WO2022237487A1 - 一种熔盐电解精炼铍的方法 - Google Patents

一种熔盐电解精炼铍的方法 Download PDF

Info

Publication number
WO2022237487A1
WO2022237487A1 PCT/CN2022/088120 CN2022088120W WO2022237487A1 WO 2022237487 A1 WO2022237487 A1 WO 2022237487A1 CN 2022088120 W CN2022088120 W CN 2022088120W WO 2022237487 A1 WO2022237487 A1 WO 2022237487A1
Authority
WO
WIPO (PCT)
Prior art keywords
beryllium
molten salt
cathode
anode
salt electrolyte
Prior art date
Application number
PCT/CN2022/088120
Other languages
English (en)
French (fr)
Inventor
赵中伟
Original Assignee
郑州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州大学 filed Critical 郑州大学
Priority to US18/289,682 priority Critical patent/US20240254644A1/en
Publication of WO2022237487A1 publication Critical patent/WO2022237487A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the application belongs to the field of beryllium metallurgy, in particular to a method for molten salt electrolytic refining of beryllium.
  • Beryllium is a widely used metal. Among all metals, beryllium has the strongest penetrating ability to X-rays. It is called metallic glass and is an irreplaceable material for making X-ray tube windows. Beryllium has a strong deceleration effect on fast neutrons, which can make the fission reaction go on continuously, and is the best neutron moderator in atomic reactors. Beryllium is dissolved in copper to make beryllium copper alloy, which can be used as conductive elastic element and elastic sensitive element.
  • beryllium is mainly produced by the magnesium beryllium fluoride thermal reduction method, and the resulting metal beryllium beads contain 96-97% beryllium, which requires further refining to obtain high-purity metal beryllium.
  • beryllium is mainly refined by vacuum volatilization, but a small amount of oxygen contained in the industrial volatilization furnace will react with the exposed metal beryllium to form beryllium oxide wrapped on the surface of the metal beryllium, making it difficult to volatilize impurities such as magnesium.
  • Patent CN 109182786A discloses a method for preparing high-purity metal beryllium by volatilization of oxygen-free impurities.
  • Patent CN 109097602 A discloses a method for refining beryllium by thermal dissociation of beryllium iodide. The method first reacts coarse beryllium powder and iodine at low temperature to generate beryllium iodide, and then decomposes beryllium iodide at high temperature to prepare high-purity beryllium powder.
  • Patents US 3278402 A and US 3296107 A disclose a method for refining beryllium. This method first removes impurities less active than beryllium in molten chloride salts by pre-electrolysis, and then produces metal beryllium by electrolysis. This method can obtain high-purity beryllium. However, beryllium will be precipitated in the pre-electrolysis process, resulting in the loss of part of beryllium. At the same time, chlorine gas will be produced in the electrolysis process.
  • the purpose of this application is to provide a method for efficiently refining beryllium by electrolysis based on the difference in metal oxidation-reduction potential, using a liquid alloy to connect the anode chamber and the cathode chamber. Conditions are easy to achieve, no loss of beryllium.
  • a method for molten salt electrolytic refining of beryllium comprising the steps of:
  • the electrolytic cell is divided into an anode chamber and a cathode chamber.
  • the anode chamber contains an anode molten salt electrolyte and is inserted with a thick beryllium anode.
  • the cathode chamber contains a cathode molten salt electrolyte and is inserted with a cathode.
  • the bottom is also filled with liquid alloy; the anode molten salt electrolyte and the cathode molten salt electrolyte are not in contact with each other and are connected through the liquid alloy at the bottom of the electrolytic cell;
  • Electrolysis is carried out by electrification, the metal beryllium in the anode is oxidized into beryllium ions and enters the anode molten salt electrolyte, and is reduced to metal beryllium at the interface between the anode molten salt electrolyte and the liquid alloy and dissolves into the liquid alloy.
