material BM when injected into the mold M and the active ingredient EM inside the microneedle 320 finally manufactured are the same. Since the active ingredient (EM) does not react with the buffer solution (BS), the effectiveness of the active ingredient (EM) does not change during the manufacturing process.
  • the buffer solution (BS) may dissolve the active ingredient (EM).
  • the active ingredient (EM) is disposed inside the base material (BM), and both the base material (BM) and the active ingredient (EM) are dissolved in the buffer solution (BS).
  • the buffer solution (BS) is water and the active ingredient (EM) is water-soluble, the active ingredient (EM) may be dissolved in the buffer solution (BS). Even if the active ingredient (EM) is dissolved in the buffer solution (BS), the effect of the active ingredient (EM) does not change.
  • diffusion of the base material BM may be controlled by adjusting the environment.
  • the diffusion speed of the base material BM may be increased by adjusting the temperature or humidity inside the chamber where the mold M is located.
  • the diffusion rate of the base material BM may be increased by injecting an additive (not shown) increasing the diffusion rate into the buffer solution BS.
  • the mold M may be mounted on a stirrer (not shown), and the diffusion rate of the base material BM may be increased by vibration generated by driving the stirrer.
  • the microneedle 320 may be manufactured by drying the buffer solution (BS) (see FIG. 21).
  • the mold M is mounted on the drying module 30A, and the drying module 30A is driven to dry the mold M.
  • the buffer solution BS stored in the base mold M may be removed by the drying module 30A.
  • the concentration of the base material BM increases. Then, since the buffer solution BS is completely removed and the moisture included in the base material BM is also removed, the microneedle 320 made of the base material BM is created.
  • the base material BM is changed into a solid, and the microneedles 320 have a predetermined rigidity.
  • the microneedle 320 molded in solid has an active ingredient (EM) therein.
  • the active ingredient (EM) remains included in the base material (BM).
  • a base material (BM) suitable for forming microneedles has a predetermined viscosity. Since the needle groove NG of the mold M is manufactured very finely, it is difficult to completely fill the needle groove NG with the viscous base material BM.
  • the tip of the microneedle is formed bluntly. Since the microneedle 320 is to be inserted through the skin of a subject, the end of the microneedle 320 must be manufactured in the shape of a sharpened tip. However, the viscous base material BM does not completely fill the needle groove NG, and the microneedle 320 is formed bluntly by the empty space, making it difficult for the microneedle 320 to attach to the object, decrease the drug delivery effect.
  • gas such as air may be stored in the viscous base material BM in the form of bubbles during the manufacturing process of the microneedle patch 300 . Even if the base material BM is squeezed and injected into the needle groove NG, internal bubbles may still exist in the needle groove NG. The gas remaining in the internal bubble of the base material BM may seriously degrade the quality of the microneedle 320 . Since the microneedle 320 is a part to be implanted into the skin of a subject, it should not contain foreign substances including gas. If the gas in the bubble is injected into the object, it may threaten the safety of the object.
  • a microneedle patch having an elaborate shape and improved quality can be manufactured by completely filling a mold with a base material. Since the base material is completely filled in the needle groove by the buffer solution, the microneedle has a sharpened tip shape, so it can be easily attached to the skin of a subject. In addition, since foreign matter such as air is not injected into the needle groove during the manufacturing process, a high-quality microneedle patch can be manufactured.
  • 1.4MDa 10% HA which is a polymer
  • the polymer 1.4MDa 10% HA has relatively high viscosity, it is difficult to completely inject into the mold.
  • the manufacturing method of the microneedle patch according to the present invention when purified water as a buffer solution is injected into the mold and 1.4MDa 10% HA as a polymer is dissolved in the buffer solution, the base material is completely injected into the needle groove. Then, when the purified water is dried, microneedles having the same shape as the needle groove are manufactured.
  • the method for manufacturing a microneedle patch according to the present invention can manufacture a microneedle patch having a complex and detailed needle shape.
  • the base material is diffused into the buffer solution during the manufacturing process of the microneedle patch, the viscosity of the base material is lowered and the fluidity is increased. Even if the shape of the needle groove is complex and very sophisticated, the base material can completely fill the needle groove by fluidity.
  • the microneedle patch 300 may include a base 310 and single-layer microneedles 320 using the above-described microneedle patch manufacturing apparatus 2 or the microneedle patch manufacturing method.
  • the microneedle 320 may contain an active ingredient (EM) therein.
  • the microneedle patch 300 may be applied with the base material BM and the effective part EM of the microneedle patch 100 described above.
  • the microneedle 320 is formed by dissolving the base material BM in the buffer solution and then drying the buffer solution BS. At this time, the buffer solution BS may be completely removed.
  • the buffer solution may include water, and the base material BM may include hyaluronic acid.
  • the active ingredient (EM) is disposed inside the base material (BM), and the active ingredient (EM) may not be dissolved in the buffer solution.
  • 23 to 25 are diagrams illustrating other embodiments of the microneedle patch of FIG. 22 .
  • the microneedle patch 400 may be manufactured by the above-described microneedle patch manufacturing apparatus 2 or the microneedle patch manufacturing method.
  • the microneedle patch 420 may have a base 410 and microneedles 420 having a multilayer structure.
  • the microneedle patch 400 having a multilayer structure can be manufactured.
  • the first buffer solution is injected into the needle groove NG.
  • the first buffer solution does not completely fill the needle groove NG.
  • the first buffer solution is filled to have a larger volume than the volume of the first layer 421 .
  • the first buffer solution may be filled to a height h1' greater than h1 in FIG. 23 .
  • the first base material BM1 is disposed in the mold M, and the first base material BM1 is diffused into the first buffer solution. Since the first base material BM1 is dissolved in the first buffer solution, the tip of the needle groove NG is filled with the first base material BM1.
  • the mold M filled with the first buffer solution and the first base material BM1 is dried to remove the first buffer solution.
  • the first layer 421 is formed of the first base material BM1 at the tip of the needle groove NG.
  • the height of the first layer 421 is h1.
  • the second buffer solution is injected into the needle groove NG.
  • the second buffer solution is filled on top of the first layer 421 in the needle groove NG.
  • the second base material BM2 is disposed in the mold M, and the second base material BM2 is diffused into the second buffer solution. Since the second base material BM2 is dissolved in the second buffer solution, the second base material BM2 is filled on the first layer 421 .
  • the mold M filled with the second buffer solution and the second base material BM2 is dried to remove the second buffer solution. Accordingly, since the second layer 422 is formed of the second base material BM2 on the first layer 421, the microneedle 420 has a multilayer structure.
  • At least one of the first layer 421 and the second layer 422 may have an active ingredient.
  • the first active ingredient EM1 may be disposed on the first layer 421 and the second active ingredient EM2 may be disposed on the second layer 422 .
  • EM1 first active ingredient
  • EM2 second active ingredient
  • a plurality of types of active ingredients may be mixed in each layer.
  • the first layer 421 may have greater strength than the second layer 422 .
  • the first layer 421 is additionally subjected to a drying process during the manufacturing process of the second layer 422 .
  • Strength of the first layer 421 may be enhanced by an additional drying process. When the strength of the first layer 421 is enhanced, the microneedle patch 400 can be easily attached to the skin of a subject.
  • the second buffer solution may dissolve only the second base material BM2 and not dissolve the first base material BM1.
  • the first layer 421 made of the first base material BM1 may not be melted by the second buffer solution. have.
  • the target positions of the first layer 421 and the second layer 422 can be clearly distinguished.
  • the microneedles 420 disposed on one surface of the base 410 have a multi-layered structure, so that the active ingredient (EM) can be accurately delivered to the target point. Since the microneedle 420 has a multi-layered structure, active ingredients can be loaded into each layer. For example, the first active ingredient EM1 may be loaded on the first layer 421 and the second active ingredient EM2 may be loaded on the second layer 422 . Thus, the microneedle patch 400 can adjust the active depth of each active ingredient according to the height of the layer. That is, the microneedle patch 400 can deliver active ingredients to any one of epidermis, dermis, subcutaneous fat, and muscle.
  • the microneedle patch 400 has a multi-layered structure, and the biodegradation rate of each layer can be set differently.
  • the microneedle 420 sets the decomposition rate of the first layer 421 and the second layer 422 differently, so that the first active ingredient EM1 and the second active ingredient EM2 can have different active times. have.
  • the microneedle patch 400 has a multi-layer structure, and the strength of each layer can be set differently. By setting the strength of the first layer 421 higher than that of the second layer 422, the microneedle 420 can be easily injected into the skin.
  • the microneedle patch 400A may have a base 410 and microneedles 420A.
  • a first layer 421A, a second layer 422A, and a transition layer 423A between the first layer 421 and the second layer 422 may be formed.
  • the transition layer 423A may have a mixed form of the first base material BM1 and the second base material BM2.
  • the second buffer solution may dissolve both the second base material BM2 and the first base material BM1.
  • the second buffer solution is injected into the needle groove NG after the first layer 421A made of the first base material BM1 is formed, a portion of the upper surface of the first layer 421A may be dissolved.
  • a transition layer 423A may be formed in a boundary region between the first layer 421A and the second layer 422A.
  • the first base material BM1 dissolved in the first layer 421A and the additionally injected second base material BM2 may have a mixed form.
  • the transition layer 423A may increase the bonding force between the first layer 421A and the second layer 422A, thereby increasing the strength of the microneedle 420A. Due to the transition layer 423A, the characteristics of the first layer 421A and the second layer 422A do not change rapidly, and the bonding force between the first layer 421A and the second layer 422A can be increased.
  • the microneedle patch 400B may be manufactured by the above-described microneedle patch manufacturing apparatus 2 or the microneedle patch manufacturing method.
  • the microneedle patch 420B may have a base 410B and microneedles 420B having a multilayer structure.
  • the microneedle 420B may include a first layer 421B and a second layer 422B having a layered structure.
  • the first base material BM1 is injected into the mold M filled with the first buffer solution.
  • the first layer 421B made of the first base material BM1 may have a curved surface.
  • the mold M is filled with the second buffer solution, and the second base material BM2 is diffused into the second buffer solution.
  • a second layer 422B may be formed on the first layer 421B.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mechanical Engineering (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Anesthesiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

본 발명은 마이크로니들 패치, 마이크로니들 패치의 제조 방법과 마이크로니들 패치의 제조 장치이며, 복수개의 니들 홈을 가지는 몰드에 베이스 물질을 채우는 단계와, 상기 몰드에 대기압보다 낮은 압력을 형성하는 단계와, 상기 몰드를 회전축에 대하여 회전시키는 단계, 및 상기 니들 홈에 채워진 상기 베이스 물질을 건조하는 단계를 포함한다.

