WO2022239299A1 - Electromagnetic switch - Google Patents

Electromagnetic switch Download PDF

Info

Publication number
WO2022239299A1
WO2022239299A1 PCT/JP2022/001400 JP2022001400W WO2022239299A1 WO 2022239299 A1 WO2022239299 A1 WO 2022239299A1 JP 2022001400 W JP2022001400 W JP 2022001400W WO 2022239299 A1 WO2022239299 A1 WO 2022239299A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
core
fixed
contacts
electromagnetic switch
Prior art date
Application number
PCT/JP2022/001400
Other languages
French (fr)
Japanese (ja)
Inventor
隆 稲口
克輝 堀田
勝俊 五十嵐
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023520766A priority Critical patent/JPWO2022239299A1/ja
Publication of WO2022239299A1 publication Critical patent/WO2022239299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/30Mechanical arrangements for preventing or damping vibration or shock, e.g. by balancing of armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements

Definitions

  • This disclosure relates to an electromagnetic switch.
  • Patent Document 1 discloses an electromagnetic contact including a fixed core, a movable core, a coil, a movable frame, a movable contact, a pair of movable contacts, and a pair of fixed contacts. Discloses equipment.
  • the coil moves the movable core toward the fixed core.
  • a movable contact is provided on the movable frame.
  • a pair of movable contacts are provided on the movable contactor.
  • a pair of fixed contacts face a pair of movable contacts.
  • a pair of movable contacts come into contact with a pair of fixed contacts by the operation of the movable iron core.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to reduce wear of the movable contact and the fixed contact due to contact bounce when the movable core collides with the fixed core. It is to provide a vessel.
  • An electromagnetic switch includes a fixed core, a movable core, a first movable member, a first biasing member, an operation coil, a pair of fixed contacts, a second movable member, A pair of movable contacts and a second biasing member are provided.
  • the movable core is arranged to face the fixed core.
  • the first movable member supports the movable core.
  • the first biasing member biases the first movable member in a direction away from the fixed core.
  • the operation coil can generate an electromagnetic force capable of moving the first movable member and the movable core toward the fixed core against the first biasing force of the first biasing member.
  • the second movable member includes a movable contact.
  • a pair of movable contacts are provided on the movable contact and face the pair of fixed contacts.
  • the second biasing member biases the second movable member toward the pair of fixed contacts.
  • the first biasing force of the first biasing member is greater than the second biasing force of the second biasing member.
  • the first movable member is spaced apart from the second movable member when the movable core is brought into contact with the fixed core by energizing the operating coil.
  • An electromagnetic switch includes a fixed core, a movable core, a first biasing member, an operation coil, a pair of fixed contacts, a movable member, a pair of movable contacts, a second a biasing member.
  • the movable core includes a core rod and core plates. The core plate is fixed to the core rod and faces the fixed core.
  • the first biasing member biases the movable core in a direction in which the core plate moves away from the fixed core.
  • the operation coil can generate an electromagnetic force capable of moving the movable core in a direction in which the core plate approaches the fixed core against the first biasing force of the first biasing member.
  • the movable member includes a movable contact.
  • a pair of movable contacts are provided on the movable contact and face the pair of fixed contacts.
  • the second biasing member biases the movable member toward the pair of fixed contacts.
  • the first biasing force is greater than the second biasing force of the second biasing member.
  • the movable core is spaced apart from the movable member when the core plate is brought into contact with the fixed core by energizing the operating coil.
  • the electromagnetic switch of the first aspect and the second aspect of the present disclosure it is possible to reduce wear of the movable contact and the fixed contact due to contact bounce when the movable core collides with the fixed core.
  • FIG. 1 is a schematic front view of an electromagnetic switch (first state) according to Embodiment 1;
  • FIG. 2 is a schematic front view of the electromagnetic switch (second state) of Embodiment 1;
  • FIG. 2 is a schematic front view of the electromagnetic switch (third state) of Embodiment 1;
  • FIG. 1 is a schematic front view of an electromagnetic switch (with contacts worn out) according to Embodiment 1;
  • FIG. 4 Arc energy generated in the electromagnetic switch of the first embodiment arranged on each of the three-phase lines connecting the power source and the load, and arc energy generated in the electromagnetic switch of the comparative example arranged on each of the three-phase lines.
  • FIG. 4 is a diagram showing arc energy;
  • FIG. 4 is a diagram showing arc energy;
  • FIG. 4 is a diagram showing arc energy;
  • FIG. 4 is a diagram showing arc energy;
  • FIG. 4 is a diagram showing arc energy;
  • FIG. 4 is a diagram showing arc energy;
  • FIG. 10 is a schematic front view of the electromagnetic switch (first state) of Embodiment 2;
  • FIG. 8 is a schematic front view of the electromagnetic switch (second state) of Embodiment 2;
  • FIG. 8 is a schematic front view of the electromagnetic switch (third state) of Embodiment 2;
  • FIG. 11 is a schematic front view of an electromagnetic switch (first state) according to Embodiment 3;
  • FIG. 11 is a schematic front view of the electromagnetic switch (second state) of Embodiment 3;
  • FIG. 11 is a schematic front view of an electromagnetic switch (third state) according to Embodiment 3;
  • FIG. 11 is a circuit diagram for supplying current to an operation coil in the electromagnetic switch of Embodiments 3 and 4;
  • FIG. 11 is a schematic front view of an electromagnetic switch (in a trip state) according to Embodiment 3;
  • FIG. 11 is a schematic cross-sectional view of an electromagnetic switch (first state) according to Embodiment 4;
  • FIG. 11 is a schematic partial enlarged view of an electromagnetic switch (first state) of Embodiment 4;
  • FIG. 11 is a schematic partial enlarged view of an electromagnetic switch of Embodiment 4;
  • FIG. 11 is a schematic cross-sectional view of an electromagnetic switch (second state) according to Embodiment 4;
  • FIG. 11 is a schematic cross-sectional view of an electromagnetic switch (third state) according to Embodiment 4;
  • FIG. 12 is a schematic partial enlarged view of the electromagnetic switch (third state) of Embodiment 4;
  • Embodiment 1 An electromagnetic switch 1 according to Embodiment 1 will be described with reference to FIGS. 1 to 5.
  • FIG. The electromagnetic switch 1 includes a fixed core 11, a movable core 21, a movable member 20, a first biasing member 24, an operation coil 13, a pair of fixed contacts 27a and 27b, a pair of fixed contacts 26a, 26b, a movable member 30, a pair of movable contacts 37a and 37b, a second biasing member 35, and a housing 5 are mainly provided.
  • the electromagnetic switch 1 may further include a stopper 16 and a buffer member 12 .
  • the housing 5 includes a fixed core 11, a movable core 21, a movable member 20, a first biasing member 24, an operation coil 13, fixed contacts 27a and 27b, and parts of fixed contacts 26a and 26b. , the movable member 30, the movable contacts 37a and 37b, and the second biasing member 35. As shown in FIG. Housing 5 may further accommodate stopper 16 and buffer member 12 .
  • Housing 5 includes a lower case 6 and an upper case 7 .
  • the lower case 6 includes a mount 6a and a cylindrical body 6b provided on the mount 6a. The surface of the mount 6a extends in the x-direction and in the y-direction perpendicular to the x-direction.
  • the housing 5 is made of, for example, an insulating material such as insulating resin (for example, nylon 66, nylon 6, nylon, phenolic resin, or the like).
  • insulating resin for example, nylon 66, nylon 6, nylon, phenolic resin, or the like.
  • the fixed core 11 is formed of, for example, a plurality of silicon steel plates laminated together.
  • the fixed core 11 is fixed to the housing 5 (for example, the mount 6a).
  • the fixed core 11 may be fixed to the housing 5 (for example, the mount 6a) via the cushioning member 12 .
  • the buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11 by bending or contracting when the movable core 21 collides with the fixed core 11 .
  • the cushioning member 12 is, for example, a leaf spring.
  • the buffer member 12 may be a coil spring or a rubber cushion.
  • the movable core 21 is formed of, for example, a plurality of silicon steel plates that are laminated together.
  • the movable core 21 is arranged to face the fixed core 11 .
  • the movable core 21 is movable, for example, along the normal direction (z direction) of the mount 6a.
  • the movable member 20 is movable along with the movable iron core 21, for example, along the normal direction (z direction) of the mount 6a.
  • the movable member 20 includes, for example, a movable bar 20a and a protrusion 20b.
  • the movable member 20 supports the movable iron core 21 .
  • the movable core 21 is fixed to the surface of the movable bar 20 a facing the fixed core 11 .
  • the protrusion 20b protrudes from the surface of the movable bar 20a opposite to the surface facing the fixed core 11 (the surface of the movable bar 20a facing the movable member 30).
  • the movable member 20 is made of, for example, an insulating material such as insulating resin (for example, phenolic resin, acrylonitrile-butadiene-styrene (ABS) resin, or nylon resin).
  • the first biasing member 24 biases the movable member 20 in a direction away from the fixed core 11 .
  • the first biasing member 24 is, for example, a compression spring (ie, a spring that is compressed and has energy stored in it).
  • a first biasing force (first restoring force) of the first biasing member 24 is greater than a second biasing force (second restoring force) of the second biasing member 35 .
  • One end of the first biasing member 24 is fixed to the movable member 20 (specifically, the movable bar 20a).
  • the other end of the first biasing member 24 is fixed to the coil case 14, for example.
  • one end of the first biasing member 24 is attached to a spring receiver provided on the movable member 20 (specifically, the movable bar 20a).
  • the other end of the first biasing member 24 is attached to, for example, a spring receiver provided on the coil case 14 .
  • the operation coil 13 is housed in the coil case 14.
  • the operating coil 13 and the coil case are fixed to the lower case 6 (mounting base 6a).
  • the coil case 14 is made of, for example, an insulating material.
  • the operation coil 13 can generate an electromagnetic force capable of moving the movable member 20 and the movable core 21 toward the fixed core 11 against the first biasing force of the first biasing member 24 .
  • the operation coil 13 By supplying current to the operation coil 13, the operation coil 13 generates an electromagnetic force capable of moving the movable member 20 and the movable iron core 21 toward the fixed iron core 11 against the first biasing force of the first biasing member 24.
  • the stopper 16 regulates the movement of the movable member 20 toward the movable member 30.
  • the stopper 16 is made of, for example, an insulating material.
  • the stopper 16 is fixed to the housing 5 (lower case 6 (cylinder 6b)).
  • the stopper 16 is, for example, a fixed plate.
  • Stopper 16 includes a first major surface 16a and a second major surface 16b opposite to first major surface 16a.
  • the first main surface 16a faces the movable bar 20a.
  • the second main surface 16b faces fixed contacts 26a and 26b.
  • the second principal surface 16 b faces the movable contact 31 .
  • the stopper 16 is provided with a through hole 16c. As shown in FIG. 1, a portion of movable member 20 (eg, projection 20b) may be positioned within through hole 16c. As shown in FIGS. 2 and 3, a portion of movable member 30 (eg, insulating protrusion 32a) may be positioned within through hole 16c.
  • the fixed contacts 26a and 26b are fixed to the housing 5, for example.
  • the fixed contacts 26a and 26b are sandwiched between, for example, the lower case 6 (cylindrical body 6b) and the upper case 7. As shown in FIG.
  • the fixed contacts 26 a and 26 b penetrate the housing 5 and extend from the inside of the housing 5 to the outside of the housing 5 .
  • the stationary contacts 26a, 26b are made of a conductive material such as copper, iron, copper alloys or iron alloys.
  • the stationary contacts 26a and 26b are arranged, for example, on the stopper 16 (second main surface 16b).
  • the fixed contacts 27a, 27b are provided on the fixed contacts 26a, 26b.
  • Fixed contacts 27a and 27b are made of a conductive material such as a silver alloy.
  • the fixed contacts 27a, 27b are electrically connected to the fixed contacts 26a, 26b.
  • the fixed contacts 27a, 27b may be provided on the fixed contacts 26a, 26b by brazing or caulking.
  • the fixed contacts 27a, 27b may be integrally formed with the fixed contacts 26a, 26b.
  • the movable member 30 is movable along the movement direction (z direction) of the movable iron core 21 and the movable member 20 .
  • the movable member 30 includes movable contacts 31 .
  • Movable contact 31 is made of a conductive material such as copper, iron, copper alloy or iron alloy.
  • the movable contact 31 includes a first surface 31a facing the fixed contacts 27a, 27b and a second surface 31b opposite the first surface 31a.
  • the second surface 31b faces the upper case 7, for example.
  • the movable member 30 may further include a crossbar 32.
  • the crossbar 32 holds the movable contacts 31 .
  • the crossbar 32 is made of an insulating material such as, for example, an insulating resin (eg, phenolic resin, acrylonitrile-butadiene-styrene (ABS) resin, or nylon resin).
  • Crossbar 32 includes an insulating protrusion 32a and a hollow portion 32b.
  • the insulating protrusion 32 a is provided on the first surface 31 a of the movable contact 31 .
  • the insulating protrusion 32a is arranged between the movable contact 37a and the movable contact 37b.
  • the insulating protrusion 32 a protrudes from the movable contact 31 toward the movable member 20 .
  • the hollow portion 32 b is provided on the second surface 31 b of the movable contact 31 .
  • the movable contacts 37a and 37b are provided on the movable contact 31 (first surface 31a). Movable contacts 37a and 37b are made of a conductive material such as a silver alloy. The movable contacts 37 a and 37 b are electrically connected to the movable contactor 31 . The movable contacts 37a and 37b may be provided on the movable contactor 31 by brazing or caulking. The movable contacts 37a and 37b may be integrally molded with the movable contactor 31 .
  • the movable contacts 37a, 37b face the fixed contacts 27a, 27b. Specifically, the movable contact 37a faces the fixed contact 27a, and the movable contact 37b faces the fixed contact 27b.
  • the second biasing member 35 biases the movable member 30 toward the fixed contacts 27a and 27b.
  • the second biasing member 35 is, for example, a compression spring (ie, a spring that is compressed and has energy stored in it).
  • the second biasing force (second restoring force) of the second biasing member 35 is smaller than the first biasing force (first restoring force) of the first biasing member 24 .
  • One end of the second biasing member 35 is in contact with the movable member 30 (movable contactor 31).
  • the other end of the second biasing member 35 is in contact with the housing 5 (upper case 7), for example.
  • one end of the second biasing member 35 is attached to a spring receiver provided on the movable member 30 (movable contactor 31).
  • the other end of the second biasing member 35 is in contact with, for example, a projection of the housing 5 (upper case 7).
  • the second biasing member 35 can maintain contact between the movable contacts 37a, 37b and the fixed contacts 27a, 27b.
  • movable member 20 when movable core 21 is brought into contact with fixed core 11 by energizing operation coil 13 , movable member 20 is arranged at a distance G from movable member 30 .
  • the gap G may be 0.1 mm or more, or may be 0.2 mm or more.
  • the gap G may be 5.0 mm or less.
  • the spacing G is greater than the sum of the first thickness t 1 of the fixed contacts 27a, 27b and the second thickness t 2 of the movable contacts 37a, 37b.
  • the first thickness t 1 of the fixed contacts 27a, 27b is the thickness of the fixed contacts 27a, 27b when the electromagnetic switch 1 is new.
  • the second thickness t 2 of the movable contacts 37a, 37b is the thickness of the movable contacts 37a, 37b when the electromagnetic switch 1 is new. Therefore, as shown in FIG. 4, when the movable iron core 21 is brought into contact with the fixed iron core 11 by exciting the operation coil 13 until the fixed contacts 27a, 27b and the movable contacts 37a, 37b are completely worn, , the movable member 20 can continue to be spaced apart from the movable member 30 .
  • the electromagnetic switch 1 when no current is supplied to the operating coil 13, the electromagnetic switch 1 is in a first state (open state) in which the movable contacts 37a and 37b are separated from the fixed contacts 27a and 27b. . Specifically, the first biasing force (first restoring force) of the first biasing member 24 is greater than the second biasing force (second restoring force) of the second biasing member 35 . Therefore, the first biasing force of the first biasing member 24 moves the movable core 21 and the movable member 20 away from the fixed core 11 (+z direction).
  • the movable member 20 (projection 20b) contacts the movable member 30 (insulating projection 32a).
  • the movable member 30 moves along with the movable member 20 in the direction away from the fixed core 11 (+z direction).
  • the movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b.
  • the electromagnetic switch 1 is in the open state when no current is supplied to the operating coil 13 .
  • the movable member 20 comes into contact with the stopper 16 and stops moving toward the fixed contacts 27a and 27b.
  • a current is supplied to the operation coil 13 with reference to FIG.
  • the operation coil 13 generates an electromagnetic force capable of moving the movable member 20 and the movable core 21 toward the fixed core 11 against the first biasing force of the first biasing member 24 .
  • the movable core 21 and the movable member 20 move toward the fixed core 11 .
  • the second biasing member 35 moves the movable contacts 37a, 37b and the movable member 30 toward the fixed contacts 27a, 27b.
  • the movable contacts 37a, 37b come into contact with the fixed contacts 27a, 27b, and the electromagnetic switch 1 is closed.
  • the movable contacts 37a, 37b contact the fixed contacts 27a, 27b
  • the movement of the movable contacts 37a, 37b and the movable member 30 stops.
  • the movable contacts 37a, 37b and the movable member 30 stop moving, the movable core 21 is still separated from the fixed core 11.
  • the electromagnetic switch 1 is in a second state in which the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b (closed state), but the movable core 21 is separated from the fixed core 11.
  • FIG. 1 The movable member 20 (protruding portion 20b) is separated from the movable member 30 (insulating projection 32a).
  • contact bounce occurs when the movable contacts 37a and 37b collide with the fixed contacts 27a and 27b.
  • contact bounce means that the movable contacts 37a and 37b bounce away from the fixed contacts 27a and 27b due to the reaction force when the movable contacts 37a and 37b collide with the fixed contacts 27a and 27b.
  • the collision between the movable contacts 37a, 37b and the fixed contacts 27a, 27b repeats until the contacts 27a, 27b stably come into contact with the fixed contacts 27a, 27b.
  • the movable contacts 37a, 37b collide with the fixed contacts 27a, 27b current starts to flow between the movable contacts 37a, 37b and the fixed contacts 27a, 27b.
  • the movable core 21 and the movable member 20 move further toward the fixed core 11 .
  • the movable core 21 collides with the fixed core 11 and comes into contact with the fixed core 11 .
  • the electromagnetic switch 1 is in a third state in which the movable contacts 37 a and 37 b are in contact with the fixed contacts 27 a and 27 b (closed state) and the movable core 21 is in contact with the fixed core 11 .
  • the buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11 by bending or contracting when the movable core 21 collides with the fixed core 11 .
  • a flexed or contracted cushioning member 12 attempts to return to the original shape of the cushioning member 12 .
  • the movable core 21 and the fixed core 11 receive a restoring force from the buffer member 12 . Due to this restoring force, the movable core 21 and the fixed core 11 may move slightly upward.
  • the movable member 20 is arranged with a gap G from the movable member 30 when the movable core 21 is brought into contact with the fixed core 11 by exciting the operation coil 13 . Therefore, it is possible to prevent the contact bounce from occurring due to the shock caused by the collision between the movable core 21 and the fixed core 11 and the restoring force of the buffer member 12 .
  • the energy of arcs generated between the movable contacts 37a, 37b and the fixed contacts 27a, 27b when the movable core 21 and the fixed core 11 collide is reduced. Wear of the movable contacts 37a, 37b and fixed contacts 27a, 27b in the third state of the electromagnetic switch 1 can be reduced or eliminated.
  • the movable member 20 is in contact with the movable member 30 when the movable core 21 is brought into contact with the fixed core 11 by exciting the operation coil 13 . That is, in the comparative example, the gap G is zero when the movable core 21 is brought into contact with the fixed core 11 by exciting the operating coil 13 . Therefore, contact bounce occurs due to the shock caused by the collision between the movable core 21 and the fixed core 11 and the restoring force of the buffer member 12 .
  • the current flowing between the movable contacts 37a, 37b and the fixed contacts 27a, 27b increases.
  • the arc energy generated between the movable contacts 37a, 37b and the fixed contacts 27a, 27b increases.
  • the contact bounce that occurs in the third state of the electromagnetic switch 1 severely wears the movable contacts 37a, 37b and the fixed contacts 27a, 27b.
  • the energy of the arc generated in the electromagnetic switch 1 of 1 is significantly reduced than the energy of the arc generated in the electromagnetic switch of the comparative example arranged in each of the three-phase electric wiring.
  • wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce when the movable core 21 collides with the fixed core 11 can be reduced.
  • the electromagnetic switch 1 of the present embodiment includes a fixed core 11, a movable core 21, a first movable member (movable member 20), a first biasing member 24, an operation coil 13, and a pair of fixed contacts 27a. , 27b, a second movable member (movable member 30), a pair of movable contacts 37a and 37b, and a second biasing member .
  • the movable core 21 is arranged to face the fixed core 11 .
  • the first movable member supports movable core 21 .
  • the first biasing member 24 biases the first movable member in a direction away from the fixed core 11 .
  • the operation coil 13 can generate an electromagnetic force capable of moving the first movable member and the movable core 21 toward the fixed core 11 against the first biasing force of the first biasing member 24 .
  • the second movable member includes movable contacts 31 .
  • a pair of movable contacts 37a and 37b are provided on the movable contactor 31 and face the pair of fixed contacts 27a and 27b.
  • the second biasing member 35 biases the second movable member toward the pair of fixed contacts 27a and 27b.
  • the first biasing force of the first biasing member 24 is greater than the second biasing force of the second biasing member 35 .
  • the period of contact bounce at the time when the movable core 21 collides with the fixed core 11 can be shortened, or the contact bounce at the time when the movable core 21 collides with the fixed core 11 can be eliminated. Wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce at the time when the movable core 21 collides with the fixed core 11 can be reduced.
  • the gap G is larger than the sum of the first thickness t1 of the pair of fixed contacts 27a and 27b and the second thickness t2 of the pair of movable contacts 37a and 37b. .
  • the interval G is 0.1 mm or more. Therefore, the period of contact bounce at the time when the movable core 21 collides with the fixed core 11 can be shortened, or the contact bounce at the time when the movable core 21 collides with the fixed core 11 can be eliminated. Wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce when the movable core 21 collides with the fixed core 11 can be reduced more reliably.
  • the interval G is 5.0 mm or less.
  • the first movable member (movable member 20) collides with the second movable member (movable member 30). . Since the gap G is 5.0 mm or less, the impact caused by the collision between the first movable member and the second movable member is reduced. Mechanical damage to the first movable member and the second movable member due to this impact can be prevented.
  • the second movable member (movable member 30) includes insulating protrusions 32a projecting from the movable contactor 31 toward the first movable member (movable member 20).
  • the insulating protrusion 32a is arranged between a pair of movable contacts 37a and 37b.
  • the insulating protrusion 32a can prevent arcing between the movable contacts 37a and 37b and arcing between the fixed contacts 27a and 27b. Short-circuiting of the movable contacts 37a, 37b and short-circuiting of the fixed contacts 27a, 27b due to arcing can be prevented.
  • the electromagnetic switch 1 of this embodiment further includes a buffer member 12 that supports the fixed iron core 11 .
  • the buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11. Therefore, the buffer member 12 can shorten the period of contact bounce when the movable core 21 collides with the fixed core 11 or eliminate the contact bounce when the movable core 21 collides with the fixed core 11 . Wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce when the movable core 21 collides with the fixed core 11 can be further reduced.
  • Embodiment 2 An electromagnetic switch 1b according to Embodiment 2 will be described with reference to FIGS. 6 to 8.
  • FIG. The electromagnetic switch 1b of the present embodiment has the same configuration as the electromagnetic switch 1 of the first embodiment, but differs mainly in the following points.
  • the electromagnetic switch 1b further includes a stopper 40.
  • the stopper 40 is detachably provided on the housing 5, for example.
  • the stopper 40 may be sandwiched between, for example, the mount 6a and the cylindrical body 6b.
  • the stopper 40 restricts movement of the fixed core 11 toward the movable member 30 .
  • the stopper 40 includes, for example, a protrusion 41 that protrudes toward the internal space of the housing 5 .
  • the cushioning member 12 is a coil spring.
  • the cushioning member 12 may be a leaf spring or a rubber cushion.
  • the buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11 by bending or contracting when the movable core 21 collides with the fixed core 11 .
  • a flexed or contracted cushioning member 12 attempts to return to the original shape of the cushioning member 12 .
  • Fixed core 11 receives the restoring force of buffer member 12 .
  • the fixed core 11 and the movable core 21 attached to the fixed core 11 move toward the movable member 30 .
  • the stopper 40 regulates the movement of the fixed core 11 toward the movable member 30. Specifically, when the fixed core 11 contacts the protrusion 41, the movement of the fixed core 11 toward the movable member 30 stops. Thus, the stopper 40 ensures that the movable member 20 continues to be separated from the movable member 30 after the movable core 21 collides with the fixed core 11 .
  • the electromagnetic switch 1b of the present embodiment has the following effects in addition to the effects of the electromagnetic switch 1 of the first embodiment.
  • the electromagnetic switch 1b of the present embodiment further includes a first stopper (stopper 40) that restricts movement of the fixed core 11 toward the second movable member (movable member 30).
  • the first stopper (stopper 40) ensures that the first movable member (movable member 20) continues to be separated from the second movable member (movable member 30) after the movable core 21 collides with the fixed core 11. Therefore, wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce when the movable core 21 collides with the fixed core 11 can be reduced more reliably.
  • Embodiment 3 An electromagnetic switch 1c according to Embodiment 3 will be described with reference to FIGS. 9 to 13.
  • FIG. The electromagnetic switch 1c is arranged, for example, in electrical wiring that connects a power source (not shown) and a load (not shown).
  • the electromagnetic switch 1c of the present embodiment has the same configuration as the electromagnetic switch 1 of the first embodiment, but differs mainly in the following points.
  • the electromagnetic switch 1 c further includes a power grid 51 , a power grid fixing member 54 , a load grid 52 , a load grid fixing member 56 , an arc runner 53 and an open/close/trip mechanism 80 .
  • the housing 5 includes an upper case 7 and a lower case 6.
  • Partition plates 46 and 47 are provided in the lower case 6 .
  • the partition plate 47 is arranged on the side closer to the fixed core 11 than the partition plate 46 .
  • the partition plates 46 and 47 divide the internal space of the housing 5 into a space 141 on the upper case 7 side and a space 142 on the lower case 6 side.
  • the partition plates 46 and 47 prevent the arc generated in the space 142 from being transmitted to the opening/closing/tripping mechanism 80 provided in the space 141 when the fixed contacts 27a and 27b and the movable contacts 37a and 37b are opened.
  • the partition plates 46 and 47 prevent the high-temperature gas (for example, air) in the space 142 heated by the arc from being transmitted to the opening/closing/tripping mechanism 80 provided in the space 141 and the like.
  • the upper case 7, lower case 6, and partition plates 46, 47 are made of an insulating material such as insulating resin (for example, nylon 66, nylon 6, nylon, phenolic resin, etc.).
  • the partition plate 47 includes a flat plate portion 47a and a projection portion 47b.
  • a through hole 47c is provided in the flat plate portion 47a.
  • the projecting portion 47b may be, for example, an annular member surrounding the through hole 47c, or may be a plurality of columnar members surrounding the through hole 47c.
  • the partition plate 47 (protrusion 47b) regulates movement of the movable member 20 toward the movable member 30, and corresponds to the stopper 16 of the first embodiment.
  • the partition plate 46 is provided with a through hole 46a.
  • the through hole 46 a of the partition plate 46 communicates with the through hole 47 c of the partition plate 47 .
  • the fixed contact 26a includes the upper surface of the lower case 6, the upper surface of the partition plate 46, the side wall defining the through hole 46a formed in the partition plate 46, and the partition plate 46 opposite to the upper surface of the partition plate 46. It is provided across the bottom surface.
  • the fixed contact 26a is a power supply side fixed contact.
  • the stationary contact 26a is made of a conductive material such as iron or copper.
  • the fixed contact 26a constitutes a power supply side terminal 110.
  • the power-side terminal 110 is fixed to a power-side external conductor 120 connected to a power supply (not shown) using a screw 130 screwed into the lower case 6 .
  • the power-side terminal 110 is electrically connected to the power-side external conductor 120 .
  • the power supply side external conductor 120 is, for example, a bus bar.
  • the other end of the fixed contact 26 a is provided on the lower surface of the partition plate 46 .
  • the fixed contact 26a is provided with a fixed contact 27a.
  • the fixed contact 27a is provided between the other end of the fixed contact 26a and a portion of the fixed contact 26a facing the through hole 46a.
  • the power supply side grid 51 can extinguish arcs generated at the fixed contacts 27a, 27b and the movable contacts 37a, 37b.
  • the power supply side grid 51 is made of, for example, a magnetic material such as iron.
  • the power supply side grid 51 is arranged on the side closer to the power supply side terminal 110 with respect to the fixed contacts 27a, 27b and the movable contacts 37a, 37b.
  • the power supply side grids 51 are arranged apart from each other along the z direction.
  • the power supply side grid fixing member 54 supports the power supply side grid 51 .
  • the power supply side grid fixing member 54 is made of insulating fiber paper, for example.
  • a power source side grid fixing member window 55 is formed in the power source side grid fixing member 54 .
  • the power supply side grid fixing material window 55 allows high-temperature gas (for example, air) in the lower case 6 to pass through.
  • a window 8 is formed in a portion of the lower case 6 that faces the power supply side grid fixing member 54 .
  • High-temperature gas for example, air
  • the window 8 passes through the window 8 and is discharged outside the housing 5 (lower case 6).
  • the fixed contact 26b includes the upper surface of the partition plate 46 on the side proximal to the load-side terminal 111, the side wall defining the through hole 46a formed in the partition plate 46, and the partition plate 46 on the side opposite to the upper surface of the partition plate 46. It is provided over the lower surface of the plate 46 .
  • the stationary contact 26b is a load-side stationary contact. One end of the stationary contact 26 b is electrically connected to the trip coil 60 . The other end of the fixed contact 26b is provided on the lower surface of the partition plate 46. As shown in FIG. A fixed contact 27b is provided on the fixed contact 26b. The fixed contact 27b is provided between the other end of the fixed contact 26b and a portion of the fixed contact 26b facing the through hole 46a.
