WO2022237525A1 - 一种图像生成装置、投影装置及车辆 - Google Patents

一种图像生成装置、投影装置及车辆 Download PDF

Info

Publication number
WO2022237525A1
WO2022237525A1 PCT/CN2022/089273 CN2022089273W WO2022237525A1 WO 2022237525 A1 WO2022237525 A1 WO 2022237525A1 CN 2022089273 W CN2022089273 W CN 2022089273W WO 2022237525 A1 WO2022237525 A1 WO 2022237525A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beam
component
image
generating device
Prior art date
Application number
PCT/CN2022/089273
Other languages
English (en)
French (fr)
Inventor
李仕茂
闫云飞
陈宇宸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022237525A1 publication Critical patent/WO2022237525A1/zh
Priority to US18/503,405 priority Critical patent/US20240073379A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3117Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing two or more colours simultaneously, e.g. by creating scrolling colour bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback

Definitions

  • the present application relates to the technical field of projection display, and in particular to an image generation device, a projection device and a vehicle.
  • Head up display also known as head-up display system
  • HUD head up display
  • HUD head up display
  • head-up display system is a device that projects information such as speed and navigation to the front of the driver, so that the driver can see the instrument information without looking down.
  • HUD is a technology used by aircraft.
  • the pilot of a fighter jet can track and target objects based on HUD, which can improve the combat success rate and flexibility.
  • this technology was applied to the car, and the driver can see the speed, navigation, signal lights and other information of the car in front of the field of vision without looking down at the instrument panel or the central control display under the steering wheel, which can greatly improve emergency situations.
  • Faster braking reaction time to improve driving safety.
  • HUD picture generate unit
  • the ambient brightness is very different, which requires that the display brightness of the HUD can be adjusted according to the ambient brightness.
  • the maximum brightness of the HUD is designed according to the daytime environment. Generally, it is required to reach more than 10,000 nits.
  • the brightness of the night environment decreases and the human eye adapts to the dark environment, the brightness will be very dazzling, making it difficult to see the road conditions and affecting driving safety. Therefore, at this time The brightness needs to be reduced, in some cases below 100 nits.
  • the general way to adjust the brightness of the HUD is to reduce the brightness of the PGU backlight by adjusting the current, thereby reducing the brightness of the projected virtual image.
  • this solution requires a special design of the drive circuit, and the drive design to support a wide range of stable current regulation is more complicated, which will increase the cost of the HUD to a certain extent.
  • the embodiments of the present application provide an image generating device, a projection device and a vehicle, which can dynamically adjust the brightness of the image generated by the image generating device without specially designing the driving circuit of the light source assembly.
  • the present application provides an image generating device, which at least includes a light source assembly, a spatial light modulation assembly, a beam adjustment assembly, and a lens assembly; wherein, the light source assembly is used to generate the first light beam; the spatial light modulation assembly Used to modulate the first beam to generate an image beam; the lens assembly is used to project the image beam onto the projection surface to display the target image; the beam adjustment assembly is arranged in the lens assembly or on the optical path between the light source assembly and the spatial light modulation assembly , used to adjust the light quantity of the first light beam, and then adjust the brightness of the target image.
  • the brightness of the image generated by the image generating device can be dynamically adjusted without specially designing the driving circuit of the light source assembly.
  • the light beam adjustment assembly includes a control element and an adjustable aperture stop element, and the control element controls the size of a light aperture of the adjustable aperture stop element, so as to adjust the light quantity of the first light beam. It is further realized to adjust the contrast of the image while adjusting the brightness of the image.
  • the light hole of the adjustable aperture diaphragm element is a circular light hole or a rectangular light hole.
  • the image generating device further includes a dodging component, which is arranged on the optical path between the light source component and the spatial modulation component, and is used for dodging the first light beam generated by the light source component; beam adjustment The component is arranged on the light path between the light source component and the dodging component, or the light beam adjusting component is set on the light path between the dodging component and the spatial light modulation component.
  • a dodging component which is arranged on the optical path between the light source component and the spatial modulation component, and is used for dodging the first light beam generated by the light source component
  • beam adjustment The component is arranged on the light path between the light source component and the dodging component, or the light beam adjusting component is set on the light path between the dodging component and the spatial light modulation component.
  • the dodging component is a fly-eye lens.
  • the spatial light modulation component is a reflective spatial light modulation component.
  • the reflective spatial light modulation component is an LCoS component
  • the image generating device further includes a polarization beam splitter element; The beam of polarized light is reflected to the LCoS component, and the beam of P polarized light is transmitted to the lens component.
  • the image generating device further includes a polarization conversion element; the polarization conversion element is arranged on the optical path between the light source assembly and the polarization beam splitter element, and is used to modulate the first light beam into S polarized light beam.
  • the LCoS component includes a rectangular LCoS panel; the extension direction of the short sides of the rectangular LCoS panel is parallel to the incident plane, and the incident plane is a plane determined by the incident light beam and the reflected light beam of the polarization beam splitter element.
  • the reflective spatial light modulation component is a DMD component
  • the image generating device further includes a first collimating lens element and a mirror element; the first collimating lens element is configured between the light source component and the DMD component The optical path is used to collimate the first light beam; the reflector element is arranged on the optical path between the first collimating lens element and the DMD assembly, and is used to reflect the light beam collimated by the first collimating lens element to the DMD assembly .
  • the above-mentioned light source assembly at least includes: a red LED element, used to generate a red light beam; a green LED element, used to generate a green light beam; a first blue LED element, used to generate a first blue light beam ;
  • the second blue LED element is arranged opposite to the first blue light-emitting element, and is used to generate the second blue light beam;
  • the first dichroic mirror element is configured on the green light beam, the first blue light beam and the second blue light beam On the transmission path, it is used to reflect the first blue light beam to the green LED element, to form a mixed light beam on the transmission path of the transmitted green light beam and the reflected second blue light beam to the green light beam;
  • the second dichroic mirror element is configured on On the transmission path of the red light beam and the mixed light beam, the first light beam is formed on the transmission path for transmitting the mixed light beam and reflecting the red light beam to the mixed light beam.
  • the light source assembly further includes a second collimating lens element; the second collimating lens element is arranged on the transmission path of the mixed light beam, and is used to collimate the mixed light beam to the second dichroic mirror element.
  • the present application also provides a projection device, including the image generation device of the first aspect and an ambient brightness sensor; the ambient brightness sensor is used to detect the brightness of the environment where the projection surface is located; the image generation device is connected in communication with the ambient brightness sensor , used to adjust the brightness of the target image according to the brightness of the environment where the projection surface is located.
  • the projection device provided by the present application can automatically adjust the brightness of a projected image according to the brightness of the environment, so as to increase user experience.
  • the ambient brightness sensor is connected to the control element in communication; the control element controls the size of the aperture of the adjustable aperture diaphragm element according to the brightness of the environment where the projection surface is located, so as to adjust the brightness of the target image.
  • the projection device provided by the present application not only automatically adjusts the brightness of the projected image according to the brightness of the environment, but also adjusts the contrast of the projected image, so as to automatically reduce the brightness of the projected image and increase the contrast of the projected image in a dark environment.
  • the embodiment of the present application further provides a vehicle, including the image generation device in the first aspect, or the projection device in the second aspect.
  • FIG. 1 is a schematic structural diagram of an image generating device provided in an embodiment of the present application
  • Fig. 2a is a view along the beam transmission direction of an adjustable aperture stop element
  • Fig. 2b is a view along the beam transmission direction of another adjustable aperture diaphragm element
  • FIG. 3 is a schematic structural diagram of another image generation device provided by an embodiment of the present application.
  • Figure 4a is a schematic diagram of the incident angle and divergence angle of the LCoS panel of the image generating device without an adjustable aperture stop;
  • Figure 4b is a schematic diagram of the incident angle and divergence angle of the LCoS panel of the image generating device configured with an adjustable aperture stop;
  • FIG. 5 is an LCoS panel deployment diagram of another image generation device provided by the embodiment of the present application.
  • Figure 6a is a schematic diagram of the light path of the incident light and reflected light incident on the polarization beam splitting element after beam deflection;
