WO2022239788A1 - ルチル型酸化チタン粒子、分散液、塗膜形成用塗布液、および塗膜付基材 - Google Patents

ルチル型酸化チタン粒子、分散液、塗膜形成用塗布液、および塗膜付基材 Download PDF

Info

Publication number
WO2022239788A1
WO2022239788A1 PCT/JP2022/019882 JP2022019882W WO2022239788A1 WO 2022239788 A1 WO2022239788 A1 WO 2022239788A1 JP 2022019882 W JP2022019882 W JP 2022019882W WO 2022239788 A1 WO2022239788 A1 WO 2022239788A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide particles
coating film
rutile
mol
Prior art date
Application number
PCT/JP2022/019882
Other languages
English (en)
French (fr)
Inventor
純 山口
武洋 清水
良 村口
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to EP22807487.8A priority Critical patent/EP4339159A1/en
Priority to CN202280033973.8A priority patent/CN117295691A/zh
Priority to JP2023521214A priority patent/JPWO2022239788A1/ja
Publication of WO2022239788A1 publication Critical patent/WO2022239788A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • C09D17/008Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • Titanium oxide is widely used as a material for photocatalysts, UV cut materials, and coating liquids for forming coatings on optical substrates.
  • Well-known crystal structures of titanium oxide are anatase, rutile, and brookite, and different crystal structures have different properties.
  • anatase-type titanium oxide particles have high photocatalytic activity and are used as deodorant, deodorant, and antifouling materials.
  • rutile-type titanium oxide particles have a high refractive index and a lower photocatalytic activity than anatase-type particles, and are therefore used in hard coat layers of substrates and the like.
  • an object of the present invention is to provide titanium oxide particles that are excellent in weather resistance and can provide a coating film with little coloration.
  • the content of Ti contained in the titanium oxide particles of the present invention is preferably in the range of 40% by mass or more and 90% by mass or less in terms of TiO 2 with respect to the total amount of the rutile-type titanium oxide particles, and is preferably 45% by mass. Above, it is more preferably in the range of 80% by mass or less, and particularly preferably in the range of 50% by mass or more and 70% by mass or less. If the Ti content is too low, the refractive index and UV absorbability tend to decrease. Also, if the Ti content is too high, the photocatalytic activity will increase. Therefore, when the content of Ti is within the range described above, rutile-type titanium oxide particles having a high refractive index and a high UV absorption capacity and a low photocatalytic activity can be obtained.
  • the molar ratio of Fe to Zr (Zr/Fe) contained in the titanium oxide particles of the present invention is preferably 1 or more, more preferably in the range of 1 or more and 30 or less, and more preferably 1 or more and 15 or less. A range is particularly preferred. When the molar ratio of Fe to Zr is within the above range, titanium oxide particles with lower photocatalytic activity and less coloring can be obtained.
  • the titanium oxide particles of the present invention preferably contain elements other than Ti, Fe, and Zr. Specifically, it preferably contains at least one element selected from Sn, Si, K, and Al, and particularly preferably contains Sn or Si. Sn has the function of increasing the crystallinity of rutile-type titanium oxide, and suppresses the formation of crystal structures other than the rutile-type such as the anatase-type. Thereby, the weather resistance of the titanium oxide particles of the present invention is further improved, and the transparency is also increased. From this point of view, the Sn content is preferably in the range of 1 mol% or more and 30 mol% or less, more preferably in the range of 3 mol% or more and 20 mol% or less, in terms of mol% relative to Ti.
  • Si further reduces the photocatalytic activity of the titanium oxide particles of the present invention.
  • the content of Si is preferably in the range of 5 mol% or more and 70 mol% or less, more preferably in the range of 10 mol% or more and 50 mol% or less in terms of mol% relative to Ti. , 15 mol % or more and 40 mol % or less.
  • the content of elements other than Ti, Fe, and Zr is preferably in the range of 5 mol% or more and 120 mol% or less, and in the range of 10 mol% or more and 70 mol% or less in mol% with respect to Ti.
  • the titanium oxide particles of the present invention are preferably coated particles having a coating layer formed on their surfaces.
  • a coating layer containing at least one element selected from Zr, Si, Al, Sb, etc. is formed, the photocatalytic activity of the titanium oxide particles of the present invention can be further reduced.
  • the photocatalytic activity can be further reduced, and the dispersibility in a polar solvent such as water or alcohol tends to be improved.
  • the surface of the titanium oxide particles or the surface of the coating layer of the present invention preferably has a surface-treated layer surface-treated with an organosilicon compound such as a silane coupling agent or an amine-based compound.
  • an organosilicon compound such as a silane coupling agent or an amine-based compound.
  • the ratio of the coating layer contained in the titanium oxide particles of the present invention is preferably in the range of 1% by mass or more and 30% by mass or less in terms of oxide with respect to the total amount of the coated particles, 1% by mass or more, It is more preferably in the range of 20 mass % or less, and particularly preferably in the range of 3 mass % or more and 10 mass % or less.
  • the amounts of the coating layers are calculated in terms of ZrO 2 , SiO 2 , Al 2 O 3 and Sb 2 O 5 respectively.
  • oxides shall be estimated from the valence of the raw material. For example, if K derived from KOH is included, it is converted as K 2 O.
  • the valence of the element is specified by X-ray photoelectron spectroscopy (XPS measurement) of the finally obtained coated particles.
  • XPS measurement X-ray photoelectron spectroscopy
  • the peaks assigned to each valence are specified from the spectrum obtained by XPS measurement, and the oxide is estimated based on the valence of the peak with the highest peak intensity. For example, when peaks of Cu + and Cu 2+ appear and the peak intensity of the Cu 2+ peak is stronger, it is converted into CuO.
  • the proportion of the surface treatment layer is preferably in the range of 1% by mass or more and 10% by mass or less, more preferably in the range of 2% by mass or more and 9% by mass or less, relative to the total amount of the coated particles.
  • the proportion of the surface treatment layer is calculated by converting the inorganic component contained in the surface treatment layer into an oxide. For example, when a surface-treated layer derived from a silane coupling agent is included, Si contained in the surface-treated layer is converted to SiO 2 for calculation.
  • the refractive index of the titanium oxide particles of the present invention is preferably 1.8 or more, more preferably 2 or more, and particularly preferably 2.1 or more.
  • the titanium oxide particles of the present invention having such a high refractive index can be suitably used as an optical material.
  • the upper limit of the refractive index is not particularly limited, but may be 3 or less.
  • the photocatalytic activity of the titanium oxide particles of the present invention can be determined from the rate of change in absorbance (fading rate) before and after irradiation by irradiating a system in which titanium oxide particles and a dye are mixed with ultraviolet rays for 3 hours.
  • the discoloration rate of the titanium oxide particles of the present invention is preferably 30% or less, more preferably 20% or less, even more preferably 15% or less, and particularly preferably 10% or less. If the photocatalytic activity is high, the fading rate will be high, and if the photocatalytic activity is low, the fading rate will also be low.
  • the titanium oxide particles of the present invention have a low rate of fading, that is, low photocatalytic activity.
  • the titanium oxide particles of the present invention may be in the form of a powder or a dispersion in a solvent.
  • a dispersion it may be an aqueous dispersion, a dispersion of water and an organic solvent, or an organic solvent dispersion.
  • a dispersion containing an organic solvent as a dispersion medium for example, part or all of the water contained in the dispersion can be replaced with an organic solvent using a rotary evaporator, an ultrafiltration membrane, or other known methods.
  • the dispersion liquid containing the titanium oxide particles of the present invention can be made into a coating liquid for forming a coating film by adding a matrix-forming component.
  • a matrix-forming component used in a usual coating liquid for coating film formation can be used.
  • tetramethoxysilane tetraethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, phenylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris.
  • a dispersion containing the titanium oxide particles of the present invention can be used to form a coating film on various substrates such as glass or plastics to obtain a coated substrate.
  • This base material with a coating film can be used for spectacle lenses, various optical lenses for cameras and the like, front panels of optical displays, show window cases, window glass, contact glass for copying machines, light covers for automobiles, and various UV shielding filters. can be used as an optical base material. Since the titanium oxide particles of the present invention have low photocatalytic activity and, on the other hand, have UV absorbing ability, a coating film having high weather resistance can be obtained in any aspect.
  • the film thickness is not particularly limited, but since the titanium oxide particles of the present invention are less colored, the coating film is less likely to be colored even if the film thickness is increased. Especially when trying to obtain coating film strength (e.g. evaluation by Bayer test), the film thickness is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 2 ⁇ m or more. .
  • the upper limit of the film thickness is not particularly limited, but may be 100 ⁇ m or less, 50 ⁇ m or less, or 30 ⁇ m or less.
  • An aqueous solution containing Ti, Fe, and Zr can be prepared by dissolving a Ti source, an Fe source, and a Zr source in water.
  • Conventionally known raw materials such as titanium tetrachloride, titanium sulfate, and titanium alkoxide can be used as the Ti source.
  • the Fe source conventionally known raw materials such as iron chloride, iron sulfate, iron nitrate, and iron acetate can be used.
  • the Zr source conventionally known raw materials such as zirconium chloride, zirconium carbonate, and zirconium nitrate can be used.
  • the pH of the aqueous solution containing Ti, Fe, and Zr is preferably 3 or less.
  • an alkali with a pH of 10 or higher can be used to neutralize the aqueous solution.
  • an alkaline aqueous solution in which sodium hydroxide, potassium hydroxide, ammonia, or the like is dissolved in water can be used.
  • a coprecipitated gel containing Ti, Fe, and Zr is produced. This coprecipitated gel can be recovered by filtration, and may be washed with water or the like if necessary.
  • Hydrothermal treatment step In this step, the hydrothermal treatment precursor obtained in the above step is hydrothermally treated to prepare rutile-type titanium oxide particles in which Fe and Zr are dissolved.
  • the hydrothermal treatment precursor can be hydrothermally treated using conventionally known equipment such as an autoclave.
  • the temperature of the hydrothermal treatment is preferably in the range of 100°C or higher and 250°C or lower, more preferably in the range of 120°C or higher and 220°C or lower, and preferably in the range of 130°C or higher and 210°C or lower.
  • the holding time in the above temperature range is preferably 1 hour or more and 48 hours or less, more preferably 5 hours or more and 24 hours or less, and particularly 10 hours or more and 20 hours or less. preferable.
  • a coating layer on the surface of the titanium oxide particles of the present invention it can be formed, for example, by the method described in JP-A-2009-155496. Further, when the titanium oxide particles of the present invention are dispersed in an organic solvent or in a resin-dispersed solution, the surface thereof or the surface of the coating layer is subjected to hydrophobic treatment (surface treatment) using the method described in the same publication. ).
  • a dispersion containing the titanium oxide particles of the present invention can be prepared by dispersing the titanium oxide particles of the present invention in a solvent.
  • a conventionally known method can be used to disperse the titanium oxide particles in the solvent.
  • the titanium oxide particles of the present invention when they are in the form of powder, they can be added to water, an organic solvent, or the like, and then subjected to dispersion treatment such as bead mill treatment or ultrasonic treatment to prepare a dispersion. can. At this time, if the concentration of the solid content in the dispersion liquid is 10% by mass or less, the titanium oxide particles of the present invention can be more easily dispersed in the solvent.
  • the zeta potential of the titanium oxide particles of the present invention can be measured, and the pH can be adjusted so that the range is suitable for dispersion.
  • an organic solvent for example, alcohols such as methanol, ethanol, ethylene glycol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and octanol; Esters such as ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and ⁇ -butyrolactone; Ethers such as diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; Ketones such as acetone, methyl ethyl ketone, methyl is
  • a coating liquid for forming a coating film containing the titanium oxide particles of the present invention can be prepared by a conventionally known method using the titanium oxide particles of the present invention. For example, it can be prepared by adding the components necessary for forming a coating film to the aforementioned dispersion.
  • the coating liquid for forming a coating film may be a coating liquid for forming a thermosetting coating film or a coating liquid for forming a photocurable coating film.
  • a coating liquid for forming a thermosetting coating film it is prepared by adding a matrix component and, if necessary, a curing catalyst for thermosetting, an additive, or the like to the dispersion containing the titanium oxide particles of the present invention. be able to.
  • a coating liquid can be produced based on the description in JP-A-2000-204301.
  • the matrix component examples include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, phenylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyl methyldiethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, N- ⁇
  • metal acetylacetonate metal salts of organic acids such as sodium acetate, zinc naphthenate, cobalt naphthenate, zinc octylate, tin octylate, perchloric acid, perchloric acid such as ammonium perchlorate, magnesium perchlorate
  • salts thereof, acids such as hydrochloric acid, phosphoric acid, nitric acid, p-toluenesulfonic acid, or metal chlorides that are Lewis acids such as SnCl 2 , AlCl 3 , FeCl 3 , TiCl 4 , ZnCl 2 , SbCl 3 can be used. can. These may be used individually by 1 type, and may use 2 or more types together.
  • the coated substrate containing the titanium oxide particles of the present invention can be prepared by a conventionally known method using the substrate and the aforementioned coating liquid for forming a coating film.
