WO2022239657A1 - Resin film and method for manufacturing same, metallized resin film, and printed wiring board - Google Patents

Resin film and method for manufacturing same, metallized resin film, and printed wiring board Download PDF

Info

Publication number
WO2022239657A1
WO2022239657A1 PCT/JP2022/019095 JP2022019095W WO2022239657A1 WO 2022239657 A1 WO2022239657 A1 WO 2022239657A1 JP 2022019095 W JP2022019095 W JP 2022019095W WO 2022239657 A1 WO2022239657 A1 WO 2022239657A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin film
metal oxide
polyimide
fumed metal
Prior art date
Application number
PCT/JP2022/019095
Other languages
French (fr)
Japanese (ja)
Inventor
卓 伊藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202280033445.2A priority Critical patent/CN117279782A/en
Priority to JP2023520971A priority patent/JPWO2022239657A1/ja
Priority to KR1020237042216A priority patent/KR20240006611A/en
Publication of WO2022239657A1 publication Critical patent/WO2022239657A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a resin film and its manufacturing method, as well as a metallized resin film and a printed wiring board.
  • a printed wiring board which has a circuit made of metal conductors on an insulating substrate, is widely used as a component that expresses the functions of electronic devices by mounting various electronic components on the printed wiring board.
  • printed wiring boards are required to have narrower pitches of circuit wiring.
  • (a) flexible printed wiring boards, (b) rigid-flex boards, (c) multilayer flexible boards, and (d) COFs (chip-on-films), etc. which can be folded and stored compactly inside electronic devices.
  • COFs chip-on-films
  • Patent Document 1 discloses a method of bonding a thin-film copper foil with a carrier to a polyimide sheet.
  • Patent Document 2 discloses a method of forming a metal layer on a polyimide film using a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method.
  • Patent Document 3 discloses an example in which a material containing a polyimide resin having a silicone structure and fumed silica is directly plated with copper by electroless plating.
  • One embodiment of the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel resin film having excellent solder resistance and adhesion, a method for producing the same, and a metallization obtained from the resin film. It is to provide a resin film and a printed wiring board.
  • the layer A containing the polyimide resin and the fumed metal oxide is a heat-resistant resin film having a linear expansion coefficient of 20 ppm / ° C. or less, and at least one surface of the layer B. and the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
  • the layer A containing a polyimide resin and a fumed metal oxide is a heat-resistant resin film having a linear expansion coefficient of 20 ppm / ° C. or less.
  • the layer A formed on one surface and having a linear expansion coefficient of the polyimide resin of 30 ppm/° C. or more and 100 ppm/° C. or less and containing a polyimide resin and a fumed metal oxide is a polyamide precursor of the polyimide resin. It is obtained by mixing an acid solution and a fumed metal oxide and imidating the obtained fumed metal oxide-dispersed polyamic acid solution.
  • a material and method that exhibit excellent solder heat resistance and can be used for narrow-pitch circuit formation, specifically, excellent solder heat resistance and strong adhesion to a low-roughness surface It is possible to provide a resin film capable of forming an electroless plated layer showing
  • Patent Document 1 irregularities are intentionally formed on the copper foil surface in order to ensure the adhesion between the insulating base material and the copper foil. Therefore, in Patent Document 1, although the thickness of the copper layer is usually thinner than the limit of the copper foil, there is an adverse effect on the circuit shape in the etching process, there is a limit to narrowing the pitch, and there is an adverse effect on the transmission characteristics. be.
  • metals such as nickel, chromium, vanadium, titanium, and molybdenum are formed on the substrate surface by physical vapor deposition.
  • metals such as nickel, chromium, and titanium cannot be completely removed only by etching with an etchant for copper during circuit formation. There is a problem that an etchant needs to be used and the process is complicated.
  • Patent Document 3 discloses a resin film capable of forming an electroless plated layer on a low-roughness surface, there is room for improvement in terms of solder resistance and the like.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel resin film having excellent solder resistance and adhesion, a method for producing the same, and a metallized resin obtained from the resin film. It is to provide films and printed wiring boards.
  • One embodiment of the present invention is, for example, a material (resin film) that exhibits excellent solder heat resistance and is compatible with narrow-pitch circuit formation, and a method therefor.
  • An object of the present invention is to provide a resin film capable of forming an electroless plated layer exhibiting strong adhesion to a rough surface, and a method for producing the same.
  • Another object of one embodiment of the present invention is to provide a metallized resin film and a printed wiring board obtained from the resin film.
  • the layer A containing the polyimide resin and the fumed metal oxide is formed on at least one surface of the layer B, which is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less. and the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
  • the resin film according to one embodiment of the present invention has the advantage of being excellent in solder resistance and adhesiveness due to the above configuration.
  • adhesion is evaluated by peel strength (N/cm)
  • solder resistance is evaluated by moisture absorption solder heat resistance.
  • a layer A (also referred to as layer A) containing a polyimide resin and a fumed metal oxide will be described.
  • Layer A of one embodiment of the present invention essentially comprises a polyimide resin and a fumed metal oxide.
  • the adhesion between the resin film and the electroless metal plating layer especially the adhesion immediately after forming the electroless metal plating layer without heating, etc., can be greatly improved. It describes below about the way of thinking of the expression mechanism of adhesiveness.
  • the electroless metal plating process consists of multiple independent chemical baths. These chemical baths are controlled under prescribed conditions (concentration, temperature, etc.), and the surface of the object to be plated is brought into contact with these chemicals for a prescribed period of time by means of immersion, showering, etc., and the surface undergoes chemical changes, such as causes a physical shape change.
  • These chemical solutions contain various components, and their pH varies depending on the type of chemical solution, and some chemical solutions exhibit strong alkalinity and strong acidity.
  • both the polyimide resin and the fumed metal oxide essential for one embodiment of the present invention interact with these chemicals, causing changes in chemical structure and physical shape, and electroless metal plating. It is thought that it has an effect on the improvement of adhesion with.
  • fumed metal oxides and polyimide resins undergo chemical changes in alkaline environments.
  • fumed metal oxides dissolve in alkaline environments to produce ionic metal oxides.
  • a polyimide resin produces an ionic amic acid group through an imide ring cleavage reaction in an alkaline environment.
  • ionic compounds such as ionic metal oxides and ionic amic acid groups
  • react with metal ions in the electroless metal plating bath to A compound derived from the three components of "polyimide resin” can be formed at the interface between the polyimide resin and the metal plating. It is believed that the compound contributes to the adhesion, and as a result, the adhesion between the polyimide resin and the metal plating is enhanced.
  • the dissolution rate of polyimide resin and fumed metal oxide in an alkaline environment is thought to be affected by the chemical structure and aggregate structure of polyimide resin, and the chemical structure and specific surface area of fumed metal oxide, respectively.
  • Layer A containing the polyimide resin and fumed metal oxide of one embodiment of the present invention is exposed to an alkaline environment, dissolution occurs according to the respective dissolution rates of the polyimide resin and the fumed metal oxide.
  • the layer A of one embodiment of the present invention has a structure in which a fumed metal oxide exists in a state of being buried in a polyimide resin phase.
  • the surface of the layer A has the same particle size as the fumed metal oxide, depending on the dissolution rate of each of the polyimide resin and the fumed metal oxide in alkaline chemicals.
  • the surface area of layer A can be increased as a result of the generation of fine irregularities. It is considered that the increase in the surface area of the layer A also contributes to the improvement in adhesion strength.
  • the fumed metal oxide essential to one embodiment of the present invention has a structure in which primary particles are aggregated, and exists in a state of being buried in the polyimide resin phase.
  • a part of certain structural units of the fumed metal oxide essential for one embodiment of the present invention is exposed to the surface and/or exists near the surface, and the other part exists in the bulk direction. It is thought that the two are strongly bound together and contribute to the improvement of the adhesion strength. That is, (i) the area of the interface where the compound derived from the three components of "fumed metal oxide" - "metal (e.g.
  • a polyimide resin is characterized by containing an imide group in its chemical skeleton. It is believed that the imide group (functional group) in the polyimide resin interacts with the fumed metal oxide and the metal element (for example, copper element) to improve adhesion to the electroless metal plating layer. Therefore, it is essential that the polyimide resin contain an imide group in order to develop adhesion, which is an effect of one embodiment of the present invention.
  • the coefficient of linear expansion of the polyimide resin used for layer A affects the adhesion, and specifically shows good adhesion when it is 30 ppm / ° C. or more. has been found independently and has led to an embodiment of the present invention.
  • the linear expansion coefficient of the polyimide resin is the linear expansion coefficient in the plane direction when the polyimide resin used for the layer A is made into a film, and the degree of in-plane orientation in the layer A of the polyimide molecular chains is It is a reflection.
  • a smaller linear expansion coefficient of the polyimide resin indicates that the polyimide molecular chains are oriented in the plane direction, and conversely, a larger coefficient indicates that the polyimide molecular chains are oriented in the thickness direction as well.
  • the linear expansion coefficient of polyimide resin can be controlled by the type of monomer used.
  • it is effective to use monomers having a rigid chemical structure and to increase their composition ratio.
  • the polyimide molecular chains were oriented in the plane direction when processed (molded) into a film, and the molecular chains accumulated in the thickness direction. A state can be formed.
  • the present inventors have independently found that if the coefficient of linear expansion of the polyimide resin of layer A is too small, the adhesion between the resin film and the electroless metal plating layer is reduced.
  • the reason for this is not clear, but is presumed as follows.
  • a polyimide obtained from a monomer mixture with a rigid chemical structure and a high composition ratio of the monomer is exposed to an alkaline chemical solution, the polyimide molecules near the surface are denatured into polyamic acid due to the cleavage reaction of the imide ring. , a state in which polyamic acid molecules oriented in the plane direction are deposited in the thickness direction is formed.
  • the cohesive force between polyamic acid molecular chains is weaker than the cohesive force between polyimide molecular chains. Therefore, when an electroless metal plating layer (film) was formed on the surface of the film obtained by exposing the polyimide to an alkaline chemical solution, and the adhesion was evaluated, layer breakage occurred between polyamic acid molecular chains with weak cohesive force. It is presumed that the adhesion strength between the film and the plating layer (membrane) tends to be low as a result of peeling at the interface. It should be noted that the present invention is by no means limited to such speculation.
  • the present inventors have found that the adhesion between the resin film and the electroless metal plating layer is enhanced when the linear expansion coefficient of the polyimide resin of the layer A is large (for example, 30 ppm / ° C. or more). found on its own. The reason for this is not clear, but is presumed as follows.
  • the polyimide obtained from a monomer mixture that uses a monomer with a flexible chemical structure and a high composition ratio of the monomer is exposed to an alkaline chemical solution, the polyimide molecules near the surface are modified into polyamic acid due to the cleavage reaction of the imide ring.
  • the polyimide has a small linear expansion coefficient and in-plane molecular orientation as described above. It is presumed that there is no layered separation between polyamic acid molecular chains as in the case of advanced polyimide, and as a result, the adhesion strength to electroless metal plating tends to increase. It should be noted that the present invention is by no means limited to such speculation.
  • the polyimide resin used for the layer A tends to be randomly oriented more than the polyimide resin with advanced in-plane molecular orientation from the viewpoint that the cohesive force of the polyimide resin itself is not reduced even if the polyimide resin is exposed to an alkaline chemical solution. It is preferable to use a polyimide resin that has a certain property, that is, a polyimide resin that tends to have isotropic molecular orientation.
  • polyimide resin there is a correlation between the degree of in-plane molecular orientation and the coefficient of linear expansion.
  • the polyimide resin when the in-plane molecular orientation is highly advanced, and as a result the peel strength between the plane-oriented polymer chains is weakened, the coefficient of linear expansion is less than 30 ppm/°C.
  • the polyimide resin used for the layer A has a tendency to be oriented not only in the surface direction but also in the thickness direction, that is, a random orientation tendency, thereby improving the adhesion to the electroless metal plating.
  • the linear expansion coefficient of the polyimide resin is preferably 30 ppm/° C.
  • the linear expansion coefficient of the polyimide resin of layer A is preferably 100 ppm/° C. or less, more preferably 90 ppm/° C. or less, more preferably 80 ppm/° C. or less, and more preferably 75 ppm/° C. or less. more preferably 70 ppm/°C or less, still more preferably 65 ppm/°C or less, and particularly preferably 60 ppm/°C or less.
  • the coefficient of linear expansion of the polyimide resin used for layer A is preferably 30 ppm/°C or more, more preferably greater than 30 ppm/°C. As the linear expansion coefficient of the polyimide resin increases, the polyimide resin tends to exhibit thermoplasticity. Thermoplastic resin softens when it reaches a certain temperature, and there is an advantage that it can be processed by using this fact, for example, it can be thermocompressed with copper foil. From the viewpoint of improving adhesion to electroless metal plating, which is the object of one embodiment of the present invention, thermoplasticity is not an essential requirement.
  • the polyimide resin can withstand the temperature of high temperature processes during its processing and the high temperature when parts are mounted.
  • the polyimide resin used for the layer A preferably has a high glass transition temperature and a high elastic modulus at high temperatures, and there is no particular problem if the glass transition temperature is too high.
  • the glass transition temperature of the polyimide resin which is an index of heat resistance, is preferably as high as possible, for example, preferably 180° C. or higher, more preferably 230° C. or higher.
  • the polyimide resin used for the layer A has a certain or more elastic modulus even near the melting point of solder.
  • the polyimide resin contained in Layer A preferably has a storage modulus at 300° C. of 0.2 ⁇ 10 8 Pa or more, more preferably 0.5 ⁇ 10 8 Pa or more, and 0 It is more preferably 0.8 ⁇ 10 8 Pa or more, and particularly preferably 1.0 ⁇ 10 8 Pa or more.
  • a soluble polyimide that is soluble in an organic solvent As the polyimide resin for the layer A to produce the resin film of one embodiment of the present invention. Specifically, a soluble polyimide is dissolved in an organic solvent, and a fumed metal oxide is further dispersed in the resulting solution to obtain a dispersion. can be dried to obtain the resin film of one embodiment of the present invention.
  • the layer A is used to prevent problems such as dissolution of the resin in the process using an organic solvent in the manufacturing process and mounting process of the printed circuit board.
  • the polyimide resin used is preferably insoluble.
  • the polyimide resin of the layer A and the layer B which is a heat-resistant resin film, are firmly adhered to each other.
  • the precursor of the polyimide resin of layer A (or a solution containing the precursor) is brought into contact with layer B, and then the precursor is imidized. is preferred.
  • the polyimide resin used for layer A can achieve one embodiment of the present invention whether it is soluble or insoluble, but is preferably insoluble.
  • the polyimide resin contained in layer A is preferably a non-soluble polyimide resin.
  • the polyimide resin is insoluble means that the polyimide resin does not dissolve in organic solvents generally used for industrial purposes. Specifically, the polyimide resin preferably does not dissolve in an organic solvent at 20° C. to 30° C. in an amount of 10% by weight or more, and more preferably does not dissolve in an amount of 5% by weight or more.
  • organic solvents examples include alcohol solvents such as methanol, ethanol and propanol; ketone solvents such as acetone and methyl ethyl ketone; aromatic solvents such as toluene, xylene, cresol and benzene; Ether-based solvents; aprotic polar solvents such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, and acetonitrile, but not limited thereto.
  • alcohol solvents such as methanol, ethanol and propanol
  • ketone solvents such as acetone and methyl ethyl ketone
  • aromatic solvents such as toluene, xylene, cresol and benzene
  • Ether-based solvents examples include aprotic polar solvents such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl
  • the polyimide resin used for the layer A must have a coefficient of linear expansion of 30 ppm/°C or more and 100 ppm/°C or less. It is preferable to appropriately control the physical properties of the polyimide resin, such as the glass transition temperature, the storage modulus at high temperatures, and the solubility in organic solvents. Selection of raw materials to be used is one means of controlling these physical properties within appropriate ranges. As raw material monomers for polyimide resins, there are monomers with flexible skeletons and monomers with rigid skeletons, and it is possible to realize desired physical properties by appropriately selecting these and adjusting the compounding ratio. Become.
  • Diamines having a flexible skeleton include 4,4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, bis ⁇ 4-(4-aminophenoxy)phenyl ⁇ sulfone, 2,2′-bis ⁇ 4-(4-aminophenoxy)phenyl ⁇ propane, bis ⁇ 4-(3-aminophenoxy)phenyl ⁇ sulfone, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3 , 3′-diaminodiphenyl ether, 4,4′-diaminodiphenylthioether, 3,4′-diaminodiphenylthioether, 3,3′-diaminodiphenylthioether, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 3,3'-diaminodipheny
  • diamines having a rigid skeleton include 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, benzidine, 3,3'-dichlorobenzidine, 3, 3'-dimethylbenzidine, 2,2'-dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,2'-dimethoxybenzidine, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2'- bis(trifluoromethyl)benzidine, 1,5-diaminonaphthalene, 4,4'-diaminobenzanilide, 3,4'-diaminobenzanilide, 3,3'-diaminobenzanilide, and the like.
  • 1,4-diaminobenzene p-phenylenediamine
  • 1,3-diaminobenzene 1,2-diaminobenzene
  • 4,4'-oxydianiline, 4,4'-diaminodiphenylpropane, 4,4'-diamino as the diamine having a flexible skeleton from the viewpoint of thermal property control and industrial availability.
  • 1,3-bis(4-aminophenoxy)benzene and 2,2′-bis ⁇ 4-(4-aminophenoxy)phenyl ⁇ propane More than one species can be preferably used.
  • diamines having a rigid skeleton 1,4-diaminobenzene (p-phenylenediamine), 1, 1, 4-diaminobenzene (p-phenylenediamine), 1, One or more selected from the group consisting of 3-diaminobenzene and 2,2'-dimethylbenzidine can be preferably used.
  • 1,4-diaminobenzene p-phenylenediamine
  • 2,2'-dimethylbenzidine can be preferably used.
  • One of these diamines may be used alone, or two or more of them may be mixed (combined) and used.
  • Tetracarboxylic dianhydrides having a flexible skeleton include 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,4'-oxydiphthalic anhydride, 4,4'-oxydiphthalic anhydride, 3,3',4,4'-diphenylsulfone Tetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene) phthalic anhydride, 4,4'-(4,4'-isopropylidene diphenoxy) diphthalic anhydride, 2,2-bis( 3,4-dicarboxyphenyl)propane dianhydride, bis(3,4-dicarboxyphenyl)propane dianhydride, 1,1-bis(2,3-dicarboxyphen
  • tetracarboxylic dianhydrides having a rigid skeleton include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, and 1,2,5,6-naphthalenetetracarboxylic acid. acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, and the like.
  • 3,3',4,4'-biphenyltetracarboxylic dianhydride 2 , 3,3′,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-oxydiphthalic anhydride.
  • 3,3',4,4'-biphenyltetracarboxylic dianhydride 2
  • 3,3′,4′-biphenyltetracarboxylic dianhydride 3,3′,4,4′-benzophenonetetracarboxylic dianhydride
  • 4,4′-oxydiphthalic anhydride 4,4′-oxydiphthalic anhydride.
  • One or more of these can be preferably used.
  • 3,3′,4,4′-biphenyltetracarboxylic dianhydride is more preferable, and various physical properties desired in a preferred embodiment of the present invention, namely, adhesion to an electroless plated film, It can be effectively used to develop the elastic modulus, the glass transition temperature, the linear expansion coefficient of the polyimide resin, and the like in a well-balanced manner.
  • pyromellitic dianhydride is preferably used because it exhibits the effect of hardening the polymer chain with a relatively small amount and is easily available industrially. obtain.
  • These tetracarboxylic dianhydrides may be used in combination of two or more.
  • the inventors of the present invention have empirically obtained a tendency to show good adhesion by using a combination of acid dianhydrides and diamines that reduce the polarization of the imide ring of the polyimide resin. be. Specifically, at least one of 4,4'-oxydiphthalic dianhydride and 3,3',4,4'-biphenyltetracarboxylic dianhydride as the acid dianhydride, and 2,2'-bis as the diamine. A combination with (trifluoromethyl)benzidine is effective.
  • a preferred combination of diamine and acid dianhydride is not particularly limited. 2,2′-bis(trifluoromethyl)benzidine, 4,4′-oxydianiline, 1,3-bis(4-aminophenoxy)benzene and 2,2′-bis ⁇ 4-(4-amino) as diamines phenoxy)phenyl ⁇ propane, and 4,4'-oxydiphthalic dianhydride and 3,3',4,4'-biphenyltetracarboxylic dianhydride as acid dianhydrides. It is preferable to select a combination with at least one of and further combine a fumed metal oxide in an appropriate type and blending amount.
  • the adhesion to the electroless metal plating layer of one embodiment of the present invention can be improved, and in particular, the initial state after the formation of the electroless metal plating layer can be greatly improved, which is preferable.
  • Polyamic acid which is a precursor of the polyimide of layer A, is obtained by mixing the diamine and acid dianhydride in an organic solvent so as to be substantially equimolar or substantially equimolar and reacting them.
  • organic solvent Any organic solvent can be used as long as it can dissolve polyamic acid.
  • amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, etc. are preferred, and at least N,N-dimethylformamide and N,N-dimethylacetamide One can be used particularly preferably.
  • the solid content concentration of the polyamic acid is not particularly limited, and if it is within the range of 5% by weight to 35% by weight, a polyamic acid having sufficient mechanical strength when made into a polyimide can be obtained.
  • the order of addition of the raw materials diamine and acid dianhydride is also not particularly limited. It is possible to control the properties of the resulting polyimide not only by controlling the chemical structures of the raw materials diamine and acid dianhydride, but also by controlling the order of their addition.
  • the polyimide structure obtained by combining the two has low durability against desmear liquid, so 1,4-diaminobenzene and pyromellitic acid It is preferable to adjust the order of addition of the dianhydride so as not to form a structure in which the two are directly bonded.
  • Layer A may contain a resin other than the polyimide resin described above as a resin component. It is preferable that the content ratio of the polyimide resin in the resin component contained in the layer A is large.
  • the polyimide resin in 100% by weight of the resin component contained in layer A, is preferably 50% by weight or more, more preferably 60% by weight or more, and more preferably 70% by weight or more. , more preferably 80% by weight or more, still more preferably 90% by weight or more, and most preferably 95% by weight or more. It is most preferable that the polyimide resin is 100% by weight in 100% by weight of the resin component contained in the layer A. In other words, it is most preferable that the layer A contains only the polyimide resin as the resin component.
  • Fumed metal oxides used in one embodiment of the present invention are metal oxides based on silica, alumina, titania, or the like.
  • the fumed metal oxide used in one embodiment of the present invention is preferably a metal oxide obtained by vapor phase synthesis.
  • the resulting fumed metal oxide is characterized in that the structural unit is a structure in which primary particles aggregate.
  • the fumed metal oxide has a structural unit of aggregated primary particles (for example, it has an aggregated structure like a cluster of grapes).
  • a fumed metal oxide is mixed with a polyimide resin to form Layer A of one embodiment of the present invention.
  • layer A has (i) a structural unit of a fumed metal oxide embedded in a polyimide resin with low voids, and (ii) the structural unit is on the surface of layer A. and/or exists from the vicinity of the surface to the bulk direction, and (iii) the structural unit is evenly present and dispersed in the layer A.
  • a state is one embodiment of the present invention. We believe that it is effective for developing adhesion, which is the purpose of the morphology.
  • spherical or amorphous metal oxide particles in which primary particles exist independently (for example, colloidal metal oxide particles) Silica) is not preferred because it tends to have weaker binding force with the polyimide resin than fumed metal oxides.
  • the layer A may further contain spherical or amorphous metal oxide particles in which the primary particles are independently present. It is preferable that the amount of the metal oxide particles in the layer A is as small as possible.
  • the amount of the metal oxide particles is preferably less than 10 parts by weight, more preferably 5 parts by weight or less, with respect to 100 parts by weight of the precursor of the polyimide resin, and 1 part by weight. or less, more preferably 0.5 parts by weight or less, and particularly preferably 0.1 parts by weight or less.
  • the porosity in the layer A tends to increase when the blending ratio of the fumed metal oxide is increased.
  • the porosity in the layer A is not too high, the binding force between the polyimide resin and the fumed metal oxide does not decrease, and the strength of the layer A itself tends to be good, resulting in electroless metal plating.
  • the adhesion between the layer A and the layer B tends to be improved. Therefore, in blending the polyimide resin and the fumed metal oxide, it is preferable that the blending ratio of the fumed metal oxide is not too high.
  • the porosity tends to decrease as the blending ratio of the fumed metal oxide decreases.
  • the porosity in the layer A is not too low, it is preferable because sufficient adhesion to the electroless metal plating is likely to be exhibited. This is because the ratio of fumed metal oxide is not too low, so that the amount of compounds derived from the three components of "fumed metal oxide” - "metal (eg copper)" - “polyimide resin” is sufficient. I think that is the reason. It should be noted that the present invention is not limited to such speculation.
  • the compounding ratio of the polyimide resin and the fumed metal oxide within an appropriate range in order to develop good adhesion.
  • the primary particle size of the fumed metal oxide is small. It is 5 nm or more and 50 nm or less, more preferably 10 nm or more and 20 nm or less.
  • the specific surface area of the fumed metal oxide is also a physical property value that expresses the primary particle size, and the larger the primary particle size, the smaller the specific surface area.
  • the specific surface area of the fumed metal oxide is preferably 30 square meters/gram or more and 400 square meters/gram or less, more preferably 100 square meters/gram or more and 250 square meters/gram or less.
  • a fumed metal oxide is a structure in which the primary particle diameter aggregates, and the apparent specific gravity can be used as an index representing the state of the structure of the fumed metal oxide.
  • a low apparent specific gravity of the fumed metal oxide indicates that the structure of the fumed metal oxide has a bulky structure and large voids.
  • a high apparent specific gravity of the fumed metal oxide indicates that the structure of the fumed metal oxide has a less bulky structure and smaller voids.
  • a layer A with a small porosity can be produced by filling the voids of the structure in which the primary particle size of the fumed metal oxide aggregates with the polyimide resin component.
  • the bonding strength between the polyimide resin and the fumed metal oxide does not decrease, and the strength of the layer A itself tends to be good, and as a result, the adhesion to the electroless metal plating tends to be good, And the adhesion between layer A and layer B also tends to be good. Therefore, in blending the polyimide resin and the fumed metal oxide, it is preferable that the blending ratio of the fumed metal oxide is not too high. Conversely, when the ratio of the fumed metal oxide is not too low, sufficient adhesion to the electroless metal plating tends to be exhibited. In other words, when blending the polyimide resin and the fumed metal oxide, blending the fumed metal oxide in the vicinity of the upper limit of the blending amount is effective for exhibiting good adhesion.
  • the upper limit of the amount of fumed metal oxide compounded with respect to a certain amount of polyimide resin for making layer A with a small porosity varies depending on the apparent specific gravity of the fumed metal oxide and the type of surface treatment. That is, the adhesion can be further improved by adjusting the blending amount of the fumed metal oxide with respect to a certain amount of polyimide resin according to the apparent specific gravity of the fumed metal oxide and the type of surface treatment.
  • the apparent specific gravity of the fumed metal oxide is preferably 20 grams/liter or more and 250 grams/liter or less, more preferably 20 grams/liter or more and 220 grams/liter or less.
  • the apparent specific gravity of the fumed metal oxide is more preferably greater than 50 grams/liter and 250 grams/liter or less, more preferably 60 grams/liter or more and 250 grams/liter or less, and more preferably 70 grams/liter. It is more preferably 70 grams/liter or more and 220 grams/liter or less, more preferably 70 grams/liter or more and 220 grams/liter or less.
  • the apparent specific gravity of the fumed metal oxide can be changed by modifying the structure of the fumed metal oxide by mechanically applying stress such as shear to the fumed metal oxide.
  • fumed metal oxides Various surface treatments are possible for fumed metal oxides.
  • Surface conditions of fumed metal oxides include silanol (untreated), dimethylsilyl, octylsilyl, trimethylsilyl, dimethylsiloxane, dimethylpolysiloxane, aminoalkylsilyl, methacrylsilyl, etc., all of which are industrially available.
  • the surface treatment species of the fumed metal oxide and the polarity of the polyimide resin component are close to each other, the upper limit of the compounding amount of the fumed metal oxide tends to be high.
  • the surface of the fumed metal oxide is not treated, the wettability with the alkaline chemical solution during the electroless metal plating process is too good, so the amount of the fumed metal oxide dissolved increases, and the surface roughness of the layer A increases. tend to become Therefore, it is preferable that the surface of the fumed metal oxide is subjected to a suitable hydrophobic treatment.
  • the apparent specific gravity of the fumed metal oxide can be measured according to ISO787/XI.
  • Fumed metal oxides that can be preferably used in one embodiment of the present invention are shown below, but are not limited to these. Fumed metal oxides that meet various property requirements, including apparent specific gravity, are more suitable for use in one embodiment of the present invention. Various grades of fumed metal oxides with different primary particle sizes, specific surface areas, surface treatment types, apparent specific gravities, and metal oxide types are available from Nippon Aerosil Co., Ltd., Asahi Kasei Wacker Silicone Co., Ltd., and Cabot Corporation, and can be preferably used. . The fumed metal oxide produced by Nippon Aerosil Co., Ltd. will be described below in detail.
  • Aerosil R972, R972CF, R972V, etc. which are substantially the same except for the apparent specific gravity, can preferably be used, and among these, R972 (50 g/liter), which has a higher apparent specific gravity, can be used more preferably.
  • Aerosil R974, R9200, VP RS920, etc. which are equivalent except for their apparent specific gravities, can preferably be used. liter or more and 120 g/liter or less) can be used more preferably.
  • Aerosil NX130, RY200S, and R976 are fumed metal oxides manufactured by Nippon Aerosil Co., Ltd., which have a relatively low apparent specific gravity of 70 g/liter or less, which is one of the preferable physical properties of one embodiment of the present invention.
  • NAX50, NX90G, NX90S, RX200, RX300, R812, R812S, etc. can be preferably used. Fumed metal oxides manufactured by Nippon Aerosil Co., Ltd.
  • Aerosil 200V Aerosil 200V
  • AEROIDE TiO2 P90 AEROIDE TiO2 NKT90
  • OX50 RY50
  • RY51 AEROIDE TiO2 P25, R8200, and RM50.
  • RX50, AEROIDE TiO2 T805, R7200, etc. are also preferably usable.
  • Aerosil VP RS920 has been sold under the name of "Aerosil E9200" since November 2021.
  • "Aerosil” or “AEROSIL” is a registered trademark of Evonik Operations GmbH.
  • As the fumed metal oxide a fumed metal oxide synthesized by vapor phase synthesis and having a structure in which primary particle diameters are aggregated can be preferably used.
  • fumed silica such as Aerosil R972, 972V, NX130, R9200, VP RS920, R974, R976, R8200 has a good surface shape of layer A formed by dissolution in an alkaline environment. , the surface roughness is also within an appropriate range.
  • Layer A containing a polyimide resin and a fumed metal oxide is preferably an imidized product of a mixture of a precursor of the polyimide resin and a fumed metal oxide (for example, a fumed metal oxide-dispersed polyamic acid solution described later). .
  • the fumed metal oxide is mixed with a polyamic acid solution that is a precursor of the polyimide resin that constitutes Layer A, (a) the resulting mixture is applied to the heat-resistant film of Layer B, and Layer B is formed.
  • the resin film of one embodiment of the present invention is obtained by co-extrusion with the resin precursor solution of layer B or the resin solution of layer B, etc., drying the obtained extrudate, and imidizing the mixture. be able to.
  • the amount of the fumed metal oxide compounded is preferably 10 parts by weight or more and 130 parts by weight or less with respect to 100 parts by weight of the polyimide resin precursor of the layer A.
  • the preferred number of parts of the fumed metal oxide to be added to the polyimide precursor (polyimide resin) of layer A can be adjusted to some extent by the apparent specific gravity of the fumed metal oxide, but there is also the influence of the surface treatment of the fumed metal oxide. , I can't say for certain.
  • the preferred number of parts of the fumed metal oxide to be blended is described.
  • the number of parts of the fumed metal oxide (relative to the solid content of the polyimide (precursor) resin) is 100 parts by weight of the precursor of the polyimide resin. 15 parts by weight or more and 80 parts by weight or less, more preferably 20 parts by weight or more and 60 parts by weight or less.
  • the blending number of the fumed metal oxide (relative to the polyimide (precursor) resin solid content of 100 parts by weight) is 10 parts by weight or more and 130 parts by weight. parts by weight or less, more preferably 15 to 120 parts by weight, and even more preferably 20 to 100 parts by weight.
  • the preferred number of parts to be blended varies depending on the apparent specific gravity of the fumed metal oxide, and the higher the apparent specific gravity of the fumed metal oxide, the greater the amount of the fumed metal oxide to be blended, and the more preferable blended amount.
  • Tend. By blending the fumed metal oxide in the above range with respect to 100 parts by weight of the precursor of the polyimide resin, it is possible to exhibit a better adhesion strength, especially in the initial state after the electroless plating film is formed. It is possible to make it adhere to. It is also possible to mix (combine) multiple types of fumed metal oxides with different primary particle sizes, specific surface areas, surface treatment types, apparent specific gravities, metal oxide types, and the like.
  • a polyimide resin precursor solution for Layer A and a fumed metal oxide are mixed and dispersed to form a fumed metal oxide dispersed polyamic acid solution (hereinafter Layer A dispersion). (sometimes referred to as .) is preferably obtained.
  • the layer A can be obtained by imidizing the layer A dispersion.
  • layer A is preferably an imidized mixture of a polyimide resin precursor and the fumed metal oxide. This configuration has the advantage that the adhesion between the layer A and the layer B is enhanced.
  • the procedure for obtaining the layer A dispersion will be specifically described below, but one embodiment of the present invention is not limited thereto.
  • An organic solvent is added to the fumed metal oxide, and the fumed metal oxide is dispersed in the organic solvent to the structural units of the structure in which the primary particles are aggregated.
  • Dispersion methods include dispersers, homogenizers, planetary mixers, bead mills, rotation/revolution mixers, rolls, kneaders, high-pressure dispersers, ultrasonic waves, and resolvers. As long as the effect of one embodiment of the present invention can be obtained, the fumed metal oxide does not have to be dispersed to the above structural units in the organic solvent.
  • the fumed metal oxide when the fumed metal oxide can be dispersed to the structural unit, the fumed metal oxide does not exist as a lump in the layer A, and in that case, the surface roughness of the layer A is small, which is one of the aspects of the present invention. This is preferable because it is advantageous for the formability of fine wiring, which is the aim of the embodiment. It is also possible to disperse and pulverize the fumed metal oxide under conditions that make the structural unit smaller.
  • the organic solvent a solvent used for polyamic acid polymerization can be used, and amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone are preferably used. is not limited to
  • the concentration of the finally obtained layer A dispersion is not particularly limited, it is preferable to make the concentration and viscosity suitable for the next process.
  • An organic solvent can be appropriately used for adjusting the concentration and viscosity of the layer A dispersion.
  • amines for the purpose of imparting adhesion to the layer B, a dehydrating agent for imidizing polyamic acid, a catalyst, etc. may be further added to the layer A dispersion or the like.
  • a filler can also be added to the layer A dispersion for the purpose of improving various properties of the film such as slidability, thermal conductivity, electrical conductivity, corona resistance, and loop stiffness.
  • Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
  • Thermosetting resins such as epoxy resins and phenoxy resins, and thermoplastic resins such as polyether ketones and polyether ether ketones may also be used as long as the properties of the resulting resin layer as a whole are not impaired.
  • a method for adding these resins if they are soluble in a solvent, a method of adding them to the polyamic acid can be mentioned. If the polyimide is also soluble, it may be added to the polyimide solution.
  • a layer A dispersion can be obtained by the above procedure.
  • Layer A is formed on one side or both sides of layer B, which is a heat-resistant resin film of one embodiment of the present invention.
  • the coefficient of linear expansion of layer B is preferably 20 ppm/° C. or less.
  • the resin composition of layer B is not particularly limited, a liquid crystal polymer film, a resin film containing reinforcing fibers, a resin film containing an inorganic filler, polyimide, and the like are preferable.
  • Layer B is more preferably a film containing polyimide (or made of polyimide) from the viewpoint of heat resistance, flexibility, heat resistance, etc., and contains non-thermoplastic polyimide (or consists of non-thermoplastic polyimide ) film is more preferred.
  • the linear expansion coefficient of a polyimide resin film can be controlled by the type of monomer used.
  • a monomer having a rigid chemical structure and increase its composition ratio By using a monomer with a rigid chemical structure and increasing its composition ratio, the polyimide molecular chains are oriented in the plane direction when molded (processed) into a film, and the molecular chains are deposited in the thickness direction. can be formed.
  • a monomer having a flexible chemical structure and increase its composition ratio in order to increase the linear expansion coefficient of the polyimide resin film.
  • the polyimide molecular chains are oriented not only in the plane direction but also in the thickness direction when formed into a film, that is, randomly oriented. tend to show
  • the diamine used in the production of the non-thermoplastic polyimide film is not particularly limited, but the linear expansion coefficient of the finally obtained polyimide film is 20 ppm / ° C. or less. need to be Therefore, in the production of a non-thermoplastic polyimide film, it is preferable to use an appropriate combination of a rigid-structured diamine and a flexible-structured diamine according to the structure of the acid dianhydride.
  • the acid dianhydride used in the production of the non-thermoplastic polyimide film is not particularly limited, but the linear expansion coefficient of the finally obtained polyimide is 20 ppm / °C or less. Therefore, in the production of the non-thermoplastic polyimide film, it is preferable to use an appropriate combination of a rigid-structure acid dianhydride and a flexible-structure acid dianhydride according to the structure of the diamine.
  • Specific acid dianhydrides having a rigid structure that are suitably used for the production of non-thermoplastic polyimide films include 3,3',4,4'-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride.
  • Acid dianhydrides having a flexible structure which are preferably used for the production of non-thermoplastic polyimide films, are 3,3′,4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-oxydiphthalic dianhydride. etc.
  • acid dianhydrides listed when explaining the polyimide resin of Layer A it is also possible to appropriately use the acid dianhydrides listed when explaining the polyimide resin of Layer A.
  • Polyamic acid which is a precursor of polyimide, is obtained by mixing the diamine and acid dianhydride in an organic solvent so that they are substantially equimolar or approximately equimolar, and reacting them. Any organic solvent can be used as long as it can dissolve polyamic acid.
  • organic solvent amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, etc. are preferred, and at least N,N-dimethylformamide and N,N-dimethylacetamide One can be used particularly preferably.
  • the solid content concentration of the polyamic acid is not particularly limited, and if it is within the range of 5% by weight to 35% by weight, a polyamic acid having sufficient mechanical strength when made into a polyimide can be obtained.
  • the order of addition of the raw materials diamine and acid dianhydride is also not particularly limited. It is possible to control the properties of the resulting polyimide not only by controlling the chemical structures of the raw materials diamine and acid dianhydride, but also by controlling the order of their addition.
  • a filler can also be added to the polyamic acid for the purpose of improving various properties of the film such as slidability, thermal conductivity, electrical conductivity, corona resistance, and loop stiffness.
  • Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
  • Thermosetting resins such as epoxy resins and phenoxy resins, and thermoplastic resins such as polyether ketones and polyether ether ketones may also be used as long as the properties of the resulting resin layer as a whole are not impaired.
  • a method for adding these resins if they are soluble in a solvent, a method of adding them to the polyamic acid can be mentioned.
  • the polyimide is also a soluble polyimide, it may be added to the polyimide solution. If the polyimide is insoluble in a solvent, the polyamic acid is first imidized, and then the polyimide obtained by imidization and the polyimide insoluble in the solvent to be added are combined by melt-kneading. .
  • the resulting flexible metal-clad laminate may deteriorate in solder heat resistance and/or heat shrinkage, it is desirable not to use polyimide with meltability in one embodiment of the present invention. Therefore, it is desirable to use a soluble resin for mixing with polyimide.
  • a method for obtaining a non-thermoplastic polyimide film preferably used for layer B in one embodiment of the present invention preferably includes the following steps (i) to (iv).
  • the methods of subsequent steps are roughly divided into thermal imidization and chemical imidization.
  • the thermal imidization method is a method in which a polyamic acid solution as a film forming dope is cast on a support without using a dehydration ring-closing agent or the like, and imidization is proceeded only by heating.
  • the chemical imidization method is a method in which at least one of a dehydration ring-closing agent and a catalyst is added to a polyamic acid solution as an imidization accelerator, and a film-forming dope is used to promote imidization. Either method may be used, but the chemical imidization method is superior in productivity.
  • an acid anhydride represented by acetic anhydride can be suitably used as the dehydration ring-closing agent.
  • Tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines can be suitably used as catalysts.
  • a glass plate, an aluminum foil, an endless stainless steel belt, a stainless drum, or the like can be suitably used as a support for casting the film-forming dope.
  • the heating conditions are set according to the thickness and/or the production rate of the film to be finally obtained, and the film forming dope is either partially imidized or dried, and then the imidized material is peeled off from the support. to obtain a polyamic acid film (hereinafter referred to as a gel film).
  • the ends of the gel film are fixed to dry the gel film while avoiding shrinkage during curing, and water, residual solvent, and imidization accelerator are removed from the gel film.
  • the amic acid remaining in the gel film is completely imidized to obtain a film containing polyimide.
  • the heating conditions may be appropriately set according to the thickness of the finally obtained film and/or the production speed.
  • an industrially available polyimide film as the layer B of one embodiment of the present invention.
  • Examples of commercially available polyimide films that can be used as layer B include “Apical” (manufactured by Kaneka), “Kapton” (manufactured by DuPont, Toray DuPont), and “Upilex” (manufactured by Ube Industries). be done.
  • a resin film according to one embodiment of the present invention may have the following aspects: comprising a layer A and a layer B;
  • the layer A contains a polyimide resin and a fumed metal oxide
  • the layer B contains a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less, or is the heat-resistant resin film
  • the layer A is formed on at least one surface of the layer B,
  • the resin film, wherein the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
  • the layer A containing a polyimide resin and a fumed metal oxide is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less.
  • the layer A formed on the surface, the linear expansion coefficient of the polyimide resin is 30 ppm / ° C. or more and 100 ppm / ° C. or less
  • the layer A containing the polyimide resin and the fumed metal oxide is a precursor of the polyimide resin. and the fumed metal oxide, and imidizing the resulting fumed metal oxide-dispersed polyamic acid solution.
  • a method for producing a resin film according to an embodiment of the present invention may be in the following aspects: A method for producing a resin film, Step 1 of mixing a polyamic acid solution of a polyimide resin precursor and a fumed metal oxide; and a step 2 of imidizing the fumed metal oxide-dispersed polyamic acid solution obtained in step 1,
  • the resin film is including the layer A and the layer B;
  • the layer A contains the polyimide resin and the fumed metal oxide,
  • the layer B contains a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C.
  • the layer A is formed on at least one surface of the layer B,
  • the method for producing a resin film, wherein the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
  • the fumed metal oxide-dispersed polyamic acid solution obtained in Step 1 and Step 1 is the same as the embodiment described in the section ⁇ Fumed metal oxide-dispersed polyamic acid solution>, so the description is incorporated herein. Description is omitted.
  • the preferred embodiment described in the section ⁇ Fumed metal oxide-dispersed polyamic acid solution> is also a preferred embodiment for Step 1 and the fumed metal oxide-dispersed polyamic acid solution obtained in Step 1.
  • the resin film of one embodiment of the present invention includes layer A and layer B. Moreover, the resin film of one embodiment of the present invention is composed of a layer A and a layer B. As shown in FIG. Layer B in one embodiment of the present invention must be a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less.
  • the layer B that is, the heat-resistant resin film, a liquid crystal polymer film, a resin film containing reinforcing fibers, a resin film containing an inorganic filler, an industrially available polyimide film, and the above steps (i) to (iv) and non-thermoplastic polyimide films produced through
  • the layer A dispersion obtained in step 1 is applied (applied) to the surface of these heat-resistant resin films (layer B), and the layer A dispersion is dried and imidized to form one embodiment of the present invention.
  • Obtaining a resin film is preferably feasible.
  • a co-extrusion die having a plurality of flow paths may be used to obtain a resin film of one embodiment of the present invention having multiple layers.
  • the layer A dispersion is applied to the surface of the gel film in the step (iii), and both the gel film and the layer A are simultaneously dried and imidized to obtain the resin film of one embodiment of the present invention. Also good.
  • the heating conditions may also affect various film properties and/or adhesion to the electroless metal plating layer. Therefore, it is preferable to set an appropriate heating temperature and heating time.
  • the layer A dispersion and/or the final thickness of the layer A it is also preferable to set appropriate heating conditions according to the chemical structure, concentration, and solvent type of the polyamic acid contained in the layer A dispersion and/or the final thickness of the layer A, and generally suitable heating conditions are set.
  • step 2 There are roughly two methods for imidization in step 2: thermal imidization and chemical imidization.
  • thermal imidization method which is a method of promoting imidization only by heating without using a dehydrating ring-closing agent or the like.
  • Layer A has the function of adhering the electroless metal plating layer. It is assumed that the layer A is laminated with a copper foil to produce a copper-clad laminate. In this case, it is preferable that the adhesive layer has a thickness enough to bite into the surface unevenness of the roughened surface of the copper foil. In order to obtain a metal layer, even if the thickness of the layer A is relatively thin, the original function of adhesion with the electroless metal plating layer can be exhibited. From the viewpoint of industrially stably forming the layer A, the layer A preferably has a thickness of 0.1 microns or more and 30 microns or less, more preferably 1 micron or more and 10 microns or less.
  • the linear expansion coefficient of the resin film of one embodiment of the present invention when used for a printed wiring board, it is preferable to design the linear expansion coefficient appropriately so that the temperature of the composite with the conductor layer including the electroless metal plating layer It is possible to control warping due to environmental changes.
  • the linear expansion coefficient of the resin film of one embodiment of the present invention can be controlled. be.
  • An electroless metal plating layer can be formed on the surface of the layer A of the resin film of one embodiment of the present invention.
  • a metallized resin film can be obtained.
  • a metallized resin film in which an electroless metal plating layer is formed on the surface of layer A is also an embodiment of the present invention.
  • An electroless metal plating layer (film) obtained by electroless metal plating can be thinner than a general copper foil.
  • the thickness of the electroless metal plating layer is preferably 0.01 microns to 10.00 microns, more preferably 0.10 microns to 2.00 microns, still more preferably 0.20 microns to 1.00 microns. be.
  • Electroless metal plating of one embodiment of the present invention is preferably applicable to reduction-type electroless plating using a chemical reaction.
  • Metal species for electroless metal plating include copper, nickel, gold, silver, and the like, all of which are applicable to one embodiment of the present invention. Of these, electroless copper plating and electroless nickel plating are preferred. Among them, electroless copper plating is widely used as a process for making the insulating resin surface of through-holes and via walls of printed wiring boards conductive. Yes, and most preferably available. In other words, the electroless metal plating of one embodiment of the present invention is preferably electroless copper plating.
  • the electroless copper plating process which is widely used for printed wiring boards, can use the chemical processes of plating chemical manufacturers.
  • desmear treatment is generally performed before electroless copper plating.
  • Desmear treatment is originally performed for the purpose of removing smears generated on the surface of copper generated in the through-hole forming process and the laser via forming process.
  • Desmear treatment also chemically changes the surface of the resin film of one embodiment of the present invention, and can be preferably used.
  • the desmear process and the electroless copper plating process are each performed by sequentially treating the object to be plated with a plurality of chemical solutions.
  • the desmear process consists of a chemical solution responsible for swelling, a chemical solution responsible for etching, and a chemical solution responsible for reduction.
  • the electroless copper plating process includes a series of chemical solutions for cleaning and conditioner, chemical solutions for soft etching, chemical solutions for pre-dip, chemical solutions for catalyst application, chemical solutions for activation, and chemical solutions for electroless copper plating. It is composed of each chemical solution that plays each role.
  • chemical solutions manufactured by Atotech, Adcopper IW manufactured by Okuno Chemical Industry Co., Ltd., Surcup PEA manufactured by Uemura Kogyo Co., Ltd., chemical solutions manufactured by Rohm and Haas Electronic Materials Co., Ltd., chemical solutions manufactured by Meltex Co., Ltd., and various chemical solutions and processes. can be applied, and can be combined as appropriate.
  • electroless copper platings sometimes contain a small amount of nickel component, but these electroless metal platings (electroless copper platings) can be used as long as they do not impair the effects of one embodiment of the present invention.
  • the layer A When the layer A is electrolessly plated, the layer A may be electrolessly plated directly, or the layer A is pretreated by alkali treatment, desmear treatment, or the like. After that, electroless plating may be applied to the layer A after the pretreatment.
  • alkaline aqueous solutions for alkali treatment include sodium hydroxide aqueous solutions and potassium hydroxide aqueous solutions.
  • the resin film and the electroless metal plating are sufficiently The aim is to develop good adhesion. If the adhesion is low, problems such as the circuit peeling off from the resin film substrate may occur in the subsequent circuit forming process.
  • the metallized resin film is heated at a temperature of 150 ° C. or higher, for example, to improve the adhesion. Improvements may be made.
  • the fact that the resin film according to one embodiment of the present invention has excellent adhesion means that at least the metallized resin film obtained by forming an electroless metal plating layer on the surface of the layer A of the resin film is
  • the electroless metal plating layer in the metallized resin film is excellent in peel strength (for example, exhibits a peel strength of 3 N/cm or more) without subjecting the metallized resin film to heat treatment at 150 ° C. or higher. Intend.
  • a metallized resin film obtained by forming an electroless metal plating layer on the surface of layer A of a resin film, and the metallized resin film is subjected to heat treatment at 150° C. or higher.
  • the peel strength of the electroless metal-plated layer in the metallized resin film without the coating is sometimes referred to as "initial peel strength".
  • a metallized resin film obtained by forming an electroless metal plating layer on the surface of the layer A of the resin film is subjected to heat treatment at 150° C. or higher. It is preferable that the electroless metal plating layer in the metallized resin film exhibits a peel strength of 3 N/cm or more, more preferably 5 N/cm or more.
  • in the metallized resin film, after forming the electroless metal plating layer, without performing heat treatment at 150 ° C. or higher it is 3 N / cm or more, more preferably 5 N / cm or more. It is preferable to exhibit peel strength.
  • the base material (resin film) is made conductive by electroless metal plating, even if good adhesion strength is exhibited if there is no circuit pattern on the back surface of the base material (resin film), When there is a circuit pattern on the back surface, sufficient adhesion strength may not be exhibited.
  • the metallized resin film is not heated to a high temperature, good adhesion can be obtained regardless of the presence or absence of a circuit pattern on the back surface, and the heat resistance when used as a printed wiring board. It also has sex.
  • the resin film according to one embodiment of the present invention is not essential, but for the metallized resin film obtained by forming electroless metal plating layers on both sides of the layer A of the resin film, the metallized resin It is preferable that the electroless metal plating layer in the metallized resin film has excellent peel strength (for example, exhibits a peel strength of 3 N/cm or more) without subjecting the film to heat treatment at 150° C. or higher.
  • a metallized resin film obtained by forming electroless metal plating layers on both sides of layer A of a resin film is subjected to heat treatment at 150° C. or higher.
  • the electroless metal plating layer in the metallized resin film exhibits a peel strength of 3 N/cm or more, more preferably 5 N/cm or more.
  • the heat treatment at 150° C. or higher is not performed, and the thickness of the metallized resin film is 3 N/cm or more, more preferably 5 N/cm or more. It is preferable to express the above peel strength.
  • the metallized resin film obtained by forming an electroless metal plating layer on the surface of the layer A of the resin film is not actively heated and dried at room temperature. However, sufficient adhesion can be obtained. If the metallized resin film obtained after forming the electroless metal plating layer is wet with a cleaning liquid such as water, problems may occur in the next process, such as the dry film resist lamination process. Therefore, the heat drying treatment for the purpose of drying can be preferably carried out on the metallized resin film obtained by the treatment for forming the electroless metal plating layer.
  • the heating temperature in the heat drying treatment is preferably 150° C. or lower, more preferably less than 150° C., and still more preferably 100° C. or lower.
  • the heating time in the heat drying treatment is preferably 30 minutes or less, more preferably 10 minutes or less.
  • a metallized resin film (heat treatment at 150 ° C. or higher) obtained by performing only the formation treatment of the electroless metal plating layer on the resin film It is preferable that the metallized resin film that has not been subjected to the above) has sufficient adhesion.
  • the peel strength (initial peel strength) of the metallized resin film is preferably 3 N/cm or more, more preferably 5 N/cm or more, still more preferably 6 N/cm or more, and even more preferably 7 N/cm or more.
  • a printed wiring board using the resin film according to one embodiment of the present invention or the metallized resin film according to one embodiment of the present invention is also one embodiment of the present invention.
  • a method for manufacturing a printed wiring board using the resin film of one embodiment of the present invention will be described below.
  • the resin film of one embodiment of the present invention is an electroless copper plating film (electroless copper plating layer) firmly adhered to the surface of the low-roughness layer A by electroless metal plating, especially using a general-purpose electroless copper plating chemical. ) can be a formed metallized resin film.
  • narrow-pitch circuits can be formed regardless of the subtractive method or the additive method, and without using complicated methods such as button plating. is.
  • a conductor layer and a circuit having a narrow pitch and a good circuit shape, excellent transmission characteristics, and a thin thickness can be obtained.
  • Obtainable That is, by using the resin film or metallized film according to one embodiment of the present invention, it is possible to manufacture a printed wiring board having high flexibility. Substrates, chip-on-film substrates, etc. can be manufactured.
  • various printed wiring boards described above can be obtained by performing the following methods (1) to (3) on the resin film of one embodiment of the present invention:; 1) First, a through-hole is formed, and then an electroless metal-plated layer forming process is performed to simultaneously form an electroless metal-plated layer (film) on the wall surface of the through-hole and the surface of the resin film; Further, (3) multilayering treatment, protective film forming treatment, surface treatment, etc. are performed by known methods. In order to form a narrow-pitch circuit, it is preferable that the surface roughness of the resin film of one embodiment of the present invention is small.
  • the surface roughness Ra of the resin film (layer A) exposed by removing the electroless metal plating layer (film) by etching is preferably 200 nm or less, and preferably 150 nm. It is more preferably 100 nm or less, and more preferably 100 nm or less.
  • the surface roughness is the number of parts of the fumed metal oxide added to the polyimide precursor, the type of fumed metal oxide (apparent specific gravity, surface treatment, etc.), the chemical structure of the polyimide resin of layer A, the desmear condition, and the electroless metal plating layer. can be adjusted by changing the conditions of the forming process of .
  • a printed wiring board obtained according to one embodiment of the present invention can transmit electrical signals in the GHz band by using the resin film or metallized resin film according to one embodiment of the present invention.
  • transmitting an electrical signal in the GHz band means having, in order, a 12-micron-thick signal line/a 25-micron-thick resin film according to an embodiment of the present invention/a 12-micron-thick ground layer, and the characteristic impedance is
  • the insertion loss S21 parameter of a microstrip line transmission line processed to be 50 ⁇ is measured using a network analyzer E5071C (Keysight Technologies) and a GSG250 probe
  • the transmission loss at 10 GHz is less than 7 dB/100 mm
  • It means that the transmission loss at 20 GHz is less than 11 dB/100 mm and the transmission loss at 30 GHz is less than 14 dB/100 mm.
  • the signal line with a thickness of 12 microns is intended to be a wiring composed of a conductor layer with a total thickness of 12 microns, which is composed of an electroless metal plating layer and an electrolytic copper plating layer.
  • the 12-micron-thick ground layer is intended to be a ground layer composed of a conductor layer with a total thickness of 12 microns, which is composed of an electroless metal-plated layer and an electrolytic copper-plated layer.
  • a film (laminate) having, in order, a 12-micron-thick signal line/a 25-micron-thick resin film according to an embodiment of the present invention and (ii) a 12-micron-thick signal line/a 25-micron-thick
  • the resin film according to one embodiment of the present invention/film (laminate) having a 12-micron-thick ground layer in order can also be said to be the metallized resin film according to one embodiment of the present invention.
  • a layer A containing a polyimide resin and a fumed metal oxide is formed on at least one surface of a layer B, which is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less, A resin film, wherein the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
  • the metallized resin film exhibits a peel strength of 5 N/cm or more without heat treatment at 150° C. or more after forming the electroless metal plating layer [9] The metallized resin film according to any one of [11].
  • a layer A containing a polyimide resin and a fumed metal oxide is formed on at least one surface of a layer B, which is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less, and the linear expansion of the polyimide resin
  • the layer A having an expansion coefficient of 30 ppm/° C. or more and 100 ppm/° C. or less and containing the polyimide resin and the fumed metal oxide comprises a polyamic acid solution of the precursor of the polyimide resin and the fumed metal oxide.
  • the fumed metal oxide-dispersed polyamic acid solution is applied to the layer B made of the heat-resistant resin film, and the fumed metal oxide-dispersed polyamic acid solution is dried and imidized [ 15].
  • the coefficient of linear expansion was measured using TMA120C manufactured by Seiko Electronics Corporation. The sample size was 3 mm wide and 10 mm long. After raising the temperature of the sample from 10 ° C. to 400 ° C. at 10 ° C./min with a load of 3 g, the temperature of the sample was cooled to 10 ° C., and the temperature of the sample was further increased at 10 ° C./min. was heated, and the average value was calculated from the coefficient of thermal expansion from 100° C. to 200° C. during the second temperature rise.
  • ⁇ Solubility> The solubility in the following organic solvents was evaluated for the monolayer film obtained in the section ⁇ Preparation of monolayer film of polyimide resin for layer A>. If there was an organic solvent that dissolved at a concentration of 10% by weight or more in any one of them, it was soluble and evaluated as ⁇ (bad), and if it did not dissolve at 10% by weight or more, it was insoluble and evaluated as ⁇ (good). .
  • the temperature of the organic solvent was 25°C.
  • Organic solvent species methanol, methyl ethyl ketone, toluene, tetrahydrofuran, N,N-dimethylformamide ⁇ Preparation of double-sided copper-clad laminate for evaluation>
  • the resin films obtained in Examples and Comparative Examples were subjected to desmear treatment, electroless copper plating and electrolytic copper plating in sequence under the conditions shown in Tables 1 to 3 (Atotech) to obtain double-sided laminates for evaluation. rice field.
  • the electrolytic copper plating thickness was 12 microns.
  • a sample for peel strength measurement without copper on the back surface and a sample for peel strength measurement with copper on the back surface were prepared from the metallized resin films (double-sided copper-clad laminates) produced from the resin films obtained in Examples and Comparative Examples. made. Initial peel strength, peel strength after high-temperature heat treatment, and heat-resistant peel strength were measured for each sample for peel strength measurement.
  • the copper layer on one side of the double-sided copper-clad laminate was entirely removed by etching, and the copper layer on the remaining side was etched with a masking tape to form a copper pattern of 5 mm width.
  • the initial peel strength, the peel strength after high-temperature heat treatment, and the heat-resistant peel strength were measured according to the following procedure.
  • Heat-resistant peel strength - no copper on the back side After pattern etching, water droplets on the double-sided copper-clad laminate were wiped off, the masking tape was removed, and drying was performed at 50°C for 10 minutes. Then, the double-sided copper-clad laminate was subjected to a heat resistance test environment of 150° C. for 168 hours, and then the peel strength was measured. It was carried out for evaluation of heat resistance.
  • Form 2 - with back copper A copper pattern with a width of 5 mm was formed on the copper layer on one side of the double-sided copper-clad laminate by etching using a masking tape, and a pattern for evaluation with a copper layer on the entire back surface was formed.
  • the initial peel strength, the peel strength after high-temperature heat treatment, and the heat-resistant peel strength were measured according to the following procedure.
  • Heat-resistant peel strength-with copper on the back side After pattern etching, water droplets on the double-sided copper-clad laminate were wiped off, the masking tape was removed, and drying was performed at 50°C for 10 minutes. Then, the double-sided copper-clad laminate was subjected to a heat resistance test environment of 150° C. for 168 hours, and then the peel strength was measured. It was carried out for evaluation of heat resistance.
  • peel strength measurement The six types of peel strength measurements were performed on one double-sided copper-clad laminate. The peel strength was measured by peeling at a crosshead speed of 50 mm/min and a peeling angle of 180°, and measuring the load.
  • ⁇ Surface roughness Ra> The copper layers of the double-sided copper-clad laminates for evaluation obtained in Examples and Comparative Examples were dissolved and removed by etching.
  • the surface roughness (Ra) of the exposed resin film was measured according to JIS C 0601-2001 using a scanning probe microscope (SPM, Dimension Icon manufactured by Bruker AXS).
  • BPDA solution (1) A solution of 0.51 g of BPDA dissolved in 9.7 g of DMF (hereinafter sometimes referred to as BPDA solution (1)) was separately prepared.
  • the BPDA solution (1) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (1) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • a solution was separately prepared by dissolving 0.55 g of BPDA in 10.5 g of DMF (hereinafter sometimes referred to as BPDA solution (2)).
  • BPDA solution (2) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (2) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • a solution was separately prepared by dissolving 0.53 g of BPDA in 10.1 g of DMF (hereinafter sometimes referred to as BPDA solution (3)).
  • the BPDA solution (3) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (3) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the BPDA solution (4) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (4) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the BPDA solution (5) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (5) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the BPDA solution (6) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (6) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • a solution was separately prepared by dissolving 0.54 g of BPDA in 10.3 g of DMF (hereinafter sometimes referred to as BPDA solution (7)).
  • the BPDA solution (7) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (7) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • a solution was prepared separately by dissolving 0.68 g of ODPA in 12.9 g of DMF (hereinafter sometimes referred to as ODPA solution (1)).
  • the ODPA solution (1) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the ODPA solution (1) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the ODPA solution (2) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the ODPA solution (2) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • a solution was prepared separately by dissolving 0.54 g of BPDA in 10.2 g of DMF (hereinafter sometimes referred to as BPDA solution (8)).
  • BPDA solution (8) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (8) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the BPDA solution (9) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (9) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • a solution was prepared separately by dissolving 0.62 g of BTDA in 11.9 g of DMF (hereinafter sometimes referred to as BTDA solution (1)).
  • the BTDA solution (1) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BTDA solution (1) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the BTDA solution (2) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BTDA solution (2) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the ODPA solution (3) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the ODPA solution (3) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the ODPA solution (4) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the ODPA solution (4) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the PMDA solution was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the PMDA solution and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • a solution was separately prepared by dissolving 0.58 g of BPADA in 11.0 g of DMF (hereinafter sometimes referred to as BPADA solution).
  • BPADA solution was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. Addition of the BPADA solution and stirring of the reaction solution were stopped when the viscosity of the reaction solution reached 1000 poise. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
  • the chemical structural formula of KF-8010 manufactured by Shin-Etsu Chemical Co., Ltd. is shown in general formula (1).
  • Preparation Example 2 Dispersion of fumed metal oxide for layer A
  • a fumed metal oxide dispersion was obtained in the same manner as in Preparation Example 1, except that Aerosil R9200 manufactured by Nippon Aerosil Co., Ltd. was changed to Aerosil R972 manufactured by Nippon Aerosil Co., Ltd.
  • Preparation Example 3 Dispersion of fumed metal oxide for layer A
  • a fumed metal oxide dispersion was obtained in the same manner as in Preparation Example 1 except that Aerosil R9200 manufactured by Nippon Aerosil Co., Ltd. in Preparation Example 1 was changed to Aerosil NX130 manufactured by Nippon Aerosil Co., Ltd.
  • Formulation Example 4 Fumed metal oxide dispersion for layer A
  • a fumed metal oxide dispersion was obtained in the same manner as in Preparation Example 1, except that Aerosil R9200 manufactured by Nippon Aerosil Co., Ltd. was changed to Aerosil VP RS920 manufactured by Nippon Aerosil Co., Ltd.
  • the concentration of the fumed metal oxide in the fumed metal oxide dispersions obtained in Preparation Examples 1 to 4 was 20% by weight/weight.
  • Example 1 40 g of the polyamic acid solution obtained in Synthesis Example 1 and 17 g of the dispersion of Preparation Example 1 were mixed, and the resulting mixture was further mixed with 40 g of DMF and 2 g of lutidine to obtain a Layer A dispersion.
  • the Layer A dispersion was applied to one side of a non-thermoplastic polyimide film (Apical FP, thickness 17 microns, manufactured by Kaneka Corporation) so that the final thickness of Layer A on one side was 4 microns, and heated at 120°C for 2 minutes. Then, the layer A dispersion was applied and dried on the remaining surface in the same manner.
  • a non-thermoplastic polyimide film Apical FP, thickness 17 microns, manufactured by Kaneka Corporation
  • the non-thermoplastic polyimide film coated with the Layer A dispersion is heated at 450° C. for 12 seconds to imidize the polyamic acid of Layer A, Layer A (comprising polyimide resin and fumed metal oxide)/ A resin film having a structure in which the non-thermoplastic polyimide film/layer A was laminated in this order was obtained.
  • a non-thermoplastic polyimide film (Apical FP) corresponds to layer B. That is, in Example 1, the layer B is made of a polyimide resin, specifically made of only a non-thermoplastic polyimide film. Also, the coefficient of linear expansion of the apical FP was 12 ppm/°C.
  • the resin film was subjected to desmear treatment, electroless copper plating, and electrolytic copper plating under the conditions shown in Table 1 to obtain a double-sided copper-clad laminate, and the peel strength, moisture absorption solder heat resistance, and surface roughness Ra were evaluated.
  • the compositions and results are shown in Tables 4-7.
  • Example 2 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the dispersion of Preparation Example 1 used in Example 1 was changed to the dispersion of Preparation Example 2, and the same evaluation was performed. rice field. The compositions and results are shown in Tables 4-7.
  • Example 3 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the dispersion of Preparation Example 1 used in Example 1 was changed to the dispersion of Preparation Example 3, and the same evaluation was performed. rice field. The compositions and results are shown in Tables 4-7.
  • Example 4 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the dispersion of Preparation Example 1 used in Example 1 was changed to the dispersion of Preparation Example 4, and the same evaluation was performed. rice field. The compositions and results are shown in Tables 4-7.
  • Example 1 A mixed solution was obtained by mixing 40 g of the polyamic acid solution obtained in Synthesis Example 1 with 40 g of DMF and 2 g of lutidine.
  • a resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1, except that the layer A dispersion used in Example 1 was changed to the above mixture, and evaluated in the same manner.
  • the initial peel strength did not show a sufficient value both with and without the backing copper.
  • the peel strength after high-temperature heat treatment showed good adhesion with no backing copper, but did not show a sufficient value with backing copper, and the results of adhesion differed depending on the presence or absence of backing copper.
  • the compositions and results are shown in Tables 4-7.
  • Example 5 A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 2 except that the amount of the dispersion liquid of Preparation Example 2 used in Example 2 was changed to 3.4 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 6 A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 2 except that the amount of the dispersion liquid of Preparation Example 2 used in Example 2 was changed to 6.8 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 7 A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 2 except that the amount of the dispersion liquid of Preparation Example 2 used in Example 2 was changed to 10.2 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 8 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 2 except that the amount of the dispersion liquid of Preparation Example 2 used in Example 2 was changed to 34 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
  • Example 9 A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 3 except that the amount of the dispersion liquid of Preparation Example 3 used in Example 3 was changed to 3.4 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 10 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 3 except that the amount of the dispersion liquid of Preparation Example 3 used in Example 3 was changed to 6.8 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 11 A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 3 except that the amount of the dispersion liquid of Preparation Example 3 used in Example 3 was changed to 10.2 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 12 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 3 except that the amount of the dispersion liquid of Preparation Example 3 used in Example 3 was changed to 34 g, and the same evaluation was performed.
  • the compositions and results are shown in Tables 4-7.
  • Example 13 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the amount of the dispersion liquid of Preparation Example 1 used in Example 1 was changed to 6.8 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 14 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the amount of the dispersion of Preparation Example 1 used in Example 1 was changed to 10.2 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 15 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the amount of the dispersion liquid of Preparation Example 1 used in Example 1 was changed to 34 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
  • Example 16 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the amount of the dispersion liquid of Preparation Example 1 used in Example 1 was changed to 51 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
  • Example 17 A resin film and a double-sided copper-clad laminate were obtained by the same operation as in Example 4 except that the amount of the dispersion liquid of Preparation Example 4 used in Example 4 was changed to 6.8 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 18 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 4 except that the amount of the dispersion liquid of Preparation Example 4 used in Example 4 was changed to 10.2 g, and the same evaluation was performed. .
  • the compositions and results are shown in Tables 4-7.
  • Example 19 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 4 except that the amount of the dispersion liquid of Preparation Example 4 used in Example 4 was changed to 34 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
  • Example 20 A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 4 except that the amount of the dispersion of Preparation Example 4 used in Example 4 was changed to 51 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
  • Example 21 Of the processing conditions listed in Table 1 for producing the double-sided copper-clad laminate of Example 1, the conditions for the drying process after electroless copper plating were changed to only wiping off water droplets, and the drying process after copper sulfate plating was changed.
  • a double-sided copper-clad laminate was obtained by performing the same operation as in Example 1, except that only water droplets were wiped off, and the same evaluation was performed.
  • the compositions and results are shown in Tables 4-7.
  • six types of peel strength showed good values as in Example 1. That is, the metal plating layer adhered well to the resin film without heating after the electroless metal plating layer forming treatment.
  • Example 22 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 2 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
  • Example 23 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 3 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
  • Example 24 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 4 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
  • Example 25 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 5 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
  • Example 26 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 6 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
  • Example 27 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 7 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
  • Example 28 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 8 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
  • Example 29 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 9 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
  • Example 30 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 10 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
  • Example 31 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 11 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was ⁇ .
  • the compositions and results are shown in Tables 4-7.
  • Example 32 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 12 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was ⁇ .
  • the compositions and results are shown in Tables 4-7.
  • Example 2 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 13 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was x. The compositions and results are shown in Tables 4-7.
  • Example 33 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 14 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was ⁇ .
  • the compositions and results are shown in Tables 4-7.
  • Example 34 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 15 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was ⁇ .
  • the compositions and results are shown in Tables 4-7.
  • Example 3 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 16 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did In addition, the moisture absorption solder heat resistance evaluation was x. The compositions and results are shown in Tables 4-7.
  • Example 4 The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 17 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed.
  • the polyimide resin of Layer A contains a silicone skeleton, and volatilization of the siloxane component from the main chain skeleton may cause contact failure in electronic devices and process contamination.
  • the layer A had a large coefficient of linear expansion, and the evaluation of moisture absorption solder heat resistance was x. It has poor dimensional stability, is soluble in organic solvents, and has poor resistance to organic solvents in the process of manufacturing printed wiring boards.
  • Tables 4-7 The compositions and results are shown in Tables 4-7.
  • a dispersion of fumed metal oxide was obtained.
  • 40 g of the polyimide solution and 17 g of the fumed metal oxide dispersion were mixed to obtain a fumed metal oxide-dispersed polyimide solution (hereinafter also referred to as layer A solution).
  • the layer A solution was applied to one side of a non-thermoplastic polyimide film (Apical FP, thickness 17 microns, manufactured by Kaneka Corporation) so that the final thickness of layer A on one side was 4 microns, and heated at 60°C for 5 minutes.
  • the layer A solution was dried at 150° C. for 5 minutes, and then the remaining surface was coated with the layer A solution and dried in the same manner. By this operation, a resin film having a structure of layer A/non-thermoplastic polyimide film/layer A was obtained. After that, the same operation as in Example 1 was performed to obtain a double-sided copper-clad laminate, and the same evaluation was performed.
  • the polyimide resin of Layer A contains a silicone skeleton, and volatilization of the siloxane component from the main chain skeleton may cause contact failure in electronic devices and process contamination.
  • the moisture absorption solder heat resistance evaluation was x.
  • Layer A has a large coefficient of linear expansion, poor dimensional stability, is soluble in organic solvents, and has poor resistance to organic solvents in the printed wiring board manufacturing process. The compositions and results are shown in Tables 4-7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide a novel resin film, etc., having excellent solder resistance and adhesion. The above purpose is achieved by configuring a resin film in which a layer A including a polyimide resin and a fumed metal oxide is formed on at least one surface of a layer B which is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/°C or less, and the coefficient of linear expansion of the polyimide resin is 30 ppm/°C to 100 ppm/°C.