Description

마이크로니들 패치, 마이크로니들 패치의 제조 방법 및 마이크로니들 패치의 제조 장치
본 발명은 마이크로니들 패치, 마이크로니들 패치의 제조 방법과 마이크로니들 패치의 제조 장치에 관한 것이다.
인체 내 약물 주입은 전통적으로는 바늘 주사로 이루어졌으나, 바늘 주사는 큰 통증을 유발한다. 따라서 비 침습형 약물 주입 방법도 개발되었으나, 주입량에 비해 소요 약물의 양이 너무 많은 문제가 있다.
이러한 문제로 인해 약물전달시스템(Drug Delivery System: DDS)에 대해 많은 연구가 이루어져 왔고 이는 나노기술의 발달로 더 큰 진보를 이룰 수 있게 되었다.
마이크로 니들은 기존의 주사 바늘과 달리 무통증의 피부 관통 및 무외상을 특징으로 할 수 있다. 또한, 마이크로 니들은 피부의 각질층을 관통하여야 함으로 어느 정도의 물리적 경도가 요구될 수 있다. 또한, 생리 활성 물질이 피부의 표피층 또는 진피층까지 도달하기 위하여 적정한 길이도 요구될 수 있다. 또한, 수백 개의 마이크로 니들의 생리 활성 물질이 효과적으로 피부 내로 전달되기 위해서는, 마이크로 니들의 피부 투과율이 높으면서도 피부에 삽입된 후에 용해 시까지 일정 시간 동안 유지되어야 한다.
이에 따라, 정밀한 양으로 약물을 전달하고, 타겟 위치를 정확하게 설정할 수 있는 마이크로니들에 관한 관심이 증대되고 있다.
본 발명은 유효 성분을 정량으로, 목표 위치에 효과적으로 전달할 수 있는 마이크로니들 패치를 제조할 수 있는 마이크로니들 패치, 마이크로니들 패치의 제조 방법과 제조 장치를 제공할 수 있다.
본 발명의 일 측면은, 복수개의 니들 홈을 가지는 몰드에 베이스 물질을 채우는 단계와, 상기 몰드에 대기압보다 낮은 압력을 형성하는 단계와, 상기 몰드를 회전축에 대하여 회전시키는 단계, 및 상기 니들 홈에 채워진 상기 베이스 물질을 건조하는 단계를 포함하는 마이크로니들 패치의 제조 방법을 제공한다.
본 발명의 일 측면은, 복수개의 니들 홈을 가지는 몰드에 버퍼 용액을 채우는 단계와, 상기 니들 홈의 위에 베이스 물질을 배치하는 단계와, 상기 베이스 물질을 상기 버퍼 용액으로 확산시키는 단계, 및 상기 몰드를 건조하는 단계를 포함하는 마이크로니들 패치의 제조 방법을 제공한다.
본 발명에 관한 마이크로니들 패치의 제조 장치 및 마이크로니들 패치의 제조 방법은 품질이 높은 마이크로니들 패치를 제조할 수 있다. 본 발명은 몰드에 대기압 보다 낮은 압력을 형성하여 마이크로니들 패치의 내부에 잔류하는 기체를 제거하여 마이크로니들에 이물질이 포함되지 않으며, 몰드와 베이스 물질 사이의 기체를 제거하여 대상체에 부착이 쉽고 약물 전달이 효과적인 마이크로니들 패치를 제조할 수 있다.
본 발명에 관한 마이크로니들 패치의 제조 장치 및 마이크로니들 패치의 제조 방법은 품질이 높은 마이크로니들 패치를 제조할 수 있다. 몰드에 진공을 형성하여 마이크로니들 패치의 내부에 잔류하는 기체를 제거하여 마이크로니들에 이물질이 포함되지 않으며, 몰드와 베이스 물질 사이의 기체를 제거하여 대상체에 부착이 쉽고 약물 전달이 효과적인 마이크로니들 패치를 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 마이크로니들 패치의 제조 장치를 도시하는 도면이다.
도 2는 도 1에 의해서 제조되는 마이크로니들 패치를 도시하는 사시도이다.
도 3은 도 1의 주입 모듈에서 베이스 물질이 주입되는 것을 도시하는 도면이다.
도 4는 도 1의 압력 모듈의 구동을 도시하는 도면이다.
도 5는 도 4의 A 부분을 확대하여 도시하는 도면이다.
도 6은 회전 모듈의 구동을 도시하는 도면이다.
도 7은 도 6의 B 부분에서 베이스 물질이 몰드에 채워지는 것을 도시하는 도면이다.
도 8은 본 발명의 다른 실시예에 따른 마이크로니들 패치의 제조 방법을 도시하는 순서도이다.
도 9는 본 발명의 다른 실시예에 따른 마이크로니들 패치의 제조 방법을 도시하는 순서도이다.
도 10 내지 도 12은 본 발명의 마이크로니들 패치의 제조 방법으로 제조된 마이크로니들 패치를 도시하는 도면이다.
도 13 및 도 14는 본 발명의 마이크로니들 패치의 제조 방법으로 제조된 마이크로니들 패치와 비교예를 도시하는 도면이다.
도 15는 본 발명의 다른 실시예에 따른 마이크로니들 패치의 제조 장치를 도시하는 도면이다.
도 16는 본 발명의 다른 실시예에 따른 마이크로니들 패치 제조 방법을 도시하는 순서도이다.
도 17 내지 도 21은 도 16의 마이크로니들 패치 제조 방법으로 마이크로니들을 제조 단계를 도시하는 도면이다.
도 22는 도 16의 마이크로니들 패치 제조 방법으로 제조된 마이크로니들 패치를 도시하는 도면이다.
도 23 내지 도 25는 도 22의 마이크로니들 패치의 다른 실시예를 도시하는 도면이다.
본 발명의 일 측면은, 복수개의 니들 홈을 가지는 몰드에 베이스 물질을 채우는 단계와, 상기 몰드에 대기압보다 낮은 압력을 형성하는 단계와, 상기 몰드를 회전축에 대하여 회전시키는 단계, 및 상기 니들 홈에 채워진 상기 베이스 물질을 건조하는 단계를 포함하는 마이크로니들 패치의 제조 방법을 제공한다.
또한, 상기 몰드에 대기압 보다 낮은 압력을 형성하는 단계는 상기 니들 홈에 채워진 상기 베이스 물질의 내부 버블을 제거하거나, 상기 베이스 물질과 상기 니들 홈 사이의 기체가 제거될 수 있다.
또한, 상기 몰드를 회전축에 대하여 회전시키는 단계는 원심력에 의해서 상기 베이스 물질을 상기 니들 홈의 축 방향으로 밀착시킬 수 있다.
또한, 상기 몰드에 대기압 보다 낮은 압력을 형성하는 단계 이전에, 상기 베이스 물질이 채워진 상기 몰드를 상기 회전축에 대하여 미리 회전시키는 단계를 더 포함할 수 있다.
또한, 상기 회전축은 상기 니들 홈의 축 방향과 수직될 수 있다.
본 발명의 다른 측면은, 베이스 물질이 주입되는 복수개의 니들 홈을 가지는 몰드와, 상기 몰드에 대기압 보다 낮은 압력을 형성하는 압력 모듈과, 회전축을 중심으로 상기 몰드를 회전시키는 회전 모듈, 및 상기 니들 홈에 채워진 상기 베이스 물질을 건조시키는 건조 모듈을 포함하는 마이크로니들 패치의 제조 장치를 제공한다.
또한, 상기 베이스 물질은 상기 압력 모듈에서 상기 베이스 물질의 내부 버블이 제거되거나, 상기 베이스 물질과 상기 니들 홈 사이의 기체가 제거된 이후에, 상기 회전 모듈의 구동으로 생성된 원심력으로, 상기 베이스 물질이 니들 홈의 축 방향으로 밀착될 수 있다.
본 발명의 일 측면은, 복수개의 니들 홈을 가지는 몰드에 버퍼 용액을 채우는 단계와, 상기 니들 홈의 위에 베이스 물질을 배치하는 단계와, 상기 베이스 물질을 상기 버퍼 용액으로 확산시키는 단계, 및 상기 몰드를 건조하는 단계를 포함하는 마이크로니들 패치의 제조 방법을 제공한다.
또한, 상기 베이스 물질을 상기 버퍼 용액으로 확산시키는 단계는 상기 베이스 물질이 상기 니들 홈으로 주입될 수 있다.
또한, 상기 버퍼 용액은 상기 베이스 물질을 용해시킬 수 있다.
또한, 상기 버퍼 용액은 물을 포함하고, 상기 베이스 물질은 히알루론산(hyaluronic acid)를 포함할 수 있다.
또한, 상기 베이스 물질의 내부에는 유효 성분이 배치될 수 있다.
또한, 상기 몰드를 건조하는 단계는 상기 버퍼 용액이 제거되어, 상기 베이스 물질이 상기 니들 홈에서 굳을 수 있다.
본 발명의 다른 측면은, 베이스, 및 상기 베이스에 장착되는 복수개의 마이크로니들을 포함하고, 상기 마이크로니들은 버퍼 용액에 베이스 물질이 용해된 이후에 상기 버퍼 용액이 건조되는 마이크로니들 패치를 제공한다.
또한, 상기 버퍼 용액은 물을 포함하고, 상기 베이스 물질은 히알루론산(hyaluronic acid)를 포함할 수 있다.
또한, 상기 베이스 물질의 내부에는 유효 성분이 배치될 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
이하 첨부된 도면들에 도시된 본 발명에 관한 실시예를 참조하여 본 발명의 구성 및 작용을 상세히 설명한다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
도 1은 본 발명의 일 실시예에 따른 마이크로니들 패치의 제조 장치를 도시하는 도면이다.
도 1을 참조하면, 마이크로니들 패치의 제조 장치(1)는 주입 모듈(10), 압력 모듈(20), 회전 모듈(30) 및 건조 모듈(40)을 구비할 수 있다.
도면에서는 마이크로니들 패치의 제조 장치(1)가 주입 모듈(10), 압력 모듈(20), 회전 모듈(30) 및 건조 모듈(40)이 각각 하나씩 순차적으로 배치되는 것을 도시하나, 이에 한정되지는 않으며 마이크로니들 패치의 제조 공정에 따라 다양하게 변형될 수 있다.
일 예로, 마이크로니들 패치의 제조 장치(1)는 주입 모듈(10), 압력 모듈(20), 회전 모듈(30) 및 건조 모듈(40) 중 적어도 하나는 복수 개로 구비될 수 있다. 다른 예로, 마이크로니들 패치의 제조 장치(1)는 압력 모듈(20)에 앞서 회전 모듈(30)이 배치될 수 있다.
마이크로니들 패치의 제조 장치(1)에서 제조된 마이크로니들 패치(100)는 베이스(110)에 복수개의 마이크로니들(120)이 배치될 수 있다. 마이크로니들 패치(100)는 대상체에 부착되어, 약물을 전달하거나 미용 물질을 전달할 수 있다.
도 2는 도 1에 의해서 제조되는 마이크로니들 패치를 도시하는 사시도이다.
도 2를 참조하면, 마이크로니들 패치(100)는 베이스(110)와 마이크로니들(120)을 포함할 수 있다.
베이스(110)는 마이크로니들(120)이 지지되며, 일면에 복수개의 마이크로니들(120)이 구비될 수 있다. 베이스(110)의 일면은 피부에 접촉하고, 반대의 타면은 외부에 노출될 수 있다.
베이스(110)는 마이크로니들(120)이 피부에 이식되면, 제거될 수 있다. 일 예로, 베이스는 사용자가 힘을 가하여, 피부에서 제거될 수 있다. 다른 예로, 마이크로니들 패치(100)는 베이스(110)와 마이크로니들(120)이 연결되는 부분이 먼저 용해되어, 부착 후 일정시간이 경과한 이후에 베이스(110)를 제거할 수 있다. 또 다른 예로, 마이크로니들 패치(100)는 장시간 부착 시에 베이스(110)가 용해될 수 있다. 또 다른 예로, 베이스(110)는 사용자가 용해를 위한 물질을 도포하여 제거될 수 있다.
일 실시예로, 베이스(110)는 마이크로니들(120)에 포함된 물질 중 어느 하나를 포함할 수 있다. 베이스(110)는 마이크로니들(120)과 같이 생분해성 물질을 포함할 수 있다.
선택적인 실시예로, 베이스(110)는 생리 활성 물질을 포함할 수 있다. 마이크로니들 패치(100)를 피부에 부착한 이후에, 베이스(110)에서 나오는 생리 활성 물질에 의해서 유효 약물이 효과적으로 환자에게 전달될 수 있다. 또한, 베이스(110)에서 나오는 생리 활성 물질에 의해서, 베이스(110)와 마이크로니들(120)이 쉽게 분리될 수 있다.
일 실시예로, 베이스(110)는 마이크로니들(120)에서 가장 인접한 레이어, 즉 마이크로니들(120)의 팁에서 가장 이격되게 배치되는 레이어보다 늦은 용해성을 가질 수 있다. 마이크로니들(120)에서 베이스(110)와 인접한 부분은 가장 빨리 용해되므로, 베이스(110)가 마이크로니들(120)에서 쉽게 분리될 수 있다.
일 실시예로, 베이스(110)는 수용성 고분자를 포함할 수 있다. 베이스(110)는 수용성 고분자로 구성되어 있어도 되고, 그 이외의 첨가물(예를 들면, 이당류 등)을 포함하고 있어도 된다. 또한, 베이스(110)는 약물 또는 유효 성분을 포함하지 않는 것이 바람직하다.
베이스(110)는 생체 적합성 물질을 포함할 수 있다. 베이스(110)는 후술하는 마이크로니들(120)의 베이스 물질로 선택되는 생체 적합성 물질을 기본 물질로 선택할 수 있다.
마이크로니들(120)은 베이스(110)의 표면에서 돌출되며, 복수 개로 구비될 수 있다. 마이크로니들(120)은 베이스 물질(BM)로 형성되며, 베이스 물질(BM)은 생체 적합성 물질과 첨가제를 포함할 수 있다.
생체 적합성 물질은 카르복시메틸셀룰로오스(Carboxymethyl cellulose: CMC), 히아루로닉 산 Hyaluronic acid: HA), 알지닉 산(alginic acid), 펙틴(Pectin), 카라기난(Carrageenan), 콘드로이틴 설페이트(Chondroitin Sulfate), 덱스트란 설페이트(dextran Sulfate), 키토산(Chitosan), 폴리라이신(polylysine), 카르복시메틸 키틴(carboxymethyl chitin), 피브린(fibrin), 아가로스(Agarose), 풀루란(pullulan), 폴리안하이드라이드(polyanhydride), 폴리오르쏘에스테르(polyorthoester), 폴리에테르에스테르(polyetherester), 폴리에스테르아마이드(polyesteramide), 폴리 뷰티릭 산(Poly butyric acid), 폴리 발레릭 산(Poly valeric acid), 폴리아크릴레이트(polyacrylate), 에틸렌-비닐아세테이트(ethylene-vinyl acetate) 중합체, 아크릴 치환 셀룰로오스 아세테이트, 폴리비닐 클로라이드(polyvinyl chloride), 폴리비닐 플루오라이드(polyvinyl Fluoride), 폴리비닐 이미다졸(polyvinyl), 클로로설포네이트 폴리올레핀(chlorosulphonate polyolefins), 폴리에틸렌 옥사이드(polyethylene oxide), 폴리비닐피롤리돈(PVP), 하이드록시프로필메틸셀룰로오스(HPMC), 에틸셀룰로오스(EC), 하이드록시프로필셀룰로오스(HPC), 카복시메틸셀룰로스(carboxymethyl cellulose), 싸이클로덱스트린(Cyclodextrin), 말토스(Maltose), 락토스(Lactose), 트레할로스(Trehalose), 셀로비오스(Cellobiose), 이소말토스(Isomaltose) 투라노스(Turanose) 및 락툴로스(Lactulose) 중 적어도 어느 하나를 포함하거나, 이러한 고분자를 형성하는 단량체들의 공중합체 및 셀룰로오스로 구성된 군으로부터 선택된 1 이상의 고분자이다.