  • Figure 6b is a schematic diagram of the influence of the beam on the polarization state of the beam when it is deflected and incident on the polarization beam splitting element in the X direction and the Y direction;
  • FIG. 7 is a schematic structural diagram of another image generation device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a scene when a W-HUD is deployed in a vehicle according to an embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , can also be a contradictory connection or an integral connection; those skilled in the art can understand the specific meanings of the above terms in the present application according to specific circumstances.
  • FIG. 1 is a schematic structural diagram of an image generation device provided by an embodiment of the present application.
  • the image generation device at least includes a light source assembly 10, a beam adjustment assembly 20, a spatial light modulation assembly 30, and a lens assembly 40; wherein, the light source assembly 10 generates a first light beam; the spatial light modulation assembly 30 is configured on the first light beam On the transmission path, the first beam is modulated to generate an image beam; the lens assembly 40 is arranged on the transmission path of the image beam, and the image beam is projected onto the projection surface 50 to display the target image; the beam adjustment assembly 20 is arranged on the light source assembly 10 The light path between the light beam and the spatial light modulation component 30 is used to adjust the light quantity of the first light beam, thereby adjusting the brightness of the target image.
  • the image generating device of the embodiment of the present application realizes the dynamic adjustment of the brightness of the image generated by the image generating device through the design at the optical level, and avoids the problem of high cost caused by the need for a relatively complicated driving circuit in the existing solution.
  • the meaning of the projection surface mentioned in the embodiments of the present application is the surface displayed by the projection image (ie, the target image).
  • the projection surface can be the surface of a certain physical entity.
  • the surfaces of physical entities such as the screen surface, wall surface, projection screen surface, and vehicle front windshield surface;
  • the projected image is a virtual image, the projection surface is the surface displayed by the projected image, such as the surface at a preset distance in front of the vehicle front windshield.
  • the light beam adjustment assembly can also be configured in the lens assembly, and the brightness of the projected image can be adjusted by adjusting the outgoing light quantity of the image beam.
  • the beam adjustment component can be set at the deployment position of the original aperture in the lens component, that is to say, the aperture in the lens component can be replaced by the beam adjustment component, so as to adjust the image through the beam adjustment component without affecting the display of the projected image content.
  • the output light quantity of the beam realizes adjusting the brightness of the projected image.
  • the light beam adjustment component in the embodiment of the present application is intended to dynamically adjust the light quantity of the first light beam, therefore, only an optical element that can realize this purpose is sufficient.
  • the beam adjustment component in the embodiment of the present application includes but is not limited to an aperture stop, a liquid crystal element, and other optical elements that can adjust the light quantity of the beam.
  • the beam adjustment assembly includes a control element and an adjustable aperture diaphragm element, wherein the aperture size of the aperture of the adjustable aperture diaphragm element is adjustable, and the control element controls the aperture of the aperture aperture of the adjustable aperture diaphragm element. Size, to adjust the amount of passing light of the first beam.
  • the control element may drive the aperture of the adjustable aperture diaphragm element to become larger or smaller by controlling the driving component, thereby automatically adjusting the light quantity of the first light beam.
  • the embodiment of the present application does not limit the shape of the light aperture of the adjustable aperture diaphragm element, and a light aperture of a suitable shape can be selected according to needs, for example, the light aperture of the adjustable aperture diaphragm element can be It is a circular light hole or a rectangular light hole, etc.
  • Fig. 2a shows a view of an adjustable aperture diaphragm element along the beam transmission direction, as shown in Fig. 2a, the adjustable aperture diaphragm element
  • the through hole 210 of 21 is circular, which can limit the light quantity of the first light beam in both horizontal and vertical dimensions by adjusting the radius of the circular light through hole, and then adjust the brightness and contrast of the projected image; FIG.
  • the through hole 210 of the adjustable aperture diaphragm element 21 is a rectangle, which can be designed as a horizontal dimension and a longitudinal dimension Both can be adjusted, and can also be designed to adjust the size of the light-through hole only in the longitudinal dimension.
  • the size of the hole 210 further realizes limiting the light quantity of the first light beam only in the longitudinal dimension, so that the projected image can achieve higher contrast under the same brightness.
  • transverse dimension and longitudinal dimension are respectively the directions perpendicular to each other on the plane where the light aperture of the adjustable aperture diaphragm element is located, for example, the direction perpendicular to the ground is the longitudinal dimension, parallel to The orientation of the ground is the lateral dimension.
  • the area defined by the solid line inside the adjustable aperture diaphragm shown in Figure 2a and Figure 2b represents the size of the light aperture before/after the aperture is adjusted, and the area defined by the dotted line represents the size of the aperture after/before it is adjusted. the size of.
  • FIG. 3 is a schematic structural diagram of another image generation device provided by an embodiment of the present application.
  • the image generation device also includes a uniform light component 60, which is arranged between the light source component composed of at least one light emitting element (such as LED 11, LED 12, LED 13 and LED 14) and the spatial modulation component 30. On the road, it is used to homogenize the first light beam generated by the light source assembly 10 .
  • the dodging component 60 refers to an optical element that can homogenize the light beam passing through it.
  • the dodging element can be a fly-eye lens or an integrating cylinder.
  • the light homogenizing component may also be a lens array or other optical elements having a light homogenizing effect, which is not limited in this embodiment of the present application.
  • the light beam adjustment component can be arranged on the light path between the light source component and the uniform light component.
  • the adjustable aperture stop 21 is disposed on the optical path between the light source assembly and the dodging assembly 60 .
  • the light beam adjustment component can also be arranged on the optical path between the light uniform component and the spatial light modulation component 30 .
  • the spatial light modulation component 30 may be a transmissive spatial light modulator, such as a liquid crystal display (liquid crystal display, LCD) component, etc.; or a reflective spatial light modulator, such as a liquid crystal on silicon (LCoS) component, Digital micromirror display (digital micromirror display, DMD) components, etc.
  • a transmissive spatial light modulator such as a liquid crystal display (liquid crystal display, LCD) component, etc.
  • a reflective spatial light modulator such as a liquid crystal on silicon (LCoS) component, Digital micromirror display (digital micromirror display, DMD) components, etc.
  • LCD liquid crystal display
  • DMD digital micromirror display
  • the image generating device further includes a polarization beam splitter element, and the polarization beam splitter element is arranged on the optical path between the light source component and the LCoS component, and is used to reflect the beam of S polarized light to the LCoS
  • the component transmits the beam of P polarized light to the lens component.
  • the polarization beam splitter element 90 is arranged on the optical path between the light source assembly and the LCoS panel 31, for reflecting the light beam of S polarized light to the LCoS panel 31, and transmitting the light beam of P polarized light to the lens Component 40.
  • the polarization beamsplitter element 90 may be the polarization beamsplitter prism shown in FIG. 3 , or a polarization beamsplitter, or other polarization beamsplitter optical elements capable of reflecting S-polarized light and projecting P-polarized light, which is not limited in this application.
  • the image generating device is further configured with a polarization conversion system (PCS), configured to modulate the polarization state of the first light beam to an S polarization state.
  • PCS polarization conversion system
  • the polarization conversion element 70 is arranged on the optical path between the light homogenizing element 60 and the polarizing beam splitter element 90, and modulates the polarization state of the first light beam into light of the S polarization state, so that it is incident on the LCoS panel
  • the S polarized light is more, increasing the contrast of the projected image.
  • the image generating device provided in the embodiment of the present application can adjust the contrast of the projected image while adjusting the light quantity of the first light beam and then the brightness of the projected image by setting the adjustable aperture diaphragm, which can realize Low brightness and high contrast of the projected image.
  • the adjustable aperture stop 21 restricts the light quantity of the first beam to become smaller, the incident angle and divergence angle of the beam on the surface of the LCoS panel are reduced, thereby improving the beam modulation contrast.
  • the ambient brightness decreases, the display brightness of the projected image is reduced, and at the same time, it adapts to the high contrast requirement brought about by the improvement of human eye sensitivity in a low-brightness environment.
  • the effective display area of the LCoS panel is generally rectangular, and the more common ratio is 16:9, which makes the beam divergence angle of the LCoS surface larger in the direction of the short side in general.
  • the plane defined by the incident light beam and the reflected light beam of the mirror element 90 is the XZ plane in FIG. 5 .
  • the light source component includes at least one light-emitting element to generate green light beams, blue light beams and red light beams, and a light combining component configured on the transmission path of these light beams to mix these light beams into a first light beam to emit .
  • the light emitting element may be a laser or a light emitting diode (light emitting diode, LED) or other light emitting element.