  • the load-side terminal 111 is made of a conductive magnetic material such as iron. One end of the load side terminal 111 is electrically connected to the trip coil 60 . The load-side terminal 111 is electrically connected to the fixed contact 26b via the trip coil 60. As shown in FIG. The other end of the load side terminal 111 is connected to a load (not shown) such as a motor. The other end of the load-side terminal 111 is fixed to a load-side outer conductor 121 connected to a load (not shown) such as a motor using a screw 131 screwed into the lower case 6 . The load-side terminal 111 is electrically connected to the load-side outer conductor 121 . The load-side outer conductor 121 is, for example, a busbar.
  • the load-side grid 52 can extinguish arcs generated at the fixed contacts 27a, 27b and the movable contacts 37a, 37b.
  • the load-side grid 52 is made of, for example, a magnetic material such as iron.
  • the load-side grid 52 is arranged on the side proximate to the load-side terminals 111 with respect to the fixed contacts 27a, 27b and the movable contacts 37a, 37b.
  • the load-side grids 52 are arranged apart from each other along the z-direction.
  • the load-side grid fixing member 56 supports the load-side grid 52 .
  • the load-side grid fixing member 56 is made of, for example, insulating fiber paper.
  • a load side fixing member window 57 is formed in the load side grid fixing member 56 .
  • the power supply side grid fixing material window 55 allows high-temperature gas (for example, air) in the lower case 6 to pass through.
  • a window 9 is formed in a portion of the lower case 6 that faces the load-side grid fixing member 56 .
  • High-temperature gas for example, air
  • air in the lower case 6 passes through the window 9 and is discharged outside the housing 5 (lower case 6).
  • the buffer member 12 , the fixed core 11 , the operation coil 13 , the coil case 14 , the first biasing member 24 and the movable member 20 are arranged within the space 141 of the upper case 7 .
  • the fixed core 11 is fixed to the upper case 7 via a buffer member 12 .
  • the coil case 14 is fixed to the upper case 7 via insulating spacers 15 .
  • at least a portion of the protruding portion 20b of the movable member 20 can be positioned within the through hole 47c.
  • the second biasing member 35 , the movable member 30 , the movable contacts 37 a and 37 b and the fixed contacts 27 a and 27 b are arranged within the space 142 of the lower case 6 .
  • At least a portion of the insulating protrusion 32a of the movable member 30 can be positioned within the through holes 46a, 47c.
  • the insulating protrusion 32 a of the movable member 30 can face one end 82 a of the opening lever 82 .
  • the arc runner 53 is provided inside the space 142 of the lower case 6 .
  • Arc runner 53 is arranged, for example, on the side distal from fixed contacts 27a, 27b with respect to movable contacts 37a, 37b.
  • the arc runner 53 is fixed to the lower case 6, for example.
  • Arc runner 53 is made of a conductive material such as iron or copper, for example.
  • the arc runner 53 is configured to cause arcs generated between the fixed contacts 27a, 27b and the movable contacts 37a, 37b when the movable contacts 37a, 37b separate from the fixed contacts 27a, 27b. , 27b.
  • a current circuit formed by the stationary contacts 26a and 26b, the arc, and the movable contact 31 acts on the arc to push the arc toward the power supply side grid 51 side or the load side grid 52 side.
  • the power-side grid 51 and the load-side grid 52 are made of a magnetic material, the power-side grid 51 and the load-side grid 52 attract arcs.
  • the arc generated between the fixed contact 27 a and the movable contact 37 a passes through the arc runner 53 and moves to the power supply side grid 51 .
  • An arc generated between the fixed contact 27b and the movable contact 37b passes through the arc runner 53 and moves to the load side grid 52. As shown in FIG.
  • the operation coil 13 is connected to an external power source 150 via electrical wiring 151 .
  • An operation coil switch 94 is provided on the electric wiring 151 .
  • the operating coil switch 94 is a switch that switches between supplying current from the external power source 150 to the operating coil 13 and stopping the supply of the current.
  • the open/close/trip mechanism 80 includes a trip coil 60, a plunger 61, a plunger push spring 62, a link rod 63, an insulating fixing member 64a, and an insulating pipe 65. , a handle 81 , an opening lever 82 , a mag bar 83 , a latch 85 , a lever 86 , a U-shaft 87 , an upper link 88 , a lower link 89 and an arm 90 .
  • the trip coil 60 is fixed to an insulating fixing member 64a. One end of the trip coil 60 is connected to one end of the stationary contact 26b. The other end of the trip coil 60 is connected to one end of the load side terminal 111 . An insulating pipe 65 is arranged inside the trip coil 60 .
  • a plunger 61 is arranged inside the insulating pipe 65 .
  • the plunger 61 is made of a magnetic material such as iron.
  • the plunger 61 can move in the longitudinal direction (z direction) of the insulating pipe 65 by the electromagnetic force generated in the trip coil 60 when an overcurrent flows through the trip coil 60 .
  • the outer peripheral surface of the plunger 61 contacts the inner peripheral surface of the insulating pipe 65 .
  • An overcurrent is a current that is much greater than the current that would normally flow through the trip coil 60 .
  • the overcurrent is, for example, ten times or more the current normally flowing through the trip coil 60 .
  • the magnitude of the overcurrent can be appropriately determined according to the application of the electromagnetic switch 1c.
  • Plunger 61 includes a barrel and a head having a larger diameter than the barrel. The head of plunger 61 is the portion of plunger 61 distal from the trip coil (eg, the lower end portion of plunger 61).
  • the link rod 63 is rotatably supported by a pin 64.
  • the pin 64 is fixed to an insulating fixing member 64a.
  • One end of the link rod 63 is bifurcated and sandwiches the head of the plunger 61 .
  • the link rod 63 can rotate around the pin 64 .
  • One end of the plunger push spring 62 is fixed to a portion of the link rod 63 near one end of the link rod 63 .
  • the other end of the plunger compression spring 62 is fixed to an insulating fixing member 64a.
  • the plunger compression spring 62 is a compression spring (a spring that is compressed and has stored energy).
  • a plunger compression spring 62 may bias the link rod 63 to rotate the link rod 63 clockwise.
  • the handle 81 includes a pin 81a, a rotating portion 81b, and an operating portion 81c.
  • the rotating portion 81b is rotatably supported by a pin 81a.
  • the operating portion 81c is provided on the rotating portion 81b.
  • the operating portion 81c protrudes outside the housing 5 (upper case 7) through an opening 7a formed in the housing 5 (upper case 7).
  • a lever 86 is provided on the rotating portion 81b.
  • the lever 86 is rotatably supported by the pin 81a.
  • the lever 86 extends from the rotating portion 81b toward the latch 85. As shown in FIG.
  • the latch 85 is rotatably supported by a pin 85a.
  • the latch 85 has, for example, an L shape.
  • One end of latch 85 is near lever 86 .
  • the other end of latch 85 is near mag bar 83 .
  • the mag bar 83 includes a rotating portion 83a and a projecting portion 83b.
  • the rotating portion 83 a is rotatably supported by a pin 84 .
  • the projecting portion 83b extends from the rotating portion 83a toward the latch 85. As shown in FIG.
  • the projecting portion 83b is in contact with the other end of the latch 85. As shown in FIG.
  • One end of the upper link 88 is connected to the rotating portion 81b by a pin 88a.
  • the upper link 88 is rotatably connected to the rotating portion 81b.
  • One end of the U shaft 87 is inserted into a through hole provided at the other end of the upper link 88 and a through hole provided at one end of the lower link 89 .
  • the other end of the U-shaft 87 is inserted into a through-hole provided in the lever 86 .
  • One end of the lower link 89 is connected to the other end of the upper link 88 by a U-shaft 87 .
  • the lower link 89 is rotatably connected to the upper link 88 .
  • the other end of the lower link 89 is connected to the arm 90 by a pin 95a.
  • the arm 90 is rotatably supported by an arm pin 91.
  • the end of the arm 90 proximal to the opening lever 82 is connected to the other end 82 b of the opening lever 82 by an arm link pin 92 .
  • a switch lever 95 is provided at the end of the arm 90 proximal to the trip coil 60 .
  • the switch lever 95 switches the operation coil switch 94 from the OFF state to the ON state by pressing the operation coil switch 94, and switches the operation coil switch 94 from the ON state to the OFF state by moving away from the operation coil switch 94. .
  • the opening lever 82 is rotatably supported by a pin 93. One end 82a of the opening lever 82 is positioned within the through hole 47c. The other end 82 b of the opening lever 82 is connected to the arm 90 by an arm link pin 92 . The opening lever 82 can move the movable member 30 away from the movable member 20 in conjunction with the plunger 61 .
  • the electromagnetic switch 1c has three states of the handle 81, namely an off state, a ready state and a trip state.
  • the electromagnetic switch 1c when the handle 81 is in the off state (not shown) will be described.
  • the handle 81 is tilted clockwise.
  • the handle 81 is tilted to the right.
  • the movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b by the opening lever 82 regardless of the presence or absence of current supplied from the external power source 150 (see FIG. 12).
  • the electromagnetic switch 1c is in the open state.
  • the switch lever 95 is separated from the operating coil switch 94, and the operating coil switch 94 is in the OFF state.
  • the operating coil 13 is not electrically connected to the external power supply 150 . Therefore, even if the external power source 150 is on, no current flows through the operating coil 13 and the operating coil 13 is not excited.
  • the movable core 21 is separated from the fixed core 11 by the first biasing force (first restoring force) of the first biasing member 24 .
  • the movable member 20 (projection 20b) is in contact with the partition plate 47 (projection 47b).
  • the handle 81 by rotating the handle 81 counterclockwise, the handle 81 goes from the off state to the ready state.
  • the handle 81 is tilted counterclockwise.
  • the movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b, and the electromagnetic switch is 1c is in the open state.
  • the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b, The electromagnetic switch 1c is in a closed state.
  • the electromagnetic switch 1c can be remotely switched between the open state and the closed state.
  • this remote switching by turning on the external power supply 150, a current output from the external power supply 150 is supplied to the operation coil 13, and the electromagnetic switch 1c is remotely closed; cutting off the supply of electric current from the external power source 150 to the operating coil 13 by turning on and remotely opening the electromagnetic switch 1c.
  • One end 82a of the opening lever 82 is separated from the movable member 30 (insulating projection 32a).
  • the second biasing member 35 moves the movable member 30 and the movable contacts 37a, 37b toward the fixed contacts 27a, 27b.
  • the movable member 30 (insulating projection 32a) contacts the movable member 20 (projection 20b).
  • a first biasing force (first restoring force) of the first biasing member 24 is greater than a second biasing force (second restoring force) of the second biasing member 35 . Therefore, the movable member 20 and the movable core 21 do not move toward the fixed core 11 .
  • the movable member 20 (movable bar 20a) remains in contact with the partition plate 47 (projection 47b).
  • the electromagnetic switch 1c is in the first state (open state) in which the movable contacts 37a and 37b are separated from the fixed contacts 27a and 27b.
  • the external power supply 150 is switched from off to on.
  • a current is supplied from the external power supply 150 to the operating coil 13 to excite the operating coil 13 .
  • the operation coil 13 generates an electromagnetic force capable of moving the movable core 21 and the movable member 20 toward the fixed core 11 against the first biasing force of the first biasing member 24 .
  • the movable core 21 and the movable member 20 move toward the fixed core 11 .
  • the second biasing member 35 moves the movable contacts 37a, 37b and the movable member 30 toward the fixed contacts 27a, 27b.
  • the movable contacts 37a, 37b come into contact with the fixed contacts 27a, 27b, and the electromagnetic switch 1c is closed.
  • the main current flows from the power supply side terminal 110 via the fixed contact 26a, the fixed contact 27a, the movable contact 37a, the movable contact 31, the movable contact 37b, the fixed contact 27b, the fixed contact 26b and the trip coil 60 to the load. It flows to side terminal 111 .
  • the movable core 21 and the movable member 20 move further toward the fixed core 11 .
  • the movable core 21 collides with the fixed core 11 and comes into contact with the fixed core 11 .
  • the electromagnetic switch 1c is in a third state in which the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b (closed state) and the movable core 21 is in contact with the fixed core 11.
  • the buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11 .
  • the movable core 21 and the fixed core 11 receive a restoring force from the buffer member 12 . Due to this restoring force, the movable core 21 and the fixed core 11 may move slightly upward.
  • the movable member 20 is arranged with a gap G from the movable member 30 when the movable core 21 is brought into contact with the fixed core 11 by exciting the operation coil 13 . Therefore, it is possible to prevent the contact bounce from occurring due to the shock caused by the collision between the movable core 21 and the fixed core 11 and the restoring force of the buffer member 12 .
  • the energy of arcs generated between the movable contacts 37a, 37b and the fixed contacts 27a, 27b when the movable core 21 and the fixed core 11 collide is reduced. Wear of the movable contacts 37a, 37b and fixed contacts 27a, 27b in the third state of the electromagnetic switch 1c can be reduced or eliminated.
  • the electromagnetic switch 1c When the electromagnetic switch 1c is in the third state as shown in FIG. 11, the external power source 150 (see FIG. 12) is switched off. Current is no longer supplied to the operating coil 13 .
  • the first biasing member 24 moves the movable member 20 and the movable core 21 away from the fixed core 11 .
  • the movable member 20 contacts the movable member 30 .
  • the movable member 20 and the movable member 30 move further away from the fixed core 11 .
  • the movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b.
  • the electromagnetic switch 1c will be in an open state.
  • the movable member 20 and the movable member 30 move further away from the fixed core 11 .
  • the movable member 20 (movable bar 20a) contacts the partition plate 47 (projection 47b). Movement of the movable member 20 and the movable member 30 stops.
  • overcurrent may flow through the electromagnetic switch 1c.
  • the electromagnetic switch 1c is forcibly opened (trip state).
  • the overcurrent is, for example, a current that flows when a load (not shown) connected to the load-side terminal 111 is short-circuited, or a current that flows when the load-side terminal 111 is grounded.
  • a ground fault of the load terminal 111 means that the load terminal 111 is electrically connected to the ground via an impedance formed between the load terminal 111 and the ground.
  • the electromagnetic switch 1c When the handle 81 is in the ready state and the electromagnetic switch 1c is in the third state, the electromagnetic switch 1c is in the closed state.
  • normal current flows through the electromagnetic switch 1c
  • normal current flows through the trip coil 60 connected to the fixed contact 26b.
  • a magnetic field is generated in the trip coil 60 . Due to this magnetic field, an attractive force acts on the plunger 61 to move the plunger 61 toward the trip coil 60 .
  • the attractive force acting on the plunger 61 when a normal current is flowing through the trip coil 60 is weaker than the biasing force (restoring force) of the plunger pressing spring 62 . Therefore, the lower end of plunger 61 is at the farthest position from trip coil 60 .
  • the trip coil 60 When an overcurrent flows through the electromagnetic switch 1c, the trip coil 60 generates a strong magnetic field. Due to this stronger magnetic field, a greater attractive force acts on plunger 61 . Therefore, the plunger 61 moves toward one end of the load-side terminal 111 against the restoring force of the plunger pressing spring 62 .
  • the link rod 63 rotates counterclockwise around the pin 64.
  • the mag bar 83 is rotated clockwise around the pin 84 by the link rod 63 .
  • the latch 85 rotates counterclockwise around the pin 85a by the mag bar 83 (protrusion 83b).
  • the tip of lever 86 is disengaged from latch 85 .
  • the handle 81 rotates clockwise around the pin 81a.
  • a restoring force of a torsion spring (not shown) provided on the pin 81a can be used.
  • the handle 81 switches to the trip state.
  • the handle 81 is positioned between the first position of the handle 81 in the off state and the second position of the handle 81 in the ready state.
  • the lever 86 rotates counterclockwise around the pin 81a.
  • the U-shaft 87 and the upper link 88 move upward.
  • a lower link 89 connected to the upper link 88 moves upward and to the right.
  • An arm 90 connected to the lower link 89 rotates clockwise around an arm pin 91 .
  • the opening lever 82 connected to the arm 90 via the arm link pin 92 rotates counterclockwise around the pin 93 .
  • One end 82a of the opening lever 82 pushes down the movable member 30 (insulating projection 32a). In this way, the electromagnetic switch 1c will be in an open state.
  • the switch lever 95 When the arm 90 rotates clockwise around the arm pin 91, the switch lever 95 also rotates clockwise. The switch lever 95 leaves the operating coil switch 94 . The operating coil switch 94 is turned off. The supply of current from the external power supply 150 to the operating coil 13 is stopped.
  • the first biasing member 24 moves the movable member 20 and the movable core 21 away from the fixed core 11 .
  • the movable member 20 contacts the movable member 30 .
  • the movable member 20 and the movable member 30 move further away from the fixed core 11 .
  • the movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b.
  • the electromagnetic switch 1c will be in an open state.
  • the movable member 20 and the movable member 30 move further away from the fixed core 11 .
  • the movable member 20 (movable bar 20a) contacts the partition plate 47 (projection 47b). Movement of the movable member 20 and the movable member 30 stops.
  • the electromagnetic switch 1c of the present embodiment has the following effects in addition to the effects of the electromagnetic switch 1 of the first embodiment.
  • the electromagnetic switch 1c of the present embodiment further includes a pair of fixed contacts 26a, 26b, a second stopper (projection 47b), a trip coil 60, a plunger 61, and an opening lever 82.
  • a pair of stationary contacts 27a and 27b are provided on the pair of stationary contacts 26a and 26b.
  • the second stopper restricts movement of the first movable member (movable member 20) toward the second movable member (movable member 30).
  • the trip coil 60 is connected to one of the pair of fixed contacts 26a, 26b (for example, the fixed contact 26b).
  • Plunger 61 can be moved by the electromagnetic force generated in trip coil 60 when an overcurrent flows through trip coil 60 .
  • the opening lever 82 can move the second movable member away from the first movable member in conjunction with the plunger 61 .
  • Embodiment 4 An electromagnetic switch 1d according to Embodiment 4 will be described with reference to FIGS. 14 to 19.
  • FIG. An electromagnetic switch 1d of the present embodiment has a configuration similar to that of the electromagnetic switch 1 of Embodiment 3, but differs mainly in the following points.
  • the electromagnetic switch 1d includes a fixed core 154 instead of the fixed core 11 (see FIG. 9).
  • the electromagnetic switch 1d includes a movable core 165 instead of the movable member 20 (see FIG. 9) and the movable core 21 (see FIG. 9).
  • the electromagnetic switch 1 d further includes a magnetic pole plate 160 and a permanent magnet 161 .
  • the electromagnetic switch 1 d has an electromagnet 170 composed of a fixed iron core 154 , a movable iron core 165 , a magnetic pole plate 160 , a permanent magnet 161 and an operating coil 13 .
  • the electromagnet 170 is driven with direct current.
  • 15, 16 and 19 are schematic diagrams of the electromagnet 170 of the electromagnetic switch 1d.
  • the electromagnetic switch 1d does not have a buffer member 12 (see FIG. 9).
  • the fixed core 154 has the shape of a hollow case. As shown in FIGS. 15 , 16 and 19 , fixed core 154 includes plate member 155 , plate member 156 facing plate member 155 , and side walls 157 . Side wall 157 is connected to plate members 155 and 156 . The plate member 155 is provided with a through hole 155a. A plate member 156 is provided with a through hole 156a. As shown in FIGS. 14, 17 and 18, the fixed core 154 is sandwiched between the insulating spacer 15 and the projecting portion 47b. The plate member 155 is provided on the protrusion 47b. A plate member 156 is provided on the insulating spacer 15 .
  • the stationary core 154 is made of silicon steel, for example.
  • the movable core 165 includes a core rod 166 and core plates 167 and 168.
  • the movable iron core 165 is made of, for example, a silicon steel plate.
  • Core bar 166 includes an end 166a and an end 166b opposite end 166a.
  • the end portion 166 a is the end portion of the plate member 155 , the core plate 167 or the core rod 166 close to the movable member 30 .
  • the end 166 b is the end of the core bar 166 that is closer to the plate member 156 or core plate 168 and farther from the movable member 30 .
  • the core rod 166 extends from the inside of the fixed core 154 to the outside of the fixed core 154 through the through hole 155a. As shown in FIGS. 18 and 19, when the operating coil 13 is energized, the end 166b of the core rod 166 enters the through hole 156a.
  • the core plates 167 and 168 are fixed to the core rod 166. Specifically, the core plate 167 is fixed to the end portion 166 a of the core rod 166 . The core plate 168 is fixed to the end portion 166b of the core rod 166. As shown in FIG. The core plate 167 is located outside the fixed core 154 and faces the outer surface of the plate member 155 . The core plate 168 is inside the fixed core 154 and faces the inner surface of the plate member 156 .
  • the magnetic pole plate 160 is arranged inside the fixed core 154. As shown in FIG. Magnetic pole plate 160 is arranged between core bar 166 and side wall 157 of fixed core 154 . The magnetic pole plate 160 extends along the longitudinal direction (z direction) of the core rod 166 . The pole plate 160 includes an end 160a. The end 160 a is the end of the pole plate 160 that is closer to the plate member 156 , the core plate 168 , or the end 166 b of the core rod 166 and farther from the movable member 30 . As shown in FIGS.
  • the first biasing force of the first biasing member 24 causes the core plate 168 of the movable core 165 to move toward the end 160a of the magnetic pole plate 160. abut.
  • the magnetic pole plate 160 regulates movement of the movable core 165 toward the movable member 30 and functions as a stopper for the movable core 165 .
  • the magnetic pole plate 160 is made of silicon steel, for example.
  • the permanent magnet 161 is arranged inside the fixed core 154 .
  • Permanent magnet 161 is arranged between side wall 157 of fixed core 154 and magnetic pole plate 160 .
  • permanent magnet 161 includes a pole face 162 and a pole face 163 opposite pole face 162 .
  • Pole face 162 faces side wall 157 .
  • the pole face 163 faces the pole plate 160 .
  • Pole face 163 has an opposite polarity to pole face 162 .
  • pole face 162 is the north pole face and pole face 163 is the south pole face.
  • the first biasing member 24 is connected to the end 166b of the core rod 166 and the upper case 7 of the housing 5. Specifically, one end of the first biasing member 24 is attached to a spring receiver provided on the end portion 166 b of the core rod 166 . The other end of the first biasing member 24 is attached to a spring retainer (not shown) provided on the upper case 7 of the housing 5 .
  • the first biasing member 24 biases the movable core 165 in a direction (+z direction in FIGS. 14 to 19) in which the core plate 167 separates from the plate member 155 of the fixed core 154 .
  • the operating coil 13 is arranged inside the fixed core 11. As shown in FIGS. The operating coil 13 is arranged between the core rod 166 and the magnetic pole plate 160 .
  • the operation coil 13 generates an electromagnetic force capable of moving the movable core 165 in the direction (-z direction) in which the core plate 167 approaches the plate member 155 of the fixed core 154 against the first biasing force of the first biasing member 24. can occur.
  • the movable core 165 is arranged with a gap G from the movable member 30. be.
  • the insulating projection 32 a of the movable member 30 protrudes from the movable contactor 31 toward the movable iron core 165 .
  • the insulating protrusion 32 a protrudes from the movable contactor 31 toward the end portion 166 a of the core rod 166 or the core plate 167 .
  • FIG. 12 and 14 to 19 The operation and effect of the electromagnetic switch 1d of the present embodiment will be described with reference to FIGS. 12 and 14 to 19.
  • FIG. The operation and action of the electromagnetic switch 1d of the present embodiment are the same as those of the electromagnetic switch 1c of the third embodiment, as described below.
  • the handle 81 goes from the off state to the ready state.
  • the movable contacts 37a and 37b are separated from the fixed contacts 27a and 27b, and the electromagnetic switch 1d is open.
  • FIGS. 17 and 18 when the handle 81 is in the ready state and the external power supply 150 is in the ON state, the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b.
  • the electromagnetic switch 1d is in the closed state.
  • FIGS. 14 and 15 when handle 81 is rotated counterclockwise, one end 82a of opening lever 82 moves toward movable member 30 (insulating projection 32a) as in the third embodiment. ).
  • the second biasing member 35 moves the movable member 30 and the movable contacts 37a, 37b toward the fixed contacts 27a, 27b.
  • the movable member 30 (insulation protrusion 32 a ) contacts the movable core 165 .
  • a first biasing force (first restoring force) of the first biasing member 24 is greater than a second biasing force (second restoring force) of the second biasing member 35 .
  • the electromagnetic switch 1d is in the first state (open state) in which the movable contacts 37a and 37b are separated from the fixed contacts 27a and 27b.
  • the arm 90 rotates counterclockwise around the arm pin 91 as in the third embodiment, and the switch lever 95 provided on the arm 90 operates as an operation coil switch. Press 94 (see FIGS. 12 and 14). The operating coil switch 94 is turned on.
  • the external power supply 150 is switched from off to on.
  • a current is supplied from the external power supply 150 to the operating coil 13 to excite the operating coil 13 .
  • the operation coil 13 generates an electromagnetic force capable of moving the movable core 165 in the direction (-z direction) in which the core plate 167 approaches the plate member 155 of the fixed core 154 against the first biasing force of the first biasing member 24. generate.
  • the direction of the magnetic lines of force of the operating coil 13 is opposite to the direction of the magnetic lines of force of the permanent magnet 161 (see dotted lines in FIG. 16). Therefore, the magnetic force of the operating coil 13 cancels the magnetic force of the permanent magnet 161 .
  • the core plate 167 is attracted toward the plate member 155 of the fixed core 154 . Due to the attractive force of the magnetic force of the operation coil and the second biasing force of the second biasing member 35, the core plate 167 approaches the plate member 155 of the fixed core 154 while the movable core 165 and the movable member 30 are kept in contact with each other. (-z direction). The movable contacts 37a, 37b move toward the fixed contacts 27a, 27b.
  • the movable contacts 37a, 37b come into contact with the fixed contacts 27a, 27b, and the electromagnetic switch 1d is closed.
  • the main current flows from the power supply side terminal 110 via the fixed contact 26a, the fixed contact 27a, the movable contact 37a, the movable contact 31, the movable contact 37b, the fixed contact 27b, the fixed contact 26b and the trip coil 60 to the load. It flows to side terminal 111 .
  • the movable core 165 moves further in the direction (-z direction) in which the core plate 167 approaches the plate member 155 of the fixed core 154.
  • the core plate 167 collides with the plate member 155 of the fixed core 154 and contacts the plate member 155 of the fixed core 154 .
  • the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b (closed state), and the core plate 167 of the movable core 165 is in contact with the plate member 155 of the fixed core 154.
  • a third state is entered.
  • the movable iron core 165 when the iron core plate 167 of the movable iron core 165 is brought into contact with the plate member 155 of the fixed iron core 154 by exciting the operation coil 13, the movable iron core 165 is separated from the movable member 30 by a distance G. placed. Therefore, it is possible to prevent the contact bounce from occurring due to the impact caused by the collision between the core plate 167 of the movable core 165 and the plate member 155 of the fixed core 154 .
  • the iron core plate 167 of the movable iron core 165 and the plate member 155 of the fixed iron core 154 collide, the arc energy generated between the movable contacts 37a, 37b and the fixed contacts 27a, 27b is reduced. Wear of the movable contacts 37a, 37b and fixed contacts 27a, 27b in the third state of the electromagnetic switch 1d can be reduced or eliminated.
  • the electromagnetic switch 1d of this embodiment has the following effects.
  • the electromagnetic switch 1d of this embodiment includes a fixed core 154, a movable core 165, a first biasing member 24, an operation coil 13, a pair of fixed contacts 27a and 27b, a movable member 30, and a pair of It has movable contacts 37 a and 37 b and a second biasing member 35 .
  • Movable core 165 includes core rod 166 and core plate 167 .
  • the core plate 167 is fixed to the core bar 166 and faces the fixed core 154 .
  • the first biasing member 24 biases the movable core 165 in the direction in which the core plate 167 moves away from the fixed core 154 .
  • the operation coil 13 can generate an electromagnetic force capable of moving the movable core 165 in the direction in which the core plate 167 approaches the fixed core 154 against the first biasing force of the first biasing member 24 .
  • the movable member 30 includes movable contacts 31 .
  • a pair of movable contacts 37a, 37b are provided on the movable contactor 31 and face the pair of fixed contacts 27a, 27b.
  • the second biasing member 35 biases the movable member 30 toward the pair of fixed contacts 27a and 27b.
  • the first biasing force of the first biasing member 24 is greater than the second biasing force of the second biasing member 35 of the second biasing member 35 .
  • the period of the contact bounce when the core plate 167 of the movable core 165 collides with the fixed core 154 can be shortened, or the contact bounce can be eliminated when the core plate 167 of the movable core 165 collides with the fixed core 154. . Wear of the movable contacts 37a, 37b and fixed contacts 27a, 27b due to contact bounce when the core plate 167 of the movable core 165 collides with the fixed core 154 can be reduced.
  • a movable iron core 165 is adopted instead of the movable member 20 (see FIG. 9) and the movable iron core 21 (see FIG. 9). Therefore, the number of parts that constitute the electromagnetic switch 1d can be reduced. It is possible to simplify the configuration of the electromagnetic switch 1d and reduce the cost of the electromagnetic switch 1d.
  • the movable member 30 includes insulating projections 32 a projecting from the movable contactor 31 toward the movable iron core 165 .
  • the insulating protrusion 32a is arranged between a pair of movable contacts 37a and 37b.
  • the insulating protrusion 32a can prevent arcing between the movable contacts 37a and 37b and arcing between the fixed contacts 27a and 27b. Short-circuiting of the movable contacts 37a, 37b and short-circuiting of the fixed contacts 27a, 27b due to arcing can be prevented.
  • Embodiments 1-4 disclosed this time should be considered as examples in all respects and not restrictive. As long as there is no contradiction, at least two of Embodiments 1 to 4 disclosed this time may be combined.
  • the scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.
  • Electromagnetic switch 5 Housing, 6 Lower case, 6a Mounting base, 6b Cylindrical body, 7 Upper case, 7a Opening, 8, 9 Window, 11 Fixed iron core, 12 Buffer member, 13 Operation coil , 14 coil case, 15 insulating spacer, 16, 40 stopper, 16a first main surface, 16b second main surface, 16c through hole, 20 movable member, 20a movable bar, 20b protrusion, 21 movable iron core, 24 first attachment Force members 26a, 26b Fixed contacts 27a, 27b Fixed contacts 30 Movable member 31 Movable contact 31a First surface 31b Second surface 32 Crossbar 32a Insulating protrusion 32b Hollow part 35 Second Biasing member, 37a, 37b movable contact, 41 projection, 46 partition plate, 46a through hole, 47 partition plate, 47a flat plate portion, 47b projection portion, 47c through hole, 51 power supply side grid, 52 load side grid, 53 arc runner , 54 power supply side grid fixing material, 55 power supply side grid

