WO2022237313A1 - 一种太阳能光伏组件 - Google Patents

一种太阳能光伏组件 Download PDF

Info

Publication number
WO2022237313A1
WO2022237313A1 PCT/CN2022/081377 CN2022081377W WO2022237313A1 WO 2022237313 A1 WO2022237313 A1 WO 2022237313A1 CN 2022081377 W CN2022081377 W CN 2022081377W WO 2022237313 A1 WO2022237313 A1 WO 2022237313A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
batteries
solar photovoltaic
photovoltaic module
cells
Prior art date
Application number
PCT/CN2022/081377
Other languages
English (en)
French (fr)
Inventor
许佳平
陈章洋
曹育红
符黎明
Original Assignee
常州时创能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州时创能源股份有限公司 filed Critical 常州时创能源股份有限公司
Publication of WO2022237313A1 publication Critical patent/WO2022237313A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of solar photovoltaics, in particular to a solar photovoltaic module.
  • Solar photovoltaic modules consist of multiple interconnected solar cells. When solar photovoltaic modules are produced, the positive poles of all solar cells face one side, and the negative poles face one side.
  • the solder ribbon welds the positive pole of the solar cell to the negative pole of the adjacent solar cell, and the positive pole of the adjacent solar cell is connected to the next adjacent solar cell.
  • the negative electrodes of the solar cells are connected in series, and so on, the solar cells are connected in series to form solar cell strings, and then the solar cell strings are connected in series/parallel and packaged into modules.
  • This series connection method requires a certain gap between the solar cells for the interconnection bars to bend through, thereby reducing the power generation efficiency of the module; and the bending of the interconnection bars is likely to cause cracks on the edges of the solar cells, which reduces the reliability of the solar photovoltaic module. reliability and service life. Moreover, as the thickness of solar cells tends to become thinner, the fragments and cracks caused by the interconnection bars will further increase.
  • the positive electrode of the P-type battery and the negative electrode of the N-type battery are connected in series on the same side of the battery to solve the problem of the bending of the interconnection bar.
  • this component structure can effectively avoid the damage of the battery due to the bending of the interconnection bar , to improve the stability of photovoltaic modules, but the P-type cells and N-type cells used in this structure are of the same size, and the differences in the silicon wafer substrates and manufacturing processes used by the P-type cells and N-type cells lead to The electrical performance of the battery varies greatly, which leads to poor current matching between the P-type battery and the N-type battery in the module.
  • the working current of the module is consistent with the current of the low-current battery, and only part of the current of the high-current battery works normally, which eventually makes the module
  • the encapsulation loss increases, which in turn leads to a reduction in the output power of the module.
  • the present invention proposes a solar photovoltaic module, which can not only solve the component reliability problem caused by the bending of interconnection strips in existing solar photovoltaic modules, but also solve the packaging loss caused by current mismatch of interconnection components on the same side, and improve The output power of solar photovoltaic modules.
  • the technical solution adopted in the present invention is a solar photovoltaic module, which includes a number of series/parallel battery strings arranged in a matrix.
  • a battery and a second battery, the electrodes of the first battery and the second battery are arranged in opposite intervals, the first battery and the second battery are connected in series on one side of the battery, and the second battery is connected to the next phase
  • the adjacent first battery is connected in series on the other side of the battery; the area of the first battery is S1, the area of the second battery is S2, and S1 ⁇ S2; the current of the first battery is I1, and the area of the second battery is S2.
  • the first battery and the second battery are one of a full battery, a half battery or x/n batteries, where n ⁇ 3, n>x.
  • the x/n batteries are 1/3 batteries, 2/3 batteries, 1/4 batteries, 3/4 batteries, 1/5 batteries, 2/5 batteries, 3/ 5 cells, 4/5 cells, 1/6 cells or 5/6 cells.
  • the first battery and the second battery include long sides and short sides, the long sides have the same length, and the short sides have different lengths.
  • the width of the battery string is consistent with the length of the long side of the first battery and the second battery.
  • the first battery and the second battery are P-type batteries and N-type batteries.
  • the first battery and the second battery are single-sided batteries or double-sided batteries.
  • both the first battery and the second battery are P-type bifacial batteries.
  • both the first battery and the second battery are N-type bifacial batteries.
  • the conversion efficiency of the first battery is in the same efficiency gear
  • the conversion efficiency of the second battery is in the same efficiency gear
  • the size of the I1 and the I2 is 1-20A.
  • the type of the first battery and the second battery may be one of PERC battery, PERT battery, TOPCon battery or HJT battery.
  • the solar photovoltaic module also includes an upper interconnection bar and a lower interconnection bar, the upper interconnection bar connects the first battery and the second battery in series on one side of the battery, and the lower interconnection bar connects the second battery to the next phase The adjacent first battery is connected in series on the other side of the battery.
  • the upper interconnection bar and the lower interconnection bar are welding strips, and the connection between the welding strips and the first battery and the second battery is welding.
  • the cross-sectional shape of the upper interconnecting bars may be one of circular, triangular, trapezoidal or zigzag, and the shape of the lower interconnecting bars is flat.
  • the solar photovoltaic module further includes an upper adhesive film preset with upper interconnecting bars and a lower adhesive film preset with lower interconnecting bars.
  • the present invention has the following advantages:
  • the present invention achieves the current matching of components by setting different battery areas, which solves the problem of component current mismatch caused by differences in silicon wafer substrates used in batteries and differences in battery manufacturing processes, and reduces the packaging loss of components , which improves the output power of the module.
  • the first battery and the second battery of the present invention can be a whole battery, a half battery or a split battery, and the battery area can be randomly adjusted according to the current required by the component, and any two batteries can be effectively connected in series.
  • the method Simple and effective, easy to meet mass production requirements.
  • the minimum distance between the first battery and the second battery of the present invention can be reduced to 0 ⁇ 0.05mm, which greatly reduces the distance between the batteries compared with the distance between the batteries in the existing components of 1 ⁇ 2mm , which is conducive to the realization of close-packed components, and reduces the component area and improves the component efficiency.
  • the present invention realizes that the upper interconnection bar and the lower interconnection bar are independent of each other on both sides of the battery, and realizes the series connection between the batteries without bending, thus reducing the edge stress of the first battery and the second battery , improve the reliability and stability of the components, and facilitate the application of thinned cells in solar photovoltaic components.
  • the upper interconnection strip and the lower interconnection strip of the present invention are independent of each other, so different specifications and models can be used, and the upper interconnection strip can use circular, triangular, trapezoidal or zigzag welding strips to lift the light-receiving surface of the module
  • the lower interconnecting strips can use flat solder strips to reduce the series resistance of the components, greatly reducing the optical loss and electrical loss during the packaging process of the components, and improving the output power of the components.
  • the upper interconnection strip and the lower interconnection strip of the present invention are independent of each other, so the upper adhesive film with the upper interconnection strip preset and the lower adhesive film with the lower interconnection strip preset can be used, and the component structure is simpler and easier to operate.