  • light-emitting element comprises at least the LED 11 that is used to produce red light beam, the LED 12 that is used to produce green light beam, the LED 13 that is used to produce the first blue light beam and the LED 14 that is used to produce the second blue light beam
  • the light-combining assembly at least includes a first dichroic mirror element 15 and a second dichroic mirror element 16, wherein the first dichroic mirror element 15 is arranged between the green light beam, the first blue light beam and the second blue light beam On the transmission path, reflect the first blue light beam to the green LED 12, transmit the green light beam and reflect the second blue light beam to the transmission path of the green light beam to form a mixed light beam; the second dichroic mirror element 16 is configured on On the transmission path of the red light beam and the mixed light beam, the first light beam is formed on the transmission path for transmitting the mixed light beam and reflecting the red light beam to the mixed light beam.
  • the first dichroic mirror element 15 is a dichroic mirror that can reflect blue beams and transmit other color beams
  • the second dichroic mirror 16 is a dichroic mirror that can reflect red beams and transmit other color beams.
  • the LED 12 of the embodiment of the present application is to excite the green light produced by the phosphor on the surface of the blue light chip, and the LED 13 will be reflected by the first dichroic mirror and incident to the LED 12, and the phosphor on the surface of the LED 12 chip will be excited again to generate green light. , thereby enhancing the intensity of the green light and increasing the display effect of the projected image.
  • the light combination assembly further includes a collimating lens element 17; the second collimating lens element 17 is arranged on the transmission path of the mixed light beam, and is used to collimate the mixed light beam to the second two-way Chromatic mirror element 16.
  • the structure of the light source assembly in FIG. 3 is only an example of implementation, and the light source assembly may also have other possible implementations.
  • the light source assembly includes a first light emitting element, a second light emitting element, a third light emitting element and a combination of light Assemblies, the first light-emitting element, the second light-emitting element, and the third light-emitting element are respectively used to provide red light beams, green light beams, and blue light beams, and the light-combining assembly is arranged on the transmission path of the red light beams, green light beams, and blue light beams. These beams are mixed to form a first beam output.
  • the light combination component is a dichroic mirror that can reflect light beams of one color and transmit light beams of other colors.
  • red light beams, green light beams and blue light beams can be combined Mix to form the first beam.
  • LCoS modulates the RGB images synchronously, and uses the persistence of vision effect of the human eye to generate color patterns.
  • the lens assembly 40 can illustratively include a combination of one or more optical lenses with diopters, such as biconcave lenses, biconvex lenses, concave-convex lenses, convex-concave lenses, plano-concave lenses, plano-convex lenses and other non-planar lenses or various combinations thereof .
  • the embodiment of the present application does not limit the type and type of the lens assembly.
  • the spatial light modulation component 30 may also be a DMD.
  • the spatial light modulation component 30 includes a DMD panel 32. The following describes the optical path structure of the image generating device when the spatial light modulation component is a DMD.
  • FIG. 7 is a schematic structural diagram of another image generation device provided by an embodiment of the present application.
  • the image generating device at least includes a light source assembly 10 , a light beam adjustment assembly 20 , a uniform light assembly 60 , a mirror element 100 , a DMD panel 32 and a lens assembly 40 .
  • the reflector element 100 is configured on the optical path behind the uniform light assembly 60, and the light beam is reflected onto the DMD panel 32, and the DMD panel 32 pairs The light beam is modulated to generate an image light beam, and the lens assembly 40 projects the image light beam onto the projection surface to form a projected image.
  • a collimating lens element 110 is further arranged between the uniform light component 60 and the mirror element 100 to collimate the light beam onto the mirror.
  • the embodiment of the present application also provides a projection device, including the above-mentioned image generating device and an ambient brightness sensor; wherein, the ambient brightness sensor is used to detect the brightness of the environment where the projection surface is located, and the image generating device communicates with the ambient brightness sensor, and the image generating device According to the brightness of the environment where the projection surface is located detected by the ambient brightness sensor, the brightness of the projected image (that is, the target image) is adjusted.
  • the environment brightness sensor may be a light intensity sensor, and the light intensity sensor determines the environment brightness by detecting the intensity of external light.
  • the ambient brightness sensor communicates with the control element; the control element controls the size of the aperture of the adjustable aperture diaphragm element according to the brightness of the environment where the projection surface is located, so as to adjust the brightness of the projected image.
  • the light intensity sensor detects the light intensity of the environment where the projection surface is located, and then sends the detected light intensity information to the control element of the image generation unit, and the control element controls the adjustable aperture diaphragm according to the received brightness of the environment where the projection surface is located
  • the size of the light hole of the component adjusts the contrast of the projected image while adjusting the brightness of the projected image.
  • the projection device is a conference projector
  • the projection surface is the wall or projection screen surface in the conference room
  • the ambient brightness of the projection surface is the ambient brightness of the conference room.
  • the PGU in the projector will adjust the aperture of the adjustable aperture diaphragm element to become smaller, thereby adjusting the brightness of the projected image to decrease and the contrast to increase, increasing the user's viewing experience in a dark environment.
  • the PGU in the projector will adjust the aperture of the adjustable aperture diaphragm element to become larger, and then adjust the brightness of the projected image to become higher, adapting to the user's viewing in a bright light environment.
  • the projection device provided in the embodiment of the present application may be various types of projection devices, for example, a home projector, a cinema projector, a vehicle HUD, etc., and the embodiment of the present application does not limit the type of the projection device.
  • An embodiment of the present application also provides a vehicle, including the above projection device or image generation device.
  • Vehicles include but are not limited to electric vehicles, fuel vehicles, engineering vehicles, agricultural vehicles, airplanes, ships and other means of transportation.
  • the projection device is a vehicle-mounted HUD.
  • the vehicle-mounted HUD communicates with the vehicle's Advanced Driving Assistant System (ADAS).
  • ADAS Advanced Driving Assistant System
  • the image is projected onto the windshield to form a real image, or a magnified virtual image observed by human eyes is formed in front of the car through the curved mirror and windshield for the driver to use as a driving reference.
  • Vehicle-mounted HUDs include, but are not limited to, vehicle-mounted HUDs such as C-HUD, W-HUD, and AR-HUD.
  • C-HUD is an early HUD
  • C is the initial letter of Combiner
  • Combiner is an optical lens that both transmits and reflects light beams.
  • the instrument information image displayed by the PGU is projected onto the Combiner through a mirror (or not) and finally reflected to the
  • the human eye forms a virtual image in front of the human eye.
  • C-HUD is an independent device placed above the steering wheel or center console, so it is also called rear-mounted HUD.
  • the C-HUD has a small field of view and displays simple information, but it is neither beautiful nor safe to place it in front of the driver.
  • W-HUD W is the first letter of the windshield word Windshield.
  • the image generated by the PGU is projected onto the windshield and reflected to the windshield.
  • the human eye forms a virtual image in front of the car, because it is integrated with the body, it is also called a front-mounted HUD.
  • W-HUD can have a larger field of view, can display more information, and is integrated with the body, so it is safer and more beautiful.
  • augmented reality AR-HUD which is a technology that superimposes and displays virtual information such as navigation on the road surface or other external objects.
  • AR-HUD Rich information provides better driving experience and application scenarios.
  • the technical solution of AR-HUD is the same as that of W-HUD, the difference is that the virtual image distance (the distance from the virtual image to the human eye) of W-HUD is between 2 and 3m, while AR-HUD is generally greater than 5m, and the larger virtual image distance It can present a better combination of virtual and real effects, and AR-HUD will have a larger field of view to enhance the augmented reality experience.
  • the virtual image displayed by AR-HUD needs to be combined with the real scene, which requires precise positioning and detection of the car, so AR-HUD needs to cooperate with the car's ADAS system.
  • the information displayed by AR-HUD is superimposed on the road and objects in front of the car.
  • the PGU display is black, there should be no light projected from the HUD, and the driver can only see the physical information in front of the car, but In fact, the PGU cannot project no light at all, that is, it cannot completely display pure black, which will cause the driver to see a "light window” in front of the car, which will affect the experience presented by AR.
  • the display contrast of the PGU should be increased to minimize the light output when displaying a black signal.
  • the human eye is more sensitive in dark environments and requires higher contrast.
  • the PGU provided in this embodiment and the vehicle-mounted AR-HUD using the PUG can reduce the display brightness of the HUD in a dark environment, increase the display contrast of the HUD, reduce or eliminate the "light window” effect, and increase user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Instrument Panels (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种图像生成装置、投影装置及车辆。图像生成装置包括光源组件(10)、空间光调制组件(30)、光束调节组件(20)和镜头组件(40);其中,光源组件(10)用于产生第一光束;空间光调制组件(30)用于对第一光束进行调制以生成图像光束;镜头组件(40)用于将图像光束投射至投影面(50)上显示目标图像;光束调节组件(20)配置于镜头组件(40)中或者光源组件(10)和空间光调制组件(30)之间的光路上,用于调节第一光束的光量,进而调节目标图像的亮度。图像生成装置在无需特别设计光源组件的驱动电路的情况下,实现了动态调节图像生成装置的生成图像的亮度。