Description

樹脂フィルムおよびその製造方法、ならびに金属化樹脂フィルム、プリント配線板Resin film and its manufacturing method, metallized resin film, and printed wiring board
 本発明は、樹脂フィルムおよびその製造方法、ならびに金属化樹脂フィルム、プリント配線板に関する。 The present invention relates to a resin film and its manufacturing method, as well as a metallized resin film and a printed wiring board.
 絶縁基板上に金属導体からなる回路を備えるプリント配線板は、プリント配線板上に各種電子部品が実装され、電子機器の機能を発現させる部品として広く使用されている。電子機器の高機能化、高性能化、小型化に伴い、プリント配線板には、回路配線のさらなる狭ピッチ化が求められている。具体的に、電子機器の内部にコンパクトに折り曲げて収納できる(a)フレキシブルプリント配線板、(b)リジッドフレックス基板、(c)多層フレキシブル基板、および(d)COF(チップオンフィルム)等の可撓性のあるフィルム部分に狭ピッチの回路形成がなされたプリント配線板が求められている。 A printed wiring board, which has a circuit made of metal conductors on an insulating substrate, is widely used as a component that expresses the functions of electronic devices by mounting various electronic components on the printed wiring board. 2. Description of the Related Art As electronic devices become more sophisticated, perform better, and become smaller, printed wiring boards are required to have narrower pitches of circuit wiring. Specifically, (a) flexible printed wiring boards, (b) rigid-flex boards, (c) multilayer flexible boards, and (d) COFs (chip-on-films), etc., which can be folded and stored compactly inside electronic devices. There is a demand for a printed wiring board in which narrow-pitch circuits are formed on a flexible film portion.
 狭ピッチの回路形成に対応する方法として、特許文献1では、キャリア付きの薄膜の銅箔をポリイミドシートと貼り合わせる方法が開示されている。 As a method for forming narrow-pitch circuits, Patent Document 1 discloses a method of bonding a thin-film copper foil with a carrier to a polyimide sheet.
 また、特許文献2では、真空蒸着法、スパッタリング法、イオンプレーティング方等の物理的蒸着法を用い、ポリイミドフィルム上に金属層を形成する方法が開示されている。 In addition, Patent Document 2 discloses a method of forming a metal layer on a polyimide film using a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method.
 また、特許文献3では、シリコーン構造を含むポリイミド樹脂とヒュームドシリカとを含む材料の上に無電解めっきで直接銅めっきを行った例が開示されている。 In addition, Patent Document 3 discloses an example in which a material containing a polyimide resin having a silicone structure and fumed silica is directly plated with copper by electroless plating.
特開2005-76091号公報JP-A-2005-76091 特許第6706013号公報Japanese Patent No. 6706013 特許第5037168号公報Japanese Patent No. 5037168
 しかしながら、上述のような従来技術は、耐半田性および密着性という観点からは、十分なものでなく、さらなる改善の余地があった。 However, the conventional technology as described above is not sufficient from the viewpoint of solder resistance and adhesion, and there is room for further improvement.
 本発明の一実施形態は、前記問題点に鑑みなされたものであり、その目的は、耐半田性および密着性に優れる、新規の樹脂フィルム及びその製造方法、並びに当該樹脂フィルムから得られる金属化樹脂フィルム及びプリント配線板を提供することである。 One embodiment of the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel resin film having excellent solder resistance and adhesion, a method for producing the same, and a metallization obtained from the resin film. It is to provide a resin film and a printed wiring board.
 本発明者らは、鋭意検討の結果、上記課題を克服できることを見出した。 As a result of diligent studies, the inventors found that the above problems could be overcome.
 すなわち、本発明の一実施形態に係る樹脂フィルムは、ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムである層Bの少なくとも一方の面に形成されており、前記ポリイミド樹脂の線膨張係数が30ppm/℃以上、100ppm/℃以下である。 That is, in the resin film according to one embodiment of the present invention, the layer A containing the polyimide resin and the fumed metal oxide is a heat-resistant resin film having a linear expansion coefficient of 20 ppm / ° C. or less, and at least one surface of the layer B. and the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
 また、本発明の一実施形態に係る樹脂フィルムの製造方法は、ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムである層Bの少なくとも一方の面に形成されており、前記ポリイミド樹脂の線膨張係数が30ppm/℃以上、100ppm/℃以下であり、ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、ポリイミド樹脂の前駆体のポリアミド酸溶液とフュームド金属酸化物とを混合し、得られたフュームド金属酸化物分散ポリアミド酸溶液をイミド化することにより得られる。 Further, in the method for producing a resin film according to one embodiment of the present invention, the layer A containing a polyimide resin and a fumed metal oxide is a heat-resistant resin film having a linear expansion coefficient of 20 ppm / ° C. or less. The layer A formed on one surface and having a linear expansion coefficient of the polyimide resin of 30 ppm/° C. or more and 100 ppm/° C. or less and containing a polyimide resin and a fumed metal oxide is a polyamide precursor of the polyimide resin. It is obtained by mixing an acid solution and a fumed metal oxide and imidating the obtained fumed metal oxide-dispersed polyamic acid solution.
 本発明の一実施形態によれば、優れた半田耐熱性を示し、狭ピッチの回路形成に対応できる材料およびその方法、具体的には優れた半田耐熱性と低粗度の表面に強い密着性を示す無電解めっき層を形成できる樹脂フィルム及びその製造方法、樹脂フィルムから得られる金属化樹脂フィルム及びプリント配線板を提供することができる。 According to one embodiment of the present invention, a material and method that exhibit excellent solder heat resistance and can be used for narrow-pitch circuit formation, specifically, excellent solder heat resistance and strong adhesion to a low-roughness surface It is possible to provide a resin film capable of forming an electroless plated layer showing
 〔本発明の一実施形態の技術的思想〕
 本発明者らが鋭意検討した結果、上述した先行技術文献1~3に記載の技術には、以下に示すような改善の余地または問題点があることを見出した。
[Technical idea of one embodiment of the present invention]
As a result of intensive studies, the inventors of the present invention have found that the techniques described in the prior art documents 1 to 3 have room for improvement or problems as shown below.
 例えば、特許文献1では、絶縁基材と銅箔との密着性を確保するために意図的に銅箔表面に凹凸が形成されている。そのため、特許文献1では、銅層厚みが通常銅箔の限界よりも薄いとはいえ、エッチング工程での回路形状に与える悪影響はあり、狭ピッチ化の限界があり、また伝送特性に与える悪影響がある。 For example, in Patent Document 1, irregularities are intentionally formed on the copper foil surface in order to ensure the adhesion between the insulating base material and the copper foil. Therefore, in Patent Document 1, although the thickness of the copper layer is usually thinner than the limit of the copper foil, there is an adverse effect on the circuit shape in the etching process, there is a limit to narrowing the pitch, and there is an adverse effect on the transmission characteristics. be.
 また、特許文献2の技術では、ニッケル、クロム、バナジウム、チタン、モリブデン等の金属を物理蒸着法により基材表面に形成する。しかし、特許文献2の技術によると、回路形成の際に銅用のエッチング液でエッチングしただけでは、ニッケル、クロム、チタン等の金属を完全には除去できず、完全に除去する為に別のエッチング液を用いる必要があり、工程上煩雑であるという問題があった。 In addition, in the technique of Patent Document 2, metals such as nickel, chromium, vanadium, titanium, and molybdenum are formed on the substrate surface by physical vapor deposition. However, according to the technique of Patent Document 2, metals such as nickel, chromium, and titanium cannot be completely removed only by etching with an etchant for copper during circuit formation. There is a problem that an etchant needs to be used and the process is complicated.
 また、特許文献3は、低粗度の表面に無電解めっき層を形成できる樹脂フィルムについて開示されているものの、耐半田性などに改善の余地のあるものであった。 In addition, although Patent Document 3 discloses a resin film capable of forming an electroless plated layer on a low-roughness surface, there is room for improvement in terms of solder resistance and the like.
 本発明は、本発明は前記課題に鑑みてなされたものであり、その目的は、耐半田性および密着性に優れる、新規の樹脂フィルム及びその製造方法、並びに当該樹脂フィルムから得られる金属化樹脂フィルム及びプリント配線板を提供することである。本発明の一実施形態は、例えば、優れた半田耐熱性を示し、狭ピッチの回路形成に対応できる材料(樹脂フィルム)およびその方法、具体的には優れた半田耐熱性を有し、かつ低粗度の表面に対する強い密着性を示す無電解めっき層を形成できる樹脂フィルム及びその製造方法を提供することを目的とする。また、本発明の一実施形態は、当該樹脂フィルムから得られる金属化樹脂フィルム及びプリント配線板を提供することも目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel resin film having excellent solder resistance and adhesion, a method for producing the same, and a metallized resin obtained from the resin film. It is to provide films and printed wiring boards. One embodiment of the present invention is, for example, a material (resin film) that exhibits excellent solder heat resistance and is compatible with narrow-pitch circuit formation, and a method therefor. An object of the present invention is to provide a resin film capable of forming an electroless plated layer exhibiting strong adhesion to a rough surface, and a method for producing the same. Another object of one embodiment of the present invention is to provide a metallized resin film and a printed wiring board obtained from the resin film.
 〔樹脂フィルム〕
 本発明の一実施形態に係る樹脂フィルムは、ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムである層Bの少なくとも一方の面に形成されており、前記ポリイミド樹脂の線膨張係数が30ppm/℃以上、100ppm/℃以下であることを特徴とする。
[Resin film]
In the resin film according to one embodiment of the present invention, the layer A containing the polyimide resin and the fumed metal oxide is formed on at least one surface of the layer B, which is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less. and the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
 本発明の一実施形態に係る樹脂フィルムは、前記構成を有することにより、耐半田性および密着性に優れるという利点を有する。一例として、本明細書では、密着性はピール強度(N/cm)により評価し、耐半田性は吸湿半田耐熱性で評価している。 The resin film according to one embodiment of the present invention has the advantage of being excellent in solder resistance and adhesiveness due to the above configuration. As an example, in this specification, adhesion is evaluated by peel strength (N/cm), and solder resistance is evaluated by moisture absorption solder heat resistance.
 ポリイミド樹脂とフュームド金属酸化物とを含む層A(層Aと表すこともある)について説明する。 A layer A (also referred to as layer A) containing a polyimide resin and a fumed metal oxide will be described.
 <ポリイミド樹脂とフュームド金属酸化物を含む層A(層A)>
 本発明の一実施形態の層Aはポリイミド樹脂とフュームド金属酸化物とを含むことを必須要件とする。また、当該構成にすることにより樹脂フィルムと無電解金属めっき層との密着性、特に加熱等行うことなく、無電解金属めっき層形成直後の状態での密着性を大きく改善することができる。密着性の発現メカニズムの考え方につき以下に記載する。
<Layer A containing polyimide resin and fumed metal oxide (layer A)>
Layer A of one embodiment of the present invention essentially comprises a polyimide resin and a fumed metal oxide. In addition, by adopting such a structure, the adhesion between the resin film and the electroless metal plating layer, especially the adhesion immediately after forming the electroless metal plating layer without heating, etc., can be greatly improved. It describes below about the way of thinking of the expression mechanism of adhesiveness.
 無電解金属めっきのプロセスは複数の独立した薬液浴で構成されている。これら薬液浴は所定の条件(濃度、温度等)で管理されており、被めっき物の表面は浸漬、シャワーリング等の方法でこれら薬液と所定時間接触し、同表面は化学的な変化、場合により物理的な形状変化が生じる。これら薬液は種々の成分を含んでおり、pHも薬液種により様々であり、強アルカリ性、強酸性を示す薬液もある。一方、本発明の一実施形態に必須のポリイミド樹脂とフュームド金属酸化物とはいずれもこれら薬液と相互作用があり、化学構造の変化および物理的な形状の変化を生じており、無電解金属めっきとの密着性改善に影響していると考えている。フュームド金属酸化物およびポリイミド樹脂は、共にアルカリ性環境で化学的に変化を受ける。例えば、フュームド金属酸化物は、アルカリ性環境で溶解し、イオン状金属酸化物を生成する。例えば、ポリイミド樹脂は、アルカリ性環境でイミド環の開裂反応によりイオン性を示すアミド酸基を生成する。これらイオン性化合物(イオン状金属酸化物およびイオン性を示すアミド酸基など)は無電解金属めっき浴中の金属イオンと反応し、「フュームド金属酸化物」-「金属(例えば銅)」-「ポリイミド樹脂」の3成分に由来する化合物がポリイミド樹脂と金属めっきとの界面に形成され得る。当該化合物が密着性に寄与しており、結果としてポリイミド樹脂と金属めっきとの密着性は高くなると考えている。  The electroless metal plating process consists of multiple independent chemical baths. These chemical baths are controlled under prescribed conditions (concentration, temperature, etc.), and the surface of the object to be plated is brought into contact with these chemicals for a prescribed period of time by means of immersion, showering, etc., and the surface undergoes chemical changes, such as causes a physical shape change. These chemical solutions contain various components, and their pH varies depending on the type of chemical solution, and some chemical solutions exhibit strong alkalinity and strong acidity. On the other hand, both the polyimide resin and the fumed metal oxide essential for one embodiment of the present invention interact with these chemicals, causing changes in chemical structure and physical shape, and electroless metal plating. It is thought that it has an effect on the improvement of adhesion with. Both fumed metal oxides and polyimide resins undergo chemical changes in alkaline environments. For example, fumed metal oxides dissolve in alkaline environments to produce ionic metal oxides. For example, a polyimide resin produces an ionic amic acid group through an imide ring cleavage reaction in an alkaline environment. These ionic compounds (such as ionic metal oxides and ionic amic acid groups) react with metal ions in the electroless metal plating bath to A compound derived from the three components of "polyimide resin" can be formed at the interface between the polyimide resin and the metal plating. It is believed that the compound contributes to the adhesion, and as a result, the adhesion between the polyimide resin and the metal plating is enhanced.
 一方、ポリイミド樹脂およびフュームド金属酸化物のアルカリ性環境での溶解速度は、それぞれ、ポリイミド樹脂の化学構造および凝集構造、並びに、フュームド金属酸化物の化学構造および比表面積等により影響されると考えられる。本発明の一実施形態のポリイミド樹脂とフュームド金属酸化物とを含む層Aをアルカリ性環境に晒した場合、ポリイミド樹脂およびフュームド金属酸化物それぞれの溶解速度に応じた溶解が起こる。本発明の一実施形態のA層はポリイミド樹脂相に埋没した状態でフュームド金属酸化物が存在する構造となっている。そのため、本発明の一実施形態の層Aをアルカリ性環境に晒した場合、ポリイミド樹脂およびフュームド金属酸化物それぞれのアルカリ性薬品に対する溶解速度に応じ、層Aの表面にフュームド金属酸化物の粒子径と同程度の微細な凹凸が生成され、結果として層Aの表面積が増加し得る。この層Aの表面積の増加も密着強度の改善に寄与しているものと考えている。 On the other hand, the dissolution rate of polyimide resin and fumed metal oxide in an alkaline environment is thought to be affected by the chemical structure and aggregate structure of polyimide resin, and the chemical structure and specific surface area of fumed metal oxide, respectively. When Layer A containing the polyimide resin and fumed metal oxide of one embodiment of the present invention is exposed to an alkaline environment, dissolution occurs according to the respective dissolution rates of the polyimide resin and the fumed metal oxide. The layer A of one embodiment of the present invention has a structure in which a fumed metal oxide exists in a state of being buried in a polyimide resin phase. Therefore, when the layer A of one embodiment of the present invention is exposed to an alkaline environment, the surface of the layer A has the same particle size as the fumed metal oxide, depending on the dissolution rate of each of the polyimide resin and the fumed metal oxide in alkaline chemicals. The surface area of layer A can be increased as a result of the generation of fine irregularities. It is considered that the increase in the surface area of the layer A also contributes to the improvement in adhesion strength.
 また、本発明の一実施形態に必須のフュームド金属酸化物は一次粒子が凝集した構造を有しており、ポリイミド樹脂相に埋没した状態で存在している。また、本発明の一実施形態に必須のフュームド金属酸化物の、ある構造単位の一部は表面に露出および/または表面近傍に存在しており、その他の部分はバルク方向に存在していることで両者が強固に結着し、密着強度の改善に寄与しているものと考えている。つまり、(i)前記「フュームド金属酸化物」-「金属(例えば銅)」-「ポリイミド樹脂」の3成分に由来する化合物が存在する界面の面積が増えること、および(ii)フュームド金属酸化物はポリイミド樹脂相に埋没し、強固に結着していること、が無電解金属めっきとの密着強度の増大に寄与しているものと考えている。なお、本発明は、密着性の発現メカニズム関する上述した考え(推測)になんら限定されるものではない。 In addition, the fumed metal oxide essential to one embodiment of the present invention has a structure in which primary particles are aggregated, and exists in a state of being buried in the polyimide resin phase. In addition, a part of certain structural units of the fumed metal oxide essential for one embodiment of the present invention is exposed to the surface and/or exists near the surface, and the other part exists in the bulk direction. It is thought that the two are strongly bound together and contribute to the improvement of the adhesion strength. That is, (i) the area of the interface where the compound derived from the three components of "fumed metal oxide" - "metal (e.g. copper)" - "polyimide resin" is present is increased, and (ii) fumed metal oxide is embedded in the polyimide resin phase and strongly bound, which contributes to the increase in adhesion strength to the electroless metal plating. It should be noted that the present invention is by no means limited to the above-described ideas (speculations) relating to the adhesion development mechanism.
 <層Aのポリイミド樹脂>
 次に層Aに用いるポリイミド樹脂につき説明する。ポリイミド樹脂は化学骨格中にイミド基を含んでいることが特徴である。ポリイミド樹脂中の当該イミド基(官能基)がフュームド金属酸化物、および金属元素(例えば、銅元素)と相互作用し、無電解金属めっき層との密着性を向上すると考えている。従い、本発明の一実施形態の効果である密着性の発現の為には、ポリイミド樹脂がイミド基を含んでいることが必須要件である。一方で、本発明者らは、鋭意検討過程で、層Aに用いるポリイミド樹脂の線膨張係数が密着性に影響し、具体的には30ppm/℃以上である場合に良好な密着性を示すことを独自に見出し、本発明の一実施形態に至っている。本明細書において、ポリイミド樹脂の線膨張係数は、層Aに用いるポリイミド樹脂をフィルム状にしたときの面方向の線膨張係数であり、ポリイミド分子鎖の層A内での面内配向の程度を反映したものである。ポリイミド樹脂の線膨張係数が小さいほどポリイミド分子鎖が面方向に配向していることを示し、逆に大きいほど厚み方向にもポリイミド分子鎖が配向していることを示している。
<Polyimide resin of layer A>
Next, the polyimide resin used for the layer A will be explained. A polyimide resin is characterized by containing an imide group in its chemical skeleton. It is believed that the imide group (functional group) in the polyimide resin interacts with the fumed metal oxide and the metal element (for example, copper element) to improve adhesion to the electroless metal plating layer. Therefore, it is essential that the polyimide resin contain an imide group in order to develop adhesion, which is an effect of one embodiment of the present invention. On the other hand, in the process of intensive study, the present inventors found that the coefficient of linear expansion of the polyimide resin used for layer A affects the adhesion, and specifically shows good adhesion when it is 30 ppm / ° C. or more. has been found independently and has led to an embodiment of the present invention. In this specification, the linear expansion coefficient of the polyimide resin is the linear expansion coefficient in the plane direction when the polyimide resin used for the layer A is made into a film, and the degree of in-plane orientation in the layer A of the polyimide molecular chains is It is a reflection. A smaller linear expansion coefficient of the polyimide resin indicates that the polyimide molecular chains are oriented in the plane direction, and conversely, a larger coefficient indicates that the polyimide molecular chains are oriented in the thickness direction as well.
 ポリイミド樹脂の線膨張係数は使用するモノマー種により制御することができることが知られている。ポリイミド樹脂の線膨張係数を小さくするためには、剛直な化学構造を有するモノマーを使用し、その組成比を高くすることが有効である。剛直な化学構造を有するモノマーを使用し、その組成比を高くすることにより、フィルム状に加工(成型)した際に面方向にポリイミド分子鎖が配向し、更にその分子鎖が厚み方向に堆積した状態が形成され得る。  It is known that the linear expansion coefficient of polyimide resin can be controlled by the type of monomer used. In order to reduce the coefficient of linear expansion of polyimide resins, it is effective to use monomers having a rigid chemical structure and to increase their composition ratio. By using a monomer with a rigid chemical structure and increasing its composition ratio, the polyimide molecular chains were oriented in the plane direction when processed (molded) into a film, and the molecular chains accumulated in the thickness direction. A state can be formed.
 上述したように、層Aのポリイミド樹脂の線膨張係数が小さすぎる場合、樹脂フィルムと無電解金属めっき層との密着性が低下するという知見を、本発明者らは独自に見出した。この理由は定かではないが、以下のように推測される。剛直な化学構造を有するモノマーを使用し、当該モノマーの組成比を高くしたモノマー混合物から得られるポリイミドをアルカリ性薬液に晒した場合、表面近傍のポリイミド分子はイミド環の開裂反応によりポリアミド酸に変性し、面方向に配向したポリアミド酸分子が厚み方向に堆積した状態が形成される。ポリアミド酸分子鎖同士の凝集力はポリイミド分子鎖同士の凝集力と比較し弱い。その為、前記ポリイミドをアルカリ性薬液に晒して得られるフィルムの表面に無電解金属めっき層(膜)を形成し、密着性を評価した場合、凝集力が弱いポリアミド酸分子鎖間で層状に破壊した界面で剥離し、結果としてフィルムとめっき層(膜)との密着強度は低くなる傾向がある、と推測される。なお、本発明は、かかる推測になんら限定されるものではない。 As described above, the present inventors have independently found that if the coefficient of linear expansion of the polyimide resin of layer A is too small, the adhesion between the resin film and the electroless metal plating layer is reduced. The reason for this is not clear, but is presumed as follows. When a polyimide obtained from a monomer mixture with a rigid chemical structure and a high composition ratio of the monomer is exposed to an alkaline chemical solution, the polyimide molecules near the surface are denatured into polyamic acid due to the cleavage reaction of the imide ring. , a state in which polyamic acid molecules oriented in the plane direction are deposited in the thickness direction is formed. The cohesive force between polyamic acid molecular chains is weaker than the cohesive force between polyimide molecular chains. Therefore, when an electroless metal plating layer (film) was formed on the surface of the film obtained by exposing the polyimide to an alkaline chemical solution, and the adhesion was evaluated, layer breakage occurred between polyamic acid molecular chains with weak cohesive force. It is presumed that the adhesion strength between the film and the plating layer (membrane) tends to be low as a result of peeling at the interface. It should be noted that the present invention is by no means limited to such speculation.
 逆に、ポリイミド樹脂の線膨張係数を大きくするためには、柔軟な化学構造を有するモノマーを使用し、その組成比を高くすることが有効である。柔軟な化学構造を有するモノマーを使用し、その組成比を高くすることにより、フィルム状に成型した際にポリイミド分子鎖は面方向に配向するだけではなく、厚み方向にも配向する、つまりランダム配向を示す傾向がある。 On the contrary, in order to increase the linear expansion coefficient of polyimide resin, it is effective to use monomers with a flexible chemical structure and increase their composition ratio. By using a monomer with a flexible chemical structure and increasing its composition ratio, the polyimide molecular chains are oriented not only in the plane direction but also in the thickness direction when formed into a film, that is, randomly oriented. tend to show
 上述したように、層Aのポリイミド樹脂の線膨張係数が大きい(例えば、30ppm/℃以上)場合、樹脂フィルムと無電解金属めっき層との密着性が増強するという知見を、本発明者らは独自に見出した。この理由は定かではないが、以下のように推測される。柔軟な化学構造を有するモノマーを使用し、当該モノマーの組成比を高くしたモノマー混合物から得られるポリイミドをアルカリ性薬液に晒した場合、表面近傍のポリイミド分子はイミド環の開裂反応によりポリアミド酸に変性するが、厚み方向にも高分子鎖の共有結合が数多く存在しており、従い、分子鎖同士の凝集力が高い状態を保っている。それ故、前記ポリイミドをアルカリ性薬液に晒して得られるフィルムの表面に無電解金属めっき膜を形成し、密着性を評価した場合、上述のようにポリイミドの線膨張係数が小さく、面内分子配向が進んだポリイミドの場合のようにポリアミド酸分子鎖間で層状に剥離したりすることはなく、結果として無電解金属めっきとの密着強度は大きくなる傾向がある、と推測される。なお、本発明は、かかる推測になんら限定されるものではない。 As described above, the present inventors have found that the adhesion between the resin film and the electroless metal plating layer is enhanced when the linear expansion coefficient of the polyimide resin of the layer A is large (for example, 30 ppm / ° C. or more). found on its own. The reason for this is not clear, but is presumed as follows. When a polyimide obtained from a monomer mixture that uses a monomer with a flexible chemical structure and a high composition ratio of the monomer is exposed to an alkaline chemical solution, the polyimide molecules near the surface are modified into polyamic acid due to the cleavage reaction of the imide ring. However, there are many covalent bonds of polymer chains in the thickness direction as well, so the cohesive force between the molecular chains is kept high. Therefore, when an electroless metal plating film is formed on the surface of the film obtained by exposing the polyimide to an alkaline chemical solution and the adhesion is evaluated, the polyimide has a small linear expansion coefficient and in-plane molecular orientation as described above. It is presumed that there is no layered separation between polyamic acid molecular chains as in the case of advanced polyimide, and as a result, the adhesion strength to electroless metal plating tends to increase. It should be noted that the present invention is by no means limited to such speculation.
 以上より、層Aに用いるポリイミド樹脂は、ポリイミド樹脂をアルカリ性薬液に晒してもポリイミド樹脂自身の凝集力を低下させないとの視点より、面内分子配向が進んだポリイミド樹脂よりも、ランダム配向した傾向のあるポリイミド樹脂、つまり等方的に分子配向している傾向があるポリイミド樹脂であることが好ましい。 As described above, the polyimide resin used for the layer A tends to be randomly oriented more than the polyimide resin with advanced in-plane molecular orientation from the viewpoint that the cohesive force of the polyimide resin itself is not reduced even if the polyimide resin is exposed to an alkaline chemical solution. It is preferable to use a polyimide resin that has a certain property, that is, a polyimide resin that tends to have isotropic molecular orientation.
 ポリイミド樹脂に関して、面内分子配向の程度と線膨張係数との間には相関がある。ポリイミド樹脂に関して、高度に面内分子配向が進んだ状態、結果として面配向した高分子鎖間の剥離強度も弱くなる状態の場合、線膨張係数は30ppm/℃よりも小さくなる。層Aに用いるポリイミド樹脂には面方向だけではなく、厚み方向にも配向している、ランダム配向傾向があることが好ましく、これにより無電解金属めっきとの密着性も向上する。ポリイミド樹脂の線膨張係数は30ppm/℃以上であることが好ましく、30ppm/℃よりも大きいことがより好ましく、35ppm/℃以上であることがより好ましく、40ppm/℃以上であると更に好ましく、45ppm/℃以上であることがより更に好ましく、50ppm/℃以上であることが特に好ましい。 Regarding polyimide resin, there is a correlation between the degree of in-plane molecular orientation and the coefficient of linear expansion. Regarding the polyimide resin, when the in-plane molecular orientation is highly advanced, and as a result the peel strength between the plane-oriented polymer chains is weakened, the coefficient of linear expansion is less than 30 ppm/°C. It is preferable that the polyimide resin used for the layer A has a tendency to be oriented not only in the surface direction but also in the thickness direction, that is, a random orientation tendency, thereby improving the adhesion to the electroless metal plating. The linear expansion coefficient of the polyimide resin is preferably 30 ppm/° C. or more, more preferably greater than 30 ppm/° C., more preferably 35 ppm/° C. or more, and even more preferably 40 ppm/° C. or more, 45 ppm. /°C or higher, and particularly preferably 50 ppm/°C or higher.
 一方、層Aのポリイミド樹脂の線膨張係数が大きくなると、層Aと層Bとで構成される本発明の一実施形態の樹脂フィルム全体の線膨張係数も大きくなる傾向がある。本発明の一実施形態の樹脂フィルムをプリント配線板用に使う場合、樹脂フィルム全体の線膨張係数が大きくなると、実装工程において求められる寸法精度も悪くなる傾向があり、好ましくない。また、本発明者らは、鋭意検討の過程において、ポリイミド樹脂の線膨張係数を100ppm以下とすることで、驚くべきことに、半田耐熱など耐熱性に優れる傾向がある、換言すれば耐半田性に優れる傾向がある、という新規知見を独自に得た。
従い、層Aのポリイミド樹脂の線膨張係数は100ppm/℃以下であることが好ましく、より好ましくは90ppm/℃以下であり、より好ましくは80ppm/℃以下であり、より好ましくは75ppm/℃以下であり、更に好ましくは70ppm/℃以下であり、より更に好ましくは65ppm/℃以下であり、特に好ましくは60ppm/℃以下である。
On the other hand, when the coefficient of linear expansion of the polyimide resin of Layer A increases, the coefficient of linear expansion of the entire resin film of one embodiment of the present invention composed of Layer A and Layer B tends to increase. When the resin film of one embodiment of the present invention is used for a printed wiring board, if the coefficient of linear expansion of the entire resin film increases, the dimensional accuracy required in the mounting process tends to deteriorate, which is not preferable. In addition, in the course of intensive studies, the present inventors have surprisingly found that by setting the linear expansion coefficient of the polyimide resin to 100 ppm or less, there is a tendency to be excellent in heat resistance such as solder heat resistance, in other words, solder resistance We independently obtained new knowledge that there is a tendency to be superior to
Therefore, the linear expansion coefficient of the polyimide resin of layer A is preferably 100 ppm/° C. or less, more preferably 90 ppm/° C. or less, more preferably 80 ppm/° C. or less, and more preferably 75 ppm/° C. or less. more preferably 70 ppm/°C or less, still more preferably 65 ppm/°C or less, and particularly preferably 60 ppm/°C or less.
 <層Aのポリイミド樹脂の耐熱性、ガラス転移温度および高温時弾性率>
 層Aに用いるポリイミド樹脂の線膨張係数は30ppm/℃以上であることが好ましく、30ppm/℃よりも大きいことがより好ましい。ポリイミド樹脂の、線膨張係数が大きくなると、ポリイミド樹脂が熱可塑性を示す傾向がある。熱可塑性樹脂はある温度に達すると軟化し、そのことを利用して加工ができる、例えば銅箔と熱圧着できる等の利点がある。本発明の一実施形態の目的である無電解金属めっきとの密着性の改善の視点からは熱可塑性は必須要件ではない。
<Heat resistance, glass transition temperature and elastic modulus at high temperature of polyimide resin of layer A>
The coefficient of linear expansion of the polyimide resin used for layer A is preferably 30 ppm/°C or more, more preferably greater than 30 ppm/°C. As the linear expansion coefficient of the polyimide resin increases, the polyimide resin tends to exhibit thermoplasticity. Thermoplastic resin softens when it reaches a certain temperature, and there is an advantage that it can be processed by using this fact, for example, it can be thermocompressed with copper foil. From the viewpoint of improving adhesion to electroless metal plating, which is the object of one embodiment of the present invention, thermoplasticity is not an essential requirement.
 他方、本発明の一実施形態の樹脂フィルムをプリント配線板用に使うことを想定した場合、ポリイミド樹脂がその加工プロセス中の高温プロセスの温度、および部品実装される際の高温にも耐えることが好ましい。それ故、層Aに用いるポリイミド樹脂はガラス転移温度および高温での弾性率が高い方が好ましく、高すぎることに特段の不都合はない。以上の視点より、耐熱性の指標となるポリイミド樹脂のガラス転移温度はできるだけ高いことが好ましく、例えば好ましくは180℃以上であり、更に好ましくは230℃以上である。また、良好な半田耐熱性発現のためには層Aに用いるポリイミド樹脂は半田の融点近傍においても一定以上の弾性率を有していることが好ましい。具体的に、層A中に含まれるポリイミド樹脂は300℃における貯蔵弾性率が0.2×10Pa以上であることが好ましく、0.5×10Pa以上であることがより好ましく、0.8×10Pa以上であることがさらに好ましく、1.0×10Pa以上であることが特に好ましい。 On the other hand, when it is assumed that the resin film of one embodiment of the present invention is used for a printed wiring board, the polyimide resin can withstand the temperature of high temperature processes during its processing and the high temperature when parts are mounted. preferable. Therefore, the polyimide resin used for the layer A preferably has a high glass transition temperature and a high elastic modulus at high temperatures, and there is no particular problem if the glass transition temperature is too high. From the above viewpoints, the glass transition temperature of the polyimide resin, which is an index of heat resistance, is preferably as high as possible, for example, preferably 180° C. or higher, more preferably 230° C. or higher. Further, in order to exhibit good solder heat resistance, it is preferable that the polyimide resin used for the layer A has a certain or more elastic modulus even near the melting point of solder. Specifically, the polyimide resin contained in Layer A preferably has a storage modulus at 300° C. of 0.2×10 8 Pa or more, more preferably 0.5×10 8 Pa or more, and 0 It is more preferably 0.8×10 8 Pa or more, and particularly preferably 1.0×10 8 Pa or more.
 <層Aのポリイミド樹脂の溶解性>
 層Aのポリイミド樹脂として有機溶媒に可溶な溶解性ポリイミドを用い本発明の一実施形態の樹脂フィルムを製造することは可能である。具体的には溶解性ポリイミドを有機溶媒に溶解し、得られた溶解液にさらにフュームド金属酸化物を分散させて得られた分散液を耐熱性樹脂フィルムである層Bに塗布し、次いで層Bを乾燥し、本発明の一実施形態の樹脂フィルムを得ることができる。しかし、本発明の一実施形態の樹脂フィルムをプリント配線板用に使う場合、プリント基板の製造工程および実装工程における有機溶剤が用いられる工程にて樹脂溶解等の不具合が起こらないように層Aで用いるポリイミド樹脂は非溶解性であることが好ましい。また、ポリイミド樹脂は、有機溶媒に溶解しない場合でも、有機溶媒によって膨潤しないことがより好ましい。一方、層Aのポリイミド樹脂と耐熱性樹脂フィルムである層Bとは強固に密着していることが信頼性の観点より好ましい。層Aのポリイミド樹脂と層Bとの密着性をあげるためには、層Aのポリイミド樹脂の前駆体(または前駆体を含む溶液)を層Bと接触させた後に、前記前駆体をイミド化することが好ましい。
<Solubility of Polyimide Resin in Layer A>
It is possible to use a soluble polyimide that is soluble in an organic solvent as the polyimide resin for the layer A to produce the resin film of one embodiment of the present invention. Specifically, a soluble polyimide is dissolved in an organic solvent, and a fumed metal oxide is further dispersed in the resulting solution to obtain a dispersion. can be dried to obtain the resin film of one embodiment of the present invention. However, when the resin film of one embodiment of the present invention is used for a printed wiring board, the layer A is used to prevent problems such as dissolution of the resin in the process using an organic solvent in the manufacturing process and mounting process of the printed circuit board. The polyimide resin used is preferably insoluble. Moreover, even if the polyimide resin does not dissolve in the organic solvent, it is more preferable that the polyimide resin does not swell with the organic solvent. On the other hand, it is preferable from the viewpoint of reliability that the polyimide resin of the layer A and the layer B, which is a heat-resistant resin film, are firmly adhered to each other. In order to increase the adhesion between the polyimide resin of layer A and layer B, the precursor of the polyimide resin of layer A (or a solution containing the precursor) is brought into contact with layer B, and then the precursor is imidized. is preferred.
 以上より、層Aに用いるポリイミド樹脂は溶解性でも非溶解性でも本発明の一実施形態を達成することが可能であるが、好ましくは非溶解性である。換言すると、層Aに含まれるポリイミド樹脂が非溶解性ポリイミド樹脂であることが好ましい。非溶解性のポリイミド樹脂の前駆体(または前駆体を含む溶液)を層Bと接触させた後に、前記前駆体をイミド化することで、非溶解性ポリイミド樹脂を含む層Aを備える本発明の一実施形態の樹脂フィルムを得ることができる。これにより溶媒に対する耐久性に優れ、かつ層Aと層Bとの密着性に優れる樹脂フィルムを得ることができ、好ましく実施される。 As described above, the polyimide resin used for layer A can achieve one embodiment of the present invention whether it is soluble or insoluble, but is preferably insoluble. In other words, the polyimide resin contained in layer A is preferably a non-soluble polyimide resin. After contacting the precursor (or solution containing the precursor) of the insoluble polyimide resin with the layer B, by imidizing the precursor, the layer A containing the insoluble polyimide resin of the present invention A resin film of one embodiment can be obtained. As a result, it is possible to obtain a resin film having excellent durability against solvents and excellent adhesion between the layer A and the layer B, and this is preferably carried out.
 ここでポリイミド樹脂の非溶解性について説明する。本明細書において、ポリイミド樹脂が非溶解性であるとは、ポリイミド樹脂が一般的に工業用途で使われる有機溶剤に対し溶解しないことを指している。具体的にはポリイミド樹脂が20℃~30℃の有機溶媒に10重量%以上溶解しないことが好ましく、5重量%以上溶解しないことが更に好ましい。有機溶媒の種類としてはメタノール、エタノール、プロパノール等のアルコール系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;トルエン、キシレン、クレゾール、ベンゼン等の芳香族系溶媒;ジオキソラン、ジオキサン、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル等の非プロトン性極性溶媒、を挙げることができるがこれらに限定されるわけではない。 Here, the insolubility of polyimide resin will be explained. In the present specification, that the polyimide resin is insoluble means that the polyimide resin does not dissolve in organic solvents generally used for industrial purposes. Specifically, the polyimide resin preferably does not dissolve in an organic solvent at 20° C. to 30° C. in an amount of 10% by weight or more, and more preferably does not dissolve in an amount of 5% by weight or more. Examples of organic solvents include alcohol solvents such as methanol, ethanol and propanol; ketone solvents such as acetone and methyl ethyl ketone; aromatic solvents such as toluene, xylene, cresol and benzene; Ether-based solvents; aprotic polar solvents such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, and acetonitrile, but not limited thereto.
 <層Aのポリイミド樹脂の処方>
 次に層Aに用いるポリイミド樹脂に用いるモノマー種、重合方法等につき説明する。
層Aに用いるポリイミド樹脂は線膨張係数が30ppm/℃以上、100ppm/℃以下であることを必須要件とする。ポリイミド樹脂は、それ以外にもガラス転移温度、高温時の貯蔵弾性率、有機溶剤に対する溶解性等の物性を適切に制御することが好ましい。これら物性を適切な範囲に制御する手段としては、使用する原料の選定が挙げられる。ポリイミド樹脂の原料モノマーとしては柔軟な骨格を有するモノマーと剛直な骨格を有するモノマーと、があり、これらを適宜選択し、更に配合比を調整することにより、所望の物性を実現することが可能となる。
<Prescription of Polyimide Resin for Layer A>
Next, the kind of monomer used for the polyimide resin used for the layer A, the polymerization method, etc. will be described.
The polyimide resin used for the layer A must have a coefficient of linear expansion of 30 ppm/°C or more and 100 ppm/°C or less. It is preferable to appropriately control the physical properties of the polyimide resin, such as the glass transition temperature, the storage modulus at high temperatures, and the solubility in organic solvents. Selection of raw materials to be used is one means of controlling these physical properties within appropriate ranges. As raw material monomers for polyimide resins, there are monomers with flexible skeletons and monomers with rigid skeletons, and it is possible to realize desired physical properties by appropriately selecting these and adjusting the compounding ratio. Become.
 柔軟な骨格を有するジアミンとしては、4,4'-オキシジアニリン、3,3’-オキシジアニリン、3,4’-オキシジアニリン、ビス{4-(4-アミノフェノキシ)フェニル}スルホン、2,2’-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、ビス{4-(3-アミノフェノキシ)フェニル}スルホン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルチオエーテル、3,4’-ジアミノジフェニルチオエーテル、3,3’-ジアミノジフェニルチオエーテル、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、などが挙げられる。 Diamines having a flexible skeleton include 4,4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, bis{4-(4-aminophenoxy)phenyl}sulfone, 2,2′-bis{4-(4-aminophenoxy)phenyl}propane, bis{4-(3-aminophenoxy)phenyl}sulfone, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3 , 3′-diaminodiphenyl ether, 4,4′-diaminodiphenylthioether, 3,4′-diaminodiphenylthioether, 3,3′-diaminodiphenylthioether, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 3,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, 3,4'-diamino diphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 1,3-bis(3-aminophenoxy)benzene, 1 , 3-bis(4-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, bis[4-(3-aminophenoxy)phenyl] Sulfone, bis[4-(4-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)phenyl ]-1,1,1,3,3,3-hexafluoropropane, 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′-bis(3-aminophenoxy)biphenyl, and the like. .