  • Fig. 1 is the connection structure schematic diagram of the solar photovoltaic module of the embodiment 1 of the present invention
  • Fig. 2 is a partial side view of the battery string in Embodiment 1 of the present invention.
  • Fig. 3 is a schematic diagram of the connection structure of the solar photovoltaic module according to Embodiment 2 of the present invention.
  • Fig. 4 is a schematic diagram of the connection structure of the solar photovoltaic module according to Embodiment 3 of the present invention.
  • Fig. 5 is a partial side view of the battery string according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of the connection structure of the solar photovoltaic module according to Embodiment 4 of the present invention.
  • Fig. 7 is a partial side view of the battery string according to Embodiment 4 of the present invention.
  • Fig. 8 is a schematic diagram of the connection structure of the solar photovoltaic module according to Embodiment 5 of the present invention.
  • Fig. 9 is a partial side view of the battery string according to Embodiment 5 of the present invention.
  • solar photovoltaic modules in the prior art connect P-type cells and N-type cells in series on the same side in order to avoid bending of the interconnection bars. Consistent with the current of the battery is very important to the performance of the module, but because the specifications and sizes of the P-type battery and the N-type battery used in the prior art are consistent, it will inevitably lead to inconsistent currents of the interconnected batteries. The internal loss of the component is increased, and the output power of the component is greatly reduced.
  • the inventor found that this is mainly because the difference between the P-type battery and the N-type battery lies in the difference in the silicon wafer substrate and the manufacturing process, resulting in a large difference in the electrical properties of the P-type battery and the N-type battery. , showing a large difference in current and voltage characteristics. Specifically, under the same specifications and dimensions, the current density of the P-type battery is lower than that of the N-type battery.
  • the P-type silicon wafer is made of doped boron elements
  • the silicon substrate used in the P-type battery is P Type silicon wafer
  • the main preparation process is Al-BSF battery and PERC battery
  • N-type silicon wafer is made of doped phosphorus element
  • the silicon substrate used in N-type battery is N-type silicon wafer
  • the main preparation process is PERT battery , TOPCon battery, IBC battery and HJT battery.
  • N-type silicon wafers have a higher minority carrier lifetime, so the efficiency of N-type cells can be made higher. Therefore, under the same size conditions, the average efficiency of N-type cells is higher than that of P-type cells by more than 1%.
  • the average current density of N-type batteries is generally higher than that of P-type batteries, up to 3mA/cm 2 , which leads to a large difference in current between the two. Therefore, in the prior art, in order to avoid the bending of the interconnection bars, the P-type battery and the N-type battery with inconsistent currents are connected in series on the same side, which will inevitably cause the current mismatch of the components. At this time, the working current of the components is consistent with the current of the low-current battery. High-current batteries work normally with only part of the current, and part of the energy is wasted. Under the influence of high-current batteries, low-current batteries also become loads, consuming power and increasing temperature, resulting in greatly reduced output power and overall performance of components.
  • an embodiment of the present invention provides a solar photovoltaic module, including: several series/parallel battery strings arranged in a matrix, the battery strings include a plurality of batteries connected in series, and the two adjacent batteries are respectively the first battery And the second battery, the electrodes of the first battery and the second battery are arranged at opposite intervals, the first battery and the second battery are connected in series on one side, and the second battery is connected in series with the next adjacent first battery on the other side;
  • the number of battery strings and the number of batteries can be increased or decreased according to actual component requirements, and the connection mode between battery strings can be connected in series or a combination of series and parallel according to actual component requirements.
  • the first battery and the second battery in the present invention refer to one of a full battery, a half battery or x/n batteries, where n ⁇ 3, n>x.
  • the whole cell, half cell or x/n cell refers to the finished cell, which is a finished product made by a series of solar cell manufacturing processes, such as a whole silicon wafer, a half silicon wafer or x/n silicon wafers Whole cells, finished half cells or finished x/n cells.
  • the first battery and the second battery in the present invention refer to a whole battery and a half battery obtained by slicing the whole battery or x/n batteries, where n ⁇ 3, n>x.
  • the whole battery refers to the finished whole battery made by the whole silicon wafer through a series of solar cell manufacturing processes, and then the finished whole battery is cut into slices to obtain half-cut cells or x/n cells.
  • the whole battery is square, and the half battery and x/n batteries are rectangular, which can be uniformly set to include the long side and the short side (the long side and the short side of the whole battery are equal).
  • the battery The width of the string is consistent with the length of the long side of the battery, and the battery area is adjusted by adjusting the length of the short side of the battery, so that the current of the battery in the battery string matches, and the appearance of the module is beautiful.
  • the first battery and the second battery are a combination of a P-type battery and an N-type battery.
  • both the P-type battery and the N-type battery can be single-sided batteries. , can also use double-sided batteries.
  • P-type batteries and N-type batteries are arranged alternately so that the electrodes on the same side of the battery are opposite (the front of the P-type battery is the negative pole, and the front of the N-type battery is the positive pole).
  • the first battery can be a P-type whole battery
  • the second battery can be an N-type half-cell or an N-type x/n battery (n ⁇ 3, n>x); similarly, the first battery can also be a P-type half-cell, and the second battery can also be an N-type x/n batteries (n ⁇ 3, n>x).
  • both the first cell and the second cell may be P-type bifacial cells. Since the electrical properties of the front and back of the P-type double-sided battery are also very different, specifically manifested as a large difference in current and voltage characteristics, so in order to avoid bending of the interconnection bar, in the same battery string, the P-type double-sided battery row When laying, the electrodes on the same side of the battery are opposite (the front side of the P-type double-sided battery is the negative pole, and the back side is the positive pole). Theoretically, the current I1 of the first battery 1 is required to be equal to the current I2 of the second battery 2.
  • the second battery can be a P-type full bifacial battery, a P-type half-cell bifacial battery, or a P-type x/n bifacial battery (n ⁇ 3, n>x).
  • both the first cell and the second cell may be N-type bifacial cells. Since the electrical properties of the front and back of the N-type double-sided battery are also very different, specifically manifested as a large difference in current and voltage characteristics, so in order to avoid bending of the interconnection bars, in the same battery string, the N-type double-sided battery row When laying, the electrodes on the same side of the battery are opposite (the front of the N-type double-sided battery is the positive electrode, and the back is the negative electrode). Theoretically, the current I1 of the first battery 1 is required to be equal to the current I2 of the second battery 2.
  • the second battery can be an N-type full bifacial battery, an N-type half-cell bifacial battery, or an N-type x/n bifacial battery (n ⁇ 3, n>x).
  • the solar photovoltaic assembly of the present embodiment comprises 6 battery strings 10 arranged in series in a matrix, and each battery string 10 includes 10 batteries connected in series, and each battery string 10
  • the two adjacent batteries are the first battery 1 and the second battery 2
  • the first battery 1 is a P-type whole battery with an area S1
