WO2022238078A1 - STEUERVORRICHTUNG ZUM BETRIEB EINES STRAßENGEKOPPELTEN HYBRIDFAHRZEUGES - Google Patents

STEUERVORRICHTUNG ZUM BETRIEB EINES STRAßENGEKOPPELTEN HYBRIDFAHRZEUGES Download PDF

Info

Publication number
WO2022238078A1
WO2022238078A1 PCT/EP2022/059826 EP2022059826W WO2022238078A1 WO 2022238078 A1 WO2022238078 A1 WO 2022238078A1 EP 2022059826 W EP2022059826 W EP 2022059826W WO 2022238078 A1 WO2022238078 A1 WO 2022238078A1
Authority
WO
WIPO (PCT)
Prior art keywords
axle
torque
control unit
soll
specified
Prior art date
Application number
PCT/EP2022/059826
Other languages
English (en)
French (fr)
Inventor
Florian Schnappauf
Andreas TREFFLER
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to US18/277,120 priority Critical patent/US20240123968A1/en
Priority to CN202280012252.9A priority patent/CN116783084A/zh
Publication of WO2022238078A1 publication Critical patent/WO2022238078A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0275Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/105Output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • B60W2520/263Slip values between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • Control device for operating a road-coupled hybrid vehicle
  • the invention relates to a control device for operating a road-coupled hybrid vehicle with at least one electronic control unit, with a first drive unit assigned to a primary axle (rear axle or front axle) and with a second drive unit assigned to a secondary axle (front axle or rear axle), the drive unit of the primary axle being at least has an internal combustion engine and a transmission and the drive unit of the secondary axle has at least one electric drive motor.
  • the German patent application 102012211 920 is based on a so-called road-coupled hybrid vehicle with at least one primary motor (e.g. electric motor), which acts as a drive motor on a first axle of the hybrid vehicle, and with a secondary motor (e.g. internal combustion engine), which acts as a drive motor on a second Axis of the hybrid vehicle acts from.
  • a primary motor e.g. electric motor
  • a secondary motor e.g. internal combustion engine
  • Such road-coupled hybrid vehicles are also referred to as “axle split” or axle hybrid vehicles.
  • German patent applications 102012211 920 and 102013208965 deal with methods for switching on the secondary motor.
  • the published application DE 102008035451 A1 describes a method for optimizing a hybrid vehicle by controlling the power output of the electric motor in such a way that a power output of the internal combustion engine is controlled to a load point that is optimal for its operating state.
  • the overall performance of the hybrid vehicle remains constant.
  • the overall performance of the vehicle can be increased by using the electric motor as a generator to charge the electric storage devices of the hybrid vehicle.
  • the load point of the combustion engine is controlled in such a way that it can be operated with as little fuel consumption as possible.
  • the control device for operating a road-coupled hybrid vehicle is equipped with at least one electronic control unit, with a first drive unit assigned to a primary axle and with a second drive unit assigned to a secondary axle.
  • the drive unit of the primary axle e.g. hybrid axle, which, in addition to the combustion engine, 3
  • Can have an electric motor) has at least one internal combustion engine and an automated transmission.
  • the drive unit of the secondary axle e.g. purely electric axle
  • the control unit is configured in particular by a corresponding functional module (computer program product) to receive a specified total target creep torque and a command to switch from single-axle operation to two-axle operation with a specified four-wheel drive factor as input variables.
  • the control unit sets a specified target torque for the internal combustion engine of the primary axle in accordance with the all-wheel drive factor.
  • the control unit records the resulting actual clutch torque of the transmission, which can be transmitted by the transmission control unit. If the function module of the control unit determines a difference between the actual clutch torque and the total setpoint creep torque, it specifies a corresponding setpoint torque for the electric drive motor of the secondary axle to compensate for this difference.
  • the invention is based on the following considerations:
  • the invention is intended to realize all-wheel drive crawling with road-coupled axles without a longitudinal transfer case. Here, a clutch-based torque transfer should take place.
  • road-coupled hybrid vehicles as described above should be able to creep at least under predetermined conditions in two-axle operation (all-wheel drive), in order to avoid slip, for example.
  • hybrid axles or axles with a starting clutch can be controlled in such a way that they only generate part of the torque 4 of the desired drive and transfer it to the other axis through appropriate software programming.
  • the creep torque is specified in particular by the transmission control unit and has always been implemented 100% by the coupled transmission axle (primary axle or hybrid axle).
  • the transmission control unit itself sends to the electronic control unit, which is provided for the central control of the torques of the drive units, a total target creep torque and an actual torque that the clutch currently issues.
  • This total target creep torque is distributed by the electronic control unit as individual target torques to the hybrid and e-axles.
  • the transmission control unit attempts to control the clutch(es) in such a way that the "all-wheel" distributed target clutch torque is achieved from the total target creep torque. However, if a difference remains, the E-axis is controlled to compensate for this difference between the total setpoint creep torque and the actual clutch torque.
  • the transmission control unit in particular sends the electronic control unit (as the central drive unit or as a hybrid master) a total target creep torque, which is divided between the two axles and sent back to the transmission as a proportionate target torque.