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)

Abstract

An electromagnetic switch (1) equipped with a fixed core (11), a movable core (21), a first movable member (20), a first biasing member (24), an operation coil (13), a pair of fixed contacts (27a, 27b), a second movable member (30), a pair of movable contacts (37a, 37b), and a second biasing member (35). When the movable core (21) contacts the fixed core (11) as a result of exciting the operation coil (13), the first movable member (20) is positioned so as to be separated from the second movable member (30) by an interval (G).

Description

電磁開閉器electromagnetic switch
 本開示は、電磁開閉器に関する。 This disclosure relates to an electromagnetic switch.
 特開昭64-3934号公報(特許文献1)は、固定鉄心と、可動鉄心と、コイルと、可動枠と、可動接触子と、一対の可動接点と、一対の固定接点とを備える電磁接触器を開示している。コイルは、可動鉄心を固定鉄心に向けて移動させる。可動接触子は、可動枠に設けられている。一対の可動接点は、可動接触子に設けられている。一対の固定接点は、一対の可動接点に対向している。可動鉄心の動作により、一対の可動接点は一対の固定接点に接触する。 Japanese Patent Laying-Open No. 64-3934 (Patent Document 1) discloses an electromagnetic contact including a fixed core, a movable core, a coil, a movable frame, a movable contact, a pair of movable contacts, and a pair of fixed contacts. Discloses equipment. The coil moves the movable core toward the fixed core. A movable contact is provided on the movable frame. A pair of movable contacts are provided on the movable contactor. A pair of fixed contacts face a pair of movable contacts. A pair of movable contacts come into contact with a pair of fixed contacts by the operation of the movable iron core.
特開昭64-3934号公報JP-A-64-3934
 特許文献1に開示された電磁接触器では、可動接点が固定接点に接触した後も、可動鉄心が固定鉄心に衝突するまで、可動鉄心は固定鉄心に向けて移動する。そのため、この電磁接触器では、閉極動作時の接点バウンスは、可動接点が固定接点に接触する第1の時点と、可動鉄心が固定鉄心に衝突する第2の時点において生じる。第1の時点から可動接点と固定接点との間に電流が流れ始めるため、第1の時点における接点バウンスに起因する可動接点及び固定接点の消耗は小さい。これに対し、第2の時点における接点バウンスは、可動鉄心が固定鉄心に衝突する振動が可動接点に伝わった時点で生じる。第1の時点から第2の時点までの間に、可動接点と固定接点との間に流れる電流は増加する。そのため、第2の時点における接点バウンスに起因する可動接点及び固定接点の消耗は、より一層大きい。 In the magnetic contactor disclosed in Patent Document 1, even after the movable contact contacts the fixed contact, the movable core moves toward the fixed core until the movable core collides with the fixed core. Therefore, in this magnetic contactor, the contact bounce during the closing operation occurs at the first point in time when the movable contact contacts the stationary contact and the second point in time when the movable core collides with the stationary core. Since the current begins to flow between the movable contact and the fixed contact from the first time point, wear of the movable contact and the fixed contact due to contact bounce at the first time point is small. On the other hand, the contact bounce at the second time point occurs when the vibration of the movable iron core colliding with the fixed iron core is transmitted to the movable contact. Between the first point in time and the second point in time, the current flowing between the movable contact and the fixed contact increases. Therefore, the consumption of the movable and stationary contacts due to the contact bounce at the second time point is even greater.
 本開示は、上記の課題を鑑みてなされたものであり、その目的は、可動鉄心が固定鉄心に衝突する時点における接点バウンスに起因する可動接点及固定接点の消耗を減少させることができる電磁開閉器を提供することである。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to reduce wear of the movable contact and the fixed contact due to contact bounce when the movable core collides with the fixed core. It is to provide a vessel.
 本開示の第一の局面の電磁開閉器は、固定鉄心と、可動鉄心と、第1可動部材と、第1付勢部材と、操作コイルと、一対の固定接点と、第2可動部材と、一対の可動接点と、第2付勢部材とを備える。可動鉄心は、固定鉄心に対向して配置されている。第1可動部材は、可動鉄心を支持している。第1付勢部材は、第1可動部材が固定鉄心から離れる方向に第1可動部材を付勢する。操作コイルは、第1付勢部材の第1付勢力に抗して第1可動部材及び可動鉄心を固定鉄心に向けて移動させ得る電磁力を発生させ得る。第2可動部材は、可動接触子を含む。一対の可動接点は、可動接触子上に設けられており、かつ、一対の固定接点に対向している。第2付勢部材は、第2可動部材を一対の固定接点に向けて付勢する。第1付勢部材の第1付勢力は、第2付勢部材の第2付勢力より大きい。操作コイルを励磁することによって可動鉄心を固定鉄心に当接させたときに、第1可動部材は第2可動部材から間隔を空けて配置されている。 An electromagnetic switch according to a first aspect of the present disclosure includes a fixed core, a movable core, a first movable member, a first biasing member, an operation coil, a pair of fixed contacts, a second movable member, A pair of movable contacts and a second biasing member are provided. The movable core is arranged to face the fixed core. The first movable member supports the movable core. The first biasing member biases the first movable member in a direction away from the fixed core. The operation coil can generate an electromagnetic force capable of moving the first movable member and the movable core toward the fixed core against the first biasing force of the first biasing member. The second movable member includes a movable contact. A pair of movable contacts are provided on the movable contact and face the pair of fixed contacts. The second biasing member biases the second movable member toward the pair of fixed contacts. The first biasing force of the first biasing member is greater than the second biasing force of the second biasing member. The first movable member is spaced apart from the second movable member when the movable core is brought into contact with the fixed core by energizing the operating coil.
 本開示の第二の局面の電磁開閉器は、固定鉄心と、可動鉄心と、第1付勢部材と、操作コイルと、一対の固定接点と、可動部材と、一対の可動接点と、第2付勢部材とを備える。可動鉄心は、鉄心棒と、鉄心板とを含む。鉄心板は、鉄心棒に固定されており、かつ、固定鉄心に面している。第1付勢部材は、鉄心板が固定鉄心から離れる方向に可動鉄心を付勢する。操作コイルは、第1付勢部材の第1付勢力に抗して鉄心板が固定鉄心に近づく方向に可動鉄心を移動させ得る電磁力を発生させ得る。可動部材は、可動接触子を含む。一対の可動接点は、可動接触子上に設けられており、かつ、一対の固定接点に対向する。第2付勢部材は、可動部材を一対の固定接点に向けて付勢する。第1付勢力は、第2付勢部材の第2付勢力より大きい。操作コイルを励磁することによって鉄心板を固定鉄心に当接させたときに、可動鉄心は可動部材から間隔を空けて配置されている。 An electromagnetic switch according to a second aspect of the present disclosure includes a fixed core, a movable core, a first biasing member, an operation coil, a pair of fixed contacts, a movable member, a pair of movable contacts, a second a biasing member. The movable core includes a core rod and core plates. The core plate is fixed to the core rod and faces the fixed core. The first biasing member biases the movable core in a direction in which the core plate moves away from the fixed core. The operation coil can generate an electromagnetic force capable of moving the movable core in a direction in which the core plate approaches the fixed core against the first biasing force of the first biasing member. The movable member includes a movable contact. A pair of movable contacts are provided on the movable contact and face the pair of fixed contacts. The second biasing member biases the movable member toward the pair of fixed contacts. The first biasing force is greater than the second biasing force of the second biasing member. The movable core is spaced apart from the movable member when the core plate is brought into contact with the fixed core by energizing the operating coil.
 本開示の第一の局面及び第二の局面の電磁開閉器によれば、可動鉄心が固定鉄心に衝突する時点における接点バウンスに起因する可動接点及び固定接点の消耗を減少させることができる。 According to the electromagnetic switch of the first aspect and the second aspect of the present disclosure, it is possible to reduce wear of the movable contact and the fixed contact due to contact bounce when the movable core collides with the fixed core.
実施の形態1の電磁開閉器(第1状態)の概略正面図である。1 is a schematic front view of an electromagnetic switch (first state) according to Embodiment 1; FIG. 実施の形態1の電磁開閉器(第2状態)の概略正面図である。2 is a schematic front view of the electromagnetic switch (second state) of Embodiment 1; FIG. 実施の形態1の電磁開閉器(第3状態)の概略正面図である。2 is a schematic front view of the electromagnetic switch (third state) of Embodiment 1; FIG. 実施の形態1の電磁開閉器(接点が摩耗した状態)の概略正面図である。1 is a schematic front view of an electromagnetic switch (with contacts worn out) according to Embodiment 1; FIG. 電源と負荷とを接続する三相ラインの各々に配置された実施の形態1の電磁開閉器において発生するアークエネルギーと、当該三相ラインの各々に配置された比較例の電磁開閉器において発生するアークエネルギーとを示す図である。Arc energy generated in the electromagnetic switch of the first embodiment arranged on each of the three-phase lines connecting the power source and the load, and arc energy generated in the electromagnetic switch of the comparative example arranged on each of the three-phase lines. FIG. 4 is a diagram showing arc energy; 実施の形態2の電磁開閉器(第1状態)の概略正面図である。FIG. 10 is a schematic front view of the electromagnetic switch (first state) of Embodiment 2; 実施の形態2の電磁開閉器(第2状態)の概略正面図である。FIG. 8 is a schematic front view of the electromagnetic switch (second state) of Embodiment 2; 実施の形態2の電磁開閉器(第3状態)の概略正面図である。FIG. 8 is a schematic front view of the electromagnetic switch (third state) of Embodiment 2; 実施の形態3の電磁開閉器(第1状態)の概略正面図である。FIG. 11 is a schematic front view of an electromagnetic switch (first state) according to Embodiment 3; 実施の形態3の電磁開閉器(第2状態)の概略正面図である。FIG. 11 is a schematic front view of the electromagnetic switch (second state) of Embodiment 3; 実施の形態3の電磁開閉器(第3状態)の概略正面図である。FIG. 11 is a schematic front view of an electromagnetic switch (third state) according to Embodiment 3; 実施の形態3及び実施の形態4の電磁開閉器における操作コイルへ電流を供給するための回路図である。FIG. 11 is a circuit diagram for supplying current to an operation coil in the electromagnetic switch of Embodiments 3 and 4; 実施の形態3の電磁開閉器(トリップ状態)の概略正面図である。FIG. 11 is a schematic front view of an electromagnetic switch (in a trip state) according to Embodiment 3; 実施の形態4の電磁開閉器(第1状態)の概略断面図である。FIG. 11 is a schematic cross-sectional view of an electromagnetic switch (first state) according to Embodiment 4; 実施の形態4の電磁開閉器(第1状態)の概略部分拡大図である。FIG. 11 is a schematic partial enlarged view of an electromagnetic switch (first state) of Embodiment 4; 実施の形態4の電磁開閉器の概略部分拡大図である。FIG. 11 is a schematic partial enlarged view of an electromagnetic switch of Embodiment 4; 実施の形態4の電磁開閉器(第2状態)の概略断面図である。FIG. 11 is a schematic cross-sectional view of an electromagnetic switch (second state) according to Embodiment 4; 実施の形態4の電磁開閉器(第3状態)の概略断面図である。FIG. 11 is a schematic cross-sectional view of an electromagnetic switch (third state) according to Embodiment 4; 実施の形態4の電磁開閉器(第3状態)の概略部分拡大図である。FIG. 12 is a schematic partial enlarged view of the electromagnetic switch (third state) of Embodiment 4;
 以下、本開示の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。 An embodiment of the present disclosure will be described below. In addition, the same reference numerals are given to the same configurations, and the description thereof will not be repeated.
 実施の形態1.
 図1から図5を参照して、実施の形態1の電磁開閉器1を説明する。電磁開閉器1は、固定鉄心11と、可動鉄心21と、可動部材20と、第1付勢部材24と、操作コイル13と、一対の固定接点27a,27bと、一対の固定接触子26a,26bと、可動部材30と、一対の可動接点37a,37bと、第2付勢部材35と、筐体5とを主に備える。電磁開閉器1は、ストッパ16と、緩衝部材12とをさらに備えてもよい。
Embodiment 1.
An electromagnetic switch 1 according to Embodiment 1 will be described with reference to FIGS. 1 to 5. FIG. The electromagnetic switch 1 includes a fixed core 11, a movable core 21, a movable member 20, a first biasing member 24, an operation coil 13, a pair of fixed contacts 27a and 27b, a pair of fixed contacts 26a, 26b, a movable member 30, a pair of movable contacts 37a and 37b, a second biasing member 35, and a housing 5 are mainly provided. The electromagnetic switch 1 may further include a stopper 16 and a buffer member 12 .
 筐体5は、固定鉄心11と、可動鉄心21と、可動部材20と、第1付勢部材24と、操作コイル13と、固定接点27a,27bと、固定接触子26a,26bの一部と、可動部材30と、可動接点37a,37bと、第2付勢部材35とを収容する。筐体5は、ストッパ16と、緩衝部材12とをさらに収容してもよい。筐体5は、下ケース6と、上ケース7とを含む。下ケース6は、取付台6aと、取付台6a上に設けられている筒体6bとを含む。取付台6aの表面は、x方向と、x方向に垂直なy方向とに延在している。取付台6aの表面の法線は、x方向及びy方向に垂直なz方向に延在している。筐体5は、例えば、絶縁樹脂(例えば、ナイロン66、ナイロン6、ナイロンまたはフェノール樹脂など)のような絶縁材料で形成されている。 The housing 5 includes a fixed core 11, a movable core 21, a movable member 20, a first biasing member 24, an operation coil 13, fixed contacts 27a and 27b, and parts of fixed contacts 26a and 26b. , the movable member 30, the movable contacts 37a and 37b, and the second biasing member 35. As shown in FIG. Housing 5 may further accommodate stopper 16 and buffer member 12 . Housing 5 includes a lower case 6 and an upper case 7 . The lower case 6 includes a mount 6a and a cylindrical body 6b provided on the mount 6a. The surface of the mount 6a extends in the x-direction and in the y-direction perpendicular to the x-direction. The normal to the surface of the mount 6a extends in the z-direction perpendicular to the x- and y-directions. The housing 5 is made of, for example, an insulating material such as insulating resin (for example, nylon 66, nylon 6, nylon, phenolic resin, or the like).
 固定鉄心11は、例えば、互いに積層されている複数のケイ素鋼板によって形成されている。固定鉄心11は、筐体5(例えば、取付台6a)に固定されている。固定鉄心11は、緩衝部材12を介して、筐体5(例えば、取付台6a)に固定されてもよい。緩衝部材12は、可動鉄心21が固定鉄心11に衝突したときに撓むまたは縮むことにより、可動鉄心21と固定鉄心11との衝突による衝撃を吸収する。本実施の形態では、緩衝部材12は、例えば、板ばねである。緩衝部材12は、コイルばねであってもよいし、ゴム製のクッションであってもよい。 The fixed core 11 is formed of, for example, a plurality of silicon steel plates laminated together. The fixed core 11 is fixed to the housing 5 (for example, the mount 6a). The fixed core 11 may be fixed to the housing 5 (for example, the mount 6a) via the cushioning member 12 . The buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11 by bending or contracting when the movable core 21 collides with the fixed core 11 . In this embodiment, the cushioning member 12 is, for example, a leaf spring. The buffer member 12 may be a coil spring or a rubber cushion.
 可動鉄心21は、例えば、互いに積層されている複数のケイ素鋼板によって形成されている。可動鉄心21は、固定鉄心11に対向して配置されている。可動鉄心21は、例えば、取付台6aの法線方向(z方向)に沿って移動可能である。 The movable core 21 is formed of, for example, a plurality of silicon steel plates that are laminated together. The movable core 21 is arranged to face the fixed core 11 . The movable core 21 is movable, for example, along the normal direction (z direction) of the mount 6a.
 可動部材20は、可動鉄心21とともに、例えば、取付台6aの法線方向(z方向)に沿って移動可能である。可動部材20は、例えば、可動バー20aと、突出部20bとを含む。可動部材20は、可動鉄心21を支持している。具体的には、可動鉄心21は、可動バー20aのうち固定鉄心11に面する表面に固定されている。突出部20bは、可動バー20aのうち固定鉄心11に面する表面とは反対側の表面(可動バー20aのうち可動部材30に対向する表面)から突出している。可動部材20は、例えば、絶縁樹脂(例えば、フェノール樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂またはナイロン樹脂など)のような絶縁材料で形成されている。 The movable member 20 is movable along with the movable iron core 21, for example, along the normal direction (z direction) of the mount 6a. The movable member 20 includes, for example, a movable bar 20a and a protrusion 20b. The movable member 20 supports the movable iron core 21 . Specifically, the movable core 21 is fixed to the surface of the movable bar 20 a facing the fixed core 11 . The protrusion 20b protrudes from the surface of the movable bar 20a opposite to the surface facing the fixed core 11 (the surface of the movable bar 20a facing the movable member 30). The movable member 20 is made of, for example, an insulating material such as insulating resin (for example, phenolic resin, acrylonitrile-butadiene-styrene (ABS) resin, or nylon resin).
 第1付勢部材24は、可動部材20が固定鉄心11から離れる方向に、可動部材20を付勢する。第1付勢部材24は、例えば、圧縮ばね(すなわち、圧縮されていてエネルギーが蓄積されているばね)である。第1付勢部材24の第1付勢力(第1復元力)は、第2付勢部材35の第2付勢力(第2復元力)より大きい。第1付勢部材24の一端は、可動部材20(特定的には、可動バー20a)に固定されている。第1付勢部材24の他端は、例えば、コイルケース14に固定されている。具体的には、第1付勢部材24の一端は、可動部材20(特定的には、可動バー20a)上に設けられているばね受けに取り付けられている。第1付勢部材24の他端は、例えば、コイルケース14上に設けられているばね受けに取り付けられている。 The first biasing member 24 biases the movable member 20 in a direction away from the fixed core 11 . The first biasing member 24 is, for example, a compression spring (ie, a spring that is compressed and has energy stored in it). A first biasing force (first restoring force) of the first biasing member 24 is greater than a second biasing force (second restoring force) of the second biasing member 35 . One end of the first biasing member 24 is fixed to the movable member 20 (specifically, the movable bar 20a). The other end of the first biasing member 24 is fixed to the coil case 14, for example. Specifically, one end of the first biasing member 24 is attached to a spring receiver provided on the movable member 20 (specifically, the movable bar 20a). The other end of the first biasing member 24 is attached to, for example, a spring receiver provided on the coil case 14 .
 操作コイル13は、コイルケース14に収容されている。操作コイル13及びコイルケースは、下ケース6(取付台6a)に固定されている。コイルケース14は、例えば、絶縁材料で形成されている。操作コイル13は、第1付勢部材24の第1付勢力に抗して可動部材20及び可動鉄心21を固定鉄心11に向けて移動させ得る電磁力を発生させ得る。操作コイル13に電流を供給することによって、操作コイル13は、第1付勢部材24の第1付勢力に抗して可動部材20及び可動鉄心21を固定鉄心11に向けて移動させ得る電磁力を発生させる。 The operation coil 13 is housed in the coil case 14. The operating coil 13 and the coil case are fixed to the lower case 6 (mounting base 6a). The coil case 14 is made of, for example, an insulating material. The operation coil 13 can generate an electromagnetic force capable of moving the movable member 20 and the movable core 21 toward the fixed core 11 against the first biasing force of the first biasing member 24 . By supplying current to the operation coil 13, the operation coil 13 generates an electromagnetic force capable of moving the movable member 20 and the movable iron core 21 toward the fixed iron core 11 against the first biasing force of the first biasing member 24. generate
 ストッパ16は、可動部材30に向けた可動部材20の移動を規制する。ストッパ16は、例えば、絶縁材料で形成されている。ストッパ16は、筐体5(下ケース6(筒体6b))に固定されている。ストッパ16は、例えば、固定板である。ストッパ16は、第1主面16aと、第1主面16aとは反対側の第2主面16bとを含む。第1主面16aは、可動バー20aに面している。可動部材20(可動バー20a)がストッパ16の第1主面16aに当接することによって、可動部材30に向けた可動部材20の移動は停止する。第2主面16bは、固定接触子26a,26bに面している。第2主面16bは、可動接触子31に対向している。 The stopper 16 regulates the movement of the movable member 20 toward the movable member 30. The stopper 16 is made of, for example, an insulating material. The stopper 16 is fixed to the housing 5 (lower case 6 (cylinder 6b)). The stopper 16 is, for example, a fixed plate. Stopper 16 includes a first major surface 16a and a second major surface 16b opposite to first major surface 16a. The first main surface 16a faces the movable bar 20a. When the movable member 20 (movable bar 20a) comes into contact with the first main surface 16a of the stopper 16, the movement of the movable member 20 toward the movable member 30 stops. The second main surface 16b faces fixed contacts 26a and 26b. The second principal surface 16 b faces the movable contact 31 .
 ストッパ16には、貫通孔16cが設けられている。図1に示されるように、貫通孔16c内に、可動部材20の一部(例えば、突出部20b)が位置し得る。図2及び図3に示されるように、貫通孔16c内に、可動部材30一部(例えば、絶縁突起32a)が位置し得る。 The stopper 16 is provided with a through hole 16c. As shown in FIG. 1, a portion of movable member 20 (eg, projection 20b) may be positioned within through hole 16c. As shown in FIGS. 2 and 3, a portion of movable member 30 (eg, insulating protrusion 32a) may be positioned within through hole 16c.
 固定接触子26a,26bは、例えば、筐体5に固定されている。固定接触子26a,26bは、例えば、下ケース6(筒体6b)と上ケース7とによって挟持されている。固定接触子26a,26bは、筐体5を貫通しており、筐体5の内部から筐体5の外部に延在している。固定接触子26a,26bは、銅、鉄、銅合金または鉄合金のような導電材料で形成されている。固定接触子26a,26bは、例えば、ストッパ16(第2主面16b)上に配置されている。 The fixed contacts 26a and 26b are fixed to the housing 5, for example. The fixed contacts 26a and 26b are sandwiched between, for example, the lower case 6 (cylindrical body 6b) and the upper case 7. As shown in FIG. The fixed contacts 26 a and 26 b penetrate the housing 5 and extend from the inside of the housing 5 to the outside of the housing 5 . The stationary contacts 26a, 26b are made of a conductive material such as copper, iron, copper alloys or iron alloys. The stationary contacts 26a and 26b are arranged, for example, on the stopper 16 (second main surface 16b).
 固定接点27a,27bは、固定接触子26a,26b上に設けられている。固定接点27a,27bは、銀合金のような導電材料で形成されている。固定接点27a,27bは、固定接触子26a,26bに電気的に接続されている。固定接点27a,27bは、ロー付けまたはかしめなどによって、固定接触子26a,26b上に設けられてもよい。固定接点27a,27bは、固定接触子26a,26bと一体成形されてもよい。 The fixed contacts 27a, 27b are provided on the fixed contacts 26a, 26b. Fixed contacts 27a and 27b are made of a conductive material such as a silver alloy. The fixed contacts 27a, 27b are electrically connected to the fixed contacts 26a, 26b. The fixed contacts 27a, 27b may be provided on the fixed contacts 26a, 26b by brazing or caulking. The fixed contacts 27a, 27b may be integrally formed with the fixed contacts 26a, 26b.
 可動部材30は、可動鉄心21及び可動部材20の移動方向(z方向)に沿って移動可能である。可動部材30は、可動接触子31を含む。可動接触子31は、銅、鉄、銅合金または鉄合金のような導電材料で形成されている。可動接触子31は、固定接点27a,27bに面する第1表面31aと、第1表面31aとは反対側の第2表面31bとを含む。第2表面31bは、例えば、上ケース7に面している。 The movable member 30 is movable along the movement direction (z direction) of the movable iron core 21 and the movable member 20 . The movable member 30 includes movable contacts 31 . Movable contact 31 is made of a conductive material such as copper, iron, copper alloy or iron alloy. The movable contact 31 includes a first surface 31a facing the fixed contacts 27a, 27b and a second surface 31b opposite the first surface 31a. The second surface 31b faces the upper case 7, for example.
 可動部材30は、クロスバー32をさらに含んでもよい。クロスバー32は、可動接触子31を保持する。クロスバー32は、例えば、絶縁樹脂(例えば、フェノール樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂またはナイロン樹脂など)のような絶縁材料で形成されている。クロスバー32は、絶縁突起32aと、中空部32bとを含む。絶縁突起32aは、可動接触子31の第1表面31a上に設けられている。絶縁突起32aは、可動接点37aと可動接点37bとの間に配置されている。絶縁突起32aは、可動部材20に向けて可動接触子31から突出している。中空部32bは、可動接触子31の第2表面31b上に設けられている。 The movable member 30 may further include a crossbar 32. The crossbar 32 holds the movable contacts 31 . The crossbar 32 is made of an insulating material such as, for example, an insulating resin (eg, phenolic resin, acrylonitrile-butadiene-styrene (ABS) resin, or nylon resin). Crossbar 32 includes an insulating protrusion 32a and a hollow portion 32b. The insulating protrusion 32 a is provided on the first surface 31 a of the movable contact 31 . The insulating protrusion 32a is arranged between the movable contact 37a and the movable contact 37b. The insulating protrusion 32 a protrudes from the movable contact 31 toward the movable member 20 . The hollow portion 32 b is provided on the second surface 31 b of the movable contact 31 .
 可動接点37a,37bは、可動接触子31(第1表面31a)上に設けられている。可動接点37a,37bは、銀合金のような導電材料で形成されている。可動接点37a,37bは、可動接触子31に電気的に接続されている。可動接点37a,37bは、ロー付けまたはかしめなどによって、可動接触子31上に設けられてもよい。可動接点37a,37bは、可動接触子31と一体成形されてもよい。可動接点37a,37bは、固定接点27a,27bに対向している。具体的には、可動接点37aは固定接点27aに対向しており、可動接点37bは固定接点27bに対向している。 The movable contacts 37a and 37b are provided on the movable contact 31 (first surface 31a). Movable contacts 37a and 37b are made of a conductive material such as a silver alloy. The movable contacts 37 a and 37 b are electrically connected to the movable contactor 31 . The movable contacts 37a and 37b may be provided on the movable contactor 31 by brazing or caulking. The movable contacts 37a and 37b may be integrally molded with the movable contactor 31 . The movable contacts 37a, 37b face the fixed contacts 27a, 27b. Specifically, the movable contact 37a faces the fixed contact 27a, and the movable contact 37b faces the fixed contact 27b.