  • the first battery 1 and the second battery 2 are arranged alternately so that the electrodes on the same side of the battery are opposite (the front of the P-type battery is the negative pole, and the front of the N-type battery is the positive pole).
  • the upper interconnection bar 3 connects the negative pole of the adjacent first battery 1 and the positive pole of the second battery 2 in series on one side of the battery
  • the lower interconnection bar 4 connects the negative pole of the second battery 2 with the next adjacent first battery 1
  • the positive electrode of the battery is connected in series on the other side of the battery, wherein the upper interconnection bar 3 adopts a welding strip with a triangular cross-section, and the lower interconnection bar 4 adopts a conventional flat-shaped welding strip.
  • the first battery 1 means that the finished battery is a P-type monolithic battery
  • the second battery 2 means that the finished battery is an N-type 2/3 piece battery. Since the edge of the finished battery is protected by a passivation layer, there will be no short circuit phenomenon in the contact between the battery and the edge of the battery, so the distance between the first battery and the second battery is set to zero in this embodiment.
  • FIG. 3 it is the same as that in Embodiment 1, except that the arrangement of batteries in each battery string 10 is different.
  • the first battery 1 refers to the 3/4 battery obtained by dividing the finished battery into a P-type whole battery
  • the second battery 2 refers to dividing the finished battery into an N-type whole battery. 1/2 piece battery obtained from the piece. Since the first battery 1 and the second battery 2 are obtained by subdividing conventional whole battery slices, the edge of the battery is not protected by a passivation layer. The distance from the second battery is set to 0.05mm.
  • the solar photovoltaic assembly of the present embodiment includes 6 battery strings 10 arranged in series in a matrix, and each battery string 10 includes 10 batteries connected in series, and each battery string 10
  • the first battery 1 and the second battery 2 are arranged alternately so that the electrodes on the same side of the battery are opposite (the front side of the PERC double-sided battery is the negative pole, and the back side is the positive pole).
  • the upper interconnection bar 3 connects the negative pole of the adjacent first battery 1 and the positive pole of the second battery 2 in series on one side of the battery
  • the lower interconnection bar 4 connects the negative pole of the second battery 2 with that of the next adjacent first battery 1.
  • the positive electrode is connected in series on the other side of the battery, wherein the upper interconnection strip 3 adopts a welding strip with a trapezoidal cross section, and the lower interconnection strip 4 adopts a conventional flat welding strip.
  • the P-type 2/3-piece battery used in the first battery 1 refers to the finished 2/3-piece battery
  • the P-type full-piece battery used in the second battery 2 refers to the finished full-piece battery. Since the edge of the finished battery is protected by a passivation layer, there will be no short circuit phenomenon in the contact between the battery and the edge of the battery, so the distance between the first battery and the second battery is set to zero in this embodiment.
  • the solar photovoltaic assembly of the present embodiment includes 6 battery strings 10 arranged in series in a matrix, and each battery string 10 includes 10 batteries connected in series, and each battery string 10
  • the two adjacent batteries are the first battery 1 and the second battery 2
  • the first battery 1 is an N-type half-cell battery with an area S1
  • the first battery 1 and the second battery 2 are arranged alternately so that the electrodes on the same side of the battery are opposite (the front side of the N-type double-sided battery is the positive pole, and the back side is the negative pole).
  • the upper interconnection bar 3 connects the positive pole of the adjacent first battery 1 and the negative pole of the second battery 2 in series on one side of the battery
  • the lower interconnection bar 4 connects the positive pole of the second battery 2 with the negative pole of the next adjacent first battery 1.
  • the negative electrode is connected in series on the other side of the battery, wherein the upper interconnection strip 3 adopts a triangular-shaped welding strip, and the lower interconnection strip 4 adopts a conventional flat-shaped welding strip.
  • the N-type half-cut battery used in the first battery 1 refers to the finished half-cut battery
  • the N-type 2/3-cut battery used in the second battery 2 refers to the finished 2/3-cut battery. Since the edge of the finished battery is protected by a passivation layer, there will be no short circuit phenomenon in the contact between the battery and the edge of the battery, so the distance between the first battery and the second battery is set to zero in this embodiment.
  • This embodiment is mainly based on the fact that the bifaciality of the HJT double-sided battery is as high as 95%, so the HJT double-sided battery is very suitable for the solar photovoltaic module of the present invention.
  • the use of half-cell and x/n (n ⁇ 3, n>x) cells is more conducive to the application of thin cells, and the output power of the front and rear of the module tends to be more consistent, and the application scenarios are more convenient. widely.
  • the solar photovoltaic module of this embodiment further includes an upper adhesive film preset with upper interconnecting bars and a lower adhesive film preset with lower interconnecting bars.
  • both the upper interconnection bar and the lower interconnection bar refer to soldering strips, which are embedded in the packaging adhesive film, and the soldering strips in the upper adhesive film correspond to the main grids on the upper surface of the first battery and the upper surface of the second battery , the solder strips in the lower adhesive film correspond to the main grids on the lower surface of the first battery and the lower surface of the second battery.
  • the positive pole of the second battery is connected in series with the negative pole of the next adjacent first battery on the other side of the battery.
  • the components from bottom to top are glass, lower adhesive film, battery string, upper adhesive film and glass. Since the upper interconnection strips and the lower interconnection strips are independently connected on both sides of the battery, there is no need to pass through the gap between the batteries, so all the upper interconnection strips or all the lower interconnection strips in the module can be respectively embedded on the same adhesive film, and the structure of the module is more convenient. Simple and easy to operate.
  • the module output power and efficiency in the present invention refer to the output power and efficiency of the front side of the module.
  • the first battery can be uniformly selected at the same efficiency level.
  • the same efficiency level here refers to the battery sorting and packaging efficiency.
  • the actual efficiency of the battery and the sorting and packaging efficiency have a certain error range, preferably 0.1%.
  • the actual efficiency of the battery falls within the range of 21.95%-22.05%. It is considered to be 22% of the same efficiency gear.
  • Selecting the same efficiency gear can satisfy the voltage of the battery string composed of the same number of first batteries 1 and the same number of second batteries 2 under the same current condition, which is convenient for parallel connection between battery strings according to the needs of components, so that each Component output power is concentrated.
  • the internal loss of the component caused by the difference reduces the packaging loss of the component and improves the output power of the component; at the same time, the solar photovoltaic module of the present invention realizes that the upper interconnection bar and the lower interconnection bar are independent of the two sides of the battery, and the interconnection bar does not Bending is required, which avoids the stress of the interconnection strips on the edge of the battery, improves the reliability of the module, and is very conducive to the application of thinned cells in solar photovoltaic modules; further, the solar photovoltaic module of the present invention reduces the number of first batteries and The gap between the second cells reduces the module area and improves the module efficiency.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种太阳能光伏组件,包括若干呈矩阵排列的串/并联的电池串,所述电池串包括多个串联的电池,相邻两个电池分别为第一电池和第二电池,所述第一电池和所述第二电池的电极反向间隔排列,所述第一电池与所述第二电池在电池一侧串联,所述第二电池与下一个相邻的第一电池在电池另一侧串联;所述第一电池的面积为S1,所述第二电池的面积为S2,S1≠S2;所述第一电池的电流为I1,所述第二电池的电流为I2,I1=I2。本发明通过设置不同的电池面积来达到组件的电流匹配,解决了由于电池所用的硅片衬底差异以及电池制备工艺差异所造成的组件电流失配的问题,降低了组件的封装损失,提高了组件的输出功率。