  • the surface of the substrate is pretreated with an alkali, an acid, or a surfactant.
  • polishing treatment with inorganic or organic fine particles, primer treatment or plasma treatment may be performed.
  • the obtained SEM image was printed, and the particle diameter of 100 primary particles was measured with a vernier caliper, and the average value was defined as the average particle diameter.
  • the major axis was taken as the particle diameter.
  • titanium, tin, silicon, iron and antimony in the resulting solution were converted to oxides (TiO 2 , SnO 2 , SiO 2 , Fe 2 O 3 and Sb 2 O 5 ).
  • the peak position was identified using PDXL2 version 2.7.2.0 software, and the peak (2 ⁇ ) derived from the (110) plane of strontium titanate mixed in a small amount was 32.374 deg. was corrected so that Details of measurement conditions and data analysis are as follows.
  • the surface of the quartz cell having a width of 1 cm and a height of 5 cm is irradiated with an intensity of 0.5 cm.
  • the distance was adjusted to 4 mW/cm 2 (converted to a wavelength of 365 nm), and ultraviolet rays were applied.
  • thermosetting coating film For the substrate with thermosetting coating film, a weather resistance test was performed using a weather resistance tester (manufactured by Q-Lab: ultraviolet fluorescent lamp type accelerated weather resistance tester QUV), The time until cracks were visually confirmed was evaluated. The weather resistance test conditions included the following steps 1, 2 and 3 as one cycle (12 hours), and the presence or absence of cracks was visually observed.
  • weather resistance test conditions ⁇ Step 1: UV irradiation (light source: UVA-340, radiation intensity: 0.70 W/m 2 , temperature: 60°C, time: 8 hours)
  • Step 2 Condensation (light source: none, temperature: 50°C, time: 4 hours)
  • Step 3 Return to step 1.
  • [Evaluation method] ⁇ Environment: 10 lux or less ⁇ Observation method: The substrate with a thermosetting coating film was irradiated with an LED light from the lateral direction, and the presence or absence of cracks was visually observed.
  • Bayer test Using an abrasion tester BTE (manufactured by COLTS Laboratories) and a haze value measuring device (Nippon Denshoku Industries Co., Ltd. NDH5000), a plastic lens substrate (a test piece described later; hereinafter also referred to as "lens to be tested") The Bayer value was calculated based on the change in haze value between the lens and the reference lens.
  • a reference lens CR-39 (diethylene glycol bisallyl carbonate, monomer manufactured by PPG, refractive index of substrate 1.50), which is a commercially available plastic lens substrate, was used.
  • each lens was placed in the pan of the above abrasion tester, 500 g of dedicated sand (Kryptonite ⁇ ) was filled thereon, and the pan was shaken left and right at 150 times/min for 4 minutes (600 times in total).
  • the haze value of the lens after vibration was measured, and the haze value of the reference lens was defined as D (stdf), and the haze value of the test lens was defined as D (testf).
  • Example 1 Preparation of rutile-type titanium oxide particles
  • Particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing iron, zirconium, tin, silicon, aluminum and potassium.
  • Table 1 shows the composition of the titanium oxide particles (Ti content (in terms of TiO2 ), additive element content (mol % relative to Ti, Zr/Fe molar ratio), physical properties, and evaluation results. Note that when the respective contents are calculated with iron, zirconium, tin and silicon as additive elements, Fe is 0.07 mol%, Zr is 4.0 mol%, Sn is 5.3 mol%, and Si was 19.7 mol %.
  • Example 1 Preparation of paint for coating film formation
  • aqueous zirconium oxychloride solution containing 2% by mass of zirconium oxychloride manufactured by Taiyo Koko Co., Ltd.
  • aqueous ammonia containing 15% by mass of ammonia was gradually added with stirring to adjust the pH to 8.0.
  • a slurry of 5 was obtained.
  • the solid content obtained by filtering this slurry was washed with water to obtain 526 g of zirconia cake containing 10% by mass in terms of ZrO 2 .
  • the water-dispersed sol containing titanium oxide particles obtained in the above step was diluted with water to prepare 700 g of sol with a solid concentration of 2% by mass.
  • 196 g of the zirconic acid peroxide aqueous solution obtained in the above step was added and stirred at room temperature to obtain an aqueous zirconic acid peroxide mixture.
  • the zirconate peroxide aqueous solution mixture obtained in the above step was heat-treated at 60°C for 6 hours, it was cooled to room temperature. This was diluted with water so that the solid content concentration was 0.1% by mass, and then hydrothermally treated in an autoclave at 165° C. for 18 hours. After taking out the reactant, it was concentrated with an ultrafiltration membrane device (manufactured by Asahi Kasei Corporation, SIP-1013, SIP-0013), and 145 g of an aqueous dispersion of zirconia-coated titanium oxide particles having a solid content concentration of 10% by mass was obtained. Obtained.
  • thermosetting paint film-forming coating material was prepared.
  • thermosetting coating The surface of the plastic lens substrate obtained in the above step was coated with the thermosetting paint for forming a coating film obtained in the above step to form a coating film.
  • a spin coating method was used to apply this paint, and the conditions were adjusted so that the film thickness after curing would be 2.5 ⁇ m.
  • the coating film was cured by heat treatment at 80° C. for 10 minutes and then at 120° C. for 1 hour to obtain a base material with a thermosetting coating film.
  • Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 2 A water-dispersed sol was obtained in the same manner as in the preparation of rutile-type titanium oxide particles (1) coprecipitation gel preparation step of Example 1, except that 17.7 g of an aqueous ferric chloride solution was added. Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • a base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 3 Preparation of rutile-type titanium oxide particles of Example 1 (1) The same method as in the coprecipitation gel preparation step, except that 60.3 g of an aqueous solution of ferric chloride (manufactured by Toagosei Co., Ltd., high-grade periron) is added. to obtain a water-dispersed sol. Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results. A base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • ferric chloride manufactured by Toagosei Co., Ltd., high-grade periron
  • Example 4 Preparation of rutile-type titanium oxide particles of Example 1 (1) Coprecipitation gel preparation step, except that 106 g of an aqueous solution of ferric chloride (manufactured by Toagosei Co., Ltd., high-grade periron) was added. A dispersed sol was obtained. Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results. A base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 5 Preparation of rutile-type titanium oxide particles of Example 3 (2)
  • potassium stannate manufactured by Showa Kako Co., Ltd.
  • a water-dispersed sol was obtained in the same manner except that 205 g of an aqueous potassium stannate solution was added.
  • Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • thermosetting coating film A base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 6 Preparation of rutile-type titanium oxide particles of Example 3 (2)
  • potassium stannate manufactured by Showa Kako Co., Ltd.
  • a water-dispersed sol was obtained in the same manner except that 410 g of an aqueous potassium stannate solution was added.
  • Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • thermosetting coating film A base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 7 Rutile-type titanium oxide particles of Example 1 (1)
  • the amount of zirconium oxychloride manufactured by Taiyo Koko Co., Ltd.
  • a water-dispersed sol was obtained in the same manner except that the weight was 47 g.
  • Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • a base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 8 Rutile-type titanium oxide particles of Example 1 (1)
  • the amount of zirconium oxychloride manufactured by Taiyo Koko Co., Ltd.
  • Zr in terms of ZrO2 was reduced to 9.5%.
  • a water-dispersed sol was obtained in the same manner except that the weight was 30 g.
  • Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • a base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used.
  • Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 9 Rutile-type titanium oxide particles of Example 1 (1)
  • the amount of zirconium oxychloride (manufactured by Taiyo Koko Co., Ltd.) containing 7.75% by mass of Zr in terms of ZrO2 was 27.5%.
  • a water-dispersed sol was obtained in the same manner except that the weight was 4 g.
  • Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • a base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 10 Rutile-type titanium oxide particles of Example 1 (1)
  • the amount of zirconium oxychloride (manufactured by Taiyo Koko Co., Ltd.) containing 7.75% by mass of Zr in terms of ZrO2 was 82.5%.
  • a water-dispersed sol was obtained in the same manner except that the weight was 1 g.
  • Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • a base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 11 Preparation of rutile-type titanium oxide particles of Example 3 (2)
  • potassium stannate manufactured by Showa Kako Co., Ltd.
  • 809 g of the peptizing solution at 1% by mass in terms of SnO 2 .
  • a water-dispersed sol was obtained in the same manner except that 1483 g of an aqueous potassium stannate solution containing Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • thermosetting coating film A base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 12 Preparation of rutile-type titanium oxide particles of Example 3 (2)
  • potassium stannate manufactured by Showa Kako Co., Ltd.
  • a water-dispersed sol was obtained in the same manner except that 1,943 g of an aqueous potassium stannate solution was added.
  • Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • thermosetting coating film A base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 13 Rutile-type titanium oxide particles of Example 3 (2)
  • silica sol containing 0.4% by mass of aluminum in terms of Al 2 O 3 average particle diameter 16 nm (using a dynamic scattering method obtained value), specific surface area 375 m 2 /g, pH 2.2, solid content concentration 16% by mass: prepared with reference to the method described in Example 1 “Preparation of silica sol” in JP-A-2009-197078)
  • a base material with a thermosetting coating film was obtained in the same manner except that the amount of added was changed to 24.8 g and the amount of water added was changed to 388 g. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 14 Rutile-type titanium oxide particles of Example 3 (2)
  • silica sol containing 0.4% by mass of aluminum in terms of Al 2 O 3 average particle diameter 16 nm (using a dynamic scattering method obtained value), specific surface area 375 m 2 /g, pH 2.2, solid content concentration 16% by mass: prepared with reference to the method described in Example 1 “Preparation of silica sol” in JP-A-2009-197078)
  • a base material with a thermosetting coating film was obtained in the same manner except that the amount of added was changed to 53.8 g and the amount of water added was changed to 841 g. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • thermosetting coating film was formed in the same manner as in Example 3, except that a thermosetting coating film-forming coating material obtained in the same manner as in Example 3 was used, and the spin coating conditions were adjusted so that the film thickness after curing was 0.1 ⁇ m. A base material was obtained. Table 1 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 1 The same is true except that instead of the titanium oxide particles obtained in Example 1, titanium oxide particles (titanium (IV) oxide, rutile type, ⁇ 5 ⁇ m, 99.9% (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)) are used. Then, a substrate with a thermosetting coating film was obtained. Table 2 shows the evaluation results and the like of these titanium oxide particles and the base material with a thermosetting coating film.
  • titanium oxide particles titanium oxide particles (titanium (IV) oxide, rutile type, ⁇ 5 ⁇ m, 99.9% (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Table 2 shows the evaluation results and the like of these titanium oxide particles and the base material with a thermosetting coating film.
  • Example 2 A water-dispersed sol was obtained in the same manner as in the preparation of rutile-type titanium oxide particles (1) coprecipitation gel preparation step of Example 1, except that the ferric chloride aqueous solution and zirconium oxychloride were not added. Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • a base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used.
  • Table 2 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 3 A water-dispersed sol was obtained in the same manner as in the preparation of rutile-type titanium oxide particles (1) coprecipitation gel preparation step of Example 1, except that zirconium oxychloride was not added. Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results. A base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 2 shows the evaluation results of this substrate with a thermosetting coating film.
  • Example 4 Preparation of rutile-type titanium oxide particles of Example 1 (1)
  • a water-dispersed sol was obtained in the same manner as in the coprecipitation gel preparation step, except that zirconium oxychloride was not added and 177 g of an aqueous ferric chloride solution was added.
  • Table 1 shows the composition and physical properties of the particles contained in the obtained water-dispersed sol, and the evaluation results.
  • a base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used.
  • Table 2 shows the evaluation results of this substrate with a thermosetting coating film.
  • thermosetting coating film A base material with a thermosetting coating film was obtained in the same manner as in the preparation of the coating film-forming coating material and the preparation of the base material with a thermosetting coating film in Example 1, except that this water-dispersed sol was used. Table 2 shows the evaluation results of this substrate with a thermosetting coating film.
  • Comparative Example 3 which is titanium oxide in which Fe is solid-dissolved, has the same YI value as compared with Examples 1 to 6 in which both Fe and Zr are solid-dissolved, and the coloring of the coated substrate is small.
  • the SY discoloration rate is high, and the weather resistance of the coated substrate is low (cracks occur in a shorter time).
  • Comparative Example 4 with an increased Fe content and Examples 1 to 6, the SY discoloration rate is low and the weather resistance of the coated substrate is high, but the YI value is high and the coated substrate is colored. There are many.
  • Comparative Example 5 which is a titanium oxide in which Zr is dissolved, has a lower YI value and less coloring of the substrate with a coating film than in Examples 1 to 6, but has a high SY fading rate and a substrate with a coating film.
  • the weather resistance of the material is low.
  • Comparative Example 6 which is titanium oxide in which Mo and Zr are dissolved
  • Comparative Example 7 which is titanium oxide in which Sb and Zr are dissolved, the weather resistance of the substrate with a coating film is low. It is believed that it is important to have both dissolved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