첨가제는 트레알로스(trehalose), 올리고사카라이드(oligosaccharide), 수크로스(sucrose), 말토스(maltose), 락토스(lactose), 셀로비오스(cellobiose), 히아루로닉 산(hyaluronic acid), 알지닉 산(alginic acid), 펙틴(Pectin), 카라기난(Carrageenan), 콘드로이틴 설페이트(Chondroitin Sulfate), 덱스트란 설페이트(dextran Sulfate), 키토산(Chitosan), 폴리라이신(polylysine), 콜라겐, 젤라틴, 카르복시메틸 키틴(carboxymethyl chitin), 피브린(fibrin), 아가로스(Agarose), 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG), 폴리메타크릴레이트, 하이드록시프로필메틸셀룰로오스(HPMC), 에틸셀룰로오스(EC), 하이드록시프로필셀룰로오스(HPC), 카복시메틸셀룰로스(carboxymethyl cellulose), 싸이클로덱스트린(Cyclodextrin), 젠티비오스(gentiobiose), 세트리마이드(alkyltrimethylammonium bromide (Cetrimide)), 세트리모늄브로마이드(hexadecyltrimethylammoniumbromide (CTAB)), 겐티안 바이올렛(Gentian Violet), 염화 벤제토늄(benzethonium chloride), 도큐세이트소듐솔트(docusate sodium salt), 스팬형 계면활성제(a SPAN-type surfactant), 폴리솔베이트(polysorbate(Tween)), 로릴황산나트륨(sodium dodecyl sulfate (SDS)), 염화 벤잘코늄(benzalkonium chloride) 및 글리세릴 올리에이트(glyceryl oleate) 중 적어도 하나를 포함할 수 있다.
히알루론산은 히알루론산 뿐만 아니라 히알루론산 염(예컨대, 히알루론산 나트륨, 히알루론산 칼륨, 히알루론산 마그네슘 및 히알루론산 칼슘) 및 이들의 혼합물을 모두 포함하는 의미로 사용된다. 히알루론산은 가교 히알루론산 및/또는 비가교 히알루론산을 포함하는 의미로 사용된다.
본 발명의 일 구현예에 따르면, 본 발명의 히알루론산은 분자량이 2 kDa 내지 5000 kDa이다.
본 발명의 다른 구현예에 따르면, 본 발명의 히알루론산은 분자량이 100-4500, 150-3500, 200-2500 kDa, 220-1500 kDa, 240-1000 kDa 또는 240-490 kDa 이다.
카르복시메틸셀룰로오스(Carboxymethyl cellulose: CMC)는 공지된 다양한 분자량의 CMC를 사용할 수 있다. 예컨대 본 발명에서 사용되는 CMC의 평균 분자량은 90,000 kDa, 250,000 kDa 또는 700,000kDa 이다.
이당류는 수크로스, 락툴로스, 락토스, 말토스, 트레할로스 또는 셀로비오스 등을 들 수 있고, 특히 수크로스, 말토스, 트레할로스를 포함할 수 있다.
선택적 실시예로, 점착제를 포함할 수 있다. 점착제는 실리콘, 폴리우레탄, 히알루론산, 물리적 접착제(게코), 폴리 아크릴, 에틸 셀룰로오스, 하이드록시 메틸 셀룰로오스, 에틸렌 비닐 아세테이트 및 폴리 이소 부틸렌으로 구성된 군으로부터 선택된 1 이상의 점착제이다
선택적인 실시예로, 마이크로니들(120)은 금속, 고분자 폴리머 또는 점착제를 추가적으로 포함할 수 있다.
마이크로니들(120)은 유효 성분(EM)을 포함할 수 있다. 마이크로니들(120)은 적어도 어느 일부에 약학적, 의학적 또는 화장학적 유효 성분(EM)을 포함할 수 있다. 예를 들면, 비제한적 예로서 유효성분은 단백질/펩타이드 의약을 포함하나 꼭 이에 한정되지 않으며, 호르몬, 호르몬 유사체, 효소, 효소저해제, 신호전달단백질 또는 그 일부분, 항체 또는 그 일부분, 단쇄항체, 결합단백질 또는 그 결합 도메인, 항원, 부착단백질, 구조단백질, 조절단백질, 독소단백질, 사이토카인, 전사조절 인자, 혈액 응고 인자 및 백신 중 적어도 어느 하나를 포함한다. 보다 상세하게는, 상기 단백질/펩타이드 의약은 인슐린, IGF- 1(insulinlikegrowth factor 1), 성장호르몬, 에리쓰로포이에틴, G-CSFs(granulocyte-colony stimulating factors), GM-CSFs(granulocyte/macrophage-colony stimulating factors), 인터페론 알파, 인터페론 베타, 인 터페론 감마, 인터루킨-1 알파 및 베타, 인터루킨-3, 인터루킨-4, 인터루킨-6, 인터루킨-2, EGFs(epidermal growth factors), 칼시토닌(calcitonin), ACTH(adrenocorticotropic hormone), TNF(tumor necrosis factor), 아토비스반(atobisban), 부세레린(buserelin), 세트로렉릭스(cetrorelix), 데스로레린(deslorelin), 데스모프레신(desmopressin), 디노르핀 A(dynorphin A)(1-13), 엘카토닌(elcatonin), 엘레이도신(eleidosin), 엡티피바타이드(eptifibatide), GHRHII(growth hormone releasing hormone-II), 고나도레린(gonadorelin), 고세레린(goserelin), 히스트레린(histrelin), 류프로레린(leuprorelin), 라이프레신(lypressin), 옥트레오타이드(octreotide), 옥시토신(oxytocin), 피트레신(pitressin), 세크레틴(secretin), 신칼라이드(sincalide), 테르리프레신(terlipressin), 티모펜틴(thymopentin), 티모신(thymosine), 트리프토레 린(triptorelin), 바이발리루딘(bivalirudin), 카르베토신(carbetocin), 사이클로스포린, 엑세딘(exedine), 란 레오타이드(lanreotide), LHRH(luteinizing hormonereleasing hormone), 나파레린(nafarelin), 부갑상선 호르몬, 프람린타이드(pramlintide), T-20(enfuvirtide), 타이말파신(thymalfasin) 및 지코노타이드 중 어느 하나를 포함할 수 있다. 또한, 유효 성분(EM)은 미백, 필러, 주름제거 또는 항산화제와 같은 미용 성분일 수 있다.
일 실시예에서, 유효 성분(EM)은 미립자의 형태로 마이크로니들(120)을 형성하는 용매 내에 분산된 콜로이드일 수 있다. 상기 미립자는 그 자체로 유효 성분(EM)이거나, 유효 성분(EM)을 담지하고 있는 코팅재를 포함할 수 있다.
유효 성분(EM)은 마이크로니들(120)의 일부층에 집중적으로 분포될 수 있다. 즉, 유효 성분(EM)은 마이크로니들(120)에서 특정 높이에 배치되므로, 효과적으로 유효 성분(EM)이 전달될 수 있다.
다른 실시예에서, 유효 성분(EM)이 마이크로니들(120) 내에 용해될 수 있다. 전술한 생분해성 물질들과 같은 마이크로니들(120)의 베이스 물질 내에 유효 성분(EM)이 용해되어 마이크로니들(120)을 구성할 수 있다. 유효 성분(EM)은 상기 베이스 물질에 고른 농도로 용해될 수 있고, 전술한 미립자와 같이 마이크로니들(120)의 특정 높이에 집중적으로 분포할 수도 있다.
일 실시예에서, 마이크로니들 패치(100)는 구역에 따라 복수개의 유효 성분(EM)을 가질 수 있다. 복수의 마이크로니들 중 제 1 그룹의 마이크로니들은 상기 복수의 유효 성분 중 제 1 유효 성분을 포함하고, 상기 제 1 그룹과 다른 제 2 그룹의 마이크로니들은 상기 복수의 유효 성분들 중 제 2 유효 성분을 포함할 수 있다.
일 실시예에서, 마이크로니들(120) 상에 약학적, 의학적 또는 화장학적 유효 성분(EM)이 코팅될 수 있다. 유효 성분(EM)들은 마이크로니들(120) 전체에 코팅되거나, 마이크로니들(120)의 일부분만 코팅될 수도 있다. 또는, 마이크로니들(120)에서 코팅층의 일부는 제 1 유효 성분이 코팅되고, 다른 일부는 제 2 유효 성분이 코팅될 수도 있다.
마이크로니들(120)은 다양한 형상을 가질 수 있다. 마이크로니들(120)은 콘(cone) 형상을 가질 수 있다, 예를 들어, 마이크로니들(120)은 원뿔 형상, 삼각뿔 형상, 사각뿔 형상 등의 다각 형상을 가질 수 있다.
마이크로니들(120)은 층상 구조를 가질 수 있다. 마이크로니들(120)은 적층된 복수개의 레이어를 가질 수 있다. 마이크로니들(120)을 형성하는 레이어의 개수는 특정 개수에 한정되지 않는다.
도 3은 도 1의 주입 모듈에서 베이스 물질이 주입되는 것을 도시하는 도면이다.
도 3을 참조하면, 주입 모듈(10)에서 몰드(M)에 베이스 물질(BM)이 주입될 수 있다.
몰드(M)는 베이스 홈(BG)과 복수개의 니들 홈(NG)을 가진다. 베이스 홈(BG)은 베이스(110)가 제조되는 영역이고, 니들 홈(NG)은 마이크로니들(120)이 제조되는 영역으로, 니들 홈(NG)에 베이스 물질(BM)이 주입된다.
베이스 물질(BM)은 니들 홈(NG)의 상부에 배치되며, 니들 홈(NG)으로 주입된다. 베이스 물질(BM)은 다양한 방식으로 몰드(M)에 주입될 수 있다.
예를 들어, 베이스 물질(BM)은 액체이며, 노즐(11)에서 분사되어 몰드(M)에 주입될 수 있다.
또한, 베이스 물질(BM)의 액적(Droplet)을 니들 홈(NG)에 낙하시켜서, 니들 홈(NG)에 베이스 물질(BM)을 주입할 수 있다.
또한, 베이스 물질(BM)은 겔(Gel) 형태이며, 스패튤러(spatula)를 이용하여 몰드(M)의 위에 배치될 수 있다. 이후, 베이스 물질(BM)은 스퀴징 디바이스(미도시)으로 압착되면서 니들 홈(NG)에 주입될 수 있다.
몰드(M)에 주입된 베이스 물질(BM)은 내부에 버블이 형성될 수 있다. 베이스 물질(BM)을 제조하는 과정에서 버블이 형성될 수 있으며, 베이스 물질(BM)은 몰드(M)로 주입하는 과정에서 버블이 형성될 수 있다. 또한, 베이스 물질(BM)과 니들 홈(NG)의 사이에는 기체가 저장될 수 있다. 베이스 물질(BM)을 주입하는 과정에서, 기체가 완전하게 제거되지 않고, 니들 홈(NG)과 베이스 물질(BM) 사이의 공간에 잔류될 수 있다.
그러나, 이하에서 설명하는 압력 모듈(20)이나 회전 모듈(30)이 구동하면, 베이스 물질(BM)은 내부에 버블이 제거되고, 베이스 물질(BM)은 니들 홈(NG)에 완전하게 채워질 수 있다.
도 4는 도 1의 압력 모듈의 구동을 도시하는 도면이고, 도 5는 도 4의 A 부분을 확대하여 도시하는 도면이다.
도 4 및 도 5를 참조하면, 압력 모듈(20)이 구동하여, 니들 홈(NG)에 잔류하는 기체를 제거하거나, 베이스 물질(BM)의 내부 버블을 제거할 수 있다.
이하에서, 압력 모듈(20)을 구동하여 몰드(M)를 저압으로 형성하는 것은 니들 홈(NG)의 내부 기체를 제거하거나, 베이스 물질(BM)의 내부 버블을 제거하기 위하여 상대적으로 낮은 압력으로 설정하는 것을 의미한다. 즉, 몰드(M)에 대기압 보다 저압의 분위기를 형성하는 것은 베이스 물질(BM)의 내부에 포함된 기체를 제거하거나, 몰드(M)와 베이스 물질(BM) 사이에 잔류된 기체를 제거할 정도 저압 상태의 분위기를 형성하는 것을 의미한다.
예컨대, 압력 모듈(20)을 구동하여 몰드(M)를 저압으로 형성하는 것은 압력 챔버의 내부를 대기압 보다 낮은 압력으로 형성하는 것을 의미할 수 있다. 또한, 압력 모듈(20)을 구동하여 몰드(M)를 저압으로 형성하는 것은 압력 챔버의 내부를 1기압 이하로 설정하는 것을 의미할 수 있다. 또한, 압력 모듈(20)을 구동하여 몰드(M)를 저압으로 형성하는 것은 압력 챔버의 내부를 1mbar 이하로 설정하여 실질적으로 진공과 유사한 환경을 조성하는 것도 포함한다.
압력 모듈(20)의 지지대(21)에 몰드(M)를 두고, 압력 펌프(22)를 구동하여, 압력 챔버의 내부를 저압으로 형성한다. 이때, 저압은 대기압보다 낮은 압력으로 설정될 수 있다. 몰드(M)의 니들 홈(NG)도 상대적으로 저압이 형성되므로, 베이스 물질(BM)의 내부 버블(BU)에 있는 기체(g)는 제거된다. 또한, 베이스 물질(BM)과 니들 홈(NG) 사이의 공간에 있는 기체(g)도 제거된다.
즉, 압력 모듈(20)은 베이스 물질(BM)의 내부에 있는 기체(g)를 제거하거나, 베이스 물질(BM)과 니들 홈(NG) 사이에 있는 기체(g)를 제거하여, 마이크로니들(120)의 품질을 높일 수 있다.
일 실시예로, 기체(g)가 제거된 이후에는 압력 펌프(22)의 구동을 멈추어, 몰드(M)가 대기압 보다 낮은 압력의 상태를 해제한다. 몰드(M)의 저압 상태가 해제되면, 베이스 물질(BM)의 내부 버블(BU)은 빈 공간으로 유지되고, 니들 홈(NG)의 표면과 베이스 물질(BM) 사이도 빈 공간으로 유지된다.