  • the gearbox reports a currently transmitted clutch torque.
  • the hybrid master coordinates the difference between the total target creep torque and the clutch torque on the second axle. 5
  • the transmission control unit could not independently implement the complete total target creep torque due to a fixed all-wheel drive ratio or an all-wheel drive ratio (“AWD factor”) communicated by another system; then the clutch torque is less than the total target creep torque and the E-axle (electric machine of the secondary axle) takes over the difference that is required for creeping in all-wheel drive or two-axle operation.
  • ATD factor all-wheel drive ratio
  • the drive concept according to the invention is a road-coupled parallel drive (“axle split”). Characteristic of this is a coupling between the electric machine on a first axle (electric axle) and a combustion engine (with an optional second, usually smaller electric machine) on another axle (hybrid axle) exclusively via the road (no mechanical or electrical coupling).
  • an exemplary embodiment is considered as an example in which the internal combustion engine is located on the rear axle as the primary axle and the (first) electric machine is located on the front axle as the secondary axle.
  • the internal combustion engine can also be located on the front axle as the primary axle and the electric machine on the rear axle as the secondary axle.
  • Fig. 1 is a schematic representation of a road-coupled hybrid vehicle with the essential for the control device according to the invention components and
  • Fig. 1 is a so-called road-coupled hybrid vehicle F with a first electric drive motor 1 as a drive unit of the front axle VA (defined here as a secondary axle) and with an internal combustion engine 3 as a drive unit of the rear axle HA (defined here as the primary axle).
  • the drive unit of the rear axle HA can contain a second electric motor 2 in addition to the internal combustion engine 3 .
  • an automatic transmission 4 (in particular a DCT transmission without a torque converter) with at least one controllable clutch 6 can be connected to the internal combustion engine 3 on the input side.
  • the invention can also be used analogously for a different sequence of components 2, 3 and 4; e.g. also for an arrangement in which the electric motor 2 is arranged between the internal combustion engine 3 and the automatic transmission 4.
  • the front axle VA could also be driven by an internal combustion engine and the rear axle by an electric motor.
  • the hybrid vehicle has an electrical energy store 7 which can be charged, in particular, when the electric drive motors 1 and/or 2 are operated as a generator.
  • a transmission control unit 8 is assigned to the transmission 4 and communicates with the drive control unit 5 according to the invention.
  • the method for controlling the operation of the hybrid vehicle is carried out by the electronic control unit 5, which has a correspondingly programmed function module 10 and connections to the necessary sensors and actuators.
  • the function module 10 is implemented, for example, in the form of a software program part (computer program product), the design and functioning of which is explained in more detail by the description of FIG. 7
  • Fig. 2 shows the relationships between the parameters that are processed by the control unit 5 according to the invention:
  • the total setpoint creep torque M_soll_K_ges is specified, for example by the transmission control unit 8. If the clutch torque M_actual_G in the transmission 4 is exceeded by the setpoint torque M_soll_1 of the primary drive 3 (and possibly 2) cannot be regulated to achieve the total target creep torque M_soll_K_ges, the target torque M_soll_2 of the secondary drive 1 compensates the difference D of the actual clutch torque M_act_G to the total target creep torque M_soll_K_ges.
  • the total setpoint creep torque M_soll_K_ges is preferably specified by the transmission control unit 8 if the electronic control unit 5 itself or externally generates a command to change from the four-wheel drive factor of 100% - i.e. from single-axle operation with the primary axle HA - to two-axle or all-wheel drive (e.g. 50%) received.
  • a control device for operating a road-coupled hybrid vehicle with at least one electronic control unit 5, with a first drive unit 2 (and possibly 3) assigned to a primary axle HA, and with a second drive unit 1 assigned to a secondary axle VA
  • the drive unit of the primary axle HA has at least one internal combustion engine 3 and an automatic transmission 4 with an automatically controllable clutch 6
  • the drive unit of the secondary axle VA has at least one electric drive motor 1 .
  • the control unit 5 is designed to receive a specified total target creep torque M_soll_K_ges and a command to switch from single-axle operation to two-axle operation with a specified all-wheel drive factor (AWD) as an input variable.
  • ATD all-wheel drive factor
  • the control unit 5 uses a correspondingly programmed function module 10 to set a specified torque M_soll_1 for the internal combustion engine 3 in accordance with the all-wheel drive factor AWD 8 of the primary axis HA. Furthermore, the control unit 5 detects the resulting actual clutch torque M_act_G of the transmission 4 , which is transmitted by the transmission control unit 8 . If function module 10 determines a difference D between actual clutch torque M_act_G and total setpoint creep torque M_soll_K_ges, it specifies a corresponding torque M_soll_2 for electric drive motor 1 of secondary axle VA to compensate for this difference D.
  • the total target creep torque M_soll_K_ges is preferably specified by the transmission control unit 8 when the accelerator pedal FP is not actuated and a selector switch 9 connected to the transmission control unit 8 is in a driving position “D” or “R”.
  • the command to switch from single-axle operation to two-axle operation with a predefined four-wheel drive factor AWD is generated when slip occurs at a standstill.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