 一方、剛直な骨格を有するジアミンとしては、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、ベンジジン、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)ベンジジン、1,5-ジアミノナフタレン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、3,3’-ジアミノベンズアニリド、などが挙げられる。 On the other hand, diamines having a rigid skeleton include 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, benzidine, 3,3'-dichlorobenzidine, 3, 3'-dimethylbenzidine, 2,2'-dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,2'-dimethoxybenzidine, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2'- bis(trifluoromethyl)benzidine, 1,5-diaminonaphthalene, 4,4'-diaminobenzanilide, 3,4'-diaminobenzanilide, 3,3'-diaminobenzanilide, and the like.
 これらのうち、熱特性の制御ならびに工業的に入手しやすい点から、柔軟な骨格を有するジアミンとして、4,4’-オキシジアニリン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-オキシジアニリン、3,4’-オキシジアニリン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス{4-(4-アミノフェノキシ)フェニル}スルホン、2,2’-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、ビス{4-(3-アミノフェノキシ)フェニル}スルホン、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,3’-ジアミノベンゾフェノンおよび4,4'-ジアミノベンゾフェノンからなる群から選択される1種以上が好ましく用いられ得る。特に、4,4'-オキシジアニリン、1,3-ビス(4-アミノフェノキシ)ベンゼンおよび2,2’-ビス{4-(4-アミノフェノキシ)フェニル}プロパンからなる群から選択される1種以上が好ましく用いられ得る。剛直な骨格を有するジアミンとしては、比較的少量で高分子鎖を固くする効果を発現する点、および工業的に入手しやすい点から、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ジアミノベンゼンおよび2,2’-ジメチルベンジジンからなる群から選択される1種以上が好ましく用いられ得る。特に、1,4-ジアミノベンゼン(p-フェニレンジアミン)および2,2’-ジメチルベンジジンの少なくとも一方が好ましく用いられ得る。これらのジアミンは一種を単独で用いてもよく、二種以上を混合して(組み合わせて)用いても良い。 Among these, 4,4'-oxydianiline, 4,4'-diaminodiphenylpropane, 4,4'-diamino as the diamine having a flexible skeleton, from the viewpoint of thermal property control and industrial availability. Diphenylmethane, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-oxydianiline, 3,4'-oxydianiline, 1,3-bis(4-aminophenoxy)benzene , bis{4-(4-aminophenoxy)phenyl}sulfone, 2,2′-bis{4-(4-aminophenoxy)phenyl}propane, bis{4-(3-aminophenoxy)phenyl}sulfone, 1, One or more selected from the group consisting of 3-bis(3-aminophenoxy)benzene, 3,3'-diaminobenzophenone and 4,4'-diaminobenzophenone can be preferably used. In particular 1 selected from the group consisting of 4,4′-oxydianiline, 1,3-bis(4-aminophenoxy)benzene and 2,2′-bis{4-(4-aminophenoxy)phenyl}propane More than one species can be preferably used. As diamines having a rigid skeleton, 1,4-diaminobenzene (p-phenylenediamine), 1, 1, 4-diaminobenzene (p-phenylenediamine), 1, One or more selected from the group consisting of 3-diaminobenzene and 2,2'-dimethylbenzidine can be preferably used. In particular, at least one of 1,4-diaminobenzene (p-phenylenediamine) and 2,2'-dimethylbenzidine can be preferably used. One of these diamines may be used alone, or two or more of them may be mixed (combined) and used.
 柔軟な骨格を有するテトラカルボン酸二無水物としては、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,4’-オキシジフタル酸無水物、4,4’-オキシジフタル酸無水物、3,3’,4,4’-ジフェニルスルフォンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)フタル酸無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)などが挙げられる。 Tetracarboxylic dianhydrides having a flexible skeleton include 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,4'-oxydiphthalic anhydride, 4,4'-oxydiphthalic anhydride, 3,3',4,4'-diphenylsulfone Tetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene) phthalic anhydride, 4,4'-(4,4'-isopropylidene diphenoxy) diphthalic anhydride, 2,2-bis( 3,4-dicarboxyphenyl)propane dianhydride, bis(3,4-dicarboxyphenyl)propane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1 -bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(3, 4-dicarboxyphenyl)sulfone dianhydride, p-phenylene bis (trimellitic monoester anhydride), ethylene bis (trimellitic monoester anhydride), bisphenol A bis (trimellitic monoester anhydride) things), etc.
 一方、剛直な骨格を有するテトラカルボン酸二無水物としては、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物などが挙げられる。 On the other hand, tetracarboxylic dianhydrides having a rigid skeleton include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, and 1,2,5,6-naphthalenetetracarboxylic acid. acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, and the like.
 これらのうち、熱特性の制御ならびに工業的に入手しやすい点から、柔軟な骨格を有するテトラカルボン酸二無水物として、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物および4,4’-オキシジフタル酸無水物からなる群から選択される1種以上が好ましく用いられ得る。中でも、3,3',4,4'-ビフェニルテトラカルボン酸二無水物がより好ましく、本発明の好ましい一実施形態で所望される各種物性、即ち無電解めっき膜との密着性、高温時の弾性率、ガラス転移温度、ポリイミド樹脂の線膨張係数等をバランスよく発現させるために有効に用いることができる。
剛直な骨格を有するテトラカルボン酸二無水物としては、比較的少量で高分子鎖を固くする効果を発現する点、および工業的に入手しやすい点から、ピロメリット酸二無水物が好ましく用いられ得る。これらのテトラカルボン酸二無水物は二種以上を混合して用いても良い。
Among these, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2 , 3,3′,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-oxydiphthalic anhydride. One or more of these can be preferably used. Among them, 3,3′,4,4′-biphenyltetracarboxylic dianhydride is more preferable, and various physical properties desired in a preferred embodiment of the present invention, namely, adhesion to an electroless plated film, It can be effectively used to develop the elastic modulus, the glass transition temperature, the linear expansion coefficient of the polyimide resin, and the like in a well-balanced manner.
As the tetracarboxylic dianhydride having a rigid skeleton, pyromellitic dianhydride is preferably used because it exhibits the effect of hardening the polymer chain with a relatively small amount and is easily available industrially. obtain. These tetracarboxylic dianhydrides may be used in combination of two or more.
 本発明の一実施形態における密着性と層Aポリイミド樹脂化学構造との関係については不明な点も多く、明確な説明は難しい。本発明者らの鋭意検討の過程で得られた経験的にはポリイミド樹脂のイミド環の分極を低減する酸二無水物類とジアミン類とを組み合わせて用いることが良好な密着性を示す傾向がある。具体的には酸二無水物として4,4’-オキシジフタル酸二無水物および3,3',4,4'-ビフェニルテトラカルボン酸二無水物の少なくとも一方と、ジアミンとして2,2’-ビス(トリフルオロメチル)ベンジジンと、の組み合わせが有効である。好ましいジアミンおよび酸二無水物の組合せは特に限定されるわけではない。ジアミンとして2,2’-ビス(トリフルオロメチル)ベンジジン、4,4'-オキシジアニリン、1,3-ビス(4-アミノフェノキシ)ベンゼンおよび2,2’-ビス{4-(4-アミノフェノキシ)フェニル}プロパンからなる群から選択される1種以上と、酸二無水物として4,4’-オキシジフタル酸二無水物および3,3',4,4'-ビフェニルテトラカルボン酸二無水物の少なくとも一方との組み合わせを選択し、更にヒュームド金属酸化物を適切な種類と配合量で組み合わせることが好ましい。当該構成(組み合わせ)により、本発明の一実施形態の無電解金属めっき層との密着性を向上することができ、特に無電解金属めっき層形成後の初期状態を大きく改善することができ、好ましい。尚、高温時の弾性率、ガラス転移温度、線膨張係数等をバランスよく発現させるために、上述した好ましいジアミンおよび酸二無水物と共に、その他のジアミンおよび酸二無水物を併用することも好ましく実施可能である。 There are many unclear points about the relationship between the adhesion and the layer A polyimide resin chemical structure in one embodiment of the present invention, and it is difficult to give a clear explanation. The inventors of the present invention have empirically obtained a tendency to show good adhesion by using a combination of acid dianhydrides and diamines that reduce the polarization of the imide ring of the polyimide resin. be. Specifically, at least one of 4,4'-oxydiphthalic dianhydride and 3,3',4,4'-biphenyltetracarboxylic dianhydride as the acid dianhydride, and 2,2'-bis as the diamine. A combination with (trifluoromethyl)benzidine is effective. A preferred combination of diamine and acid dianhydride is not particularly limited. 2,2′-bis(trifluoromethyl)benzidine, 4,4′-oxydianiline, 1,3-bis(4-aminophenoxy)benzene and 2,2′-bis{4-(4-amino) as diamines phenoxy)phenyl}propane, and 4,4'-oxydiphthalic dianhydride and 3,3',4,4'-biphenyltetracarboxylic dianhydride as acid dianhydrides. It is preferable to select a combination with at least one of and further combine a fumed metal oxide in an appropriate type and blending amount. With this configuration (combination), the adhesion to the electroless metal plating layer of one embodiment of the present invention can be improved, and in particular, the initial state after the formation of the electroless metal plating layer can be greatly improved, which is preferable. . In order to achieve well-balanced expression of elastic modulus at high temperatures, glass transition temperature, coefficient of linear expansion, etc., it is also preferable to use other diamines and acid dianhydrides in combination with the preferred diamines and acid dianhydrides described above. It is possible.
 層Aのポリイミドの前駆体であるポリアミド酸は、前記ジアミンと酸二無水物とを有機溶媒中で実質的に等モルまたは略等モルになるように混合し、これらを反応させることにより得られる。使用する有機溶媒は、ポリアミド酸を溶解できる溶媒であればいかなるものも用いることができる。前記有機溶媒としては、アミド系溶媒すなわちN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどが好ましく、N,N-ジメチルホルムアミドおよびN,N-ジメチルアセトアミドの少なくとも一方が特に好ましく用いられ得る。ポリアミド酸の固形分濃度は特に限定されず、5重量%~35重量%の範囲内であればポリイミドとした際に十分な機械強度を有するポリアミド酸が得られる。 Polyamic acid, which is a precursor of the polyimide of layer A, is obtained by mixing the diamine and acid dianhydride in an organic solvent so as to be substantially equimolar or substantially equimolar and reacting them. . Any organic solvent can be used as long as it can dissolve polyamic acid. As the organic solvent, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, etc. are preferred, and at least N,N-dimethylformamide and N,N-dimethylacetamide One can be used particularly preferably. The solid content concentration of the polyamic acid is not particularly limited, and if it is within the range of 5% by weight to 35% by weight, a polyamic acid having sufficient mechanical strength when made into a polyimide can be obtained.
 原料であるジアミンおよび酸二無水物の添加順序についても特に限定されない。原料であるジアミンおよび酸二無水物の化学構造だけでなく、これらの添加順序を制御することによっても、得られるポリイミドの特性を制御することが可能である。 The order of addition of the raw materials diamine and acid dianhydride is also not particularly limited. It is possible to control the properties of the resulting polyimide not only by controlling the chemical structures of the raw materials diamine and acid dianhydride, but also by controlling the order of their addition.
 また、原料として1,4-ジアミノベンゼンおよびピロメリット酸二無水物を用いる場合、両者が結合して得られるポリイミド構造はデスミア液に対する耐久性が低いため、1,4-ジアミノベンゼンおよびピロメリット酸二無水物の添加順序を調整して両者が直接結合した構造を形成しないようにすることが好ましい。 In addition, when using 1,4-diaminobenzene and pyromellitic dianhydride as raw materials, the polyimide structure obtained by combining the two has low durability against desmear liquid, so 1,4-diaminobenzene and pyromellitic acid It is preferable to adjust the order of addition of the dianhydride so as not to form a structure in which the two are directly bonded.
 層Aは、樹脂成分として、上述したポリイミド樹脂以外の樹脂を含んでいてもよい。層Aに含まれる樹脂成分中のポリイミド樹脂の含有比率は、多いことが好ましい。例えば、層Aに含まれている樹脂成分100重量%中、ポリイミド樹脂が50重量%以上であることが好ましく、60重量%以上であることがより好ましく、70重量%以上であることがより好ましく、80重量%以上であることがより好ましく、90重量%以上であることが更に好ましく、95重量%以上であることがより特に好ましい。層Aに含まれている樹脂成分100重量%中、ポリイミド樹脂が100重量%であることが最も好ましく、換言すれば、層Aは、樹脂成分としてポリイミド樹脂のみを含むことが最も好ましい。 Layer A may contain a resin other than the polyimide resin described above as a resin component. It is preferable that the content ratio of the polyimide resin in the resin component contained in the layer A is large. For example, in 100% by weight of the resin component contained in layer A, the polyimide resin is preferably 50% by weight or more, more preferably 60% by weight or more, and more preferably 70% by weight or more. , more preferably 80% by weight or more, still more preferably 90% by weight or more, and most preferably 95% by weight or more. It is most preferable that the polyimide resin is 100% by weight in 100% by weight of the resin component contained in the layer A. In other words, it is most preferable that the layer A contains only the polyimide resin as the resin component.
 <フュームド金属酸化物>
 本発明の一実施形態で用いるフュームド金属酸化物はシリカ、アルミナ、チタニア等を主成分とする金属酸化物である。本発明の一実施形態で用いるフュームド金属酸化物は、気相合成により得られる金属酸化物であることが好ましい。気相合成により得られる場合、その製法上の特徴から、得られるフュームド金属酸化物は、一次粒子が凝集した構造体が構造単位となっているという特徴がある。換言すれば、フュームド金属酸化物は、一次粒子が凝集した構造体が構造単位となっている(例えば、ブドウの房のような凝集構造を有する)ことが好ましい。フュームド金属酸化物はポリイミド樹脂と混合され本発明の一実施形態の層Aを構成する。本発明者らの種々検討の結果、層Aは、(i)空隙が低い状態でフュームド金属酸化物の構造単位がポリイミド樹脂中に埋没しており、(ii)当該構造単位が層Aの表面および/または表面近傍からバルク方向にかけて存在し、かつ(iii)当該構造単位が層A中に均等に存在および分散している状態、であることが好ましく、そのような状態が本発明の一実施形態の目的である密着性発現に有効であると考えている。尚、本発明の一実施形態で好適に用いられる凝集構造を有しているフュームド金属酸化物とは異なり、一次粒子が独立して存在する球状または不定形形状の金属酸化物粒子(例えば、コロイダルシリカ)の場合、フュームド金属酸化物と比較しポリイミド樹脂との結着力が弱くなる傾向があり好ましくない。
<Fumed metal oxide>
Fumed metal oxides used in one embodiment of the present invention are metal oxides based on silica, alumina, titania, or the like. The fumed metal oxide used in one embodiment of the present invention is preferably a metal oxide obtained by vapor phase synthesis. When the fumed metal oxide is obtained by gas-phase synthesis, the resulting fumed metal oxide is characterized in that the structural unit is a structure in which primary particles aggregate. In other words, it is preferable that the fumed metal oxide has a structural unit of aggregated primary particles (for example, it has an aggregated structure like a cluster of grapes). A fumed metal oxide is mixed with a polyimide resin to form Layer A of one embodiment of the present invention. As a result of various studies by the present inventors, layer A has (i) a structural unit of a fumed metal oxide embedded in a polyimide resin with low voids, and (ii) the structural unit is on the surface of layer A. and/or exists from the vicinity of the surface to the bulk direction, and (iii) the structural unit is evenly present and dispersed in the layer A. Such a state is one embodiment of the present invention. We believe that it is effective for developing adhesion, which is the purpose of the morphology. In addition, unlike the fumed metal oxide having an aggregated structure that is preferably used in one embodiment of the present invention, spherical or amorphous metal oxide particles in which primary particles exist independently (for example, colloidal metal oxide particles) Silica) is not preferred because it tends to have weaker binding force with the polyimide resin than fumed metal oxides.
 なお、層Aがポリイミド樹脂とフュームド金属酸化物とを含む限り、層Aは、一次粒子が独立して存在する球状または不定形形状の金属酸化物粒子をさらに含んでいてもよい。層Aにおける、前記金属酸化物粒子の量は少ないほど好ましい。例えば、層Aにおいて、ポリイミド樹脂の前駆体100重量部に対し、前記金属酸化物粒子の配合部数が10重量部未満であることが好ましく、5重量部以下であることがより好ましく、1重量部以下であることがより好ましく、0.5重量部以下であることがさらに好ましく、0.1重量部以下であることが特に好ましい。 Note that as long as the layer A contains the polyimide resin and the fumed metal oxide, the layer A may further contain spherical or amorphous metal oxide particles in which the primary particles are independently present. It is preferable that the amount of the metal oxide particles in the layer A is as small as possible. For example, in layer A, the amount of the metal oxide particles is preferably less than 10 parts by weight, more preferably 5 parts by weight or less, with respect to 100 parts by weight of the precursor of the polyimide resin, and 1 part by weight. or less, more preferably 0.5 parts by weight or less, and particularly preferably 0.1 parts by weight or less.
 ポリイミド樹脂とフュームド金属酸化物との配合において、フュームド金属酸化物の配合比率を高くすると層A中の空隙率があがる傾向がある。層A中の空隙率が高すぎない場合、ポリイミド樹脂とフュームド金属酸化物との結着力が低下することが無く、層A自体の強度が良好となる傾向を示し、結果として無電解金属めっきとの密着性が良好となる傾向、更には層Aと層Bとの密着性も良好となる傾向がある。そのため、ポリイミド樹脂とフュームド金属酸化物と配合において、フュームド金属酸化物の配合比率は、高すぎないことが好ましい。ポリイミド樹脂とフュームド金属酸化物と配合において、逆にフュームド金属酸化物の配合比率が低くなると空隙率は低くなる傾向がある。層A中の空隙率が低すぎない場合、無電解金属めっきとの十分な密着性を発現し易くなり好ましい。これはフュームド金属酸化物の比率が低すぎないために、「フュームド金属酸化物」-「金属(例えば銅)」-「ポリイミド樹脂」の3成分に由来する化合物の生成量が充分量となることが理由と考えている。なお、本発明は、かかる推測に限定されるものではない。 In blending the polyimide resin and the fumed metal oxide, the porosity in the layer A tends to increase when the blending ratio of the fumed metal oxide is increased. When the porosity in the layer A is not too high, the binding force between the polyimide resin and the fumed metal oxide does not decrease, and the strength of the layer A itself tends to be good, resulting in electroless metal plating. The adhesion between the layer A and the layer B tends to be improved. Therefore, in blending the polyimide resin and the fumed metal oxide, it is preferable that the blending ratio of the fumed metal oxide is not too high. When the polyimide resin and the fumed metal oxide are blended, the porosity tends to decrease as the blending ratio of the fumed metal oxide decreases. When the porosity in the layer A is not too low, it is preferable because sufficient adhesion to the electroless metal plating is likely to be exhibited. This is because the ratio of fumed metal oxide is not too low, so that the amount of compounds derived from the three components of "fumed metal oxide" - "metal (eg copper)" - "polyimide resin" is sufficient. I think that is the reason. It should be noted that the present invention is not limited to such speculation.
 以上より、良好な密着性発現の為にはポリイミド樹脂とフュームド金属酸化物との配合比率を適切な範囲に制御することが好ましい。一方、フュームド金属酸化物には一次粒子径、一次粒子が凝集した構造体の構造および表面処理種が異なる各種グレードがあり、これらも影響した適切な配合比率が存在すると考えている。 From the above, it is preferable to control the compounding ratio of the polyimide resin and the fumed metal oxide within an appropriate range in order to develop good adhesion. On the other hand, there are various grades of fumed metal oxides with different primary particle diameters, structures of aggregated primary particles, and different surface treatment types.
 <フュームド金属酸化物の一次粒子径および比表面積>
 無電解金属めっきプロセスの薬液により、表面近傍のフュームド金属酸化物は一部が溶解するが、溶解しても層Aの表面粗度が大きくなり過ぎないことが好ましい。その為に、フュームド金属酸化物の一次粒子径は小さいことが好ましく、具体的に、好ましくは5ナノメートル以上1,000ナノメートル以下、より好ましくは5ナノメートル以上100ナノメートル以下、更に好ましくは5ナノメートル以上50ナノメートル以下、更に好ましくは10ナノメートル以上20ナノメートル以下である。また、フュームド金属酸化物の比表面積も一次粒子径を表現する物性値であり、一次粒子径が大きいほど比表面積は小さくなる。フュームド金属酸化物の比表面積は30平方メートル/グラム以上400平方メートル/グラム以下であることが好ましく、より好ましくは100平方メートル/グラム以上250平方メートル/グラム以下である。
<Primary particle size and specific surface area of fumed metal oxide>
A part of the fumed metal oxide in the vicinity of the surface is dissolved by the chemical solution of the electroless metal plating process, but it is preferable that the surface roughness of the layer A is not excessively increased even if dissolved. Therefore, it is preferable that the primary particle size of the fumed metal oxide is small. It is 5 nm or more and 50 nm or less, more preferably 10 nm or more and 20 nm or less. The specific surface area of the fumed metal oxide is also a physical property value that expresses the primary particle size, and the larger the primary particle size, the smaller the specific surface area. The specific surface area of the fumed metal oxide is preferably 30 square meters/gram or more and 400 square meters/gram or less, more preferably 100 square meters/gram or more and 250 square meters/gram or less.
 <フュームド金属酸化物の見掛比重>
 フュームド金属酸化物は一次粒子径が凝集した構造体であり、フュームド金属酸化物の構造の状態を表す指標として見掛比重を用いることができる。フュームド金属酸化物の見掛比重が小さければ、フュームド金属酸化物の構造体は嵩張った構造を有しており、空隙が大きいことを表す。逆に、フュームド金属酸化物の見掛比重が大きければ、フュームド金属酸化物の構造体は嵩張りの程度が低い構造を有しており、空隙は小さいことを表す。
<Apparent Specific Gravity of Fumed Metal Oxide>
A fumed metal oxide is a structure in which the primary particle diameter aggregates, and the apparent specific gravity can be used as an index representing the state of the structure of the fumed metal oxide. A low apparent specific gravity of the fumed metal oxide indicates that the structure of the fumed metal oxide has a bulky structure and large voids. Conversely, a high apparent specific gravity of the fumed metal oxide indicates that the structure of the fumed metal oxide has a less bulky structure and smaller voids.
 フュームド金属酸化物の一次粒子径が凝集した構造体が有する空隙をポリイミド樹脂成分で満たすことにより、空隙率の小さい層Aを作製することができる。フュームド金属酸化物の見掛比重が小さいなるほど、フュームド金属酸化物の構造体の空隙が多く、多くのポリイミド樹脂成分を使用することで当該空隙を満たすことが可能となる。フュームド金属酸化物の見掛比重が大きくなるほど、少量のポリイミド樹脂成分でもフュームド金属酸化物の構造体の空隙を満たすことが可能となる。逆に表現すると、ある一定量のポリイミド樹脂にフュームド金属酸化物を配合して空隙率の小さい層Aを作製するにあたり、(i)見掛比重が小さいフュームド金属酸化物の場合、フュームド金属酸化物の配合量の上限は低くなり、逆に(ii)見掛比重が大きいフュームド金属酸化物の場合、多くのフュームド金属酸化物を配合することができ、すなわちフュームド金属酸化物の配合量の上限は高くなる。先にも記載したがフュームド金属酸化物の配合量が多すぎない場合、層A中に過剰な空隙が発生する虞がない。その結果、ポリイミド樹脂とフュームド金属酸化物との結着力が低下することが無く、層A自体の強度が良好となる傾向を示し、結果として無電解金属めっきとの密着性も良好となる傾向、および層Aと層Bとの密着性も良好となる傾向がある。そのため、ポリイミド樹脂とフュームド金属酸化物と配合において、フュームド金属酸化物の配合比率は、高すぎないことが好ましい。逆にフュームド金属酸化物の比率が低すぎない場合、無電解金属めっきとの十分な密着性を発現し易い。つまり、ポリイミド樹脂とフュームド金属酸化物と配合において、フュームド金属酸化物を配合量の上限付近で配合することが、良好な密着性の発現に効果的である。 A layer A with a small porosity can be produced by filling the voids of the structure in which the primary particle size of the fumed metal oxide aggregates with the polyimide resin component. The smaller the apparent specific gravity of the fumed metal oxide, the more voids there are in the structure of the fumed metal oxide, and the more the polyimide resin component is used, the more the voids can be filled. As the apparent specific gravity of the fumed metal oxide increases, even a small amount of the polyimide resin component can fill the voids in the fumed metal oxide structure. Conversely, in producing a layer A with a small porosity by blending a fumed metal oxide with a certain amount of polyimide resin, (i) in the case of a fumed metal oxide with a small apparent specific gravity, the fumed metal oxide On the contrary, in the case of (ii) a fumed metal oxide with a large apparent specific gravity, a large amount of fumed metal oxide can be blended. get higher As described above, when the amount of the fumed metal oxide is not too large, there is no fear of generating excessive voids in the layer A. As a result, the bonding strength between the polyimide resin and the fumed metal oxide does not decrease, and the strength of the layer A itself tends to be good, and as a result, the adhesion to the electroless metal plating tends to be good, And the adhesion between layer A and layer B also tends to be good. Therefore, in blending the polyimide resin and the fumed metal oxide, it is preferable that the blending ratio of the fumed metal oxide is not too high. Conversely, when the ratio of the fumed metal oxide is not too low, sufficient adhesion to the electroless metal plating tends to be exhibited. In other words, when blending the polyimide resin and the fumed metal oxide, blending the fumed metal oxide in the vicinity of the upper limit of the blending amount is effective for exhibiting good adhesion.
 空隙率の小さい層Aを作るための、ある一定量のポリイミド樹脂に対するフュームド金属酸化物の配合量の上限は、フュームド金属酸化物の見掛比重および表面処理種により変わる。つまり、フュームド金属酸化物の見掛比重および表面処理種に応じて、ある一定量のポリイミド樹脂に対するフュームド金属酸化物の配合量を調節することにより、密着性をさらに向上させることができる。本発明の一実施形態において、フュームド金属酸化物の見掛比重は20グラム/リットル以上250グラム/リットル以下であることが好ましく、20グラム/リットル以上220グラム/リットル以下であることがより好ましい。また、フュームド金属酸化物の見掛比重が大きいほど、フュームド金属酸化物の配合量の上限があがり、密着性もより改善される傾向がある。その為、フュームド金属酸化物の見掛比重が50グラム/リットルより大きく250グラム/リットル以下であることがより好ましく、60グラム/リットル以上250グラム/リットル以下であることがより好ましく、70グラム/リットル以上250グラム/リットル以下であることが更に好ましく、70グラム/リットル以上220グラム/リットル以下であることがより更に好ましい。尚、フュームド金属酸化物の見掛比重は、フュームド金属酸化物に対して機械的にせん断等の応力を加えることによるフュームド金属酸化物の構造改質により、変化させることも可能である。 The upper limit of the amount of fumed metal oxide compounded with respect to a certain amount of polyimide resin for making layer A with a small porosity varies depending on the apparent specific gravity of the fumed metal oxide and the type of surface treatment. That is, the adhesion can be further improved by adjusting the blending amount of the fumed metal oxide with respect to a certain amount of polyimide resin according to the apparent specific gravity of the fumed metal oxide and the type of surface treatment. In one embodiment of the present invention, the apparent specific gravity of the fumed metal oxide is preferably 20 grams/liter or more and 250 grams/liter or less, more preferably 20 grams/liter or more and 220 grams/liter or less. In addition, the higher the apparent specific gravity of the fumed metal oxide, the higher the upper limit of the amount of the fumed metal oxide to be blended, which tends to further improve the adhesion. Therefore, the apparent specific gravity of the fumed metal oxide is more preferably greater than 50 grams/liter and 250 grams/liter or less, more preferably 60 grams/liter or more and 250 grams/liter or less, and more preferably 70 grams/liter. It is more preferably 70 grams/liter or more and 220 grams/liter or less, more preferably 70 grams/liter or more and 220 grams/liter or less. The apparent specific gravity of the fumed metal oxide can be changed by modifying the structure of the fumed metal oxide by mechanically applying stress such as shear to the fumed metal oxide.
 フュームド金属酸化物に対し、各種表面処理が可能である。フュームド金属酸化物の表面状態としてシラノール(未処理)、ジメチルシリル、オクチルシリル、トリメチルシリル、ジメチルシロキサン、ジメチルポリシロキサン、アミノアルキルシリル、メタクリルシリル等があり、いずれも工業的に入手可能である。フュームド金属酸化物の表面処理種とポリイミド樹脂成分の極性とが近い場合、フュームド金属酸化物の配合量の上限は高くなる傾向がある。また、フュームド金属酸化物が表面未処理の場合、無電解金属めっきプロセス中のアルカリ性薬液との濡れ性が良すぎる為、フュームド金属酸化物の溶解量が多くなり、層Aの表面粗度が大きくなる傾向がある。それ故、フュームド金属酸化物の表面は、適度な疎水性処理がなされているのが好ましい。尚、フュームド金属酸化物の見掛比重はISO787/XIにより測定することが可能である。 Various surface treatments are possible for fumed metal oxides. Surface conditions of fumed metal oxides include silanol (untreated), dimethylsilyl, octylsilyl, trimethylsilyl, dimethylsiloxane, dimethylpolysiloxane, aminoalkylsilyl, methacrylsilyl, etc., all of which are industrially available. When the surface treatment species of the fumed metal oxide and the polarity of the polyimide resin component are close to each other, the upper limit of the compounding amount of the fumed metal oxide tends to be high. In addition, when the surface of the fumed metal oxide is not treated, the wettability with the alkaline chemical solution during the electroless metal plating process is too good, so the amount of the fumed metal oxide dissolved increases, and the surface roughness of the layer A increases. tend to become Therefore, it is preferable that the surface of the fumed metal oxide is subjected to a suitable hydrophobic treatment. Incidentally, the apparent specific gravity of the fumed metal oxide can be measured according to ISO787/XI.
 <フュームド金属酸化物の具体例>
 以下、本発明の一実施形態において好ましく使用可能なフュームド金属酸化物について具体例を示すが、これらに限らない。見掛比重を含む各種特性の要件を満たすフュームド金属酸化物が、本発明の一実施形態においてより好適に使用可能である。一次粒子径、比表面積、表面処理種、見掛比重および金属酸化物種の異なる各種グレードのフュームド金属酸化物を日本アエロジル社、旭化成ワッカーシリコーン社およびキャボット社から入手可能であり、好ましく使用可能である。以下日本アエロジル社製品のフュームド金属酸化物を例として具体的に説明する。見掛比重以外は略同等であるアエロジルR972、R972CF、R972Vなどを好ましく使用可能であり、この中で見掛比重の高いR972(50グラム/リットル)をより好ましく使用可能である。同様に、見掛比重以外は同等であるアエロジルR974、R9200、VP RS920などを好ましく使用可能であり、この中で見掛比重の高いアエロジルR9200(200グラム/リットル)およびアエロジルVP RS920(80グラム/リットル以上120グラム/リットル以下)をより好ましく使用可能である。また、これら以外にも本発明の一実施形態の好ましい物性の一つである見掛比重が比較的低く、70グラム/リットル以下の日本アエロジル社製フュームド金属酸化物として、アエロジルNX130、RY200S、R976、NAX50、NX90G、NX90S、RX200、RX300、R812、R812S等を好ましく使用可能である。また、見掛比重が比較的高く、70グラム/リットル以上の日本アエロジル社製フュームド金属酸化物として、アエロジル200V、AEROIDE TiO2 P90、AEROIDE TiO2 NKT90、OX50、RY50、RY51、AEROIDE TiO2 P25、R8200、RM50、RX50、AEROIDE TiO2 T805、R7200等も好ましく使用可能である。尚、アエロジルVP RS920は、2021年11月以降、「アエロジルE9200」という名称で販売されている。
また、「アエロジル」または「AEROSIL」は、エボニック オペレーションズ ゲーエムベーハーの登録商標である。また、フュームド金属酸化物としては、気相合成で合成されたものであり、それにより一次粒子径が凝集した構造体を有するフュームド金属酸化物が、好ましく使用可能である。
<Specific examples of fumed metal oxides>
Specific examples of fumed metal oxides that can be preferably used in one embodiment of the present invention are shown below, but are not limited to these. Fumed metal oxides that meet various property requirements, including apparent specific gravity, are more suitable for use in one embodiment of the present invention. Various grades of fumed metal oxides with different primary particle sizes, specific surface areas, surface treatment types, apparent specific gravities, and metal oxide types are available from Nippon Aerosil Co., Ltd., Asahi Kasei Wacker Silicone Co., Ltd., and Cabot Corporation, and can be preferably used. . The fumed metal oxide produced by Nippon Aerosil Co., Ltd. will be described below in detail. Aerosil R972, R972CF, R972V, etc., which are substantially the same except for the apparent specific gravity, can preferably be used, and among these, R972 (50 g/liter), which has a higher apparent specific gravity, can be used more preferably. Similarly, Aerosil R974, R9200, VP RS920, etc., which are equivalent except for their apparent specific gravities, can preferably be used. liter or more and 120 g/liter or less) can be used more preferably. In addition to these, Aerosil NX130, RY200S, and R976 are fumed metal oxides manufactured by Nippon Aerosil Co., Ltd., which have a relatively low apparent specific gravity of 70 g/liter or less, which is one of the preferable physical properties of one embodiment of the present invention. , NAX50, NX90G, NX90S, RX200, RX300, R812, R812S, etc. can be preferably used. Fumed metal oxides manufactured by Nippon Aerosil Co., Ltd. having a relatively high apparent specific gravity of 70 g/liter or more include Aerosil 200V, AEROIDE TiO2 P90, AEROIDE TiO2 NKT90, OX50, RY50, RY51, AEROIDE TiO2 P25, R8200, and RM50. , RX50, AEROIDE TiO2 T805, R7200, etc. are also preferably usable. In addition, Aerosil VP RS920 has been sold under the name of "Aerosil E9200" since November 2021.
Also, "Aerosil" or "AEROSIL" is a registered trademark of Evonik Operations GmbH. As the fumed metal oxide, a fumed metal oxide synthesized by vapor phase synthesis and having a structure in which primary particle diameters are aggregated can be preferably used.
 これらのフュームド金属酸化物の中でも、アエロジルR972、972V、NX130、R9200、VP RS920、R974,R976、R8200等のフュームドシリカが、アルカリ性環境での溶解により形成される層Aの表面形状が良好で、表面粗度も適切な範囲となる点で好ましい。 Among these fumed metal oxides, fumed silica such as Aerosil R972, 972V, NX130, R9200, VP RS920, R974, R976, R8200 has a good surface shape of layer A formed by dissolution in an alkaline environment. , the surface roughness is also within an appropriate range.
 <フュームド金属酸化物の配合部数>
 ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、該ポリイミド樹脂の前駆体とフュームド金属酸化物との混合物(例えば、後述するフュームド金属酸化物分散ポリアミド酸溶液)のイミド化物であることが好ましい。具体的には、フュームド金属酸化物を層Aを構成するポリイミド樹脂の前駆体であるポリアミド酸溶液と混合し、(a)得られた混合物を層Bの耐熱性フィルムに塗布し、層Bを乾燥し、当該混合物をイミド化する、(b)得られた混合物を層Bの前駆体フィルムに塗布し、当該フィルムを乾燥し、当該混合物をイミド化する、または(c)得られた混合物を層Bの樹脂前駆体溶液または層Bの樹脂溶液等と共押出しし、得られた押出物を乾燥し、当該混合物をイミド化する、等の方法で本発明の一実施形態の樹脂フィルムを得ることができる。
<Number of parts of fumed metal oxide>
Layer A containing a polyimide resin and a fumed metal oxide is preferably an imidized product of a mixture of a precursor of the polyimide resin and a fumed metal oxide (for example, a fumed metal oxide-dispersed polyamic acid solution described later). . Specifically, the fumed metal oxide is mixed with a polyamic acid solution that is a precursor of the polyimide resin that constitutes Layer A, (a) the resulting mixture is applied to the heat-resistant film of Layer B, and Layer B is formed. (b) apply the resulting mixture to a layer B precursor film, dry the film and imidize the mixture, or (c) apply the resulting mixture to The resin film of one embodiment of the present invention is obtained by co-extrusion with the resin precursor solution of layer B or the resin solution of layer B, etc., drying the obtained extrudate, and imidizing the mixture. be able to.
 層Aのポリイミド樹脂の前駆体100重量部に対し、フュームド金属酸化物の配合部数が10重量部以上130重量部以下であることが好ましい。上述の通り、層Aのポリイミド前駆体(ポリイミド樹脂)に対するフュームド金属酸化物の好ましい配合部数はフュームド金属酸化物の見掛比重によりある程度調整できるが、フュームド金属酸化物の表面処理の影響等もあり、明確なことは言えない。ここでは指標として、フュームド金属酸化物の好ましい配合部数につき記載する。 The amount of the fumed metal oxide compounded is preferably 10 parts by weight or more and 130 parts by weight or less with respect to 100 parts by weight of the polyimide resin precursor of the layer A. As described above, the preferred number of parts of the fumed metal oxide to be added to the polyimide precursor (polyimide resin) of layer A can be adjusted to some extent by the apparent specific gravity of the fumed metal oxide, but there is also the influence of the surface treatment of the fumed metal oxide. , I can't say for certain. Here, as an index, the preferred number of parts of the fumed metal oxide to be blended is described.
 フュームド金属酸化物の見掛比重が20グラム/リットル以上70グラム/リットル以下の場合のフュームド金属酸化物の配合部数(対ポリイミド(前駆体)樹脂固形分)は、ポリイミド樹脂の前駆体100重量部に対し、15重量部以上80重量部以下が好ましく、より好ましくは20重量部以上60重量部以下である。
 フュームド金属酸化物の見掛比重が70グラム/リットル以上250グラム/リットル以下の場合のフュームド金属酸化物の配合部数(対ポリイミド(前駆体)樹脂固形分100重量部)は10重量部以上130重量部以下が好ましく、より好ましくは15重量部以上120重量部以下、更に好ましくは20重量部以上100重量部以下である。
When the apparent specific gravity of the fumed metal oxide is 20 g / liter or more and 70 g / liter or less, the number of parts of the fumed metal oxide (relative to the solid content of the polyimide (precursor) resin) is 100 parts by weight of the precursor of the polyimide resin. 15 parts by weight or more and 80 parts by weight or less, more preferably 20 parts by weight or more and 60 parts by weight or less.
When the apparent specific gravity of the fumed metal oxide is 70 g/liter or more and 250 g/liter or less, the blending number of the fumed metal oxide (relative to the polyimide (precursor) resin solid content of 100 parts by weight) is 10 parts by weight or more and 130 parts by weight. parts by weight or less, more preferably 15 to 120 parts by weight, and even more preferably 20 to 100 parts by weight.
 上述の通り、フュームド金属酸化物の見掛比重により好ましい配合部数は変わり、当該見掛比重が大きいフュームド金属酸化物であるほど、その配合量を多くすることが可能となり、好ましい配合量も多くなる傾向がある。ポリイミド樹脂の前駆体100重量部に対しフュームド金属酸化物を上述の範囲で配合することにより、密着強度をより良好に発現させることが可能となり、特に無電解めっき膜形成後の初期状態においてより強固に密着させることが可能となる。尚、一次粒子径、比表面積、表面処理種、見掛比重、金属酸化物種等の異なる複数種類のフュームド金属酸化物を混合して(組み合わせて)用いることも可能である。 As described above, the preferred number of parts to be blended varies depending on the apparent specific gravity of the fumed metal oxide, and the higher the apparent specific gravity of the fumed metal oxide, the greater the amount of the fumed metal oxide to be blended, and the more preferable blended amount. Tend. By blending the fumed metal oxide in the above range with respect to 100 parts by weight of the precursor of the polyimide resin, it is possible to exhibit a better adhesion strength, especially in the initial state after the electroless plating film is formed. It is possible to make it adhere to. It is also possible to mix (combine) multiple types of fumed metal oxides with different primary particle sizes, specific surface areas, surface treatment types, apparent specific gravities, metal oxide types, and the like.
 <フュームド金属酸化物分散ポリアミド酸溶液>
 本発明の一実施形態の層Aを得るためには層Aのポリイミド樹脂の前駆体溶液とフュームド金属酸化物とを混合および分散し、フュームド金属酸化物分散ポリアミド酸溶液(以下、層A分散液と称する場合も有る。)を得ることが好ましい。当該層A分散液をイミド化することにより、層Aを得ることができる。換言すれば、層Aは、ポリイミド樹脂の前駆体と前記フュームド金属酸化物との混合物のイミド化物であることが好ましい。当該構成によると、層Aと層Bとの密着性が高くなるという利点を有する。
以下、層A分散液を得る手順につき具体的に記載するが本発明の一実施形態はこれに限定されない。
<Fumed metal oxide dispersion polyamic acid solution>
In order to obtain Layer A of one embodiment of the present invention, a polyimide resin precursor solution for Layer A and a fumed metal oxide are mixed and dispersed to form a fumed metal oxide dispersed polyamic acid solution (hereinafter Layer A dispersion). (sometimes referred to as .) is preferably obtained. The layer A can be obtained by imidizing the layer A dispersion. In other words, layer A is preferably an imidized mixture of a polyimide resin precursor and the fumed metal oxide. This configuration has the advantage that the adhesion between the layer A and the layer B is enhanced.
The procedure for obtaining the layer A dispersion will be specifically described below, but one embodiment of the present invention is not limited thereto.
 (1)フュームド金属酸化物に有機溶媒を添加し、フュームド金属酸化物を有機溶媒中で一次粒子が凝集した構造体の構造単位まで分散させる。分散の方法はディスパー、ホモジナイザー、プラネタリーミキサー、ビーズミル、自転公転ミキサー、ロール、ニーダー、高圧分散機、超音波、レゾルバ等が挙げられる。尚、本発明の一実施形態の効果が得られる限り、フュームド金属酸化物を有機溶媒中で前記構造単位まで分散しなくても構わない。尚、フュームド金属酸化物を前記構造単位まで分散できている場合、層A中でヒュームド金属酸化物が固まって存在することがなくなり、その場合、層Aの表面粗度が小さく、本発明の一実施形態の狙いである微細配線形成性に有利となり好ましい。また、フュームド金属酸化物の構造単位をさらに小さくする条件で分散および粉砕することも可能である。有機溶媒はポリアミド酸の重合に用いる溶媒などを用いることができアミド系溶媒すなわちN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどが好ましく用いられ得るが、これに限定されない。 (1) An organic solvent is added to the fumed metal oxide, and the fumed metal oxide is dispersed in the organic solvent to the structural units of the structure in which the primary particles are aggregated. Dispersion methods include dispersers, homogenizers, planetary mixers, bead mills, rotation/revolution mixers, rolls, kneaders, high-pressure dispersers, ultrasonic waves, and resolvers. As long as the effect of one embodiment of the present invention can be obtained, the fumed metal oxide does not have to be dispersed to the above structural units in the organic solvent. In addition, when the fumed metal oxide can be dispersed to the structural unit, the fumed metal oxide does not exist as a lump in the layer A, and in that case, the surface roughness of the layer A is small, which is one of the aspects of the present invention. This is preferable because it is advantageous for the formability of fine wiring, which is the aim of the embodiment. It is also possible to disperse and pulverize the fumed metal oxide under conditions that make the structural unit smaller. As the organic solvent, a solvent used for polyamic acid polymerization can be used, and amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone are preferably used. is not limited to