  • the metal beryllium in the anode is oxidized into beryllium ions and enters the anode molten salt electrolyte, and is reduced to metal beryllium at the interface between the anode molten salt electrolyte and the liquid alloy and dissolves into the liquid alloy.
  • the beryllium is oxidized into beryllium ions at the interface between the liquid alloy and the cathode molten salt electrolyte, enters the cathode molten salt electrolyte, and is reduced to metal beryllium on the surface of the cathode.
  • the cathode is a nickel, tungsten or molybdenum cathode.
  • the liquid alloy is an alloy of one or more of copper, silver, gold, manganese and beryllium. Further preferably, the liquid alloy is an alloy composed of beryllium and copper in an atomic ratio of 28:72.
  • the anode molten salt electrolyte and the cathode molten salt electrolyte are the same or different, and are all halide molten salts containing beryllium ions, preferably lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride A mixture of one or more of them with beryllium fluoride.
  • the densities of the anode molten salt electrolyte and the cathode molten salt electrolyte are both smaller than the density of the liquid alloy under the condition of energization.
  • the purity of the rough beryllium is not lower than 90%.
  • the anode current density is 0.1-1.5A/cm 2
  • the electrolysis temperature is 600-1100°C. If the temperature is too low, the molten salt and alloy are difficult to melt, and if the temperature is too high, the molten salt will volatilize in large quantities.
  • the method for refining beryllium by molten salt electrolysis described in this application connects two electrolytic chambers through a liquid alloy, and when the ions in the anode molten salt electrolyte are reduced to corresponding metals and enter the liquid alloy, the metal that is more active than beryllium is behind beryllium. Entering the liquid alloy, although the metal that is nobler than beryllium will enter the liquid alloy before beryllium, but when the metal in the liquid alloy is oxidized into the corresponding ion and enters the molten salt in the cathode chamber, the metal that is nobler than beryllium will be oxidized after beryllium. Therefore, the present application It can well remove impurities in rough beryllium.
  • the molten salt containing beryllium halide can isolate the air, avoid the contact of the generated metal beryllium with the air, and the reaction does not need to be carried out in an oxygen-free environment.
  • the application is based on different The electrochemical difference of ions removes impurities, and the reaction does not require vacuuming.
  • Fig. 1 is the electrolyzer diagram of the method for molten salt electrolytic refining beryllium described in the application;
  • 1-anode 2-anode molten salt electrolyte; 3-liquid alloy; 4-cathode; 5-cathode molten salt electrolyte; 6-anode chamber; 7-cathode chamber.
  • This embodiment provides a method for molten salt electrolytic refining of beryllium, comprising the following steps:
  • This embodiment provides a method for molten salt electrolytic refining of beryllium, comprising the following steps:
  • This embodiment provides a method for molten salt electrolytic refining of beryllium, comprising the following steps:
  • This embodiment provides a method for molten salt electrolytic refining of beryllium, comprising the following steps:
  • This embodiment provides a method for molten salt electrolytic refining of beryllium, comprising the following steps:
  • This embodiment provides a method for molten salt electrolytic refining of beryllium, comprising the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本申请涉及一种熔盐电解精炼铍的方法,包括先构建阳极室内盛有阳极熔盐电解质并插有粗铍阳极,阴极室内盛有阴极熔盐电解质并插有阴极,阳极熔盐电解质和阴极熔盐电解质互不接触而通过电解槽内底部的液态合金相连接的电化学体系,通电电解,即可在阴极得到精炼后的固态铍。本申请所述的方法能够很好的除去粗铍中的杂质,得到的金属铍纯度高,制备过程无需抽真空,无需在无氧环境下操作,反应条件易于达到,是一种高效精炼铍的方法。

