WO2022237475A1 - 稳流区激光/超声复合低损伤复杂微结构加工装置及方法 - Google Patents

稳流区激光/超声复合低损伤复杂微结构加工装置及方法 Download PDF

Info

Publication number
WO2022237475A1
WO2022237475A1 PCT/CN2022/087807 CN2022087807W WO2022237475A1 WO 2022237475 A1 WO2022237475 A1 WO 2022237475A1 CN 2022087807 W CN2022087807 W CN 2022087807W WO 2022237475 A1 WO2022237475 A1 WO 2022237475A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
workpiece
unit
pressure
jet
Prior art date
Application number
PCT/CN2022/087807
Other languages
English (en)
French (fr)
Inventor
于化东
王佳琦
许金凯
廉中旭
王忠生
王晶东
陈广俊
Original Assignee
长春理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春理工大学 filed Critical 长春理工大学
Publication of WO2022237475A1 publication Critical patent/WO2022237475A1/zh
Priority to US18/235,396 priority Critical patent/US20230390861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0426Fixtures for other work
    • B23K37/0435Clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P25/00Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress

Definitions

  • the invention belongs to the technical field of precision special processing, and in particular relates to a laser/ultrasonic composite low-damage complex microstructure processing device and method in a steady flow area.
  • Laser etching provides an efficient, high-precision and easy-to-operate processing method, and can flexibly control laser energy input and laser beam propagation, so it is widely used in the field of micromachining.
  • the traditional laser processing technology achieves the purpose of material removal by absorbing a large amount of heat on the surface of the workpiece to produce phase change (melting, vaporization).
  • phase change melting, vaporization
  • the workpiece material near the laser action area will also absorb part of the heat, a heat-affected zone and recasting will occur.
  • liquid-assisted laser processing Emerged as the times require, including water-guided laser processing, underwater laser processing, etc.
  • Liquid-assisted laser can absorb extra heat in the processing area and take away chips.
  • Liquid-assisted laser processing can reduce the generation of heat-affected zone and recast layer, and improve processing quality.
  • the water beam is incident perpendicular to the surface of the workpiece, and the water axis is consistent with the laser axis.
  • the present invention provides a laser/ultrasonic composite low-damage complex microstructure processing device and method in the steady flow area, which solves the problems in the prior art that it is difficult to meet the requirements of micro-processing and produce pollution, etc. .
  • a laser/ultrasonic composite low-damage complex microstructure processing device in a steady flow area includes: a base, a workpiece clamping slide unit, a laser unit, a jet gun unit and a host computer; the workpiece clamping movement unit, the laser unit and the jet
  • the gun unit is arranged on the base; the workpiece is clamped on the workpiece clamping motion unit; the optical axis of the laser light emitted by the laser unit is in a horizontal state and is perpendicular to the surface of the workpiece, and the laser is in a vertical position during processing.
  • the workpiece surface vibrates periodically with the optical axis as the center point; the jet gun unit emits a high-pressure water jet that forms an acute angle with the workpiece surface; the high-pressure water jet participates in the high-frequency reciprocating laser At the same time, it acts on the surface of the workpiece, while reducing the heat-affected zone and recasting layer, and peels off the attachments on the surface of the processed workpiece.
  • it also includes a protective cover arranged outside the base, the workpiece clamping slide unit, the laser unit and the jet gun unit.
  • the base includes: marble and a mounting plate arranged on the marble; peripheral baffles are assembled around the mounting plate; a waste liquid tank is arranged under the workpiece; waste liquid passes through the waste liquid tank and the drain pipe Exhaust to the outside of the processing plant via the marble.
  • the workpiece clamping slide unit includes: a first bending plate, an xy displacement unit, a thin rotary table, a workpiece clamping plate and a slide table driver; the first bending plate is installed on the mounting plate, and the xy displacement unit is arranged on The first curved plate is on a plane perpendicular to the laser optical axis; the thin rotary table is arranged on a plane perpendicular to the laser optical axis of the xy displacement unit, and the workpiece fixture is assembled on the rotating surface of the thin rotary table; The upper computer controls the movement of the xy displacement unit and the thin rotary table through the slide table driver.
  • the workpiece is fixed on the rotating surface of the thin rotating table by pressing nails.
  • the xy displacement unit adopts a 45-degree oblique layout.
  • the laser unit includes: a reflector clamping seat, a laser, a second bending plate, a laser slide, a flexible support beam, a transducer, a first reflector, a second reflector, an exit tube and a laser unit control device;
  • the laser is installed outside the mirror clamping seat, the first reflector is fixed in the mirror clamping seat through the flexible support beam arranged horizontally, and the flexible support beam is provided with Transducer;
  • the mirror clamping seat is installed on the second curved plate, and the second curved plate reciprocates along the laser optical axis on the laser slide table;
  • the second curved plate is equipped with The second reflector;
  • the laser unit is an off-axis two-reflection system, and the laser is emitted from the exit tube;
  • the laser unit controller controls the emission of the laser, and the transducer controls the vibration of the flexible support beam to drive the first A mirror reciprocates up and down to realize high-frequency micro-displacement processing of the laser on the workpiece in the vertical direction.
  • the outer ring of the exit surface of the exit cylinder is provided with a gas protection ring, which is connected to the external gas pipe; the surface and circumference of the gas protection ring perpendicular to the optical axis are evenly distributed with air holes; The stomata correspond to each other and communicate with each other.