 (2)前記(1)で得た液と層Aのポリイミド樹脂の前駆体溶液とを所望の配合比率で混合および攪拌し、層A分散液を得る。前記(1)の段階で既にフュームド金属酸化物が有機溶媒中に分散していれば、前記(1)で得た液と前記前駆体溶液とを混合した後、攪拌等の方法で層A分散液を得ることができる。あるいは単に攪拌だけでなく、前記(1)で記載した各種分散方法を用いることで層A分散液を得ることも可能である。 (2) The liquid obtained in (1) above and the polyimide resin precursor solution for layer A are mixed and stirred at a desired mixing ratio to obtain a layer A dispersion liquid. If the fumed metal oxide is already dispersed in the organic solvent in the step (1), after mixing the liquid obtained in the step (1) and the precursor solution, the layer A is dispersed by stirring or the like. You can get the liquid. Alternatively, it is also possible to obtain the layer A dispersion by using the various dispersing methods described in (1) above, instead of simply stirring.
 最終的に得られる層A分散液の濃度は特に限定されるものではないが、次のプロセスに適した濃度および粘度にすることが好ましい。層A分散液の濃度および粘度の調整の為に適宜有機溶媒を用いることが可能である。また、層Bとの密着性付与目的のアミン類、ポリアミド酸をイミド化反応させるための脱水剤、触媒等を層A分散液等にさらに添加しても構わない。 Although the concentration of the finally obtained layer A dispersion is not particularly limited, it is preferable to make the concentration and viscosity suitable for the next process. An organic solvent can be appropriately used for adjusting the concentration and viscosity of the layer A dispersion. Further, amines for the purpose of imparting adhesion to the layer B, a dehydrating agent for imidizing polyamic acid, a catalyst, etc. may be further added to the layer A dispersion or the like.
 また、層A分散液には、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。 A filler can also be added to the layer A dispersion for the purpose of improving various properties of the film such as slidability, thermal conductivity, electrical conductivity, corona resistance, and loop stiffness. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
 また、得られる樹脂層全体としての特性を損なわない範囲で、エポキシ樹脂、フェノキシ樹脂などの熱硬化性樹脂、ポリエーテルケトン、ポリエーテルエーテルケトンなどの熱可塑性樹脂を使用しても良い。これら樹脂の添加方法としては、溶剤に可溶のものであれば前記ポリアミド酸に添加する方法が挙げられる。ポリイミドも可溶性のものであるなら、ポリイミド溶液に添加しても良い。以上の手順により層A分散液を得ることができる。 Thermosetting resins such as epoxy resins and phenoxy resins, and thermoplastic resins such as polyether ketones and polyether ether ketones may also be used as long as the properties of the resulting resin layer as a whole are not impaired. As a method for adding these resins, if they are soluble in a solvent, a method of adding them to the polyamic acid can be mentioned. If the polyimide is also soluble, it may be added to the polyimide solution. A layer A dispersion can be obtained by the above procedure.
 <層B>
 本発明の一実施形態の耐熱性樹脂フィルムであるB層はその片面または両面に層Aが形成されている。本発明の一実施形態の樹脂フィルムをプリント配線板用途に用いる場合の寸法安定性の視点より、層Bの線膨張係数は20ppm/℃以下であることが好ましい。層Bの樹脂組成は特に限定されるものではないが液晶ポリマーフィルム、強化繊維を含む樹脂フィルム、無機フィラーを含む樹脂フィルムおよびポリイミド等が好ましい。層Bは、耐熱性、屈曲性、耐熱性等の観点より、ポリイミドを含む(または、ポリイミドからなる)フィルムであることがより好ましく、非熱可塑性ポリイミドを含む(または、非熱可塑性ポリイミドからなる)フィルムであることがさらに好ましい。
<Layer B>
Layer A is formed on one side or both sides of layer B, which is a heat-resistant resin film of one embodiment of the present invention. From the viewpoint of dimensional stability when the resin film of one embodiment of the present invention is used for printed wiring boards, the coefficient of linear expansion of layer B is preferably 20 ppm/° C. or less. Although the resin composition of layer B is not particularly limited, a liquid crystal polymer film, a resin film containing reinforcing fibers, a resin film containing an inorganic filler, polyimide, and the like are preferable. Layer B is more preferably a film containing polyimide (or made of polyimide) from the viewpoint of heat resistance, flexibility, heat resistance, etc., and contains non-thermoplastic polyimide (or consists of non-thermoplastic polyimide ) film is more preferred.
 ポリイミド樹脂フィルムの線膨張係数は使用するモノマー種により制御することができることが知られている。ポリイミド樹脂フィルムの線膨張係数を小さくするためには、剛直な化学構造を有するモノマーを使用し、その組成比を高くすることが有効である。剛直な化学構造を有するモノマーを使用し、その組成比を高くすることにより、フィルム状に成型(加工)した際に面方向にポリイミド分子鎖が配向し、さらに厚み方向に分子鎖が堆積した状態が形成され得る。逆に、ポリイミド樹脂フィルムの線膨張係数を大きくするためには、柔軟な化学構造を有するモノマーを使用し、その組成比を高くすることが有効である。柔軟な化学構造を有するモノマーを使用し、その組成比を高くすることにより、フィルム状に成型した際にポリイミド分子鎖は面方向に配向するだけではなく、厚み方向にも配向する、つまりランダム配向を示す傾向がある。層Bに非熱可塑性ポリイミドフィルムを用いる場合、非熱可塑性ポリイミドフィルムの製造に使用するジアミンについては特に限定されるものではないが、最終的に得られるポリイミドフィルムの線膨張係数を20ppm/℃以下にする必要がある。そのため、非熱可塑性ポリイミドフィルムの製造において、酸二無水物の構造に合わせて剛直構造のジアミンと柔軟構造のジアミンとを適切に組み合わせて使用することが好ましい。  It is known that the linear expansion coefficient of a polyimide resin film can be controlled by the type of monomer used. In order to reduce the linear expansion coefficient of the polyimide resin film, it is effective to use a monomer having a rigid chemical structure and increase its composition ratio. By using a monomer with a rigid chemical structure and increasing its composition ratio, the polyimide molecular chains are oriented in the plane direction when molded (processed) into a film, and the molecular chains are deposited in the thickness direction. can be formed. Conversely, in order to increase the linear expansion coefficient of the polyimide resin film, it is effective to use a monomer having a flexible chemical structure and increase its composition ratio. By using a monomer with a flexible chemical structure and increasing its composition ratio, the polyimide molecular chains are oriented not only in the plane direction but also in the thickness direction when formed into a film, that is, randomly oriented. tend to show When a non-thermoplastic polyimide film is used for layer B, the diamine used in the production of the non-thermoplastic polyimide film is not particularly limited, but the linear expansion coefficient of the finally obtained polyimide film is 20 ppm / ° C. or less. need to be Therefore, in the production of a non-thermoplastic polyimide film, it is preferable to use an appropriate combination of a rigid-structured diamine and a flexible-structured diamine according to the structure of the acid dianhydride.
 非熱可塑性ポリイミドフィルムの製造に好適に用いられる、剛直構造を有するジアミンは例えば、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル4,4’-ジアミノベンズアニリドなどが挙げられる。 Examples of diamines having a rigid structure that are suitably used for the production of non-thermoplastic polyimide films include 4,4'-diamino-2,2'-dimethylbiphenyl and 4,4'-diamino-3,3'-dimethylbiphenyl. , 4,4′-diamino-3,3′-dihydroxybiphenyl, 1,4-diaminobenzene, 1,3-diaminobenzene, 4,4′-bis(4-aminophenoxy)biphenyl 4,4′-diaminobenz and anilides.
 非熱可塑性ポリイミドフィルムの製造に好適に用いられる、柔軟構造を有するジアミンは例えば、4,4’-ジアミノジフェニルエーテル、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼンなどが挙げられる。非熱可塑性ポリイミドフィルムの製造において、層Aのポリイミド樹脂を説明した際に列挙したジアミン類を適宜用いることも可能である。 Examples of diamines having a flexible structure that are suitably used for the production of non-thermoplastic polyimide films include 4,4′-diaminodiphenyl ether, 2,2-bis{4-(4-aminophenoxy)phenyl}propane, 1,3 -bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene and the like. In the production of the non-thermoplastic polyimide film, it is also possible to appropriately use the diamines listed when describing the polyimide resin for Layer A.
 層Bに非熱可塑性ポリイミドフィルムを用いる場合、非熱可塑性ポリイミドフィルムの製造に使用する酸二無水物についても特に限定されるものではないが、最終的に得られるポリイミドの線膨張係数が20ppm/℃以下にする必要がある。そのため、非熱可塑性ポリイミドフィルムの製造において、ジアミンの構造に合わせて剛直構造の酸二無水物と柔軟構造の酸二無水物とを適切に組み合わせて使用することが好ましい。非熱可塑性ポリイミドフィルムの製造に好適に用いられる、具体的な剛直構造を有する酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物などが挙げられる。非熱可塑性ポリイミドフィルムの製造に好適に用いられる、柔軟構造を有する酸二無水物は3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物などが挙げられる。非熱可塑性ポリイミドフィルムの製造において、層Aのポリイミド樹脂を説明した際に列挙した酸二無水物類を適宜用いることも可能である。 When a non-thermoplastic polyimide film is used for layer B, the acid dianhydride used in the production of the non-thermoplastic polyimide film is not particularly limited, but the linear expansion coefficient of the finally obtained polyimide is 20 ppm / °C or less. Therefore, in the production of the non-thermoplastic polyimide film, it is preferable to use an appropriate combination of a rigid-structure acid dianhydride and a flexible-structure acid dianhydride according to the structure of the diamine. Specific acid dianhydrides having a rigid structure that are suitably used for the production of non-thermoplastic polyimide films include 3,3',4,4'-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride. things, etc. Acid dianhydrides having a flexible structure, which are preferably used for the production of non-thermoplastic polyimide films, are 3,3′,4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-oxydiphthalic dianhydride. etc. In the production of the non-thermoplastic polyimide film, it is also possible to appropriately use the acid dianhydrides listed when explaining the polyimide resin of Layer A.
 ポリイミドの前駆体であるポリアミド酸は、前記ジアミンと酸二無水物とを有機溶媒中で実質的に等モルまたは略等モルになるように混合し、これらを反応させることにより得られる。使用する有機溶媒は、ポリアミド酸を溶解できる溶媒であればいかなるものも用いることができる。前記有機溶媒としては、アミド系溶媒すなわちN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどが好ましく、N,N-ジメチルホルムアミドおよびN,N-ジメチルアセトアミドの少なくとも一方が特に好ましく用いられ得る。ポリアミド酸の固形分濃度は特に限定されず、5重量%~35重量%の範囲内であればポリイミドとした際に十分な機械強度を有するポリアミド酸が得られる。 Polyamic acid, which is a precursor of polyimide, is obtained by mixing the diamine and acid dianhydride in an organic solvent so that they are substantially equimolar or approximately equimolar, and reacting them. Any organic solvent can be used as long as it can dissolve polyamic acid. As the organic solvent, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, etc. are preferred, and at least N,N-dimethylformamide and N,N-dimethylacetamide One can be used particularly preferably. The solid content concentration of the polyamic acid is not particularly limited, and if it is within the range of 5% by weight to 35% by weight, a polyamic acid having sufficient mechanical strength when made into a polyimide can be obtained.
 原料であるジアミンおよび酸二無水物の添加順序についても特に限定されない。原料であるジアミンおよび酸二無水物の化学構造だけでなく、これらの添加順序を制御することによっても、得られるポリイミドの特性を制御することが可能である。 The order of addition of the raw materials diamine and acid dianhydride is also not particularly limited. It is possible to control the properties of the resulting polyimide not only by controlling the chemical structures of the raw materials diamine and acid dianhydride, but also by controlling the order of their addition.
 前記ポリアミド酸には、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。 A filler can also be added to the polyamic acid for the purpose of improving various properties of the film such as slidability, thermal conductivity, electrical conductivity, corona resistance, and loop stiffness. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
 また、得られる樹脂層全体としての特性を損なわない範囲で、エポキシ樹脂、フェノキシ樹脂などの熱硬化性樹脂、ポリエーテルケトン、ポリエーテルエーテルケトンなどの熱可塑性樹脂を使用しても良い。これら樹脂の添加方法としては、溶剤に可溶のものであれば前記ポリアミド酸に添加する方法が挙げられる。ポリイミドも可溶性のポリイミドであるなら、ポリイミド溶液に添加しても良い。溶剤に不溶のポリイミドであれば、前記ポリアミド酸を先にイミド化した後、イミド化により得られたポリイミドと、さらに添加する溶剤に不溶のポリイミドとを、溶融混練で複合化する方法が挙げられる。但し、得られるフレキシブル金属張積層体の半田耐熱性および/または加熱収縮率などが悪化する可能性があるため、本発明の一実施形態では溶融性のあるポリイミドは使用しないことが望ましい。従って、ポリイミドと混合する樹脂は可溶性のものを用いることが望ましい。 Thermosetting resins such as epoxy resins and phenoxy resins, and thermoplastic resins such as polyether ketones and polyether ether ketones may also be used as long as the properties of the resulting resin layer as a whole are not impaired. As a method for adding these resins, if they are soluble in a solvent, a method of adding them to the polyamic acid can be mentioned. If the polyimide is also a soluble polyimide, it may be added to the polyimide solution. If the polyimide is insoluble in a solvent, the polyamic acid is first imidized, and then the polyimide obtained by imidization and the polyimide insoluble in the solvent to be added are combined by melt-kneading. . However, since the resulting flexible metal-clad laminate may deteriorate in solder heat resistance and/or heat shrinkage, it is desirable not to use polyimide with meltability in one embodiment of the present invention. Therefore, it is desirable to use a soluble resin for mixing with polyimide.
 本発明の一実施形態の層Bに好ましく用いられる非熱可塑性ポリイミドフィルムを得る方法は、以下の工程(i)~(iv)を含むことが好ましい。 A method for obtaining a non-thermoplastic polyimide film preferably used for layer B in one embodiment of the present invention preferably includes the following steps (i) to (iv).
 (i)有機溶剤中で芳香族ジアミンと芳香族テトラカルボン酸二無水物とを反応させてポリアミド酸溶液を得る工程、
 (ii)前記ポリアミド酸溶液を含む製膜ドープを支持体上に流延する工程、
 (iii)支持体上で前記製膜ドープを加熱した後、支持体から得られたゲルフィルムを引き剥がす工程、
 (iv)ゲルフィルムを更に加熱して、ゲルフィルム中に残ったポリアミド酸をイミド化し、かつ乾燥させる工程。
(i) reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride in an organic solvent to obtain a polyamic acid solution;
(ii) casting a film-forming dope containing the polyamic acid solution onto a support;
(iii) a step of peeling off the gel film obtained from the support after heating the film-forming dope on the support;
(iv) further heating the gel film to imidize the polyamic acid remaining in the gel film and dry it.
 (ii)以降の工程の方法は、熱イミド化法と化学イミド化法とに大別される。熱イミド化法は、脱水閉環剤等を使用せず、ポリアミド酸溶液を製膜ドープとして支持体に流延、加熱だけでイミド化を進める方法である。一方の化学イミド化法は、ポリアミド酸溶液に、イミド化促進剤として脱水閉環剤及び触媒の少なくともいずれかを添加したものを製膜ドープとして使用し、イミド化を促進する方法である。どちらの方法を用いても構わないが、化学イミド化法の方が生産性に優れる。 (ii) The methods of subsequent steps are roughly divided into thermal imidization and chemical imidization. The thermal imidization method is a method in which a polyamic acid solution as a film forming dope is cast on a support without using a dehydration ring-closing agent or the like, and imidization is proceeded only by heating. On the other hand, the chemical imidization method is a method in which at least one of a dehydration ring-closing agent and a catalyst is added to a polyamic acid solution as an imidization accelerator, and a film-forming dope is used to promote imidization. Either method may be used, but the chemical imidization method is superior in productivity.
 脱水閉環剤としては、無水酢酸に代表される酸無水物が好適に用いられ得る。触媒としては、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等の三級アミンが好適に用いられ得る。 As the dehydration ring-closing agent, an acid anhydride represented by acetic anhydride can be suitably used. Tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines can be suitably used as catalysts.
 製膜ドープを流延する支持体としては、ガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラム等が好適に用いられ得る。最終的に得られるフィルムの厚みおよび/または生産速度に応じて加熱条件を設定し、製膜ドープについて部分的にイミド化または乾燥のいずれか一方を行った後、支持体からイミド化物を剥離してポリアミド酸フィルム(以下、ゲルフィルムという)を得る。 A glass plate, an aluminum foil, an endless stainless steel belt, a stainless drum, or the like can be suitably used as a support for casting the film-forming dope. The heating conditions are set according to the thickness and/or the production rate of the film to be finally obtained, and the film forming dope is either partially imidized or dried, and then the imidized material is peeled off from the support. to obtain a polyamic acid film (hereinafter referred to as a gel film).
 前記ゲルフィルムの端部を固定して硬化時の収縮を回避しながらゲルフィルムを乾燥し、ゲルフィルムから、水、残留溶媒、イミド化促進剤を除去する。そうして、ゲルフィルム中に残ったアミド酸を完全にイミド化して、ポリイミドを含有するフィルムが得られる。加熱条件については、最終的に得られるフィルムの厚みおよび/または生産速度に応じて適宜設定すれば良い。 The ends of the gel film are fixed to dry the gel film while avoiding shrinkage during curing, and water, residual solvent, and imidization accelerator are removed from the gel film. Thus, the amic acid remaining in the gel film is completely imidized to obtain a film containing polyimide. The heating conditions may be appropriately set according to the thickness of the finally obtained film and/or the production speed.
 また、本発明の一実施形態の層Bとして工業的に入手可能なポリイミドフィルムを使用することが好ましく使用可能である。市販されている層Bとして利用可能なポリイミドフィルムの例としては、例えば、「アピカル」(カネカ製)、「カプトン」(デュポン、東レ・デュポン製)、「ユーピレックス」(宇部興産製)などが挙げられる。 Also, it is preferable to use an industrially available polyimide film as the layer B of one embodiment of the present invention. Examples of commercially available polyimide films that can be used as layer B include "Apical" (manufactured by Kaneka), "Kapton" (manufactured by DuPont, Toray DuPont), and "Upilex" (manufactured by Ube Industries). be done.
 本発明の一実施形態に係る樹脂フィルムは、以下のような態様であってもよい:
層Aと層Bとを含み、
前記層Aは、ポリイミド樹脂とフュームド金属酸化物とを含み、
前記層Bは、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムを含むか、または当該耐熱樹脂フィルムであり、
前記層Aは、前記層Bの少なくとも一方の面に形成されており、
前記ポリイミド樹脂の線膨張係数は、30ppm/℃以上、100ppm/℃以下である、樹脂フィルム。
A resin film according to one embodiment of the present invention may have the following aspects:
comprising a layer A and a layer B;
The layer A contains a polyimide resin and a fumed metal oxide,
The layer B contains a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less, or is the heat-resistant resin film,
The layer A is formed on at least one surface of the layer B,
The resin film, wherein the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
 <層Aおよび層Bを含む樹脂フィルムの製法>
 本発明の一実施形態に係る樹脂フィルムの製造方法は、ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムである層Bの少なくとも一方の面に形成されており、前記ポリイミド樹脂の線膨張係数が30ppm/℃以上、100ppm/℃以下であり、前記ポリイミド樹脂と前記フュームド金属酸化物とを含む前記層Aが、前記ポリイミド樹脂の前駆体のポリアミド酸溶液と前記フュームド金属酸化物とを混合し、得られたフュームド金属酸化物分散ポリアミド酸溶液をイミド化することにより得られる。
<Method for producing resin film containing layer A and layer B>
In the method for producing a resin film according to one embodiment of the present invention, the layer A containing a polyimide resin and a fumed metal oxide is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less. The layer A formed on the surface, the linear expansion coefficient of the polyimide resin is 30 ppm / ° C. or more and 100 ppm / ° C. or less, and the layer A containing the polyimide resin and the fumed metal oxide is a precursor of the polyimide resin. and the fumed metal oxide, and imidizing the resulting fumed metal oxide-dispersed polyamic acid solution.
 本発明の一実施形態に係る樹脂フィルムの製造方法は、以下のような態様であってもよい:
樹脂フィルムの製造方法であって、
ポリイミド樹脂の前駆体のポリアミド酸溶液とフュームド金属酸化物とを混合する工程1と、
前記工程1で得られたフュームド金属酸化物分散ポリアミド酸溶液をイミド化する工程2と、を含み、
前記樹脂フィルムは、
前記層Aと前記層Bとを含み、
前記層Aは、前記ポリイミド樹脂と前記フュームド金属酸化物とを含み、
前記層Bは、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムを含むか、または当該耐熱樹脂フィルムであり、
前記層Aは、前記層Bの少なくとも一方の面に形成されており、
前記ポリイミド樹脂の線膨張係数は、30ppm/℃以上、100ppm/℃以下である、樹脂フィルムの製造方法。
A method for producing a resin film according to an embodiment of the present invention may be in the following aspects:
A method for producing a resin film,
Step 1 of mixing a polyamic acid solution of a polyimide resin precursor and a fumed metal oxide;
and a step 2 of imidizing the fumed metal oxide-dispersed polyamic acid solution obtained in step 1,
The resin film is
including the layer A and the layer B;
The layer A contains the polyimide resin and the fumed metal oxide,
The layer B contains a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less, or is the heat-resistant resin film,
The layer A is formed on at least one surface of the layer B,
The method for producing a resin film, wherein the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
 工程1および工程1で得られるフュームド金属酸化物分散ポリアミド酸溶液については、前記<フュームド金属酸化物分散ポリアミド酸溶液>の項で説明した態様と同じであるので、当該記載を援用し、ここでは説明を省略する。前記<フュームド金属酸化物分散ポリアミド酸溶液>の項で説明した好ましい態様が、工程1および工程1で得られるフュームド金属酸化物分散ポリアミド酸溶液についても好ましい態様である。 The fumed metal oxide-dispersed polyamic acid solution obtained in Step 1 and Step 1 is the same as the embodiment described in the section <Fumed metal oxide-dispersed polyamic acid solution>, so the description is incorporated herein. Description is omitted. The preferred embodiment described in the section <Fumed metal oxide-dispersed polyamic acid solution> is also a preferred embodiment for Step 1 and the fumed metal oxide-dispersed polyamic acid solution obtained in Step 1.
 本発明の一実施形態の樹脂フィルムは層Aと層Bとを含む。また、本発明の一実施形態の樹脂フィルムは層Aと層Bとから構成される。本発明の一実施形態の層Bは線膨張係数が20ppm/℃以下である耐熱性樹脂フィルムであることが必要である。層B、すなわち前記耐熱性樹脂フィルムとしては、液晶ポリマーフィルム、強化繊維を含む樹脂フィルム、無機フィラーを含む樹脂フィルム、工業的に入手可能なポリイミドフィルム、および、前記(i)~(iv)工程を経て製造した非熱可塑性ポリイミドフィルム、等が挙げられる。これらの耐熱性樹脂フィルム(層B)の表面に工程1で得られた層A分散液を塗工(塗布)し、層A分散液を乾燥し、かつイミド化させ本発明の一実施形態の樹脂フィルムを得ることが好ましく実施可能である。 The resin film of one embodiment of the present invention includes layer A and layer B. Moreover, the resin film of one embodiment of the present invention is composed of a layer A and a layer B. As shown in FIG. Layer B in one embodiment of the present invention must be a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less. As the layer B, that is, the heat-resistant resin film, a liquid crystal polymer film, a resin film containing reinforcing fibers, a resin film containing an inorganic filler, an industrially available polyimide film, and the above steps (i) to (iv) and non-thermoplastic polyimide films produced through The layer A dispersion obtained in step 1 is applied (applied) to the surface of these heat-resistant resin films (layer B), and the layer A dispersion is dried and imidized to form one embodiment of the present invention. Obtaining a resin film is preferably feasible.
 または、前記(ii)工程において複数の流路を有する共押出しダイを使用して複層を有する本発明の一実施形態の樹脂フィルムを得ても良い。また、前記(iii)工程のゲルフィルムの表面に層A分散液を塗工し、ゲルフィルムおよび層Aの両者を同時に乾燥し、かつイミド化させ本発明の一実施形態の樹脂フィルムを得ても良い。いずれの場合も加熱条件は各種フィルム特性および/または無電解金属めっき層との密着性にも影響する場合がある。その為、適切な加熱温度および加熱時間を設定することが好ましい。また、層A分散液に含まれるポリアミド酸の化学構造、濃度、溶媒種および/または層Aの最終的な厚みに応じ、適切な加熱条件を設定することも好ましく、一概に好適な加熱条件を説明できない。例えば層Aの厚みが10ミクロン以下を想定する。この場合、次の(1)~(3)を行い(ただし、(2)は必要に応じて行い)、層A分散液等をイミド化することが好ましい:(1)比較的低めの加熱温度、即ち100℃以上200℃以下の加熱温度で1分間以上5分間以下、層A分散液等を乾燥する;(2)続いて必要に応じ200℃以上300℃以下の温度で層A分散液等の加熱を行う;(3)最終的な加熱条件として300℃以上500℃以下の温度で1分間以上5分間以下、層A分散液等を加熱する。 Alternatively, in the step (ii), a co-extrusion die having a plurality of flow paths may be used to obtain a resin film of one embodiment of the present invention having multiple layers. Further, the layer A dispersion is applied to the surface of the gel film in the step (iii), and both the gel film and the layer A are simultaneously dried and imidized to obtain the resin film of one embodiment of the present invention. Also good. In either case, the heating conditions may also affect various film properties and/or adhesion to the electroless metal plating layer. Therefore, it is preferable to set an appropriate heating temperature and heating time. In addition, it is also preferable to set appropriate heating conditions according to the chemical structure, concentration, and solvent type of the polyamic acid contained in the layer A dispersion and/or the final thickness of the layer A, and generally suitable heating conditions are set. I can't explain. For example, assume that the thickness of layer A is 10 microns or less. In this case, it is preferable to imidize the layer A dispersion and the like by performing the following (1) to (3) (however, (2) is performed as necessary): (1) relatively low heating temperature; That is, the layer A dispersion, etc. is dried at a heating temperature of 100° C. or more and 200° C. or less for 1 minute or more and 5 minutes or less; (3) As a final heating condition, the layer A dispersion and the like are heated at a temperature of 300° C. or more and 500° C. or less for 1 minute or more and 5 minutes or less.
 工程2のイミド化には、大きく2つの方法、熱イミド化法および化学イミド化法がある。フュームド金属酸化物分散ポリアミド酸溶液(層A分散液)のイミド化は、脱水閉環剤等を使用せず加熱だけでイミド化を進める方法である、熱イミド化法が採用されることが好ましい。 There are roughly two methods for imidization in step 2: thermal imidization and chemical imidization. For imidization of the fumed metal oxide-dispersed polyamic acid solution (Layer A dispersion), it is preferable to employ a thermal imidization method, which is a method of promoting imidization only by heating without using a dehydrating ring-closing agent or the like.
 層Aは無電解金属めっき層を密着する機能を有している。この層Aに対して銅箔をラミネートして銅張積層体を製造することを想定する。この場合、銅箔の粗化面の表面凹凸を噛みこむだけの接着層厚みを有することが好ましいが、本発明の一実施形態の層Aはその表面に無電解金属めっき層が析出することにより金属層を得る為、層Aの厚みは比較的薄くても本来の機能の無電解金属めっき層との密着性が発現し得る。工業的に安定的に層Aを形成するという視点から、層Aは、0.1ミクロン以上30ミクロン以下の厚みを有することが好ましく、1ミクロン以上10ミクロン以下の厚みを有することが更に好ましい。他方、本発明の一実施形態の樹脂フィルムがプリント配線板に使用される場合、線膨張係数を適切に設計することが好ましく、それにより無電解金属めっき層を含む導体層との複合体の温度環境変化による反りを制御することが可能となる。層Aの厚み、層A単独の線膨張係数、層Bの厚み、層B単独の線膨張係数等のパラメータを考慮することにより本発明の一実施形態の樹脂フィルムの線膨張係数を制御可能である。前記パラメータを考慮することにより、例えば導体層である銅の線膨張係数と、本発明の一実施形態の樹脂フィルムの線膨張係数と、を一致させることが好ましく実施可能である。 Layer A has the function of adhering the electroless metal plating layer. It is assumed that the layer A is laminated with a copper foil to produce a copper-clad laminate. In this case, it is preferable that the adhesive layer has a thickness enough to bite into the surface unevenness of the roughened surface of the copper foil. In order to obtain a metal layer, even if the thickness of the layer A is relatively thin, the original function of adhesion with the electroless metal plating layer can be exhibited. From the viewpoint of industrially stably forming the layer A, the layer A preferably has a thickness of 0.1 microns or more and 30 microns or less, more preferably 1 micron or more and 10 microns or less. On the other hand, when the resin film of one embodiment of the present invention is used for a printed wiring board, it is preferable to design the linear expansion coefficient appropriately so that the temperature of the composite with the conductor layer including the electroless metal plating layer It is possible to control warping due to environmental changes. By considering parameters such as the thickness of layer A, the linear expansion coefficient of layer A alone, the thickness of layer B, and the linear expansion coefficient of layer B alone, the linear expansion coefficient of the resin film of one embodiment of the present invention can be controlled. be. By considering the above parameters, for example, it is possible to match the coefficient of linear expansion of copper, which is the conductor layer, with the coefficient of linear expansion of the resin film of one embodiment of the present invention.
 <無電解金属めっき>
 本発明の一実施形態の樹脂フィルムの層Aの表面には無電解金属めっき層を形成できる。前記層Aの表面に無電解金属めっき層を形成することにより、金属化樹脂フィルムを得ることができる。前記層Aの表面に無電解金属めっき層が形成されている金属化樹脂フィルムもまた、本発明の一実施形態である。無電解金属めっきにより得られる無電解金属めっき層(膜)は一般の銅箔と比較して厚みを薄くすることができる。前記無電解金属めっき層の厚さは、好ましくは0.01ミクロン~10.00ミクロン、より好ましくは0.10ミクロン~2.00ミクロン、更に好ましくは、0.20ミクロン~1.00ミクロンである。
<Electroless metal plating>
An electroless metal plating layer can be formed on the surface of the layer A of the resin film of one embodiment of the present invention. By forming an electroless metal plating layer on the surface of layer A, a metallized resin film can be obtained. A metallized resin film in which an electroless metal plating layer is formed on the surface of layer A is also an embodiment of the present invention. An electroless metal plating layer (film) obtained by electroless metal plating can be thinner than a general copper foil. The thickness of the electroless metal plating layer is preferably 0.01 microns to 10.00 microns, more preferably 0.10 microns to 2.00 microns, still more preferably 0.20 microns to 1.00 microns. be.
 本発明の一実施形態の無電解金属めっきは化学反応を利用した還元型の無電解めっきを好ましく適用可能である。無電解金属めっきの金属種は銅、ニッケル、金、銀等を挙げる事ができ、いずれも本発明の一実施形態に適用可能である。これらの内、無電解銅めっきおよび無電解ニッケルめっきが好ましく、中でも無電解銅めっきはプリント配線板のスルーホールおよびヴィアの壁面の絶縁樹脂表面を導電化するプロセスとして広く一般に使用されている実績があり、最も好ましく使用可能である。換言すれば、本発明の一実施形態の無電解金属めっきが無電解銅めっきであることが好ましい。プリント配線板用に広く使用される無電解銅めっきプロセスはめっき薬液メーカー各社の薬液プロセスを利用することができる。また、無電解銅めっきの前にデスミア処理を行うことも一般に行われる。デスミア処理は本来、スルーホール形成工程、およびレーザーヴィア形成工程で生じた銅の表面に生じたスミアを除去する目的で行われる。デスミア処理は、本発明の一実施形態の樹脂フィルムの表面にも化学的な変化を与え、好ましく使用可能である。デスミアプロセスおよび無電解銅めっきプロセスは、それぞれ、複数の薬液で被めっき物を順に処理して行われる。例えばデスミアプロセスは、膨潤を担う薬液、エッチングを担う薬液、および還元を担う薬液で構成される。また無電解銅めっきプロセスは、クリーニングおよびコンディショナーを担う薬液、ソフトエッチングを担う薬液、プレディップを担う薬液、触媒付与を担う薬液、活性化を担う薬液、および無電解銅めっきを担う薬液など、一連の各役割を担う各々の薬液で構成されている。これらの一連のプロセスとしてめっき薬液メーカー各社の薬液プロセスを利用することができる。例えば、アトテック社製の薬液、奥野製薬工業株式会社製アドカッパーIW、上村工業株式会社製スルカップPEA、ロームアンドハース電子材料株式会社製の薬液、メルテックス株式会社製の薬液等、各薬液およびプロセスを適用可能であり、適宜組み合わせることも可能である。これらの無電解銅めっきには微量のニッケル成分が添加されていることがあるが、本発明の一実施形態の効果を損なわない範囲でこれらの無電解金属めっき(無電解銅めっき)を使用可能である。尚、層Aに対して無電解めっきをする場合、層Aに対して直接無電解めっきを施してもよいし、前処理として層Aに対してアルカリ処理、デスミア処理等の前処理を施した後、前処理後の層Aに対して無電解めっきを施してもよい。アルカリ処理のアルカリ水溶液としては、水酸化ナトリウム水溶液および水酸化カリウム水溶液など、を一例として挙げることができる。  Electroless metal plating of one embodiment of the present invention is preferably applicable to reduction-type electroless plating using a chemical reaction. Metal species for electroless metal plating include copper, nickel, gold, silver, and the like, all of which are applicable to one embodiment of the present invention. Of these, electroless copper plating and electroless nickel plating are preferred. Among them, electroless copper plating is widely used as a process for making the insulating resin surface of through-holes and via walls of printed wiring boards conductive. Yes, and most preferably available. In other words, the electroless metal plating of one embodiment of the present invention is preferably electroless copper plating. The electroless copper plating process, which is widely used for printed wiring boards, can use the chemical processes of plating chemical manufacturers. Also, desmear treatment is generally performed before electroless copper plating. Desmear treatment is originally performed for the purpose of removing smears generated on the surface of copper generated in the through-hole forming process and the laser via forming process. Desmear treatment also chemically changes the surface of the resin film of one embodiment of the present invention, and can be preferably used. The desmear process and the electroless copper plating process are each performed by sequentially treating the object to be plated with a plurality of chemical solutions. For example, the desmear process consists of a chemical solution responsible for swelling, a chemical solution responsible for etching, and a chemical solution responsible for reduction. In addition, the electroless copper plating process includes a series of chemical solutions for cleaning and conditioner, chemical solutions for soft etching, chemical solutions for pre-dip, chemical solutions for catalyst application, chemical solutions for activation, and chemical solutions for electroless copper plating. It is composed of each chemical solution that plays each role. As a series of these processes, it is possible to use chemical processes of plating chemical manufacturers. For example, chemical solutions manufactured by Atotech, Adcopper IW manufactured by Okuno Chemical Industry Co., Ltd., Surcup PEA manufactured by Uemura Kogyo Co., Ltd., chemical solutions manufactured by Rohm and Haas Electronic Materials Co., Ltd., chemical solutions manufactured by Meltex Co., Ltd., and various chemical solutions and processes. can be applied, and can be combined as appropriate. These electroless copper platings sometimes contain a small amount of nickel component, but these electroless metal platings (electroless copper platings) can be used as long as they do not impair the effects of one embodiment of the present invention. is. When the layer A is electrolessly plated, the layer A may be electrolessly plated directly, or the layer A is pretreated by alkali treatment, desmear treatment, or the like. After that, electroless plating may be applied to the layer A after the pretreatment. Examples of alkaline aqueous solutions for alkali treatment include sodium hydroxide aqueous solutions and potassium hydroxide aqueous solutions.
 本発明の一実施形態では、樹脂フィルムに対して無電解金属めっき層の形成処理(無電解金属めっき工程)のみを行って得られる金属化樹脂フィルムにおいて、樹脂フィルムと無電解金属めっきとの十分な密着性が発現することを狙いとしている。前記密着性が低い場合、その後の回路形成工程で回路が樹脂フィルム基材から剥離する等の問題が発生し得る。金属化樹脂フィルムにおける樹脂フィルムと無電解金属めっきとの密着性の改善の為に、無電解めっき工程の後に、例えば150℃以上の温度で金属化樹脂フィルムの加熱を行うことで当該密着性を向上させることが行われる場合がある。しかし、金属化樹脂フィルムの加熱を行う場合、(a)その工程の煩雑さがあり、また(b)加熱により生じる無電解金属めっき層の表面酸化が原因となりその後の工程での悪影響および不具合が生じたり、また(c)加熱しても十分な密着性改善効果が発現しない場合がある。本発明の一実施形態においては、金属化樹脂フィルムを高温加熱しない場合でも、良好な密着性を得ることができ、またプリント配線板として利用する場合の耐熱性も有する。換言すれば、本発明の一実施形態に係る樹脂フィルムが密着性に優れるとは、少なくとも、樹脂フィルムの層Aの表面に無電解金属めっき層を形成して得られる金属化樹脂フィルムについて、当該金属化樹脂フィルムに対して150℃以上の加熱処理を行うことなく、当該金属化樹脂フィルムにおける無電解金属めっき層がピール強度に優れる(例えば、3N/cm以上のピール強度を発現する)ことを意図する。本明細書において、樹脂フィルムの層Aの表面に無電解金属めっき層を形成して得られる金属化樹脂フィルムであって、かつ当該金属化樹脂フィルムに対して150℃以上の加熱処理を行っていない金属化樹脂フィルムにおける、無電解金属めっき層のピール強度を「初期ピール強度」と称する場合も有る。本発明の一実施形態では、樹脂フィルムの層Aの表面に無電解金属めっき層を形成して得られる金属化樹脂フィルムについて、当該金属化樹脂フィルムに対して150℃以上の加熱処理を行うことなく、当該金属化樹脂フィルムにおける無電解金属めっき層が3N/cm以上、より好ましくは5N/cm以上のピール強度を発現することが好ましい。本発明の一実施形態では、前記金属化樹脂フィルムにおいて、前記無電解金属めっき層を形成した後、150℃以上の加熱処理を行うことなく、3N/cm以上、より好ましくは5N/cm以上のピール強度を発現することが好ましい。 In one embodiment of the present invention, in a metallized resin film obtained by performing only an electroless metal plating layer forming treatment (electroless metal plating step) on a resin film, the resin film and the electroless metal plating are sufficiently The aim is to develop good adhesion. If the adhesion is low, problems such as the circuit peeling off from the resin film substrate may occur in the subsequent circuit forming process. In order to improve the adhesion between the resin film and the electroless metal plating in the metallized resin film, after the electroless plating process, the metallized resin film is heated at a temperature of 150 ° C. or higher, for example, to improve the adhesion. Improvements may be made. However, when the metallized resin film is heated, (a) the process is complicated, and (b) surface oxidation of the electroless metal plating layer caused by heating causes adverse effects and problems in subsequent processes. and (c) the effect of improving adhesion may not be sufficient even when heated. In one embodiment of the present invention, good adhesion can be obtained even when the metallized resin film is not heated to a high temperature, and it also has heat resistance when used as a printed wiring board. In other words, the fact that the resin film according to one embodiment of the present invention has excellent adhesion means that at least the metallized resin film obtained by forming an electroless metal plating layer on the surface of the layer A of the resin film is The electroless metal plating layer in the metallized resin film is excellent in peel strength (for example, exhibits a peel strength of 3 N/cm or more) without subjecting the metallized resin film to heat treatment at 150 ° C. or higher. Intend. In the present specification, a metallized resin film obtained by forming an electroless metal plating layer on the surface of layer A of a resin film, and the metallized resin film is subjected to heat treatment at 150° C. or higher. The peel strength of the electroless metal-plated layer in the metallized resin film without the coating is sometimes referred to as "initial peel strength". In one embodiment of the present invention, a metallized resin film obtained by forming an electroless metal plating layer on the surface of the layer A of the resin film is subjected to heat treatment at 150° C. or higher. It is preferable that the electroless metal plating layer in the metallized resin film exhibits a peel strength of 3 N/cm or more, more preferably 5 N/cm or more. In one embodiment of the present invention, in the metallized resin film, after forming the electroless metal plating layer, without performing heat treatment at 150 ° C. or higher, it is 3 N / cm or more, more preferably 5 N / cm or more. It is preferable to exhibit peel strength.