Die erfindungsgemäße Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges ist mit mindestens einer elektronischen Steuereinheit, mit einer einer Primärachse zugeordneten ersten Antriebseinheit und mit einer einer Sekundärachse zugeordneten zweiten Antriebseinheit ausgestattet. Die die Antriebseinheit der Primärachse weist zumindest einen Verbrennungsmotor sowie ein automatisiertes Getriebe auf. Die Antriebseinheit der Sekundärachse weist mindestens einen Elektroantriebsmotor auf. Die Steuereinheit ist dazu ausgestaltet, als Eingangsgröße ein vorgegebenes Summen-Soll-Kriechmoment und einen Befehl zum Umschalten vom Einachsbetrieb auf den Zweiachsbetrieb mit vorgegebenem Allradfaktor zu empfangen. Anschließend stellt die Steuereinheit gemäß dem Allradfaktor ein vorgegebenes Soll-Drehmoment für den Verbrennungsmotor der Primärachse ein. Weiterhin erfasst die Steuereinheit das daraus folgende Ist-Kupplungsmoment des Getriebes. Stellt das Funktionsmodul der Steuereinheit eine Differenz des Ist-Kupplungsmoments zum Summen-Soll-Kriechmoment fest, gibt sie zur Kompensation dieser Differenz ein entsprechendes Soll-Drehmoment für den Elektroantriebsmotor der Sekundärachse vor.