Description

一种图像生成装置、投影装置及车辆
本申请要求于2021年5月8日提交的申请号为202110514415.0、申请名称为“一种图像生成装置、投影装置及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影显示技术领域,尤其涉及一种图像生成装置、投影装置及车辆。
背景技术
抬头显示(head up display,HUD)也叫平视显示***,它是把速度、导航等信息投射至驾驶员前方的一种装置,使驾驶员不必低头即可看到仪表信息。最初HUD是飞行器使用的一种技术,比如战斗机上驾驶员可以基于HUD进行物体追踪和瞄准,可以提高作战成功率和灵活性。后来这种技术应用到了汽车中,驾驶员可以在视野前方看到汽车运行的速度、导航、信号灯等信息,而不需低头观察方向盘下方的仪表盘或者中控显示屏,这可以大大提高紧急情况时的制动反应时间,提升驾驶的安全性。HUD的原理是导航和仪表等信息经过图像生成单元(picture generate unit,PGU)产生图像,然后将该图像投影到挡风玻璃上形成实像,或者通过曲面反射镜和风挡在汽车前方形成人眼观测的放大虚像供驾驶员作驾驶参考。
HUD在白天和夜晚开启时,环境亮度差别很大,这要求HUD的显示亮度可以根据环境亮度进行调节。HUD的最高亮度根据白天环境设计,一般要求达到10000尼特以上,到了夜间环境亮度降低,人眼适应暗环境后,这个亮度会非常刺眼,导致看不清道路情况,影响驾驶安全,所以这时的亮度需要降低,某些情况下需要降到100尼特以下。现在一般调节HUD亮度的方法是通过调节电流降低PGU背光源的亮度,从而降低投射虚像的亮度。但是该方案需要特别设计驱动电路,支持大范围稳定调节电流的驱动设计是较复杂的,这会一定程度上增加HUD的成本。
申请内容
为了克服上述问题,本申请的实施例提供了一种图像生成装置、投影装置及车辆,在无需特别设计光源组件的驱动电路的情况下,实现了动态调节图像生成装置的生成图像的亮度。
为了实现上述目的,第一方面,本申请提供一种图像生成装置,至少包括光源组件、空间光调制组件、光束调节组件和镜头组件;其中,光源组件用于产生第一光束;空间光调制组件用于对第一光束进行调制以生成图像光束;镜头组件用于将图像光束投射至投影面上显示目标图像;光束调节组件配置于镜头组件中或者光源组件和空间光调制组件之间的光路上,用于调节第一光束的光量,进而调节目标图像的亮度。由此,在无需特别设计光源组件的驱动电路的情况下,实现了动态调节图像生成装置的生成图像的亮度。
在一个可能的实现中,光束调节组件包括控制元件和可调孔径光阑元件,控制元件控制可调孔径光阑元件的通光孔的大小,以调节第一光束的光量。进一步实现在调节图像亮度的同时调节图像的对比度。
可选的,可调孔径光阑元件的通光孔为圆形通光孔或矩形通光孔。
在另一个可能的实现中,图像生成装置还包括匀光组件,匀光组件配置于光源组件和空间调制组件之间的光路上,用于将光源组件产生的第一光束进行匀光;光束调节组件配置于光源组件和匀光组件之间的光路上,或者,光束调节组件配置于匀光组件和空间光调制组件之间的光路上。
可选的,匀光组件为复眼透镜。
在另一个可能的实现中,空间光调制组件为反射型空间光调制组件。
在另一个可能的实现中,反射型空间光调制组件为LCoS组件,图像生成装置还包括偏振分光镜元件;该偏振分光镜元件配置于光源组件和LCoS组件之间的光路上,用于将S偏振光的光束反射至LCoS组件,将P偏振光的光束透射至镜头组件。
在另一个可能的实现中,图像生成装置还包括偏光转换元件;该偏光转换元件配置于光源组件和偏振分光镜元件之间的光路上,用于将所述第一光束调制为S偏振光的光束。
在另一个可能的实现中,LCoS组件包括矩形LCoS面板;该矩形LCoS面板的短边延伸方向与入射面平行,该入射面为偏振分光镜元件的入射光束和反射光束确定的平面。
在另一个可能的实现中,反射型空间光调制组件为DMD组件,图像生成装置还包括第一准直透镜元件和反射镜元件;第一准直透镜元件配置于光源组件和DMD组件之间的光路上,用于将第一光束准直;反射镜元件配置于第一准直透镜元件和DMD组件之间的光路上,用于将第一准直透镜元件准直后的光束反射至DMD组件。
在另一个可能的实现中,上述光源组件至少包括:红光LED元件,用于产生红色光束;绿光LED元件,用于产生绿色光束;第一蓝光LED元件,用于产生第一蓝色光束;第二蓝光LED元件,与第一蓝色发光元件相对设置,用于产生第二蓝色光束;第一二向色镜元件,配置于绿色光束、第一蓝色光束和第二蓝色光束的传输路径上,用于反射第一蓝色光束至绿光LED元件,透射绿色光束和反射第二蓝色光束至绿色光束的传输路径上形成混合光束;第二二向色镜元件,配置于红色光束和混合光束的传输路径上,用于透射混合光束和反射红色光束至混合光束的传输路径上形成第一光束。
在另一个可能的实现中,光源组件还包括第二准直透镜元件;第二准直透镜元件配置于混合光束的传输路径上,用于将混合光束准直至第二二向色镜元件。
第二方面,本申请还提供了一种投影装置,包括第一方面的图像生成装置和环境亮度传感器;该环境亮度传感器用于检测投影面所在环境的亮度;图像生成装置与环境亮度传感器通信连接,用于根据投影面所在环境的亮度,调节目标图像的亮度。
本申请提供的投影装置,可根据环境亮度自动调节投影图像的亮度,增加用户的使用体验。
在一个可能的实现中,环境亮度传感器与控制元件通信连接;控制元件根据投影面所在环境的亮度,控制可调孔径光阑元件的通光孔的大小,以调节目标图像的亮度。
本申请提供的投影装置,在根据环境亮度自动调节投影图像的亮度的同时,还调节了投影图像的对比度,实现在黑暗环境下自动降低投影图像的亮度,同时增加投影图像的对比度。
第三方面,本申请实施例还提供一种车辆,包括第一方面的图像生成装置,或第二方面的投影装置。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1为本申请实施例提供的一种图像生成装置的结构示意图;
图2a为一种可调孔径光阑元件的沿光束传输方向的视图;
图2b为另一种可调孔径光阑元件的沿光束传输方向的视图;
图3为本申请实施例提供的另一种图像生成装置的结构示意图;
图4a为未配置可调孔径光阑的图像生成装置的LCoS面板的入射角和发散角示意图;
图4b为配置可调孔径光阑的图像生成装置的LCoS面板的入射角和发散角示意图;
图5为本申请实施例提供的另一种图像生成装置的LCoS面板部署图;
图6a为光束偏转入射至偏振分光元件上的入射光线和反射光学的光路示意图;
图6b为光束在X方向和Y方向偏转入射至偏振分光元件上,对光束的偏振态的影响示意图;
图7为本申请实施例提供的另一种图像生成装置的结构示意图;