 また無電解金属めっきにより基材(樹脂フィルム)を導体化する場合、基材(樹脂フィルム)の裏面に回路パターンがない場合は良好な密着強度が発現したとしても、基材(樹脂フィルム)の裏面に回路パターンがある場合には十分な密着強度が発現しない場合もある。本発明の好ましい一実施形態においては、金属化樹脂フィルムを高温加熱しない場合でも、裏面の回路パターンの有無によらず良好な密着性を得ることができ、またプリント配線板として利用する場合の耐熱性も有する。換言すれば、本発明の一実施形態に係る樹脂フィルムは、必須ではないが、樹脂フィルムの層Aの両面に無電解金属めっき層を形成して得られる金属化樹脂フィルムについて、当該金属化樹脂フィルムに対して150℃以上の加熱処理を行うことなく、当該金属化樹脂フィルムにおける無電解金属めっき層がピール強度に優れる(例えば、3N/cm以上のピール強度を発現する)ことが好ましい。本発明の一実施形態では、樹脂フィルムの層Aの両面に無電解金属めっき層を形成して得られる金属化樹脂フィルムについて、当該金属化樹脂フィルムに対して150℃以上の加熱処理を行うことなく、当該金属化樹脂フィルムにおける無電解金属めっき層が3N/cm以上、より好ましくは5N/cm以上のピール強度を発現することが好ましい。本発明の一実施形態では、前記金属化樹脂フィルムにおいて、両面に前記無電解金属めっき層を形成した後、150℃以上の加熱処理を行うことなく、3N/cm以上、より好ましくは5N/cm以上のピール強度を発現することが好ましい。 In addition, when the base material (resin film) is made conductive by electroless metal plating, even if good adhesion strength is exhibited if there is no circuit pattern on the back surface of the base material (resin film), When there is a circuit pattern on the back surface, sufficient adhesion strength may not be exhibited. In a preferred embodiment of the present invention, even if the metallized resin film is not heated to a high temperature, good adhesion can be obtained regardless of the presence or absence of a circuit pattern on the back surface, and the heat resistance when used as a printed wiring board. It also has sex. In other words, the resin film according to one embodiment of the present invention is not essential, but for the metallized resin film obtained by forming electroless metal plating layers on both sides of the layer A of the resin film, the metallized resin It is preferable that the electroless metal plating layer in the metallized resin film has excellent peel strength (for example, exhibits a peel strength of 3 N/cm or more) without subjecting the film to heat treatment at 150° C. or higher. In one embodiment of the present invention, a metallized resin film obtained by forming electroless metal plating layers on both sides of layer A of a resin film is subjected to heat treatment at 150° C. or higher. It is preferable that the electroless metal plating layer in the metallized resin film exhibits a peel strength of 3 N/cm or more, more preferably 5 N/cm or more. In one embodiment of the present invention, after the electroless metal plating layers are formed on both sides of the metallized resin film, the heat treatment at 150° C. or higher is not performed, and the thickness of the metallized resin film is 3 N/cm or more, more preferably 5 N/cm or more. It is preferable to express the above peel strength.
 さらに、本発明の一実施形態においては、樹脂フィルムの層Aの表面に無電解金属めっき層を形成して得られる金属化樹脂フィルムについて、積極的な加熱は行わず、室温で乾燥させた場合でも十分な密着性を得ることができる。無電解金属めっき層の形成処理後に得られる金属化樹脂フィルムが水等の洗浄液に濡れている状態では次のプロセス、例えばドライフィルムレジストのラミネート工程において不具合が生じる場合も有る。そのため、無電解金属めっき層の形成処理により得られる金属化樹脂フィルムに対して、乾燥を目的とした加熱乾燥処理は好ましく実施可能である。前記加熱乾燥処理における加熱温度は、好ましくは150℃以下、より好ましくは150度未満、更に好ましくは100℃以下である。加熱乾燥処理における加熱時間は、30分以下が好ましく、更に好ましくは10分以下である。前記の範囲内の穏やかな条件で金属化樹脂フィルムを加熱乾燥することにより無電解金属めっきの酸化を実用上問題のないレベルに抑えることが可能となり、同時に良好な密着性も得ることができる。そのため、前記の範囲内の穏やかな条件での金属化樹脂フィルムの加熱乾燥処理が好ましく実施可能である。 Furthermore, in one embodiment of the present invention, the metallized resin film obtained by forming an electroless metal plating layer on the surface of the layer A of the resin film is not actively heated and dried at room temperature. However, sufficient adhesion can be obtained. If the metallized resin film obtained after forming the electroless metal plating layer is wet with a cleaning liquid such as water, problems may occur in the next process, such as the dry film resist lamination process. Therefore, the heat drying treatment for the purpose of drying can be preferably carried out on the metallized resin film obtained by the treatment for forming the electroless metal plating layer. The heating temperature in the heat drying treatment is preferably 150° C. or lower, more preferably less than 150° C., and still more preferably 100° C. or lower. The heating time in the heat drying treatment is preferably 30 minutes or less, more preferably 10 minutes or less. By heating and drying the metallized resin film under mild conditions within the above range, oxidation of the electroless metal plating can be suppressed to a practically acceptable level, and at the same time good adhesion can be obtained. Therefore, the heat drying treatment of the metallized resin film under mild conditions within the above range can be preferably carried out.
 プリント配線板製造における回路形成工程での回路パターン剥離を抑制する為には、樹脂フィルムに対して無電解金属めっき層の形成処理のみを行って得られる金属化樹脂フィルム(150℃以上の加熱処理を行っていない金属化樹脂フィルム)が、十分な密着性を有していることが好ましい。当該金属化樹脂フィルムのピール強度(初期ピール強度)は3N/cm以上が好ましく、5N/cm以上がより好ましく、更に好ましくは6N/cm以上、より更に好ましくは7N/cm以上である。 In order to suppress the circuit pattern peeling in the circuit formation process in the manufacture of printed wiring boards, a metallized resin film (heat treatment at 150 ° C. or higher) obtained by performing only the formation treatment of the electroless metal plating layer on the resin film It is preferable that the metallized resin film that has not been subjected to the above) has sufficient adhesion. The peel strength (initial peel strength) of the metallized resin film is preferably 3 N/cm or more, more preferably 5 N/cm or more, still more preferably 6 N/cm or more, and even more preferably 7 N/cm or more.
 <プリント配線板>
 本発明の一実施形態に係る樹脂フィルム、または本発明の一実施形態に係る金属化樹脂フィルムを用いたプリント配線板もまた、本発明の一実施形態である。以下、本発明の一実施形態の樹脂フィルムを用いてプリント配線板を製造する方法につき説明する。本発明の一実施形態の樹脂フィルムは低粗度の層Aの表面に無電解金属めっき、特に汎用の無電解銅めっき薬液を用いて強固に密着した無電解銅めっき被膜(無電解銅めっき層)を形成された金属化樹脂フィルムとすることができる。本発明の一実施形態に係る樹脂フィルムまたは金属化フィルムを利用することにより、サブトラクティブ法およびアディティブ法を問わず、またボタンめっき工法等の煩雑な工法を使うことなく、狭ピッチ回路形成が可能である。また、本発明の一実施形態に係る樹脂フィルムまたは金属化フィルムを利用することにより、狭ピッチかつ良好な回路形状を有し、優れた伝送特性を有し、かつ厚みの薄い導体層および回路を得ることができる。すなわち、本発明の一実施形態に係る樹脂フィルムまたは金属化フィルムを利用することにより、高屈曲性を有する、プリント配線板が製造可能であり、フレキシブルプリント配線板、多層フレキシブルプリント配線板、リジッドフレックス基板、チップオンフィルム基板等を製造可能である。
<Printed wiring board>
A printed wiring board using the resin film according to one embodiment of the present invention or the metallized resin film according to one embodiment of the present invention is also one embodiment of the present invention. A method for manufacturing a printed wiring board using the resin film of one embodiment of the present invention will be described below. The resin film of one embodiment of the present invention is an electroless copper plating film (electroless copper plating layer) firmly adhered to the surface of the low-roughness layer A by electroless metal plating, especially using a general-purpose electroless copper plating chemical. ) can be a formed metallized resin film. By using the resin film or metallized film according to one embodiment of the present invention, narrow-pitch circuits can be formed regardless of the subtractive method or the additive method, and without using complicated methods such as button plating. is. In addition, by using the resin film or metallized film according to one embodiment of the present invention, a conductor layer and a circuit having a narrow pitch and a good circuit shape, excellent transmission characteristics, and a thin thickness can be obtained. Obtainable. That is, by using the resin film or metallized film according to one embodiment of the present invention, it is possible to manufacture a printed wiring board having high flexibility. Substrates, chip-on-film substrates, etc. can be manufactured.
 本発明の一実施形態の樹脂フィルムの少なくとも片方の面に無電解金属めっき層を形成するプロセスと、公知の方法であるサブトラクティブ法およびアディティブ法による回路形成プロセス、多層化、ビルドアップ多層化等の技術と、を組み合わせることも可能である。多層化の場合、適当な接着剤および接着シートと組み合わせることが可能である。また、スルーホール形成およびブラインドヴィア形成と組み合わせることも可能である。例えば本発明の一実施形態の樹脂フィルムに対して、次の(1)~(3)の方法等を行うことにより、先に記載した多様なプリント配線板を得ることが可能である:;(1)先ずスルーホールを形成し、次いで無電解金属めっき層の形成処理を施すことにより、スルーホール壁面および樹脂フィルム表面に同時に無電解金属めっき層(膜)を形成する;次いで(2)公知の方法で回路形成する;さらに(3)公知の方法で多層化処理、保護膜形成処理、および表面処理などを行う。尚、狭ピッチ回路を形成をする為には本発明の一実施形態の樹脂フィルムの表面粗度は小さいことが好ましい。本発明の一実施形態において、無電解金属めっき層(膜)をエッチングにより除去することにより露出する樹脂フィルム(層A)の表面粗度Raは200ナノメートル以下であることが好ましく、150ナノメートル以下であることがより好ましく、更に好ましくは100ナノメートル以下である。前記表面粗度は、ポリイミド前駆体に対するフュームド金属酸化物の添加部数、フュームド金属酸化物の種類(見掛け比重、表面処理など)、層Aのポリイミド樹脂の化学構造、デスミア条件、無電解金属めっき層の形成処理の条件などを変更することにより、調節できる。 A process of forming an electroless metal plating layer on at least one surface of the resin film of one embodiment of the present invention, a circuit formation process, multi-layering, build-up multi-layering, etc. by known methods such as subtractive method and additive method It is also possible to combine the technology of In the case of multilayering, it is possible to combine with suitable adhesives and adhesive sheets. It is also possible to combine through hole formation and blind via formation. For example, various printed wiring boards described above can be obtained by performing the following methods (1) to (3) on the resin film of one embodiment of the present invention:; 1) First, a through-hole is formed, and then an electroless metal-plated layer forming process is performed to simultaneously form an electroless metal-plated layer (film) on the wall surface of the through-hole and the surface of the resin film; Further, (3) multilayering treatment, protective film forming treatment, surface treatment, etc. are performed by known methods. In order to form a narrow-pitch circuit, it is preferable that the surface roughness of the resin film of one embodiment of the present invention is small. In one embodiment of the present invention, the surface roughness Ra of the resin film (layer A) exposed by removing the electroless metal plating layer (film) by etching is preferably 200 nm or less, and preferably 150 nm. It is more preferably 100 nm or less, and more preferably 100 nm or less. The surface roughness is the number of parts of the fumed metal oxide added to the polyimide precursor, the type of fumed metal oxide (apparent specific gravity, surface treatment, etc.), the chemical structure of the polyimide resin of layer A, the desmear condition, and the electroless metal plating layer. can be adjusted by changing the conditions of the forming process of .
 本発明の一実施形態によって得られるプリント配線板は、本発明の一実施形態に係る樹脂フィルムまたは金属化樹脂フィルムを用いることにより、GHz帯の電気信号を伝送することが可能となる。ここでいう、GHz帯の電気信号を伝送するとは、厚み12ミクロンの信号線/厚み25ミクロンの本発明の一実施形態に係る樹脂フィルム/厚み12ミクロンのグランド層を順に有し、特性インピーダンスが50Ωになるよう加工されたマイクロストリップライン伝送路をネットワークアナライザE5071C(Keysight Technologies)とGSG250プローブを用いて挿入損失S21パラメータを測定した場合に、10GHzにおける伝送ロスが7dB/100mmよりも小さく、かつ、20GHzにおける伝送ロスが11dB/100mmよりも小さく、かつ30GHzにおける伝送ロスが14dB/100mmよりも小さいことを意味する。ここで、厚み12ミクロンの信号線とは、無電解金属めっき層および電解銅めっき層からなるトータル厚み12ミクロンの導体層からなる配線を意図する。また、厚み12ミクロンのグランド層とは、無電解金属めっき層と電解銅めっき層からなるトータル厚み12ミクロンの導体層からなるグランド層を意図する。また、(i)厚み12ミクロンの信号線/厚み25ミクロンの本発明の一実施形態に係る樹脂フィルムを順に有するフィルム(積層体)、および(ii)厚み12ミクロンの信号線/厚み25ミクロンの本発明の一実施形態に係る樹脂フィルム/厚み12ミクロンのグランド層を順に有するフィルム(積層体)は、本発明の一実施形態に係る金属化樹脂フィルムともいえる。 A printed wiring board obtained according to one embodiment of the present invention can transmit electrical signals in the GHz band by using the resin film or metallized resin film according to one embodiment of the present invention. Here, transmitting an electrical signal in the GHz band means having, in order, a 12-micron-thick signal line/a 25-micron-thick resin film according to an embodiment of the present invention/a 12-micron-thick ground layer, and the characteristic impedance is When the insertion loss S21 parameter of a microstrip line transmission line processed to be 50 Ω is measured using a network analyzer E5071C (Keysight Technologies) and a GSG250 probe, the transmission loss at 10 GHz is less than 7 dB/100 mm, and It means that the transmission loss at 20 GHz is less than 11 dB/100 mm and the transmission loss at 30 GHz is less than 14 dB/100 mm. Here, the signal line with a thickness of 12 microns is intended to be a wiring composed of a conductor layer with a total thickness of 12 microns, which is composed of an electroless metal plating layer and an electrolytic copper plating layer. Also, the 12-micron-thick ground layer is intended to be a ground layer composed of a conductor layer with a total thickness of 12 microns, which is composed of an electroless metal-plated layer and an electrolytic copper-plated layer. In addition, (i) a film (laminate) having, in order, a 12-micron-thick signal line/a 25-micron-thick resin film according to an embodiment of the present invention, and (ii) a 12-micron-thick signal line/a 25-micron-thick The resin film according to one embodiment of the present invention/film (laminate) having a 12-micron-thick ground layer in order can also be said to be the metallized resin film according to one embodiment of the present invention.
 〔1〕ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムである層Bの少なくとも一方の面に形成されており、
 前記ポリイミド樹脂の線膨張係数が30ppm/℃以上、100ppm/℃以下であることを特徴とする樹脂フィルム。
[1] A layer A containing a polyimide resin and a fumed metal oxide is formed on at least one surface of a layer B, which is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less,
A resin film, wherein the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
 〔2〕前記フュームド金属酸化物の見掛比重が20グラム/リットル以上220グラム/リットル以下であることを特徴とする〔1〕に記載の樹脂フィルム。 [2] The resin film according to [1], wherein the fumed metal oxide has an apparent specific gravity of 20 g/liter or more and 220 g/liter or less.
 〔3〕前記フュームド金属酸化物の、前記ポリイミド樹脂の前駆体100重量部に対する配合部数が10重量部から130重量部であることを特徴とするであることを特徴とする〔1〕または〔2〕に記載の樹脂フィルム。 [3] [1] or [2], wherein the fumed metal oxide is added in an amount of 10 to 130 parts by weight per 100 parts by weight of the precursor of the polyimide resin. ] The resin film as described in .
 〔4〕前記フュームド金属酸化物がフュームドシリカであることを特徴とする〔1〕から〔3〕のいずれか1つに記載の樹脂フィルム。 [4] The resin film according to any one of [1] to [3], wherein the fumed metal oxide is fumed silica.
 〔5〕前記ポリイミド樹脂と前記フュームド金属酸化物とを含む層Aが該ポリイミド樹脂の前駆体と前記フュームド金属酸化物の混合物のイミド化物であることを特徴とする〔1〕から〔4〕のいずれか1つに記載の樹脂フィルム。 [5] Any of [1] to [4], wherein the layer A containing the polyimide resin and the fumed metal oxide is an imidized mixture of a precursor of the polyimide resin and the fumed metal oxide. The resin film according to any one.
 〔6〕前記ポリイミド樹脂の300℃における貯蔵弾性率が1×10Pa以上であることを特徴とする〔1〕から〔5〕のいずれか1つに記載の樹脂フィルム。 [6] The resin film of any one of [1] to [5], wherein the polyimide resin has a storage elastic modulus at 300° C. of 1×10 8 Pa or more.
 〔7〕前記ポリイミド樹脂が非溶解性ポリイミド樹脂であることを特徴とする〔1〕から〔6〕のいずれか1つに記載の樹脂フィルム。 [7] The resin film according to any one of [1] to [6], wherein the polyimide resin is an insoluble polyimide resin.
 〔8〕前記層Bがポリイミド樹脂を含むことを特徴とする〔1〕から〔7〕のいずれか1つに記載の樹脂フィルム。 [8] The resin film according to any one of [1] to [7], wherein the layer B contains a polyimide resin.
 〔9〕〔1〕から〔8〕のいずれか1つに記載の樹脂フィルムの、前記層Aの表面に無電解金属めっき層が形成されている金属化樹脂フィルム。 [9] A metallized resin film in which an electroless metal plating layer is formed on the surface of the layer A of the resin film according to any one of [1] to [8].
 〔10〕前記無電解金属めっきが無電解銅めっきであることを特徴とする〔9〕に記載の金属化樹脂フィルム。 [10] The metallized resin film of [9], wherein the electroless metal plating is electroless copper plating.
 〔11〕前記金属化樹脂フィルムの前記無電解金属めっき層をエッチングにより除去し、露出した前記樹脂フィルムの表面粗度Raが200ナノメートル以下であることを特徴とする〔9〕または〔10〕に記載の金属化樹脂フィルム。 [11] [9] or [10], wherein the electroless metal plating layer of the metallized resin film is removed by etching, and the exposed resin film has a surface roughness Ra of 200 nanometers or less. The metallized resin film according to .
 〔12〕前記金属化樹脂フィルムにおいて、前記無電解金属めっき層を形成した後、150℃以上の加熱処理を行うことなく、5N/cm以上のピール強度を発現することを特徴とする〔9〕から〔11〕のいずれか1つに記載の金属化樹脂フィルム。 [12] The metallized resin film exhibits a peel strength of 5 N/cm or more without heat treatment at 150° C. or more after forming the electroless metal plating layer [9] The metallized resin film according to any one of [11].
 〔13〕〔1〕から〔8〕のいずれか1つに記載の樹脂フィルムまたは、〔9〕から〔12〕のいずれか1つに記載の金属化樹脂フィルムを用いたプリント配線板。 [13] A printed wiring board using the resin film according to any one of [1] to [8] or the metallized resin film according to any one of [9] to [12].
 〔14〕GHz帯の電気信号を伝送することが可能な〔13〕に記載のプリント配線板。 [14] The printed wiring board according to [13] capable of transmitting electrical signals in the GHz band.
 〔15〕ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムである層Bの少なくとも一方の面に形成されており、前記ポリイミド樹脂の線膨張係数が30ppm/℃以上、100ppm/℃以下であり、前記ポリイミド樹脂と前記フュームド金属酸化物とを含む前記層Aが、前記ポリイミド樹脂の前駆体のポリアミド酸溶液と前記フュームド金属酸化物とを混合し、得られたフュームド金属酸化物分散ポリアミド酸溶液をイミド化することにより得られることを特徴とする樹脂フィルムの製造方法。 [15] A layer A containing a polyimide resin and a fumed metal oxide is formed on at least one surface of a layer B, which is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less, and the linear expansion of the polyimide resin The layer A having an expansion coefficient of 30 ppm/° C. or more and 100 ppm/° C. or less and containing the polyimide resin and the fumed metal oxide comprises a polyamic acid solution of the precursor of the polyimide resin and the fumed metal oxide. A method for producing a resin film, characterized by being obtained by imidizing a fumed metal oxide-dispersed polyamic acid solution obtained by mixing.
 〔16〕前記フュームド金属酸化物分散ポリアミド酸溶液を前記耐熱性樹脂フィルムからなる前記層Bに塗布し、前記フュームド金属酸化物分散ポリアミド酸溶液を乾燥し、かつイミド化することを特徴とする〔15〕に記載の樹脂フィルムの製造方法。 [16] The fumed metal oxide-dispersed polyamic acid solution is applied to the layer B made of the heat-resistant resin film, and the fumed metal oxide-dispersed polyamic acid solution is dried and imidized [ 15].
 〔17〕前記フュームド金属酸化物分散ポリアミド酸溶液を前記耐熱性樹脂フィルムからなる前記層Bの前駆体溶液と共押出し、前記フュームド金属酸化物分散ポリアミド酸溶液および前記前駆体溶液を乾燥し、かつイミド化することを特徴とする〔15〕に記載の樹脂フィルムの製造方法。 [17] coextrusion of the fumed metal oxide-dispersed polyamic acid solution with a precursor solution of the layer B composed of the heat-resistant resin film, drying the fumed metal oxide-dispersed polyamic acid solution and the precursor solution, and The method for producing a resin film according to [15], wherein imidation is performed.
 以下、実施例及び比較例に基づき、本発明の一実施形態について更に具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, one embodiment of the present invention will be described more specifically based on examples and comparative examples. In addition, the present invention is not limited to the following examples.
 <層Aのポリイミド樹脂の単層フィルムの作製>
 合成例で得られたポリアミド酸溶液をアルミ箔に塗工し、当該ポリアミド酸溶液を120℃で360秒、200℃で60秒、350℃で200秒、および450℃で30秒、順次加熱し、イミド化を行った。次いでエッチング液を用いてアルミ箔の溶解および除去を行い、層Aのポリイミド樹脂の単層フィルムを得た。当該単層フィルムを用い、線膨張係数、貯蔵弾性率、ガラス転移温度および溶解性の評価を行った。
<Preparation of monolayer film of polyimide resin for layer A>
The polyamic acid solution obtained in Synthesis Example was applied to an aluminum foil, and the polyamic acid solution was heated at 120° C. for 360 seconds, 200° C. for 60 seconds, 350° C. for 200 seconds, and 450° C. for 30 seconds in sequence. , imidization was carried out. Then, the aluminum foil was dissolved and removed using an etchant to obtain a layer A polyimide resin single layer film. Linear expansion coefficient, storage modulus, glass transition temperature and solubility were evaluated using the monolayer film.
 <線膨張係数の測定>
 線膨張係数の測定は、セイコー電子(株)社製TMA120Cを用いて行った。サンプルサイズは、幅3mmおよび長さ10mmとした。サンプルに対して、荷重3gで、10℃/分で10℃から400℃までサンプルの温度を一旦昇温させた後、サンプルの温度を10℃まで冷却し、更に10℃/分でサンプルの温度を昇温させて、2回目の昇温時の100℃から200℃までにおける熱膨張率から平均値として計算した。
<Measurement of coefficient of linear expansion>
The coefficient of linear expansion was measured using TMA120C manufactured by Seiko Electronics Corporation. The sample size was 3 mm wide and 10 mm long. After raising the temperature of the sample from 10 ° C. to 400 ° C. at 10 ° C./min with a load of 3 g, the temperature of the sample was cooled to 10 ° C., and the temperature of the sample was further increased at 10 ° C./min. was heated, and the average value was calculated from the coefficient of thermal expansion from 100° C. to 200° C. during the second temperature rise.
 <層Aの貯蔵弾性率およびガラス転移温度の測定>
 前記<層Aのポリイミド樹脂の単層フィルムの作製>の項で得られた単層フィルムを試料(サンプル)として、セイコー電子(株)社製のDMS6100を用いて貯蔵弾性率およびガラス転移温度の測定を行った。サンプルサイズは、幅9mmおよび長さ50mmとした。周波数は1、5および10Hzで、昇温速度3℃/minで20℃から400℃までの温度範囲で測定し、300℃の貯蔵弾性率の値を読み取った。ガラス転移温度(以下、「Tg」という)は貯蔵弾性率の変曲点の値によりもとめた。
<Measurement of Storage Modulus and Glass Transition Temperature of Layer A>
Using the single-layer film obtained in the section <Preparation of polyimide resin single-layer film of layer A> as a sample (sample), storage elastic modulus and glass transition temperature were measured using DMS6100 manufactured by Seiko Electronics Co., Ltd. I made a measurement. The sample size was 9 mm wide and 50 mm long. The frequencies were 1, 5 and 10 Hz, and the temperature was measured at a heating rate of 3°C/min in the temperature range from 20°C to 400°C, and the value of the storage modulus at 300°C was read. The glass transition temperature (hereinafter referred to as "Tg") was determined from the inflection point of the storage modulus.
 <溶解性>
 前記<層Aのポリイミド樹脂の単層フィルムの作製>の項で得られた単層フィルムについて、以下の有機溶媒に対する溶解性を評価した。いずれか一つでも10重量%以上の濃度で溶解する有機溶媒があった場合、溶解性があり×(悪)とし、10重量%以上溶解しない場合は非溶解性であり○(良)とした。有機溶媒の温度は25℃とした。
有機溶媒種;メタノール、メチルエチルケトン、トルエン、テトラヒドロフラン、N,N-ジメチルホルムアミド
 <評価用両面銅張積層板の作製>
 実施例ならびに比較例で得られた樹脂フィルムに対し、表1~3の条件(アトテック社)で樹脂フィルムにデスミア処理、無電解銅めっきおよび電解銅めっきを順次行い、評価用両面積層板を得た。電解銅めっき厚みは12ミクロンとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<Solubility>
The solubility in the following organic solvents was evaluated for the monolayer film obtained in the section <Preparation of monolayer film of polyimide resin for layer A>. If there was an organic solvent that dissolved at a concentration of 10% by weight or more in any one of them, it was soluble and evaluated as × (bad), and if it did not dissolve at 10% by weight or more, it was insoluble and evaluated as ○ (good). . The temperature of the organic solvent was 25°C.
Organic solvent species: methanol, methyl ethyl ketone, toluene, tetrahydrofuran, N,N-dimethylformamide <Preparation of double-sided copper-clad laminate for evaluation>
The resin films obtained in Examples and Comparative Examples were subjected to desmear treatment, electroless copper plating and electrolytic copper plating in sequence under the conditions shown in Tables 1 to 3 (Atotech) to obtain double-sided laminates for evaluation. rice field. The electrolytic copper plating thickness was 12 microns.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 <ピール強度>
 本発明の一実施形態では、金属化樹脂フィルムにおける樹脂フィルムと無電解金属めっき層との密着に関し、
 (a)無電解金属めっき層の形成処理のみを行って得られる金属化樹脂フィルムにおいて、十分な密着性が発現すること、
 (b)金属化樹脂フィルムを高温で加熱処理することなく良好な密着性が発現すること、
 (c)金属化樹脂フィルムの裏面の回路パターンの有無によらず良好な密着性を得ること、および
 (d)プリント配線板としての耐熱性を有すること、換言すれば金属化樹脂フィルムを高温で放置後にも良好な密着性を有すること、
を実現することができる。これにより、回路形成工程で回路が樹脂フィルム基材から剥離することによる、プリント配線板としての信頼性低下等の問題を回避することができる。以上を鑑み、密着性の評価のため、以下の手順でピール強度の測定を行った。
Figure JPOXMLDOC01-appb-T000003
<Peel strength>
In one embodiment of the present invention, regarding the adhesion between the resin film and the electroless metal plating layer in the metallized resin film,
(a) the metallized resin film obtained only by forming the electroless metal plating layer exhibits sufficient adhesion;
(b) good adhesion is exhibited without heat-treating the metallized resin film at a high temperature;
(c) obtaining good adhesion regardless of the presence or absence of a circuit pattern on the back surface of the metallized resin film; and (d) having heat resistance as a printed wiring board. Having good adhesion even after standing,
can be realized. This makes it possible to avoid problems such as a decrease in reliability as a printed wiring board due to the circuit peeling off from the resin film substrate in the circuit forming process. In view of the above, the peel strength was measured according to the following procedure for evaluation of adhesion.
 (ピール強度測定用サンプル作製)
 実施例ならびに比較例で得られた樹脂フィルムから作製した金属化樹脂フィルム(両面銅張積層板)から、裏面に銅のないピール強度測定用サンプル、および裏面に銅のあるピール強度測定用サンプルを作製した。それぞれのピール強度測定用サンプルにつき初期ピール強度、高温加熱処理後ピール強度および耐熱ピール強度を測定した。
(Preparation of sample for peel strength measurement)
A sample for peel strength measurement without copper on the back surface and a sample for peel strength measurement with copper on the back surface were prepared from the metallized resin films (double-sided copper-clad laminates) produced from the resin films obtained in Examples and Comparative Examples. made. Initial peel strength, peel strength after high-temperature heat treatment, and heat-resistant peel strength were measured for each sample for peel strength measurement.
 (形態1-裏面銅なし)
 両面銅張積層板の片方の面の銅層をエッチングにより全面除去し、残る片面の銅層に対しマスキングテープを用いたエッチング法で5mm幅の銅パターンを作製した。次に示す手順で初期ピール強度、高温加熱処理後ピール強度および耐熱ピール強度を測定した。
(Form 1-No backside copper)
The copper layer on one side of the double-sided copper-clad laminate was entirely removed by etching, and the copper layer on the remaining side was etched with a masking tape to form a copper pattern of 5 mm width. The initial peel strength, the peel strength after high-temperature heat treatment, and the heat-resistant peel strength were measured according to the following procedure.
 「初期ピール強度-裏面銅なし」;パターンエッチング後、両面銅張積層板の水滴を拭き取り、マスキングテープを除去した後、直ちにピール強度を測定した。乾燥も高温の加熱もしない状態、つまり無電解めっき層の形成処理のみを行った直後の両面銅張積層板の密着性を評価した。 "Initial peel strength - no copper on the back side"; After pattern etching, water droplets on the double-sided copper-clad laminate were wiped off, the masking tape was removed, and the peel strength was immediately measured. The adhesiveness of the double-sided copper-clad laminate was evaluated in a state where neither drying nor high-temperature heating was performed, that is, immediately after only the formation of the electroless plating layer was performed.
 「高温加熱処理後ピール強度-裏面銅なし」;パターンエッチング後、両面銅張積層板の水滴を拭き取り、マスキングテープを除去し、50℃×10分の乾燥を行った。次いで、両面銅張積層板を180℃×15分の耐熱性試験環境に投入した後、ピール強度を測定した。密着性に対する高温処理の効果確認の為に実施した。 "Peel strength after high-temperature heat treatment - no copper on the back side"; After pattern etching, water droplets on the double-sided copper-clad laminate were wiped off, the masking tape was removed, and drying was performed at 50°C for 10 minutes. Next, the double-sided copper-clad laminate was placed in a heat resistance test environment of 180° C. for 15 minutes, and then the peel strength was measured. This was done to confirm the effect of high temperature treatment on adhesion.
 「耐熱ピール強度-裏面銅なし」;パターンエッチング後、両面銅張積層板の水滴を拭き取り、マスキングテープを除去し、50℃×10分の乾燥を行った。次いで、両面銅張積層板を150℃×168時間の耐熱性試験環境に投入した後、ピール強度を測定した。耐熱性の評価の為に実施した。 "Heat-resistant peel strength - no copper on the back side"; After pattern etching, water droplets on the double-sided copper-clad laminate were wiped off, the masking tape was removed, and drying was performed at 50°C for 10 minutes. Then, the double-sided copper-clad laminate was subjected to a heat resistance test environment of 150° C. for 168 hours, and then the peel strength was measured. It was carried out for evaluation of heat resistance.
 (形態2-裏銅あり)
 両面銅張積層板の片方の面の銅層に対しマスキングテープを用いたエッチング法で5mm幅の銅パターンを作製し、その裏面には全面に銅層がある状態の評価用パターンを作製した。次に示す手順で初期ピール強度、高温加熱処理後ピール強度および耐熱ピール強度を測定した。
(Form 2 - with back copper)
A copper pattern with a width of 5 mm was formed on the copper layer on one side of the double-sided copper-clad laminate by etching using a masking tape, and a pattern for evaluation with a copper layer on the entire back surface was formed. The initial peel strength, the peel strength after high-temperature heat treatment, and the heat-resistant peel strength were measured according to the following procedure.
 「初期ピール強度-裏面銅あり」;パターンエッチング後、両面銅張積層板の水滴を拭き取り、マスキングテープを除去した後、直ちにピール強度を測定した。乾燥も高温の加熱もしない状態、つまり無電解めっき層の形成処理のみを行った直後の両面銅張積層板の密着性の評価として実施した。 "Initial peel strength - with copper on the back side"; After pattern etching, water droplets on the double-sided copper-clad laminate were wiped off, the masking tape was removed, and the peel strength was immediately measured. The adhesion of the double-sided copper-clad laminate was evaluated in a state where neither drying nor high-temperature heating was performed, that is, immediately after only the formation of the electroless plating layer was performed.
 「高温加熱処理後ピール強度-裏面銅あり」;パターンエッチング後、両面銅張積層板の水滴を拭き取り、マスキングテープを除去し、50℃×10分の乾燥を行った。次いで、両面銅張積層板を180℃×15分の耐熱性試験環境に投入した後、ピール強度を測定した。密着性に対する高温処理の効果確認の為に実施した。 "Peel strength after high-temperature heat treatment-with copper on the back side"; After pattern etching, water droplets on the double-sided copper-clad laminate were wiped off, the masking tape was removed, and drying was performed at 50°C for 10 minutes. Next, the double-sided copper-clad laminate was placed in a heat resistance test environment of 180° C. for 15 minutes, and then the peel strength was measured. This was done to confirm the effect of high temperature treatment on adhesion.
 「耐熱ピール強度-裏面銅あり」;パターンエッチング後、両面銅張積層板の水滴を拭き取り、マスキングテープを除去し、50℃×10分の乾燥を行った。次いで、両面銅張積層板を150℃×168時間の耐熱性試験環境に投入した後、ピール強度を測定した。耐熱性の評価の為に実施した。 "Heat-resistant peel strength-with copper on the back side"; After pattern etching, water droplets on the double-sided copper-clad laminate were wiped off, the masking tape was removed, and drying was performed at 50°C for 10 minutes. Then, the double-sided copper-clad laminate was subjected to a heat resistance test environment of 150° C. for 168 hours, and then the peel strength was measured. It was carried out for evaluation of heat resistance.
 (ピール強度測定)
 一つの両面銅張積層板に対し、前記6種類のピール強度測定を行った。ピール強度はクロスヘッドスピード50mm/分および剥離角度180°で剥離し、その荷重を測定した。
(Peel strength measurement)
The six types of peel strength measurements were performed on one double-sided copper-clad laminate. The peel strength was measured by peeling at a crosshead speed of 50 mm/min and a peeling angle of 180°, and measuring the load.
 <吸湿半田耐熱性>
 実施例ならびに比較例で得られた評価用両面銅張積層板について、3.5cm角に切り出した。次いで、3.5cm角の評価用両面銅張積層板について、片面(便宜的にA面とする)は2.5cm角の銅箔層がサンプル中央に残るように、反対面(便宜的にB面とする)は銅箔層が全面に残るように、エッチング処理で余分な銅箔層を除去してサンプルを15個作製した。得られたサンプルを40℃、90%R.H.の加湿条件下で、96時間放置し、吸湿処理を行った。吸湿処理後、サンプルを5つずつ、260℃又は280℃又は300℃の半田浴に10秒間浸漬させた。つまり、一つの温度条件でサンプル5つを用いた。半田浸漬後のサンプルについて、B面の銅箔層をエッチングにより完全に除去し、銅箔が重なっていた部分の外観を観察した。外観に白化、膨れ、銅箔層の剥離のいずれかが確認された場合は外観に変化があると判定した。300℃の条件で5つのサンプル全てにおいて外観に変化が無い場合は○(良)、5つのサンプルのうちいずれか1つ以上において300℃の条件で外観に変化があるが、260℃では外観に変化が無い場合は△(合格)、5つのサンプルのうちいずれか1つ以上において260℃で外観に変化がある場合は×(悪)と評価した。
<Hygroscopic solder heat resistance>
The double-sided copper-clad laminates for evaluation obtained in Examples and Comparative Examples were cut into 3.5 cm squares. Next, for a 3.5 cm square double-sided copper-clad laminate for evaluation, one side (A side for convenience) is arranged so that a 2.5 cm square copper foil layer remains in the center of the sample. 15 samples were prepared by removing the excess copper foil layer by etching so that the copper foil layer remained on the entire surface. The obtained sample was heated at 40° C. and 90% R.I. H. It was allowed to stand for 96 hours under humidified conditions of , and was subjected to moisture absorption treatment. After the moisture absorption treatment, five samples were immersed in a solder bath at 260°C, 280°C or 300°C for 10 seconds. That is, five samples were used under one temperature condition. After the sample was immersed in solder, the copper foil layer on the B side was completely removed by etching, and the appearance of the portion where the copper foil had overlapped was observed. When any one of whitening, blistering, and peeling of the copper foil layer was observed in the appearance, it was determined that there was a change in the appearance. ○ (good) when there is no change in appearance in all five samples at 300 ° C, and at least one of the five samples has a change in appearance at 300 ° C, but no change in appearance at 260 ° C. When there was no change, it was evaluated as Δ (acceptable), and when at least one of the five samples had a change in appearance at 260° C., it was evaluated as x (bad).
 <表面粗度Ra>
 実施例ならびに比較例で得られた評価用両面銅張積層板の銅層をエッチングにより、溶解除去した。露出した樹脂フィルムの表面粗度(Ra)を走査型プローブ顕微鏡(SPM、Bruker AXS製 Dimmension Icon)を用いて、JIS C 0601-2001に準拠して測定した。
<Surface roughness Ra>
The copper layers of the double-sided copper-clad laminates for evaluation obtained in Examples and Comparative Examples were dissolved and removed by etching. The surface roughness (Ra) of the exposed resin film was measured according to JIS C 0601-2001 using a scanning probe microscope (SPM, Dimension Icon manufactured by Bruker AXS).
 (合成例1;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を322.3gおよび1,3-ビス(4-アミノフェノキシ)ベンゼン(以下、TPE-Rと称することもある)を33.9g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内に3,3‘、4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAと称することもある)33.6gを添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.51gのBPDAを9.7gのDMFに溶解させた溶液(以下、BPDA溶液(1)と称することもある)を別途調製した。BPDA溶液(1)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPDA溶液(1)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 1; Synthesis of Polyimide Precursor for Layer A)
322.3 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 1,3-bis(4-aminophenoxy)benzene (hereinafter sometimes referred to as TPE-R) were placed in a glass flask having a capacity of 2000 ml. Added 33.9 g. Next, while stirring the solution in the flask under a nitrogen atmosphere, 33.6 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride (hereinafter sometimes referred to as BPDA) was added to the flask. was added and the solution in the flask was stirred at 25° C. for 1 hour. A solution of 0.51 g of BPDA dissolved in 9.7 g of DMF (hereinafter sometimes referred to as BPDA solution (1)) was separately prepared. The BPDA solution (1) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (1) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例2;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFと称することもある)を321.4g、4,4‘-オキシジアニリン(以下、ODAと称することもある)を12.5gおよびTPE-Rを18.3g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にBPDAを36.4g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.55gのBPDAを10.5gのDMFに溶解させた溶液を別途調製し(以下、BPDA溶液(2)と称することもある)た。BPDA溶液(2)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPDA溶液(2)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 2; Synthesis of Polyimide Precursor for Layer A)
321.4 g of N,N-dimethylformamide (hereinafter sometimes referred to as DMF) and 12.5 g of 4,4′-oxydianiline (hereinafter sometimes referred to as ODA) were placed in a glass flask with a capacity of 2000 ml. and 18.3 g of TPE-R were added. Then, while stirring the solution in the flask under a nitrogen atmosphere, 36.4 g of BPDA was added to the flask, and the solution in the flask was stirred at 25°C for 1 hour. A solution was separately prepared by dissolving 0.55 g of BPDA in 10.5 g of DMF (hereinafter sometimes referred to as BPDA solution (2)). The BPDA solution (2) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (2) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例3;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を321.8g、TPE-Rを24.7gおよび2,2’-ジメチルベンジジン(以下、m-TBと称することもある)を7.6g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にBPDAを35.0g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.53gのBPDAを10.1gのDMFに溶解させた溶液を別途調製し(以下、BPDA溶液(3)と称することもある)た。BPDA溶液(3)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPDA溶液(3)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 3; Synthesis of Polyimide Precursor for Layer A)
321.8 g of N,N-dimethylformamide (hereinafter also referred to as DMF), 24.7 g of TPE-R and 2,2′-dimethylbenzidine (hereinafter also referred to as m-TB) were placed in a glass flask having a capacity of 2000 ml. There is) was added 7.6g. Then, while stirring the solution in the flask under a nitrogen atmosphere, 35.0 g of BPDA was added to the flask, and the solution in the flask was stirred at 25° C. for 1 hour. A solution was separately prepared by dissolving 0.53 g of BPDA in 10.1 g of DMF (hereinafter sometimes referred to as BPDA solution (3)). The BPDA solution (3) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (3) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例4;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を321.9gおよびTPE-Rを35.0g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にピロメリット酸二無水物(以下、PMDAと称することもある)を6.5gおよびBPDAを25.9g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.52gのBPDAを10.0gのDMFに溶解させた溶液を別途調製し(以下、BPDA溶液(4)と称することもある)た。BPDA溶液(4)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPDA溶液(4)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 4; Synthesis of Polyimide Precursor for Layer A)