다른 실시예로, 기체(g)가 제거된 이후에도 압력 펌프(22)의 구동을 유지하여, 몰드(M)가 대기압 보다 낮은 압력 상태를 유지할 수 있다. 이후에, 낮은 압력 상태를 유지한 상태에서 회전 모듈(30)을 구동하여, 베이스 물질(BM)을 빈 공간에 채울 수 있다.
도 6은 회전 모듈의 구동을 도시하는 도면이고, 도 7은 도 6의 B 부분에서 베이스 물질이 몰드에 채워지는 것을 도시하는 도면이다.
도 6 및 도 7을 참조하면, 회전 모듈(30)은 회전 축(RX)을 중심으로 몰드(M)를 회전시켜서, 몰드(M)에 원심력을 제공한다.
회전 축(RX)은 니들 홈(NG)의 길이 방향과 다르다. 니들 홈(NG)의 축 방향으로 원심력(Fc)이 제공되기 위해서, 회전 축(RX)과 니들 홈(NG)의 길이 방향을 서로 다르게 설정된다. 바람직하게, 회전 축(RX)과 니들 홈(NG)의 길이 방향은 서로 수직되게 설정될 수 있다.
니들 홈(NG)의 길이 방향을 따라 원심력(Fc)이 형성되어, 베이스 물질(BM)은 니들 홈(NG)에 완전하게 채워진다.
원심력에 의해서, 베이스 물질(BM)은 니들 홈(NG)의 끝으로 밀려난다. 이때, 이전에 니들 홈(NG)에서 베이스 물질(BM)이 채워지지 않은 영역에도 베이스 물질(BM)이 채워지게 된다. 또한, 베이스 물질(BM)의 내부도 원심력(Fc)에 의해서 베이스 물질(BM)이 밀착되어, 내부 버블(BU)이 제거된다.
몰드(M)의 저압 상태를 해제하더라도, 베이스 물질(BM)이 채워지지 않은 영역과 내부 버블(BU)에는 기체(g)가 제거되어 외부보다 압력이 낮다. 이때, 원심력이 베이스 물질(BM)에 작용하면, 베이스 물질(BM)이 니들 홈(NG)과 내부 버블(BU)에 신속하고 간단하게 채워질 수 있다.
회전 모듈(30)은 몰드(M)에 원심력(Fc)을 제공하여, 베이스 물질(BM)이 니들 홈(NG)에 완전하게 채워 질 수 있다. 이로써, 몰드(M)는 정교한 마이크로니들(120)을 제조할 수 있으며, 마이크로니들(120)의 내부에 기공을 제거할 수 있다.
다른 실시예로, 회전 모듈(30)은 압력 모듈(20)에 앞서 구동 될 수 있다. 즉, 주입 모듈(10)에서 베이스 물질(BM)이 몰드(M)에 주입되고, 회전 모듈(30)이 구동된다. 회전 모듈(30)이 생성하는 원심력(Fc)에 의해서, 베이스 물질(BM)은 니들 홈(NG)의 끝 부분까지 채워질 수 있다.
그 뒤에, 전술한 압력 챔버가 구동되어, 베이스 물질(BM)의 내부 버블 속의 기체나, 베이스 물질(BM)과 니들 홈(NG) 사이의 기체가 제거된다. 이후에, 다시 회전 모듈(30)이 구동되어, 베이스 물질(BM)이 니들 홈(NG)에 완전하게 채워질 수 있다.
다시 도 1을 참조하면, 건조 모듈(40)은 베이스 물질(BM)을 건조시킨다. 건조된 베이스 물질(BM)은 마이크로니들(120)로 완성된다. 건조가 종료되면, 마이크로니들 패치(100)를 몰드(M)에서 분리한다.
도 8은 본 발명의 다른 실시예에 따른 마이크로니들 패치의 제조 방법을 도시하는 순서도이다.
도 8을 참조하면, 마이크로니들 패치의 제조방법은, 복수개의 니들 홈을 가지는 몰드에 베이스 물질을 채우는 단계(S10), 상기 몰드에 대기압 보다 낮은 압력을 형성하는 단계(S20), 상기 몰드를 회전축에 대하여 회전시키는 단계(S30), 상기 니들 홈에 채워진 상기 베이스 물질을 건조하는 단계(S40)를 포함한다.
복수개의 니들 홈을 가지는 몰드에 베이스 물질을 채우는 단계(S10)에서는, 베이스 물질(BM)을 몰드(M)에 주입한다.
선택적인 실시예로, 베이스 물질(BM)을 몰드(M)에 주입하는 단계에서, 몰드(M)가 설치된 챔버를 낮은 압력으로 설정할 수 있다. 즉, 복수개의 니들 홈을 가지는 몰드에 베이스 물질을 채우는 단계(S10)에서도 챔버의 내부 압력을 대기압 보다 낮은 압력 상태로 유지할 수 있다. 이로써, 버블이 베이스 물질(BM)의 내부에 생성되는 것을 최소화 할 수 있다.
베이스 물질(BM)은 제조과정에서, 공기와 같은 기체가 내부에 버블(BU)의 형태로 저장될 수 있다. 베이스 물질(BM)이 니들 홈(NG)에 주입되더라도, 내부 버블(BU)은 여전히 니들 홈(NG)에 존재할 수 있다.
베이스 물질(BM)의 내부 버블(BU)에 잔류되는 기체(g)는 마이크로니들(120)의 품질을 심각하게 저하시킬 수 있다. 마이크로니들(120)은 대상체의 피부에 이식되는 부분이므로, 기체를 포함하는 이물질이 함유되어서는 안된다. 만약, 버블(BU) 속의 기체(g)가 대상체로 주입되면, 대상체의 안전을 위협할 수 있다.
니들 홈(NG)은 아주 작은 부피를 가지는데, 베이스 물질(BM)은 소정의 점성을 가지므로, 베이스 물질(BM)이 완전하게 니들 홈(NG)에 채워지는 것은 어렵다. 베이스 물질(BM)이 니들 홈(NG)에 배치되더라도, 베이스 물질(BM)과 니들 홈(NG)의 표면 사이에 기체(g)가 머무를 수 있다.
니들 홈(NG)과 베이스 물질(BM) 사이의 빈 공간은 마이크로니들 패치(100)의 품질을 심각하게 저하한다. 마이크로니들(120)은 대상체의 피부를 관통하여 삽입되어야 하므로, 마이크로니들(120)의 끝은 첨단팁(sharpened tip)으로 제조되어야 한다. 그러나, 니들 홈(NG)과 베이스 물질(BM) 사이의 빈 공간은 마이크로니들(120)을 뭉툭하게 형성하므로, 마이크로니들(120)이 대상체에 부착되기 어렵고, 약물 전달 효과를 저하시킨다.
마이크로니들 패치(100)의 제조상 발생되는 품질 저하를 방지하기 위해서, 다음과 같은 단계가 수행된다.
상기 몰드에 대기압 보다 낮은 압력을 형성하는 단계(S20)에서는, 니들 홈(NG)에 채워진 베이스 물질(BM)의 내부 버블(BU)을 제거하거나, 베이스 물질(BM)과 니들 홈(NG) 사이의 기체(g)를 제거할 수 있다. 상기 단계(S20)에서는 몰드(M)에 대기압 보다 낮은 압력을 형성하여, 즉 몰드(M)가 장착된 챔버의 내부 압력을 1기압 보다 낮은 압력으로 설정하여, 베이스 물질(BM)의 내부 버블(BU) 속의 기체(g)를 제거하고, 니들 홈(NG)에 머무르는 기체(g)를 제거할 수 있다.
몰드(M)를 대기압 보다 낮은 압력으로 형성하면, 내부 버블(BU) 속의 기체는 몰드(M)의 외부로 배출된다. 또한, 몰드(M)를 대기압 보다 낮은 압력으로 형성하면, 베이스 물질(BM)과 니들 홈(NG)의 표면 사이에 저장된 기체도 몰드(M)의 외부로 배출된다.
상기 몰드를 회전축에 대하여 회전시키는 단계(S30)에서는, 몰드(M)에 원심력을 형성하여, 베이스 물질(BM)이 니들 홈(NG)에 완전하게 채워질 수 있다. 상기 단계(S30)에서는 원심력에 의해서 베이스 물질(BM)을 니들 홈(NG)의 축 방향으로 밀착시킨다.
일 실시예로, 몰드(M)에 원심력을 적용하기 이전에, 몰드(M)의 저압 상태를 해제한다. 이후, 몰드(M)를 회전 축(RX)에 대하여 회전시키면, 베이스 물질(BM)은 원심력에 의해서 니들 홈(NG)에 깊이 주입된다.
다른 실시예로, 몰드(M)를 대기압 보다 낮은 압력으로 유지한 상태에서, 몰드(M)를 회전 축(RX)에 대하여 회전시킬 수 있다. 몰드(M)가 지속적으로 저압의 분위기를 유지하므로, 베이스 물질(BM)은 원심력에 의해서 니들 홈(NG)에 깊이 주입된다.
회전 축(RX)과 니들 홈(NG)의 길이 방향의 축은 서로 다른 방향이므로, 원심력이 베이스 물질(BM)에 적용되면, 베이스 물질(BM)은 니들 홈(NG)의 단부까지 완전하게 채워진다. 회전 모듈(30)에서 생성된 원심력이 몰드(M)에 제공되면, 압력 챔버에서 기체(g)가 제거된 공간은 베이스 물질(BM)이 채워 진다.
상기 니들 홈에 채워진 상기 베이스 물질을 건조하는 단계(S40)에서는, 몰드(M)에 채워진 베이스 물질(BM)을 건조시켜서, 마이크로니들(120)을 생성한다. 이후, 제조된 마이크로니들(120)을 몰드(M)에서 제거할 수 있다.
도 9는 본 발명의 또 다른 실시예에 따른 마이크로니들 패치의 제조 방법을 도시하는 순서도이다.
도 9를 참조하면, 몰드에 대기압 보다 낮은 압력을 형성하는 단계 이전에, 베이스 물질이 채워진 몰드를 회전시키는 단계(S15)를 더 포함할 수 있다.
즉, 몰드(M)에 베이스 물질(BM)을 주입한 뒤에, 몰드(M)를 회전축에 대하여 회전시킨다. 그러하면, 생성된 원심력에 의해서 베이스 물질(BM)은 니들 홈(NG)의 깊숙하게 밀려난다.
베이스 물질(BM)이 채워진 몰드(M)에 1차적으로 원심력을 적용하면, 원심력에 의해서 베이스 물질(BM)이 니들 홈(NG)에 균일하게 분배될 수 있다. 몰드(M)가 설치된 챔버 내부를 낮은 압력으로 설정하면, 니들 홈(NG)이나 베이스 물질(BM)에서 기체(g)가 제거된다. 다시 몰드(M)에 2차적으로 원심력을 적용하면, 원심력에 의해서 베이스 물질(BM)이 니들 홈(NG)에 완전하게 밀착되어, 마이크로니들(120)의 품질이 향상될 수 있다.
본 발명의 또 다른 실시예에 따른 마이크로니들 패치의 제조방법은, 복수개의 니들 홈을 가지는 몰드에 베이스 물질을 채우는 단계(S10), 상기 몰드에 대기압 보다 낮은 압력을 형성하는 단계(S20), 상기 몰드를 회전축에 대하여 회전시키는 단계(S30)가 모두 동일한 챔버에서 진행될 수 있다.
이때, 복수개의 니들 홈을 가지는 몰드에 베이스 물질을 채우는 단계(S10)와 상기 몰드를 회전축에 대하여 회전시키는 단계(S30)에서 모두 상기 몰드에 대기압 보다 낮은 압력을 형성을 하고, 낮은 압력 상태를 유지할 수 있다.
베이스 물질(BM)을 몰드(M)에 채우는 과정에서도 낮은 압력의 분위기를 유지하므로, 주입 과정에서 생성되는 버블을 최소화 할 수 있다. 또한, 몰드(M)를 회전축에 대해서 회전 시키는 단계에서도 낮은 압력의 분위기를 유지하므로, 베이스 물질(BM)을 니들 홈(NG)의 끝 단까지 치밀하게 주입할 수 있다.
도 10 내지 도 12은 본 발명의 마이크로니들 패치의 제조 방법으로 제조된 마이크로니들 패치를 도시하는 도면이다.
도 10을 참조하면, 마이크로니들 패치(100)는 전술한 마이크로니들 패치의 제조 장치(1)나 마이크로니들 패치의 제조 방법으로 베이스(110)와 단층의 마이크로니들(120)을 구비할 수 있다. 마이크로니들(120)은 내부에 유효 성분(EM)을 포함할 수 있다.
도 11을 참조하면, 마이크로니들 패치(200)는 전술한 마이크로니들 패치의 제조 장치(1)나 마이크로니들 패치의 제조 방법으로 제조될 수 있다. 마이크로니들 패치(200)는 베이스(210)와 다층 구조의 마이크로니들(220)을 가질 수 있다.
전술한 마이크로니들 패치의 제조 장치(1)를 복수 회 구동시키거나, 마이크로니들 패치의 제조 방법을 복수 회 수행하면, 다층 구조의 마이크로니들 패치(200)를 제조할 수 있다.
상세하게, 제1 베이스 물질을 니들 홈(NG)에 주입하고, 몰드(M)에 대기압 보다 낮은 압력을 1차로 형성하고, 몰드(M)를 회전시키고, 제1 베이스 물질을 건조시켜 제1 레이어(221)를 형성한다.
이후에, 제1 레이어(221)의 위에 제2 베이스 물질을 주입하고, 몰드(M)에 다시 대기압 보다 낮은 압력을 2차로 형성하고, 몰드(M)를 회전 시킨 후에, 제2 베이스 물질을 건조시켜 제2 레이어(222)를 형성한다.
이때, 몰드(M)에 1차로 형성된 압력과 2차로 형성된 압력은 서로 다르게 설정될 수 있다. 일 예로, 2차로 형성된 압력은 1차로 형성된 압력보다 더 낮은 압력을 가지어, 베이스 물질(BM)이나 니들 홈(NG)에 잔류된 기체(g)가 완전하게 제거될 수 있다.
마이크로니들 패치(200)는 베이스(210)의 일면에 배치되는 마이크로니들(220)이 다층 구조를 가지어, 타겟 지점에 정확하게 유효 성분(EM)을 전달할 수 있다. 마이크로니들(220)은 복수의 층상 구조를 가지므로, 각 레이어에 유효 성분을 탑재할 수 있다. 예를 들어, 제1 레이어(221)에는 제1 유효 성분(EM1)을 탑재하고, 제2 레이어(222)에는 제2 유효 성분(EM2)을 탑재할 수 있다. 그리하여, 마이크로니들 패치(100)는 레이어의 높이에 따라 각각 유효 성분의 활성 깊이를 조절할 수 있다. 즉, 마이크로니들 패치(200)는 유효 성분들을 표피, 진피, 피하 지방, 근육 중 어느 하나에 전달할 수 있다.
마이크로니들 패치(200)는 다층 구조를 가지어, 각 층의 생분해 속도를 다르게 설정할 수 있다. 마이크로니들(220)은 제1 레이어(221)와 제2 레이어(222)의 분해 속도를 다르게 설정하여, 제1 유효 성분(EM1)과 제2 유효 성분(EM2)은 서로 다른 활성 시간을 가질 수 있다.
마이크로니들 패치(200)는 다층 구조를 가지어, 각 층의 강도를 다르게 설정할 수 있다. 제1 레이어(221)의 강도를 제2 레이어(222)의 강도보다 높게 설정하여, 마이크로니들(220)이 피부에 쉽게 주입될 수 있다.
도 12을 참조하면, 마이크로니들 패치(200')는 전술한 마이크로니들 패치의 제조 장치(1)나 마이크로니들 패치의 제조 방법으로 제조될 수 있다. 마이크로니들 패치(200')는 베이스(210)와 다층 구조의 마이크로니들(220')을 가질 수 있다.
마이크로니들(220')은 제1 레이어(221')와 제2 레이어(222')를 구비할 수 있다. 먼저 제1 베이스 물질을 몰드(M)에 주입하여 제1 레이어(221')를 형성한다. 건조 과정에서 제1 베이스 물질이 건조되면서, 제1 레이어(221')는 곡면을 가질 수 있다. 이후, 제2 베이스 물질을 제1 레이어(221')의 위에 주입하여, 제2 레이어(222')를 형성한다.