  • the jet gun unit includes: a third bent plate, a jet adjustment table, a jet gun bottom plate, a high-pressure jet gun, a water storage tank, a pressure tank, a pressure indicator and a compressor; the third bent plate is installed on On the mounting plate, the jet adjustment platform is arranged on the installation plate; the high-pressure jet gun is installed on the jet adjustment platform through the jet gun bottom plate; the pressure indicator collects the water storage tank and the pressure-stabilizing tank
  • the upper computer calculates the appropriate pressure value, and controls the pressure of the pressure stabilizing tank and the water storage tank respectively by controlling the compressor, thereby controlling the water outlet pressure of the high-pressure jet gun.
  • a processing method for a laser/ultrasonic composite low-damage complex microstructure processing device in a steady flow zone includes the following steps:
  • Step 1 Set the processing trajectory of the laser unit, the vibration frequency of the laser unit, the pressure of the high-pressure jet gun and the distance between the laser and the workpiece in the host computer;
  • Step 2 Fix the processed workpiece on the workpiece splint by pressing nails, the upper computer starts to execute commands according to the set program, the laser starts to work, and is driven by the transducer and the flexible support beam to reciprocate in the direction of the vertical optical axis to realize Coupling movement to the macro-processing track of the workpiece; at the same time, the compressor provides a predetermined pressure to the pressure tank according to the pressure parameters sent by the host computer, and the high-pressure jet gun ejects a certain pressure of water flow, and uses ultra-high-pressure micro-jet to participate in the secondary repair of the laser-processed surface. Peel off the recast layer on the processed surface and clean the attachments on the processed surface;
  • Step 3 When the pressure indicator shows that the pressure cannot reach the set value, the control signal is sent to the upper computer, and the upper computer provides the set pressure value for the pressure stabilizing tank and the water storage tank by controlling the compressor;
  • Step 4 During the processing, the waste liquid is discharged out of the device through the waste liquid tank and the drain pipe on the installation plate.
  • the present invention uses high-pressure water jets to participate in the secondary trimming of the laser-processed surface, while reducing the heat-affected zone, the recast layer of the processed surface is stripped in real time, the attachments on the processed surface are cleaned, and the processed surface is improved.
  • the machine tool adopts a horizontal layout, and the optical axis is placed horizontally, so that the liquid that has participated in the processing, the chips generated during the processing, and the bubbles generated during the processing will move away from the processing area faster, do not participate in secondary processing, and reduce the interference of the environment on the laser.
  • the stability of the laser energy output is improved, the processing quality is further improved, and the processing accuracy is guaranteed;
  • the workpiece displacement actuator adopts an inclined 45-degree layout, which reduces the influence of its own load on the displacement stability, improves the execution accuracy of the motion mechanism, and ensures the stability of the processing process. Efficiently carry out; use the gas protection ring inside the laser output tube to remove the residual liquid splashed by the jet at the laser output end, further reduce the interference of the jet to the laser transmission, and ensure the stable operation of the processing.
  • Fig. 1 Schematic diagram of the structure of the laser/ultrasonic composite low-damage complex microstructure processing device in the steady flow zone of the present invention.
  • Fig. 2 is a schematic structural diagram of the base, the workpiece clamping slide unit, the laser unit and the jet gun unit in the laser/ultrasonic composite low-damage complex microstructure processing device in the steady flow area of the present invention.
  • Fig. 3 is a schematic diagram of the unit structure of the laser/ultrasonic composite low-damage complex microstructure laser unit in the steady flow region of the present invention.
  • Fig. 4 is a schematic diagram of the principle of the laser/ultrasonic composite low-damage complex microstructure laser unit in the steady flow region of the present invention.
  • Fig. 5 is a schematic diagram of the xy displacement unit of the laser/ultrasonic composite low-damage complex microstructure workpiece clamping slide unit in the steady flow area of the present invention.
  • Fig. 6 is a schematic diagram of the gas protection ring of the laser/ultrasonic composite low-damage complex microstructure laser unit in the steady flow region of the present invention.
  • Fig. 7 is a cross-sectional view of the gas protection ring of the laser/ultrasonic composite low-damage complex microstructure laser unit in the steady flow region of the present invention.
  • Fig. 8 is a schematic diagram of the principle of laser/ultrasonic composite low-damage complex microstructure in the steady flow region of the present invention.
  • the laser/ultrasonic composite low-damage complex microstructure processing device in the steady flow area includes: a base 2, a workpiece clamping slide unit 4, a laser unit 5, a jet gun unit and a host computer; the workpiece The clamping slide unit 5, the laser unit 5 and the jet gun unit are all arranged on the base 2; below the workpiece clamping slide unit 5, a waste liquid tank 9 is arranged on the base 2; wherein the workpiece 15 is clamped on the workpiece clamping slide unit 5; in this embodiment, the material of the workpiece 15 is weak rigidity material.
  • the optical axis of the laser light emitted by the laser unit 5 is in a horizontal state, perpendicular to the surface of the workpiece 15, and the laser 23 vibrates periodically on the workpiece surface with the optical axis as the center point in the direction perpendicular to the optical axis during processing;
  • the jet gun unit emits a high-pressure water jet that forms an acute angle with the surface of the workpiece 15; the high-pressure water jet participates in the high-frequency reciprocating laser and acts on the surface of the workpiece 15 at the same time, while reducing the heat-affected zone and recasting layer , peel off the attachments on the surface of the processed workpiece 15 .