Description

一种熔盐电解精炼铍的方法 技术领域
本申请属于铍冶金领域,具体涉及一种熔盐电解精炼铍的方法。
背景技术
铍是一种应用十分广泛的金属,所有金属中,铍对X-射线的穿透能力最强,有金属玻璃之称,是制造X-光管窗口不可取代的材料。铍对快中子有很强的减速作用,可以使裂变反应连续不断地进行下去,是原子反应堆中最好的中子减速剂。将铍溶于铜中制成铍铜合金,可用作导电弹力原件和弹敏原件。
目前,铍主要通过氟化铍镁热还原法生产,所得金属铍珠含铍96~97%,需要进一步精炼才能获得高纯金属铍。工业上主要通过真空挥发的方式精炼铍,但工业挥发炉内部含有的少量氧气会与裸露的金属铍反应形成氧化铍包裹在金属铍表面,导致杂质镁等难以挥发出来。专利CN 109182786A公开了一种无氧杂质挥发制备高纯金属铍的方法,其原理同工业上真空挥发除杂的方式相同,不同之处在于该方法在无氧环境下纯化粗铍,但无氧环境在实际操作中难以达到,因此,该方法同样难以避免上述缺点。专利CN 109097602 A公开了一种碘化铍热离解精炼铍的方法,该方法首先将粗铍粉与碘在低温下反应生成碘化铍,然后在高温下分解碘化铍制备高纯铍粉,该方法使用热离解反应器纯化粗铍粉,操作简单,但碘和铍反应速率很慢,很难得到碘化铍,同时,该方法需要抽真空,反应条件苛刻。专利US 3278402 A和US 3296107 A公开了一种精炼铍的方法,该法首先通过预电解除去氯化物熔盐中比铍活泼性差的杂质,然后电解生产金属铍,该法可获得高纯铍,但预电解过程会有铍析出,导致部分铍损失,同时,电解过程会产生氯气。
发明内容
本申请的目的在于提供一种基于金属氧化还原电位差异、利用液态合金连接阳极室和阴极室,进而通过电解高效精炼铍的方法,所述方法无需抽真空, 无需在无氧环境下操作,反应条件易于达到,无铍损失。
为实现本申请的上述目的,本申请采用以下技术方案:
一种熔盐电解精炼铍的方法,包括如下步骤:
(1)构建电化学体系:将电解槽分为阳极室和阴极室,阳极室内盛有阳极熔盐电解质并插有粗铍阳极,阴极室内盛有阴极熔盐电解质并插有阴极,电解槽内底部还盛有液态合金;所述阳极熔盐电解质和阴极熔盐电解质互不接触而通过电解槽内底部的液态合金相连接;
(2)通电进行电解,阳极中的金属铍被氧化成铍离子进入阳极熔盐电解质,在阳极熔盐电解质与液态合金的界面处被还原成金属铍并溶解进入液态合金,同时,液态合金中的铍在液态合金与阴极熔盐电解质界面处被氧化成铍离子进入阴极熔盐电解质,并在阴极表面被还原成金属铍。
优选地,所述阴极为镍、钨或钼阴极。
优选地,所述液态合金为铜、银、金、锰中的一种或几种与铍形成的合金。进一步优选地,所述液态合金为铍和铜按原子比28:72组成的合金。
优选地,所述阳极熔盐电解质和阴极熔盐电解质相同或不同,均为含铍离子的卤化物熔盐,优选为氟化锂、氟化钠、氟化钾、氟化镁、氟化钙中的一种或几种与氟化铍的混合物。
优选地,在通电条件下,所述阳极熔盐电解质和阴极熔盐电解质的密度均小于所述液态合金的密度。
优选地,所述粗铍的纯度不低于90%。
优选地,阳极电流密度为0.1-1.5A/cm 2,电解温度为600-1100℃。温度过低,熔盐和合金难以熔化,温度过高,熔盐会大量挥发。
本申请的有益效果为:
(1)本申请所述的熔盐电解精炼铍的方法,通过液态合金连接两个电解室,阳极熔盐电解质中的离子被还原成相应金属进入液态合金时,比铍活泼的金属后于铍进入液态合金,比铍惰性的金属虽然会先于铍进入液态合金,但液态合金中金属被氧化成相应离子进入阴极室熔盐时,比铍惰性的金属后于铍被氧化,因此,本申请能够很好的除去粗铍中的杂质。
(2)本申请所述的熔盐电解精炼铍的方法,含铍卤化物熔盐能够隔绝空气,避免生成的金属铍与空气接触,反应无需在无氧环境下进行,同时,本申请基于不同离子的电化学差异除去杂质,反应无需抽真空。