도 13 및 도 14는 본 발명의 마이크로니들 패치의 제조 방법으로 제조된 마이크로니들 패치와 비교예를 도시하는 도면이다.
도 13은 200kDa 10%HA를 베이스 물질로 선정하였으며 (a)는 본 발명의 실시예에 따른 마이크로니들 패치의 제조 방법으로 제조된 마이크로니들 패치이고, (b)는 본 발명의 비교예로 몰드를 회전시켜 원심력만 형성하여 제조된 마이크로니들 패치이다.
(a)에서는, 200kDa 10%HA를 몰드에 주입한 뒤에, 몰드를 낮은 압력(1mbar 미만)으로 10분 적용 하였다. 이후에, 몰드를 500rpm으로 30초 동안 회전시켜 원심력을 몰드에 적용하였다. 이후, 오븐에서 48시간 건조하였다.
(b)에서는 200kDa 10%HA를 몰드에 주입한 뒤에, 몰드를 500rpm으로 30초 동안 회전시켜 원심력을 몰드에 적용하였다. 이후, 오븐에서 48시간 건조하였다. 비교예에서는 몰드를 낮은 압력으로 적용하지 않았다.
본 발명의 마이크로니들 패치의 제조 방법에 따른 마이크로니들 패치는 마이크로니들의 끝단이 아주 세밀하고, 뾰족하게 형성된다. 그러나, 비교예는 마이크로니들의 끝단이 뭉툭하게 형성되므로, 마이크로니들 패치를 대상체에 부착하는데 어려움이 있다. 비교예에서는 몰드를 대기압 보다 낮은 압력으로 형성하지 않으므로, 히알루론산이 몰드의 니들 홈에 완전하게 주입되지 않으며, 주입된 히알루론산의 내부에 기체가 잔류되어 있어 마이크로니들 패치의 품질이 낮다.
도 14은 1.4MDa 10%HA를 베이스 물질로 선정하였으며 (a)는 본 발명의 실시예에 따른 마이크로니들 패치의 제조 방법으로 제조된 마이크로니들 패치이고, (b)는 본 발명의 제1 비교예로, 몰드에 낮은 압력만 형성하여 제조된 마이크로니들 패치이고, (c)는 본 발명의 제2 비교예로 몰드를 회전시켜 원심력만 형성하여 제조된 마이크로니들 패치이다.
도 14의 1.4MDa 10%HA는 도 13의 200kDa 10%HA 보다 점성이 강하고, 강도가 높다. 그러므로, 점성이 높은 1.4MDa 10%HA을 이용하여 마이크로니들을 제조 하는 것은 200kDa 10%HA을 이용하여 마이크로니들을 제조하는 것 보다 상대적으로 어렵다.
(a)에서는, 1.4MDa 10%HA를 몰드에 주입한 뒤에, 몰드를 낮은 압력(1mbar 미만)으로 10분 적용 하였다. 이후에, 몰드를 2,000rpm으로 2분 동안 회전시켜 원심력을 몰드에 적용하였다. 이후, 오븐에서 48시간 건조하였다.
(b)에서는 1.4MDa 10%HA를 몰드에 주입한 뒤에, 몰드를 낮은 압력(1mbar 미만)으로 10분 적용 하였다. 이후, 오븐에서 48시간 건조하였다.
(c)에서는 1.4MDa 10%HA를 몰드에 주입한 뒤에, 몰드를 500rpm으로 30초 동안 회전시켜 원심력을 몰드에 적용하였다. 이후, 몰드를 2,000rpm으로 2분 동안 회전시켜 원심력을 몰드에 적용하였다. 이후, 오븐에서 48시간 건조하였다.
본 발명의 마이크로니들 패치의 제조 방법에 따른 마이크로니들 패치는 마이크로니들의 끝단이 아주 세밀하고, 뾰족하게 형성된다. 그러나, 제1 비교예와 제2 비교예는 마이크로니들의 끝단이 뭉툭하게 형성되므로, 마이크로니들 패치를 대상체에 부착하는데 어려움이 있다.
본 발명의 마이크로니들 패치의 제조 방법은 고분자의 히알루론산을 완전하게 니들 홈에 주입하여, 마이크로니들 패치의 품질을 높일 수 있다. 고분자인 1.4MDa 10%HA는 점성이 높아 니들 홈에 완전하게 주입되는데 어려움이 있으나, 본 발명은 대기압 보다 낮은 압력과 원심력을 몰드에 제공하여, 1.4MDa 10%HA을 몰드에 완전하게 주입하여 마이크로니들 패치의 품질을 높일 수 있다.
도 15는 본 발명의 다른 실시예에 따른 마이크로니들 패치의 제조 장치를 도시하는 도면이다.
도 15를 참조하면, 마이크로니들 패치의 제조 장치(2)는 제1 주입 모듈(10A), 제2 주입 모듈(20A) 및 건조 모듈(30A)을 구비할 수 있다.
도면에서는 마이크로니들 패치의 제조 장치(2)가 제1 주입 모듈(10A), 제2 주입 모듈(20A) 및 건조 모듈(30A)이 각각 하나씩 순차적으로 배치되는 것을 도시하나, 이에 한정되지는 않으며 마이크로니들 패치의 제조 공정에 따라 다양하게 변형될 수 있다.
일 예로, 마이크로니들 패치의 제조 장치(2)는 제1 주입 모듈(10A), 제2 주입 모듈(20A) 및 건조 모듈(30A) 중 적어도 하나는 복수 개로 구비될 수 있다. 다른 예로, 마이크로니들 패치의 제조 장치(2)는 제2 주입 모듈(20A)에 앞서 건조 모듈(30A)이 배치될 수 있다.
일 실시예로, 제1 주입 모듈(10A)은 몰드(M)에 버퍼 용액(BS)을 주입하고, 제2 주입 모듈(20A)은 몰드(M)에 베이스 물질(BM)을 배치할 수 있다. 도 15와 같이 제1 주입 모듈(10A)과 제2 주입 모듈(20A)은 각각 구비될 수 있다.
다른 실시예로, 제1 주입 모듈(10A)은 몰드(M)에 버퍼 용액(BS)과 베이스 물질(BM)을 모두 주입할 수 있다. 제1 주입 모듈(10A)은 버퍼 용액(BS)과 베이스 물질(BM)을 모두 주입하도록 통합될 수 있다.
건조 모듈(30A)은 몰드(M)가 내부에 장착된 이후에, 몰드(M)를 건조시킨다. 건조 모듈(30A)이 구동되면, 버퍼 용액(BS)이 제거될 수 있다.
도 16는 본 발명의 다른 실시예에 따른 마이크로니들 패치 제조 방법을 도시하는 순서도이고, 도 17 내지 도 21은 도 16의 마이크로니들 패치 제조 방법으로 마이크로니들을 제조 단계를 도시하는 도면이며, 도 22는 도 16의 마이크로니들 패치 제조 방법으로 제조된 마이크로니들 패치를 도시하는 도면이다.
도 16 내지 도 22를 참조하면, 마이크로니들 패치 제조 방법은 복수개의 니들 홈을 가지는 몰드에 버퍼 용액을 채우는 단계(S100), 상기 니들 홈의 위에 베이스 물질을 배치하는 단계(S200), 상기 베이스 물질을 상기 버퍼 용액으로 확산시키는 단계(S300), 상기 몰드를 건조하는 단계(S400)를 포함한다.
이하에서, 버퍼 용액(BS)은 베이스 물질(BM)을 용해할 수 있는 용액으로 정의한다. 버퍼 용액(BS)은 마이크로니들을 형성하는 베이스 물질(BM)을 용해 할 수 있는 물질이다. 버퍼 용액(BS)는 베이스 물질(BM)에 용해성을 가지며, 베이스 물질(BM)의 종류에 의존된다.
예를 들어, 버퍼 용액(BS)은 A의 베이스 물질을 용해 할 수 있는 a 용액으로 설정될 수 있다. 또한, 버퍼 용액(BS)은 B의 베이스 물질을 용해 할 수 있는 b 용액으로 설정될 수 있다.
일 실시예로, 베이스 물질(BM)이 히알루론산(hyaluronic acid)으로 설정되면, 버퍼 용액(BS)은 물, 특히 정제수로 설정될 수 있다.
일 실시예로, 버퍼 용액(BS)은 유효 성분(EM)을 용해하지 않을 수 있다. 유효 성분(EM)은 베이스 물질(BM)의 내부에 배치되며, 베이스 물질(BM)은 버퍼 용액(BS)에 용해되나, 유효 성분(EM)은 버퍼 용액(BS)에 용해 되지 않는다. 그러나, 유효 성분(EM)은 베이스 물질(BM)과 함께 니들 홈(NG)에 주입되어, 마이크로니들의 내부에 배치될 수 있다.
다른 실시예로, 버퍼 용액(BS)은 유효 성분(EM)을 용해할 수 있다. 유효 성분(EM)은 베이스 물질(BM)의 내부에 배치되며, 베이스 물질(BM)과 유효 성분(EM)은 모두 버퍼 용액(BS)에 용해된다. 예를 들어, 버퍼 용액(BS)가 물이고, 유효 성분(EM)이 수용성일 경우에 유효 성분(EM)은 버퍼 용액(BS)에 용해될 수 있다.
복수개의 니들 홈을 가지는 몰드에 버퍼 용액을 채우는 단계(S100)에서는, 몰드(M)에 버퍼 용액(BS)을 채우고, 니들 홈(NG)에 버퍼 용액(BS)이 채워진다(도 17 참조). 제1 주입 모듈(10A)을 통해서, 버퍼 용액(BS)은 몰드(M)에 채워질 수 있다.
몰드(M)는 베이스 홈(BG)과 니들 홈(NG)을 가질 수 있다. 베이스 홈(BG)에서는 베이스(110)가 형성되고, 니들 홈(NG)에서는 마이크로니들(320)이 형성될 수 있다.
버퍼 용액(BS)은 니들 홈(NG)의 전체에 가득 채워질 수 있다.
일 실시예로, 버퍼 용액(BS)은 복수개의 니들 홈(NG)에만 채워질 수 있다. 마이크로니들(320)을 먼저 성형하고, 이후에 베이스(310)를 성형하기 위해서, 니들 홈(NG)에만 버퍼 용액(BS)을 주입한다.
다른 실시예로, 버퍼 용액(BS)은 니들 홈(NG)과 베이스 홈(BG)에 모두 가득 채워질 수 있다. 베이스(310)와 마이크로니들(320)이 일체화된 마이크로니들 패치(300)를 제조하기 위해서, 버퍼 용액(BS)을 니들 홈(NG)과 베이스 홈(BG)에 모두 채우고, 베이스 물질(BM)을 몰드(M)의 전체에 채울 수 있다.
또 다른 실시예로, 버퍼 용액(BS)은 니들 홈(NG)의 일부에만 채울 수 있다. 다층 구조를 가지는 마이크로니들(320)을 제조하기 위해서, 니들 홈(NG)의 일부에만 버퍼 용액(BS)을 주입하고, 이후에 또 버퍼 용액(BS)을 채워서, 순차적으로 마이크로니들(320)을 제조할 수 있다. 이에 대해서는 아래에서 상세하게 설명하기로 한다.
상기 니들 홈의 위에 베이스 물질을 배치하는 단계(S200)에서는, 베이스 물질(BM)을 몰드(M)에 배치한다(도 18 참조).
베이스 물질(BM)을 니들 홈(NG)의 위에 배치하여, 베이스 물질(BM)은 니들 홈(NG)에 저장된 버퍼 용액(BS)에 쉽게 용해되도록 설정된다. 베이스 물질(BM)은 제2 주입 모듈(20A)의 노즐(21A)에 의해서 베이스 홈(BG)에 주입될 수 있다.
베이스 물질(BM)은 소정의 점성을 가지므로, 니들 홈(NG)에 직접 주입되기는 어렵다. 그러나, 베이스 물질(BM)이 버퍼 용액(BS)에 용해되면 유동성이 높아지므로, 베이스 물질(BM)이 니들 홈(NG)에 채워질 수 있다.
일 실시예로, 베이스 물질(BM)은 몰드(M)의 베이스 홈(BG)에 주입된다. 베이스 물질(BM)이 니들 홈(NG)에 충분하게 채워지도록, 베이스 물질(BM)은 베이스 홈(BG)을 가득 채우거나, 베이스 홈(BG)의 용량을 넘어 볼록하게 형성될 수 있다.
상기 베이스 물질을 상기 버퍼 용액으로 확산시키는 단계(S300)에서는, 베이스 물질(BM)이 버퍼 용액(BS)에 용해될 수 있다.
베이스 물질(BM)은 버퍼 용액(BS)에 녹아, 각각의 니들 홈(NG)에 주입된다.
도 19과 같이, 처음에는 니들 홈(NG)의 상부에서 베이스 물질(BM)가 확산되고, 점차적으로 베이스 물질(BM)은 니들 홈(NG)의 팁까지 확산된다.
그 뒤에는 도 20과 같이, 전체적으로 베이스 물질(BM)이 몰드(M)에 채워진다. 버퍼 용액(BS)에 베이스 물질(BM)이 모두 용해되면, 베이스 물질(BM)은 농도는 작아지고, 점성은 줄어 든다.
버퍼 용액(BS)은 니들 홈(NG)에 완전하게 채워져 있으므로, 베이스 물질(BM)이 버퍼 용액(BS)에 녹으면서 니들 홈(NG)에 완전하게 채워진다. 베이스 물질(BM)이 니들 홈(NG)에 완전하게 채워지므로, 마이크로니들(120)은 니들 홈(NG)의 형상으로 제조될 수 있다.
일 실시예로, 베이스 물질(BM)이 히알루론산(hyaluronic acid)이면, 물, 특히 정제수가 버퍼 용액(BS)으로 니들 홈(NG)에 저장되어 있다. 히알루론산은 물에 용해되므로, 히알루론산이 니들 홈(NG)에 채워진다. 히알루론산은 점성을 가지는 물질이므로, 히알루론산을 단독으로 니들 홈(NG)에 채우는 것은 한계가 있다. 그러나, 물에 용해된 히알루론산은 점성이 약해지고 높은 유동성을 가지므로 니들 홈(NG)에 채워질 수 있다.
일 실시예로, 베이스 물질(BM)의 내부에는 유효 성분(EM)이 배치될 수 있다. 베이스 물질(BM)과 유효 성분(EM)은 혼합된 형태로 존재하고, 베이스 물질(BM)이 버퍼 용액(BS)에 용해되면서, 유효 성분(EM)이 함께 니들 홈(NG)으로 주입될 수 있다.
이때, 유효 성분(EM)은 버퍼 용액(BS)에 녹지 않는다. 그러므로, 몰드(M)에 주입 시에 베이스 물질(BM)에 혼합된 유효 성분(EM)과 최종적으로 제조된 마이크로니들(320)의 내부의 유효 성분(EM)은 동일하다. 유효 성분(EM)이 버퍼 용액(BS)에 반응되지 않으므로, 유효 성분(EM)의 유효성은 제조 과정에서 변화하지 않는다.
다른 실시예로, 버퍼 용액(BS)은 유효 성분(EM)을 용해할 수 있다. 유효 성분(EM)은 베이스 물질(BM)의 내부에 배치되며, 베이스 물질(BM)과 유효 성분(EM)은 모두 버퍼 용액(BS)에 용해된다. 예를 들어, 버퍼 용액(BS)가 물이고, 유효 성분(EM)이 수용성일 경우에 유효 성분(EM)은 버퍼 용액(BS)에 용해될 수 있다. 유효 성분(EM)이 버퍼 용액(BS)에 용해 되더라도, 유효 성분(EM)의 효과는 변화하지 않는다.
선택적 실시예로, 환경을 조절하여 베이스 물질(BM)의 확산을 조절할 수 있다.
일 예로, 몰드(M)가 위치한 챔버 내부의 온도나 습도를 조절하여, 베이스 물질(BM)의 확산 속도를 높일 수 있다.
다른 예로, 버퍼 용액(BS)에 확산 속도를 증가시키는 첨가제(미도시)를 주입하여, 베이스 물질(BM)의 확산 속도를 높일 수 있다.
또 다른 예로, 몰드(M)를 교반기(미도시)에 장착하고, 상기 교반기의 구동으로 생성된 진동에 의해서, 베이스 물질(BM)의 확산 속도가 증가할 수 있다.
상기 몰드를 건조하는 단계(S400)에서는, 버퍼 용액(BS)를 건조시켜서, 마이크로니들(320)을 제조할 수 있다(도 21 참조).
건조 모듈(30A)에 몰드(M)를 장착하고, 건조 모듈(30A)을 구동하여, 몰드(M)를 건조시킨다. 건조 모듈(30A)에 의해서, 베이스 몰드(M)에 저장된 버퍼 용액(BS)이 제거될 수 있다.