Description

1
Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges
Die Erfindung bezieht sich auf eine Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges mit mindestens einer elektronischen Steuereinheit, mit einer einer Primärachse (Hinterachse oder Vorderachse) zugeordneten ersten Antriebseinheit und mit einer einer Sekundärachse (Vorderachse oder Hinterachse) zugeordneten zweiten Antriebseinheit, wobei die Antriebseinheit der Primärachse zumindest einen Verbrennungsmotor sowie ein Getriebe aufweist und die Antriebseinheit der Sekundärachse mindestens einen Elektroantriebsmotor aufweist.
Verschiedene Verfahren zum Betrieb eines straßengekoppelten Hybridfahrzeuges sind beispielsweise in den deutschen Patentanmeldungen 102012 211 920, 102013208965 oder 102013219085 beschrieben.
Die deutsche Patentanmeldung 102012211 920 geht beispielsweise von einem sogenannten straßengekoppelten Hybridfahrzeug mit mindestens einem Primärmotor (z. B. Elektromotor), der als Antriebsmotor auf eine erste Achse des Hybridfahrzeugs wirkt, und mit einem Sekundärmotor (z.B. Verbrennungsmotor), der als Antriebsmotor auf eine zweite Achse des Hybridfahrzeugs wirkt, aus. Dabei sind der Primär- und der Sekundärmotor 2 nicht über eine Kupplung, sondern lediglich über die Räder durch die Straße antriebsbezogen gekoppelt. Derartige straßengekoppelte Hybridfahrzeuge werden auch als „Axle-Split“- oder Achs-Hybridfahrzeuge bezeichnet.
Die deutschen Patentanmeldungen 102012211 920 und 102013208965 beschäftigen sich mit Verfahren zum Zuschalten des Sekundärmotors.
Die Offenlegungsschrift DE 102008035451 A1 beschreibt ein Verfahren zur Optimierung eines Hybridfahrzeuges mittels einer Steuerung der Leistungsabgabe des Elektromotors derart, dass eine Leistungsabgabe des Verbrennungsmotors auf einen für dessen Betriebszustand optimalen Lastpunkt gesteuert wird. Dabei bleibt die Gesamtleistung des Hybridfahrzeuges konstant. Es kann durch Einsatz des Elektromotors als Generator zum Aufladen von elektrischen Speichern des Hybridfahrzeuges die Gesamtleistung des Fahrzeuges erhöht werden. Hierbei wird der Lastpunkt des Verbrennungsmotors so geregelt, dass dieser so verbrauchsarm wie möglich betrieben werden kann.
Es ist Aufgabe der Erfindung, ein Hybridfahrzeug eingangs genannter Art im Hinblick auf das Traktionsverhalten beim Anfahren zu verbessern.
Diese Aufgabe wird erfindungsgemäß durch die Gegenstände der unabhängigen Patentansprüche gelöst. Abhängige Patentansprüche sind vorteilhafte Weiterbildungen der Erfindung.
Die erfindungsgemäße Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges ist mit mindestens einer elektronischen Steuereinheit, mit einer einer Primärachse zugeordneten ersten Antriebseinheit und mit einer einer Sekundärachse zugeordneten zweiten Antriebseinheit ausgestattet. Die Antriebseinheit der Primärachse (z.B. Hybridachse, die zusätzlich zum Verbrennungsmotor einen 3
Elektromotor aufweisen kann) weist zumindest einen Verbrennungsmotor sowie ein automatisiertes Getriebe auf. Die Antriebseinheit der Sekundärachse (z.B. reine Elektroachse) weist mindestens einen Elektroantriebsmotor auf. Die Steuereinheit ist insbesondere durch ein entsprechendes Funktionsmodul (Computerprogrammprodukt) dazu ausgestaltet, als Eingangsgröße ein vorgegebenes Summen-Soll- Kriechmoment und einen Befehl zum Umschalten vom Einachsbetrieb auf den Zweiachsbetrieb mit vorgegebenem Allradfaktor zu empfangen. Anschließend stellt die Steuereinheit gemäß dem Allradfaktor ein vorgegebenes Soll-Drehmoment für den Verbrennungsmotor der Primärachse ein. Weiterhin erfasst die Steuereinheit das daraus folgende Ist- Kupplungsmoment des Getriebes, das vom Getriebesteuergerät übertragen werden kann. Stellt das Funktionsmodul der Steuereinheit eine Differenz des Ist- Kupplungsmoments zum Summen-Soll-Kriechmoment fest, gibt sie zur Kompensation dieser Differenz ein entsprechendes Soll-Drehmoment für den Elektroantriebsmotor der Sekundärachse vor.
Der Erfindung liegen folgende Überlegungen zugrunde:
Durch die Erfindung soll ein Allrad-Kriechen bei straßengekoppelten Achsen ohne Längsverteilergetriebe realisiert werden. Hierbei soll ein kupplungsbasierter Momentenübertrag stattfinden.