 第2付勢部材35は、可動部材30を固定接点27a,27bに向けて付勢する。第2付勢部材35は、例えば、圧縮ばね(すなわち、圧縮されていて、エネルギーが蓄積されているばね)である。第2付勢部材35の第2付勢力(第2復元力)は、第1付勢部材24の第1付勢力(第1復元力)より小さい。第2付勢部材35の一端は、可動部材30(可動接触子31)に接触している。第2付勢部材35の他端は、例えば、筐体5(上ケース7)に接触している。具体的には、第2付勢部材35の一端は、可動部材30(可動接触子31)上に設けられているばね受けに取り付けられている。第2付勢部材35の他端は、例えば、筐体5(上ケース7)の突起に接触している。第2付勢部材35は、可動接点37a,37bと固定接点27a,27bとの間の接触を維持させ得る。 The second biasing member 35 biases the movable member 30 toward the fixed contacts 27a and 27b. The second biasing member 35 is, for example, a compression spring (ie, a spring that is compressed and has energy stored in it). The second biasing force (second restoring force) of the second biasing member 35 is smaller than the first biasing force (first restoring force) of the first biasing member 24 . One end of the second biasing member 35 is in contact with the movable member 30 (movable contactor 31). The other end of the second biasing member 35 is in contact with the housing 5 (upper case 7), for example. Specifically, one end of the second biasing member 35 is attached to a spring receiver provided on the movable member 30 (movable contactor 31). The other end of the second biasing member 35 is in contact with, for example, a projection of the housing 5 (upper case 7). The second biasing member 35 can maintain contact between the movable contacts 37a, 37b and the fixed contacts 27a, 27b.
 図3を参照して、操作コイル13を励磁することによって可動鉄心21を固定鉄心11に当接させたときに、可動部材20は可動部材30から間隔Gを空けて配置される。間隔Gは、0.1mm以上であってもよく、0.2mm以上であってもよい。間隔Gは、5.0mm以下であってもよい。間隔Gは、固定接点27a,27bの第1厚さt1と可動接点37a,37bの第2厚さt2との和より大きい。固定接点27a,27bの第1厚さt1は、電磁開閉器1が新品のときの固定接点27a,27bの厚さである。可動接点37a,37bの第2厚さt2は、電磁開閉器1が新品のときの可動接点37a,37bの厚さである。そのため、図4に示されるように、固定接点27a,27b及び可動接点37a,37bが完全に摩耗するまで、操作コイル13を励磁することによって可動鉄心21を固定鉄心11に当接させたときに、可動部材20を可動部材30から離間させ続けることができる。 Referring to FIG. 3 , when movable core 21 is brought into contact with fixed core 11 by energizing operation coil 13 , movable member 20 is arranged at a distance G from movable member 30 . The gap G may be 0.1 mm or more, or may be 0.2 mm or more. The gap G may be 5.0 mm or less. The spacing G is greater than the sum of the first thickness t 1 of the fixed contacts 27a, 27b and the second thickness t 2 of the movable contacts 37a, 37b. The first thickness t 1 of the fixed contacts 27a, 27b is the thickness of the fixed contacts 27a, 27b when the electromagnetic switch 1 is new. The second thickness t 2 of the movable contacts 37a, 37b is the thickness of the movable contacts 37a, 37b when the electromagnetic switch 1 is new. Therefore, as shown in FIG. 4, when the movable iron core 21 is brought into contact with the fixed iron core 11 by exciting the operation coil 13 until the fixed contacts 27a, 27b and the movable contacts 37a, 37b are completely worn, , the movable member 20 can continue to be spaced apart from the movable member 30 .
 電磁開閉器1の動作及び作用を説明する。
 図1を参照して、操作コイル13に電流を供給していない時、電磁開閉器1は、可動接点37a,37bが固定接点27a,27bから離れている第1状態(開極状態)にある。具体的には、第1付勢部材24の第1付勢力(第1復元力)は、第2付勢部材35の第2付勢力(第2復元力)より大きい。そのため、第1付勢部材24の第1付勢力によって、可動鉄心21及び可動部材20は、固定鉄心11から離れる方向(+z方向)に移動する。
The operation and action of the electromagnetic switch 1 will be described.
Referring to FIG. 1, when no current is supplied to the operating coil 13, the electromagnetic switch 1 is in a first state (open state) in which the movable contacts 37a and 37b are separated from the fixed contacts 27a and 27b. . Specifically, the first biasing force (first restoring force) of the first biasing member 24 is greater than the second biasing force (second restoring force) of the second biasing member 35 . Therefore, the first biasing force of the first biasing member 24 moves the movable core 21 and the movable member 20 away from the fixed core 11 (+z direction).
 可動部材20(突出部20b)は、可動部材30(絶縁突起32a)に接触する。可動部材30は、可動部材20とともに、固定鉄心11から離れる方向(+z方向)に移動する。可動接点37a,37bは、固定接点27a,27bから離れる。こうして、操作コイル13に電流を供給していない時、電磁開閉器1は、開極状態にある。可動部材20はストッパ16に当接して、固定接点27a,27bに向けた可動部材20の移動は停止する。 The movable member 20 (projection 20b) contacts the movable member 30 (insulating projection 32a). The movable member 30 moves along with the movable member 20 in the direction away from the fixed core 11 (+z direction). The movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b. Thus, the electromagnetic switch 1 is in the open state when no current is supplied to the operating coil 13 . The movable member 20 comes into contact with the stopper 16 and stops moving toward the fixed contacts 27a and 27b.
 図2を参照して、操作コイル13に電流を供給する。操作コイル13は、第1付勢部材24の第1付勢力に抗して可動部材20及び可動鉄心21を固定鉄心11に向けて移動させ得る電磁力を発生させる。可動鉄心21及び可動部材20は、固定鉄心11に向けて移動する。第2付勢部材35は、可動接点37a,37b及び可動部材30を、固定接点27a,27bに向けて移動させる。 A current is supplied to the operation coil 13 with reference to FIG. The operation coil 13 generates an electromagnetic force capable of moving the movable member 20 and the movable core 21 toward the fixed core 11 against the first biasing force of the first biasing member 24 . The movable core 21 and the movable member 20 move toward the fixed core 11 . The second biasing member 35 moves the movable contacts 37a, 37b and the movable member 30 toward the fixed contacts 27a, 27b.
 可動接点37a,37bが固定接点27a,27bに接触して、電磁開閉器1は、閉極状態になる。可動接点37a,37bが固定接点27a,27bに接触すると、可動接点37a,37b及び可動部材30の移動は停止する。可動接点37a,37b及び可動部材30の移動が停止した時には、可動鉄心21は依然として固定鉄心11から離れている。電磁開閉器1は、可動接点37a,37bが固定接点27a,27bに接触している(閉極状態)が、可動鉄心21は固定鉄心11から離れている第2状態になる。可動接点37a,37bが固定接点27a,27bに接触した後も、操作コイル13において発生する電磁力のため、可動鉄心21及び可動部材20は、固定鉄心11に向けて移動する。可動部材20(突出部20b)は、可動部材30(絶縁突起32a)から離れる。 The movable contacts 37a, 37b come into contact with the fixed contacts 27a, 27b, and the electromagnetic switch 1 is closed. When the movable contacts 37a, 37b contact the fixed contacts 27a, 27b, the movement of the movable contacts 37a, 37b and the movable member 30 stops. When the movable contacts 37a, 37b and the movable member 30 stop moving, the movable core 21 is still separated from the fixed core 11. FIG. The electromagnetic switch 1 is in a second state in which the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b (closed state), but the movable core 21 is separated from the fixed core 11. FIG. Even after the movable contacts 37a and 37b contact the fixed contacts 27a and 27b, the electromagnetic force generated in the operating coil 13 causes the movable core 21 and the movable member 20 to move toward the fixed core 11. FIG. The movable member 20 (protruding portion 20b) is separated from the movable member 30 (insulating projection 32a).
 可動接点37a,37bが固定接点27a,27bに衝突する際、接点バウンスが発生する。本明細書において、接点バウンスは、可動接点37a,37bが固定接点27a,27bに衝突した時の反力によって可動接点37a,37bが固定接点27a,27bから離れる方向に弾み、可動接点37a,37bが固定接点27a,27bに安定的に接触するまでに可動接点37a,37bと固定接点27a,27bとの衝突が繰り返される現象を意味する。可動接点37a,37bが固定接点27a,27bに衝突した時点から、可動接点37a,37bと固定接点27a,27bとの間に電流が流れはじめる。接点バウンスは、可動接点37a,37bと固定接点27a,27bとの間にアークを発生させる。しかし、可動接点37a,37bが固定接点27a,27bに衝突した時点では、可動接点37a,37bと固定接点27a,27bとの間に流れる電流は小さい。電磁開閉器1の第2状態において発生する接点バウンスは、可動接点37a,37b及び固定接点27a,27bをあまり消耗させない。 Contact bounce occurs when the movable contacts 37a and 37b collide with the fixed contacts 27a and 27b. In this specification, contact bounce means that the movable contacts 37a and 37b bounce away from the fixed contacts 27a and 27b due to the reaction force when the movable contacts 37a and 37b collide with the fixed contacts 27a and 27b. The collision between the movable contacts 37a, 37b and the fixed contacts 27a, 27b repeats until the contacts 27a, 27b stably come into contact with the fixed contacts 27a, 27b. When the movable contacts 37a, 37b collide with the fixed contacts 27a, 27b, current starts to flow between the movable contacts 37a, 37b and the fixed contacts 27a, 27b. Contact bounce causes an arc between the movable contacts 37a, 37b and the fixed contacts 27a, 27b. However, when the movable contacts 37a, 37b collide with the fixed contacts 27a, 27b, the current flowing between the movable contacts 37a, 37b and the fixed contacts 27a, 27b is small. The contact bounce that occurs in the second state of the electromagnetic switch 1 does not significantly wear the movable contacts 37a, 37b and the fixed contacts 27a, 27b.
 図3に示されるように、操作コイル13において発生する電磁力のため、可動鉄心21及び可動部材20は、固定鉄心11に向けてさらに移動する。可動鉄心21は、固定鉄心11に衝突して、固定鉄心11に接触する。電磁開閉器1は、可動接点37a,37bが固定接点27a,27bに接触しており(閉極状態)、かつ、可動鉄心21が固定鉄心11に接触している第3状態になる。緩衝部材12は、可動鉄心21が固定鉄心11に衝突したときに撓むまたは縮むことにより、可動鉄心21と固定鉄心11との衝突による衝撃を吸収する。撓んだまたは縮んだ緩衝部材12は、緩衝部材12の元の形に戻ろうとする。可動鉄心21及び固定鉄心11は緩衝部材12から復元力を受ける。この復元力のため、可動鉄心21及び固定鉄心11はわずかに上方に移動することがある。 As shown in FIG. 3 , due to the electromagnetic force generated in the operating coil 13 , the movable core 21 and the movable member 20 move further toward the fixed core 11 . The movable core 21 collides with the fixed core 11 and comes into contact with the fixed core 11 . The electromagnetic switch 1 is in a third state in which the movable contacts 37 a and 37 b are in contact with the fixed contacts 27 a and 27 b (closed state) and the movable core 21 is in contact with the fixed core 11 . The buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11 by bending or contracting when the movable core 21 collides with the fixed core 11 . A flexed or contracted cushioning member 12 attempts to return to the original shape of the cushioning member 12 . The movable core 21 and the fixed core 11 receive a restoring force from the buffer member 12 . Due to this restoring force, the movable core 21 and the fixed core 11 may move slightly upward.
 本実施の形態では、操作コイル13を励磁することによって可動鉄心21を固定鉄心11に当接させたときに、可動部材20は可動部材30から間隔Gを空けて配置される。そのため、可動鉄心21と固定鉄心11との衝突による衝撃及び緩衝部材12の復元力によって、接点バウンスが発生することが防止され得る。可動鉄心21と固定鉄心11との衝突時に可動接点37a,37bと固定接点27a,27bとの間に発生するアークのエネルギーが減少する。電磁開閉器1の第3状態における可動接点37a,37b及び固定接点27a,27bの消耗は、減少し得るまたは無くなり得る。 In the present embodiment, the movable member 20 is arranged with a gap G from the movable member 30 when the movable core 21 is brought into contact with the fixed core 11 by exciting the operation coil 13 . Therefore, it is possible to prevent the contact bounce from occurring due to the shock caused by the collision between the movable core 21 and the fixed core 11 and the restoring force of the buffer member 12 . The energy of arcs generated between the movable contacts 37a, 37b and the fixed contacts 27a, 27b when the movable core 21 and the fixed core 11 collide is reduced. Wear of the movable contacts 37a, 37b and fixed contacts 27a, 27b in the third state of the electromagnetic switch 1 can be reduced or eliminated.
 これに対し、比較例の電磁開閉器では、操作コイル13を励磁することによって可動鉄心21を固定鉄心11に当接させたときに、可動部材20は可動部材30に接触している。すなわち、比較例では、操作コイル13を励磁することによって可動鉄心21を固定鉄心11に当接させたときに、間隔Gはゼロである。そのため、可動鉄心21と固定鉄心11との衝突による衝撃及び緩衝部材12の復元力によって、接点バウンスが発生する。そして、電磁開閉器1の第2状態から第3状態まで移行する間に、可動接点37a,37bと固定接点27a,27bとの間に流れる電流は増加する。その結果、比較例では、可動接点37a,37bと固定接点27a,27bとの間に発生するアークのエネルギーが増加する。電磁開閉器1の第3状態において発生する接点バウンスは、可動接点37a,37b及び固定接点27a,27bを激しく消耗させる。 On the other hand, in the electromagnetic switch of the comparative example, the movable member 20 is in contact with the movable member 30 when the movable core 21 is brought into contact with the fixed core 11 by exciting the operation coil 13 . That is, in the comparative example, the gap G is zero when the movable core 21 is brought into contact with the fixed core 11 by exciting the operating coil 13 . Therefore, contact bounce occurs due to the shock caused by the collision between the movable core 21 and the fixed core 11 and the restoring force of the buffer member 12 . During the transition from the second state to the third state of the electromagnetic switch 1, the current flowing between the movable contacts 37a, 37b and the fixed contacts 27a, 27b increases. As a result, in the comparative example, the arc energy generated between the movable contacts 37a, 37b and the fixed contacts 27a, 27b increases. The contact bounce that occurs in the third state of the electromagnetic switch 1 severely wears the movable contacts 37a, 37b and the fixed contacts 27a, 27b.
 図5に示されるように、電源(図示せず)と負荷(図示せず)とに接続されている三相(R相、S相及びT相)電気配線の各々に配置された実施の形態1の電磁開閉器1において発生するアークのエネルギーは、当該三相電気配線の各々に配置された比較例の電磁開閉器において発生するアークのエネルギーより大幅に低減されている。本実施の形態の電磁開閉器1によれば、可動鉄心21が固定鉄心11に衝突する時点における接点バウンスに起因する可動接点37a,37b及び固定接点27a,27bの消耗が、減少し得る。 As shown in FIG. 5, an embodiment arranged in each of the three-phase (R-phase, S-phase and T-phase) electrical wiring connected to a power source (not shown) and a load (not shown) The energy of the arc generated in the electromagnetic switch 1 of 1 is significantly reduced than the energy of the arc generated in the electromagnetic switch of the comparative example arranged in each of the three-phase electric wiring. According to the electromagnetic switch 1 of the present embodiment, wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce when the movable core 21 collides with the fixed core 11 can be reduced.
 本実施の形態の電磁開閉器1の効果を説明する。
 本実施の形態の電磁開閉器1は、固定鉄心11と、可動鉄心21と、第1可動部材(可動部材20)と、第1付勢部材24と、操作コイル13と、一対の固定接点27a,27bと、第2可動部材(可動部材30)と、一対の可動接点37a,37bと、第2付勢部材35とを備える。可動鉄心21は、固定鉄心11に対向して配置されている。第1可動部材は、可動鉄心21を支持している。第1付勢部材24は、第1可動部材が固定鉄心11から離れる方向に第1可動部材を付勢する。操作コイル13は、第1付勢部材24の第1付勢力に抗して第1可動部材及び可動鉄心21を固定鉄心11に向けて移動させ得る電磁力を発生させ得る。第2可動部材は、可動接触子31を含む。一対の可動接点37a,37bは、可動接触子31上に設けられており、かつ、一対の固定接点27a,27bに対向している。第2付勢部材35は、第2可動部材を一対の固定接点27a,27bに向けて付勢する。第1付勢部材24の第1付勢力は、第2付勢部材35の第2付勢力より大きい。操作コイル13を励磁することによって可動鉄心21を固定鉄心11に当接させたときに、第1可動部材は第2可動部材から間隔Gを空けて配置されている。
The effect of the electromagnetic switch 1 of this embodiment will be described.
The electromagnetic switch 1 of the present embodiment includes a fixed core 11, a movable core 21, a first movable member (movable member 20), a first biasing member 24, an operation coil 13, and a pair of fixed contacts 27a. , 27b, a second movable member (movable member 30), a pair of movable contacts 37a and 37b, and a second biasing member . The movable core 21 is arranged to face the fixed core 11 . The first movable member supports movable core 21 . The first biasing member 24 biases the first movable member in a direction away from the fixed core 11 . The operation coil 13 can generate an electromagnetic force capable of moving the first movable member and the movable core 21 toward the fixed core 11 against the first biasing force of the first biasing member 24 . The second movable member includes movable contacts 31 . A pair of movable contacts 37a and 37b are provided on the movable contactor 31 and face the pair of fixed contacts 27a and 27b. The second biasing member 35 biases the second movable member toward the pair of fixed contacts 27a and 27b. The first biasing force of the first biasing member 24 is greater than the second biasing force of the second biasing member 35 . When the movable core 21 is brought into contact with the fixed core 11 by exciting the operating coil 13, the first movable member is arranged with a gap G from the second movable member.
 そのため、可動鉄心21が固定鉄心11に衝突する時点における接点バウンスの期間が短くなり得る、または、可動鉄心21が固定鉄心11に衝突する時点における接点バウンスが無くなり得る。可動鉄心21が固定鉄心11に衝突する時点における接点バウンスに起因する可動接点37a,37b及び固定接点27a,27bの消耗が、減少し得る。 Therefore, the period of contact bounce at the time when the movable core 21 collides with the fixed core 11 can be shortened, or the contact bounce at the time when the movable core 21 collides with the fixed core 11 can be eliminated. Wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce at the time when the movable core 21 collides with the fixed core 11 can be reduced.
 本実施の形態の電磁開閉器1では、上記間隔Gは、一対の固定接点27a,27bの第1厚さt1と一対の可動接点37a,37bの第2厚さt2との和より大きい。 In the electromagnetic switch 1 of the present embodiment, the gap G is larger than the sum of the first thickness t1 of the pair of fixed contacts 27a and 27b and the second thickness t2 of the pair of movable contacts 37a and 37b. .
 そのため、固定接点27a,27b及び可動接点37a,37bが完全に摩耗するまで、可動鉄心21が固定鉄心11に衝突する時点における接点バウンスに起因する可動接点37a,37b及び固定接点27a,27bの消耗が、減少し続け得る。 Therefore, until the fixed contacts 27a, 27b and the movable contacts 37a, 37b are completely worn, the wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b caused by the contact bounce at the time when the movable iron core 21 collides with the fixed iron core 11 is reduced. may continue to decrease.
 本実施の形態の電磁開閉器1では、上記間隔Gは、0.1mm以上である。
 そのため、可動鉄心21が固定鉄心11に衝突する時点における接点バウンスの期間が短くなり得る、または、可動鉄心21が固定鉄心11に衝突する時点における接点バウンスが無くなり得る。可動鉄心21が固定鉄心11に衝突する時点における接点バウンスに起因する可動接点37a,37b及び固定接点27a,27bの消耗が、より確実に減少し得る。
In the electromagnetic switch 1 of this embodiment, the interval G is 0.1 mm or more.
Therefore, the period of contact bounce at the time when the movable core 21 collides with the fixed core 11 can be shortened, or the contact bounce at the time when the movable core 21 collides with the fixed core 11 can be eliminated. Wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce when the movable core 21 collides with the fixed core 11 can be reduced more reliably.
 本実施の形態の電磁開閉器1では、上記間隔Gは、5.0mm以下である。
 電磁開閉器1が開極状態(第1状態)から閉極状態(第2状態)に遷移する途中に、第1可動部材(可動部材20)は第2可動部材(可動部材30)に衝突する。上記間隔Gが5.0mm以下であるため、第1可動部材と第2可動部材との衝突による衝撃が減少する。この衝撃に起因して第1可動部材及び第2可動部材が機械的損傷を受けることが防止され得る。
In the electromagnetic switch 1 of this embodiment, the interval G is 5.0 mm or less.
During the transition of the electromagnetic switch 1 from the open state (first state) to the closed state (second state), the first movable member (movable member 20) collides with the second movable member (movable member 30). . Since the gap G is 5.0 mm or less, the impact caused by the collision between the first movable member and the second movable member is reduced. Mechanical damage to the first movable member and the second movable member due to this impact can be prevented.
 本実施の形態の電磁開閉器1では、第2可動部材(可動部材30)は、第1可動部材(可動部材20)に向けて可動接触子31から突出する絶縁突起32aを含む。絶縁突起32aは、一対の可動接点37a,37bの間に配置されている。 In the electromagnetic switch 1 of the present embodiment, the second movable member (movable member 30) includes insulating protrusions 32a projecting from the movable contactor 31 toward the first movable member (movable member 20). The insulating protrusion 32a is arranged between a pair of movable contacts 37a and 37b.
 絶縁突起32aは、可動接点37a,37bの間にアークが発生すること、及び、固定接点27a,27bの間にアークが発生することを防止することができる。アークに起因して、可動接点37a,37bが短絡すること、及び、固定接点27a,27bが短絡することが防止され得る。 The insulating protrusion 32a can prevent arcing between the movable contacts 37a and 37b and arcing between the fixed contacts 27a and 27b. Short-circuiting of the movable contacts 37a, 37b and short-circuiting of the fixed contacts 27a, 27b due to arcing can be prevented.
 本実施の形態の電磁開閉器1は、固定鉄心11を支持する緩衝部材12をさらに備える。 The electromagnetic switch 1 of this embodiment further includes a buffer member 12 that supports the fixed iron core 11 .
 緩衝部材12は、可動鉄心21と固定鉄心11との衝突による衝撃を吸収する。そのため、緩衝部材12は、可動鉄心21が固定鉄心11に衝突する時点における接点バウンスの期間を短くし得る、または、可動鉄心21が固定鉄心11に衝突する時点における接点バウンスを無くし得る。可動鉄心21が固定鉄心11に衝突する時点における接点バウンスに起因する可動接点37a,37b及び固定接点27a,27bの消耗が、さらに減少し得る。 The buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11. Therefore, the buffer member 12 can shorten the period of contact bounce when the movable core 21 collides with the fixed core 11 or eliminate the contact bounce when the movable core 21 collides with the fixed core 11 . Wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce when the movable core 21 collides with the fixed core 11 can be further reduced.
 実施の形態2.
 図6から図8を参照して、実施の形態2の電磁開閉器1bを説明する。本実施の形態の電磁開閉器1bは、実施の形態1の電磁開閉器1と同様の構成を備えるが、主に以下の点で異なる。
Embodiment 2.
An electromagnetic switch 1b according to Embodiment 2 will be described with reference to FIGS. 6 to 8. FIG. The electromagnetic switch 1b of the present embodiment has the same configuration as the electromagnetic switch 1 of the first embodiment, but differs mainly in the following points.
 電磁開閉器1bは、ストッパ40をさらに備える。ストッパ40は、例えば、筐体5に着脱可能に設けられている。ストッパ40は、例えば、取付台6aと筒体6bとによって挟持されてもよい。ストッパ40は、可動部材30に向けた固定鉄心11の移動を規制する。ストッパ40は、例えば、筐体5の内部空間に向けて突出する突起41を含む。 The electromagnetic switch 1b further includes a stopper 40. The stopper 40 is detachably provided on the housing 5, for example. The stopper 40 may be sandwiched between, for example, the mount 6a and the cylindrical body 6b. The stopper 40 restricts movement of the fixed core 11 toward the movable member 30 . The stopper 40 includes, for example, a protrusion 41 that protrudes toward the internal space of the housing 5 .
 緩衝部材12は、コイルばねである。緩衝部材12は、板バネであってもよいし、ゴム製のクッションであってもよい。緩衝部材12は、可動鉄心21が固定鉄心11に衝突したときに撓むまたは縮むことにより、可動鉄心21と固定鉄心11との衝突による衝撃を吸収する。撓んだまたは縮んだ緩衝部材12は、緩衝部材12の元の形に戻ろうとする。固定鉄心11は、緩衝部材12の復元力を受ける。固定鉄心11と、固定鉄心11にくっついている可動鉄心21とは、可動部材30に向けて移動する。 The cushioning member 12 is a coil spring. The cushioning member 12 may be a leaf spring or a rubber cushion. The buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11 by bending or contracting when the movable core 21 collides with the fixed core 11 . A flexed or contracted cushioning member 12 attempts to return to the original shape of the cushioning member 12 . Fixed core 11 receives the restoring force of buffer member 12 . The fixed core 11 and the movable core 21 attached to the fixed core 11 move toward the movable member 30 .
 ストッパ40は、可動部材30に向けた固定鉄心11の移動を規制する。具体的には、固定鉄心11が突起41に接触すると、可動部材30に向けた固定鉄心11の移動は停止する。こうして、ストッパ40は、可動鉄心21が固定鉄心11に衝突した後、可動部材20が可動部材30から離間され続けることを確実にする。 The stopper 40 regulates the movement of the fixed core 11 toward the movable member 30. Specifically, when the fixed core 11 contacts the protrusion 41, the movement of the fixed core 11 toward the movable member 30 stops. Thus, the stopper 40 ensures that the movable member 20 continues to be separated from the movable member 30 after the movable core 21 collides with the fixed core 11 .
 本実施の形態の電磁開閉器1bは、実施の形態1の電磁開閉器1の効果に加えて、以下の効果を奏する。 The electromagnetic switch 1b of the present embodiment has the following effects in addition to the effects of the electromagnetic switch 1 of the first embodiment.
 本実施の形態の電磁開閉器1bは、第2可動部材(可動部材30)に向けた固定鉄心11の移動を規制する第1ストッパ(ストッパ40)をさらに備える。 The electromagnetic switch 1b of the present embodiment further includes a first stopper (stopper 40) that restricts movement of the fixed core 11 toward the second movable member (movable member 30).
 第1ストッパ(ストッパ40)は、可動鉄心21が固定鉄心11に衝突した後、第1可動部材(可動部材20)が第2可動部材(可動部材30)から離間され続けることを確実にする。そのため、可動鉄心21が固定鉄心11に衝突する時点における接点バウンスに起因する可動接点37a,37b及び固定接点27a,27bの消耗が、より確実に減少し得る。 The first stopper (stopper 40) ensures that the first movable member (movable member 20) continues to be separated from the second movable member (movable member 30) after the movable core 21 collides with the fixed core 11. Therefore, wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b due to contact bounce when the movable core 21 collides with the fixed core 11 can be reduced more reliably.
 実施の形態3.
 図9から図13を参照して、実施の形態3の電磁開閉器1cを説明する。電磁開閉器1cは、例えば、電源(図示せず)と負荷(図示せず)とを接続する電気配線に配置されている。本実施の形態の電磁開閉器1cは、実施の形態1の電磁開閉器1と同様の構成を備えるが、主に以下の点で異なる。電磁開閉器1cは、電源側グリッド51、電源側グリッド固定材54、負荷側グリッド52、負荷側グリッド固定材56、アークランナー53及び開閉/トリップ機構80をさらに備える。
Embodiment 3.
An electromagnetic switch 1c according to Embodiment 3 will be described with reference to FIGS. 9 to 13. FIG. The electromagnetic switch 1c is arranged, for example, in electrical wiring that connects a power source (not shown) and a load (not shown). The electromagnetic switch 1c of the present embodiment has the same configuration as the electromagnetic switch 1 of the first embodiment, but differs mainly in the following points. The electromagnetic switch 1 c further includes a power grid 51 , a power grid fixing member 54 , a load grid 52 , a load grid fixing member 56 , an arc runner 53 and an open/close/trip mechanism 80 .