FeおよびZrが固溶しており、X線回折測定により得られる(110)面の面間隔が0.3250nm以上であり、平均粒子径が5nm以上、50nm以下の範囲にある、ルチル型酸化チタン粒子。

Description

ルチル型酸化チタン粒子、分散液、塗膜形成用塗布液、および塗膜付基材
 本発明は、ルチル型酸化チタン粒子に関する。
 酸化チタンは、光触媒、UVカット材、光学基材への塗膜形成用塗布液の材料等として広く使用されている。酸化チタンの結晶構造は、アナターゼ、ルチル、ブルッカイトがよく知られており、結晶構造が違えばその性質も異なる。例えば、アナターゼ型の酸化チタン粒子は、光触媒活性が高く、消臭、防臭、防汚用の材料として使用されている。一方、ルチル型の酸化チタン粒子は、屈折率が高く、アナターゼ型のものに比べて光触媒活性が低いことから、基材等のハードコート層に使用されている。ハードコート層にはルチル型の酸化チタン以外にも有機ケイ素化合物や樹脂等の成分が含まれており、当該粒子の光触媒活性が強すぎるとこれらの成分を分解してしまう。このような分解は、ハードコート層のクラックや、基材とハードコート層との密着性低下の要因の一つとなり、酸化チタンを含む層が形成された基材を太陽光等の紫外光を含む光の存在下で使用する際に問題となる(耐候性)。これは、一般に、他の結晶型に対して光触媒活性が低いとされる、通常のルチル型の酸化チタンを用いた場合であっても問題となり、種々の解決方法が提案されている。
 例えば、特許文献1には、屈折率が高く、透明性、耐候性、基材との密着性に優れたハードコート膜形成用塗布液を提供するために、該膜形成用塗布液に酸化チタン成分と酸化鉄成分をFe/TiO(重量比)が0.0005以上0.005未満の範囲からなる複合酸化物粒子を含有させることについて開示されている。また、特許文献2には、屈折率が高く、透明性に優れ、その上耐熱水性、耐候性、耐擦傷性、耐磨耗性、染色性に優れ、かつフォトクロミック性がなく、しかも基材との密着性にも優れたハードコート膜形成用塗布液およびこのような優れた特性を有するハードコート膜が表面に形成されたハードコート膜付基材を提供するための複合酸化物粒子が開示されている。具体的には、酸化鉄、酸化チタンおよびシリカからなり、酸化鉄をFeに換算し、酸化チタンをTiOに換算し、シリカをSiOに換算したときの重量比Fe/TiOが0.0005以上0.005未満の範囲にあり、重量比SiO/(Fe+TiO)が0.001以上1.0以下の範囲にある複合酸化物粒子が開示されている。
特開平05-002102号公報 特開平11-172152号公報
 本発明者らの知見によれば、従来の異種元素が添加された酸化チタン粒子を含む塗膜は、耐候性はある程度改善されるものの、着色という課題があり、さらなる改善の余地があった。
 そこで、本発明は、耐候性に優れ、着色が少ない塗膜を得ることができる酸化チタン粒子を提供することを目的とする。
 本発明の一態様によれば、下記ルチル型酸化チタン粒子等が提供される。
[1] FeおよびZrが固溶しており、
 X線回折測定により得られる(110)面の面間隔が0.3250nm以上であり、
 平均粒子径が5nm以上、50nm以下の範囲にある、
 ルチル型酸化チタン粒子。
[2] Tiの含有量が、ルチル型酸化チタン粒子の全量に対して、TiO換算で、40質量%以上、90質量%以下の範囲にある、[1]に記載のルチル型酸化チタン粒子。
[3] Feの含有量が、Tiに対するモル%で、0.01モル%以上、5モル%以下の範囲にある、[1]または[2]に記載のルチル型酸化チタン粒子。
[4] Zrの含有量が、Tiに対するモル%で、0.1モル%以上、15モル%以下の範囲にある、[1]~[3]のいずれかに記載のルチル型酸化チタン粒子。
[5] Snの含有量が、Tiに対するモル%で1モル%以上、30モル%以下の範囲にある、[1]~[4]のいずれかに記載のルチル型酸化チタン粒子。
[6] Siの含有量が、Tiに対するモル%で、5モル%以上、70モル%以下の範囲にある、[1]~[5]のいずれかに記載のルチル型酸化チタン粒子。
[7] Zr/Feモル比が、1以上である、[1]~[6]のいずれかに記載のルチル型酸化チタン粒子。
[8] [1]~[7]のいずれかに記載のルチル型酸化チタン粒子を含む、分散液。
[9] [1]~[7]のいずれかに記載のルチル型酸化チタン粒子とマトリックス形成成分とを含む、塗膜形成用塗布液。
[10] [1]~[7]のいずれかに記載のルチル型酸化チタン粒子を含む、塗膜付基材。
 本発明によれば、耐候性に優れ、着色が少ない塗膜を得ることができる酸化チタン粒子を提供できる。
 本発明者らは、ルチル型酸化チタンにFeおよびZrを固溶すると、光触媒活性が低い粒子を得ることができることを見出した。この粒子を含む塗膜は、その耐候性が顕著に向上する。また、ルチル型酸化チタンにFeを固溶した粒子を含む塗膜に生じやすい着色という課題も、FeおよびZrという特異的な元素の組み合わせにより解消された。
 本発明は、FeおよびZrが固溶しており、X線回折測定により得られる(110)面の面間隔が0.3250nm以上であり、平均粒子径が5nm以上、50nm以下の範囲にある、ルチル型酸化チタン粒子に関する。
 以下、本発明のルチル型酸化チタン粒子(以下、本発明の酸化チタン粒子ともいう。)について詳述する。
 [酸化チタン粒子]
 本発明の酸化チタン粒子は、ルチル型酸化チタンである。ルチル型酸化チタンは、他の結晶構造を有する酸化チタンと比較して光触媒活性が低いので、耐候性が高い塗膜を得るための材料として好適である。また、屈折率という点においても、ルチル型酸化チタンは他の結晶構造を有する酸化チタンと比較して大きいので、例えば光学材料として好適に用いることができる。さらに、他の結晶構造を有する酸化チタンと比較してバンドギャップが狭く、紫外線(UV)吸収能に優れるため、UV吸収材料としても好適に用いることができる。このようなUV吸収能を有する材料を基材に塗布した場合、基材のUV劣化を抑制し、塗膜付基材の耐候性を向上させることができる。酸化チタンの他の結晶構造として、アナターゼ型、およびブルッカイト型等があり、これらはX線回折測定によって判別することができる。
 本発明の酸化チタン粒子に含まれるTiの含有量は、ルチル型酸化チタン粒子の全量に対して、TiO換算で40質量%以上、90質量%以下の範囲にあることが好ましく、45質量%以上、80質量%以下の範囲にあることがより好ましく、50質量%以上、70質量%以下の範囲にあることが特に好ましい。Tiの含有量が少なすぎると、屈折率およびUV吸収能が低下しやすくなる。また、Tiの含有量が多すぎても、光触媒活性が高くなってしまう。したがって、Tiの含有量が前述の範囲にあると、屈折率およびUV吸収能が高く、光触媒活性が低いルチル型酸化チタン粒子が得られる。
 本発明の酸化チタン粒子は、FeおよびZrが固溶している。一般に固溶とは、2種類以上の元素(金属の場合も非金属の場合もある)が互いに溶け合い、全体が均一の固相となっているものを意味する。このような固溶体は、置換型固溶体と侵入型固溶体とに分類される。置換型固溶体または侵入型固溶体のどちらであっても、FeおよびZrが固溶すれば、ルチル型酸化チタンの結晶格子は変動する。このような結晶格子の変動は、X線回折測定によって観測することができる。本発明の酸化チタン粒子についていえば、FeとZrとが固溶すると、X線回折測定により得られる(110)面の面間隔が0.3250nm以上となる。
 本発明の酸化チタン粒子に含まれるFeの含有量は、Tiに対するモル%で(Tiの量を100モル%とした場合に)、0.01モル%以上、5モル%以下の範囲にあることが好ましく、0.05モル%以上3モル%以下の範囲にあることがより好ましく、0.08モル%以上、2モル%以下の範囲にあることが特に好ましい。Feの含有量が前述の範囲にあると、ルチル型酸化チタン粒子の光触媒活性が低くなると共に、着色も少なくなる。
 本発明の酸化チタン粒子に含まれるZrの含有量は、Tiに対するモル%で、0.1モル%以上、15モル%以下の範囲にあることが好ましく、1モル%以上、10モル%以下の範囲にあることがより好ましく、3モル%以上、7モル%以下の範囲にあることが特に好ましい。Feと共にZrが固溶された本発明の酸化チタン粒子は、それぞれが単独で固溶された酸化チタン粒子に対して、顕著に光触媒活性が低くなる。この相乗効果により、Feを固溶した際に生じる着色を最小限に抑えながら、光触媒活性を低下させることができる。
 本発明の酸化チタン粒子に含まれるFeとZrのモル比(Zr/Fe)は、1以上であることが好ましく、1以上、30以下の範囲にあることがより好ましく、1以上、15以下の範囲にあることが特に好ましい。FeとZrのモル比が前述の範囲にあると、より光触媒活性が低く、着色が少ない酸化チタン粒子を得ることができる。
 本発明の酸化チタン粒子は、Ti、Fe、およびZr以外の元素を含むことが好ましい。具体的には、Sn、Si、K、およびAlから選ばれる少なくとも1種の元素を含むことが好ましく、特にSn、またはSiを含むことが好ましい。Snは、ルチル型酸化チタンの結晶性を高める働きがあり、アナターゼ型等のルチル型以外の結晶構造が生成することを抑制する。これにより、本発明の酸化チタン粒子の耐候性がより向上するとともに、透明性も高くなる。この観点から、Snの含有量は、Tiに対するモル%で1モル%以上、30モル%以下の範囲にあることが好ましく、3モル%以上、20モル%以下の範囲にあることがより好ましく、5モル%以上、15モル%以下の範囲にあることが特に好ましい。
 また、Siは、本発明の酸化チタン粒子の光触媒活性をさらに低下させる。この観点から、Siの含有量は、Tiに対するモル%で、5モル%以上、70モル%以下の範囲にあることが好ましく、10モル%以上、50モル%以下の範囲にあることがより好ましく、15モル%以上、40モル%以下の範囲にあることが特に好ましい。
 Ti、Fe、およびZr以外の元素の含有量は、Tiに対するモル%で、5モル%以上、120モル%以下の範囲にあることが好ましく、10モル%以上、70モル%以下の範囲にあることがより好ましく、20モル%以上、50モル%以下の範囲にあることが特に好ましい。Ti、Fe、およびZr以外の元素の含有量が前述の範囲にあると、屈折率が高く、光触媒活性が低い酸化チタン粒子を得ることができる。
 本発明の酸化チタン粒子は、その表面に被覆層が形成された被覆粒子であることが好ましい。例えば、Zr、Si、Al、およびSb等から選ばれる少なくとも1種の元素を含む被覆層が形成されていると、本発明の酸化チタン粒子の光触媒活性をより低下させることができる。特に、Si、Zrのいずれか一方または両方を含む被膜層が形成されていると、光触媒活性をより低下させることができ、水、またはアルコール等の極性溶媒中における分散性も良好になりやすい。
 本発明の酸化チタン粒子の表面または被覆層の表面は、シランカップリング剤等の有機ケイ素化合物またはアミン系化合物で表面処理された表面処理層を有することが好ましい。これらの表面を有機ケイ素化合物またはアミン系化合物で改質すると、後述の分散液または塗膜形成用塗布液とした際に、液中に含まれる樹脂や有機溶媒成分への分散性が高くなる。
 本発明の酸化チタン粒子に含まれる被覆層の割合は、被覆粒子の全量に対して、酸化物換算で、1質量%以上、30質量%以下の範囲にあることが好ましく、1質量%以上、20質量%以下の範囲にあることがより好ましく、3質量%以上、10質量%以下の範囲にあることが特に好ましい。Zr、Si、AlおよびSbを含む被覆層の場合、それぞれ、ZrO、SiO、Al、Sbに換算して、被覆層の量を算出する。それ以外の元素を含む場合は、原料の価数から酸化物を推定するものとする。例えば、KOH由来のKが含まれているのであれば、KOとして換算するものとする。製造工程において原料の価数に変動がある場合は、最終的に得られる被覆粒子のX線光電子分光測定(XPS測定)することで、元素の価数を特定するものとする。具体的には、XPS測定により得られスペクトルから、それぞれの価数に帰属されるピークを特定し、最もピーク強度の大きいピークの価数を基準として、酸化物を推定するものとする。例えば、Cu、Cu2+のピークが現れ、Cu2+のピークの方がピーク強度が強ければ、CuOとして換算するものとする。また、表面処理層の割合は、被覆粒子の全量に対して、1質量%以上、10質量%以下の範囲にあることが好ましく、2質量%以上、9質量%以下の範囲にあることがより好ましく、3質量%以上、8質量%以下の範囲にあることが特に好ましい。表面処理層の割合は、表面処理層に含まれる無機成分を酸化物換算して算出するものとする。例えば、シランカップリング剤に由来する表面処理層を含む場合は、表面処理層に含まれるSiをSiO換算して算出する。
 本発明の酸化チタン粒子の平均粒子径は、5nm以上、50nm以下の範囲にあり、8nm以上、40nm以下の範囲にあることが好ましく、10nm以上、30nm以下の範囲にあることがより好ましい。平均粒子径が前述の範囲にあると、本発明の酸化チタン粒子を含む塗膜を形成する際に、緻密な塗膜が形成されやすい。本発明において、平均粒子径の値は、電子顕微鏡を用いて一次粒子の大きさを測定し、その平均をとったものである。
 本発明の酸化チタン粒子の屈折率は、1.8以上であることが好ましく、2以上であることがより好ましく、2.1以上であることが特に好ましい。このように高い屈折率を有する本発明の酸化チタン粒子は、光学材料用として好適に使用できる。屈折率の上限は、特に限定されないが、3以下であってもよい。