  • the base 2 includes: a marble 7 and a mounting plate 6 arranged on the marble 7; peripheral baffles 8 are assembled around the mounting plate 6, and a waste liquid tank 9 is arranged below the workpiece 15;
  • the peripheral baffle 8 prevents the waste liquid from splashing to the outside of the installation plate 6 , so that the waste liquid and attachments are discharged out of the processing device along the waste liquid tank 9 through the drain pipe 10 .
  • the marble 7 is provided with a hole, and the drain pipe 10 passes through the hole to discharge the waste liquid to the waste liquid collection device.
  • the workpiece clamping slide unit 4 includes: a first bent plate 11, an xy displacement unit 12, a thin rotary table 13, a workpiece clamping plate 14 and a slide table driver; the first bent plate 11 is fixed on the mounting plate 6, xy
  • the displacement unit 12 is arranged on the plane perpendicular to the laser optical axis of the first curved plate 11; the thin rotary table 13 is arranged on the plane perpendicular to the laser optical axis of the xy displacement unit 12; 33 is assembled on the rotating surface of the thin rotary table 13; the upper computer controls the movement of the xy displacement unit 12 along the X axis and the Y axis and the rotation of the thin rotary table 13 through the slide table driver.
  • the xy displacement unit 12 adopts an inclined 45-degree layout, which reduces the influence of its own load on the displacement stability, improves the execution accuracy of the motion mechanism, and ensures stable and efficient processing.
  • the laser unit 5 includes: a transducer heat sink 21, a mirror clamping seat 22, a laser 23, a second curved plate 24, a protective cover 25, a laser slide 26, a laser slide mounting plate 27, and a laser exit tube 28 , a flexible support beam 29, a transducer 30, a first reflector 31, a second reflector 32 and a laser unit controller; the laser 23 is installed outside the reflector clamping seat 22, and the first reflector 31 is fixed in the mirror clamping seat 22 by the flexible support beam 29 arranged horizontally, and the transducer 30 is arranged on the flexible support beam 29; the transducer 30 is provided with a transducer heat dissipation sheet 21, so that the heat generated by the transducer 30 can be dissipated as soon as possible; the mirror clamping seat 22 is installed on the upper surface of the second
  • the laser unit controller controls the emission of the laser
  • the transducer 30 controls the vertical vibration of the flexible support beam 29, thereby driving the first reflector to reciprocate in the vertical direction, so as to realize the vertical movement of the laser on the workpiece.
  • High-frequency micro-displacement processing In order to remove the residual liquid splashed by the jet at the laser output end and further reduce the interference of the jet to the laser transmission, a gas protection ring 35 is provided at the exit end of the laser output tube 28 of the laser unit 5, which is connected to the external air pipe; the gas protection ring
  • the circumference and the end surface are evenly distributed with one-to-one corresponding air holes, and the corresponding air holes are connected to each other.
  • the jet gun unit includes: a third curved plate 16, a jet adjustment table 17, a jet gun bottom plate 18, a high-pressure jet gun 18, a water storage tank, a pressure tank, a pressure indicator and a compressor; the third bent plate 16 Installed on the mounting plate 6, the jet adjustment platform 17 is set on the third curved plate 16; the high-pressure jet gun 19 is installed on the jet adjustment platform 17 through the jet gun bottom plate 18, and can be adjusted along the water flow direction The distance between the high-pressure jet gun 19 and the workpiece 15; the pressure indicator collects the pressure in the water storage tank and the pressure stabilizing tank, and transmits the collected data to the host computer, and the host computer calculates according to the set pressure value The outlet pressure difference, by controlling the compressor, adjusts and controls the pressure of the surge tank and the water storage tank, thereby controlling the outlet water pressure of the high-pressure jet gun.
  • the bottom of the marble is provided with fine-tuning feet 3, which are adjusted according to the expansion and contraction of the fine-tuning feet 3.
  • a transparent protective cover 1 is set outside the base 1, the workpiece clamping slide unit 4, the laser unit 5 and the jet gun unit, which can prevent the waste liquid from splashing out and observe the work of the processing device at any time state.
  • a processing method for a laser/ultrasonic composite low-damage complex microstructure processing device in a steady flow zone includes the following steps:
  • Step 1 Set the processing trajectory of the laser unit 5, the vibration frequency of the laser unit 5, the injection pressure of the high-pressure jet gun 19, and the distance between the laser 23 and the workpiece 15 in the host computer;
  • Step 2 fix the workpiece 15 on the workpiece splint 14 through the pressing nail 33, the upper computer starts to execute the command according to the set program, the laser 23 starts to work, and is driven by the laser slide 26 to reciprocate in the direction of the vertical optical axis, Realize the coupling motion of macro machining trajectory; at the same time, the compressor provides a predetermined pressure for the pressure tank according to the pressure parameters sent by the host computer, and the high-pressure jet gun 19 sprays out a certain pressure of water flow, and uses the ultra-high pressure micro-jet to participate in the secondary repair of the laser-processed surface.
  • Step 3 During the processing, the waste liquid is discharged out of the device through the waste liquid tank 9 and the drain pipe 10 on the mounting plate 6 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种稳流区激光/超声复合低损伤复杂微结构加工装置及其加工方法,加工装置包括:底座(2)、工件装夹滑台单元(4)、激光器单元(5)、射流枪单元和上位机;工件装夹滑台单元(4)、激光器单元(5)和射流枪单元设置在底座(2)上;工件(15)装夹在工件装夹滑台单元(4)上;激光器单元(5)发出的激光的光轴处于水平状态,并垂直于工件(15)表面,且激光器距离工件表面的距离呈周期性变化;射流枪单元发射的高压水射流与工件表面呈45度角;底座设有废液槽(9)。高压水射流与高频往复运动的激光同时作用在工件表面,在降低热影响区以及重铸层的同时,剥离已加工工件表面的附着物。