(3)本申请所述的熔盐电解精炼铍的方法,不需要预电解,反应过程不会有铍损失。
附图说明
图1为本申请所述熔盐电解精炼铍的方法的电解装置图;
其中,1-阳极;2-阳极熔盐电解质;3-液态合金;4-阴极;5-阴极熔盐电解质;6-阳极室;7-阴极室。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将对本申请的技术方案进行详细的描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本申请所保护的范围。如无特别说明,实施例中所指比例均为质量百分比。
实施例1
本实施例提供一种熔盐电解精炼铍的方法,包括如下步骤:
(1)如图1所示,向电解槽底部加入含铍合金(21at.%铍,79at.%金),确保其熔化后能将电解装置分为阳极室、阴极室,向阳极室和阴极室加入组成 为30%氟化锂、68%氟化钾、2%氟化铍的混合物作为阳极熔盐电解质和阴极熔盐电解质,电解槽升温至600℃,将纯度为90%的粗铍制成的阳极和镍阴极分别浸入阳极熔盐电解质和阴极熔盐电解质中;
(2)通电进行电解,控制阳极电流密度为0.1A/cm 2,电解24h,在阴极得到固态金属铍,经分析其纯度为99.90%。
实施例2
本实施例提供一种熔盐电解精炼铍的方法,包括如下步骤:
(1)如图1所示,向电解槽底部加入含铍合金(28at.%铍,72at.%铜),确保其熔化后能将电解装置分为阳极室、阴极室,向阳极室加入组成为95%氟化锂、5%氟化铍的混合物作为阳极熔盐电解质,向阴极室加入组成为90%氟化锂,10%氟化铍的混合物作为阴极熔盐电解质,电解槽升温至900℃,将纯度为92%的粗铍制成的阳极和钼阴极分别浸入阳极熔盐电解质和阴极熔盐电解质中;
(2)通电进行电解,控制阳极电流密度为0.2A/cm 2,电解12h,在阴极得到固态金属铍,经分析其纯度为99.91%。
实施例3
本实施例提供一种熔盐电解精炼铍的方法,包括如下步骤:
(1)如图1所示,向电解槽底部加入含铍合金(30at.%铍,35at.%铜,35at.%银),确保其熔化后能将电解装置分为阳极室、阴极室,向阳极室和阴极室加入组成为35%氟化镁、45%氟化钙、20%氟化铍的混合物作为阳极熔盐电解质和阴极熔盐电解质,电解槽升温至1100℃,将纯度为95%的粗铍制成的阳极和钨阴极分别浸入阳极熔盐电解质和阴极熔盐电解质中;
(2)通电进行电解,控制阳极电流密度为0.5A/cm 2,电解6h,在阴极得到固态金属铍,经分析其纯度为99.95%。
实施例4
本实施例提供一种熔盐电解精炼铍的方法,包括如下步骤:
(1)如图1所示,向电解槽底部加入含铍合金(30at.%铍,70at.%铜),确保其熔化后能将电解装置分为阳极室、阴极室,向阳极室和阴极室加入组成为50%氟化钾、50%氟化铍的混合物作为阳极熔盐电解质和阴极熔盐电解质,电解槽升温至950℃,将纯度为97%的粗铍制成的阳极和钨阴极分别浸入阳极熔盐电解质和阴极熔盐电解质中;
(2)通电进行电解,控制阳极电流密度为1A/cm 2,电解3h,在阴极得到固态金属铍,经分析其纯度为99.96%。
实施例5
本实施例提供一种熔盐电解精炼铍的方法,包括如下步骤:
(1)如图1所示,向电解槽底部加入含铍合金(30at.%铍,70at.%锰),确保其熔化后能将电解装置分为阳极室、阴极室,向阳极室和阴极室加入组成为30%氟化锂、70%氟化铍的混合物作为阳极熔盐电解质和阴极熔盐电解质,电解槽升温至950℃,将纯度为99%的粗铍制成的阳极和钨阴极分别浸入阳极熔盐电解质和阴极熔盐电解质中;
(2)通电进行电解,控制阳极电流密度为1.5A/cm 2,电解2h,在阴极得到固态金属铍,经分析其纯度为99.99%。