321.9 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 35.0 g of TPE-R were added to a glass flask having a capacity of 2000 ml. Next, while stirring the solution in the flask under a nitrogen atmosphere, 6.5 g of pyromellitic dianhydride (hereinafter sometimes referred to as PMDA) and 25.9 g of BPDA were added to the flask, and was stirred at 25° C. for 1 hour. A solution was separately prepared by dissolving 0.52 g of BPDA in 10.0 g of DMF (hereinafter sometimes referred to as BPDA solution (4)). The BPDA solution (4) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (4) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例5;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を321.6gおよびTPE-Rを36.2g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にPMDAを13.5gおよびBPDAを17.6g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.54gのBPDAを10.3gのDMFに溶解させた溶液を別途調製し(以下、BPDA溶液(5)と称することもある)た。BPDA溶液(5)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPDA溶液(5)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 5; Synthesis of Polyimide Precursor for Layer A)
321.6 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 36.2 g of TPE-R were added to a 2000 ml glass flask. Next, 13.5 g of PMDA and 17.6 g of BPDA were added to the flask while stirring the solution in the flask under a nitrogen atmosphere, and the solution in the flask was stirred at 25° C. for 1 hour. A solution was prepared separately by dissolving 0.54 g of BPDA in 10.3 g of DMF (hereinafter sometimes referred to as BPDA solution (5)). The BPDA solution (5) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (5) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例6;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を320.4gおよびODAを27.5g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にBPDAを39.8g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.60gのBPDAを11.5gのDMFに溶解させた溶液を別途調製し(以下、BPDA溶液(6)と称することもある)た。BPDA溶液(6)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPDA溶液(6)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 6; Synthesis of Polyimide Precursor for Layer A)
320.4 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 27.5 g of ODA were added to a glass flask having a capacity of 2000 ml. Next, while stirring the solution in the flask under a nitrogen atmosphere, 39.8 g of BPDA was added to the flask, and the solution in the flask was stirred at 25° C. for 1 hour. A solution was prepared separately by dissolving 0.60 g of BPDA in 11.5 g of DMF (hereinafter sometimes referred to as BPDA solution (6)). The BPDA solution (6) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (6) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例7;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を321.6g、2,2’-ビス{4-(4-アミノフェノキシ)フェニル}プロパン(以下、BAPPと称することもある)を25.2gおよび1,4-ジアミノベンゼン(以下、p-PDAと称することもある)を6.6g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にBPDAを35.6g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.54gのBPDAを10.3gのDMFに溶解させた溶液を別途調製し(以下、BPDA溶液(7)と称することもある)た。BPDA溶液(7)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPDA溶液(7)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 7; Synthesis of Polyimide Precursor for Layer A)
321.6 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 2,2′-bis{4-(4-aminophenoxy)phenyl}propane (hereinafter referred to as BAPP) were placed in a glass flask having a capacity of 2000 ml. 25.2 g of 1,4-diaminobenzene (hereinafter also referred to as p-PDA) was added to 6.6 g. Then, while stirring the solution in the flask under a nitrogen atmosphere, 35.6 g of BPDA was added to the flask, and the solution in the flask was stirred at 25° C. for 1 hour. A solution was separately prepared by dissolving 0.54 g of BPDA in 10.3 g of DMF (hereinafter sometimes referred to as BPDA solution (7)). The BPDA solution (7) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (7) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例8;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を319.0g、ODAを14.6gおよびp-PDAを7.9g、加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内に4,4’-オキシジフタル酸二無水物(以下、ODPAと称することもある)を44.7g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.68gのODPAを12.9gのDMFに溶解させた溶液を別途調製し(以下、ODPA溶液(1)と称することもある)た。ODPA溶液(1)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでODPA溶液(1)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 8; Synthesis of Polyimide Precursor for Layer A)
319.0 g of N,N-dimethylformamide (hereinafter also referred to as DMF), 14.6 g of ODA and 7.9 g of p-PDA were added to a 2000 ml glass flask. Next, while stirring the solution in the flask under a nitrogen atmosphere, 44.7 g of 4,4'-oxydiphthalic dianhydride (hereinafter sometimes referred to as ODPA) was added to the flask, and the solution in the flask was was stirred at 25° C. for 1 hour. A solution was prepared separately by dissolving 0.68 g of ODPA in 12.9 g of DMF (hereinafter sometimes referred to as ODPA solution (1)). The ODPA solution (1) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the ODPA solution (1) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例9;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を321.1gおよびTPE-Rを35.7g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にPMDAを13.3gおよびODPAを18.3g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.56gのODPAを10.8gのDMFに溶解させた溶液を別途調製し(以下、ODPA溶液(2)と称することもある)た。ODPA溶液(2)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでODPA溶液(2)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 9; Synthesis of Polyimide Precursor for Layer A)
321.1 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 35.7 g of TPE-R were added to a 2000 ml glass flask. Next, 13.3 g of PMDA and 18.3 g of ODPA were added to the flask while stirring the solution in the flask under a nitrogen atmosphere, and the solution in the flask was stirred at 25° C. for 1 hour. A solution was prepared separately by dissolving 0.56 g of ODPA in 10.8 g of DMF (hereinafter sometimes referred to as ODPA solution (2)). The ODPA solution (2) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the ODPA solution (2) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例10;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を321.7g、ODAを12.2gおよび4,4’-ビス(4-アミノフェノキシ)ビフェニル(以下、4-APBPと称することもある)を22.5g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にPMDAを8.0gおよびBPDAを24.6g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.54gのBPDAを10.2gのDMFに溶解させた溶液を別途調製し(以下、BPDA溶液(8)と称することもある)た。BPDA溶液(8)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPDA溶液(8)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 10; Synthesis of Polyimide Precursor for Layer A)
321.7 g of N,N-dimethylformamide (hereinafter also referred to as DMF), 12.2 g of ODA, and 4,4′-bis(4-aminophenoxy)biphenyl (hereinafter, 4-APBP) were placed in a glass flask having a capacity of 2000 ml. ) was added in 22.5 g. Next, 8.0 g of PMDA and 24.6 g of BPDA were added to the flask while stirring the solution in the flask under a nitrogen atmosphere, and the solution in the flask was stirred at 25° C. for 1 hour. A solution was prepared separately by dissolving 0.54 g of BPDA in 10.2 g of DMF (hereinafter sometimes referred to as BPDA solution (8)). The BPDA solution (8) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (8) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例11;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を323.9gおよびBAPPを39.6g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にBPDAを39.6g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.42gのBPDAを8.0gのDMFに溶解させた溶液を別途調製し(以下、BPDA溶液(9)と称することもある)た。BPDA溶液(9)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPDA溶液(9)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 11; Synthesis of Polyimide Precursor for Layer A)
323.9 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 39.6 g of BAPP were added to a glass flask having a capacity of 2000 ml. Then, while stirring the solution in the flask under a nitrogen atmosphere, 39.6 g of BPDA was added to the flask, and the solution in the flask was stirred at 25° C. for 1 hour. A solution was prepared separately by dissolving 0.42 g of BPDA in 8.0 g of DMF (hereinafter sometimes referred to as BPDA solution (9)). The BPDA solution (9) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BPDA solution (9) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例12;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を320.0gおよびODAを26.0g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内に3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAと称することもある)を41.3g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.62gのBTDAを11.9gのDMFに溶解させた溶液を別途調製し(以下、BTDA溶液(1)と称することもある)た。BTDA溶液(1)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBTDA溶液(1)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 12; Synthesis of Polyimide Precursor for Layer A)
320.0 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 26.0 g of ODA were added to a glass flask having a capacity of 2000 ml. Next, while stirring the solution in the flask under a nitrogen atmosphere, 41.3 g of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (hereinafter sometimes referred to as BTDA) was added to the flask. was added and the solution in the flask was stirred at 25° C. for 1 hour. A solution was prepared separately by dissolving 0.62 g of BTDA in 11.9 g of DMF (hereinafter sometimes referred to as BTDA solution (1)). The BTDA solution (1) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BTDA solution (1) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例13;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を318.8g、ODAを14.2gおよびp-PDAを7.7g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にBTDAを45.3g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.68gのBTDAを13.1gのDMFに溶解させた溶液を別途調製し(以下、BTDA溶液(2)と称することもある)た。BTDA溶液(2)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBTDA溶液(2)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 13; Synthesis of Polyimide Precursor for Layer A)
318.8 g of N,N-dimethylformamide (hereinafter also referred to as DMF), 14.2 g of ODA and 7.7 g of p-PDA were added to a 2000 ml glass flask. Then, while stirring the solution in the flask under a nitrogen atmosphere, 45.3 g of BTDA was added to the flask, and the solution in the flask was stirred at 25°C for 1 hour. A solution was prepared separately by dissolving 0.68 g of BTDA in 13.1 g of DMF (hereinafter sometimes referred to as BTDA solution (2)). The BTDA solution (2) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the BTDA solution (2) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例14;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を11.7gおよびODAを26.6g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にODPAを40.7g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.61gのODPAを11.7gのDMFに溶解させた溶液を別途調製し(以下、ODPA溶液(3)と称することもある)た。ODPA溶液(3)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでODPA溶液(3)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 14; Synthesis of Polyimide Precursor for Layer A)
11.7 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 26.6 g of ODA were added to a glass flask having a volume of 2000 ml. Then, while stirring the solution in the flask under a nitrogen atmosphere, 40.7 g of ODPA was added to the flask, and the solution in the flask was stirred at 25°C for 1 hour. A solution was prepared separately by dissolving 0.61 g of ODPA in 11.7 g of DMF (hereinafter sometimes referred to as ODPA solution (3)). The ODPA solution (3) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the ODPA solution (3) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例15;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を322.0gおよびTPE-Rを32.9g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にODPAを34.4g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.52gのODPAを9.9gのDMFに溶解させた溶液を別途調製し(以下、ODPA溶液(4)と称することもある)た。ODPA溶液(4)を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでODPA溶液(4)の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 15; Synthesis of Polyimide Precursor for Layer A)
322.0 g of N,N-dimethylformamide (hereinafter also referred to as DMF) and 32.9 g of TPE-R were added to a 2000 ml glass flask. Then, while stirring the solution in the flask under a nitrogen atmosphere, 34.4 g of ODPA was added to the flask, and the solution in the flask was stirred at 25°C for 1 hour. A solution was separately prepared by dissolving 0.52 g of ODPA in 9.9 g of DMF (hereinafter sometimes referred to as ODPA solution (4)). The ODPA solution (4) was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the ODPA solution (4) and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例16;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を321.3g、ODAを25.8gおよびp-PDAを4.6g、加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内にPMDAを36.9g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.56gのPMDAを10.6gのDMFに溶解させた溶液を別途調製し(以下、PMDA溶液と称することもある)た。PMDA溶液を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでPMDA溶液の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。
(Synthesis Example 16; Synthesis of Polyimide Precursor for Layer A)
321.3 g of N,N-dimethylformamide (hereinafter also referred to as DMF), 25.8 g of ODA and 4.6 g of p-PDA were added to a 2000 ml glass flask. Then, while stirring the solution in the flask under a nitrogen atmosphere, 36.9 g of PMDA was added to the flask, and the solution in the flask was stirred at 25°C for 1 hour. A solution was prepared separately by dissolving 0.56 g of PMDA in 10.6 g of DMF (hereinafter also referred to as PMDA solution). The PMDA solution was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. When the viscosity of the reaction solution reached 1000 poise, addition of the PMDA solution and stirring of the reaction solution were stopped. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained.
 (合成例17;層Aのポリイミド前駆体の合成)
 容量2000mlのガラス製フラスコにN,N-ジメチルホルムアミド(以下、DMFともいう)を320.9g、ODAを10.4gおよび信越化学工業株式会社製KF-8010を18.7g加えた。次いで、フラスコ内の溶液を、窒素雰囲気下で撹拌しながら、フラスコ内に4,4’-(4,4’-イソプロピリデンジフェノキシ)ビス(無水フタル酸)(以下、BPADAと称することもある)を38.1g添加し、フラスコ内の溶液を25℃で1時間撹拌した。0.58gのBPADAを11.0gのDMFに溶解させた溶液を別途調製し(以下、BPADA溶液と称することもある)た。BPADA溶液を前記反応溶液に、粘度に注意しながら徐々に添加し、フラスコ内の反応溶液の撹拌を行った。反応溶液の粘度が1000poiseに達したところでBPADA溶液の添加および反応溶液の撹拌をやめた。かかる操作により、ポリイミド前駆体であるポリアミド酸溶液を得た。信越化学工業株式会社製KF-8010の化学構造式を一般式(1)に示す。
(Synthesis Example 17; Synthesis of Polyimide Precursor for Layer A)
320.9 g of N,N-dimethylformamide (hereinafter also referred to as DMF), 10.4 g of ODA and 18.7 g of KF-8010 manufactured by Shin-Etsu Chemical Co., Ltd. were added to a 2000 ml glass flask. Next, while stirring the solution in the flask under a nitrogen atmosphere, 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride) (hereinafter sometimes referred to as BPADA) is added to the flask. ) was added, and the solution in the flask was stirred at 25° C. for 1 hour. A solution was separately prepared by dissolving 0.58 g of BPADA in 11.0 g of DMF (hereinafter sometimes referred to as BPADA solution). The BPADA solution was gradually added to the reaction solution while paying attention to the viscosity, and the reaction solution in the flask was stirred. Addition of the BPADA solution and stirring of the reaction solution were stopped when the viscosity of the reaction solution reached 1000 poise. Through such operations, a polyamic acid solution, which is a polyimide precursor, was obtained. The chemical structural formula of KF-8010 manufactured by Shin-Etsu Chemical Co., Ltd. is shown in general formula (1).
Figure JPOXMLDOC01-appb-C000004
 (調合例1;層A用のフュームド金属酸化物の分散液)
 日本アエロジル株式会社製アエロジルR9200を20gとDMF80gとを混合した。得られた混合物を、回転刃式ホモジナイザー(回転刃直径は20mm)にて回転数10,000rpmで5分間攪拌を行いフュームド金属酸化物の分散液を得た。
Figure JPOXMLDOC01-appb-C000004
(Formulation Example 1; Fumed Metal Oxide Dispersion for Layer A)
20 g of Aerosil R9200 manufactured by Nippon Aerosil Co., Ltd. and 80 g of DMF were mixed. The resulting mixture was stirred with a rotary blade homogenizer (rotary blade diameter: 20 mm) at 10,000 rpm for 5 minutes to obtain a fumed metal oxide dispersion.
 (調合例2;層A用のフュームド金属酸化物の分散液)
 調合例1の日本アエロジル株式会社製アエロジルR9200を日本アエロジル株式会社製アエロジルR972に変えた以外は調合例1と同様の操作を行い、フュームド金属酸化物の分散液を得た。
(Preparation Example 2; Dispersion of fumed metal oxide for layer A)
A fumed metal oxide dispersion was obtained in the same manner as in Preparation Example 1, except that Aerosil R9200 manufactured by Nippon Aerosil Co., Ltd. was changed to Aerosil R972 manufactured by Nippon Aerosil Co., Ltd.
 (調合例3;層A用のフュームド金属酸化物の分散液)
 調合例1の日本アエロジル株式会社製アエロジルR9200を日本アエロジル株式会社製アエロジルNX130に変えた以外は調合例1と同様の操作を行い、フュームド金属酸化物の分散液を得た。
(Preparation Example 3; Dispersion of fumed metal oxide for layer A)
A fumed metal oxide dispersion was obtained in the same manner as in Preparation Example 1 except that Aerosil R9200 manufactured by Nippon Aerosil Co., Ltd. in Preparation Example 1 was changed to Aerosil NX130 manufactured by Nippon Aerosil Co., Ltd.
 (調合例4;層A用のフュームド金属酸化物の分散液)
 調合例1の日本アエロジル株式会社製アエロジルR9200を日本アエロジル株式会社製アエロジルVP RS920に変えた以外は調合例1と同様の操作を行い、フュームド金属酸化物の分散液を得た。
(Formulation Example 4: Fumed metal oxide dispersion for layer A)
A fumed metal oxide dispersion was obtained in the same manner as in Preparation Example 1, except that Aerosil R9200 manufactured by Nippon Aerosil Co., Ltd. was changed to Aerosil VP RS920 manufactured by Nippon Aerosil Co., Ltd.
 調合例1~4で得られたフュームド金属酸化物の分散液中の、フュームド金属酸化物の濃度は、20重量/重量%であった。 The concentration of the fumed metal oxide in the fumed metal oxide dispersions obtained in Preparation Examples 1 to 4 was 20% by weight/weight.
 (調合例5;層A用のフュームド金属酸化物の分散液)
 株式会社アドマテックス製アドマナノ-粒子径10nmの分散液(溶媒DMF、濃度30重量/重量%)を60gにDMF30gを混合し、分散液を得た。
(Preparation Example 5; Fumed Metal Oxide Dispersion for Layer A)
30 g of DMF was mixed with 60 g of Admanano-a dispersion having a particle diameter of 10 nm (solvent DMF, concentration 30% by weight/weight) manufactured by Admatechs Co., Ltd. to obtain a dispersion.
 (調合例6;層A用のフュームド金属酸化物の分散液)
 株式会社アドマテックス製アドマナノ-粒子径50nmの分散液(溶媒DMF、濃度20重量/重量%)をそのまま分散液とした。
(Formulation Example 6: Fumed metal oxide dispersion for Layer A)
Admanano manufactured by Admatechs Co., Ltd.—dispersion liquid having a particle diameter of 50 nm (solvent DMF, concentration 20% by weight/weight) was used as the dispersion liquid.
 (実施例1)
 合成例1で得られたポリアミド酸溶液40gと調合例1の分散液17gとを混合し、得られた混合物に更にDMF40gおよびルチジン2gを混合し、層A分散液を得た。当該層A分散液を非熱可塑性ポリイミドフィルム(アピカルFP、厚み17ミクロン、株式会社カネカ製)の片面に最終の片面の層Aの厚みが4ミクロンとなるように塗布し、120℃×2分の条件で層A分散液の乾燥を行い、次いで残る面にも同様の手順で前記層A分散液を塗布および乾燥した。続いて、層A分散液が塗布された非熱可塑性ポリイミドフィルムを450℃で12秒間加熱して層Aのポリアミド酸をイミド化させ、層A(ポリイミド樹脂とフュームド金属酸化物とを含む)/非熱可塑性ポリイミドフィルム/層Aがこの順で積層してなる構成の樹脂フィルムを得た。尚、非熱可塑性ポリイミドフィルム(アピカルFP)は層Bに相当する。すなわち、実施例1において、層Bはポリイミド樹脂からなり、具体的に非熱可塑性ポリイミドフィルムのみから構成されている。また、当該アピカルFPの線膨張係数は12ppm/℃であった。
(Example 1)
40 g of the polyamic acid solution obtained in Synthesis Example 1 and 17 g of the dispersion of Preparation Example 1 were mixed, and the resulting mixture was further mixed with 40 g of DMF and 2 g of lutidine to obtain a Layer A dispersion. The Layer A dispersion was applied to one side of a non-thermoplastic polyimide film (Apical FP, thickness 17 microns, manufactured by Kaneka Corporation) so that the final thickness of Layer A on one side was 4 microns, and heated at 120°C for 2 minutes. Then, the layer A dispersion was applied and dried on the remaining surface in the same manner. Subsequently, the non-thermoplastic polyimide film coated with the Layer A dispersion is heated at 450° C. for 12 seconds to imidize the polyamic acid of Layer A, Layer A (comprising polyimide resin and fumed metal oxide)/ A resin film having a structure in which the non-thermoplastic polyimide film/layer A was laminated in this order was obtained. A non-thermoplastic polyimide film (Apical FP) corresponds to layer B. That is, in Example 1, the layer B is made of a polyimide resin, specifically made of only a non-thermoplastic polyimide film. Also, the coefficient of linear expansion of the apical FP was 12 ppm/°C.
 前記樹脂フィルムに表1に示す条件でデスミア処理、無電解銅めっき、電解銅めっきを行い、両面銅張積層板を得、ピール強度、吸湿半田耐熱性、表面粗度Raの評価を行った。組成および結果を表4~表7に示す。 The resin film was subjected to desmear treatment, electroless copper plating, and electrolytic copper plating under the conditions shown in Table 1 to obtain a double-sided copper-clad laminate, and the peel strength, moisture absorption solder heat resistance, and surface roughness Ra were evaluated. The compositions and results are shown in Tables 4-7.
 (実施例2)
 実施例1で用いた調合例1の分散液を調合例2の分散液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 2)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the dispersion of Preparation Example 1 used in Example 1 was changed to the dispersion of Preparation Example 2, and the same evaluation was performed. rice field. The compositions and results are shown in Tables 4-7.
 (実施例3)
 実施例1で用いた調合例1の分散液を調合例3の分散液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 3)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the dispersion of Preparation Example 1 used in Example 1 was changed to the dispersion of Preparation Example 3, and the same evaluation was performed. rice field. The compositions and results are shown in Tables 4-7.
 (実施例4)
 実施例1で用いた調合例1の分散液を調合例4の分散液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 4)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the dispersion of Preparation Example 1 used in Example 1 was changed to the dispersion of Preparation Example 4, and the same evaluation was performed. rice field. The compositions and results are shown in Tables 4-7.
 (比較例1)
 合成例1で得られたポリアミド酸溶液40gとDMF40gおよびルチジン2gとを混合し、混合液を得た。実施例1で用いた層A分散液を前記混合液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。初期ピール強度は裏銅なし、裏銅ありの両者において十分な値を示さなかった。また、高温加熱処理後ピール強度は裏銅なしの場合は良好な密着性を示したが裏銅ありの場合は十分な値を示さず、裏銅の有無により密着性結果が異なった。組成および結果を表4~表7に示す。
(Comparative example 1)
A mixed solution was obtained by mixing 40 g of the polyamic acid solution obtained in Synthesis Example 1 with 40 g of DMF and 2 g of lutidine. A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1, except that the layer A dispersion used in Example 1 was changed to the above mixture, and evaluated in the same manner. The initial peel strength did not show a sufficient value both with and without the backing copper. In addition, the peel strength after high-temperature heat treatment showed good adhesion with no backing copper, but did not show a sufficient value with backing copper, and the results of adhesion differed depending on the presence or absence of backing copper. The compositions and results are shown in Tables 4-7.
 (実施例5)
 実施例2で用いた調合例2の分散液の分量を3.4gに変更した以外は実施例2と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 5)
A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 2 except that the amount of the dispersion liquid of Preparation Example 2 used in Example 2 was changed to 3.4 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例6)
 実施例2で用いた調合例2の分散液の分量を6.8gに変更した以外は実施例2と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 6)
A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 2 except that the amount of the dispersion liquid of Preparation Example 2 used in Example 2 was changed to 6.8 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例7)
 実施例2で用いた調合例2の分散液の分量を10.2gに変更した以外は実施例2と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 7)
A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 2 except that the amount of the dispersion liquid of Preparation Example 2 used in Example 2 was changed to 10.2 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例8)
 実施例2で用いた調合例2の分散液の分量を34gに変更した以外は実施例2と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 8)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 2 except that the amount of the dispersion liquid of Preparation Example 2 used in Example 2 was changed to 34 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
 (実施例9)
 実施例3で用いた調合例3の分散液の分量を3.4gに変更した以外は実施例3と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 9)
A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 3 except that the amount of the dispersion liquid of Preparation Example 3 used in Example 3 was changed to 3.4 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例10)
 実施例3で用いた調合例3の分散液の分量を6.8gに変更した以外は実施例3と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 10)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 3 except that the amount of the dispersion liquid of Preparation Example 3 used in Example 3 was changed to 6.8 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例11)
 実施例3で用いた調合例3の分散液の分量を10.2gに変更した以外は実施例3と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 11)
A resin film and a double-sided copper-clad laminate were obtained by performing the same operation as in Example 3 except that the amount of the dispersion liquid of Preparation Example 3 used in Example 3 was changed to 10.2 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例12)
 実施例3で用いた調合例3の分散液の分量を34gに変更した以外は実施例3と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 12)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 3 except that the amount of the dispersion liquid of Preparation Example 3 used in Example 3 was changed to 34 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
 (実施例13)
 実施例1で用いた調合例1の分散液の分量を6.8gに変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 13)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the amount of the dispersion liquid of Preparation Example 1 used in Example 1 was changed to 6.8 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例14)
 実施例1で用いた調合例1の分散液の分量を10.2gに変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 14)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the amount of the dispersion of Preparation Example 1 used in Example 1 was changed to 10.2 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例15)
 実施例1で用いた調合例1の分散液の分量を34gに変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 15)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the amount of the dispersion liquid of Preparation Example 1 used in Example 1 was changed to 34 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
 (実施例16)
 実施例1で用いた調合例1の分散液の分量を51gに変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 16)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 1 except that the amount of the dispersion liquid of Preparation Example 1 used in Example 1 was changed to 51 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
 (実施例17)
 実施例4で用いた調合例4の分散液の分量を6.8gに変更した以外は実施例4と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 17)
A resin film and a double-sided copper-clad laminate were obtained by the same operation as in Example 4 except that the amount of the dispersion liquid of Preparation Example 4 used in Example 4 was changed to 6.8 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例18)
 実施例4で用いた調合例4の分散液の分量を10.2gに変更した以外は実施例4と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 18)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 4 except that the amount of the dispersion liquid of Preparation Example 4 used in Example 4 was changed to 10.2 g, and the same evaluation was performed. . The compositions and results are shown in Tables 4-7.
 (実施例19)
 実施例4で用いた調合例4の分散液の分量を34gに変更した以外は実施例4と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 19)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 4 except that the amount of the dispersion liquid of Preparation Example 4 used in Example 4 was changed to 34 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
 (実施例20)
 実施例4で用いた調合例4の分散液の分量を51gに変更した以外は実施例4と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 20)
A resin film and a double-sided copper-clad laminate were obtained in the same manner as in Example 4 except that the amount of the dispersion of Preparation Example 4 used in Example 4 was changed to 51 g, and the same evaluation was performed. The compositions and results are shown in Tables 4-7.
 (実施例21)
 実施例1の両面銅張積層板を作製する際の表1記載の加工条件の内、無電解銅めっき後の乾燥工程の条件を水滴拭き取りのみに変更し、また硫酸銅めっき後の乾燥工程を水滴拭き取りのみに変更した以外は実施例1と同様の操作を行い、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。実施例21の金属化樹脂フィルム(両面銅張積層板)において、6種類のピール強度は実施例1と同様に良好な値を示した。すなわち、無電解金属めっき層形成処理後に加熱することなく、金属めっき層が樹脂フィルムに良好に密着していた。
(Example 21)
Of the processing conditions listed in Table 1 for producing the double-sided copper-clad laminate of Example 1, the conditions for the drying process after electroless copper plating were changed to only wiping off water droplets, and the drying process after copper sulfate plating was changed. A double-sided copper-clad laminate was obtained by performing the same operation as in Example 1, except that only water droplets were wiped off, and the same evaluation was performed. The compositions and results are shown in Tables 4-7. In the metallized resin film (double-sided copper-clad laminate) of Example 21, six types of peel strength showed good values as in Example 1. That is, the metal plating layer adhered well to the resin film without heating after the electroless metal plating layer forming treatment.
 (実施例22)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例2のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 22)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 2 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
 (実施例23)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例3のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 23)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 3 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
 (実施例24)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例4のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 24)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 4 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
 (実施例25)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例5のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 25)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 5 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
 (実施例26)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例6のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 26)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 6 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
 (実施例27)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例7のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 27)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 7 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
 (実施例28)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例8のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 28)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 8 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
 (実施例29)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例9のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 29)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 9 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
 (実施例30)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例10のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。組成および結果を表4~表7に示す。
(Example 30)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 10 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The compositions and results are shown in Tables 4-7.
 (実施例31)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例11のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。吸湿半田耐熱性評価は△であった。組成および結果を表4~表7に示す。
(Example 31)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 11 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was Δ. The compositions and results are shown in Tables 4-7.
 (実施例32)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例12のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。吸湿半田耐熱性評価は△であった。組成および結果を表4~表7に示す。
(Example 32)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 12 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was Δ. The compositions and results are shown in Tables 4-7.
 (比較例2)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例13のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。吸湿半田耐熱性評価は×であった。組成および結果を表4~表7に示す。
(Comparative example 2)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 13 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was x. The compositions and results are shown in Tables 4-7.
 (実施例33)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例14のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。吸湿半田耐熱性評価は△であった。組成および結果を表4~表7に示す。
(Example 33)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 14 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was Δ. The compositions and results are shown in Tables 4-7.
 (実施例34)
実施例1で用いた合成例1のポリアミド酸溶液を合成例15のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。吸湿半田耐熱性評価は△であった。組成および結果を表4~表7に示す。
(Example 34)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 15 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The moisture absorption solder heat resistance evaluation was Δ. The compositions and results are shown in Tables 4-7.
 (比較例3)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例16のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。また、吸湿半田耐熱性評価は×であった。組成および結果を表4~表7に示す。
(Comparative Example 3)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 16 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did In addition, the moisture absorption solder heat resistance evaluation was x. The compositions and results are shown in Tables 4-7.
 (比較例4)
 実施例1で用いた合成例1のポリアミド酸溶液を合成例17のポリアミド酸溶液に変更した以外は実施例1と同様の操作を行い、樹脂フィルム、両面銅張積層板を得、同様の評価を行った。層Aのポリイミド樹脂はシリコーン骨格を含んでおり、主鎖骨格中からシロキサン成分が揮発による電子機器の接点障害、工程汚染の危険性がある。また層Aは線膨張係数が大きく、吸湿半田耐熱性評価は×であった。寸法安定性に劣り、有機溶剤にも溶解性があり、プリント配線板製造工程での有機溶媒に対する耐性も劣る。組成および結果を表4~表7に示す。
(Comparative Example 4)
The same operation as in Example 1 was performed except that the polyamic acid solution of Synthesis Example 1 used in Example 1 was changed to the polyamic acid solution of Synthesis Example 17 to obtain a resin film and a double-sided copper-clad laminate, and the same evaluation was performed. did The polyimide resin of Layer A contains a silicone skeleton, and volatilization of the siloxane component from the main chain skeleton may cause contact failure in electronic devices and process contamination. The layer A had a large coefficient of linear expansion, and the evaluation of moisture absorption solder heat resistance was x. It has poor dimensional stability, is soluble in organic solvents, and has poor resistance to organic solvents in the process of manufacturing printed wiring boards. The compositions and results are shown in Tables 4-7.
 (比較例5)
 合成例17のポリアミド酸溶液をフッ素系樹脂でコートしたバットにとり、真空オーブンで、200℃、120分、665Paで減圧加熱し、ポリイミド樹脂を得た。得られたポリイミド樹脂をジオキソランとトルエンの混合溶媒(混合比=50重量%/50重量%)を溶解し、17重量%のポリイミド溶液を得た。別途、日本アエロジル株式会社製アエロジルR9200を20gと前記混合溶媒80gとを混合し、得られた混合物を回転刃式ホモジナイザー(回転刃直径は20mm)にて回転数10,000rpmで5分間攪拌を行いフュームド金属酸化物の分散液を得た。前記ポリイミド溶液40gと前記フュームド金属酸化物の分散液17gを混合し、フュームド金属酸化物分散ポリイミド溶液(以下、層A溶液とも称する。)を得た。当該層A溶液を非熱可塑性ポリイミドフィルム(アピカルFP、厚み17ミクロン、株式会社カネカ製)の片面に最終の片面の層Aの厚みが4ミクロンとなるように塗布し、60℃で5分、150℃で5分の条件で層A溶液の乾燥を行い、次いで残る面にも同様の手順で前記層A溶液を塗布および乾燥した。かかる操作により、層A/非熱可塑性ポリイミドフィルム/層Aなる構成の樹脂フィルムを得た。その後は実施例1と同様の操作を行い、両面銅張積層板を得、同様の評価を行った。層Aのポリイミド樹脂はシリコーン骨格を含んでおり、主鎖骨格中からシロキサン成分が揮発による電子機器の接点障害、工程汚染の危険性がある。また、吸湿半田耐熱性評価は×であった。また層Aは線膨張係数が大きく、寸法安定性に劣り、有機溶剤にも溶解性があり、プリント配線板製造工程での有機溶媒に対する耐性も劣る。組成および結果を表4~表7に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