Description

稳流区激光/超声复合低损伤复杂微结构加工装置及方法 技术领域
本发明属于精密特种加工技术领域,具体涉及稳流区激光/超声复合低损伤复杂微结构加工装置及方法。
背景技术
随着微型零件在国防、生物技术、医疗等领域的需求与日俱增,其加工技术成为制造领域研究的重点内容。激光刻蚀提供了一种高效、高精度及易操作的加工方法,并且对于激光能量输入和激光光束传播可灵活控制,因此广泛应用于微加工领域。传统激光加工工艺是通过工件表面吸收大量的热产生相变(熔融、汽化)来达到去除材料的目的,然而,由于临近激光作用区域的工件材料也会吸收一部分热量而产生热影响区及重铸层,导致微小零件加工性能降低,因此传统激光加工难以满足微细加工要求;传统激光加工过程,也会产生严重的粉尘污染,严重影响了操作人员的健康,污染了工作环境,因此液体辅助激光加工应运而生,包括水导激光加工、水下激光加工等。液体辅助激光可以吸收加工区域额外的热量以及带走切屑,液体辅助激光加工可以降低热影响区及重铸层的产生,提高加工质量。但是水导激光加工过程中水束垂直于工件表面入射,水轴与激光轴一致,由于激光加工过程剧烈,切削液及碎屑飞溅,激光能量会受到衰减、干扰,而且设备昂贵并且维护成本较高。水下激光加工过程中,悬浮在液体中的的碎屑以及剧烈加工产生的气泡会参与二次加工,影响加工质量;同时,剧烈反应产生的空泡也会干扰激光束的传播,削弱激光能量,这些问题使其难以满足高精度加工要求。
发明内容
为了解决现有技术中存在的问题,本发明提供了一种稳流区激光/超声复合低损伤复杂微结构加工装置及方法,解决了现有技术中难以满足微细加工的要求,产生污染等问题。
本发明解决技术问题所采用的技术方案如下:
稳流区激光/超声复合低损伤复杂微结构加工装置,该装置包括:底座、工件装夹滑台单元、激光器单元、射流枪单元和上位机;所述工件装夹运动 单元、激光器单元和射流枪单元设置在所述底座上;工件装夹在所述工件装夹运动单元上;所述激光器单元发出的激光的光轴处于水平状态,并垂直于工件表面,且激光器在加工过程中在垂直于所述光轴方向在工件表面以光轴为中心点呈周期性振动;所述射流枪单元发射分高压水射流与所述工件表面呈锐角;所述高压水射流参与高频往复运动的激光同时作用在所述工件表面,在降低热影响区以及重铸层的同时,剥离已加工工件表面的附着物。
优选的,还包括设置在所述底座、工件装夹滑台单元、激光器单元和射流枪单元外的防护罩。
优选的,所述底座包括:大理石和设置在所述大理石上的安装板;所述安装板四周装配周边挡板;位于所述工件下方设有废液槽;废液通过废液槽和排水管经由所述大理石排出加工装置外部。
优选的,所述工件装夹滑台单元包括:第一弯板、xy位移单元、薄型旋转台、工件夹板和滑台驱动器;所述第一弯板安装在安装板上,xy位移单元设置在所述第一弯板垂直激光光轴的平面上;所述薄型旋转台设置在所述xy位移单元垂直激光光轴的平面上,所述工件夹具装配在所述薄型旋转台的旋转面上;所述上位机通过滑台驱动器控制所述xy位移单元和薄型旋转台的运动。
优选的,所述工件通过压钉固定在所述薄型旋转台的旋转面上。
优选的,所述xy位移单元采用斜45度布局。
优选的,所述激光器单元包括:反射镜装夹座、激光器、第二弯板、激光器滑台、柔性支撑梁、换能器、第一反射镜、第二反射镜、出射筒和激光器单元控制器;所述激光器安装在所述反射镜装夹座外,所述第一反射镜通过水平设置的所述柔性支撑梁固定在所述反射镜装夹座内,所述柔性支撑梁上设有换能器;所述反射镜装夹座安装在所述第二弯板上,所述第二弯板在所述激光器滑台上沿激光光轴往复运动;所述第二弯板内设有第二反射镜;所述激光器单元为离轴两反***,激光从出射筒出射;所述激光器单元控制器控制激光的发射,所述换能器通过控制所述柔性支撑梁振动,从而带动第一反射镜上下往复运动,实现激光在工件上竖直方向高频微位移加工。
优选的,所述出射筒出射面的外环设有气体防护环,与外部气管连接;所述气体防护环垂直光轴的面和圆周均布气孔;所述垂直光轴的面和圆周上的气孔一一对应,其相互连通。
优选的,所述射流枪单元包括:第三弯板、射流调整台、射流枪底板、高压射流枪、储水罐、稳压罐、压力指示器和压缩机;所述第三弯板安装在安装板上,所述射流调整台设置在所述安装板上;所述高压射流枪通过射流枪底板安装在所述射流调整台上;所述压力指示器采集所述储水罐和稳压罐内的压力,将采集数据传送至上位机,所述上位机计算出适合的压力值,通过控制压缩机,分别控制稳压罐和储水罐的压力,从而控制高压射流枪的出水压力。