 本発明の酸化チタン粒子の黄色度(YI値)は、58以下であることが好ましく、55以下であることがより好ましい。Feがルチル型酸化チタンに固溶すると、この値が大きくなり、黄色みが強くなる。しかしながら、本発明の酸化チタン粒子は、Feと共にZrを固溶することで、Feが少なくても高い光触媒活性抑制効果を発揮することができるため、低着色と高耐候性の両立が実現できる。
 本発明の酸化チタン粒子の光触媒活性は、酸化チタン粒子と染料を混合した系に紫外線を3時間照射し、照射前後の吸光度の変化率(退色率)から求めることができる。本発明の酸化チタン粒子の退色率は、30%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましく、10%以下であることが特に好ましい。光触媒活性が高いと退色率は高くなり、光触媒活性が低い場合は退色率も低くなる。本発明の酸化チタン粒子は、この退色率が低く、すなわち光触媒活性が低い。
 [酸化チタン粒子を含む分散液]
 本発明の酸化チタン粒子は、粉末であってもよく、溶媒に分散した分散液であってもよい。分散液の場合は、水分散液、水および有機溶媒の分散液または有機溶媒分散液のいずれであってもよい。分散媒に有機溶媒を含む分散液は、例えば分散液に含まれる水の一部または全部を、ロータリーエバポレーター、限外濾過膜またはその他の公知の方法で有機溶媒に置換することができる。
 本発明の酸化チタン粒子を含む分散液に用いることのできる有機溶媒は、例えば、
 メタノール、エタノール、エチレングリコール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、およびオクタノール等のアルコール類;
 酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、およびγ-ブチロラクトン等のエステル類;
 ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、およびジエチレングリコールモノエチルエーテル等のエーテル類;
 アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、およびシクロヘキサノン等のケトン類;
 ベンゼン、トルエン、キシレン、およびエチルベンゼン等の芳香族炭化水素;
 シクロヘキサン等の環状炭化水素;並びに;
 ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、およびN-メチルピロリドン等のアミド類が挙げられる。これらの有機溶媒は1種単独で用いてもよく、2種以上を併用してもよい。
 [酸化チタン粒子を含む塗膜形成用塗布液]
 本発明の酸化チタン粒子を含む分散液は、マトリックス形成成分を加え、塗膜形成用塗布液とすることもできる。マトリックス形成成分としては、通常の塗膜形成用塗布液に用いられるマトリックス形成成分を用いることができる。例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、およびγ-メルカプトプロピルトリメトキシシランが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 [酸化チタン粒子を含む塗膜付基材]
 本発明の酸化チタン粒子を含む分散液を用いて、ガラス、またはプラスチック等の各種基材に塗膜を形成し、塗膜付基材とすることができる。この塗膜付基材は、眼鏡レンズ、およびカメラ等の各種光学レンズ、光学ディスプレイの前面板、ショーウィンドケース、窓ガラス、複写機用コンタクトガラス、自動車用ライトカバーおよび各種の紫外線遮蔽用フィルター等の光学用基材として用いることができる。本発明の酸化チタン粒子は光触媒活性が低く、その一方でUV吸収能を有することから、いずれの様態においても高い耐候性を有する塗膜を得ることができる。膜厚については特に限定されるものではないが、本発明の酸化チタン粒子は着色が少ないので、膜厚を大きくしても塗膜の着色が起こりにくい。特に塗膜強度(例えばBayer試験での評価)を得ようとする場合は、膜厚が0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが特に好ましい。膜厚の上限は、特に限定されるものではないが、100μm以下であってもよく、50μm以下であってもよく、30μm以下であってもよい。
 [酸化チタン粒子の製造方法]
 本発明の酸化チタン粒子は、例えば、以下(1)~(3)の工程を備える製造方法を用いて調製することができる。なお、本発明の酸化チタン粒子の製造方法は、以下の製造方法に限定されるものではない。
(1)共沈ゲル調製工程
(2)水熱処理前駆体調製工程
(3)水熱処理工程
 以下、本発明の酸化チタン粒子の調製方法について、詳述する。
 (1)共沈ゲル調製工程
 この工程では、Ti、Fe、およびZrを含む水溶液を中和して、Ti、Fe、およびZrを含む共沈ゲルを調製する。Ti、Fe、およびZrを含む共沈ゲルを調製することで、最終的に得られるルチル型酸化チタンへのFeおよびZrの固溶がより促進される。
 Ti、Fe、およびZrを含む水溶液は、Ti源、Fe源、およびZr源を水に溶解して調製することができる。Ti源は、四塩化チタン、硫酸チタン、およびチタンアルコキシド等の従来公知の原料を使用することができる。また、Fe源は、塩化鉄、硫酸鉄、硝酸鉄、および酢酸鉄等の従来公知の原料を使用することができる。更に、Zr源は、塩化ジルコニウム、炭酸ジルコニウム、および硝酸ジルコニウム等の従来公知の原料を使用することができる。また、Ti、Fe、およびZrを含む水溶液のpHは、3以下であることが好ましい。
 この工程では、前述の水溶液を中和するために、pHが10以上のアルカリを使用することができる。例えば、水酸化ナトリウム、水酸化カリウム、またはアンモニア等が水に溶解したアルカリ水溶液を用いることができる。pHが4以上、10以下の範囲となるまで前述の水溶液とアルカリ水溶液とを混合することで、Ti、Fe、およびZrを含む共沈ゲルが生成する。この共沈ゲルは、濾過により回収することができ、必要によって水等を用いて洗浄してもよい。
 (2)水熱処理前駆体調製工程
 この工程では、前述の工程で得られた共沈ゲルを水に再分散し(解膠し)、水熱処理前駆体を調製する。
 共沈ゲルを解膠する方法は、従来公知の方法を用いることができる。例えば、共沈ゲルを水に分散させて超音波処理する方法、酸またはアルカリを用いて水に分散させる方法等を用いることができる。また、過酸化水素水を用いて解膠してもよい。このとき、最終的に得られる水熱処理前駆体中の固形分の濃度が10質量%以下となるように、水の量を調整することが好ましい。
 この工程で得られた水熱処理前駆体に含まれる固形分の平均粒子径は、5nm以上、50nm以下の範囲にあることが好ましく、10nm以上、40nm以下の範囲にあることがより好ましく、15nm以上、30nm以下の範囲にあることが特に好ましい。共沈ゲル水分散液に含まれる固形分の平均粒子径が大きくなると、最終的に得られるルチル型酸化チタンの平均粒子径も大きくなりやすい。したがって、共沈ゲル分散液に含まれる固形分の平均粒子径は、本発明のルチル型酸化チタン粒子の平均粒子径と近くなるように調整することが好ましい。
 この工程では、共沈ゲルを解膠した後、特定の元素成分を添加してもよい。例えば、Sn、Si、またはAl等の元素を含む原料を添加してもよい。これらの原料は、水溶性の原料であることが好ましい。また、水溶性でない場合は、ゾルのような微細な粒子の状態で分散している原料が好ましい。このとき、アルカリ金属、またはアルカリ土類金属等を含む塩を原料として用いる場合は、原料を溶解した後、陽イオン交換樹脂等を用いて、アルカリ金属、またはアルカリ土類金属を除去することが好ましい。
 (3)水熱処理工程
 この工程では、前述の工程で得られた水熱処理前駆体を水熱処理して、FeおよびZrが固溶したルチル型酸化チタン粒子を調製する。
 この工程では、オートクレーブ等の従来公知の器機を用いて、水熱処理前駆体を水熱処理することができる。水熱処理の温度は、100℃以上、250℃以下の範囲にあることが好ましく、120℃以上、220℃以下の範囲にあることがより好ましく、130℃以上、210℃以下の範囲にあることが特に好ましい。前述の温度域における保持時間は、1時間以上、48時間以下であることが好ましく、5時間以上、24時間以下であることがより好ましく、10時間以上、20時間以下の範囲にあることが特に好ましい。
 水熱処理を行った後の液中には本発明のルチル型酸化チタンが含まれており、必要によって分離、洗浄等を行ってもよい。また、分離したルチル型酸化チタンを焼成して、その結晶性を高めることもできる。
 本発明の酸化チタン粒子の表面に被覆層を形成する場合は、例えば、特開2009-155496号公報に記載の方法により形成することができる。また、本発明の酸化チタン粒子を有機溶媒に、または樹脂が分散した溶液に分散させる場合には、同公報に記載の方法を用いて、その表面または被覆層の表面を疎水化処理(表面処理)することもできる。
 [酸化チタン粒子を含む分散液の製造方法]
 本発明の酸化チタン粒子を含む分散液は、本発明の酸化チタン粒子を溶媒に分散する方法で調製することができる。酸化チタン粒子を溶媒に分散する方法は、従来公知の方法を用いることができる。例えば、本発明の酸化チタン粒子が粉末状である場合は、水、または有機溶媒等に添加した後、ビーズミル処理、または超音波処理等の分散処理を行うことで、分散液を調製することができる。このとき、分散液中の固形分の濃度を10質量%以下とすると、溶媒中に本発明の酸化チタン粒子をより分散させやすくなる。また、本発明の酸化チタン粒子のゼータ電位を測定し、分散に好適な範囲となるように、pHを調整することもできる。
 本発明の酸化チタン粒子を含む分散液の溶媒として有機溶媒を用いる場合は、例えば、
 メタノール、エタノール、エチレングリコール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、およびオクタノール等のアルコール類;
 酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、およびγ-ブチロラクトン等のエステル類;
 ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、およびジエチレングリコールモノエチルエーテル等のエーテル類;
 アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、およびシクロヘキサノン等のケトン類;
 ベンゼン、トルエン、キシレン、およびエチルベンゼン等の芳香族炭化水素;
 シクロヘキサン等の環状炭化水素;並びに;
 ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、およびN-メチルピロリドン等のアミド類が挙げられる。これらの有機溶媒は1種単独で用いてもよく、2種以上を併用してもよい。
 [酸化チタン粒子を含む塗膜形成用塗布液の製造方法]
 本発明の酸化チタン粒子を含む塗膜形成用塗布液は、本発明の酸化チタン粒子を用いて従来公知の方法で調製することができる。例えば、塗膜を形成するために必要な成分を前述の分散液に加えて調製することができる。この塗膜形成用塗布液は、熱硬化性塗膜形成用塗布液であってもよく、光硬化性塗膜形成用塗布液であってもよい。
 熱硬化性塗膜形成用塗布液の場合は、本発明の酸化チタン粒子を含む分散液に、マトリックス成分と、必要に応じて熱硬化用硬化触媒、または添加剤等を添加して、調製することができる。例えば、特開2000-204301号公報の記載に基づいて、塗布液を製造することができる。
 また、光硬化性塗膜形成用塗布液の場合は、本発明の酸化チタン粒子を含む分散液に、マトリックス成分と、必要に応じて光硬化用硬化触媒、添加剤等を添加して、調製することができる。例えば、特開2009-056387号公報の記載に基づいて、塗布液を製造することができる。
 前記マトリックス成分としては、例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、およびγ-メルカプトプロピルトリメトキシシランを用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 熱硬化用硬化触媒としては、例えば、n-ブチルアミン、トリエチルアミン、グアニジン、ビグアニジド等のアミン類、グリシン等のアミノ酸類、アルミニウムアセチルアセトナート、クロムアセチルアセトナート、チタニルアセチルアセトネート、コバルトアセチルアセトネート等の金属アセチルアセトナート、酢酸ナトリウム、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸亜鉛、オクチル酸スズ等の有機酸の金属塩類、過塩素酸、過塩素酸アンモニウム、過塩素酸マグネシウム等の過塩素酸類あるいはその塩、塩酸、リン酸、硝酸、パラトルエンスルホン酸等の酸、またはSnCl、AlCl、FeCl、TiCl、ZnCl、SbCl等のルイス酸である金属塩化物を用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 光硬化用硬化触媒としては、例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2-ヒドロキシ-メチル-2-メチル-フェニル-プロパン-1-ケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトンおよび2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンを用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 添加剤としては、例えば、界面活性剤、レベリング剤、紫外線吸収剤、光安定剤、希釈溶媒、防腐剤、防汚剤、抗菌剤、消泡剤、紫外線劣化防止剤および染料を用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 [酸化チタン粒子を含む塗膜付基材の製造方法]