 筐体5は、上ケース7と、下ケース6とを備える。下ケース6には、仕切り板46,47が設けられる。仕切り板47は、仕切り板46に対して、固定鉄心11に近位する側に配置されている。仕切り板46,47は、筐体5の内部空間を、上ケース7側の空間141と、下ケース6側の空間142とに分ける。仕切り板46,47は、固定接点27a,27b及び可動接点37a,37bの開極時に、空間142において発生するアークが、空間141に設けられる開閉/トリップ機構80などに伝わることを防ぐ。仕切り板46,47は、当該アークによって熱せられた空間142内の高温の気体(例えば、空気)が空間141に設けられる開閉/トリップ機構80などに伝わることを防ぐ。上ケース7、下ケース6及び仕切り板46,47は、絶縁樹脂(例えば、ナイロン66、ナイロン6、ナイロンまたはフェノール樹脂など)のような絶縁材料で形成されている。 The housing 5 includes an upper case 7 and a lower case 6. Partition plates 46 and 47 are provided in the lower case 6 . The partition plate 47 is arranged on the side closer to the fixed core 11 than the partition plate 46 . The partition plates 46 and 47 divide the internal space of the housing 5 into a space 141 on the upper case 7 side and a space 142 on the lower case 6 side. The partition plates 46 and 47 prevent the arc generated in the space 142 from being transmitted to the opening/closing/tripping mechanism 80 provided in the space 141 when the fixed contacts 27a and 27b and the movable contacts 37a and 37b are opened. The partition plates 46 and 47 prevent the high-temperature gas (for example, air) in the space 142 heated by the arc from being transmitted to the opening/closing/tripping mechanism 80 provided in the space 141 and the like. The upper case 7, lower case 6, and partition plates 46, 47 are made of an insulating material such as insulating resin (for example, nylon 66, nylon 6, nylon, phenolic resin, etc.).
 仕切り板47は、平板部47aと、突起部47bとを含む。平板部47aに、貫通孔47cが設けられている。突起部47bは、例えば、貫通孔47cを囲む環状部材であってもよいし、貫通孔47cを囲む複数の柱状部材であってもよい。仕切り板47(突起部47b)は、可動部材30に向けた可動部材20の移動を規制しており、実施の形態1のストッパ16に相当する。仕切り板46に、貫通孔46aが設けられている。仕切り板46の貫通孔46aは、仕切り板47の貫通孔47cに連通している。 The partition plate 47 includes a flat plate portion 47a and a projection portion 47b. A through hole 47c is provided in the flat plate portion 47a. The projecting portion 47b may be, for example, an annular member surrounding the through hole 47c, or may be a plurality of columnar members surrounding the through hole 47c. The partition plate 47 (protrusion 47b) regulates movement of the movable member 20 toward the movable member 30, and corresponds to the stopper 16 of the first embodiment. The partition plate 46 is provided with a through hole 46a. The through hole 46 a of the partition plate 46 communicates with the through hole 47 c of the partition plate 47 .
 固定接触子26aは、下ケース6の上面と、仕切り板46の上面と、仕切り板46に形成される貫通孔46aを規定する側壁と、仕切り板46の上面とは反対側の仕切り板46の下面とにわたって、設けられている。固定接触子26aは、電源側固定接触子である。固定接触子26aは、例えば、鉄または銅のような導電材料で形成されている。 The fixed contact 26a includes the upper surface of the lower case 6, the upper surface of the partition plate 46, the side wall defining the through hole 46a formed in the partition plate 46, and the partition plate 46 opposite to the upper surface of the partition plate 46. It is provided across the bottom surface. The fixed contact 26a is a power supply side fixed contact. The stationary contact 26a is made of a conductive material such as iron or copper.
 固定接触子26aの一端は、電源側端子110を構成している。電源側端子110は、下ケース6にねじこまれるねじ130を用いて、電源(図示せず)に接続されている電源側外部導体120に固定されている。電源側端子110は、電源側外部導体120に電気的に接続されている。電源側外部導体120は、例えば、バスバーである。固定接触子26aの他端は、仕切り板46の下面上に設けられている。固定接触子26aには、固定接点27aが設けられている。固定接点27aは、固定接触子26aの他端と固定接触子26aのうち貫通孔46aに面する部分との間に設けられている。 One end of the fixed contact 26a constitutes a power supply side terminal 110. The power-side terminal 110 is fixed to a power-side external conductor 120 connected to a power supply (not shown) using a screw 130 screwed into the lower case 6 . The power-side terminal 110 is electrically connected to the power-side external conductor 120 . The power supply side external conductor 120 is, for example, a bus bar. The other end of the fixed contact 26 a is provided on the lower surface of the partition plate 46 . The fixed contact 26a is provided with a fixed contact 27a. The fixed contact 27a is provided between the other end of the fixed contact 26a and a portion of the fixed contact 26a facing the through hole 46a.
 電源側グリッド51は、固定接点27a,27bと可動接点37a,37bとにおいて発生するアークを消弧し得る。電源側グリッド51は、例えば、鉄のような磁性体で形成されている。電源側グリッド51は、固定接点27a,27b及び可動接点37a,37bに対して電源側端子110に近位する側に配置されている。電源側グリッド51は、z方向に沿って、互いに離間されて配列されている。電源側グリッド固定材54は、電源側グリッド51を支持している。電源側グリッド固定材54は、例えば、絶縁性のファイバー紙で形成されている。電源側グリッド固定材54に、電源側グリッド固定材窓55が形成されている。電源側グリッド固定材窓55は、下ケース6内の高温の気体(例えば、空気)を通過させる。 The power supply side grid 51 can extinguish arcs generated at the fixed contacts 27a, 27b and the movable contacts 37a, 37b. The power supply side grid 51 is made of, for example, a magnetic material such as iron. The power supply side grid 51 is arranged on the side closer to the power supply side terminal 110 with respect to the fixed contacts 27a, 27b and the movable contacts 37a, 37b. The power supply side grids 51 are arranged apart from each other along the z direction. The power supply side grid fixing member 54 supports the power supply side grid 51 . The power supply side grid fixing member 54 is made of insulating fiber paper, for example. A power source side grid fixing member window 55 is formed in the power source side grid fixing member 54 . The power supply side grid fixing material window 55 allows high-temperature gas (for example, air) in the lower case 6 to pass through.
 下ケース6のうち、電源側グリッド固定材54に対向する部分に、窓8が形成されている。下ケース6内の高温の気体(例えば、空気)は、窓8を通って、筐体5(下ケース6)の外部に排出される。 A window 8 is formed in a portion of the lower case 6 that faces the power supply side grid fixing member 54 . High-temperature gas (for example, air) in the lower case 6 passes through the window 8 and is discharged outside the housing 5 (lower case 6).
 固定接触子26bは、負荷側端子111に近位する側の仕切り板46の上面と、仕切り板46に形成される貫通孔46aを規定する側壁と、仕切り板46の上面とは反対側の仕切り板46の下面とにわたって、設けられている。固定接触子26bは、負荷側固定接触子である。固定接触子26bの一端は、トリップコイル60に電気的に接続されている。固定接触子26bの他端は、仕切り板46の下面に設けられている。固定接触子26bには、固定接点27bが設けられている。固定接点27bは、固定接触子26bの他端と固定接触子26bのうち貫通孔46aに面する部分との間に設けられている。 The fixed contact 26b includes the upper surface of the partition plate 46 on the side proximal to the load-side terminal 111, the side wall defining the through hole 46a formed in the partition plate 46, and the partition plate 46 on the side opposite to the upper surface of the partition plate 46. It is provided over the lower surface of the plate 46 . The stationary contact 26b is a load-side stationary contact. One end of the stationary contact 26 b is electrically connected to the trip coil 60 . The other end of the fixed contact 26b is provided on the lower surface of the partition plate 46. As shown in FIG. A fixed contact 27b is provided on the fixed contact 26b. The fixed contact 27b is provided between the other end of the fixed contact 26b and a portion of the fixed contact 26b facing the through hole 46a.
 負荷側端子111は、例えば、鉄のような導電性を有する磁性体で形成されている。負荷側端子111の一端は、トリップコイル60に、電気的に接続されている。負荷側端子111は、トリップコイル60を介して、固定接触子26bに電気的に接続されている。負荷側端子111の他端は、モータのような負荷(図示せず)に接続されている。負荷側端子111の他端は、下ケース6にねじこまれるねじ131を用いて、モータのような負荷(図示せず)に接続されている負荷側外部導体121に固定されている。負荷側端子111は、負荷側外部導体121に電気的に接続されている。負荷側外部導体121は、例えば、バスバーである。 The load-side terminal 111 is made of a conductive magnetic material such as iron. One end of the load side terminal 111 is electrically connected to the trip coil 60 . The load-side terminal 111 is electrically connected to the fixed contact 26b via the trip coil 60. As shown in FIG. The other end of the load side terminal 111 is connected to a load (not shown) such as a motor. The other end of the load-side terminal 111 is fixed to a load-side outer conductor 121 connected to a load (not shown) such as a motor using a screw 131 screwed into the lower case 6 . The load-side terminal 111 is electrically connected to the load-side outer conductor 121 . The load-side outer conductor 121 is, for example, a busbar.
 負荷側グリッド52は、固定接点27a,27bと可動接点37a,37bとにおいて発生するアークを消弧し得る。負荷側グリッド52は、例えば、鉄のような磁性体で形成されている。負荷側グリッド52は、固定接点27a,27b及び可動接点37a,37bに対して負荷側端子111に近位する側に配置されている。負荷側グリッド52は、z方向に沿って、互いに離間されて配列されている。負荷側グリッド固定材56は、負荷側グリッド52を支持している。負荷側グリッド固定材56は、例えば、絶縁性のファイバー紙で形成されている。負荷側グリッド固定材56に、負荷側固定材窓57が形成されている。電源側グリッド固定材窓55は、下ケース6内の高温の気体(例えば、空気)を通過させる。 The load-side grid 52 can extinguish arcs generated at the fixed contacts 27a, 27b and the movable contacts 37a, 37b. The load-side grid 52 is made of, for example, a magnetic material such as iron. The load-side grid 52 is arranged on the side proximate to the load-side terminals 111 with respect to the fixed contacts 27a, 27b and the movable contacts 37a, 37b. The load-side grids 52 are arranged apart from each other along the z-direction. The load-side grid fixing member 56 supports the load-side grid 52 . The load-side grid fixing member 56 is made of, for example, insulating fiber paper. A load side fixing member window 57 is formed in the load side grid fixing member 56 . The power supply side grid fixing material window 55 allows high-temperature gas (for example, air) in the lower case 6 to pass through.
 下ケース6のうち、負荷側グリッド固定材56に対向する部分に、窓9が形成されている。下ケース6内の高温の気体(例えば、空気)は、窓9を通って、筐体5(下ケース6)の外部に排出される。 A window 9 is formed in a portion of the lower case 6 that faces the load-side grid fixing member 56 . High-temperature gas (for example, air) in the lower case 6 passes through the window 9 and is discharged outside the housing 5 (lower case 6).
 緩衝部材12、固定鉄心11、操作コイル13、コイルケース14、第1付勢部材24及び可動部材20は、上ケース7の空間141内に配置されている。固定鉄心11は、緩衝部材12を介して、上ケース7に固定されている。コイルケース14は、絶縁スペーサ15を介して、上ケース7に固定されている。図9から図11及び図13に示されるように、可動部材20の突出部20bの少なくとも一部は、貫通孔47c内に位置し得る。第2付勢部材35、可動部材30、可動接点37a,37b及び固定接点27a,27bは、下ケース6の空間142内に配置されている。図9から図11に示されるように、可動部材30の絶縁突起32aの少なくとも一部は、貫通孔46a,47c内に位置し得る。可動部材30の絶縁突起32aは、開極レバー82の一端82aに対向し得る。 The buffer member 12 , the fixed core 11 , the operation coil 13 , the coil case 14 , the first biasing member 24 and the movable member 20 are arranged within the space 141 of the upper case 7 . The fixed core 11 is fixed to the upper case 7 via a buffer member 12 . The coil case 14 is fixed to the upper case 7 via insulating spacers 15 . As shown in FIGS. 9-11 and 13, at least a portion of the protruding portion 20b of the movable member 20 can be positioned within the through hole 47c. The second biasing member 35 , the movable member 30 , the movable contacts 37 a and 37 b and the fixed contacts 27 a and 27 b are arranged within the space 142 of the lower case 6 . As shown in FIGS. 9-11, at least a portion of the insulating protrusion 32a of the movable member 30 can be positioned within the through holes 46a, 47c. The insulating protrusion 32 a of the movable member 30 can face one end 82 a of the opening lever 82 .
 アークランナー53は、下ケース6の空間142内に設けられている。アークランナー53は、例えば、可動接点37a,37bに対して固定接点27a,27bから遠位する側に配置されている。アークランナー53は、例えば、下ケース6に固定されている。アークランナー53は、例えば、鉄または銅のような導電材料で形成されている。 The arc runner 53 is provided inside the space 142 of the lower case 6 . Arc runner 53 is arranged, for example, on the side distal from fixed contacts 27a, 27b with respect to movable contacts 37a, 37b. The arc runner 53 is fixed to the lower case 6, for example. Arc runner 53 is made of a conductive material such as iron or copper, for example.
 アークランナー53は、可動接点37a,37bが固定接点27a,27bから離れるときに、固定接点27a,27bと可動接点37a,37bとの間に発生するアークが、可動接点37a,37b及び固定接点27a,27bから離れる方向に走行する経路である。固定接触子26a,26b、アーク及び可動接触子31が形成する電流回路によって、アークを電源側グリッド51側または負荷側グリッド52側に押すローレンツ力が、アークに作用する。さらに、電源側グリッド51及び負荷側グリッド52は磁性体で形成されているため、電源側グリッド51及び負荷側グリッド52はアークを引き寄せる。そのため、固定接点27aと可動接点37aとの間に発生するアークは、アークランナー53を通って、電源側グリッド51に移動する。固定接点27bと可動接点37bとの間に発生するアークは、アークランナー53を通って、負荷側グリッド52に移動する。 The arc runner 53 is configured to cause arcs generated between the fixed contacts 27a, 27b and the movable contacts 37a, 37b when the movable contacts 37a, 37b separate from the fixed contacts 27a, 27b. , 27b. A current circuit formed by the stationary contacts 26a and 26b, the arc, and the movable contact 31 acts on the arc to push the arc toward the power supply side grid 51 side or the load side grid 52 side. Furthermore, since the power-side grid 51 and the load-side grid 52 are made of a magnetic material, the power-side grid 51 and the load-side grid 52 attract arcs. Therefore, the arc generated between the fixed contact 27 a and the movable contact 37 a passes through the arc runner 53 and moves to the power supply side grid 51 . An arc generated between the fixed contact 27b and the movable contact 37b passes through the arc runner 53 and moves to the load side grid 52. As shown in FIG.
 図12を参照して、操作コイル13は、電気配線151を介して、外部電源150に接続されている。電気配線151には、操作コイルスイッチ94が設けられている。操作コイルスイッチ94は、外部電源150から操作コイル13への電流の供給と、当該電流の供給の停止とを切り替えるスイッチである。 With reference to FIG. 12, the operation coil 13 is connected to an external power source 150 via electrical wiring 151 . An operation coil switch 94 is provided on the electric wiring 151 . The operating coil switch 94 is a switch that switches between supplying current from the external power source 150 to the operating coil 13 and stopping the supply of the current.
 図9から図11及び図13を参照して、開閉/トリップ機構80は、トリップコイル60と、プランジャ61と、プランジャ押しばね62と、リンク棒63と、絶縁固定部材64aと、絶縁パイプ65と、ハンドル81と、開極レバー82と、マグバー83と、ラッチ85と、レバー86と、U軸87と、上リンク88と、下リンク89と、アーム90とを、主に含む。 9 to 11 and 13, the open/close/trip mechanism 80 includes a trip coil 60, a plunger 61, a plunger push spring 62, a link rod 63, an insulating fixing member 64a, and an insulating pipe 65. , a handle 81 , an opening lever 82 , a mag bar 83 , a latch 85 , a lever 86 , a U-shaft 87 , an upper link 88 , a lower link 89 and an arm 90 .
 トリップコイル60は、絶縁固定部材64aに固定されている。トリップコイル60の一端は、固定接触子26bの一端に接続されている。トリップコイル60の他端は、負荷側端子111の一端に接続されている。トリップコイル60の内側に、絶縁パイプ65が配置されている。 The trip coil 60 is fixed to an insulating fixing member 64a. One end of the trip coil 60 is connected to one end of the stationary contact 26b. The other end of the trip coil 60 is connected to one end of the load side terminal 111 . An insulating pipe 65 is arranged inside the trip coil 60 .
 絶縁パイプ65の内部に、プランジャ61が配置されている。プランジャ61は、鉄のような磁性体で形成されている。プランジャ61は、トリップコイル60に過電流が流れるときに、トリップコイル60に発生する電磁力によって、絶縁パイプ65の長手方向(z方向)に移動し得る。トリップコイル60に発生する電磁力によってプランジャ61が移動する際、プランジャ61の外周面は、絶縁パイプ65の内周面に接触する。過電流は、トリップコイル60に通常流れる電流より非常に大きい電流である。過電流は、例えば、トリップコイル60に通常流れる電流の10倍以上である。過電流の大きさは、電磁開閉器1cの用途に応じて適宜定められ得る。プランジャ61は、胴部と、胴部より大きな直径を有する頭部とを含む。プランジャ61の頭部は、プランジャ61のうちトリップコイルから遠位する部分(例えば、プランジャ61の下端部分)である。 A plunger 61 is arranged inside the insulating pipe 65 . The plunger 61 is made of a magnetic material such as iron. The plunger 61 can move in the longitudinal direction (z direction) of the insulating pipe 65 by the electromagnetic force generated in the trip coil 60 when an overcurrent flows through the trip coil 60 . When the plunger 61 is moved by the electromagnetic force generated in the trip coil 60 , the outer peripheral surface of the plunger 61 contacts the inner peripheral surface of the insulating pipe 65 . An overcurrent is a current that is much greater than the current that would normally flow through the trip coil 60 . The overcurrent is, for example, ten times or more the current normally flowing through the trip coil 60 . The magnitude of the overcurrent can be appropriately determined according to the application of the electromagnetic switch 1c. Plunger 61 includes a barrel and a head having a larger diameter than the barrel. The head of plunger 61 is the portion of plunger 61 distal from the trip coil (eg, the lower end portion of plunger 61).
 リンク棒63は、ピン64によって回転可能に支持されている。ピン64は、絶縁固定部材64aに固定されている。リンク棒63の一端は、二股に分かれており、プランジャ61の頭部を挟んでいる。プランジャ61の移動に伴い、リンク棒63はピン64を中心に回転し得る。プランジャ押しばね62の一端は、リンク棒63のうちリンク棒63の一端に近い部分に固定されている。プランジャ押しばね62の他端は、絶縁固定部材64aに固定されている。プランジャ押しばね62は、圧縮ばね(圧縮されていて、エネルギーが蓄積されているばね)である。プランジャ押しばね62は、リンク棒63を付勢して、リンク棒63を時計回り回転させ得る。 The link rod 63 is rotatably supported by a pin 64. The pin 64 is fixed to an insulating fixing member 64a. One end of the link rod 63 is bifurcated and sandwiches the head of the plunger 61 . As the plunger 61 moves, the link rod 63 can rotate around the pin 64 . One end of the plunger push spring 62 is fixed to a portion of the link rod 63 near one end of the link rod 63 . The other end of the plunger compression spring 62 is fixed to an insulating fixing member 64a. The plunger compression spring 62 is a compression spring (a spring that is compressed and has stored energy). A plunger compression spring 62 may bias the link rod 63 to rotate the link rod 63 clockwise.
 ハンドル81は、ピン81aと、回転部81bと、操作部81cとを含む。回転部81bは、ピン81aによって回転可能に支持されている。操作部81cは、回転部81bに設けられている。操作部81cは、筐体5(上ケース7)に形成された開口7aを通って、筐体5(上ケース7)の外部に突き出ている。回転部81bに、レバー86が設けられている。レバー86は、ピン81aによって、回転可能に支持されている。レバー86は、回転部81bからラッチ85に向けて延在している。 The handle 81 includes a pin 81a, a rotating portion 81b, and an operating portion 81c. The rotating portion 81b is rotatably supported by a pin 81a. The operating portion 81c is provided on the rotating portion 81b. The operating portion 81c protrudes outside the housing 5 (upper case 7) through an opening 7a formed in the housing 5 (upper case 7). A lever 86 is provided on the rotating portion 81b. The lever 86 is rotatably supported by the pin 81a. The lever 86 extends from the rotating portion 81b toward the latch 85. As shown in FIG.
 ラッチ85は、ピン85aによって回転可能に支持されている。ラッチ85は、例えば、L字形状を有している。ラッチ85の一端は、レバー86の近くにある。ラッチ85の他端は、マグバー83の近くにある。 The latch 85 is rotatably supported by a pin 85a. The latch 85 has, for example, an L shape. One end of latch 85 is near lever 86 . The other end of latch 85 is near mag bar 83 .
 マグバー83は、回転部83aと、突起部83bとを含む。回転部83aは、ピン84によって回転可能に支持されている。突起部83bは、回転部83aからラッチ85に向けて延在している。突起部83bは、ラッチ85の他端に接触している。 The mag bar 83 includes a rotating portion 83a and a projecting portion 83b. The rotating portion 83 a is rotatably supported by a pin 84 . The projecting portion 83b extends from the rotating portion 83a toward the latch 85. As shown in FIG. The projecting portion 83b is in contact with the other end of the latch 85. As shown in FIG.
 上リンク88の一端は、ピン88aによって、回転部81bに連結されている。上リンク88は、回転部81bに回転可能に連結されている。U軸87の一端は、上リンク88の他端に設けられている貫通孔と下リンク89の一端に設けられている貫通孔とに挿入されている。U軸87の他端は、レバー86に設けられている貫通孔に挿入されている。 One end of the upper link 88 is connected to the rotating portion 81b by a pin 88a. The upper link 88 is rotatably connected to the rotating portion 81b. One end of the U shaft 87 is inserted into a through hole provided at the other end of the upper link 88 and a through hole provided at one end of the lower link 89 . The other end of the U-shaft 87 is inserted into a through-hole provided in the lever 86 .
 下リンク89の一端は、U軸87によって、上リンク88の他端に連結されている。下リンク89は、上リンク88に回転可能に連結されている。下リンク89の他端は、ピン95aによって、アーム90に連結されている。 One end of the lower link 89 is connected to the other end of the upper link 88 by a U-shaft 87 . The lower link 89 is rotatably connected to the upper link 88 . The other end of the lower link 89 is connected to the arm 90 by a pin 95a.
 アーム90は、アームピン91によって、回転可能に支持されている。開極レバー82に近位するアーム90の端部は、アームリンクピン92によって、開極レバー82の他端82bに連結されている。トリップコイル60に近位するアーム90の端部に、スイッチレバー95が設けられている。スイッチレバー95は、操作コイルスイッチ94を押圧することによって、操作コイルスイッチ94をオフ状態からオン状態に切り替えるとともに、操作コイルスイッチ94から離れることによって、操作コイルスイッチ94をオン状態からオフ状態に切り替える。 The arm 90 is rotatably supported by an arm pin 91. The end of the arm 90 proximal to the opening lever 82 is connected to the other end 82 b of the opening lever 82 by an arm link pin 92 . A switch lever 95 is provided at the end of the arm 90 proximal to the trip coil 60 . The switch lever 95 switches the operation coil switch 94 from the OFF state to the ON state by pressing the operation coil switch 94, and switches the operation coil switch 94 from the ON state to the OFF state by moving away from the operation coil switch 94. .
 開極レバー82は、ピン93によって、回転可能に支持されている。開極レバー82の一端82aは、貫通孔47c内に位置している。開極レバー82の他端82bは、アームリンクピン92によって、アーム90に連結されている。開極レバー82は、プランジャ61に連動して、可動部材20から離れるように可動部材30を移動させ得る。 The opening lever 82 is rotatably supported by a pin 93. One end 82a of the opening lever 82 is positioned within the through hole 47c. The other end 82 b of the opening lever 82 is connected to the arm 90 by an arm link pin 92 . The opening lever 82 can move the movable member 30 away from the movable member 20 in conjunction with the plunger 61 .
 電磁開閉器1cの動作及び作用を説明する。
 電磁開閉器1cには、オフ状態、レディ状態及びトリップ状態という3種類のハンドル81の状態がある。
The operation and action of the electromagnetic switch 1c will be described.
The electromagnetic switch 1c has three states of the handle 81, namely an off state, a ready state and a trip state.
 ハンドル81がオフ状態(図示せず)にあるときの電磁開閉器1cを説明する。
 ハンドル81がオフ状態にあるとき、ハンドル81は時計回り方向に倒されている。ハンドル81がオフ状態にあるとき、ハンドル81は、右側に倒されている。ハンドル81がオフ状態にあるとき、外部電源150(図12を参照)から供給される電流の有無に係わらず、開極レバー82によって可動接点37a,37bは固定接点27a,27bから離されており、電磁開閉器1cは開極状態にある。また、ハンドル81がオフ状態にあるとき、スイッチレバー95は操作コイルスイッチ94から離れており、操作コイルスイッチ94はオフ状態にある。操作コイル13は、外部電源150に電気的に接続されていない。そのため、たとえ外部電源150がオン状態にあっても、操作コイル13に電流が流れず、操作コイル13は励磁されない。可動鉄心21は、第1付勢部材24の第1付勢力(第1復元力)によって、固定鉄心11から離されている。可動部材20(突出部20b)が仕切り板47(突起部47b)に当接している。
The electromagnetic switch 1c when the handle 81 is in the off state (not shown) will be described.
When the handle 81 is in the off state, the handle 81 is tilted clockwise. When the handle 81 is in the off state, the handle 81 is tilted to the right. When the handle 81 is in the OFF state, the movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b by the opening lever 82 regardless of the presence or absence of current supplied from the external power source 150 (see FIG. 12). , the electromagnetic switch 1c is in the open state. Also, when the handle 81 is in the OFF state, the switch lever 95 is separated from the operating coil switch 94, and the operating coil switch 94 is in the OFF state. The operating coil 13 is not electrically connected to the external power supply 150 . Therefore, even if the external power source 150 is on, no current flows through the operating coil 13 and the operating coil 13 is not excited. The movable core 21 is separated from the fixed core 11 by the first biasing force (first restoring force) of the first biasing member 24 . The movable member 20 (projection 20b) is in contact with the partition plate 47 (projection 47b).
 ハンドル81がオフ状態からレディ状態に切り替わるときの電磁開閉器1cの動作を説明する。 The operation of the electromagnetic switch 1c when the handle 81 switches from the off state to the ready state will be described.