稳流区激光/超声复合低损伤复杂微结构加工装置的加工方法,该方法包括如下步骤:
步骤一:在上位机中设定激光器单元的加工轨迹、激光器单元的振动频率、高压射流枪喷射的压力和激光器距离加工工件的距离;
步骤二:将加工工件通过压钉固定在工件夹板上,上位机开始按照设定程序执行命令,激光器开始工作,并在换能器和柔性支撑梁的带动下在垂直光轴方向往复运动,实现对工件宏观加工轨迹耦合运动;同时压缩机按照上位机发送的压力参数给稳压罐提供既定压力,高压射流枪喷射出一定压力的水流,利用超高压微射流参与激光已加工表面二次修整,剥离已加工表面重铸层,清洁已加工表面附着物;
步骤三:当压力指示器显示压力不能达到设定值时,将控制信号传送至上位机,上位机通过控制压缩机为稳压罐和储水罐提供设定压力值;
步骤四:在加工过程中,废液通过安装板上的废液槽和排水管排出装置外部。
本发明的有益效果是:本发明利用高压水射流参与激光加工表面的二次修整,在降低热影响区的同时,实时剥离已加工表面重铸层,清洁已加工表面的附着物,提高已加工表面质量及亚表面性能,降低二次加工损伤;利用弱刚度结构引入超声振动,在垂直于光轴方向实现高频微位移修饰—宏观加 工轨迹耦合运动,在原理上满足复杂微结构高效制备需求;激光微作用区高频微位移作用下,也会实现表面微结构二次修饰,实现表面强化,提高微结构性能。同时,机床采用卧式布局,光轴水平放置,使已参与加工的液体、加工产生的切屑以及加工过程中产生的气泡更快远离加工区域,不参与二次加工,降低环境对激光的干扰,提高了激光能量输出的稳定性,进一步提高加工质量,保证加工精度;工件位移执行机构采用斜45度布局,降低自身负载对位移稳定性的影响,提高运动机构的执行精度,保证加工过程稳定、高效进行;利用激光出射筒内部气体防护环清除激光输出端射流飞溅残液,进一步减小射流对激光传输的干扰,保证加工稳定运行。
附图说明
图1本发明稳流区激光/超声复合低损伤复杂微结构加工装置结构示意图。
图2本发明稳流区激光/超声复合低损伤复杂微结构加工装置中底座、工件装夹滑台单元、激光器单元和射流枪单元结构示意图。
图3本发明稳流区激光/超声复合低损伤复杂微结构激光器单元结构示意图。
图4本发明稳流区激光/超声复合低损伤复杂微结构激光器单元原理示意图。
图5本发明稳流区激光/超声复合低损伤复杂微结构工件装夹滑台单元xy位移单元示意图。
图6本发明稳流区激光/超声复合低损伤复杂微结构激光器单元气体防护环示意图。
图7本发明稳流区激光/超声复合低损伤复杂微结构激光器单元气体防护环剖视图。
图8本发明稳流区激光/超声复合低损伤复杂微结构原理示意图。
图中:1、防护罩,2、底座,3、微调地脚,4、工件装夹滑台单元,5、激光器单元,6、安装板,7、大理石,8、周边挡板,9、废液槽,10、排水管,11、第一弯板,12、xy位移单元,13、薄型旋转台,14、工件夹板,15、工件,16、第三弯板,17、射流调整台,18、射流枪底板,19、高压射流枪, 20、射流枪安装架,21、换能器散热片,22、反射镜装夹座,23、激光器,24、第二弯板,25、防护罩,26、激光器滑台,27、激光器滑台安装板,28、激光器出射筒,29、柔性支撑梁,30、换能器,31、第一反射镜,32、第二反射镜,33、压钉,34、气管,35、气体防护环。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
如图1所示,稳流区激光/超声复合低损伤复杂微结构加工装置,该装置包括:底座2、工件装夹滑台单元4、激光器单元5、射流枪单元和上位机;所述工件装夹滑台单元5、激光器单元5和射流枪单元均设置在所述底座2上;所述工件装夹滑台单元5的下方,位于所述底座2上设有废液槽9;其中工件15装夹在所述工件装夹滑台单元5上;本实施例中,工件15的材料为弱刚度材料。所述激光器单元5发出的激光的光轴处于水平状态,垂直于工件15表面,且激光器23在加工过程中在垂直于所述光轴方向在工件表面以光轴为中心点呈周期性振动;所述射流枪单元发射高压水射流与所述工件15表面呈锐角;所述高压水射流参与高频往复运动的激光同时作用在所述工件15表面,在降低热影响区以及重铸层的同时,剥离已加工工件15表面的附着物。