图8为本申请实施例提供的W-HUD部署于车辆时的场景示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本申请的描述中,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,还可以是抵触连接或一体的连接;对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
图1为本申请实施例提供的一种图像生成装置的结构示意图。如图1所示,图像生成装置至少包括光源组件10、光束调节组件20、空间光调制组件30和镜头组件40;其中,光源组件10产生第一光束;空间光调制组件30配置于第一光束的传输路径上,对第一光束进行调制以生成图像光束;镜头组件40配置于图像光束的传输路径上,将图像光束投射至投影面50上显示目标图像;光束调节组件20配置于光源组件10和空间光调制组件30之间的光路上,用于调节第一光束的光量,进而调节目标图像的亮度。
本申请实施例的图像生成装置,通过在光学层面的设计实现了动态调节图像生成装置的生成图像的亮度,避免了现有方案中需要较为复杂的驱动电路带来的成本过高的问题。
容易理解的是,本申请实施例中提到的投影面的含义为投影图像(即目标图像)显示的面,例如,当投影图像为实像时,则投影面可以为某一物理实体的表面,例如屏幕表面、墙面、投影幕布表面和车辆前风挡表面等物理实体的表面;当投影图像为虚像时,则投影面为投影图像显示的面,例如车辆前风挡前方预设距离的面。
在一个示例中,光束调节组件还可以配置于镜头组件中,通过调节图像光束的出射光量来实现调节投影图像的亮度。例如,可将光束调节组件设置于镜头组件中原光圈部署位置,也就是说将镜头组件中的光圈替换为光束调节组件,以实现在不影响投影图像内容显示的基础上,通过光束调节组件调节图像光束的出射光量,实现调节投影图像的亮度。
本申请实施例中的光束调节组件旨在动态调节第一光束的光量,因此,只要可实现这一目的的光学元件即可。例如,本申请实施例中的光束调节组件包括但不限于孔径光阑、液晶 元件等可实现调节光束的光量的光学元件。
示例性的,光束调节组件包括控制元件和可调孔径光阑元件,其中可调孔径光阑元件的通光孔的孔径大小可调,控制元件通过控制可调孔径光阑元件的通光孔的大小,调节第一光束的通过光量。例如,控制元件可以通过控制驱动部件,驱动可调孔径光阑元件的通光孔变大或变小,进而实现自动调节第一光束的光量。
需要说明的是,本申请的实施例并不限定可调孔径光阑元件的通光孔的形状,可根据需要选择合适形状的通光孔,例如,可调孔径光阑元件的通光孔可以为圆形通光孔或矩形通光孔等;示例性的,图2a示出了一种可调孔径光阑元件的沿光束传输方向的视图,如图2a所示,可调孔径光阑元件21的通孔孔210为圆形,其可以通过调节圆形通光孔的半径大小,实现在横向和纵向维度上均限制第一光束的光量,进而调节投影图像的亮度和对比度;图2b示出了另一种可调孔径光阑元件的沿光束传输方向的视图,如图2b所示,可调孔径光阑元件21的通孔孔210为矩形,其可以设计为在横向维度和纵向维度均可调节,也可设计为仅在纵向维度上可调节通光孔的大小,例如图2b所示,可调孔径光阑元件21的通孔孔210设计为仅可在纵向维度上调节通光孔210的大小,进而实现只在纵向维度上限制第一光束的光量,使投影图像在同样的亮度下实现更高的对比度。
容易理解的是,上述提到的横向维度和纵向维度的含义,分别为可调孔径光阑元件的通光孔所在平面的相互垂直的方向,例如,垂直于地面的方向为纵向维度、平行于地面的方向为横向维度。
需要解释的是,图2a和图2b中示出的可调孔径光阑元件的内侧实线限定区域表征通光孔被调节前/后的大小,虚线限定区域表征通光孔被调节后/前的大小。
图3为本申请实施例提供的另一种图像生成装置的结构示意图。如图3所示,图像生成装置还包括匀光组件60,配置于由至少一个发光元件(例如LED 11、LED 12、LED 13和LED 14)构成的光源组件和空间调制组件30之间的光路上,用于将光源组件10产生的第一光束进行匀光。
匀光组件60是指可让通过其的光束均匀化的光学元件,例如,匀光元件可以是复眼透镜或积分柱等。在其他示例中,匀光组件也可以是透镜阵列或其他具有光均匀化效果的光学元件,本申请实施例并不限定。
光束调节组件可配置于光源组件和匀光组件之间的光路上。例如,图3所示,可调孔径光阑21配置于光源组件和匀光组件60之间的光路上。或者,光束调节组件也可以配置于匀光组件和空间光调制组件30之间的光路上。
空间光调制组件30可以为透射型空间光调制器,例如液晶显示(liquid crystal display,LCD)组件等;或者反射型空间光调制器,例如硅基液晶显示(liquid crystal on silicon,LCoS)组件、数字微镜显示(digital micromirror display,DMD)组件等。
当空间光调制组件30为LCoS组件时,则图像生成装置还包括偏振分光镜元件,偏振分光镜元件配置于光源组件和LCoS组件之间的光路上,用于将S偏振光的光束反射至LCoS组件,将P偏振光的光束透射至镜头组件。
例如,如图3所示,偏振分光镜元件90配置于光源组件和LCoS面板31之间的光路上,用于将S偏振光的光束反射至LCoS面板31,将P偏振光的光束透射至镜头组件40。
偏振分光镜元件90可以为图3中示出的偏振分光棱镜,也可以为偏振分光片,或其他可实现反射S偏振光和投射P偏振光的偏振分光光学元件,本申请对此不作限定。
为了进一步提高投影图像的对比度,图像生成装置还配置有偏振转换元件 (polarizingconversionsystem,PCS),用于将第一光束的偏振态调制为S偏振态。
例如,图3所示,偏振转换元件70配置于匀光元件60和偏振分光镜元件90之间的光路上,将第一光束的偏振态调制为S偏振态的光,使入射到LCoS面板上的S偏振光更多,增加投影图像的对比度。
本申请实施例提供的图像生成装置通过设置可调孔径光阑,在调整第一光束的光量大小,进而调整投影图像的亮度的同时,还可以调整投影图像的对比度,可实现在暗光环境下的投影图像的低亮度高对比度。
例如,如图4a和图4b所示,当可调孔径光阑21限制第一光束的光量变小时,减小了LCoS面板表面光束的入射角和发散角,从而提升光束调制对比度。则在环境亮度降低的时候,降低投影图像的显示亮度,同时适应低亮度环境下人眼灵敏度提升带来的高对比度需求。
LCoS面板其有效显示区域一般是矩形的,比较常见的比例是16:9,这就使得一般情况下,LCoS表面的光束发散角在短边方向上更大。
因此,为了进一步增加投影图像的对比度,在一个示例中,如图5所示,LCoS面板31为矩形LCoS面板,矩形LCoS面板的短边延伸方向与入射面平行设置,其中,入射面为偏振分光镜元件90的入射光束和反射光束确定的平面,也即图5中的XZ平面。
光束角度影响对比度的原理如图6a-6b所示,可以发现入射光线在Y方向的偏转导致反射光线偏振态旋转的影响更大,偏振态旋转越多,则对比度越低,而X方向的偏转对偏振态旋转没有影响。所以让发散角更大的LCoS面板的短边延伸方向与入射面平行,则可以降低偏振态旋转对图像生成装置产生图像的对比度的影响。