 本発明の酸化チタン粒子を含む塗膜付基材は、基材と、前述の塗膜形成用塗布液とを用いて、従来公知の方法で調製することができる。
 基材としては、ガラス、またはプラスチック等からなる各種基材が挙げられ、具体例としては光学レンズ等として使用されるプラスチック基材が挙げられる。
 基材に形成する塗膜の膜厚は、塗膜付基材の用途によって異なるが、塗膜強度(例えばBayer試験での評価)を得ようとする場合は、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが特に好ましい。膜厚の上限は、特に限定されるものではないが、、100μm以下であってもよく、50μm以下であってもよく、30μm以下であってもよい。
 前述の熱硬化性塗膜形成用塗布液を用いて本発明の酸化チタン粒子を含む塗膜付基材を調整する場合は、例えば、特開2000-204301号公報の記載に基づいて製造することができる。また、前述の光硬化性塗膜形成用塗布液を用いた場合は、例えば、特開2009-56387号公報の記載に基づいて、塗布液を製造することができる。これらの塗膜形成用塗布液をディッピング法、スプレー法、スピナー法、ロールコート法、またはバーコーター法等の従来公知の方法で基材に塗布し、乾燥させ、加熱処理または紫外線照射等によって硬化させる方法で調製することができる。
 本発明に係る塗膜付基材を製造するに際し、基材、例えばプラスチック基材と塗膜との密着性を向上させる目的で、基材表面を予めアルカリ、酸または界面活性剤で処理したり、無機または有機微粒子で研磨処理したり、プライマー処理またはプラズマ処理を行ってもよい。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 [測定方法ないし評価方法]
 各種測定ないし評価は以下のように行った。
 [1]平均粒子径
 測定試料の形状を、走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製、S-5500)を用いて、30kVの加速電圧で観察した。観察用の試料は、以下のように作製した。測定試料の水分散ゾルを水で固形分濃度0.05質量%に希釈した後、コロジオン膜付金属グリッド(応研商事(株)製)に塗布し、250Wの赤外線ランプを30分間照射して溶媒を蒸発させて観察用の試料を作成した。得られたSEM像を印刷し、一次粒子100個についてノギスにて粒子径を計測し、その平均値を平均粒子径とした。なお、粒子の形状に異方性がある場合は、その長径を粒子径とした。
 [2]固形分濃度
 測定試料に含まれる溶媒を赤外線照射等により除去した後、残渣を1000℃で1時間焼成して強熱残分(固形分)を得た。試料の質量に対する強熱残分の質量の割合を固形分濃度とした。
 [3]粒子組成の測定方法
 (チタニウム、スズ、ケイ素、鉄およびアンチモン)
 測定試料(酸化チタン粒子等の無機酸化物粒子)の水分散液をジルコニアるつぼに採取し、赤外線照射により水分を除去した後、得られた乾燥物を、NaとNaOHを加えて加熱し、溶融させた。得られた溶融物に、さらに、硫酸および塩酸を加え、希釈のために水を加えた。
 ICP装置((株)島津製作所製、ICPS-8100)を用いて、得られた溶液中のチタニウム、スズ、ケイ素、鉄およびアンチモンの量を酸化物換算(TiO、SnO、SiO、FeおよびSb)で測定した。
 (ジルコニウム、モリブデン、アルミニウム)
 測定試料の水分散液を白金皿に採取し、フッ化水素酸と硫酸を加えて加熱した後、水を加えて、無機酸化物粒子を溶解させた。さらに、これを水で希釈した後、ICP装置((株)島津製作所製、ICPS-8100)を用いてジルコニウム、モリブデンおよびアルミニウムの量を酸化物換算(ZrO、MoOおよびAl)で測定した。
 (カリウム)
 測定試料の水分散液を白金皿に採取し、フッ化水素酸と硫酸を加えて加熱し、塩酸を加えて、固形分を溶解させた。さらに、これを水で希釈した後、原子吸光装置((株)日立製作所製、Z-5300)を用いてカリウムの量を酸化物換算(KO)で測定した。
 [4]粒子の結晶構造解析
 測定試料の水分散液を、磁製ルツボ(B-2型)に固形分重量として2g分を採取し、110℃で12時間乾燥させた後、残渣をデシケーターに入れて室温まで冷却した。次に、残渣と少量のチタン酸ストロンチウム((株)高純度化学研究所製)を混合して15分間粉砕した後、X線回折装置SmartLab((株)リガク製)を用いて粉末X線回折を測定した。得られた回折パターンについては、PDXL2 version2.7.2.0のソフトウェアを用いてピーク位置の特定を行い、少量混合したチタン酸ストロンチウムの(110)面に由来するピーク(2θ)が32.374degとなるように補正した。測定条件およびデータ解析の詳細については以下の通りとした。
・測定条件
 測定装置:粉末X線回折測定装置SmartLab((株)リガク製)
 X線発生装置:9kW開放管(CuKα線源、電圧45kV、電流200mA)
 Soller/PSC:5.0deg
 IS長手:10.0mm
 PSA:なし
 Soller:5.0deg
 IS:1/2
 RS1:13mm
 RS2:20mm
 スキャンステップ:0.02deg
 スキャン範囲:5-70deg
 スキャンスピード:5deg/min
 X線検出器:高速1次元X線検出器(D/TeX Ultra 250)
 測定雰囲気:大気下
 試料台:Al製試料ホルダー(底なし)
・データ解析
 解析ソフトウェア:統合粉末X線解析ソフトウェア PDXL2 Version 2.7.2.0((株)リガク製)
 平滑化:B-Splneによる平滑化(X閾値1.5)
 バックグラウンド除去:フィッティング方式
 Kα2除去:強度比0.497
 ピークサーチ:2次微分法、σカット値=3、σカット範囲0.5~20.0
 プロファイルフィッティング方法:測定データに対してフィッティング
 プロファイルフィッティング ピーク形状:分割型擬Voigt関数
 [5]酸化チタン粒子の光触媒活性抑制効果の評価(退色速度の測定)
 Tiの質量濃度(TiO換算)が0.335%かつ、水/メタノール=1/1(質量比)となるように、酸化チタン粒子分散液に適宜溶媒を加えた。次いで、得られた分散液と固形分濃度0.02質量%のサンセットイエローFCF染料のグリセリン溶液とを質量比(分散液質量/グリセリン溶液質量)が1/3となるように混合して試料を調製し、これを奥行き1mm、幅1cm、高さ5cmの石英セルに入れた。次に、I線(波長365nm)の波長域が選択された紫外線ランプ(AS ONE社製LUV-6)を用いて、前記石英セルの幅1cm×高さ5cmの面に対して強度が0.4mW/cm(波長365nm換算)となるように距離を調整し、紫外線を照射した。
 前記試料の波長490nmにおける紫外線照射前の吸光度(A)およびn時間紫外線照射後の吸光度(A)を紫外可視光分光光度計(JASCO社製、V-550)で測定し、以下の式からUV照射3時間時点での染料の退色率(SY退色率)を算出した。
  退色率=(A-A)/A×100(%)
 [6]塗膜の膜厚および屈折率の測定方法
 光学測定装置(OLYMPUS社製USPM-RU III)を用いて塗膜および塗布基板の反射率スペクトルを測定し、塗膜の膜厚および屈折率を算出した。
 [7]粒子屈折率の測定方法
 特開2010-168266号公報の[0105]~[0110]に記載の方法により、酸化チタン微粒子とマトリックスとの比が異なる塗膜を複数作製し、上記の方法で各塗膜の屈折率を求めて、それらから粒子屈折率を算出した。
 [8]熱硬化塗膜の耐候性評価
 熱硬化塗膜付基材について、耐候性試験機(Q-Lab社製:紫外線蛍光ランプ式促進耐候試験機QUV)を用いて耐候性試験を行い、目視でクラックが確認されるまでの時間を評価した。耐候性試験条件は、以下のステップ1、2および3を1サイクル(12時間)として、クラックの有無を目視観察した。
[耐候性試験条件]
・ステップ1:UV照射(光源:UVA-340、放射強度:0.70W/m、温度:60℃、時間:8時間)
・ステップ2:結露(光源:無し、温度:50℃、時間:4時間)
・ステップ3:ステップ1に戻る。
[評価方法]
・環境:10ルクス以下
・観察方法:LEDライトを熱硬化塗膜付基材の横方向から照射しクラックの有無を目視観察した。
 [9]酸化チタン粒子の着色量評価(YI値)
 酸化チタン粒子を水分散体として固形分濃度が5質量%となるように調整して、光路長10mmの石英セルに入れ、その吸収スペクトルを紫外可視分光光度計(JASCO製:V-750)にて測定し、標準イルミナントD65におけるXYZ表色系に換算した。このXYZ表色系から、JIS K7373:2006に定める標準イルミナントD65を使用し、XYZ表色系を用いる場合のYI値の求め方に則り、下記の式でYI値を算出した。
  YI=100(1.2985X-1.1335Z)/Y
 [10]Bayer試験
 磨耗試験機BTE(COLTS Laboratories社製)およびヘーズ値測定装置(日本電色工業株式会社製NDH5000)を使用し、プラスチックレンズ基板(後述する試験片。以下「被試験レンズ」ともいう。)と基準レンズとのヘーズ値の変化に基づいてBayer値を算出した。基準レンズとしては、市販のプラスチックレンズ基材であるCR-39(ジエチレングリコールビスアリルカーボネート、PPG社製モノマー使用、基材の屈折率1.50)を使用した。
 具体的には、まずそれぞれのレンズのヘーズ値を測定し、基準レンズの初期ヘーズ値をD(std0)、被試験レンズの初期ヘーズ値をD(test0)とした。それぞれのレンズを上記磨耗試験機のパンに設置し、その上に専用砂(Kryptonite β)500gを充填し、パンを150回/分で4分間(計600回)左右に振動させた。振動後のレンズのヘーズ値を測定し、基準レンズのヘーズ値をD(stdf)、被試験レンズのヘーズ値をD(testf)とした。Bayer試験値(R)を以下の数式から算出した。
 R=[D(stdf)-D(std0)]/[D(testf)-D(test0)]
 [実施例1:ルチル型酸化チタン粒子調製]
 (1)共沈ゲル調製工程
 TiをTiO換算で7.75質量%含む四塩化チタン水溶液(大阪チタニウムテクノロジーズ(株)製)668gと、FeをFe換算で7.75質量%含む塩化第二鉄(東亜合成(株)製、高品位過鉄)の水溶液6.03gと、ZrをZrO換算で7.75質量%含むオキシ塩化ジルコニウム(太陽鉱工(株)製)54.7gと、アンモニアを15質量%含むアンモニア水(宇部興産(株)製)とを混合し、pH9.5の白色スラリーを調製した。次いで、このスラリーを濾過した後、濾物を水で洗浄して、固形分濃度が10質量%でFe、ZrおよびTiを含む共沈ゲルを560g得た。
 (2)水熱処理前駆体調製工程
 前述の工程で得られた共沈ゲル202gに、過酸化水素を35質量%含む過酸化水素水(三菱瓦斯化学(株)製)347gおよび水1145gを加えた後、80℃、1時間撹拌し、さらに水328gを加えて、共沈ゲルの解膠液を2020g得た。この解膠液は、黄色透明であり、そのpHは8.5であり、解膠液中の粒子の平均粒子径(動的散乱法(大塚電子社製、ELS-Z)を用いて得られた粒度分布データから、キュムラント解析を用いて算出した値)は25nmであった。
 この解膠液(2020g)に陽イオン交換樹脂(三菱化学(株)製)を混合した後、スズ酸カリウム(昭和化工(株)製)をSnO換算で1質量%含むスズ酸カリウム水溶液273gを撹拌下で徐々に添加した。
 得られた解膠液に含まれる陽イオン交換樹脂を分離した後、アルミニウムをAl換算で0.4質量%含有するシリカゾル(平均粒子径16nm(動的散乱法を用いて得られた値)、比表面積375m/g、pH2.2、固形分濃度16質量%:特開2009-197078号公報の実施例1「シリカゾルの調製」に記載された方法を参考に調製)32.5gおよび水508gを混合して、水熱処理前駆体を調製した。
 (3)水熱処理工程
 前述の工程で得られた水熱処理前駆体をオートクレーブ(耐圧硝子工業(株)製、5L)中で165℃、18時間、加熱した。これを室温まで冷却して、ゾル状の反応物を回収した。この反応物を、限外濾過膜装置(旭化成(株)製、SIP-1013、SIP-0013)で濃縮して、固形分濃度が10質量%の水分散ゾル270gを得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、鉄、ジルコニウム、スズ、ケイ素、アルミニウムおよびカリウムを含む酸化チタン粒子であった。この酸化チタン粒子の組成(Ti含有量(TiO換算)、添加元素含有量(Tiに対するモル%)、Zr/Feモル比)および諸物性、各評価結果を表1に示す。なお、添加元素を鉄、ジルコニウム、スズおよびケイ素として各含有量を算出すると、それぞれ、Feが0.07mol%であり、Zrが4.0mol%であり、Snが5.3mol%であり、Siが19.7mol%であった。