实施例6
本实施例提供一种熔盐电解精炼铍的方法,包括如下步骤:
(1)如图1所示,向电解槽底部加入含铍合金(30at.%铍,35at.%铜,34at.%银,1at.%金),确保其熔化后能将电解装置分为阳极室、阴极室,向阳极室和阴极室加入组成为35%氟化镁、45%氟化钙、20%氟化铍的混合物作为阳极熔盐电解质和阴极熔盐电解质,电解槽升温至1100℃,将纯度为95%的粗铍制成的 阳极和钨阴极分别浸入阳极熔盐电解质和阴极熔盐电解质中;
(2)通电进行电解,控制阳极电流密度为0.5A/cm 2,电解6h,在阴极得到固态金属铍,经分析其纯度为99.94%。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种熔盐电解精炼铍的方法,其特征在于,包括如下步骤:
    (1)构建电化学体系:将电解槽分为阳极室和阴极室,阳极室内盛有阳极熔盐电解质并插有粗铍阳极,阴极室内盛有阴极熔盐电解质并插有阴极,电解槽内底部还盛有液态合金;所述阳极熔盐电解质和阴极熔盐电解质互不接触而通过电解槽内底部的液态合金相连接;
    (2)通电进行电解,阳极中的金属铍被氧化成铍离子进入阳极熔盐电解质,在阳极熔盐电解质与液态合金的界面处被还原成金属铍并溶解进入液态合金,同时,液态合金中的铍在液态合金与阴极熔盐电解质界面处被氧化成铍离子进入阴极熔盐电解质,并在阴极表面被还原成金属铍。
  2. 根据权利要求1所述的熔盐电解精炼铍的方法,其特征在于,所述阴极为镍、钨或钼阴极。
  3. 根据权利要求1所述的熔盐电解精炼铍的方法,其特征在于,所述液态合金为铜、银、金、锰中的一种或几种与铍形成的合金。
  4. 根据权利要求3所述的熔盐电解精炼铍的方法,其特征在于,所述液态合金为铍和铜按原子比28:72组成的合金。
  5. 根据权利要求3所述的熔盐电解精炼铍的方法,其特征在于,所述液态合金为铍和金按原子比21:79组成的合金。
  6. 根据权利要求1所述的熔盐电解精炼铍的方法,其特征在于,所述阳极熔盐电解质为含铍离子的卤化物熔盐,优选为氟化锂、氟化钠、氟化钾、氟化镁、氟化钙中的一种或几种与氟化铍的混合物。
  7. 根据权利要求1所述的熔盐电解精炼铍的方法,其特征在于,所述阴极熔盐电解质为含铍离子的卤化物熔盐,优选为氟化锂、氟化钠、氟化钾、氟化镁、氟化钙中的一种或几种与氟化铍的混合物。
  8. 根据权利要求1、3、4、5、6任一项所述的熔盐电解精炼铍的方法,其特征在于,在通电条件下,所述阳极熔盐电解质和阴极熔盐电解质的密度均小于所述液态合金的密度。
  9. 根据权利要求1所述的熔盐电解精炼铍的方法,其特征在于,所述粗铍的纯度不低于90%。
  10. 根据权利要求1所述的熔盐电解精炼铍的方法,其特征在于,阳极电流密度为0.1-1.5A/cm 2,电解的温度为600-1100℃。
PCT/CN2022/088120 2021-05-08 2022-04-21 一种熔盐电解精炼铍的方法 WO2022237487A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/289,682 US20240254644A1 (en) 2021-05-08 2022-04-21 Method for refining beryllium by molten salt electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110499324.4 2021-05-08
CN202110499324.4A CN115305519A (zh) 2021-05-08 2021-05-08 一种熔盐电解精炼铍的方法