其中,所述底座2包括:大理石7和设置在所述大理石7上的安装板6;所述安装板6四周装配周边挡板8,位于所述工件15下方设有废液槽9;所述周边挡板8防止废液溅射到所述安装板6外部,使废液和附着物顺着废液槽9经由排水管10排出加工装置外部。所述大理石7上开有孔洞,排水管10穿过所述孔洞将废液排至废液收集装置。
所述工件装夹滑台单元4包括:第一弯板11、xy位移单元12、薄型旋转台13、工件夹板14和滑台驱动器;所述第一弯板11固定在安装板6上,xy位移单元12设置在所述第一弯板11垂直激光光轴的平面上;所述薄型旋转台13设置在所述xy位移单元12垂直激光光轴的平面上,所述工件夹具14通过压钉33装配在所述薄型旋转台13的旋转面上;所述上位机通过滑台驱动器控制所述xy位移单元12沿X轴和Y轴的运动,和薄型旋转台13的 转动。本实施例中,所述xy位移单元12采用斜45度布局,通过降低自身负载对位移稳定性的影响,提高运动机构的执行精度,保证加工过程稳定、高效进行。所述激光器单元5包括:换能器散热片21、反射镜装夹座22、激光器23、第二弯板24、防护罩25、激光器滑台26、激光器滑台安装板27、激光器出射筒28、柔性支撑梁29、换能器30、第一反射镜31、第二反射镜32和激光器单元控制器;所述激光器23安装在所述反射镜装夹座22外,所述第一反射镜31通过水平设置的所述柔性支撑梁29固定在所述反射镜装夹座22内,所述柔性支撑梁29上设有换能器30;所述换能器30外设有换能器散热片21,使换能器30产生的热量尽快的散发;所述反射镜装夹座22安装在所述第二弯板24上表面,所述第二弯板24在所述激光器滑台26上沿激光光轴往复运动;所述第二弯板24内设有第二反射镜32,所述防护罩25与激光器滑台安装板27形成防护空间,所述防护罩25上表面开槽,所述激光器滑台26设置在所述激光器滑台安装板27上,所述激光器单元5为离轴两反***,激光经由第一反射镜31和第二反射镜32反射后,从激光器出射筒28出射;所述激光器单元控制器控制激光的发射,所述换能器30通过控制所述柔性支撑梁29垂直方向振动,从而带动第一反射镜垂直方向往复运动,实现激光在工件上竖直方向高频微位移加工。为了清除激光输出端射流飞溅残液,进一步减小射流对激光传输的干扰,在所述激光器单元5的激光器出射筒28出射端设有气体防护环35,与外部气管连接;所述气体防护环圆周和端面均布一一对应的气孔,且对应气孔之间相互导通。所述射流枪单元包括:第三弯板16、射流调整台17、射流枪底板18、高压射流枪18、储水罐、稳压罐、压力指示器和压缩机;所述第三弯板16安装在安装板6上,所述射流调整台17设置在所述第三弯板16上;所述高压射流枪19通过射流枪底板18安装在所述射流调整台17上,可以沿水流方向调整高压射流枪19与工件15之间的距离;所述压力指示器采集所述储水罐和稳压罐内的压力,将采集数据传送至上位机,所述上位机根据设定压力值,计算出压力差,通过控制压缩机,调整控制稳压罐和储水罐的压力,从而控制高压射流枪的出水压力。
为了使稳流区激光/超声复合低损伤复杂微结构加工装置处于水平状态, 所述大理石底部设有微调地脚3,根据微调地脚3的伸缩调平。为了保护外部环境,在所述底座1、工件装夹滑台单元4、激光器单元5和射流枪单元外部设置了透明防护罩1,既可以防止废液外溅,也可以随时观测加工装置的工作状态。
稳流区激光/超声复合低损伤复杂微结构加工装置的加工方法,该方法包括如下步骤:
步骤一:在上位机中设定激光器单元5的加工轨迹、激光器单元5的振动频率、高压射流枪19喷射的压力和激光器23距离加工工件15的距离;
步骤二:将加工工件15通过压钉33固定在工件夹板14上,上位机开始按照设定程序执行命令,激光器23开始工作,并在激光器滑台26的带动下在垂直光轴方向往复运动,实现宏观加工轨迹耦合运动;同时压缩机按照上位机发送的压力参数为稳压罐提供既定压力,高压射流枪19喷射出一定压力的水流,利用超高压微射流参与激光已加工表面二次修整,剥离已加工表面重铸层,清洁已加工表面附着物;当压力指示器显示压力不能达到设定值时,将信号传送至上位机,上位机通过控制压缩机为稳压罐和储水罐提供设定压力值;
步骤三:在加工过程中,废液通过安装板6上的废液槽9和排水管10排出装置外部。