Description

一种太阳能光伏组件 技术领域
本发明涉及太阳能光伏技术领域,尤其涉及一种太阳能光伏组件。
背景技术
太阳能光伏组件由多个互相联接的太阳能电池组成。太阳能光伏组件在制作时,所有太阳能电池的正极朝向一面,负极朝向一面,焊带将太阳能电池的正极焊接到相邻太阳能电池的负极,该相邻太阳能电池的正极则与下一个相邻太阳能电池的负极相连,如此类推将太阳能电池串联形成太阳能电池串,再将太阳能电池串进行串/并联,封装成组件。这种串联方式需要太阳能电池之间留有一定的间隙供互联条弯折穿过,进而导致组件发电效率有所降低;而且互联条弯折容易造成太阳能电池边缘隐裂,降低了太阳能光伏组件的可靠性和使用寿命。而且随着太阳能电池的厚度越来越趋向于薄片化,互联条引起的碎片和隐裂会进一步增加。
为了解决该问题,现有技术有采用将P型电池的正极和N型电池的负极在电池同侧串联来解决互联条弯折的问题,该组件结构虽然有效避免互联条弯折对电池的损伤,提高光伏组件的稳定性,但是这种结构的组件所采用的P型电池和N型电池为同一规格尺寸,P型电池和N型电池所用的硅片衬底差异以及制备工艺差异导致两者电池的电性能差异很大,进而导致组件中P型电池与N型电池的电流匹配性不好,组件的工作电流与低电流电池的电流一致,高电流电池只有部分电流正常工作,最终使得组件的封装损失增大,进而导致组件的输出功率降低。
技术解决方案
发明目的:本发明提出一种太阳能光伏组件,不仅能够解决现有太阳能光伏组件由于互联条弯折所导致的组件可靠性问题,而且能够解决同侧互联组件因电流失配导致的封装损失,提高太阳能光伏组件的输出功率。
技术方案:本发明所采用的技术方案是一种太阳能光伏组件,包括若干呈矩阵排列的串/并联的电池串,所述电池串包括多个串联的电池,相邻两个电池分别为第一电池和第二电池,所述第一电池和所述第二电池的电极反向间隔排列,所述第一电池与所述第二电池在电池一侧串联,所述第二电池与下一个相邻的第一电池在电池另一侧串联;所述第一电池的面积为S1,所述第二电池的面积为S2,S1≠S2;所述第一电池的电流为I1,所述第二电池的电流为I2,I1=I2。
优选地,所述第一电池和所述第二电池为整片电池、半片电池或x/n片电池中的一种,其中n≥3,n>x。
更优选地,所述x/n片电池为1/3片电池、2/3片电池、1/4片电池、3/4片电池、1/5片电池、2/5片电池、3/5片电池、4/5片电池、1/6片电池或5/6片电池。
更优选地,所述第一电池和所述第二电池包括长边和短边,长边长度一致,短边长度不同。
更优选地,所述电池串的宽度与所述第一电池和所述第二电池的长边长度保持一致。
优选地,所述第一电池和所述第二电池为P型电池和N型电池。
更优选地,所述第一电池和所述第二电池为单面电池或双面电池。
优选地,所述第一电池和所述第二电池均为P型双面电池。
优选地,所述第一电池和所述第二电池均为N型双面电池。
优选地,所述第一电池的转换效率为同一效率档位,所述第二电池的转换效率为同一效率档位。
优选地,所述I1和所述I2的大小为1~20A。
优选地,所述第一电池和所述第二电池的类型可以为PERC电池、PERT电池、TOPCon电池或HJT电池中的一种。
优选地,所述太阳能光伏组件还包括上互联条和下互联条,所述上互联条使第一电池和第二电池在电池一侧串联,所述下互联条使第二电池与下一个相邻的第一电池在电池另一侧串联。
更优选地,所述上互联条和所述下互联条为焊带,所述焊带与第一电池和第二电池的连接为焊接。
更优选地,所述上互联条的截面形状可以为圆形、三角形、梯形或锯齿形中的一种,所述下互联条的形状为扁平状。
优选地,所述太阳能光伏组件还包括预设有上互联条的上胶膜和预设有下互联条的下胶膜。
有益效果
与现有技术相比,本发明具有以下优点:
(1)本发明通过设置不同的电池面积来达到组件的电流匹配,解决了由于电池所用的硅片衬底差异以及电池制备工艺差异所造成的组件电流失配的问题,降低了组件的封装损失,提高了组件的输出功率。
(2)本发明第一电池和第二电池可以采用整片电池、半片电池或分片电池,电池面积可根据组件所需的电流大小随机调整,任何两片电池都可以实现有效地串联,方法简单有效,容易满足量产化要求。
(3)本发明第一电池和第二电池之间的最小间距可缩小至0~0.05mm,相比现有组件中电池与电池之间的间距1~2mm,大大缩小了电池之间的间距,有利于实现密排型组件,而且缩小了组件面积,提高了组件效率。
(4)本发明实现了上互联条和下互联条在电池两侧相互独立,在不需要弯折的情况下实现了电池之间的串联,因此降低了第一电池和第二电池的边缘应力,提高了组件的可靠性和稳定性,有利于薄片化电池在太阳能光伏组件中的应用。
(5)本发明的上互联条和下互联条相互独立,因此可以采用不同的规格型号,上互联条可以采用形状为圆形、三角形、梯形或锯齿形的焊带,用于提升组件受光面的反光效果,下互联条可以采用形状为扁平状的焊带,用于减少组件的串联电阻,使得组件封装过程中的光学损失和电学损失大幅降低,提高了组件的输出功率。