光源组件包括至少一个发光元件,以产生绿色光束、蓝色光束和红色光束,以及合光组件,用于合光组件配置于这些光束的传输路径上,用于将这些光束混合为第一光束射出。
其中,发光元件可以为激光器或发光二极管(light emitting diode,LED)等发光元件。
例如图3中,发光元件至少包括用于产生红色光束的LED 11、用于产生绿色光束的LED12、用于产生第一蓝色光束的LED 13和用于产生第二蓝色光束的LED 14,合光组件至少包括第一二向色镜元件15和第二二向色镜元件16,其中,第一二向色镜元件15配置于绿色光束、第一蓝色光束和第二蓝色光束的传输路径上,反射第一蓝色光束至绿光LED 12,透射绿色光束和反射第二蓝色光束至所述绿色光束的传输路径上形成混合光束;第二二向色镜元件16,配置于红色光束和混合光束的传输路径上,用于透射混合光束和反射红色光束至混合光束的传输路径上形成第一光束。
第一二向色镜元件15选用可反射蓝色光束透射其他颜色光束的二向色镜,第二二向色镜16选用可反射红色光束透射其他颜色光束的二向色镜。
本申请实施例的LED 12是通过蓝光芯片激发表面的荧光体产生的绿光,LED 13会通过第一二向色镜反射而入射到LED 12,再次激发LED 12芯片表面的荧光体产生绿光,从而增强绿光的强度,增加投影图像的显示效果。
在另一个示例中,如图3所示,合光组件还包括准直透镜元件17;第二准直透镜元件17配置于混合光束的传输路径上,用于将混合光束准直至第二二向色镜元件16。
当然,图3中的光源组件的结构仅为一种实现示例,光源组件还可以具有其他可能的实现方式,例如,光源组件包括第一发光元件、第二发光元件、第三发光元件以及合光组件,第一发光元件、第二发光元件、第三发光元件分别用于提供红色光束、绿色光束和蓝色光束,合光组件配置于红色光束、绿色光束和蓝色光束的传输路径上,将这些光束混合为第一光束射出。例如,合光组件为二向色镜可以反射一种颜色的光束,而使其他颜色的光束透射通过, 通过合理的选择适合的二向色镜和布置实现将红色光束、绿色光束和蓝色光束混合形成第一光束。
通过将提供红色光束、蓝色光束和绿色光束的LED时序点亮,LCoS同步分别调制RGB图像,利用人眼视觉暂留效应,产生彩色图案。
镜头组件40示例性的可以包括具有屈光度的一个或多个光学镜片的组合,光学镜片例如包括双凹透镜、双凸透镜、凹凸透镜、凸凹透镜、平凹透镜、平凸透镜等非平面镜片或其各种组合。本申请实施例对镜头组件的型态及其种类并不加以限制。
在另一个示例中,空间光调制组件30还可以为DMD,例如空间光调制组件30包括DMD面板32,下面介绍空间调制组件为DMD时的图像生成装置的光路结构。
图7为本申请实施例提供的另一种图像生成装置的结构示意图。如图7所示,图像生成装置至少包括光源组件10、光束调节组件20、匀光组件60、反射镜元件100、DMD面板32和镜头组件40。
光源组件10、光束调节组件20、匀光组件60的结构和配置方式参见上述描述,反射镜元件100配置于匀光组件60之后的光路上,将光束反射至DMD面板32上,DMD面板32对光束调制生成图像光束,镜头组件40将图像光束投射至投影面上形成投影图像。
在一个示例中,匀光组件60和反射镜元件100之间还配置有准直透镜元件110,将光束准直至反射镜上。
本申请实施例还提供了一种投影装置,包括上述图像生成装置和环境亮度传感器;其中,环境亮度传感器用于检测投影面所在环境的亮度,图像生成装置与环境亮度传感器通信连接,图像生成装置根据环境亮度传感器检测到的投影面所在环境的亮度,调节投影图像(即目标图像)的亮度。
例如,环境亮度传感器可以为光强传感器,光强传感器通过检测外界光线强度来确定环境亮度。
环境亮度传感器与控制元件通信连接;控制元件根据投影面所在环境的亮度,控制可调孔径光阑元件的通光孔的大小,以调节投影图像的亮度。
例如,光强传感器检测投影面所在环境的光线强度,然后将检测到的光线强度信息发送给图像生成单元的控制元件,控制元件根据接收到的投影面所在环境的亮度来控制可调孔径光阑元件的通光孔的大小,在调节投影图像亮度的同时调节投影图像的对比度。
以投影装置应用于会议室场景举例说明,投影装置为会议用投影仪,则投影面为会议室内的墙面或投影幕布表面,投影面所在环境亮度则为会议室内环境亮度。当会议室内环境变暗时,则投影仪内的PGU会调节可调孔径光阑元件的通光孔变小,进而调节投影图像的亮度变低同时对比度增高,增加用户在暗光环境下的观看体验;当会议室内环境变量时,则投影仪内的PGU会调节可调孔径光阑元件的通光孔变大,进而调节投影图像的亮度变高,适应用户在亮光环境下的观看。
需要解释的是,本申请实施例提供的投影装置可以为多种类型的投影装置,例如,家用投影仪、影院用投影仪,车载HUD等,本申请实施例对投影装置的类型不做限定。
本申请实施例还提供了一种车辆,包括上述投影装置或图像生成装置。
车辆包括但不限于电动车辆、燃油车辆、工程车辆、农用车辆、飞机、轮船等交通工具。投影装置为车载HUD,车载HUD与车辆的驾驶辅助***(Advanced Driving Assistant System, ADAS)通信连接,HUD接收ADAS输入的驾驶辅助信息,例如车速、导航等信息,然后通过PGU产生图像,然后将该图像投影到挡风玻璃上形成实像,或者通过曲面反射镜和风挡在汽车前方形成人眼观测的放大虚像供驾驶员作驾驶参考。
车载HUD包括但不限于,C-HUD、W-HUD和AR-HUD等车载HUD。
其中,C-HUD为早期的HUD,C是Combiner的首字母,Combiner是既透射又反射光束的光学镜片,PGU显示的仪表信息图像经过反射镜(也可能没有)投射到Combiner上,最后反射到人眼,在人眼前方形成虚像。C-HUD是一个独立的设备,放置于方向盘或者中控台上方,所以也叫后装HUD。C-HUD视场角小,显示的信息简单,但是其放置于驾驶员前方既不美观也不安全。
而W-HUD,W是挡风玻璃单词Windshield的首字母,W-HUD应用于车辆上时,如图8所示,与C-HUD不同,PGU产生的像是投射到挡风玻璃上反射至人眼,在汽车的前方形成虚像,因为与车身集成,其也叫前装HUD。与C-HUD相比,W-HUD可以有更大的视场角,可以显示的信息更多,而且与车身集成,所以更安全美观。随着汽车技术的发展以及更多应用场景的提出,HUD的发展趋势是增强现实AR-HUD,它是将导航等虚拟的信息叠加显示于路面或者是其他外界物体的一种技术,可以显示更丰富的信息,提供更好的驾驶体验和应用场景。AR-HUD的技术方案与W-HUD是相同的,区别在于W-HUD的虚像距离(虚像至人眼的距离)在2~3m之间,而AR-HUD一般大于5m,更大的虚像距离可以呈现更好的虚实结合效果,此外AR-HUD会有更大的视场角以提升增强现实体验。AR-HUD显示的虚像需要与实景结合,其要求汽车的精确定位与探测,所以AR-HUD需要与汽车的ADAS***配合。