 図9から図11に示されるように、ハンドル81を反時計回りに回転させることによって、ハンドル81はオフ状態からレディ状態になる。ハンドル81がレディ状態にあるとき、ハンドル81は、反時計方向に倒されている。図9に示されるように、ハンドル81がレディ状態にあり、かつ、外部電源150がオフ状態にある場合には、可動接点37a,37bは固定接点27a,27bから離されており、電磁開閉器1cは開極状態にある。図10及び図11に示されるように、ハンドル81がレディ状態にあり、かつ、外部電源150がオン状態にある場合には、可動接点37a,37bは固定接点27a,27bに接触しており、電磁開閉器1cは閉極状態にある。 As shown in FIGS. 9 to 11, by rotating the handle 81 counterclockwise, the handle 81 goes from the off state to the ready state. When the handle 81 is in the ready state, the handle 81 is tilted counterclockwise. As shown in FIG. 9, when the handle 81 is in the ready state and the external power supply 150 is in the off state, the movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b, and the electromagnetic switch is 1c is in the open state. As shown in FIGS. 10 and 11, when the handle 81 is in the ready state and the external power supply 150 is in the ON state, the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b, The electromagnetic switch 1c is in a closed state.
 具体的には、ハンドル81がレディ状態にあるとき、電磁開閉器1cは、リモートで開極状態と閉極状態との間で切り替られ得る。このリモートスイッチングは、外部電源150をオン状態にすることによって外部電源150から出力される電流を操作コイル13に与えるとともに、電磁開閉器1cをリモートで閉極させるステップと、外部電源150をオフ状態にすることによって外部電源150から操作コイル13への電流の供給を断つとともに、電磁開閉器1cをリモートで開極させるステップとを含む。 Specifically, when the handle 81 is in the ready state, the electromagnetic switch 1c can be remotely switched between the open state and the closed state. In this remote switching, by turning on the external power supply 150, a current output from the external power supply 150 is supplied to the operation coil 13, and the electromagnetic switch 1c is remotely closed; cutting off the supply of electric current from the external power source 150 to the operating coil 13 by turning on and remotely opening the electromagnetic switch 1c.
 図9を参照して、ハンドル81を反時計回りに回転させると、回転部81bはピン81aを中心に反時計回りに回転する。回転部81bの回転に伴い、回転部81bに連結されている上リンク88が移動し、上リンク88に連結されている下リンク89も移動する。下リンク89に連結されているアーム90がアームピン91を中心に反時計回りに回転する。アーム90に連結されている開極レバー82は、ピン93を中心に時計回りに回転する。 With reference to FIG. 9, when the handle 81 is rotated counterclockwise, the rotating portion 81b rotates counterclockwise around the pin 81a. As the rotating portion 81b rotates, the upper link 88 connected to the rotating portion 81b moves, and the lower link 89 connected to the upper link 88 also moves. An arm 90 connected to the lower link 89 rotates counterclockwise around an arm pin 91 . The opening lever 82 connected to the arm 90 rotates clockwise about the pin 93 .
 開極レバー82の一端82aは、可動部材30(絶縁突起32a)から離れる。第2付勢部材35は、可動部材30及び可動接点37a,37bを固定接点27a,27bに向けて移動させる。可動部材30(絶縁突起32a)は、可動部材20(突出部20b)に当接する。第1付勢部材24の第1付勢力(第1復元力)は、第2付勢部材35の第2付勢力(第2復元力)より大きい。そのため、可動部材20及び可動鉄心21は、固定鉄心11に向けて移動しない。可動部材20(可動バー20a)は、仕切り板47(突起部47b)に接触したままである。電磁開閉器1cは、可動接点37a,37bが固定接点27a,27bから離れている第1状態(開極状態)にある。 One end 82a of the opening lever 82 is separated from the movable member 30 (insulating projection 32a). The second biasing member 35 moves the movable member 30 and the movable contacts 37a, 37b toward the fixed contacts 27a, 27b. The movable member 30 (insulating projection 32a) contacts the movable member 20 (projection 20b). A first biasing force (first restoring force) of the first biasing member 24 is greater than a second biasing force (second restoring force) of the second biasing member 35 . Therefore, the movable member 20 and the movable core 21 do not move toward the fixed core 11 . The movable member 20 (movable bar 20a) remains in contact with the partition plate 47 (projection 47b). The electromagnetic switch 1c is in the first state (open state) in which the movable contacts 37a and 37b are separated from the fixed contacts 27a and 27b.
 アーム90がアームピン91を中心に反時計回りに回転することにより、アーム90に設けられるスイッチレバー95は、操作コイルスイッチ94を押圧する。操作コイルスイッチ94は、オン状態になる。 When the arm 90 rotates counterclockwise around the arm pin 91 , the switch lever 95 provided on the arm 90 presses the operating coil switch 94 . The operating coil switch 94 is turned on.
 図10及び図12を参照して、外部電源150をオフ状態からオン状態に切り替える。電流が外部電源150から操作コイル13に供給されて、操作コイル13が励磁される。操作コイル13は、第1付勢部材24の第1付勢力に抗して可動鉄心21及び可動部材20を固定鉄心11に向けて移動させ得る電磁力を発生させる。可動鉄心21及び可動部材20は、固定鉄心11に向けて移動する。第2付勢部材35は、可動接点37a,37b及び可動部材30を、固定接点27a,27bに向けて移動させる。 With reference to FIGS. 10 and 12, the external power supply 150 is switched from off to on. A current is supplied from the external power supply 150 to the operating coil 13 to excite the operating coil 13 . The operation coil 13 generates an electromagnetic force capable of moving the movable core 21 and the movable member 20 toward the fixed core 11 against the first biasing force of the first biasing member 24 . The movable core 21 and the movable member 20 move toward the fixed core 11 . The second biasing member 35 moves the movable contacts 37a, 37b and the movable member 30 toward the fixed contacts 27a, 27b.
 可動接点37a,37bが固定接点27a,27bに接触して、電磁開閉器1cは閉極状態になる。主電流は、電源側端子110から、固定接触子26a、固定接点27a、可動接点37a、可動接触子31、可動接点37b、固定接点27b、固定接触子26b及びトリップコイル60を経由して、負荷側端子111へ流れる。 The movable contacts 37a, 37b come into contact with the fixed contacts 27a, 27b, and the electromagnetic switch 1c is closed. The main current flows from the power supply side terminal 110 via the fixed contact 26a, the fixed contact 27a, the movable contact 37a, the movable contact 31, the movable contact 37b, the fixed contact 27b, the fixed contact 26b and the trip coil 60 to the load. It flows to side terminal 111 .
 可動接点37a,37bが固定接点27a,27bに接触すると、可動接点37a,37b及び可動部材30の移動は停止する。可動接点37a,37b及び可動部材30の移動が停止した時には、可動鉄心21は依然として固定鉄心11から離れている。電磁開閉器1cは、可動接点37a,37bが固定接点27a,27bに接触している(閉極状態)が、可動鉄心21は固定鉄心11から離れている第2状態になる。可動接点37a,37b及び可動部材30の移動が停止した後も、操作コイル13において発生する電磁力のため、可動鉄心21及び可動部材20は、固定鉄心11に向けて移動する。可動部材20(突出部20b)は、可動部材30(絶縁突起32a)から離れる。 When the movable contacts 37a, 37b contact the fixed contacts 27a, 27b, the movement of the movable contacts 37a, 37b and the movable member 30 stops. When the movable contacts 37a, 37b and the movable member 30 stop moving, the movable core 21 is still separated from the fixed core 11. FIG. In the electromagnetic switch 1c, the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b (closed state), but the movable core 21 is separated from the fixed core 11 in the second state. Even after the movable contacts 37 a and 37 b and the movable member 30 stop moving, the electromagnetic force generated in the operation coil 13 causes the movable iron core 21 and the movable member 20 to move toward the fixed iron core 11 . The movable member 20 (protruding portion 20b) is separated from the movable member 30 (insulating projection 32a).
 可動接点37a,37bが固定接点27a,27bに衝突する際、接点バウンスが発生する。接点バウンスは、可動接点37a,37bと固定接点27a,27bとの間にアークを発生させる。しかし、可動接点37a,37bが固定接点27a,27bに衝突した時点から、可動接点37a,37bと固定接点27a,27bとの間に流れる電流が流れ始める。そのため、可動接点37a,37bが固定接点27a,27bに衝突した時点では、可動接点37a,37bと固定接点27a,27bとの間に流れる電流は小さい。電磁開閉器1cの第2状態において発生する接点バウンスは、可動接点37a,37b及び固定接点27a,27bをあまり消耗させない。 Contact bounce occurs when the movable contacts 37a and 37b collide with the fixed contacts 27a and 27b. Contact bounce causes an arc between the movable contacts 37a, 37b and the fixed contacts 27a, 27b. However, when the movable contacts 37a and 37b collide with the fixed contacts 27a and 27b, currents start to flow between the movable contacts 37a and 37b and the fixed contacts 27a and 27b. Therefore, when the movable contacts 37a, 37b collide with the fixed contacts 27a, 27b, the current flowing between the movable contacts 37a, 37b and the fixed contacts 27a, 27b is small. The contact bounce that occurs in the second state of the electromagnetic switch 1c does not significantly wear the movable contacts 37a, 37b and the fixed contacts 27a, 27b.
 図11を参照して、操作コイル13において発生する電磁力のため、可動鉄心21及び可動部材20は、固定鉄心11に向けてさらに移動する。可動鉄心21は、固定鉄心11に衝突して、固定鉄心11に接触する。電磁開閉器1cは、可動接点37a,37bが固定接点27a,27bに接触しており(閉極状態)、かつ、可動鉄心21は固定鉄心11に接触している第3状態になる。緩衝部材12は、可動鉄心21と固定鉄心11との衝突による衝撃を吸収する。可動鉄心21が固定鉄心11に衝突することにより、可動鉄心21及び固定鉄心11は緩衝部材12から復元力を受ける。この復元力のため、可動鉄心21及び固定鉄心11はわずかに上方に移動することがある。 With reference to FIG. 11 , due to the electromagnetic force generated in the operating coil 13 , the movable core 21 and the movable member 20 move further toward the fixed core 11 . The movable core 21 collides with the fixed core 11 and comes into contact with the fixed core 11 . The electromagnetic switch 1c is in a third state in which the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b (closed state) and the movable core 21 is in contact with the fixed core 11. FIG. The buffer member 12 absorbs the impact caused by the collision between the movable core 21 and the fixed core 11 . When the movable core 21 collides with the fixed core 11 , the movable core 21 and the fixed core 11 receive a restoring force from the buffer member 12 . Due to this restoring force, the movable core 21 and the fixed core 11 may move slightly upward.
 本実施の形態では、操作コイル13を励磁することによって可動鉄心21を固定鉄心11に当接させたときに、可動部材20は可動部材30から間隔Gを空けて配置される。そのため、可動鉄心21と固定鉄心11との衝突による衝撃及び緩衝部材12の復元力によって、接点バウンスが発生することが防止され得る。可動鉄心21と固定鉄心11との衝突時に可動接点37a,37bと固定接点27a,27bとの間に発生するアークのエネルギーが減少する。電磁開閉器1cの第3状態における可動接点37a,37b及び固定接点27a,27bの消耗は、減少し得るまたは無くなり得る。 In the present embodiment, the movable member 20 is arranged with a gap G from the movable member 30 when the movable core 21 is brought into contact with the fixed core 11 by exciting the operation coil 13 . Therefore, it is possible to prevent the contact bounce from occurring due to the shock caused by the collision between the movable core 21 and the fixed core 11 and the restoring force of the buffer member 12 . The energy of arcs generated between the movable contacts 37a, 37b and the fixed contacts 27a, 27b when the movable core 21 and the fixed core 11 collide is reduced. Wear of the movable contacts 37a, 37b and fixed contacts 27a, 27b in the third state of the electromagnetic switch 1c can be reduced or eliminated.
 図11に示されるように電磁開閉器1cが第3状態にあるときに、外部電源150(図12を参照)をオフ状態に切り替える。操作コイル13へ電流が供給されなくなる。図9に示されるように、第1付勢部材24は、可動部材20及び可動鉄心21を、固定鉄心11から遠ざかるように移動させる。可動部材20は、可動部材30に当接する。可動部材20及び可動部材30は、さらに固定鉄心11から遠ざかるように移動する。可動接点37a,37bは、固定接点27a,27bから離れる。電磁開閉器1cは、開極状態になる。可動部材20及び可動部材30は、さらに固定鉄心11から遠ざかるように移動する。可動部材20(可動バー20a)が仕切り板47(突起部47b)に当接する。可動部材20及び可動部材30の移動は停止する。 When the electromagnetic switch 1c is in the third state as shown in FIG. 11, the external power source 150 (see FIG. 12) is switched off. Current is no longer supplied to the operating coil 13 . As shown in FIG. 9 , the first biasing member 24 moves the movable member 20 and the movable core 21 away from the fixed core 11 . The movable member 20 contacts the movable member 30 . The movable member 20 and the movable member 30 move further away from the fixed core 11 . The movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b. The electromagnetic switch 1c will be in an open state. The movable member 20 and the movable member 30 move further away from the fixed core 11 . The movable member 20 (movable bar 20a) contacts the partition plate 47 (projection 47b). Movement of the movable member 20 and the movable member 30 stops.
 このように、ハンドル81がレディ状態にあるときに、外部電源150をオフ状態からオン状態に切り替える、または、外部電源150をオン状態からオフ状態に切り替えることにより、リモートで電磁開閉器1cをスイッチング動作が行われる。それから、操作者がハンドル81を操作して、ハンドル81がレディ状態からオフ状態に切り替えられたときに、電磁開閉器1cは、外部電源150の状態にかかわらず、開極状態に維持される。 Thus, when the steering wheel 81 is in the ready state, switching the external power source 150 from the OFF state to the ON state or switching the external power source 150 from the ON state to the OFF state remotely switches the electromagnetic switch 1c. action is performed. Then, when the operator operates the handle 81 to switch the handle 81 from the ready state to the off state, the electromagnetic switch 1 c is maintained in the open state regardless of the state of the external power source 150 .
 ハンドル81がレディ状態からトリップ状態(図13を参照)に切り替わるときの電磁開閉器1cの動作を説明する。 The operation of the electromagnetic switch 1c when the handle 81 switches from the ready state to the trip state (see FIG. 13) will be described.
 ハンドル81がレディ状態にあり、かつ、電磁開閉器1cが第3状態にあるときに(図11を参照)、電磁開閉器1cに過電流が流れることがある。電磁開閉器1cに過電流が流れると、電磁開閉器1cは強制的に開極される(トリップ状態)。過電流は、例えば、負荷側端子111に接続されている負荷(図示せず)がショートしたときに流れる電流、または、負荷側端子111が地絡したときに流れる電流である。負荷側端子111が地絡することは、負荷側端子111と大地との間に形成されるインピーダンスを介して、負荷側端子111が大地に電気的に接続されることを意味する。 When the handle 81 is in the ready state and the electromagnetic switch 1c is in the third state (see FIG. 11), overcurrent may flow through the electromagnetic switch 1c. When an overcurrent flows through the electromagnetic switch 1c, the electromagnetic switch 1c is forcibly opened (trip state). The overcurrent is, for example, a current that flows when a load (not shown) connected to the load-side terminal 111 is short-circuited, or a current that flows when the load-side terminal 111 is grounded. A ground fault of the load terminal 111 means that the load terminal 111 is electrically connected to the ground via an impedance formed between the load terminal 111 and the ground.
 ハンドル81がレディ状態にあり、かつ、電磁開閉器1cが第3状態にあるとき、電磁開閉器1cは閉極状態にある。電磁開閉器1cに通常の電流が流れるとき、通常の電流は、固定接触子26bに接続されているトリップコイル60に流れる。トリップコイル60において磁場が発生する。この磁場のため、プランジャ61をトリップコイル60に向けて移動させる吸引力が、プランジャ61に作用する。しかし、トリップコイル60に通常の電流が流れているときにプランジャ61に作用する吸引力は、プランジャ押しばね62の付勢力(復元力)より弱い。そのため、プランジャ61の下端は、トリップコイル60から最も離れた位置にある。 When the handle 81 is in the ready state and the electromagnetic switch 1c is in the third state, the electromagnetic switch 1c is in the closed state. When normal current flows through the electromagnetic switch 1c, normal current flows through the trip coil 60 connected to the fixed contact 26b. A magnetic field is generated in the trip coil 60 . Due to this magnetic field, an attractive force acts on the plunger 61 to move the plunger 61 toward the trip coil 60 . However, the attractive force acting on the plunger 61 when a normal current is flowing through the trip coil 60 is weaker than the biasing force (restoring force) of the plunger pressing spring 62 . Therefore, the lower end of plunger 61 is at the farthest position from trip coil 60 .
 電磁開閉器1cに過電流が流れると、トリップコイル60により強い磁場が発生する。このより強い磁場のため、より大きな吸引力が、プランジャ61に作用する。そのため、プランジャ61は、プランジャ押しばね62の復元力に抗して、負荷側端子111の一端に向けて移動する。 When an overcurrent flows through the electromagnetic switch 1c, the trip coil 60 generates a strong magnetic field. Due to this stronger magnetic field, a greater attractive force acts on plunger 61 . Therefore, the plunger 61 moves toward one end of the load-side terminal 111 against the restoring force of the plunger pressing spring 62 .
 プランジャ61の移動により、リンク棒63は、ピン64を中心に反時計回りに回転する。マグバー83は、リンク棒63によって、ピン84を中心に時計回りに回転する。ラッチ85は、マグバー83(突起部83b)によって、ピン85aを中心に反時計回りに回転する。レバー86の先端が、ラッチ85から外れる。ハンドル81は、ピン81aを中心にして時計回りに回転する。ハンドル81の回転には、例えば、ピン81aに設けられているトーションばね(図示せず)の復元力が利用され得る。こうして、ハンドル81は、トリップ状態に切り替わる。ハンドル81がトリップ状態にあるとき、ハンドル81は、オフ状態におけるハンドル81の第1の位置とレディ状態におけるハンドル81の第2の位置との間に位置する。 Due to the movement of the plunger 61, the link rod 63 rotates counterclockwise around the pin 64. The mag bar 83 is rotated clockwise around the pin 84 by the link rod 63 . The latch 85 rotates counterclockwise around the pin 85a by the mag bar 83 (protrusion 83b). The tip of lever 86 is disengaged from latch 85 . The handle 81 rotates clockwise around the pin 81a. For rotation of the handle 81, for example, a restoring force of a torsion spring (not shown) provided on the pin 81a can be used. Thus, the handle 81 switches to the trip state. When the handle 81 is in the trip state, the handle 81 is positioned between the first position of the handle 81 in the off state and the second position of the handle 81 in the ready state.
 レバー86は、ピン81aを中心に反時計回りに回転する。U軸87と上リンク88とは、上方向に移動する。上リンク88に連結されている下リンク89は、右上方向に移動する。下リンク89に連結されるアーム90は、アームピン91を中心に時計回りに回転する。アームリンクピン92を介してアーム90に連結されている開極レバー82は、ピン93を中心に反時計回りに回転する。開極レバー82の一端82aが可動部材30(絶縁突起32a)を押し下げる。こうして、電磁開閉器1cは、開極状態になる。 The lever 86 rotates counterclockwise around the pin 81a. The U-shaft 87 and the upper link 88 move upward. A lower link 89 connected to the upper link 88 moves upward and to the right. An arm 90 connected to the lower link 89 rotates clockwise around an arm pin 91 . The opening lever 82 connected to the arm 90 via the arm link pin 92 rotates counterclockwise around the pin 93 . One end 82a of the opening lever 82 pushes down the movable member 30 (insulating projection 32a). In this way, the electromagnetic switch 1c will be in an open state.
 アーム90がアームピン91を中心に時計回りに回転すると、スイッチレバー95も時計回りに回転する。スイッチレバー95は、操作コイルスイッチ94から離れる。操作コイルスイッチ94は、オフ状態になる。外部電源150から操作コイル13への電流の供給が停止される。第1付勢部材24は、可動部材20及び可動鉄心21を、固定鉄心11から遠ざかるように移動させる。可動部材20は、可動部材30に当接する。可動部材20及び可動部材30は、さらに固定鉄心11から遠ざかるように移動する。可動接点37a,37bは、固定接点27a,27bから離れる。電磁開閉器1cは、開極状態になる。可動部材20及び可動部材30は、さらに固定鉄心11から遠ざかるように移動する。可動部材20(可動バー20a)が仕切り板47(突起部47b)に当接する。可動部材20及び可動部材30の移動は停止する。 When the arm 90 rotates clockwise around the arm pin 91, the switch lever 95 also rotates clockwise. The switch lever 95 leaves the operating coil switch 94 . The operating coil switch 94 is turned off. The supply of current from the external power supply 150 to the operating coil 13 is stopped. The first biasing member 24 moves the movable member 20 and the movable core 21 away from the fixed core 11 . The movable member 20 contacts the movable member 30 . The movable member 20 and the movable member 30 move further away from the fixed core 11 . The movable contacts 37a, 37b are separated from the fixed contacts 27a, 27b. The electromagnetic switch 1c will be in an open state. The movable member 20 and the movable member 30 move further away from the fixed core 11 . The movable member 20 (movable bar 20a) contacts the partition plate 47 (projection 47b). Movement of the movable member 20 and the movable member 30 stops.
 本実施の形態の電磁開閉器1cは、実施の形態1の電磁開閉器1の効果に加えて、以下の効果を奏する。 The electromagnetic switch 1c of the present embodiment has the following effects in addition to the effects of the electromagnetic switch 1 of the first embodiment.
 本実施の形態の電磁開閉器1cは、一対の固定接触子26a,26bと、第2ストッパ(突起部47b)と、トリップコイル60と、プランジャ61と、開極レバー82とをさらに備える。一対の固定接触子26a,26bには、一対の固定接点27a,27bが設けられている。第2ストッパは、第2可動部材(可動部材30)に向けた第1可動部材(可動部材20)の移動を規制する。トリップコイル60は、一対の固定接触子26a,26bの一つ(例えば、固定接触子26b)に接続されている。プランジャ61は、トリップコイル60に過電流が流れるときに、トリップコイル60に発生する電磁力によって移動し得る。開極レバー82は、プランジャ61に連動して、第1可動部材から離れるように第2可動部材を移動させ得る。 The electromagnetic switch 1c of the present embodiment further includes a pair of fixed contacts 26a, 26b, a second stopper (projection 47b), a trip coil 60, a plunger 61, and an opening lever 82. A pair of stationary contacts 27a and 27b are provided on the pair of stationary contacts 26a and 26b. The second stopper restricts movement of the first movable member (movable member 20) toward the second movable member (movable member 30). The trip coil 60 is connected to one of the pair of fixed contacts 26a, 26b (for example, the fixed contact 26b). Plunger 61 can be moved by the electromagnetic force generated in trip coil 60 when an overcurrent flows through trip coil 60 . The opening lever 82 can move the second movable member away from the first movable member in conjunction with the plunger 61 .
 そのため、電磁開閉器1cに過電流が流れたときに固定接点27a,27bと可動接点37a,37bとの間で発生するアークは、消弧され易くなる。電磁開閉器1cに過電流が流れたときの可動接点37a,37b及び固定接点27a,27bの消耗が、減少し得る。 Therefore, arcs generated between the fixed contacts 27a, 27b and the movable contacts 37a, 37b when an overcurrent flows through the electromagnetic switch 1c are easily extinguished. Wear of the movable contacts 37a, 37b and the fixed contacts 27a, 27b when an overcurrent flows through the electromagnetic switch 1c can be reduced.
 実施の形態4.
 図14から図19を参照して、実施の形態4の電磁開閉器1dを説明する。本実施の形態の電磁開閉器1dは、実施の形態3の電磁開閉器1と同様の構成を備えるが、主に以下の点で異なる。
Embodiment 4.
An electromagnetic switch 1d according to Embodiment 4 will be described with reference to FIGS. 14 to 19. FIG. An electromagnetic switch 1d of the present embodiment has a configuration similar to that of the electromagnetic switch 1 of Embodiment 3, but differs mainly in the following points.
 図14から図19に示されるように、電磁開閉器1dは、固定鉄心11(図9を参照)に代えて、固定鉄心154を備えている。電磁開閉器1dは、可動部材20(図9を参照)及び可動鉄心21(図9を参照)に代えて、可動鉄心165を備えている。電磁開閉器1dは、磁極板160と、永久磁石161とをさらに備えている。電磁開閉器1dは、固定鉄心154、可動鉄心165、磁極板160、永久磁石161及び操作コイル13によって構成される電磁石170を備えている。電磁石170は、直流電流で駆動される。図15、図16及び図19は、電磁開閉器1dのうち、電磁石170の概略図である。電磁開閉器1dは、緩衝部材12(図9を参照)を備えていない。 As shown in FIGS. 14 to 19, the electromagnetic switch 1d includes a fixed core 154 instead of the fixed core 11 (see FIG. 9). The electromagnetic switch 1d includes a movable core 165 instead of the movable member 20 (see FIG. 9) and the movable core 21 (see FIG. 9). The electromagnetic switch 1 d further includes a magnetic pole plate 160 and a permanent magnet 161 . The electromagnetic switch 1 d has an electromagnet 170 composed of a fixed iron core 154 , a movable iron core 165 , a magnetic pole plate 160 , a permanent magnet 161 and an operating coil 13 . The electromagnet 170 is driven with direct current. 15, 16 and 19 are schematic diagrams of the electromagnet 170 of the electromagnetic switch 1d. The electromagnetic switch 1d does not have a buffer member 12 (see FIG. 9).
 固定鉄心154は、中空ケースの形状を有している。図15、図16及び図19に示されるように、固定鉄心154は、板部材155と、板部材155に対向する板部材156と、側壁157とを含む。側壁157は、板部材155,156に接続されている。板部材155に、貫通孔155aが設けられている。板部材156に貫通孔156aが設けられている。図14、図17及び図18に示されるように、固定鉄心154は、絶縁スペーサ15と突起部47bとによって挟持されている。板部材155は、突起部47b上に設けられている。板部材156は、絶縁スペーサ15上に設けられている。固定鉄心154は、例えば、ケイ素鋼鈑で形成される。 The fixed core 154 has the shape of a hollow case. As shown in FIGS. 15 , 16 and 19 , fixed core 154 includes plate member 155 , plate member 156 facing plate member 155 , and side walls 157 . Side wall 157 is connected to plate members 155 and 156 . The plate member 155 is provided with a through hole 155a. A plate member 156 is provided with a through hole 156a. As shown in FIGS. 14, 17 and 18, the fixed core 154 is sandwiched between the insulating spacer 15 and the projecting portion 47b. The plate member 155 is provided on the protrusion 47b. A plate member 156 is provided on the insulating spacer 15 . The stationary core 154 is made of silicon steel, for example.
 図14から図19に示されるように、可動鉄心165は、鉄心棒166と、鉄心板167,168とを含む。可動鉄心165は、例えば、ケイ素鋼鈑で形成される。 As shown in FIGS. 14 to 19, the movable core 165 includes a core rod 166 and core plates 167 and 168. The movable iron core 165 is made of, for example, a silicon steel plate.
 図15、図16及び図19に示されるように、鉄心棒166の長手方向は、貫通孔155a,156aが互いに離れている方向(z方向)である。鉄心棒166は、端部166aと、端部166aとは反対側の端部166bとを含む。端部166aは、板部材155、鉄心板167または可動部材30に近い鉄心棒166の端部である。端部166bは、板部材156または鉄心板168に近くかつ可動部材30から遠い鉄心棒166の端部である。鉄心棒166は、貫通孔155aを通り抜けて、固定鉄心154の内部から固定鉄心154の外部まで延在している。図18及び図19に示されるように、操作コイル13が励磁されるとき、鉄心棒166の端部166bは貫通孔156a内に進入する。 As shown in FIGS. 15, 16 and 19, the longitudinal direction of the core rod 166 is the direction (z direction) in which the through holes 155a and 156a are separated from each other. Core bar 166 includes an end 166a and an end 166b opposite end 166a. The end portion 166 a is the end portion of the plate member 155 , the core plate 167 or the core rod 166 close to the movable member 30 . The end 166 b is the end of the core bar 166 that is closer to the plate member 156 or core plate 168 and farther from the movable member 30 . The core rod 166 extends from the inside of the fixed core 154 to the outside of the fixed core 154 through the through hole 155a. As shown in FIGS. 18 and 19, when the operating coil 13 is energized, the end 166b of the core rod 166 enters the through hole 156a.