 [実施例1:塗膜形成用塗料調製]
 オキシ塩化ジルコニウム(太陽鉱工(株)製)をZrO換算で2質量%含むオキシ塩化ジルコニウム水溶液2.63kgに、アンモニアを15質量%含むアンモニア水を撹拌下で徐々に添加して、pH8.5のスラリーを得た。次いで、このスラリーを濾過して得られた固形分を、水で洗浄して、ZrO換算で10質量%含むジルコニアケーキ526gを得た。
 前述のケーキ20gに水180gを加え、さらに水酸化カリウム(関東化学(株)製)を85質量%含む水酸化カリウム顆粒4.0gを加えて系内をアルカリ性にした後、過酸化水素を35質量%含む過酸化水素水40gを加えて、50℃の温度に加熱してこのケーキを溶解した。さらに、水156gを加えて、ZrO換算で0.5質量%含む過酸化ジルコン酸水溶液を400g得た。この過酸化ジルコン酸水溶液のpHは12.9であった。
 前述の工程で得られた酸化チタン粒子を含む水分散ゾルを水で希釈し、固形分濃度2質量%のゾル700gを調製した。このゾルに前述の工程で得られた過酸化ジルコン酸水溶液を196g室温下で添加、撹拌して、過酸化ジルコン酸水溶液混合物を得た。
 前述の工程で得られた過酸化ジルコン酸水溶液混合物を60℃、6時間で加熱処理した後、室温まで冷却した。これを、固形分濃度が0.1質量%となるように水にて希釈した後、オートクレーブにて165℃、18時間の水熱処理を行った。反応物を取り出した後に限外濾過膜装置(旭化成(株)製、SIP-1013、SIP-0013)で濃縮して、固形分濃度が10質量%のジルコニア被覆酸化チタン粒子の水分散液145gを得た。
 前述の工程で得られた水分散液140gを、表面処理剤としてテトラエトキシシラン(多摩化学工業(株)製)10.7gを溶解したメタノール溶液に、撹拌下で添加した。次に、得られた混合液を50℃の温度に6時間加熱した後、室温まで冷却してから、限外濾過膜装置(旭化成(株)製、SIP-0013)を用いて混合液中の分散媒を水からメタノールに置換した後、さらに濃縮して、固形分濃度が20質量%のメタノール分散液を得た。
 前述の工程で得られたメタノール分散液6.63gを撹拌し、精製水1.97g、γ-グリシドキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)3.02gを加えた。更に室温で一時間撹拌して、前記メタノール分散液とγ―グリシドキシプロピルトリメトキシシランの共加水分解を行った。
 次いで、この混合液に、プロピレングリコールモノメチルエーテル(ダウケミカル日本(株)製)を6.92g、アセチルアセトンアルミニウム(キシダ化学製)を0.071g、およびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7001)を0.071g加えて、室温で一時間撹拌した後、室温にて48時間静置した。これにより、熱硬化性塗膜形成用塗料を調製した。
 [実施例1:塗膜付基材調製]
 [プラスチックレンズ基材の前処理]
 市販の屈折率1.60のプラスチックレンズ基材(三井化学(株)製の「モノマー名:MR-8」)を必要な枚数準備し、40℃に保った8質量%濃度のNaOH水溶液に10分間浸漬してエッチング処理を行った。更にこれを取り出して水洗した後、十分に乾燥させた。
 [熱硬化塗膜付基材調製]
 前述の工程で得られたプラスチックレンズ基材の表面に、前述の工程で得られた熱硬化性塗膜形成用塗料を塗布し、塗膜を形成した。この塗料の塗布にはスピンコート法を用い、硬化後の膜厚が2.5μmとなるように条件を調整した。前記塗膜を80℃で10分、次いで120℃で1時間、加熱処理して硬化させ、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例2]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、塩化第二鉄水溶液を17.7g加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例3]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、塩化第二鉄(東亜合成(株)製、高品位過鉄)水溶液を60.3g加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例4]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、塩化第二鉄(東亜合成(株)製、高品位過鉄)水溶液を106g加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例5]
 実施例3のルチル型酸化チタン粒子調製(2)水熱処理前駆体調製工程において、解膠液(2020g)に対して、スズ酸カリウム(昭和化工(株)製)をSnO換算で1質量%含むスズ酸カリウム水溶液205gを加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例6]
 実施例3のルチル型酸化チタン粒子調製(2)水熱処理前駆体調製工程において、解膠液(2020g)に対して、スズ酸カリウム(昭和化工(株)製)をSnO換算で1質量%含むスズ酸カリウム水溶液410gを加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例7]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、ZrをZrO換算で7.75質量%含むオキシ塩化ジルコニウム(太陽鉱工(株)製)の量を5.47gとすること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例8]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、ZrをZrO換算で7.75質量%含むオキシ塩化ジルコニウム(太陽鉱工(株)製)の量を9.30gとすること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例9]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、ZrをZrO換算で7.75質量%含むオキシ塩化ジルコニウム(太陽鉱工(株)製)の量を27.4gとすること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例10]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、ZrをZrO換算で7.75質量%含むオキシ塩化ジルコニウム(太陽鉱工(株)製)の量を82.1gとすること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例11]
 実施例3のルチル型酸化チタン粒子調製(2)水熱処理前駆体調製工程において、解膠液(809g)に対して、スズ酸カリウム(昭和化工(株)製)をSnO換算で1質量%含むスズ酸カリウム水溶液1483gを加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例12]
 実施例3のルチル型酸化チタン粒子調製(2)水熱処理前駆体調製工程において、解膠液(353g)に対して、スズ酸カリウム(昭和化工(株)製)をSnO換算で1質量%含むスズ酸カリウム水溶液1943gを加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例13]
 実施例3のルチル型酸化チタン粒子調製(2)水熱処理前駆体調製工程において、アルミニウムをAl換算で0.4質量%含有するシリカゾル(平均粒子径16nm(動的散乱法を用いて得られた値)、比表面積375m/g、pH2.2、固形分濃度16質量%:特開2009-197078号公報の実施例1「シリカゾルの調製」に記載された方法を参考に調製)の添加量を24.8g、次いで添加する水の量を388gとする以外は同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例14]
 実施例3のルチル型酸化チタン粒子調製(2)水熱処理前駆体調製工程において、アルミニウムをAl換算で0.4質量%含有するシリカゾル(平均粒子径16nm(動的散乱法を用いて得られた値)、比表面積375m/g、pH2.2、固形分濃度16質量%:特開2009-197078号公報の実施例1「シリカゾルの調製」に記載された方法を参考に調製)の添加量を53.8g、次いで添加する水の量を841gとする以外は同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [実施例15]
 実施例3と同様にして得られた熱硬化性塗膜形成用塗料を用い、スピンコート条件を硬化後の膜厚が0.1μmとなるように調整した以外は同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表1に示す。
 [比較例1]
 実施例1で得た酸化チタン粒子の代わりに酸化チタン粒子(酸化チタン(IV)、ルチル型、-5μm、99.9%(富士フイルム和光純薬(株)製))を用いること以外は同様にして、熱硬化塗膜付基材を得た。これら酸化チタン粒子および熱硬化塗膜付基材の評価結果等を表2に示す。
 [比較例2]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、塩化第二鉄水溶液およびオキシ塩化ジルコニウムを加えないこと以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表2に示す。
 [比較例3]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、オキシ塩化ジルコニウムを加えないこと以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表2に示す。
 [比較例4]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、オキシ塩化ジルコニウムを加えないこと、塩化第二鉄水溶液を177g加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表2に示す。
 [比較例5]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、FeをFe換算で7.75質量%含む塩化第二鉄(東亜合成(株)製、高品位過鉄)水溶液を加えないこと以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表2に示す。
 [比較例6]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、塩化第二鉄(東亜合成(株)製、高品位過鉄)水溶液を加えずにMoをMoO換算で7.75質量%含む塩化モリブデン(V)(富士フイルム和光純薬(株))を109g加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表2に示す。
 [比較例7]
 実施例1のルチル型酸化チタン粒子調製(1)共沈ゲル調製工程にて、塩化第二鉄(東亜合成(株)製、高品位過鉄)水溶液を加えずに塩化アンチモン(III)13.4gを加えること以外は同様の方法で水分散ゾルを得た。得られた水分散ゾルに含まれる粒子の組成および諸物性、各評価結果を表1に示す。また、この水分散ゾルを用いたこと以外は、実施例1の塗膜形成用塗料調製および熱硬化塗膜付基材調製と同様にして、熱硬化塗膜付基材を得た。この熱硬化塗膜付基材の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 FeおよびZrを含む実施例1~6の酸化チタン粒子の(110)面の面間隔は、これらを含まない比較例1の酸化チタン粒子と比べて大きい。また、Feが固溶した酸化チタンである比較例3は、FeおよびZrの両方が固溶した実施例1~6と比べて、YI値が同等で塗膜付基材の着色は少ないものの、SY退色率が高く、塗膜付基材の耐候性が低い(より短時間でクラックが発生する。)。Feの含有量を増やした比較例4と実施例1~6とを比較すると、SY退色率が低く、塗膜付基材の耐候性は高いものの、YI値が高く塗膜付基材の着色が多い。更に、Zrが固溶した酸化チタンである比較例5は、実施例1~6と比べて、YI値が低く塗膜付基材の着色は少ないものの、SY退色率が高く、塗膜付基材の耐候性が低い。このように、Fe、Zrの両方を酸化チタン粒子に固溶することで、着色が少なく、耐QUVクラック性が高い塗膜付基材が得られることがわかる。更に、MoおよびZrが固溶した酸化チタンである比較例6、SbおよびZrが固溶した酸化チタンである比較例7は、いずれも塗膜付基材の耐候性が低く、Fe、Zrの両方を固溶させることが重要であると考えられる。