AR-HUD显示的信息叠加在车前方的路面和物体上面,在理想情况下,当PGU显示的是黑色的时候,HUD应该没有光线投射出来,驾驶员只能看到车前的实物信息,但实际上PGU并不能做到完全没有光投射出来,也就是不能完全显示纯黑色,这样导致驾驶员会在车前方看到一个“光窗”,影响AR呈现的体验。为了降低“光窗”效应,应该提高PGU的显示对比度,尽量减少显示黑色信号时的光线输出。特别是人眼在黑暗环境下灵敏度更高,要求更高的对比度。本实施例提供的PGU、以及应用了该PUG的车载AR-HUD可以实现在黑暗环境下降低HUD的显示亮度,同时增加HUD的显示对比度,降低或消除“光窗”效应,增加用户使用体验。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以适合的方式结合。
最后说明的是:以上实施例仅用以说明本申请的技术方案,而对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种图像生成装置,其特征在于,包括:
    光源组件,用于产生第一光束;
    空间光调制组件,用于对所述第一光束进行调制以生成图像光束;
    镜头组件,用于将所述图像光束投射至投影面上显示目标图像;
    光束调节组件,配置于所述镜头组件中或者所述光源组件和所述空间光调制组件之间的光路上,用于调节所述第一光束的光量,以调节所述目标图像的亮度。
  2. 根据权利要求1所述的图像生成装置,其特征在于,所述光束调节组件包括控制元件和可调孔径光阑元件,所述控制元件控制所述可调孔径光阑元件的通光孔的大小,以调节所述第一光束的光量。
  3. 根据权利要求2所述的图像生成装置,其特征在于,所述可调孔径光阑元件的通光孔为圆形通光孔或矩形通光孔。
  4. 根据权利要求1-3任一项所述的图像生成装置,其特征在于,所述图像生成装置还包括匀光组件,所述匀光组件配置于所述光源组件和所述空间调制组件之间的光路上,用于将所述光源组件产生的第一光束进行匀光;
    所述光束调节组件配置于所述光源组件和所述匀光组件之间的光路上,
    或者,所述光束调节组件配置于所述匀光组件和所述空间光调制组件之间的光路上。
  5. 根据权利要求4所述的图像生成装置,其特征在于,所述匀光组件为复眼透镜。
  6. 根据权利要求1-5任一项所述的图像生成装置,其特征在于,所述空间光调制组件为反射型空间光调制组件。
  7. 根据权利要求6所述的图像生成装置,其特征在于,所述反射型空间光调制组件为LCoS组件,所述图像生成装置还包括偏振分光镜元件;
    所述偏振分光镜元件配置于所述光源组件和所述LCoS组件之间的光路上,用于将所述S偏振光的光束反射至所述LCoS组件,将P偏振光的光束透射至所述镜头组件。
  8. 根据权利要求7所述的图像生成装置,其特征在于,所述图像生成装置还包括偏光转换元件;
    所述偏光转换元件配置于所述光源组件和所述偏振分光镜元件之间的光路上,用于将所述第一光束调制为S偏振光的光束。
  9. 根据权利要求7或8所述的图像生成装置,其特征在于,所述LCoS组件包括矩形LCoS面板;
    所述矩形LCoS面板的短边延伸方向与入射面平行,所述入射面为所述偏振分光镜元件的入射光束和反射光束确定的平面。
  10. 根据权利要求6所述的图像生成装置,其特征在于,所述反射型空间光调制组件为DMD组件,所述图像生成装置还包括第一准直透镜元件和反射镜元件;
    所述第一准直透镜元件配置于所述光源组件和所述DMD组件之间的光路上,用于将所述第一光束准直;
    所述反射镜元件配置于所述第一准直透镜元件和所述DMD组件之间的光路上,用于将所述第一准直透镜元件准直后的光束反射至所述DMD组件。
  11. 根据权利要求1-10任一项所述的图像生成装置,其特征在于,所述光源组件至少包 括:
    红光LED元件,用于产生红色光束;
    绿光LED元件,用于产生绿色光束;
    第一蓝光LED元件,用于产生第一蓝色光束;
    第二蓝光LED元件,与所述第一蓝色发光元件相对设置,用于产生第二蓝色光束;
    第一二向色镜元件,配置于所述绿色光束、第一蓝色光束和第二蓝色光束的传输路径上,用于反射所述第一蓝色光束至绿光LED元件,透射绿色光束和反射第二蓝色光束至所述绿色光束的传输路径上形成混合光束;
    第二二向色镜元件,配置于所述红色光束和混合光束的传输路径上,用于透射所述混合光束和反射所述红色光束至所述混合光束的传输路径上形成所述第一光束。
  12. 根据权利要求11所述的图像生成装置,其特征在于,所述光源组件还包括第二准直透镜元件;
    所述第二准直透镜元件配置于所述混合光束的传输路径上,用于将所述混合光束准直至所述第二二向色镜元件。
  13. 一种投影装置,其特征在于,包括权利要求1-9任一项所述的图像生成装置和环境亮度传感器;
    所述环境亮度传感器用于检测所述投影面所在环境的亮度;
    所述图像生成装置与所述环境亮度传感器通信连接,用于根据所述投影面所在环境的亮度,调节所述目标图像的亮度。
  14. 根据权利要求13所述的投影装置,其特征在于,所述环境亮度传感器与所述控制元件通信连接;
    所述控制元件根据所述投影面所在环境的亮度,控制所述可调孔径光阑元件的通光孔的大小,以调节所述目标图像的亮度。
  15. 一种车辆,其特征在于,包括如权利要求1-12任一项所述的图像生成装置,或如权利要求13或14所述的投影装置。
PCT/CN2022/089273 2021-05-08 2022-04-26 一种图像生成装置、投影装置及车辆 WO2022237525A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/503,405 US20240073379A1 (en) 2021-05-08 2023-11-07 Picture generation apparatus, projection apparatus, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110514415.0A CN115308913A (zh) 2021-05-08 2021-05-08 一种图像生成装置、投影装置及车辆
CN202110514415.0 2021-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/503,405 Continuation US20240073379A1 (en) 2021-05-08 2023-11-07 Picture generation apparatus, projection apparatus, and vehicle