 鉄心板167,168は、鉄心棒166に固定されている。具体的には、鉄心板167は、鉄心棒166の端部166aに固定されている。鉄心板168は、鉄心棒166の端部166bに固定されている。鉄心板167は、固定鉄心154の外部にあり、板部材155の外表面に対向している。鉄心板168は、固定鉄心154の内部にあり、板部材156の内表面に対向している。 The core plates 167 and 168 are fixed to the core rod 166. Specifically, the core plate 167 is fixed to the end portion 166 a of the core rod 166 . The core plate 168 is fixed to the end portion 166b of the core rod 166. As shown in FIG. The core plate 167 is located outside the fixed core 154 and faces the outer surface of the plate member 155 . The core plate 168 is inside the fixed core 154 and faces the inner surface of the plate member 156 .
 図14から図19に示されるように、磁極板160は、固定鉄心154の内部に配置されている。磁極板160は、鉄心棒166と固定鉄心154の側壁157との間に配置されている。磁極板160は、鉄心棒166の長手方向(z方向)に沿って延在している。磁極板160は、端160aを含む。端160aは、板部材156、鉄心板168、または、鉄心棒166の端部166bに近く、かつ、可動部材30から遠い磁極板160の端である。図14及び図15に示されるように、操作コイル13が励磁されていないとき、第1付勢部材24の第1付勢力によって、可動鉄心165の鉄心板168は、磁極板160の端160aに当接する。磁極板160は、可動部材30に向けた可動鉄心165の移動を規制しており、可動鉄心165に対するストッパーとして機能する。磁極板160は、例えば、ケイ素鋼鈑で形成される。  As shown in FIGS. 14 to 19, the magnetic pole plate 160 is arranged inside the fixed core 154. As shown in FIG. Magnetic pole plate 160 is arranged between core bar 166 and side wall 157 of fixed core 154 . The magnetic pole plate 160 extends along the longitudinal direction (z direction) of the core rod 166 . The pole plate 160 includes an end 160a. The end 160 a is the end of the pole plate 160 that is closer to the plate member 156 , the core plate 168 , or the end 166 b of the core rod 166 and farther from the movable member 30 . As shown in FIGS. 14 and 15, when the operating coil 13 is not energized, the first biasing force of the first biasing member 24 causes the core plate 168 of the movable core 165 to move toward the end 160a of the magnetic pole plate 160. abut. The magnetic pole plate 160 regulates movement of the movable core 165 toward the movable member 30 and functions as a stopper for the movable core 165 . The magnetic pole plate 160 is made of silicon steel, for example.
 永久磁石161は、固定鉄心154の内部に配置されている。永久磁石161は、固定鉄心154の側壁157と磁極板160との間に配置されている。図15、図16及び図19に示されるように、永久磁石161は、磁極面162と、磁極面162とは反対側にある磁極面163とを含む。磁極面162は、側壁157に対向している。磁極面163は、磁極板160に対向している。磁極面163は、磁極面162とは反対の極性を有する。例えば、磁極面162はN極面であり、磁極面163はS極面である。 The permanent magnet 161 is arranged inside the fixed core 154 . Permanent magnet 161 is arranged between side wall 157 of fixed core 154 and magnetic pole plate 160 . As shown in FIGS. 15, 16 and 19, permanent magnet 161 includes a pole face 162 and a pole face 163 opposite pole face 162 . Pole face 162 faces side wall 157 . The pole face 163 faces the pole plate 160 . Pole face 163 has an opposite polarity to pole face 162 . For example, pole face 162 is the north pole face and pole face 163 is the south pole face.
 図14から図19に示されるように、第1付勢部材24は、鉄心棒166の端部166bと筐体5の上ケース7とに接続されている。具体的には、第1付勢部材24の一端は、鉄心棒166の端部166bに設けられているばね受けに取り付けられている。第1付勢部材24の他端は、筐体5の上ケース7に設けられているばね受け(図示せず)に取り付けられている。第1付勢部材24は、鉄心板167が固定鉄心154の板部材155から離れる方向(図14から図19における+z方向)に、可動鉄心165を付勢する。 As shown in FIGS. 14 to 19, the first biasing member 24 is connected to the end 166b of the core rod 166 and the upper case 7 of the housing 5. Specifically, one end of the first biasing member 24 is attached to a spring receiver provided on the end portion 166 b of the core rod 166 . The other end of the first biasing member 24 is attached to a spring retainer (not shown) provided on the upper case 7 of the housing 5 . The first biasing member 24 biases the movable core 165 in a direction (+z direction in FIGS. 14 to 19) in which the core plate 167 separates from the plate member 155 of the fixed core 154 .
 図14から図19に示されるように、操作コイル13は、固定鉄心11の内部に配置されている。操作コイル13は、鉄心棒166と磁極板160との間に配置されている。操作コイル13は、第1付勢部材24の第1付勢力に抗して鉄心板167が固定鉄心154の板部材155に近づく方向(-z方向)に可動鉄心165を移動させ得る電磁力を発生させ得る。図18に示されるように、操作コイル13を励磁することによって鉄心板167を固定鉄心154の板部材155に当接させたときに、可動鉄心165は可動部材30から間隔Gを空けて配置される。  As shown in FIGS. 14 to 19, the operating coil 13 is arranged inside the fixed core 11. As shown in FIGS. The operating coil 13 is arranged between the core rod 166 and the magnetic pole plate 160 . The operation coil 13 generates an electromagnetic force capable of moving the movable core 165 in the direction (-z direction) in which the core plate 167 approaches the plate member 155 of the fixed core 154 against the first biasing force of the first biasing member 24. can occur. As shown in FIG. 18, when the core plate 167 is brought into contact with the plate member 155 of the fixed core 154 by exciting the operating coil 13, the movable core 165 is arranged with a gap G from the movable member 30. be.
 本実施の形態では、可動部材30の絶縁突起32aは、可動鉄心165に向けて可動接触子31から突出している。具体的には、絶縁突起32aは、鉄心棒166の端部166aまたは鉄心板167に向けて可動接触子31から突出している。 In this embodiment, the insulating projection 32 a of the movable member 30 protrudes from the movable contactor 31 toward the movable iron core 165 . Specifically, the insulating protrusion 32 a protrudes from the movable contactor 31 toward the end portion 166 a of the core rod 166 or the core plate 167 .
 図12及び図14から図19を参照して、本実施の形態の電磁開閉器1dの動作及び作用を説明する。本実施の形態の電磁開閉器1dの動作及び作用は、以下に記載するように、実施の形態3の電磁開閉器1cの動作及び作用と同様である。 The operation and effect of the electromagnetic switch 1d of the present embodiment will be described with reference to FIGS. 12 and 14 to 19. FIG. The operation and action of the electromagnetic switch 1d of the present embodiment are the same as those of the electromagnetic switch 1c of the third embodiment, as described below.
 図14に示されるように、ハンドル81を反時計回りに回転させることによって、ハンドル81はオフ状態からレディ状態になる。ハンドル81がレディ状態にあり、かつ、外部電源150がオフ状態にある場合には、可動接点37a,37bは固定接点27a,27bから離されており、電磁開閉器1dは開極状態にある。図17及び図18に示されるように、ハンドル81がレディ状態にあり、かつ、外部電源150がオン状態にある場合には、可動接点37a,37bは固定接点27a,27bに接触しており、電磁開閉器1dは閉極状態にある。 As shown in FIG. 14, by rotating the handle 81 counterclockwise, the handle 81 goes from the off state to the ready state. When the handle 81 is ready and the external power supply 150 is off, the movable contacts 37a and 37b are separated from the fixed contacts 27a and 27b, and the electromagnetic switch 1d is open. As shown in FIGS. 17 and 18, when the handle 81 is in the ready state and the external power supply 150 is in the ON state, the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b. The electromagnetic switch 1d is in the closed state.
 具体的には、図14及び図15を参照して、ハンドル81を反時計回りに回転させると、実施の形態3と同様に、開極レバー82の一端82aは、可動部材30(絶縁突起32a)から離れる。第2付勢部材35は、可動部材30及び可動接点37a,37bを固定接点27a,27bに向けて移動させる。可動部材30(絶縁突起32a)は、可動鉄心165に当接する。第1付勢部材24の第1付勢力(第1復元力)は、第2付勢部材35の第2付勢力(第2復元力)より大きい。また、永久磁石161の磁力線(図15の点線を参照)のため、可動鉄心165の鉄心板168は、永久磁石161に向けて引きつけられる。そのため、可動鉄心165は移動せず、鉄心板168は磁極板160の端160aに当接したままである。電磁開閉器1dは、可動接点37a,37bが固定接点27a,27bから離れている第1状態(開極状態)にある。 Specifically, referring to FIGS. 14 and 15, when handle 81 is rotated counterclockwise, one end 82a of opening lever 82 moves toward movable member 30 (insulating projection 32a) as in the third embodiment. ). The second biasing member 35 moves the movable member 30 and the movable contacts 37a, 37b toward the fixed contacts 27a, 27b. The movable member 30 (insulation protrusion 32 a ) contacts the movable core 165 . A first biasing force (first restoring force) of the first biasing member 24 is greater than a second biasing force (second restoring force) of the second biasing member 35 . Further, the core plate 168 of the movable core 165 is attracted toward the permanent magnet 161 due to the magnetic lines of force of the permanent magnet 161 (see the dotted line in FIG. 15). Therefore, the movable core 165 does not move, and the core plate 168 remains in contact with the end 160 a of the magnetic pole plate 160 . The electromagnetic switch 1d is in the first state (open state) in which the movable contacts 37a and 37b are separated from the fixed contacts 27a and 27b.
 また、ハンドル81を反時計回りに回転させると、実施の形態3と同様に、アーム90がアームピン91を中心に反時計回りに回転して、アーム90に設けられるスイッチレバー95は、操作コイルスイッチ94(図12及び図14を参照)を押圧する。操作コイルスイッチ94は、オン状態になる。 Further, when the handle 81 is rotated counterclockwise, the arm 90 rotates counterclockwise around the arm pin 91 as in the third embodiment, and the switch lever 95 provided on the arm 90 operates as an operation coil switch. Press 94 (see FIGS. 12 and 14). The operating coil switch 94 is turned on.
 図12及び図16を参照して、外部電源150をオフ状態からオン状態に切り替える。電流が外部電源150から操作コイル13に供給されて、操作コイル13が励磁される。操作コイル13は、第1付勢部材24の第1付勢力に抗して鉄心板167が固定鉄心154の板部材155に近づく方向(-z方向)に可動鉄心165を移動させ得る電磁力を発生させる。また、図16に示されるように、操作コイル13の磁力線(図16の細実線を参照)の向きは、永久磁石161の磁力線(図16の点線を参照)の向きと反対である。そのため、操作コイル13の磁力は、永久磁石161の磁力を打ち消す。さらに、操作コイル13の磁力のため、鉄心板167は、固定鉄心154の板部材155に向けて引きつけられる。操作コイルの磁力による引力と第2付勢部材35の第2付勢力とによって、可動鉄心165と可動部材30とは、互いに接触したまま、鉄心板167が固定鉄心154の板部材155に近づく方向(-z方向)に移動する。可動接点37a,37bは、固定接点27a,27bに向けて移動する。 With reference to FIGS. 12 and 16, the external power supply 150 is switched from off to on. A current is supplied from the external power supply 150 to the operating coil 13 to excite the operating coil 13 . The operation coil 13 generates an electromagnetic force capable of moving the movable core 165 in the direction (-z direction) in which the core plate 167 approaches the plate member 155 of the fixed core 154 against the first biasing force of the first biasing member 24. generate. Also, as shown in FIG. 16, the direction of the magnetic lines of force of the operating coil 13 (see thin solid lines in FIG. 16) is opposite to the direction of the magnetic lines of force of the permanent magnet 161 (see dotted lines in FIG. 16). Therefore, the magnetic force of the operating coil 13 cancels the magnetic force of the permanent magnet 161 . Furthermore, due to the magnetic force of the operating coil 13 , the core plate 167 is attracted toward the plate member 155 of the fixed core 154 . Due to the attractive force of the magnetic force of the operation coil and the second biasing force of the second biasing member 35, the core plate 167 approaches the plate member 155 of the fixed core 154 while the movable core 165 and the movable member 30 are kept in contact with each other. (-z direction). The movable contacts 37a, 37b move toward the fixed contacts 27a, 27b.
 図17に示されるように、可動接点37a,37bが固定接点27a,27bに接触して、電磁開閉器1dは閉極状態になる。主電流は、電源側端子110から、固定接触子26a、固定接点27a、可動接点37a、可動接触子31、可動接点37b、固定接点27b、固定接触子26b及びトリップコイル60を経由して、負荷側端子111へ流れる。 As shown in FIG. 17, the movable contacts 37a, 37b come into contact with the fixed contacts 27a, 27b, and the electromagnetic switch 1d is closed. The main current flows from the power supply side terminal 110 via the fixed contact 26a, the fixed contact 27a, the movable contact 37a, the movable contact 31, the movable contact 37b, the fixed contact 27b, the fixed contact 26b and the trip coil 60 to the load. It flows to side terminal 111 .
 可動接点37a,37bが固定接点27a,27bに接触すると、可動接点37a,37b及び可動部材30の移動は停止する。可動接点37a,37b及び可動部材30の移動が停止した時には、可動鉄心165の鉄心板167は依然として固定鉄心154の板部材155から離れている。電磁開閉器1dは、可動接点37a,37bが固定接点27a,27bに接触している(閉極状態)が、可動鉄心21の鉄心板167は固定鉄心154の板部材155から離れている第2状態になる。可動接点37a,37b及び可動部材30の移動が停止した後も、操作コイル13において発生する電磁力のため、鉄心板167が固定鉄心154の板部材155に近づく方向(-z方向)に、可動鉄心165は移動し続ける。可動鉄心165は、可動部材30(絶縁突起32a)から離れる。 When the movable contacts 37a, 37b contact the fixed contacts 27a, 27b, the movement of the movable contacts 37a, 37b and the movable member 30 stops. When the movable contacts 37a and 37b and the movable member 30 stop moving, the core plate 167 of the movable core 165 is still separated from the plate member 155 of the fixed core 154. FIG. In the electromagnetic switch 1d, the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b (closed state), but the core plate 167 of the movable core 21 is separated from the plate member 155 of the fixed core 154. become a state. Even after the movable contacts 37a and 37b and the movable member 30 stop moving, due to the electromagnetic force generated in the operation coil 13, the iron core plate 167 moves in the direction (-z direction) in which the iron core plate 167 approaches the plate member 155 of the fixed iron core 154. Iron core 165 continues to move. The movable iron core 165 is separated from the movable member 30 (insulating projection 32a).
 可動接点37a,37bが固定接点27a,27bに衝突する際、接点バウンスが発生する。接点バウンスのため、可動接点37a,37bと固定接点27a,27bとの間にアークが発生する。しかし、可動接点37a,37bが固定接点27a,27bに衝突した時点から、可動接点37a,37bと固定接点27a,27bとの間に流れる電流が流れ始める。そのため、可動接点37a,37bが固定接点27a,27bに衝突した時点では、可動接点37a,37bと固定接点27a,27bとの間に流れる電流は小さい。電磁開閉器1dの第2状態において発生する接点バウンスは、可動接点37a,37b及び固定接点27a,27bをあまり消耗させない。 Contact bounce occurs when the movable contacts 37a and 37b collide with the fixed contacts 27a and 27b. Due to the contact bounce, an arc is generated between the movable contacts 37a, 37b and the fixed contacts 27a, 27b. However, when the movable contacts 37a and 37b collide with the fixed contacts 27a and 27b, currents start to flow between the movable contacts 37a and 37b and the fixed contacts 27a and 27b. Therefore, when the movable contacts 37a, 37b collide with the fixed contacts 27a, 27b, the current flowing between the movable contacts 37a, 37b and the fixed contacts 27a, 27b is small. The contact bounce that occurs in the second state of the electromagnetic switch 1d does not significantly wear the movable contacts 37a, 37b and the fixed contacts 27a, 27b.
 図18及び図19を参照して、操作コイル13において発生する電磁力のため、鉄心板167が固定鉄心154の板部材155に近づく方向(-z方向)に、可動鉄心165はさらに移動する。鉄心板167がは、固定鉄心154の板部材155に衝突して、固定鉄心154の板部材155に接触する。電磁開閉器1dは、可動接点37a,37bが固定接点27a,27bに接触しており(閉極状態)、かつ、可動鉄心165の鉄心板167は固定鉄心154の板部材155に接触している第3状態になる。 18 and 19, due to the electromagnetic force generated in the operation coil 13, the movable core 165 moves further in the direction (-z direction) in which the core plate 167 approaches the plate member 155 of the fixed core 154. The core plate 167 collides with the plate member 155 of the fixed core 154 and contacts the plate member 155 of the fixed core 154 . In the electromagnetic switch 1d, the movable contacts 37a and 37b are in contact with the fixed contacts 27a and 27b (closed state), and the core plate 167 of the movable core 165 is in contact with the plate member 155 of the fixed core 154. A third state is entered.
 本実施の形態では、操作コイル13を励磁することによって可動鉄心165の鉄心板167を固定鉄心154の板部材155に当接させたときに、可動鉄心165は可動部材30から間隔Gを空けて配置される。そのため、可動鉄心165の鉄心板167と固定鉄心154の板部材155との衝突による衝撃によって、接点バウンスが発生することが防止され得る。可動鉄心165の鉄心板167と固定鉄心154の板部材155との衝突時に可動接点37a,37bと固定接点27a,27bとの間に発生するアークのエネルギーが減少する。電磁開閉器1dの第3状態における可動接点37a,37b及び固定接点27a,27bの消耗は、減少し得るまたは無くなり得る。 In this embodiment, when the iron core plate 167 of the movable iron core 165 is brought into contact with the plate member 155 of the fixed iron core 154 by exciting the operation coil 13, the movable iron core 165 is separated from the movable member 30 by a distance G. placed. Therefore, it is possible to prevent the contact bounce from occurring due to the impact caused by the collision between the core plate 167 of the movable core 165 and the plate member 155 of the fixed core 154 . When the iron core plate 167 of the movable iron core 165 and the plate member 155 of the fixed iron core 154 collide, the arc energy generated between the movable contacts 37a, 37b and the fixed contacts 27a, 27b is reduced. Wear of the movable contacts 37a, 37b and fixed contacts 27a, 27b in the third state of the electromagnetic switch 1d can be reduced or eliminated.
 本実施の形態の電磁開閉器1dは、以下の効果を奏する。
 本実施の形態の電磁開閉器1dは、固定鉄心154と、可動鉄心165と、第1付勢部材24と、操作コイル13と、一対の固定接点27a,27bと、可動部材30と、一対の可動接点37a,37bと、第2付勢部材35とを備える。可動鉄心165は、鉄心棒166と、鉄心板167とを含む。鉄心板167は、鉄心棒166に固定されており、かつ、固定鉄心154に面している。第1付勢部材24は、鉄心板167が固定鉄心154から離れる方向に可動鉄心165を付勢する。操作コイル13は、第1付勢部材24の第1付勢力に抗して鉄心板167が固定鉄心154に近づく方向に可動鉄心165を移動させ得る電磁力を発生させ得る。可動部材30は、可動接触子31を含む。一対の可動接点37a,37bは、可動接触子31上に設けられており、かつ、一対の固定接点27a,27bに対向する。第2付勢部材35は、可動部材30を一対の固定接点27a,27bに向けて付勢する。第1付勢部材24の第1付勢力は、第2付勢部材35の第2付勢部材35の第2付勢力より大きい。操作コイル13を励磁することによって鉄心板167を固定鉄心154に当接させたときに、可動鉄心165は可動部材30から間隔Gを空けて配置されている。
The electromagnetic switch 1d of this embodiment has the following effects.
The electromagnetic switch 1d of this embodiment includes a fixed core 154, a movable core 165, a first biasing member 24, an operation coil 13, a pair of fixed contacts 27a and 27b, a movable member 30, and a pair of It has movable contacts 37 a and 37 b and a second biasing member 35 . Movable core 165 includes core rod 166 and core plate 167 . The core plate 167 is fixed to the core bar 166 and faces the fixed core 154 . The first biasing member 24 biases the movable core 165 in the direction in which the core plate 167 moves away from the fixed core 154 . The operation coil 13 can generate an electromagnetic force capable of moving the movable core 165 in the direction in which the core plate 167 approaches the fixed core 154 against the first biasing force of the first biasing member 24 . The movable member 30 includes movable contacts 31 . A pair of movable contacts 37a, 37b are provided on the movable contactor 31 and face the pair of fixed contacts 27a, 27b. The second biasing member 35 biases the movable member 30 toward the pair of fixed contacts 27a and 27b. The first biasing force of the first biasing member 24 is greater than the second biasing force of the second biasing member 35 of the second biasing member 35 . When the core plate 167 is brought into contact with the fixed core 154 by exciting the operation coil 13 , the movable core 165 is arranged with a gap G from the movable member 30 .
 そのため、可動鉄心165の鉄心板167が固定鉄心154に衝突する時点における接点バウンスの期間が短くなり得る、または、可動鉄心165の鉄心板167が固定鉄心154に衝突する時点における接点バウンスが無くなり得る。可動鉄心165の鉄心板167が固定鉄心154に衝突する時点における接点バウンスに起因する可動接点37a,37b及び固定接点27a,27bの消耗が、減少し得る。 Therefore, the period of the contact bounce when the core plate 167 of the movable core 165 collides with the fixed core 154 can be shortened, or the contact bounce can be eliminated when the core plate 167 of the movable core 165 collides with the fixed core 154. . Wear of the movable contacts 37a, 37b and fixed contacts 27a, 27b due to contact bounce when the core plate 167 of the movable core 165 collides with the fixed core 154 can be reduced.
 また、電磁開閉器1dでは、可動部材20(図9を参照)及び可動鉄心21(図9を参照)に代えて、可動鉄心165が採用されている。そのため、電磁開閉器1dを構成する部品の数を減らすことができる。電磁開閉器1dの構成の簡素化、及び、電磁開閉器1dの低コスト化を実現することができる。 Also, in the electromagnetic switch 1d, a movable iron core 165 is adopted instead of the movable member 20 (see FIG. 9) and the movable iron core 21 (see FIG. 9). Therefore, the number of parts that constitute the electromagnetic switch 1d can be reduced. It is possible to simplify the configuration of the electromagnetic switch 1d and reduce the cost of the electromagnetic switch 1d.
 本実施の形態の電磁開閉器1dでは、可動部材30は、可動鉄心165に向けて可動接触子31から突出する絶縁突起32aを含む。絶縁突起32aは、一対の可動接点37a,37bの間に配置されている。 In the electromagnetic switch 1 d of the present embodiment, the movable member 30 includes insulating projections 32 a projecting from the movable contactor 31 toward the movable iron core 165 . The insulating protrusion 32a is arranged between a pair of movable contacts 37a and 37b.
 絶縁突起32aは、可動接点37a,37bの間にアークが発生すること、及び、固定接点27a,27bの間にアークが発生することを防止することができる。アークに起因して、可動接点37a,37bが短絡すること、及び、固定接点27a,27bが短絡することが防止され得る。 The insulating protrusion 32a can prevent arcing between the movable contacts 37a and 37b and arcing between the fixed contacts 27a and 27b. Short-circuiting of the movable contacts 37a, 37b and short-circuiting of the fixed contacts 27a, 27b due to arcing can be prevented.
 今回開示された実施の形態1-4はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態1-4の少なくとも2つを組み合わせてもよい。本開示の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 Embodiments 1-4 disclosed this time should be considered as examples in all respects and not restrictive. As long as there is no contradiction, at least two of Embodiments 1 to 4 disclosed this time may be combined. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.
 1,1b,1c,1d 電磁開閉器、5 筐体、6 下ケース、6a 取付台、6b 筒体、7 上ケース、7a 開口、8,9 窓、11 固定鉄心、12 緩衝部材、13 操作コイル、14 コイルケース、15 絶縁スペーサ、16,40 ストッパ、16a 第1主面、16b 第2主面、16c 貫通孔、20 可動部材、20a 可動バー、20b 突出部、21 可動鉄心、24 第1付勢部材、26a,26b 固定接触子、27a,27b 固定接点、30 可動部材、31 可動接触子、31a 第1表面、31b 第2表面、32 クロスバー、32a 絶縁突起、32b 中空部、35 第2付勢部材、37a,37b 可動接点、41 突起、46 仕切り板、46a 貫通孔、47 仕切り板、47a 平板部、47b 突起部、47c 貫通孔、51 電源側グリッド、52 負荷側グリッド、53 アークランナー、54 電源側グリッド固定材、55 電源側グリッド固定材窓、56 負荷側グリッド固定材、57 負荷側固定材窓、60 トリップコイル、61 プランジャ、62 ばね、63 リンク棒、64 ピン、64a 絶縁固定部材、65 絶縁パイプ、80 開閉/トリップ機構、81 ハンドル、81a ピン、81b 回転部、81c 操作部、82 開極レバー、82a 一端、82b 他端、83 マグバー、83a 回転部、83b 突起部、84 ピン、85 ラッチ、85a ピン、86 レバー、87 U軸、88 上リンク、88a ピン、89 下リンク、90 アーム、91,92,93 ピン、94 操作コイルスイッチ、95 スイッチレバー、95a ピン、110 電源側端子、111 負荷側端子、120 電源側外部導体、121 負荷側外部導体、130,131 ねじ、141,142 空間、150 外部電源、151 電気配線、154 固定鉄心、155,156 板部材、155a,156a 貫通孔、157 側壁、160 磁極板、160a 端、161 永久磁石、162,163 磁極面、165 可動鉄心、166 鉄心棒、166a,166b 端部、167,168 鉄心板、170 電磁石。 1, 1b, 1c, 1d Electromagnetic switch, 5 Housing, 6 Lower case, 6a Mounting base, 6b Cylindrical body, 7 Upper case, 7a Opening, 8, 9 Window, 11 Fixed iron core, 12 Buffer member, 13 Operation coil , 14 coil case, 15 insulating spacer, 16, 40 stopper, 16a first main surface, 16b second main surface, 16c through hole, 20 movable member, 20a movable bar, 20b protrusion, 21 movable iron core, 24 first attachment Force members 26a, 26b Fixed contacts 27a, 27b Fixed contacts 30 Movable member 31 Movable contact 31a First surface 31b Second surface 32 Crossbar 32a Insulating protrusion 32b Hollow part 35 Second Biasing member, 37a, 37b movable contact, 41 projection, 46 partition plate, 46a through hole, 47 partition plate, 47a flat plate portion, 47b projection portion, 47c through hole, 51 power supply side grid, 52 load side grid, 53 arc runner , 54 power supply side grid fixing material, 55 power supply side grid fixing material window, 56 load side grid fixing material, 57 load side fixing material window, 60 trip coil, 61 plunger, 62 spring, 63 link rod, 64 pin, 64a insulation fixing Member, 65 Insulated pipe, 80 Open/close/trip mechanism, 81 Handle, 81a Pin, 81b Rotating part, 81c Operating part, 82 Opening lever, 82a One end, 82b Other end, 83 Mag bar, 83a Rotating part, 83b Protruding part, 84 Pin, 85 latch, 85a pin, 86 lever, 87 U axis, 88 upper link, 88a pin, 89 lower link, 90 arm, 91, 92, 93 pin, 94 operation coil switch, 95 switch lever, 95a pin, 110 power supply side terminal, 111 load side terminal, 120 power supply side outer conductor, 121 load side outer conductor, 130, 131 screw, 141, 142 space, 150 external power supply, 151 electrical wiring, 154 fixed iron core, 155, 156 plate member, 155a, 156a through hole, 157 side wall, 160 magnetic pole plate, 160a end, 161 permanent magnet, 162, 163 magnetic pole face, 165 movable core, 166 core bar, 166a, 166b ends, 167, 168 core plate, 170 electromagnet.