Claims (10)

  1. 稳流区激光/超声复合低损伤复杂微结构加工装置,其特征在于,该装置包括:底座、工件装夹滑台单元、激光器单元、射流枪单元和上位机;所述工件装夹滑台单元、激光器单元和射流枪单元设置在所述底座上;工件装夹在所述工件装夹滑台单元上;所述激光器单元发出的激光的光轴处于水平状态,并垂直于工件表面,且激光器在加工过程中在垂直于所述光轴方向在工件表面以光轴为中心点呈周期性振动;所述射流枪单元发射分高压水射流与所述工件表面呈锐角;所述高压水射流参与高频往复运动的激光同时作用在所述工件表面,在降低热影响区以及重铸层的同时,剥离已加工工件表面的附着物。
  2. 根据权利要求1所述的稳流区激光/超声复合低损伤复杂微结构加工装置,其特征在于,还包括设置在所述底座、工件装夹滑台单元、激光器单元和射流枪单元外的防护罩。
  3. 根据权利要求1所述的稳流区激光/超声复合低损伤复杂微结构加工装置,其特征在于,所述底座包括:大理石和设置在所述大理石上的安装板;所述安装板四周装配周边挡板;位于所述工件下方设有废液槽;废液通过废液槽和排水管经由所述大理石排出加工装置外部。
  4. 根据权利要求1所述的稳流区激光/超声复合低损伤复杂微结构加工装置,其特征在于,所述工件装夹滑台单元包括:第一弯板、xy位移单元、薄型旋转台、工件夹板和滑台驱动器;所述第一弯板安装在安装板上,xy位移单元设置在所述第一弯板垂直激光光轴的平面上;所述薄型旋转台设置在所述xy位移单元垂直激光光轴的平面上,所述工件夹具装配在所述薄型旋转台的旋转面上;所述上位机通过滑台驱动器控制所述xy位移单元和薄型旋转台的运动。
  5. 根据权利要求4所述的稳流区激光/超声复合低损伤复杂微结构加工装置,其特征在于,所述工件通过压钉固定在所述薄型旋转台的旋转面上。
  6. 根据权利要求4所述的稳流区激光/超声复合低损伤复杂微结构加工装置,其特征在于,所述xy位移单元采用斜45度布局。
  7. 根据权利要求1所述的稳流区激光/超声复合低损伤复杂微结构加工装置,其特征在于,所述激光器单元包括:反射镜装夹座、激光器、第二弯板、激光器滑台、柔性支撑梁、换能器、第一反射镜、第二反射镜、出射筒和激光器单元控制器;所述激光器安装在所述反射镜装夹座外,所述第一反射镜通过水平设置的所述柔性支撑梁固定在所述反射镜装夹座内,所述柔性支撑梁上设有换能器;所述反射镜装夹座安装在所述第二弯板上,所述第二弯板在所述激光器滑台上沿激光光轴往复运动;所述第二弯板内设有第二反射镜;所述激光器单元为离轴两反***,激光从出射筒出射;所述激光器单元控制器控制激光的发射,所述换能器通过控制所述柔性支撑梁振动,从而带动第一反射镜上下往复运动,实现激光在工件上竖直方向高频微位移加工。
  8. 根据权利要求1所述的稳流区激光/超声复合低损伤复杂微结构加工装置,其特征在于,所述出射筒出射面的外环设有气体防护环,与外部气管连接;所述气体防护环圆周和端面均布一一对应的气孔,且对应气孔之间相互导通。
  9. 根据权利要求1所述的稳流区激光/超声复合低损伤复杂微结构加工装置,其特征在于,所述射流枪单元包括:第三弯板、射流调整台、射流枪底板、高压射流枪、储水罐、稳压罐、压力指示器和压缩机;所述第三弯板安装在安装板上,所述射流调整台设置在所述安装板上;所述高压射流枪通过射流枪底板安装在所述射流调整台上;所述压力指示器采集所述储水罐和稳压罐内的压力,将采集数据传送至上位机,所述上位机计算出适合的压力值,通过控制压缩机,分别控制稳压罐和储水罐的压力,从而控制高压射流枪的出水压力。
  10. 基于1-9任意一项权利要求所述的稳流区激光/超声复合低损伤复杂微结构加工装置的加工方法,其特征在于,该方法包括如下步骤:
    步骤一:在上位机中设定激光器单元的加工轨迹、激光器单元的振动频率、高压射流枪喷射的压力和激光器距离加工工件的距离;
    步骤二:将加工工件通过压钉固定在工件夹板上,上位机开始按照设定 程序执行命令,激光器开始工作,并在换能器和柔性支撑梁的带动下在垂直光轴方向往复运动,实现对工件宏观加工轨迹耦合运动;同时压缩机按照上位机发送的压力参数给稳压罐提供既定压力,高压射流枪喷射出一定压力的水流,利用超高压微射流参与激光已加工表面二次修整,剥离已加工表面重铸层,清洁已加工表面附着物;
    步骤三:当压力指示器显示压力不能达到设定值时,将控制信号传送至上位机,上位机通过控制压缩机为稳压罐和储水罐提供设定压力值;
    步骤四:在加工过程中,废液通过安装板上的废液槽和排水管排出装置外部。
PCT/CN2022/087807 2021-05-10 2022-04-20 稳流区激光/超声复合低损伤复杂微结构加工装置及方法 WO2022237475A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/235,396 US20230390861A1 (en) 2021-05-10 2023-08-18 Low-damage Processing Device and Method for Complex Microstructure by Hybrid Laser-ultrasonic Processing in Steady Flow Area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110504610.5 2021-05-10
CN202110504610.5A CN113290386B (zh) 2021-05-10 2021-05-10 稳流区激光/超声复合低损伤复杂微结构加工装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/235,396 Continuation US20230390861A1 (en) 2021-05-10 2023-08-18 Low-damage Processing Device and Method for Complex Microstructure by Hybrid Laser-ultrasonic Processing in Steady Flow Area

Publications (1)

Publication Number Publication Date
WO2022237475A1 true WO2022237475A1 (zh) 2022-11-17

Family

ID=77321278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087807 WO2022237475A1 (zh) 2021-05-10 2022-04-20 稳流区激光/超声复合低损伤复杂微结构加工装置及方法

Country Status (3)