버퍼 용액(BS)이 건조되면, 베이스 물질(BM)은 농도가 증가한다. 이후, 버퍼 용액(BS)이 완전히 제거되고, 베이스 물질(BM)에 포함되었던 수분도 제거되므로, 베이스 물질(BM)로 이루어진 마이크로니들(320)이 생성된다.
버퍼 용액(BS)이 완전하게 제거되므로, 니들 홈(NG)에는 베이스 물질(BM)만 유효하게 저장될 수 있다. 베이스 물질(BM)은 고체로 변화하고, 마이크로니들(320)은 소정의 강성을 가진다.
고체로 성형된 마이크로니들(320)은 내부에 유효 성분(EM)이 존재한다. 유효 성분(EM)은 베이스 물질(BM)에 포함된 상태를 유지한다.
마이크로니들을 형성하기에 적합한 베이스 물질(BM)은 소정의 점성을 가진다. 몰드(M)의 니들 홈(NG)은 매우 미세하게 제조되므로, 점성을 가지는 베이스 물질(BM)을 니들 홈(NG)에 완전하게 채우는 것은 어려움이 있다.
베이스 물질(BM)이 니들 홈(NG)에 완전하게 채워지지 않으면, 마이크로니들의 팁이 뭉툭하게 형성된다. 마이크로니들(320)은 대상체의 피부를 관통하여 삽입되어야 하므로, 마이크로니들(320)의 끝은 첨단 팁(sharpened tip)의 형상으로 제조 되어야 한다. 그러나, 점성을 가지는 베이스 물질(BM)이 니들 홈(NG)에 완전하게 채워지지 않고, 빈 공간에 의해서 마이크로니들(320)이 뭉툭하게 형성되어, 마이크로니들(320)이 대상체에 부착되기 어렵고, 약물 전달 효과를 저하시킨다.
또한, 점성을 가지는 베이스 물질(BM)은 마이크로니들 패치(300)의 제조과정에서 공기와 같은 기체가 버블의 형태로 저장될 수 있다. 베이스 물질(BM)을 스퀴징하여 니들 홈(NG)에 주입되더라도, 내부 버블은 여전히 니들 홈(NG)에 존재할 수 있다. 베이스 물질(BM)의 내부 버블에 잔류되는 기체는 마이크로니들(320)의 품질을 심각하게 저하시킬 수 있다. 마이크로니들(320)은 대상체의 피부에 이식되는 부분이므로, 기체를 포함하는 이물질이 함유되어서는 안된다. 만약, 버블 속의 기체가 대상체로 주입되면, 대상체의 안전을 위협할 수 있다.
본 발명에 따른 마이크로니들 패치의 제조 방법은 베이스 물질을 완전하게 몰드에 채워서, 정교한 형상을 가지고, 품질이 향상된 마이크로니들 패치를 제조할 수 있다. 베이스 물질은 버퍼 용액에 의해서 니들 홈에 완전하게 채워지므로, 마이크로니들은 끝이 첨단 팁(sharpened tip)의 형상으로 제조되므로, 대상체의 피부에 쉽게 부착될 수 있다. 또한, 제조 공정에서 공기 등의 이물질이 니들 홈에 주입되지 않으므로, 높은 품질을 가지는 마이크로니들 패치를 제조할 수 있다.
상세하게, 강성이 큰 마이크로니들을 제조하기 위해서는 고분자인 1.4MDa 10%HA를 베이스 물질로 선택해야 한다. 그러나, 고분자인 1.4MDa 10%HA는 상대적으로 고점성이므로 몰드에 완전하게 주입되기가 어렵다. 본 발명에 따른 마이크로니들 패치의 제조 방법에 따르면, 버퍼 용액인 정제수를 몰드에 주입하고, 고분자인 1.4MDa 10%HA를 버퍼 용액에 녹이면 베이스 물질이 완전하게 니들 홈에 주입된다. 이후에 정제수를 건조시키면 니들 홈의 형상과 같은 마이크로니들이 제조된다.
본 발명에 따른 마이크로니들 패치의 제조 방법은 니들의 형상이 복잡하고 세밀한 형상을 가지는 마이크로니들 패치를 제조할 수 있다. 마이크로니들 패치의 제조 과정에서 베이스 물질을 버퍼 용액에 확산시키면, 베이스 물질의 점성은 낮아지고 유동성은 높아진다. 니들 홈의 형상이 복잡하고 아주 정교하더라도, 베이스 물질은 유동성에 의해서 니들 홈에 완전하게 채워질 수 있다.
도 22를 참조하면, 마이크로니들 패치(300)는 전술한 마이크로니들 패치의 제조 장치(2)나 마이크로니들 패치의 제조 방법으로 베이스(310)와 단층의 마이크로니들(320)을 구비할 수 있다. 마이크로니들(320)은 내부에 유효 성분(EM)을 포함할 수 있다.
마이크로니들 패치(300)는 전술한 마이크로니들 패치(100)의 베이스 물질(BM)과 유효 성부(EM)이 적용될 수 있다.
마이크로니들(320)은 버퍼 용액에 베이스 물질(BM)이 용해된 이후에, 버퍼 용액(BS)이 건조되어 형성된다. 이때 버퍼 용액(BS)은 완전하게 제거될 수 있다.
일 실시예로, 버퍼 용액은 물을 포함하고, 베이스 물질(BM)은 히알루론산(hyaluronic acid)를 포함할 수 있다.
일 실시예로, 베이스 물질(BM)의 내부에는 유효 성분(EM)이 배치되고, 유효 성분(EM)은 버퍼 용액에 용해되지 않을 수 있다.
도 23 내지 도 25는 도 22의 마이크로니들 패치의 다른 실시예를 도시하는 도면이다.
도 23을 참조하면, 마이크로니들 패치(400)는 전술한 마이크로니들 패치의 제조 장치(2)나 마이크로니들 패치의 제조 방법으로 제조될 수 있다. 마이크로니들 패치(420)는 베이스(410)와 다층 구조의 마이크로니들(420)을 가질 수 있다.
전술한 마이크로니들 패치의 제조 장치(2)를 복수 회 구동시키거나, 마이크로니들 패치의 제조 방법을 복수 회 수행하면, 다층 구조의 마이크로니들 패치(400)을 제조할 수 있다.
상세하게, 제1 버퍼 용액을 니들 홈(NG)에 주입한다. 제1 버퍼 용액은 니들 홈(NG)에 완전하게 채워지지 않은다.
일 예로, 제1 버퍼 용액은 제1 레이어(421)의 부피보다 더 큰 부피를 가지도록 채워진다. 제1 버퍼 용액은 도 23에서 h1보다 더 큰 높이인 h1'으로 채워질 수 있다.
제1 베이스 물질(BM1)은 몰드(M)에 배치되고, 제1 베이스 물질(BM1)을 제1 버퍼 용액에 확산시킨다. 제1 베이스 물질(BM1)이 제1 버퍼 용액에 용해되므로, 니들 홈(NG)의 팁에는 제1 베이스 물질(BM1)이 채워진다.
이후 공정으로, 제1 버퍼 용액과 제1 베이스 물질(BM1)이 채워진 몰드(M)를 건조시켜서, 제1 버퍼 용액을 제거한다. 이로써, 니들 홈(NG)의 팁에는 제1 레이어(421)가 제1 베이스 물질(BM1)로 형성된다. 건조 공정으로 제1 버퍼 용액이 제거되면 제1 레이어(421)의 높이는 h1으로 형성된다.
이후, 제2 버퍼 용액을 니들 홈(NG)에 주입한다. 제2 버퍼 용액은 니들 홈(NG)에서 제1 레이어(421)의 상부에 채워진다.
제2 베이스 물질(BM2)은 몰드(M)에 배치되고, 제2 베이스 물질(BM2)을 제2 버퍼 용액에 확산시킨다. 제2 베이스 물질(BM2)이 제2 버퍼 용액에 용해되므로, 제1 레이어(421)의 위에는 제2 베이스 물질(BM2)이 채워진다.
이후 공정으로, 제2 버퍼 용액과 제2 베이스 물질(BM2)이 채워진 몰드(M)를 건조시켜서, 제2 버퍼 용액을 제거한다. 이로써, 제1 레이어(421)의 위에는 제2 레이어(422)가 제2 베이스 물질(BM2)로 형성되므로, 마이크로니들(420)은 다층 구조를 가진다.
제1 레이어(421)와 제2 레이어(422) 중 적어도 하나는 유효 성분을 가질 수 있다. 도면과 같이 제1 레이어(421)에는 제1 유효 성분(EM1)이 배치되고, 제2 레이어(422)에는 제2 유효 성분(EM2)이 배치될 수 있다. 다만, 이에 한정되지 않으며, 제1 유효 성분(EM1)만 가지거나, 제2 유효 성분(EM2)만 가질 수 있다. 또한, 각 레이어에 복수 종류의 유효 성분이 혼합될 수 있다.
제1 레이어(421)는 제2 레이어(422)보다 강도가 크게 형성될 수 있다. 제1 레이어(421)는 제2 레이어(422)의 제조과정에서 건조 공정이 추가적으로 진행된다. 추가적인 건조 공정에 의해서 제1 레이어(421)의 강도는 강화될 수 있다. 제1 레이어(421)의 강도가 강화되면, 마이크로니들 패치(400)는 대상체의 피부에 쉽게 부착될 수 있다.
일 실시예로, 제2 버퍼 용액은 제2 베이스 물질(BM2)만 녹이고, 제1 베이스 물질(BM1)을 녹이지 않을 수 있다. 제1 베이스 물질(BM1)로 구성된 제1 레이어(421)가 형성된 이후에, 제2 버퍼 용액을 니들 홈(NG)에 주입하더라도, 제1 레이어(421)가 제2 버퍼 용액에 의해서 녹지 않을 수 있다. 그리하여, 제1 레이어(421)와 제2 레이어(422)는 경계가 명확하게 구분되므로, 제1 레이어(421)와 제2 레이어(422)의 타겟 위치가 명확하게 구분될 수 있다.
마이크로니들 패치(400)는 베이스(410)의 일면에 배치되는 마이크로니들(420)이 다층 구조를 가지어, 타겟 지점에 정확하게 유효 성분(EM)을 전달할 수 있다. 마이크로니들(420)은 복수의 층상 구조를 가지므로, 각 레이어에 유효 성분을 탑재할 수 있다. 예를 들어, 제1 레이어(421)에는 제1 유효 성분(EM1)을 탑재하고, 제2 레이어(422)에는 제2 유효 성분(EM2)를 탑재할 수 있다. 그리하여, 마이크로니들 패치(400)는 레이어의 높이에 따라 각각 유효 성분의 활성 깊이를 조절할 수 있다. 즉, 마이크로니들 패치(400)는 유효 성분들을 표피, 진피, 피하 지방, 근육 중 어느 하나에 전달할 수 있다.
마이크로니들 패치(400)는 다층 구조를 가지어, 각 층의 생분해 속도를 다르게 설정할 수 있다. 마이크로니들(420)은 제1 레이어(421)과 제2 레이어(422)의 분해 속도를 다르게 설정하여, 제1 유효 성분(EM1)과 제2 유효 성분(EM2)는 서로 다른 활성 시간을 가질 수 있다.
마이크로니들 패치(400)는 다층 구조를 가지어, 각 층의 강도를 다르게 설정할 수 있다. 제1 레이어(421)의 강도를 제2 레이어(422)의 강도보다 높게 설정하여, 마이크로니들(420)이 피부에 쉽게 주입될 수 있다.
도 24를 참조하면, 마이크로니들 패치(400A)는 베이스(410)와 마이크로니들(420A)를 가질 수 있다.
마이크로니들(420A)은 제1 레이어(421A), 제2 레이어(422A), 제1 레이어(421)와 제2 레이어(422)의 사이의 전이 레이어(423A)가 형성될 수 있다. 전이 레이어(423A)는 제1 베이스 물질(BM1)과 제2 베이스 물질(BM2)이 혼재된 형태를 가질 수 있다.
제2 버퍼 용액은 제2 베이스 물질(BM2)과 제1 베이스 물질(BM1)을 모두 녹일 수 있다. 제1 베이스 물질(BM1)로 구성된 제1 레이어(421A)가 형성된 이후에, 제2 버퍼 용액이 니들 홈(NG)에 주입되면, 제1 레이어(421A)의 상면은 일부가 용해될 수 있다.
이후에, 제2 베이스 물질(BM2)을 제1 레이어(421A)의 상면으로 주입하면, 제1 레이어(421A)와 제2 레이어(422A)의 경계 영역에는 전이 레이어(423A)가 형성될 수 있으며, 제1 레이어(421A)에서 용해된 제1 베이스 물질(BM1)과, 추가로 주입된 제2 베이스 물질(BM2)이 혼합된 형태를 가질 수 있다.
전이 레이어(423A)는 제1 레이어(421A)와 제2 레이어(422A)의 결합력을 높여서, 마이크로니들(420A)의 강도를 높일 수 있다. 전이 레이어(423A)에 의해서 제1 레이어(421A)와 제2 레이어(422A)의 특성이 급격하게 변화하지 않으며, 제1 레이어(421A)와 제2 레이어(422A)의 결합력이 증대될 수 있다.
도 25을 참조하면, 마이크로니들 패치(400B)는 전술한 마이크로니들 패치의 제조 장치(2)나 마이크로니들 패치의 제조 방법으로 제조될 수 있다. 마이크로니들 패치(420B)는 베이스(410B)와 다층 구조의 마이크로니들(420B)을 가질 수 있다.
마이크로니들(420B)는 층상 구조를 가지는 제1 레이어(421B)와 제2 레이어(422B)를 구비할 수 있다.
먼저 제1 베이스 물질(BM1)을 제1 버퍼 용액이 채워진 몰드(M)에 주입한다. 건조 과정에서 제1 버퍼 용액이 제거되면서, 제1 베이스 물질(BM1)로 구성된 제1 레이어(421B)는 곡면을 가질 수 있다.
이후, 제2 버퍼 용액을 몰드(M)에 채우고, 제2 베이스 물질(BM2)을 제2 버퍼 용액에 확산시킨다. 건조 과정에서 제2 버퍼 용액이 제거되면서, 제1 레이어(421B)의 위에 제2 레이어(422B)가 형성될 수 있다.
이와 같이 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
실시예에서 설명하는 특정 실행들은 일 실시 예들로서, 어떠한 방법으로도 실시 예의 범위를 한정하는 것은 아니다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.
실시예의 명세서(특히 특허청구범위에서)에서 "상기"의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 복수 모두에 해당하는 것일 수 있다. 또한, 실시 예에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 상세한 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 마지막으로, 실시 예에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순서에 따라 실시 예들이 한정되는 것은 아니다. 실시 예에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 실시 예를 상세히 설명하기 위한 것으로서 특허청구범위에 의해 한정되지 않는 이상 상기 예들 또는 예시적인 용어로 인해 실시 예의 범위가 한정되는 것은 아니다. 또한, 당업자는 다양한 수정, 조합 및 변경이 부가된 특허청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.