Straßengekoppelte Hybridfahrzeuge wie oben beschrieben sollen erfindungsgemäß zumindest bei vorgegebenen Bedingungen im Zweiachsbetrieb (Allradbetrieb) ankriechen können, um beispielsweise Schlupf zu vermeiden.
Ohne Verteilergetriebe können Hybridachsen bzw. Achsen mit Anfahrkupplung so gesteuert werden, dass sie nur anteilige Drehmomente 4 des Antriebswunsches übernehmen und durch entsprechende Software- Programmierung auf die andere Achse übertragen.
Bei achsgekoppelten Antrieben wird das Kriechmoment insbesondere durch das Getriebesteuergerät vorgegeben und bisher immer zu 100% von der angekoppelten Getriebeachse (Primärachse bzw. Hybridachse) umgesetzt.
Bisher ist kein Kriechen im Allrad- bzw. Zweiachsbetrieb bei Hybridfahrzeugen ohne Längsverteilergetriebe vorgesehen.
Gemäß der Erfindung sendet beispielsweise das Getriebesteuergerät selbst an die elektronische Steuereinheit, die für die zentrale Steuerung der Drehmomente der Antriebseinheiten vorgesehen ist, ein Summen-Soll- Kriechmoment und ein Ist-Moment, das die Kupplung jeweils aktuell absetzt. Dieses Summen-Soll-Kriechmoment wird durch die elektronische Steuereinheit als Einzel-Soll-Momente auf die Hybrid- und die E-Achse verteilt.
Das Getriebesteuergerät versucht die die Kupplung(en) derart anzusteuern, dass das „allradig“ verteilte Soll-Kupplungsmoment aus dem Summen-Soll- Kriechmoment erreicht wird. Verbleibt jedoch eine Differenz, wird die E- Achse zur Kompensation dieser Differenz zwischen dem Summen-Soll- Kriechmoment zum Ist-Kupplungsmoment angesteuert.
Mit anderen Worten sendet insbesondere das Getriebesteuergerät der elektronischen Steuereinheit (als zentraler Antriebseinheit bzw. als Hybrid- Master) ein Summen-Soll-Kriechmomnt, welches auf beide Achsen aufgeteilt wird und als anteiliges Sollmoment an das Getriebe zurückgesendet wird. Das Getriebe meldet ein aktuell übertragenes Kupplungsmoment.
Der Hybridmaster koordiniert die Differenz aus Summen-Soll-Kriechmoment und Kupplungsmoment auf die zweite Achse. 5
Das Getriebesteuergerät könnte selbständig aufgrund eines festgelegten Allrad-Verhältnisses oder eines durch ein anderen System kommuniziertes Allradverhältnis („AWD Faktor“) im Kriechbereich nicht das komplette Summmen-Soll-Kriechmoment umsetzen; dann ist das Kupplungsmoment kleiner als das Summen-Soll-Kriechmoment und die E-Achse (Elektromaschine der Sekundärachse) übernimmt die Differenz, die zum Kriechen im Allrad- bzw. Zweiachsbetrieb erforderlich ist.
Bei dem erfindungsgemäßen Antriebskonzept handelt es sich um einen straßengekoppelten Parallelantrieb („Axle-Split“). Kennzeichnend dafür ist eine Kopplung zwischen E-Maschine auf einer ersten Achse (E-Achse) und einem Verbrennungsmotor (mit optionalerzweiter üblicherweise kleinerer E- Maschine) auf einer anderen Achse (Hybridachse) ausschließlich über die Straße (keine mechanische oder elektrische Kopplung). Beispielhaft wird in dieser Erfindung ein Ausführungsbeispiel betrachtet, in welchem sich der Verbrennungsmotor an der Hinterachse als Primärachse und die (erste) E- Maschine an der Vorderachse als Sekundärachse befinden. Ebenso kann erfindungsgemäß auch der Verbrennungsmotor an der Vorderachse als Primärachse und die E-Maschine an der Hinterachse als Sekundärachse befinden.
Details der Erfindung werden im hier folgenden Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigt
Fig. 1 eine schematische Darstellung eines straßengekoppelten Hybridfahrzeuges mit den für die erfindungsgemäße Steuervorrichtung wesentlichen Komponenten und
Fig. 2 eine Diagrammdarstellung zur Funktionsweise des durch die erfindungsgemäße elektronische Steuereinheit durchführbaren Verfahrens. 6