 
(Comparative Example 5)
The polyamic acid solution of Synthesis Example 17 was placed in a vat coated with a fluorine-based resin, and heated in a vacuum oven at 200° C. for 120 minutes under reduced pressure of 665 Pa to obtain a polyimide resin. The resulting polyimide resin was dissolved in a mixed solvent of dioxolane and toluene (mixing ratio=50% by weight/50% by weight) to obtain a 17% by weight polyimide solution. Separately, 20 g of Aerosil R9200 manufactured by Nippon Aerosil Co., Ltd. and 80 g of the mixed solvent were mixed, and the resulting mixture was stirred with a rotary blade homogenizer (rotary blade diameter: 20 mm) at a rotation speed of 10,000 rpm for 5 minutes. A dispersion of fumed metal oxide was obtained. 40 g of the polyimide solution and 17 g of the fumed metal oxide dispersion were mixed to obtain a fumed metal oxide-dispersed polyimide solution (hereinafter also referred to as layer A solution). The layer A solution was applied to one side of a non-thermoplastic polyimide film (Apical FP, thickness 17 microns, manufactured by Kaneka Corporation) so that the final thickness of layer A on one side was 4 microns, and heated at 60°C for 5 minutes. The layer A solution was dried at 150° C. for 5 minutes, and then the remaining surface was coated with the layer A solution and dried in the same manner. By this operation, a resin film having a structure of layer A/non-thermoplastic polyimide film/layer A was obtained. After that, the same operation as in Example 1 was performed to obtain a double-sided copper-clad laminate, and the same evaluation was performed. The polyimide resin of Layer A contains a silicone skeleton, and volatilization of the siloxane component from the main chain skeleton may cause contact failure in electronic devices and process contamination. In addition, the moisture absorption solder heat resistance evaluation was x. Layer A has a large coefficient of linear expansion, poor dimensional stability, is soluble in organic solvents, and has poor resistance to organic solvents in the printed wiring board manufacturing process. The compositions and results are shown in Tables 4-7.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