Country Link
US (1) US20230390861A1 (zh)
CN (1) CN113290386B (zh)
WO (1) WO2022237475A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116079230A (zh) * 2023-04-10 2023-05-09 中科德迈(沈阳)激光技术有限公司 水导激光加工方法、装置、***及可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113290386B (zh) * 2021-05-10 2022-07-08 长春理工大学 稳流区激光/超声复合低损伤复杂微结构加工装置及方法
CN114918670A (zh) * 2022-06-10 2022-08-19 江苏理工学院 旁轴射流水辅激光与微铣复合加工微通道的装置及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057525A (en) * 1995-09-05 2000-05-02 United States Enrichment Corporation Method and apparatus for precision laser micromachining
CN106624353A (zh) * 2016-12-30 2017-05-10 广东工业大学 一种激光喷丸制品表面制造***
CN107442930A (zh) * 2017-07-13 2017-12-08 华中科技大学 一种激光焦点动态加工方法及装置
CN210908589U (zh) * 2019-10-15 2020-07-03 天津科技大学 一种制备金属表面疏水性的超声辅助激光装置
CN113290386A (zh) * 2021-05-10 2021-08-24 长春理工大学 稳流区激光/超声复合低损伤复杂微结构加工装置及方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11786A (ja) * 1997-06-10 1999-01-06 Ishikawajima Harima Heavy Ind Co Ltd 水中レーザ・ウォータジェット複合切断装置
JP2003334686A (ja) * 2002-05-22 2003-11-25 Denso Corp レーザ加工スパッタ付着防止
CN103317234A (zh) * 2012-03-22 2013-09-25 江南大学 激光诱导低压射流复合刻蚀加工方法及装置
CN103801838B (zh) * 2014-01-28 2016-01-20 华中科技大学 一种变线宽激光振镜扫描快速刻蚀方法
CN104439710B (zh) * 2014-11-07 2017-02-15 江南大学 一种水射流辅助激光化学刻蚀的装置及方法
CN104959730B (zh) * 2015-06-26 2016-08-17 吉林大学 旋转台式飞秒激光直写方法及装置
CN106541213A (zh) * 2016-04-19 2017-03-29 东北林业大学 一种水射流与激光耦合木材切割方法
JP6804224B2 (ja) * 2016-06-22 2020-12-23 三菱重工業株式会社 レーザ加工装置およびレーザ加工方法
CN206105148U (zh) * 2016-10-27 2017-04-19 桂林电子科技大学 一种自聚焦激光加工装置
CN206824815U (zh) * 2017-06-01 2018-01-02 深圳隆庆智能激光科技有限公司 激光加工设备
CN208196138U (zh) * 2018-04-12 2018-12-07 桂林电子科技大学 一种激光水射流复合加工***
CN108526627B (zh) * 2018-06-27 2020-07-31 江苏大学 一种半导体材料激光电化学复合微加工方法及装置
CN111151892B (zh) * 2018-11-08 2022-05-20 中国科学院西安光学精密机械研究所 一种无锥度激光切割方法
CN209363853U (zh) * 2019-01-09 2019-09-10 桂林电子科技大学 水射流辅助激光加工***
CN109759714B (zh) * 2019-01-17 2021-04-02 南开大学 一种基于飞秒激光成丝的大幅面打标***及打标范围标定方法
JP7266456B2 (ja) * 2019-04-26 2023-04-28 株式会社ディスコ チャックテーブル及びチャックテーブルの製造方法
CN110026694A (zh) * 2019-05-07 2019-07-19 英诺激光科技股份有限公司 双束双面激光加工***及方法
CN110280856A (zh) * 2019-05-08 2019-09-27 江苏大学 一种利用超声振透镜的激光-电化学复合打孔装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057525A (en) * 1995-09-05 2000-05-02 United States Enrichment Corporation Method and apparatus for precision laser micromachining
CN106624353A (zh) * 2016-12-30 2017-05-10 广东工业大学 一种激光喷丸制品表面制造***
CN107442930A (zh) * 2017-07-13 2017-12-08 华中科技大学 一种激光焦点动态加工方法及装置
CN210908589U (zh) * 2019-10-15 2020-07-03 天津科技大学 一种制备金属表面疏水性的超声辅助激光装置
CN113290386A (zh) * 2021-05-10 2021-08-24 长春理工大学 稳流区激光/超声复合低损伤复杂微结构加工装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116079230A (zh) * 2023-04-10 2023-05-09 中科德迈(沈阳)激光技术有限公司 水导激光加工方法、装置、***及可读存储介质

Also Published As

Publication number Publication date
US20230390861A1 (en) 2023-12-07
CN113290386A (zh) 2021-08-24
CN113290386B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2022237475A1 (zh) 稳流区激光/超声复合低损伤复杂微结构加工装置及方法
CN110026908B (zh) 一种超声空化辅助射流抛光***及抛光方法
EP0129603A1 (en) Laser machining apparatus
CN103358027A (zh) 水射流和气流复合辅助激光加工的方法和***
CN109866028B (zh) 一种射流约束飞秒激光超精密加工***及方法
CN110560428A (zh) 激光清洗加工件涂层的方法
CN110202277B (zh) 一种航空发动机叶片气膜孔加工装置及工作方法
CN113492270B (zh) 一种飞秒激光加工喷嘴切向孔的装置和方法
JP2001321977A (ja) ハイブリッド加工装置
CN113732515A (zh) 可控液流-振动耦合辅助激光铣抛加工方法与***
CN113500711A (zh) 一种高精度复合能场辅助切削及光整设备及方法
CN106086319A (zh) 一种激光诱导空泡强化泵阀芯的装置和方法
CN108262563B (zh) 一种随动式激光冲击强化处理装置和方法
CN110280915B (zh) 一种基于水下打孔改善制孔质量的激光打孔装置及方法
CN114406463A (zh) 超高强度钢随焊超声辅助激光焊接***及方法
CN112475613B (zh) 一种水气同轴辅助振镜扫描的激光加工装置
CN108296639B (zh) 一种随动式激光冲击强化处理装置
CN105817517A (zh) 一种薄壁管件局部胀形的激光冲击装置及方法
CN210703091U (zh) 一种密集孔激光精密加工装置
CN209936704U (zh) 一种超声空化辅助射流抛光***
CN114939741B (zh) 涡轮叶片气膜冷却孔超声射流辅助飞秒激光旋切复合加工装备及方法
JP2006218544A (ja) ハイブリッド加工装置およびハイブリッド加工方法
CN114589405A (zh) 一种基于双重空化效应提高激光加工微孔内壁质量的方法
CN209886899U (zh) 基于无衍射光路设计的水导激光加工***
CN113787268A (zh) 变曲率聚焦光柱透镜大功率水导激光水光耦合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806445

Country of ref document: EP

Kind code of ref document: A1