Claims (10)

  1.  FeおよびZrが固溶しており、
     X線回折測定により得られる(110)面の面間隔が0.3250nm以上であり、
     平均粒子径が5nm以上、50nm以下の範囲にある、
     ルチル型酸化チタン粒子。
  2.  Tiの含有量が、ルチル型酸化チタン粒子の全量に対して、TiO換算で、40質量%以上、90質量%以下の範囲にある、請求項1に記載のルチル型酸化チタン粒子。
  3.  Feの含有量が、Tiに対するモル%で、0.01モル%以上、5モル%以下の範囲にある、請求項1に記載のルチル型酸化チタン粒子。
  4.  Zrの含有量が、Tiに対するモル%で、0.1モル%以上、15モル%以下の範囲にある、請求項1に記載のルチル型酸化チタン粒子。
  5.  Snの含有量が、Tiに対するモル%で1モル%以上、30モル%以下の範囲にある、請求項1に記載のルチル型酸化チタン粒子。
  6.  Siの含有量が、Tiに対するモル%で、5モル%以上、70モル%以下の範囲にある、請求項1に記載のルチル型酸化チタン粒子。
  7.  Zr/Feモル比が、1以上である、請求項1~請求項6のいずれか1項に記載のルチル型酸化チタン粒子。
  8.  請求項1に記載のルチル型酸化チタン粒子を含む、分散液。
  9.  請求項1に記載のルチル型酸化チタン粒子とマトリックス形成成分とを含む、塗膜形成用塗布液。
  10.  請求項1に記載のルチル型酸化チタン粒子を含む、塗膜付基材。
PCT/JP2022/019882 2021-05-11 2022-05-11 ルチル型酸化チタン粒子、分散液、塗膜形成用塗布液、および塗膜付基材 WO2022239788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22807487.8A EP4339159A1 (en) 2021-05-11 2022-05-11 Rutile titanium oxide particles, dispersion, coating solution for film formation, and substrate with coating film
CN202280033973.8A CN117295691A (zh) 2021-05-11 2022-05-11 金红石型氧化钛颗粒、分散液、涂膜形成用涂布液和带涂膜的基材
JP2023521214A JPWO2022239788A1 (ja) 2021-05-11 2022-05-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-080602 2021-05-11
JP2021080602 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022239788A1 true WO2022239788A1 (ja) 2022-11-17