Claims (13)

  1. 복수개의 니들 홈을 가지는 몰드에 베이스 물질을 채우는 단계;
    상기 몰드에 대기압 보다 낮은 압력을 형성하는 단계;
    상기 몰드를 회전축에 대하여 회전시키는 단계; 및
    상기 니들 홈에 채워진 상기 베이스 물질을 건조하는 단계;를 포함하는, 마이크로니들 패치의 제조 방법.
  2. 제1 항에 있어서,
    상기 몰드에 대기압 보다 낮은 압력을 형성하는 단계는
    상기 니들 홈에 채워진 상기 베이스 물질의 내부 버블을 제거하거나, 상기 베이스 물질과 상기 니들 홈 사이의 기체가 제거되는, 마이크로니들 패치의 제조 방법.
  3. 제1 항에 있어서,
    상기 몰드를 회전축에 대하여 회전시키는 단계는
    원심력에 의해서 상기 베이스 물질을 상기 니들 홈의 축 방향으로 밀착시키는, 마이크로니들 패치의 제조 방법.
  4. 제1 항에 있어서,
    상기 몰드에 대기압 보다 낮은 압력을 형성하는 단계 이전에, 상기 베이스 물질이 채워진 상기 몰드를 상기 회전축에 대하여 미리 회전시키는 단계;를 더 포함하는, 마이크로니들 패치의 제조 방법.
  5. 제1 항에 있어서,
    상기 회전축은 상기 니들 홈의 축 방향과 수직되는, 마이크로니들 패치의 제조 방법.
  6. 베이스 물질이 주입되는 복수개의 니들 홈을 가지는 몰드;
    상기 몰드에 대기압 보다 낮은 압력을 형성하는 압력 모듈;
    회전축을 중심으로 상기 몰드를 회전시키는 회전 모듈; 및
    상기 니들 홈에 채워진 상기 베이스 물질을 건조시키는 건조 모듈;을 포함하는, 마이크로니들 패치의 제조 장치.
  7. 제6 항에 있어서,
    상기 베이스 물질은
    상기 압력 모듈에서 상기 베이스 물질의 내부 버블이 제거되거나, 상기 베이스 물질과 상기 니들 홈 사이의 기체가 제거된 이후에,
    상기 회전 모듈의 구동으로 생성된 원심력으로, 상기 베이스 물질이 니들 홈의 축 방향으로 밀착되는, 마이크로니들 패치의 제조 장치.
  8. 복수개의 니들 홈을 가지는 몰드에 버퍼 용액을 채우는 단계;
    상기 니들 홈의 위에 베이스 물질을 배치하는 단계;
    상기 베이스 물질을 상기 버퍼 용액으로 확산시키는 단계; 및
    상기 몰드를 건조하는 단계;를 포함하는, 마이크로니들 패치의 제조 방법.
  9. 제8 항에 있어서,
    상기 베이스 물질을 상기 버퍼 용액으로 확산시키는 단계는
    상기 베이스 물질이 상기 니들 홈으로 주입되는, 마이크로니들 패치의 제조 방법.
  10. 제9 항에 있어서,
    상기 버퍼 용액은 상기 베이스 물질을 용해시키는, 마이크로니들 패치의 제조 방법.
  11. 제10 항에 있어서,
    상기 버퍼 용액은 물을 포함하고, 상기 베이스 물질은 히알루론산(hyaluronic acid)를 포함하는, 마이크로니들 패치의 제조 방법.
  12. 제10 항에 있어서,
    상기 베이스 물질의 내부에는 유효 성분이 배치되는, 마이크로니들 패치의 제조 방법.
  13. 제8 항에 있어서,
    상기 몰드를 건조하는 단계는
    상기 버퍼 용액이 제거되어, 상기 베이스 물질이 상기 니들 홈에서 굳는, 마이크로니들 패치의 제조 방법.
PCT/KR2021/015027 2021-05-12 2021-10-25 마이크로니들 패치, 마이크로니들 패치의 제조 방법 및 마이크로니들 패치의 제조 장치 WO2022239915A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/628,728 US20230364401A1 (en) 2021-05-12 2021-10-25 Microneedle patch, method of manufacturing microneedle patch, and apparatus for manufacturing microneedle patch
EP21840769.0A EP4338783A1 (en) 2021-05-12 2021-10-25 Microneedle patch, method of manufacturing microneedle patch, and apparatus for manufacturing microneedle patch
JP2022505232A JP2023529034A (ja) 2021-05-12 2021-10-25 マイクロニードルパッチ、マイクロニードルパッチの製造方法及びマイクロニールパッチの製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0061451 2021-05-12
KR10-2021-0061417 2021-05-12
KR1020210061417A KR20220153881A (ko) 2021-05-12 2021-05-12 마이크로니들 패치의 제조 방법 및 마이크로니들 패치의 제조 장치
KR1020210061451A KR102611702B1 (ko) 2021-05-12 2021-05-12 마이크로니들 패치의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022239915A1 true WO2022239915A1 (ko) 2022-11-17