In Fig. 1 ist ein sogenanntes straßengekoppeltes Hybridfahrzeug F mit einem ersten Elektroantriebsmotor 1 als Antriebseinheit der Vorderachse VA (hier als Sekundärachse definiert) und mit einem Verbrennungsmotor 3 als eine Antriebseinheit der Hinterachse HA (hier als Primärachse definiert) dargestellt. Die Antriebseinheit der Hinterachse HA kann einen zweiten Elektromotor 2 zusätzlich zum Verbrennungsmotor 3 enthalten. Weiterhin ist ein Automatikgetriebe 4 (insbesondere ein DKG-Getriebe ohne Drehmomentwandler) mit mindestens einer steuerbaren Kupplung 6 eingangsseitig mit dem Verbrennungsmotor 3 verbindbar. Analog ist die Erfindung auch für eine anders angeordnete Reihenfolge der Komponenten 2, 3 und 4 anwendbar; z.B. auch für eine Anordnung, bei der der Elektromotor 2 zwischen dem Verbrennungsmotor 3 und dem Automatikgetriebe 4 angeordnet ist. Auch könnten bei einem anderen erfindungsgemäßen straßengekoppelten Hybridfahrzeug die Vorderachse VA von einem Verbrennungsmotor und die Hinterachse von einem Elektromotor angetrieben werden. Schließlich weist das Hybridfahrzeug einen elektrischen Energiespeicher 7 auf, der insbesondere bei generatorischem Betrieb der Elektroantriebsmotoren 1 und/oder 2 aufladbar ist. Dem Getriebe 4 ist ein Getriebesteuergerät 8 zugeordnet, das mit der erfindungsgemäßen Antriebs- Steuereinheit 5 kommuniziert.
Das Verfahren zur Steuerung des Betriebs des Hybridfahrzeuges wird durch das elektronische Steuergerät 5 durchgeführt, das ein entsprechend programmiertes Funktionsmodul 10 sowie Verbindungen zu den erforderlichen Sensoren und Aktuatoren aufweist. Erfindungsgemäß ist das Funktionsmodul 10 beispielsweise in Form eines Software-Programmteils (Com puterprogramm produkt) realisiert, auf dessen Ausgestaltung und Funktionsweise durch die Beschreibung der Fig. 2 näher eingegangen wird: 7
Fig. 2 zeigt die Zusammenhänge der Parameter, die durch die erfindungsgemäße Steuereinheit 5 verarbeitet werden: Vorgegeben wird das Summen-Soll-Kriechmoment M_soll_K_ges, beispielsweise durch das Getriebesteuergerät 8. Wenn das Kupplungsmoment M_ist_G im Getriebe 4 durch das Sollmoment M_soll_1 des Primärantriebs 3 (und ggf. 2) nicht zum Erreichen des Summen-Soll-Kriechmoment M_soll_K_ges regelbar ist, kompensiert das Sollmoment M_soll_2 des Sekundärantriebs 1 die Differenz D des Ist-Kupplungsmoments M_ist_G zum Summen-Soll-Kriechmoment M_soll_K_ges.
Vorzugsweise wird das Summen-Soll-Kriechmoment M_soll_K_ges vom Getriebsteuergerät 8 vorgegeben, wenn die elektronische Steuereinheit 5 selbst- oderfremd-erzeugt einen Befehl zum Wechsel vom Allradfaktor 100% - also vom Einachsbetrieb mit der Primärachse HA - auf einen Zweiachs- bzw. Allradbetrieb (z.B. 50%) erhält.
Mit anderen Worten:
Bei einer Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges mit mindestens einer elektronischen Steuereinheit 5, mit einer einer Primärachse HA zugeordneten ersten Antriebseinheit 2 (und ggf. 3) und mit einer einer Sekundärachse VA zugeordneten zweiten Antriebseinheit 1 weist die Antriebseinheit der Primärachse HA zumindest einen Verbrennungsmotor 3 sowie ein Automatikgetriebe 4 mit automatisch regelbarer Kupplung 6 auf und die Antriebseinheit der Sekundärachse VA weist mindestens einen Elektroantriebsmotor 1 auf. Die Steuereinheit 5 ist dazu ausgestaltet, als Eingangsgröße ein vorgegebenes Summen-Soll- Kriechmoment M_soll_K_ges und einen Befehl zum Umschalten vom Einachsbetrieb auf den Zweiachsbetrieb mit vorgegebenem Allradfaktor (AWD) zu empfangen. Anschließend stellt die Steuereinheit 5 durch ein entsprechend programmiertes Funktionsmodul 10 gemäß dem Allradfaktor AWD ein vorgegebenes Drehmoment M_soll_1 für den Verbrennungsmotor 3 8 der Primärachse HA ein. Weiterhin erfasst die Steuereinheit 5 das daraus folgende Ist-Kupplungsmoment M_ist_G des Getriebes 4, das vom Getriebesteuergerät 8 übertragen wird. Stellt das Funktionsmodul 10 eine Differenz D des Ist- Kupplungsmoments M_ist_G zum Summen-Soll- Kriechmoment M_soll_K_ges fest, gibt sie zur Kompensation dieser Differenz D ein entsprechendes Drehmoment M_soll_2 für den Elektroantriebsmotor 1 der Sekundärachse VA vor.
Vorzugsweise wird das Summen-Soll-Kriechmoment M_soll_K_ges vom Getriebesteuergerät 8 bei unbetätigtem Fahrpedal FP und bei einer Fahr- Position „D“ oder „R“ eines mit dem Getriebesteuergerät 8 verbundenen Wählschalters 9 vorgegeben.
Insbesondere wird der Befehl zum Umschalten vom Einachsbetrieb auf den Zweiachsbetrieb mit vorgegebenem Allradfaktor AWD bei Auftreten von Schlupf im Stillstand erzeugt.