Family

ID=84029688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019882 WO2022239788A1 (ja) 2021-05-11 2022-05-11 ルチル型酸化チタン粒子、分散液、塗膜形成用塗布液、および塗膜付基材

Country Status (4)

Country Link
EP (1) EP4339159A1 (ja)
JP (1) JPWO2022239788A1 (ja)
CN (1) CN117295691A (ja)
WO (1) WO2022239788A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052102A (ja) 1991-06-25 1993-01-08 Catalysts & Chem Ind Co Ltd ハードコート膜およびハードコート膜付基材
JPH0753215A (ja) * 1993-08-17 1995-02-28 Titan Kogyo Kk 二酸化チタン微粉末およびその製造方法
JPH07187676A (ja) * 1993-12-27 1995-07-25 Titan Kogyo Kk 二酸化チタン微粉末およびその製造方法
US5714260A (en) * 1993-12-13 1998-02-03 Ishihara Sangyo Kaisha, Ltd. Ultrafine iron-containing rutile titanium oxide and process for producing the same
JPH11172152A (ja) 1997-12-16 1999-06-29 Catalysts & Chem Ind Co Ltd ハードコート膜形成用塗布液およびハードコート膜付基材
JPH11292996A (ja) * 1998-04-08 1999-10-26 Daikin Ind Ltd 熱可塑性樹脂フィルムおよびその用途
JP2000204301A (ja) 1999-01-14 2000-07-25 Catalysts & Chem Ind Co Ltd 被膜形成用塗布液および合成樹脂製レンズ
WO2009035019A1 (ja) * 2007-09-12 2009-03-19 M.Technique Co., Ltd. 二酸化チタン超微粒子及びその製造方法
JP2009056387A (ja) 2007-08-31 2009-03-19 Jgc Catalysts & Chemicals Ltd ハードコート膜付基材およびハードコート膜形成用塗布液
JP2009155496A (ja) 2007-12-27 2009-07-16 Jgc Catalysts & Chemicals Ltd コアシェル構造を有する無機酸化物微粒子、該微粒子を含む分散ゾルおよび光学基材用塗布液
JP2009197078A (ja) 2008-02-20 2009-09-03 Jgc Catalysts & Chemicals Ltd ハードコート層形成用塗料組成物および光学物品
JP2010168266A (ja) 2008-12-27 2010-08-05 Jgc Catalysts & Chemicals Ltd 高屈折率金属酸化物微粒子の水分散ゾル、その調製方法および該金属酸化物微粒子の有機溶媒分散ゾル
WO2018181241A1 (ja) * 2017-03-31 2018-10-04 日揮触媒化成株式会社 鉄含有ルチル型酸化チタン微粒子分散液の製造方法、鉄含有ルチル型酸化チタン微粒子およびその用途
WO2021200135A1 (ja) * 2020-03-31 2021-10-07 日揮触媒化成株式会社 ジルコニア被覆酸化チタン微粒子の製造方法、ジルコニア被覆酸化チタン微粒子およびその用途

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052102A (ja) 1991-06-25 1993-01-08 Catalysts & Chem Ind Co Ltd ハードコート膜およびハードコート膜付基材
JPH0753215A (ja) * 1993-08-17 1995-02-28 Titan Kogyo Kk 二酸化チタン微粉末およびその製造方法
US5714260A (en) * 1993-12-13 1998-02-03 Ishihara Sangyo Kaisha, Ltd. Ultrafine iron-containing rutile titanium oxide and process for producing the same
JPH07187676A (ja) * 1993-12-27 1995-07-25 Titan Kogyo Kk 二酸化チタン微粉末およびその製造方法
JPH11172152A (ja) 1997-12-16 1999-06-29 Catalysts & Chem Ind Co Ltd ハードコート膜形成用塗布液およびハードコート膜付基材
JPH11292996A (ja) * 1998-04-08 1999-10-26 Daikin Ind Ltd 熱可塑性樹脂フィルムおよびその用途
JP2000204301A (ja) 1999-01-14 2000-07-25 Catalysts & Chem Ind Co Ltd 被膜形成用塗布液および合成樹脂製レンズ
JP2009056387A (ja) 2007-08-31 2009-03-19 Jgc Catalysts & Chemicals Ltd ハードコート膜付基材およびハードコート膜形成用塗布液
WO2009035019A1 (ja) * 2007-09-12 2009-03-19 M.Technique Co., Ltd. 二酸化チタン超微粒子及びその製造方法
JP2009155496A (ja) 2007-12-27 2009-07-16 Jgc Catalysts & Chemicals Ltd コアシェル構造を有する無機酸化物微粒子、該微粒子を含む分散ゾルおよび光学基材用塗布液
JP2009197078A (ja) 2008-02-20 2009-09-03 Jgc Catalysts & Chemicals Ltd ハードコート層形成用塗料組成物および光学物品
JP2010168266A (ja) 2008-12-27 2010-08-05 Jgc Catalysts & Chemicals Ltd 高屈折率金属酸化物微粒子の水分散ゾル、その調製方法および該金属酸化物微粒子の有機溶媒分散ゾル
WO2018181241A1 (ja) * 2017-03-31 2018-10-04 日揮触媒化成株式会社 鉄含有ルチル型酸化チタン微粒子分散液の製造方法、鉄含有ルチル型酸化チタン微粒子およびその用途
WO2021200135A1 (ja) * 2020-03-31 2021-10-07 日揮触媒化成株式会社 ジルコニア被覆酸化チタン微粒子の製造方法、ジルコニア被覆酸化チタン微粒子およびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU HUIFANG, WANG YIFENG: "Use of linear free energy relationship to predict Gibbs free energies of formation of zirconolite phases (MZrTi2O7 and MHfTi2O7)", JOURNAL OF NUCLEAR MATERIALS, ELSEVIER B.V., NETHERLANDS, vol. 275, no. 2, 1 January 1999 (1999-01-01), NETHERLANDS , pages 211 - 215, XP009540983, ISSN: 0022-3115, DOI: 10.1016/S0022-3115(99)00190-7 *

Also Published As

Publication number Publication date
JPWO2022239788A1 (ja) 2022-11-17
CN117295691A (zh) 2023-12-26
EP4339159A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
CN110809561B (zh) 含铁金红石型氧化钛微粒分散液的制造方法、含铁金红石型氧化钛微粒及其用途
KR101437200B1 (ko) 표면 피복된 이산화티탄졸, 그 제조법 및 그것을 포함한 코팅 조성물
KR101907882B1 (ko) 이산화규소-산화제2주석 복합산화물 피복 산화티탄 함유 금속 산화물 입자
KR100809758B1 (ko) 주석 변성 루틸형 산화티탄 미립자
JP5182533B2 (ja) 金属酸化物複合ゾル、コーティング組成物及び光学部材
EP2708513A1 (en) Core/shell type tetragonal titanium oxide particle water dispersion, making method, uv-shielding silicone coating composition and coated article
WO2021200135A1 (ja) ジルコニア被覆酸化チタン微粒子の製造方法、ジルコニア被覆酸化チタン微粒子およびその用途
JP2012056816A (ja) コアシェル型無機酸化物微粒子の分散液、その製造方法および該分散液を含む塗料組成物
EP3725855A1 (en) Coating composition containing silane compound containing nitrogen-containing ring
JP5511368B2 (ja) 高屈折率金属酸化物微粒子を含む有機溶媒分散ゾルの調製方法並びにその有機溶媒分散ゾル、および該有機溶媒分散ゾルを用いて得られる塗料組成物
JP6253484B2 (ja) 塗料組成物、ハードコート層およびハードコート層付き光学基材ならびにこれらの製造方法
WO2022239788A1 (ja) ルチル型酸化チタン粒子、分散液、塗膜形成用塗布液、および塗膜付基材
JP4195254B2 (ja) ルチル型二酸化チタン微粒子およびその製造方法
WO2024106401A1 (ja) 酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材
US20240254343A1 (en) Rutile titanium oxide particles, dispersion, coating solution for film formation, and substrate with coating film
JP2023111520A (ja) 塗料組成物
JP2024072474A (ja) プライマー層形成用塗料組成物
JP6232310B2 (ja) 塗料組成物、塗膜および塗膜付き光学物品
TW202130582A (zh) 二氧化鈦微粒子之有機溶劑分散體及其製造方法,與其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521214

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18289452

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280033973.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022807487

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807487

Country of ref document: EP

Effective date: 20231211