(6)本发明的上互联条和下互联条相互独立,因此可以采用预设有上互联条的上胶膜和预设有下互联条的下胶膜,组件结构更加简单易于操作。
附图说明
图1是本发明实施例1的太阳能光伏组件的连接结构示意图;
图2是本发明实施例1的电池串的局部侧视图;
图3是本发明实施例2的太阳能光伏组件的连接结构示意图;
图4是本发明实施例3的太阳能光伏组件的连接结构示意图;
图5是本发明实施例3的电池串的局部侧视图;
图6是本发明实施例4的太阳能光伏组件的连接结构示意图;
图7是本发明实施例4的电池串的局部侧视图;
图8是本发明实施例5的太阳能光伏组件的连接结构示意图;
图9是本发明实施例5的电池串的局部侧视图。
本发明的最佳实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
如背景技术所述,现有技术中的太阳能光伏组件为了避免互联条弯折而将P型电池和N型电池在同侧串联,然而组件制作过程中,电池串一般采用电池串联的方式,电池与电池的电流保持一致对组件性能非常重要,但是由于现有技术所用的P型电池和N型电池的规格尺寸一致,必然导致相互连接的各个电池的电流不一致,组件在电流严重失配的情况下增大了组件的内部损耗,使得组件的输出功率大大降低。
基于此,发明人研究发现,这主要是因为P型电池和N型电池的区别在于硅片衬底以及制备工艺的差异,导致P型电池和N型电池两者的电性能存在很大的差异,表现为电流和电压特性相差较大。具体地,相同的规格尺寸条件下,P型电池的电流密度要小于N型电池的电流密度,这是由于P型硅片是掺杂硼元素制成,P型电池所用的硅衬底为P型硅片,主要的制备工艺有Al-BSF电池和PERC电池;N型硅片是掺杂磷元素制成,N型电池所用的硅衬底为N型硅片,主要的制备工艺有PERT电池、TOPCon电池、IBC电池和HJT电池。N型硅片由于其少子寿命更高,所以N型电池的效率可以做得更高,因此相同的规格尺寸条件下,N型电池的平均效率要高于P型电池的平均效率达1%以上,N型电池的平均电流密度一般大于P型电池的平均电流密度高达3mA/cm 2,进而导致两者电流存在很大的差异。因此现有技术为了避免互联条弯折而将电流不一致的P型电池和N型电池在同侧串联,必然会导致组件的电流失配,此时组件的工作电流与低电流电池的电流一致,高电流电池只有部分电流正常工作,部分电能浪费,而低电流电池在高电流电池的影响下,同时成为负载,消耗电能且温度上升,造成组件的输出功率及综合性能大大降低。
有鉴于此,本发明实施例提供了一种太阳能光伏组件,包括:若干呈矩阵排列的串/并联的电池串,电池串包括多个串联连接的电池,相邻两个电池分别为第一电池和第二电池,第一电池和第二电池的电极反向间隔设置,第一电池与第二电池在一侧串联,第二电池与下一个相邻的第一电池在另一侧串联;第一电池的面积为S1,第二电池的面积为S2,S1≠S2;第一电池的电流为I1,所述第二电池的电流为I2,I1=I2。
其中,电池串的数量以及电池的数量可以根据实际组件需求进行增加和减少,电池串之间的连接方式可以根据实际组件需求采用串联或者串联与并联相结合的连接方式。
具体地,本发明的第一电池和第二电池,指的是整片电池、半片电池或x/n片电池中的一种,其中n≥3,n>x。此处整片电池、半片电池或x/n片电池指的是成品电池,是将整片硅片、半片硅片或x/n片硅片经过一系列的太阳能电池制作工艺制作而成的成品整片电池、成品半片电池或成品x/n片电池。
具体地,本发明的第一电池和第二电池,指的是整片电池以及对该整片电池进行分片获得的半片电池或x/n片电池,其中n≥3,n>x。此处整片电池指的是将整片硅片经过一系列的太阳能电池制作工艺制作成的成品整片电池,再对该成品整片电池进行切割分片获得半片电池或x/n片电池。
进一步地,整片电池呈正方形,半片电池和x/n片电池呈长方形,可以统一设定为包括长边和短边(整片电池的长边和短边相等),制作电池串时,电池串的宽度同电池的长边长度保持一致,通过调整电池的短边长度来调整电池面积,使得电池串中电池电流匹配,而且组件外观美观。
作为本发明的一个优选方案,本发明所提供的太阳能光伏组件,第一电池和第二电池为P型电池和N型电池的组合,此时P型电池和N型电池可以都选用单面电池,也可以都选用双面电池。同一电池串中,P型电池和N型电池交替排布,使得位于电池同侧的电极相反(P型电池的正面为负极,N型电池的正面为正极),理论上要求第一电池1的电流I1等于第二电池2的电流I2,但是组件制作过程中I1和I2的实际值同理论值允许存在一定的误差,也就是I1=I2是广义的相等。使用上互联条将相邻的第一电池的负极与第二电池的正极在电池一侧实现串联,使用下互联条将第二电池的负极与下一个相邻的第一电池的正极在电池另一侧实现串联。由于P型电池的电流始终要低于N型电池的电流,所以根据实际组件的性能需求选择合适的第一电池和第二电池的规格尺寸,具体地,第一电池可以是P型整片电池,第二电池可以是N型半片电池或N型x/n片电池(n≥3,n>x);同样地,第一电池也可以是P型半片电池,第二电池也可以是N型x/n片电池(n≥3,n>x)。