Claims

9 Patentansprüche
1. Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges mit mindestens einer elektronischen Steuereinheit (5), mit einer einer Primärachse (HA) zugeordneten ersten Antriebseinheit (2, 3) und mit einer einer Sekundärachse (VA) zugeordneten zweiten Antriebseinheit (1), wobei die Antriebseinheit der Primärachse (HA) zumindest einen Verbrennungsmotor (3) sowie ein automatisiertes Getriebe (4) und die Antriebseinheit der Sekundärachse (VA) mindestens einen Elektroantriebsmotor (1) aufweist, und wobei die Steuereinheit (5) dazu ausgestaltet ist, als Eingangsgröße ein vorgegebenes Summen-Soll- Kriechmoment (M_soll_K_ges) sowie einen Befehl zum Umschalten vom Einachsbetrieb auf den Zweiachsbetrieb mit vorgegebenem Allradfaktor (AWD) zu empfangen, anschließend gemäß dem Allradfaktor (AWD) ein vorgegebenes Drehmoment (M_soll_1 ) zumindest für den Verbrennungsmotor (3) der Primärachse (HA) einzustellen sowie das Ist- Kupplungsmoment (M_ist_G) des Getriebes (4) zu erfassen und schließlich bei einer Differenz (D) des Ist- Kupplungsmoments (M_ist_G) zum Summen-Soll-Kriechmoment (M_soll_K_ges) diese Differenz (D) durch ein vorgegebenes Drehmoment (M_soll_2) für den Elektroantriebsmotor (1) der Sekundärachse (VA) zu kompensieren.
2. Steuervorrichtung nach Patentanspruch 1 , dadurch gekennzeichnet, dass das Summen-Soll-Kriechmoment (M_soll_K_ges) vom Getriebesteuergerät (8) bei unbetätigtem Fahrpedal (FP) vorgegeben wird. 10 Steuervorrichtung (5) nach einem der vorangegangenen Patentansprüche, dadurch gekennzeichnet, dass der Befehl zum Umschalten vom Einachsbetrieb auf den Zweiachsbetrieb mit vorgegebenem Allradfaktor (AWD) bei Auftreten von Schlupf im Stillstand erzeugt wird. Com puterprogramm produkt für eine Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges nach einem der vorangegangenen Patentansprüche. Straßengekoppeltes Hybridfahrzeug mit einer Steuervorrichtung (5) nach einem der vorangegangenen Patentansprüche.
PCT/EP2022/059826 2021-05-12 2022-04-13 STEUERVORRICHTUNG ZUM BETRIEB EINES STRAßENGEKOPPELTEN HYBRIDFAHRZEUGES WO2022238078A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/277,120 US20240123968A1 (en) 2021-05-12 2022-04-13 Controller for Operating a Road-Coupled Hybrid Vehicle
CN202280012252.9A CN116783084A (zh) 2021-05-12 2022-04-13 用于运行道路耦合的混合动力车辆的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021112481.6 2021-05-12
DE102021112481.6A DE102021112481A1 (de) 2021-05-12 2021-05-12 Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges

Publications (1)

Publication Number Publication Date
WO2022238078A1 true WO2022238078A1 (de) 2022-11-17

Family

ID=81597804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/059826 WO2022238078A1 (de) 2021-05-12 2022-04-13 STEUERVORRICHTUNG ZUM BETRIEB EINES STRAßENGEKOPPELTEN HYBRIDFAHRZEUGES

Country Status (4)

Country Link
US (1) US20240123968A1 (de)
CN (1) CN116783084A (de)
DE (1) DE102021112481A1 (de)
WO (1) WO2022238078A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034188A1 (en) * 2001-08-13 2003-02-20 Nissan Motor Co., Ltd. Hybrid system for vehicle with 4WD start mode
DE102008035451A1 (de) 2008-07-30 2009-03-19 Daimler Ag Verfahren zur Optimierung eines Hybridbetriebs
DE102009038553A1 (de) * 2009-02-17 2010-08-19 Volkswagen Ag Verfahren zum Betreiben eines Antriebsstranges für ein Kraftfahrzeug
DE102012211920A1 (de) 2012-07-09 2014-01-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Hybridfahrzeuges
DE102013208965A1 (de) 2013-05-15 2014-11-20 Bayerische Motoren Werke Aktiengesellschaft Steuerungsvorrichtung für ein Kraftfahrzeug mit einer elektronischen Steuereinheit, durch die das Antriebsmoment einer Antriebseinheit bedarfsweise auf mindestens zwei Achsen variabel verteilbar ist
DE102013219085A1 (de) 2013-09-23 2015-03-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges
DE102019219041A1 (de) * 2018-12-25 2020-06-25 Suzuki Motor Corporation System zum steuern einer drehmomentverteilung für antriebsräder eines hybrid-elektrofahrzeugs mit vierradantriebstechnik