Claims (17)

  1.  ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムである層Bの少なくとも一方の面に形成されており、
     前記ポリイミド樹脂の線膨張係数が30ppm/℃以上、100ppm/℃以下であることを特徴とする樹脂フィルム。
    A layer A containing a polyimide resin and a fumed metal oxide is formed on at least one surface of a layer B, which is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less,
    A resin film, wherein the linear expansion coefficient of the polyimide resin is 30 ppm/°C or more and 100 ppm/°C or less.
  2.  前記フュームド金属酸化物の見掛比重が20グラム/リットル以上220グラム/リットル以下であることを特徴とする請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the fumed metal oxide has an apparent specific gravity of 20 grams/liter or more and 220 grams/liter or less.
  3.  前記フュームド金属酸化物の、前記ポリイミド樹脂の前駆体100重量部に対する配合部数が10重量部から130重量部であることを特徴とするであることを特徴とする請求項1に記載の樹脂フィルム。 The resin film according to claim 1, characterized in that the amount of the fumed metal oxide compounded with respect to 100 parts by weight of the precursor of the polyimide resin is 10 to 130 parts by weight.
  4.  前記フュームド金属酸化物がフュームドシリカであることを特徴とする請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the fumed metal oxide is fumed silica.
  5.  前記ポリイミド樹脂と前記フュームド金属酸化物とを含む層Aが該ポリイミド樹脂の前駆体と前記フュームド金属酸化物の混合物のイミド化物であることを特徴とする請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the layer A containing the polyimide resin and the fumed metal oxide is an imidized mixture of a precursor of the polyimide resin and the fumed metal oxide.
  6.  前記ポリイミド樹脂の300℃における貯蔵弾性率が1×10Pa以上であることを特徴とする請求項1に記載の樹脂フィルム。 2. The resin film according to claim 1, wherein the polyimide resin has a storage elastic modulus at 300[deg.] C. of 1*10< 8 > Pa or more.
  7.  前記ポリイミド樹脂が非溶解性ポリイミド樹脂であることを特徴とする請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the polyimide resin is a non-soluble polyimide resin.
  8.  前記層Bがポリイミド樹脂を含むことを特徴とする請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the layer B contains a polyimide resin.
  9.  請求項1に記載の樹脂フィルムの、前記層Aの表面に無電解金属めっき層が形成されている金属化樹脂フィルム。 A metallized resin film in which an electroless metal plating layer is formed on the surface of the layer A of the resin film according to claim 1.
  10.  前記無電解金属めっきが無電解銅めっきであることを特徴とする請求項9に記載の金属化樹脂フィルム。 The metallized resin film according to claim 9, wherein the electroless metal plating is electroless copper plating.
  11.  前記金属化樹脂フィルムの前記無電解金属めっき層をエッチングにより除去し、露出した前記樹脂フィルムの表面粗度Raが200ナノメートル以下であることを特徴とする請求項9に記載の金属化樹脂フィルム。 10. The metallized resin film according to claim 9, wherein the resin film exposed by removing the electroless metal plating layer of the metallized resin film by etching has a surface roughness Ra of 200 nanometers or less. .
  12.  前記金属化樹脂フィルムにおいて、前記無電解金属めっき層を形成した後、150℃以上の加熱処理を行うことなく、5N/cm以上のピール強度を発現することを特徴とする請求項9に記載の金属化樹脂フィルム。 10. The metallized resin film according to claim 9, wherein a peel strength of 5 N/cm or more is exhibited without heat treatment at 150° C. or more after forming the electroless metal plating layer. Metallized resin film.
  13.  請求項1から8のいずれか1項に記載の樹脂フィルムまたは、請求項9から12のいずれか1項に記載の金属化樹脂フィルムを用いたプリント配線板。 A printed wiring board using the resin film according to any one of claims 1 to 8 or the metallized resin film according to any one of claims 9 to 12.
  14.  GHz帯の電気信号を伝送することが可能な請求項13に記載のプリント配線板。 The printed wiring board according to claim 13, capable of transmitting electrical signals in the GHz band.
  15.  ポリイミド樹脂とフュームド金属酸化物とを含む層Aが、線膨張係数が20ppm/℃以下の耐熱性樹脂フィルムである層Bの少なくとも一方の面に形成されており、
     前記ポリイミド樹脂の線膨張係数が30ppm/℃以上、100ppm/℃以下であり、
     前記ポリイミド樹脂と前記フュームド金属酸化物とを含む前記層Aが、前記ポリイミド樹脂の前駆体のポリアミド酸溶液と前記フュームド金属酸化物とを混合し、得られたフュームド金属酸化物分散ポリアミド酸溶液をイミド化することにより得られることを特徴とする樹脂フィルムの製造方法。
    A layer A containing a polyimide resin and a fumed metal oxide is formed on at least one surface of a layer B, which is a heat-resistant resin film having a coefficient of linear expansion of 20 ppm/° C. or less,
    The linear expansion coefficient of the polyimide resin is 30 ppm/° C. or more and 100 ppm/° C. or less,
    The layer A containing the polyimide resin and the fumed metal oxide is formed by mixing the polyamic acid solution of the precursor of the polyimide resin and the fumed metal oxide, and the resulting fumed metal oxide-dispersed polyamic acid solution. A method for producing a resin film characterized by being obtained by imidization.
  16.  前記フュームド金属酸化物分散ポリアミド酸溶液を前記耐熱性樹脂フィルムからなる前記層Bに塗布し、前記フュームド金属酸化物分散ポリアミド酸溶液を乾燥し、かつイミド化することを特徴とする請求項15に記載の樹脂フィルムの製造方法。 16. The method according to claim 15, wherein the fumed metal oxide-dispersed polyamic acid solution is applied to the layer B of the heat-resistant resin film, and the fumed metal oxide-dispersed polyamic acid solution is dried and imidized. A method for producing the described resin film.
  17.  前記フュームド金属酸化物分散ポリアミド酸溶液を前記耐熱性樹脂フィルムからなる前記層Bの前駆体溶液と共押出し、前記フュームド金属酸化物分散ポリアミド酸溶液および前記前駆体溶液を乾燥し、かつイミド化することを特徴とする請求項15に記載の樹脂フィルムの製造方法。 coextrusion of the fumed metal oxide-dispersed polyamic acid solution with the precursor solution of the layer B of the heat-resistant resin film; drying and imidizing the fumed metal oxide-dispersed polyamic acid solution and the precursor solution; The method for producing a resin film according to claim 15, characterized in that:
PCT/JP2022/019095 2021-05-12 2022-04-27 Resin film and method for manufacturing same, metallized resin film, and printed wiring board WO2022239657A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280033445.2A CN117279782A (en) 2021-05-12 2022-04-27 Resin film, method for producing same, metallized resin film, and printed wiring board
JP2023520971A JPWO2022239657A1 (en) 2021-05-12 2022-04-27
KR1020237042216A KR20240006611A (en) 2021-05-12 2022-04-27 Resin film and manufacturing method thereof, metallized resin film, printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021080980 2021-05-12
JP2021-080980 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239657A1 true WO2022239657A1 (en) 2022-11-17

Family

ID=84028307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019095 WO2022239657A1 (en) 2021-05-12 2022-04-27 Resin film and method for manufacturing same, metallized resin film, and printed wiring board

Country Status (5)

Country Link
JP (1) JPWO2022239657A1 (en)
KR (1) KR20240006611A (en)
CN (1) CN117279782A (en)
TW (1) TW202302716A (en)
WO (1) WO2022239657A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037168B2 (en) * 2007-02-23 2012-09-26 株式会社カネカ Electroless plating materials, laminates and printed wiring boards
JP2017501907A (en) * 2013-12-17 2017-01-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Multilayer film
WO2017065319A1 (en) * 2015-10-15 2017-04-20 新日鉄住金化学株式会社 Polyimide laminate and method for producing same
JP2018500211A (en) * 2014-12-10 2018-01-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Multilayer film
JP2019210342A (en) * 2018-06-01 2019-12-12 株式会社カネカ Thermoplastic polyimide film, multilayer polyimide film, and flexible metal-clad laminate
JP2021070727A (en) * 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 Resin composition, resin film and metal-clad laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977790B2 (en) 2003-09-01 2007-09-19 古河サーキットフォイル株式会社 Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
JP6706013B1 (en) 2019-10-02 2020-06-03 住友金属鉱山株式会社 Copper clad laminate and method for manufacturing copper clad laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037168B2 (en) * 2007-02-23 2012-09-26 株式会社カネカ Electroless plating materials, laminates and printed wiring boards
JP2017501907A (en) * 2013-12-17 2017-01-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Multilayer film
JP2018500211A (en) * 2014-12-10 2018-01-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Multilayer film
WO2017065319A1 (en) * 2015-10-15 2017-04-20 新日鉄住金化学株式会社 Polyimide laminate and method for producing same
JP2019210342A (en) * 2018-06-01 2019-12-12 株式会社カネカ Thermoplastic polyimide film, multilayer polyimide film, and flexible metal-clad laminate
JP2021070727A (en) * 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 Resin composition, resin film and metal-clad laminate

Also Published As

Publication number Publication date
CN117279782A (en) 2023-12-22
JPWO2022239657A1 (en) 2022-11-17
KR20240006611A (en) 2024-01-15
TW202302716A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
US8092900B2 (en) Solution, component for plating, insulating sheet, laminate, and printed circuit board
KR101402635B1 (en) Polyimide film for metallizing and metal laminated polyimide film
JP6908590B2 (en) Polyamic acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board
WO2014208644A1 (en) Polyimide, resin film, and metal-clad laminate
TWI682019B (en) Multilayer adhesive film and flexible metal-clad laminate
US20080032103A1 (en) Multilayer Printed Circuit Board
JPWO2003006553A1 (en) Resin composition
JP5037168B2 (en) Electroless plating materials, laminates and printed wiring boards
JP2023115025A (en) resin composition
JP2008265069A (en) Insulating adhesion sheet, laminate, and printed wiring board
KR20170132680A (en) Resin composition
JP2017165909A (en) Polyimide, resin film, and metal clad laminate
JP4925619B2 (en) Polyimide resin and film with conductor using the same
JPWO2006118230A1 (en) Plating material and its use
JP2000044800A (en) Polyimide composite, varnish, film, metal-clad laminate, and printed wiring board
KR101195730B1 (en) Plating material, polyamic acid solution and polyimide resin solution which are used to form said plating material, and printed wiring board using them
JPWO2007083526A1 (en) Polyimide film and use thereof
WO2022239657A1 (en) Resin film and method for manufacturing same, metallized resin film, and printed wiring board
TWI683836B (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal clad laminate
JP4701667B2 (en) Metallic polyimide film for circuit board and method for producing the same
JP2009012366A (en) Laminate and printed wiring board
WO2024084906A1 (en) Metallized resin film, printed wiring board, current collector film for lithium-ion battery, and method for producing metallized resin film
TW202028357A (en) Resin composition capable of obtaining a cured product having low roughness, high peel strength, excellent water resistance and excellent flexibility
JP2008251900A (en) Laminate used for flexible substrate and its manufacturing method
JP2024060132A (en) Methods for manufacturing single-sided copper-clad laminates, printed wiring boards, electrode films for touch panels, and electromagnetic wave shielding films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033445.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023520971

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237042216

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042216

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807359

Country of ref document: EP

Kind code of ref document: A1