作为本发明的另一个优选方案,本发明所提供的太阳能光伏组件,第一电池和第二电池可以都选用P型双面电池。由于P型双面电池的正面和背面的电性能也存在很大的差异,具体表现为电流和电压特性相差较大,因此为了避免互联条弯折,同一电池串中,P型双面电池排布时使得位于电池同侧的电极相反(P型双面电池的正面为负极,背面为正极),理论上要求第一电池1的电流I1等于第二电池2的电流I2,但是组件制作过程中I1和I2的实际值同理论值允许存在一定的误差,也就是I1=I2是广义的相等。使用上互联条将相邻的第一电池的负极与第二电池的正极在电池一侧实现串联,使用下互联条将第二电池的负极与下一个相邻的第一电池的正极在电池另一侧实现串联。由于P型双面电池中正面(负极)电流始终要大于背面(正极)电流,所以根据实际组件的性能需求选择合适的第一电池和第二电池的规格尺寸,具体地,第一电池和第二电池可以是P型整片双面电池、P型半片双面电池、P型x/n片双面电池(n≥3,n>x)。
作为本发明的又一个优选方案,本发明所提供的太阳能光伏组件,第一电池和第二电池可以都选用N型双面电池。由于N型双面电池的正面和背面的电性能也存在很大的差异,具体表现为电流和电压特性相差较大,因此为了避免互联条弯折,同一电池串中,N型双面电池排布时使得位于电池同侧的电极相反(N型双面电池的正面为正极,背面为负极),理论上要求第一电池1的电流I1等于第二电池2的电流I2,但是组件制作过程中I1和I2的实际值同理论值允许存在一定的误差,也就是I1=I2是广义的相等。使用上互联条将相邻的第一电池的正极与第二电池的负极在电池一侧实现串联,使用下互联条将第二电池的正极与下一个相邻的第一电池的负极在电池另一侧实现串联。由于N型双面电池中正面(正极)电流始终要大于背面(负极)电流,所以根据实际组件的性能需求选择合适的第一电池和第二电池的规格尺寸,具体地,第一电池和第二电池可以是N型整片双面电池、N型半片双面电池、N型x/n片双面电池(n≥3,n>x)。
实施例1
如图1和图2,本实施例的太阳能光伏组件,包括6个呈矩阵排列的相互串联的电池串10,每个电池串10包括10个串联连接的电池,而且每个电池串10中的电池排列方式保持一致,相邻两个电池分别为第一电池1和第二电池2,第一电池1为面积S1的P型整片电池,第二电池为面积S2的N型2/3片电池,其中S1>S2且2/3S1=S2。同一电池串中,第一电池1和第二电池2交替排布使得位于电池同侧的电极相反(P型电池的正面为负极,N型电池的正面为正极),理论上要求第一电池1的电流I1等于第二电池2的电流I2,但是组件制作过程中I1和I2的实际值同理论值允许存在一定的误差,也就是I1=I2是广义的相等,本实施例I1和I2的误差控制在0~0.2A。上互联条3将相邻的第一电池1的负极与第二电池2的正极在电池一侧侧实现串联,下互联条4将第二电池2的负极与下一个相邻的第一电池1的正极在电池另一侧实现串联,其中,上互联条3采用截面为三角形状的焊带,下互联条4采用常规扁平形状的焊带。
本实施例中,第一电池1指的是成品电池为P型整片电池,第二电池2指的是成品电池为N型2/3片电池。由于成品电池的边缘有钝化层保护,电池与电池边缘接触不会出现短路现象,因此本实施例中第一电池与第二电池之间的间距设置为零。
实施例2
如图3,同实施例1,不同的是每个电池串10中的电池排列方式不同。
实施例3
如图4和图5,同实施例1,不同的是第一电池1选用面积S1的P型3/4片电池,第二电池2选用面积S2的N型半片电池,其中S1>S2且2/3S1=S2。
本实施例中,第一电池1指的是对成品电池为P型整片电池进行分片获得的3/4片电池,第二电池2指的是对成品电池为N型整片电池进行分片获得的1/2片电池。由于第一电池1和第二电池2是对常规整片电池片进行分片获得的,电池边缘没有钝化层保护,为了避免电池与电池边缘接触出现的短路现象,本实施例中第一电池与第二电池之间的间距设置为0.05mm。
实施例4
如图6和图7,本实施例的太阳能光伏组件,包括6个呈矩阵排列的相互串联的电池串10,每个电池串10包括10个串联连接的电池,而且每个电池串10中的电池排列方式保持一致,相邻两个电池分别为第一电池1和第二电池2,第一电池1选用面积S1的P型2/3片电池,第二电池选用面积S2的P型整片电池,其中S1<S2且S1=2/3S2,第一电池1和第二电池2均为PERC双面电池。同一电池串中,第一电池1和第二电池2交替排布使得位于电池同侧的电极相反(PERC双面电池的正面为负极,背面为正极),理论上要求第一电池1的电流I1等于第二电池2的电流I2,但是组件制作过程中I1和I2的实际值同理论值允许存在一定的误差,也就是I1=I2是广义的相等,本实施例I1和I2的误差控制在0~0.2A。上互联条3将相邻的第一电池1的负极与第二电池2的正极在电池一侧实现串联,下互联条4将第二电池2的负极与下一个相邻的第一电池1的正极在电池另一侧实现串联,其中,上互联条3采用截面为梯形形状的焊带,下互联条4采用常规扁平形状的焊带。