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346671A1 (de) 2003-10-08 2005-05-12 Bayerische Motoren Werke Ag Steuersystem für ein zumindest zeitweise vierradgetriebenes Kraftfahrzeug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034188A1 (en) * 2001-08-13 2003-02-20 Nissan Motor Co., Ltd. Hybrid system for vehicle with 4WD start mode
DE102008035451A1 (de) 2008-07-30 2009-03-19 Daimler Ag Verfahren zur Optimierung eines Hybridbetriebs
DE102009038553A1 (de) * 2009-02-17 2010-08-19 Volkswagen Ag Verfahren zum Betreiben eines Antriebsstranges für ein Kraftfahrzeug
DE102012211920A1 (de) 2012-07-09 2014-01-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Hybridfahrzeuges
DE102013208965A1 (de) 2013-05-15 2014-11-20 Bayerische Motoren Werke Aktiengesellschaft Steuerungsvorrichtung für ein Kraftfahrzeug mit einer elektronischen Steuereinheit, durch die das Antriebsmoment einer Antriebseinheit bedarfsweise auf mindestens zwei Achsen variabel verteilbar ist
DE102013219085A1 (de) 2013-09-23 2015-03-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges
DE102019219041A1 (de) * 2018-12-25 2020-06-25 Suzuki Motor Corporation System zum steuern einer drehmomentverteilung für antriebsräder eines hybrid-elektrofahrzeugs mit vierradantriebstechnik

Also Published As

Publication number Publication date
CN116783084A (zh) 2023-09-19
US20240123968A1 (en) 2024-04-18
DE102021112481A1 (de) 2022-11-17

Similar Documents

Publication Publication Date Title
EP1969442B1 (de) Verfahren zur vereinfachung der momentenüberwachung, insbesondere bei hybridantrieben
EP1444109B1 (de) Antriebsstrang eines kraftfahrzeugs und verfahren zum steuern des antriebsstrangs
WO2017084888A1 (de) Betreiben einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
AT508066B1 (de) Verfahren zur steuerung eines hybridfahrzeuges
DE10008344A1 (de) Steuersystem für Hybridfahrzeug
WO2009003454A2 (de) Verfahren und vorrichtung zum regeln des schlupfes einer fahrzeugkupplung
EP1968839A1 (de) Verfahren zur überwachung von mehrmotorenantrieben
WO2010046198A2 (de) Verfahren und vorrichtung zum anfahren eines hybridfahrzeuges
WO2010031678A1 (de) Verfahren zur einstellung einer motorischen antriebseinrichtung in einem kraftfahrzeug
DE102015100014A1 (de) Verfahren und Vorrichtung zum Steuern von Kriechdrehmoment in einem Hybridantriebsstrangsystem
DE102005033723A1 (de) Antriebsstrang und Verfahren zur Regelung eines Antriesstranges
DE102010062337A1 (de) Verfahren und Vorrichtung zur Änderung der mechanischen Ankopplung eines Antriebaggregates an einen Triebstrang eines Kraftfahrzeuges, dessen Triebstrang mit mindestens zwei Antriebsaggregaten ausgerüstet ist
EP3354504B1 (de) Antriebsstrangsystem
EP1467886A1 (de) Verfahren zur steuerung eines hybridantriebes eines fahrzeuges
DE102009001291B4 (de) Verfahren zum Betreiben eines Antriebsstrangs
EP3074258B1 (de) Vorrichtungen und verfahren zum verteilen einer gesamtsollmoment-vorgabe
DE102013113658A1 (de) Verfahren zum Betreiben eines Triebstranges
EP1969220B1 (de) Verfahren zur vereinfachung der momentenaufteilung bei mehrfachantrieben
DE102008002691A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb
WO2022238078A1 (de) STEUERVORRICHTUNG ZUM BETRIEB EINES STRAßENGEKOPPELTEN HYBRIDFAHRZEUGES
DE102011002890A1 (de) Verfahren zur Regelung der Lastpunktverschiebung eines Verbrennungsmotors und zumindest einer elektrischen Maschine mit unterschiedlichem Ansprechverhalten im hybriden Fahrzustand in einem Parallel-Hybrid-Antriebsstrang
DE102019211916A1 (de) Verfahren zum Starten eines Verbrennungsmotors
DE102018205586A1 (de) Fahrzeug mit Modul und Verfahren zum Betrieb dieses Fahrzeugs
DE102021124260B4 (de) Steuervorrichtung und Verfahren zum Steuern eines Fahrzeugantriebsstranges mit Nebenabtrieb
DE102020004085A1 (de) Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs, insbesondere eines Kraftwagens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22722515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012252.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18277120

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22722515

Country of ref document: EP

Kind code of ref document: A1