Publications (1)

Publication Number Publication Date
WO2022237525A1 true WO2022237525A1 (zh) 2022-11-17

Family

ID=83853294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089273 WO2022237525A1 (zh) 2021-05-08 2022-04-26 一种图像生成装置、投影装置及车辆

Country Status (4)

Country Link
US (1) US20240073379A1 (zh)
CN (2) CN115308913A (zh)
TW (1) TWI806574B (zh)
WO (1) WO2022237525A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546045A (zh) * 2008-03-28 2009-09-30 红蝶科技(深圳)有限公司 偏振转换装置及使用其的投影***
US20110181801A1 (en) * 2010-01-27 2011-07-28 Seiko Epson Corporation Reflective liquid crystal projector
CN109507843A (zh) * 2017-09-14 2019-03-22 扬明光学股份有限公司 合光模组
CN112099230A (zh) * 2019-06-17 2020-12-18 宁波舜宇车载光学技术有限公司 投影调节***及其投影调节方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298253A (zh) * 2010-06-25 2011-12-28 鸿富锦精密工业(深圳)有限公司 微型硅晶投影机
DE102012221467A1 (de) * 2012-11-23 2014-05-28 Osram Gmbh Lichtmodul für eine projektionsvorrichtung
EP3172613A4 (en) * 2014-07-22 2018-06-20 Navdy Inc. Compact heads-up display system
US20220256130A1 (en) * 2019-04-02 2022-08-11 Ningbo Sunny Automotive Optech Co., Ltd. Projection adjustment system and method, and projection color adjustment system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546045A (zh) * 2008-03-28 2009-09-30 红蝶科技(深圳)有限公司 偏振转换装置及使用其的投影***
US20110181801A1 (en) * 2010-01-27 2011-07-28 Seiko Epson Corporation Reflective liquid crystal projector
CN109507843A (zh) * 2017-09-14 2019-03-22 扬明光学股份有限公司 合光模组
CN112099230A (zh) * 2019-06-17 2020-12-18 宁波舜宇车载光学技术有限公司 投影调节***及其投影调节方法

Also Published As

Publication number Publication date
TWI806574B (zh) 2023-06-21
US20240073379A1 (en) 2024-02-29
CN116300110A (zh) 2023-06-23
TW202248714A (zh) 2022-12-16
CN115308913A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US10656418B2 (en) Display apparatus, head-up display system, vehicle and display control method
JP5683690B2 (ja) ディスプレイ、特に車両ヘッドアップディスプレイ
US8608320B2 (en) Projector and method for controlling the same
CN108490616B (zh) 抬头显示器及显示控制方法
EP3026482A1 (en) Scanning-type projection device
US7204594B2 (en) Projector
JP6056246B2 (ja) 画像表示装置
US10042162B2 (en) Device and method for emitting a light beam intended to form an image, projection system, and display using said device
KR19980020357A (ko) 천연색 홀로그래픽 헤드 업 표시 장치
US20160231565A1 (en) Image display device
EP3561593B1 (en) Projection display system
WO2022237525A1 (zh) 一种图像生成装置、投影装置及车辆
US11624910B2 (en) Head up display device
JP2018200384A (ja) 虚像表示装置
CN218767781U (zh) 投影显示设备
JP2001255488A (ja) 投写型車載映像表示装置
JP2015118220A (ja) 画像表示装置および制御装置
JP6160078B2 (ja) 車両用画像投影装置
WO2022252724A1 (zh) 一种光学***、照明***及显示***
CN218567814U (zh) 投影光机、显示设备和交通工具
WO2022206441A1 (zh) 激光扫描***及控制方法、激光成像设备和汽车
JP2017122932A (ja) 中間像形成装置
JP2017010055A (ja) 画像表示装置
CN117579795A (zh) 图像产生模组及其控制方法和车载视觉辅助***
CN118244567A (zh) 一种投影设备、显示设备和交通工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806494

Country of ref document: EP

Kind code of ref document: A1