Family

ID=84029228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015027 WO2022239915A1 (ko) 2021-05-12 2021-10-25 마이크로니들 패치, 마이크로니들 패치의 제조 방법 및 마이크로니들 패치의 제조 장치

Country Status (4)

Country Link
US (1) US20230364401A1 (ko)
EP (1) EP4338783A1 (ko)
JP (1) JP2023529034A (ko)
WO (1) WO2022239915A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273772A (ja) * 2008-05-16 2009-11-26 Kyokko Seiko Co Ltd マイクロニードルシート並びにその製造方法及び製造装置
KR20110012986A (ko) * 2009-07-31 2011-02-09 임병진 마이크로니들 패드 제조방법 및 이를 위한 제조장치
KR20170118668A (ko) * 2015-02-13 2017-10-25 주식회사 엔도더마 가교된 히알루론산 하이드로젤을 이용한 마이크로구조체 및 이의 제조방법
KR101905040B1 (ko) * 2017-04-19 2018-10-08 (주) 오스타테크 마이크로 니들 충전장치 및 충전방법
WO2019221318A1 (ko) * 2018-05-18 2019-11-21 포항공과대학교 산학협력단 경피 투과형 약물 전달 패치 및 이의 제조 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232159B (zh) * 2014-04-24 2021-10-08 佐治亚科技研究公司 微针和其制造方法
JP6682783B2 (ja) * 2015-09-08 2020-04-15 凸版印刷株式会社 経皮投与デバイス、および、経皮投与デバイスの製造方法
EP3416621B1 (en) * 2016-02-19 2023-12-20 North Carolina State University Physiologically responsive microneedle delivery systems
WO2018098343A1 (en) * 2016-11-23 2018-05-31 University Medical Pharmaceuticals Corp. Microneedle delivery system and method
EP3694487A1 (en) * 2017-10-11 2020-08-19 Georgia Tech Research Corporation Separable microneedle arrays for sustained release of drug
JP2022553337A (ja) * 2019-10-22 2022-12-22 ジョージア テック リサーチ コーポレイション 流延配合物中の成分溶解度の調整を使用してマイクロニードルを作製するための方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273772A (ja) * 2008-05-16 2009-11-26 Kyokko Seiko Co Ltd マイクロニードルシート並びにその製造方法及び製造装置
KR20110012986A (ko) * 2009-07-31 2011-02-09 임병진 마이크로니들 패드 제조방법 및 이를 위한 제조장치
KR20170118668A (ko) * 2015-02-13 2017-10-25 주식회사 엔도더마 가교된 히알루론산 하이드로젤을 이용한 마이크로구조체 및 이의 제조방법
KR101905040B1 (ko) * 2017-04-19 2018-10-08 (주) 오스타테크 마이크로 니들 충전장치 및 충전방법
WO2019221318A1 (ko) * 2018-05-18 2019-11-21 포항공과대학교 산학협력단 경피 투과형 약물 전달 패치 및 이의 제조 방법

Also Published As

Publication number Publication date
US20230364401A1 (en) 2023-11-16
EP4338783A1 (en) 2024-03-20
JP2023529034A (ja) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2019198936A1 (ko) 마이크로 니들 및 마이크로 니들의 제조방법
WO2018093218A1 (ko) 복합 제형이 적용된 마이크로니들 어레이 및 이의 제조방법
WO2017150824A1 (ko) 마이크로 니들 및 이의 제조방법
WO2016099159A1 (ko) 미세방 마이크로구조체 및 이의 제조방법
WO2017176045A2 (ko) 효율적인 피부 천공을 위한 마이크로니들 구조
WO2022239915A1 (ko) 마이크로니들 패치, 마이크로니들 패치의 제조 방법 및 마이크로니들 패치의 제조 장치
WO2023120850A1 (ko) 마이크로니들 패치의 제조 장치 및 마이크로니들 패치의 제조 방법
WO2022234905A1 (ko) 마이크로니들 패치
WO2018079990A1 (ko) 마이크로 니들 패치, 마이크로 니들을 제조하는 방법 및 장치
WO2020153802A1 (ko) 3층 이상 구조의 마이크로 니들 및 이의 제조방법
WO2020060195A1 (ko) 미세 구조체 기반 약물 주입장치 및 이의 제조 방법
WO2019146884A1 (ko) 마이크로 니들 및 이의 제조방법
WO2023017906A1 (ko) 마이크로니들 패치
WO2023120808A1 (ko) 마이크로니들 패치 제조 방법
WO2020184909A1 (ko) 3층 이상 구조의 마이크로 니들 및 이의 제조방법
WO2023120897A1 (ko) 마이크로니들 제조 장치 및 마이크로니들 제조 방법
WO2024005439A1 (ko) 마이크로니들 패치 제조 시스템 및 마이크로니들 패치 제조 방법
WO2023120810A1 (ko) 마이크로니들 제조 장치 및 마이크로니들 제조 방법
WO2022005177A1 (ko) 전기수력학 프린팅을 이용한 마이크로니들 패치 제조 장치 및 제조 방법
WO2017010813A1 (ko) 고형물의 유동화를 이용한 마이크로구조체 및 이의 제조방법
KR102611702B1 (ko) 마이크로니들 패치의 제조 방법
WO2023286916A1 (ko) 마이크로니들 패치 및 마이크로니들 패치 제조방법
WO2023017907A1 (ko) 마이크로니들 패치
KR20220153881A (ko) 마이크로니들 패치의 제조 방법 및 마이크로니들 패치의 제조 장치
WO2023146061A1 (ko) 마이크로니들 패치의 제조 방법 및 마이크로니들 패치의 제조 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022505232

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21840769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021840769

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021840769

Country of ref document: EP

Effective date: 20231212