本实施例中,第一电池1所用的P型2/3片电池指的是成品2/3片电池,第二电池2所用的P型整片电池指的是成品整片电池。由于成品电池的边缘有钝化层保护,电池与电池边缘接触不会出现短路现象,因此本实施例中第一电池与第二电池之间的间距设置为零。
实施例5
如图8和图9,本实施例的太阳能光伏组件,包括6个呈矩阵排列的相互串联的电池串10,每个电池串10包括10个串联连接的电池,而且每个电池串10中的电池排列方式保持一致,相邻两个电池分别为第一电池1和第二电池2,第一电池1选用面积S1的N型半片电池,第二电池选用面积S2的N型2/3片电池,其中S1<S2且S1=3/4S2,第一电池1和第二电池2均为HJT双面电池。同一电池串中,第一电池1和第二电池2交替排布使得位于电池同侧的电极相反(N型双面电池的正面为正极,背面为负极),理论上要求第一电池1的电流I1等于第二电池2的电流I2,但是组件制作过程中I1和I2的实际值同理论值允许存在一定的误差,也就是I1=I2是广义的相等,本实施例I1和I2的误差控制在0~0.2A。上互联条3将相邻的第一电池1的正极与第二电池2的负极在电池一侧实现串联,下互联条4将第二电池2的正极与下一个相邻的第一电池1的负极在电池另一侧实现串联,其中,上互联条3采用截面为三角形状的焊带,下互联条4采用常规扁平形状的焊带。
本实施例中,第一电池1所用的N型半片电池指的是成品半片电池,第二电池2所用的N型2/3片电池指的是成品2/3片电池。由于成品电池的边缘有钝化层保护,电池与电池边缘接触不会出现短路现象,因此本实施例中第一电池与第二电池之间的间距设置为零。
本实施例作为本发明优选的技术方案,主要是基于HJT双面电池的双面率高达95%以上,因此HJT双面电池非常适用于本发明的太阳能光伏组件。在此基础上,利用半片电池和x/n(n≥3,n>x)片电池更有利于薄片化电池的应用,而且组件的正面输出功率和背面输出功率更趋于一致,应用场景更加广泛。
实施例6
同实施例5,不同的是本实施例的太阳能光伏组件还包括预设有上互联条的上胶膜和预设有下互联条的下胶膜。此处上互联条和下互联条均指的是焊带,将焊带内嵌在封装胶膜中,上胶膜中的焊带与第一电池上表面和第二电池上表面的主栅对应,下胶膜中的焊带与第一电池下表面和第二电池下表面的主栅对应,组件层压后实现将相邻的第一电池的正极与第二电池的负极在电池一侧实现串联,将第二电池的正极与下一个相邻的第一电池的负极在电池另一侧实现串联。组件从下到上依次为玻璃、下胶膜、电池串、上胶膜和玻璃。由于上互联条和下互联条在电池两侧独立连接,不需要从电池间隙穿绕,因此组件中所有上互联条或所有下互联条可以分别嵌附在同一张胶膜上,该组件结构更加简单,易于操作。
需要说明的是,一般情况下,本发明的组件输出功率及效率均指的是组件正面的输出功率及效率。
由于光伏组件中电路连接主要为串联,也可以搭配少量的并联,并联要求电池串之间的电压必须一致,因此作为本发明的太阳能光伏组件其他版型设计,第一电池可以统一选用同一效率档位的电池,第二电池可以统一选用同一效率档位的电池,满足I1=I2,I1和I2的误差控制在0~0.2A。此处同一效率档位指的是电池分选包装效率,电池的实际效率与分选包装效率具有一定的误差范围,优选为0.1%,比如电池的实际效率落在21.95%-22.05%范围内都认为是同一效率档位22%。选用同一效率档位可以满足相同电流的条件下由相同数量的第一电池1以及相同数量的第二电池2组成的电池串的电压基本一致,方便电池串之间根据组件需要进行并联,使得各组件输出功率集中。
综上所述,本发明所提供的的太阳能光伏组件,通过调整第一电池和第二电池的面积大小,其中S1≠S2,使得组件电池串的第一电池的电流I1和第二电池的电流I2匹配,理论上要求第一电池1的电流I1等于第二电池2的电流I2,但是组件制作过程中I1和I2的实际值同理论值允许存在一定的误差,也就是I1=I2是广义的相等。也就是说,本发明的太阳能光伏组件中相互连接的第一电池和第二电池的电流一致性好,降低了由于电流差异所产生的内部损耗,解决了由于硅片衬底以及电池制备工艺的差异所带来的组件内部损耗,进而降低了组件的封装损失,提高了组件的输出功率;同时本发明的太阳能光伏组件实现了上互联条和下互联条分别独立于电池两侧,互联条不需要弯折,避免了互联条对电池边缘的应力,提高了组件的可靠性,非常有利于薄片化电池在太阳能光伏组件中的应用;进一步地,本发明的太阳能光伏组件减少了第一电池与第二电池之间的间隙,减小了组件面积,提高了组件效率。