Claims (10)

  1.  固定鉄心と、
     前記固定鉄心に対向して配置されている可動鉄心と、
     前記可動鉄心を支持する第1可動部材と、
     前記第1可動部材が前記固定鉄心から離れる方向に前記第1可動部材を付勢する第1付勢部材と、
     前記第1付勢部材の第1付勢力に抗して前記第1可動部材及び前記可動鉄心を前記固定鉄心に向けて移動させ得る電磁力を発生させ得る操作コイルと、
     一対の固定接点と、
     可動接触子を含む第2可動部材と、
     前記可動接触子上に設けられており、かつ、前記一対の固定接点に対向する一対の可動接点と、
     前記第2可動部材を前記一対の固定接点に向けて付勢する第2付勢部材とを備え、
     前記第1付勢力は、前記第2付勢部材の第2付勢力より大きく、
     前記操作コイルを励磁することによって前記可動鉄心を前記固定鉄心に当接させたときに、前記第1可動部材は前記第2可動部材から間隔を空けて配置されている、電磁開閉器。
    a fixed core;
    a movable core arranged to face the fixed core;
    a first movable member that supports the movable core;
    a first biasing member biasing the first movable member in a direction away from the fixed core;
    an operation coil capable of generating an electromagnetic force capable of moving the first movable member and the movable core toward the fixed core against the first biasing force of the first biasing member;
    a pair of fixed contacts;
    a second movable member including a movable contact;
    a pair of movable contacts provided on the movable contact and facing the pair of fixed contacts;
    a second biasing member that biases the second movable member toward the pair of fixed contacts;
    The first biasing force is larger than the second biasing force of the second biasing member,
    An electromagnetic switch, wherein the first movable member is spaced apart from the second movable member when the movable core is brought into contact with the fixed core by energizing the operating coil.
  2.  固定鉄心と、
     鉄心棒と、鉄心板とを含む可動鉄心とを備え、前記鉄心板は、前記鉄心棒に固定されており、かつ、前記固定鉄心に面しており、さらに、
     前記鉄心板が前記固定鉄心から離れる方向に前記可動鉄心を付勢する第1付勢部材と、
     前記第1付勢部材の第1付勢力に抗して前記鉄心板が前記固定鉄心に近づく方向に前記可動鉄心を移動させ得る電磁力を発生させ得る操作コイルと、
     一対の固定接点と、
     可動接触子を含む可動部材と、
     前記可動接触子上に設けられており、かつ、前記一対の固定接点に対向する一対の可動接点と、
     前記可動部材を前記一対の固定接点に向けて付勢する第2付勢部材とを備え、
     前記第1付勢力は、前記第2付勢部材の第2付勢力より大きく、
     前記操作コイルを励磁することによって前記鉄心板を前記固定鉄心に当接させたときに、前記可動鉄心は前記可動部材から間隔を空けて配置されている、電磁開閉器。
    a fixed core;
    a movable core including a core bar and a core plate, the core plate being fixed to the core bar and facing the fixed core;
    a first biasing member that biases the movable core in a direction in which the core plate moves away from the fixed core;
    an operation coil capable of generating an electromagnetic force capable of moving the movable core in a direction in which the core plate approaches the fixed core against the first biasing force of the first biasing member;
    a pair of fixed contacts;
    a movable member including a movable contact;
    a pair of movable contacts provided on the movable contact and facing the pair of fixed contacts;
    a second biasing member that biases the movable member toward the pair of fixed contacts;
    The first biasing force is larger than the second biasing force of the second biasing member,
    An electromagnetic switch, wherein the movable core is spaced apart from the movable member when the core plate is brought into contact with the fixed core by energizing the operation coil.
  3.  前記間隔は、前記一対の固定接点の第1厚さと前記一対の可動接点の第2厚さとの和より大きい、請求項1または請求項2に記載の電磁開閉器。 The electromagnetic switch according to claim 1 or 2, wherein the distance is larger than the sum of the first thickness of the pair of fixed contacts and the second thickness of the pair of movable contacts.
  4.  前記間隔は、0.1mm以上である、請求項1から請求項3のいずれか一項に記載の電磁開閉器。 The electromagnetic switch according to any one of claims 1 to 3, wherein the interval is 0.1 mm or more.
  5.  前記間隔は、5.0mm以下である、請求項1から請求項4のいずれか一項に記載の電磁開閉器。 The electromagnetic switch according to any one of claims 1 to 4, wherein the interval is 5.0 mm or less.
  6.  前記第2可動部材は、前記第1可動部材に向けて前記可動接触子から突出する絶縁突起を含み、
     前記絶縁突起は、前記一対の可動接点の間に配置されている、請求項1に記載の電磁開閉器。
    the second movable member includes an insulating projection projecting from the movable contact toward the first movable member;
    2. The electromagnetic switch according to claim 1, wherein said insulating protrusion is arranged between said pair of movable contacts.
  7.  前記可動部材は、前記可動鉄心に向けて前記可動接触子から突出する絶縁突起を含み、
     前記絶縁突起は、前記一対の可動接点の間に配置されている、請求項2に記載の電磁開閉器。
    the movable member includes an insulating projection projecting from the movable contact toward the movable core;
    3. The electromagnetic switch according to claim 2, wherein said insulating protrusion is arranged between said pair of movable contacts.
  8.  前記固定鉄心を支持する緩衝部材をさらに備える、請求項1に記載の電磁開閉器。 The electromagnetic switch according to claim 1, further comprising a buffer member that supports the fixed core.
  9.  前記第2可動部材に向けた前記固定鉄心の移動を規制するストッパをさらに備える、請求項8に記載の電磁開閉器。 The electromagnetic switch according to claim 8, further comprising a stopper that restricts movement of said fixed core toward said second movable member.
  10.  前記一対の固定接点が設けられている一対の固定接触子と、
     前記第2可動部材に向けた前記第1可動部材の移動を規制するストッパと、
     前記一対の固定接触子の一つに接続されているトリップコイルと、
     前記トリップコイルに過電流が流れるときに、前記トリップコイルに発生する電磁力によって移動し得るプランジャと、
     前記プランジャに連動して、前記第1可動部材から離れるように前記第2可動部材を移動させ得る開極レバーとをさらに備える、請求項1に記載の電磁開閉器。
    a pair of fixed contacts provided with the pair of fixed contacts;
    a stopper that restricts movement of the first movable member toward the second movable member;
    a trip coil connected to one of the pair of fixed contacts;
    a plunger movable by an electromagnetic force generated in the trip coil when an overcurrent flows through the trip coil;
    2. The electromagnetic switch according to claim 1, further comprising an opening lever capable of moving said second movable member away from said first movable member in conjunction with said plunger.
PCT/JP2022/001400 2021-05-12 2022-01-17 Electromagnetic switch WO2022239299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023520766A JPWO2022239299A1 (en) 2021-05-12 2022-01-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-080922 2021-05-12
JP2021080922 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239299A1 true WO2022239299A1 (en) 2022-11-17

Family

ID=84028124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001400 WO2022239299A1 (en) 2021-05-12 2022-01-17 Electromagnetic switch

Country Status (2)

Country Link
JP (1) JPWO2022239299A1 (en)
WO (1) WO2022239299A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643934A (en) * 1987-06-25 1989-01-09 Matsushita Electric Works Ltd Electromagnetic contactor
JP2000231869A (en) * 1998-12-10 2000-08-22 Fuji Electric Co Ltd Circuit breaker
WO2020202653A1 (en) * 2019-04-04 2020-10-08 三菱電機株式会社 Earth leakage circuit breaker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643934A (en) * 1987-06-25 1989-01-09 Matsushita Electric Works Ltd Electromagnetic contactor
JP2000231869A (en) * 1998-12-10 2000-08-22 Fuji Electric Co Ltd Circuit breaker
WO2020202653A1 (en) * 2019-04-04 2020-10-08 三菱電機株式会社 Earth leakage circuit breaker

Also Published As

Publication number Publication date
JPWO2022239299A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
KR101026306B1 (en) Molded case circuit breaker having a instaneous trip mechanism
US10217589B2 (en) High-speed circuit breaking array for breaking a current path in a switching device
US5053735A (en) Remotely-operated circuit breaker
EP2180487A2 (en) Micro switch
AU2004201318B2 (en) Circuit breaker mechanism including mechanism for breaking tack weld
JPH02100229A (en) Remotely operated type circuit breaker
JP2007149528A (en) Circuit breaker
US4042895A (en) Combination motor-starter and circuit breaker
JP6513304B1 (en) Electromagnetic actuator, switch and switch gear
WO2022239299A1 (en) Electromagnetic switch
US4975665A (en) Remote-controlled circuit breaker
KR101310849B1 (en) Circuit breaker
KR101925046B1 (en) Contact switch
KR20120040092A (en) Circuit breaker
JP4087835B2 (en) Circuit breaker accessories
US4095075A (en) Visible blade switch
CZ20032437A3 (en) Yoke of short-circuiting switch-off device magnetic system
EP1346386A1 (en) Current limiting circuit breaker
CN111433879B (en) Contactor
JP2889744B2 (en) breaker
JP4440872B2 (en) Circuit breaker movable contact device
CN219497669U (en) Contactor and electric device
RU53814U1 (en) CIRCUIT BREAKER
JPH02109232A (en) Remote operating type circuit breaker
JPH02109229A (en) Remote handling type circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807006

Country of ref document: EP

Kind code of ref document: A1