Publications (1)

Publication Number Publication Date
WO2022237487A1 true WO2022237487A1 (zh) 2022-11-17

Family

ID=83853701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088120 WO2022237487A1 (zh) 2021-05-08 2022-04-21 一种熔盐电解精炼铍的方法

Country Status (3)

Country Link
US (1) US20240254644A1 (zh)
CN (1) CN115305519A (zh)
WO (1) WO2022237487A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1980378A (en) * 1932-01-16 1934-11-13 Burgess Louis Method of making beryllium and light alloys thereof
GB500509A (en) * 1937-03-16 1939-02-10 Verwertung Chemisch Tech Verfa Improvements in or relating to processes and apparatus for the production of aluminium, beryllium, magnesium, alkali earth or alkali metals by electrolysis of fused starting materials
CN103898553A (zh) * 2014-03-25 2014-07-02 中国科学院过程工程研究所 一种电积和精炼同步进行生产金属钙的方法
CN113981491A (zh) * 2021-12-20 2022-01-28 郑州大学 一种低温熔盐电解制备金属铍的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1980378A (en) * 1932-01-16 1934-11-13 Burgess Louis Method of making beryllium and light alloys thereof
GB500509A (en) * 1937-03-16 1939-02-10 Verwertung Chemisch Tech Verfa Improvements in or relating to processes and apparatus for the production of aluminium, beryllium, magnesium, alkali earth or alkali metals by electrolysis of fused starting materials
CN103898553A (zh) * 2014-03-25 2014-07-02 中国科学院过程工程研究所 一种电积和精炼同步进行生产金属钙的方法
CN113981491A (zh) * 2021-12-20 2022-01-28 郑州大学 一种低温熔盐电解制备金属铍的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"100 Cases of Industrial Circulation Chain", 31 May 2014, SHANMI CHUYAO CHUANDIE GROUP SCIENCE AND TECHNOLOGY PUBLISHING HOUSE, CN, ISBN: 978-7-5369-5314-7, article FAN, SEN, pages: 125 - 128, XP009542634 *
LIDMAN W G, GRIFFITHS V: "AN ELECTROLYTIC PROCESS FOR ULTRA-FINE BERYLLIUM : H 7 2 - by 2 7 5 7 7 4 f", AN ELECTROLYTIC PROCESS FOR ULTRA FINE BERYLLIUM, 30 June 1972 (1972-06-30), XP093005015, Retrieved from the Internet <URL:https://ntrs.nasa.gov/api/citations/19720019927/downloads/19720019927.pdf> [retrieved on 20221205] *

Also Published As

Publication number Publication date
CN115305519A (zh) 2022-11-08
US20240254644A1 (en) 2024-08-01

Similar Documents

Publication Publication Date Title
CN113981491B (zh) 一种低温熔盐电解制备金属铍的方法
US1861625A (en) Method of producing rare metals by electrolysis
JPH01237497A (ja) ウランおよびプルトニウムを含む使用済核燃料を精製する方法
US3114685A (en) Electrolytic production of titanium metal
KR101793471B1 (ko) 전해환원 및 전해정련 공정에 의한 금속 정련 방법
GB833767A (en) Continuous electrolytic production of titanium
CN107475751A (zh) 一种利用液态合金作为电极制备纯钛的装置及方法
AU2006219725A1 (en) Electrochemical method and apparatus for removing oxygen from a compound or metal
Zaikov et al. High-temperature electrochemistry of calcium
WO2022237487A1 (zh) 一种熔盐电解精炼铍的方法
US2773023A (en) Removal of oxygen from metals
US2734855A (en) Electrolytic preparation of reduced
CN114182301B (zh) 一种氟化物熔盐电解氧化铍制备金属铍的方法
RU2423557C2 (ru) Способ получения высоко- и нанодисперсного порошка металлов или сплавов
KR20020077352A (ko) 악티나이드 생성방법
JPS6146557B2 (zh)
CN116334693A (zh) 一种熔盐电解制备金属镁的方法
Shurov et al. Reduction mechanism of oxides in calcium chloride melts
CN115305521A (zh) 一种熔盐电解制备金属铌的方法
CN115305512A (zh) 一种熔盐电解制备金属锆的方法
KR101723553B1 (ko) 금속산화물의 전해환원 장치 및 방법
US2939823A (en) Electrorefining metallic titanium
Shishkin et al. Electrochemical reduction of uranium dioxide in LiCl–Li2O melt
CN115305506A (zh) 一种熔盐电解制备金属镁的方法
RU2079909C1 (ru) Способ пирохимической регенерации ядерного топлива

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806457

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18289682

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806457

Country of ref document: EP

Kind code of ref document: A1