Claims (15)

  1. 一种太阳能光伏组件,其特征在于:包括若干呈矩阵排列的串/并联的电池串,所述电池串包括多个串联的电池,相邻两个电池分别为第一电池和第二电池,所述第一电池和所述第二电池的电极反向间隔排列,所述第一电池与所述第二电池在电池一侧串联,所述第二电池与下一个相邻的第一电池在电池另一侧串联;所述第一电池的面积为S1,所述第二电池的面积为S2,S1≠S2;所述第一电池的电流为I1,所述第二电池的电流为I2,I1=I2。
  2. 根据权利要求1所述的一种太阳能光伏组件,其特征在于:所述第一电池和所述第二电池为整片电池、半片电池或x/n片电池中的一种,其中n≥3,n>x。
  3. 根据权利要求2所述的一种太阳能光伏组件,其特征在于:所述x/n片电池为1/3片电池、2/3片电池、1/4片电池、3/4片电池、1/5片电池、2/5片电池、3/5片电池、4/5片电池、1/6片电池或5/6片电池。
  4. 根据权利要求2或3所述的一种太阳能光伏组件,其特征在于:所述第一电池和所述第二电池包括长边和短边,长边长度一致,短边长度不同。
  5. 根据权利要求4所述的一种太阳能光伏组件,其特征在于:所述电池串的宽度与所述第一电池和所述第二电池的长边长度保持一致。
  6. 根据权利要求1所述的一种太阳能光伏组件,其特征在于:所述第一电池和所述第二电池为P型电池和N型电池。
  7. 根据权利要求6所述的一种太阳能光伏组件,其特征在于:所述第一电池和所述第二电池为单面电池或双面电池。
  8. 根据权利要求1所述的一种太阳能光伏组件,其特征在于:所述第一电池和所述第二电池均为P型双面电池。
  9. 根据权利要求1所述的一种太阳能光伏组件,其特征在于:所述第一电池和所述第二电池均为N型双面电池。
  10. 根据权利要求6至9中任一项所述的一种太阳能光伏组件,其特征在于:所述第一电池的转换效率为同一效率档位,所述第二电池的转换效率为同一效率档位。
  11. 根据权利要求1所述的一种太阳能光伏组件,其特征在于:所述I1和所述I2的大小为1~20A。
  12. 根据权利要求1所述的一种太阳能光伏组件,其特征在于:所述第一电池和所述第二电池的类型可以为PERC电池、PERT电池、TOPCon电池或HJT电池中的一种。
  13. 根据权利要求1所述的一种太阳能光伏组件,其特征在于:还包括上互联条和下互联条,所述上互联条使第一电池和第二电池在电池一侧串联,所述下互联条使第二电池与下一个相邻的第一电池在电池另一侧串联。
  14. 根据权利要求13所述的一种太阳能光伏组件,其特征在于:所述上互联条的截面形状可以为圆形、三角形、梯形或锯齿形中的一种,所述下互联条的形状为扁平状。
  15. 根据权利要求1所述的一种太阳能光伏组件,其特征在于:还包括预设有上互联条的上胶膜和预设有下互联条的下胶膜。
PCT/CN2022/081377 2021-05-12 2022-03-17 一种太阳能光伏组件 WO2022237313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110516135.3 2021-05-12
CN202110516135.3A CN113257936A (zh) 2021-05-12 2021-05-12 一种太阳能光伏组件

Publications (1)

Publication Number Publication Date
WO2022237313A1 true WO2022237313A1 (zh) 2022-11-17

Family

ID=77222947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081377 WO2022237313A1 (zh) 2021-05-12 2022-03-17 一种太阳能光伏组件

Country Status (2)

Country Link
CN (1) CN113257936A (zh)
WO (1) WO2022237313A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257936A (zh) * 2021-05-12 2021-08-13 常州时创能源股份有限公司 一种太阳能光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465892A (zh) * 2014-12-31 2015-03-25 中国科学院上海微***与信息技术研究所 太阳电池串中相邻太阳电池的同侧互联的光伏组件制作方法
CN212342649U (zh) * 2020-07-21 2021-01-12 苏州阿特斯阳光电力科技有限公司 光伏组件
CN112768539A (zh) * 2021-01-06 2021-05-07 苏州爱康光电科技有限公司 一种光伏双面电池排版及其组装方法
CN113257936A (zh) * 2021-05-12 2021-08-13 常州时创能源股份有限公司 一种太阳能光伏组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4208419B2 (ja) * 2001-01-26 2009-01-14 三洋電機株式会社 太陽電池モジュール
CN101675531B (zh) * 2007-02-16 2013-03-06 纳克公司 太阳能电池结构、光生伏打模块及对应的工艺
CN206401330U (zh) * 2017-01-10 2017-08-11 新奥光伏能源有限公司 一种双面发电光伏组件及光伏发电***
CN212695158U (zh) * 2020-07-23 2021-03-12 泰州隆基乐叶光伏科技有限公司 一种光伏组件
CN112786727B (zh) * 2021-02-01 2022-11-22 无锡市联鹏新能源装备有限公司 无主栅异质结太阳能电池组件互联用复合膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465892A (zh) * 2014-12-31 2015-03-25 中国科学院上海微***与信息技术研究所 太阳电池串中相邻太阳电池的同侧互联的光伏组件制作方法
CN212342649U (zh) * 2020-07-21 2021-01-12 苏州阿特斯阳光电力科技有限公司 光伏组件
CN112768539A (zh) * 2021-01-06 2021-05-07 苏州爱康光电科技有限公司 一种光伏双面电池排版及其组装方法
CN113257936A (zh) * 2021-05-12 2021-08-13 常州时创能源股份有限公司 一种太阳能光伏组件

Also Published As

Publication number Publication date
CN113257936A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN212136454U (zh) 切片电池光伏组件
WO2018223868A1 (zh) 一种光伏太阳能电池片组件
WO2019214627A1 (zh) 太阳能电池串、串组、组件及其制备方法
CN110085703B (zh) 一种正六边形太阳能电池片的切片方法及拼接方法
CN104835874B (zh) 一种半电池片光伏组件的制造方法
CN108987516A (zh) 网格状双面直连太阳能电池组件及制备方法
CN108598199A (zh) 一种背接触式分片太阳电池组件及制备方法
WO2023050906A1 (zh) 内串联式电池片光伏组件和封装结构制作方法
CN110690308A (zh) 一种背接触异质结太阳能电池及其模组
WO2022237313A1 (zh) 一种太阳能光伏组件
CN215815903U (zh) 一种光伏组件
CN108922934B (zh) 双面直连太阳能电池组件及制备方法
CN108987510B (zh) 网格状单面直连太阳能电池组件及制备方法
KR20240001688A (ko) 태양광 모듈 구조
CN109037364B (zh) 分片贯孔双面直连太阳能电池组件及制备方法
CN110649119A (zh) 一种基于晶硅的太阳能发电组件及其制备方法
CN113257934A (zh) 一种太阳能光伏组件的制备方法
CN109841699A (zh) 背接触太阳能电池组串及其制备方法、组件
CN113594288B (zh) 内串联式异质结电池及其制作方法
CN212085022U (zh) 异质结电池及异质结电池组件
US20210408312A1 (en) Photovoltaic module, solar cell and method for manufacturing thereof
CN214068739U (zh) 一种电池串直接并联的叠瓦光伏组件
CN210897317U (zh) 条形电池模块、太阳能电池片及光伏组件
CN209785947U (zh) Mwt太阳能电池片、电池串及电池组件
CN213026153U (zh) 一种栅线互连光伏组件结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806287

Country of ref document: EP

Kind code of ref document: A1