WO2022237263A1 - 一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板 - Google Patents

一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板 Download PDF

Info

Publication number
WO2022237263A1
WO2022237263A1 PCT/CN2022/076813 CN2022076813W WO2022237263A1 WO 2022237263 A1 WO2022237263 A1 WO 2022237263A1 CN 2022076813 W CN2022076813 W CN 2022076813W WO 2022237263 A1 WO2022237263 A1 WO 2022237263A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
semi
cast
bainite
temperature
Prior art date
Application number
PCT/CN2022/076813
Other languages
English (en)
French (fr)
Inventor
边泊乾
潘庆
郑昊
卢现稳
刘志杰
Original Assignee
江西耐普矿机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西耐普矿机股份有限公司 filed Critical 江西耐普矿机股份有限公司
Publication of WO2022237263A1 publication Critical patent/WO2022237263A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/22Lining for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the invention relates to the technical field of wear-resistant steel, in particular to cast bainite steel for semi-autogenous mills, a preparation method thereof and cast bainite steel liners for semi-autogenous mills.
  • cast bainitic steel liner of semi-autogenous mill The working condition of cast bainitic steel liner of semi-autogenous mill is very poor. It not only protects the cylinder of semi-autogenous mill, but also bears the repeated impact of grinding balls and ores, so it is easy to cause cast bainitic steel liner of semi-autogenous mill Tensitic steel liner fails. There are three types of failure in practical applications: fracture, wear and deformation, among which liner fracture is the main failure mode.
  • External factors include low toughness and strength of the liner itself, harsh environment, etc.; internal factors include defects caused by the liner during smelting, shrinkage cavities or shrinkage porosity, inclusions or unreasonable heat treatment processes and other factors will affect the liner. use.
  • the commonly used semi-autogenous mill casting bainitic steel lining materials such as 60CrMo, 70CrMo, 85CrMo and hard plate rubber compound, etc., have short life, fracture and asynchronous with end lining plate and grid plate in the application process.
  • insufficient wear resistance and short life of materials are the main reasons that restrict mine customers from improving mineral processing efficiency.
  • the object of the present invention is to provide a cast bainite steel for semi-autogenous mill, its preparation method and cast bainite steel liner for semi-autogenous mill.
  • the cast bainite steel has good strength, toughness and good corrosion and wear resistance. It is an ideal liner material due to its excellent properties such as high cost performance and high cost performance. Its application in semi-autogenous mill cast bainite steel liners has important practical significance for improving the service life of liners and ensuring no breakage.
  • a cast bainite steel for semi-autogenous mill its composition includes the following chemical components in mass percentage: C 0.4 ⁇ 1.0wt%, Si 1.0 ⁇ 2.0wt%, Mn 0.5 ⁇ 1.5wt%, Cr 1.0 ⁇ 2.0wt%, Mo 0.2 ⁇ 0.8wt%, Cu 0.3 ⁇ 0.8wt%, Ni 0.3 ⁇ 1.5wt%, Al 0 ⁇ 0.08wt%, P ⁇ 0.03%, S ⁇ 0.025% , and the rest are Fe and unavoidable impurities.
  • the matrix structure of the cast bainite steel is bainite-interphase austenite, the content of the bainite is greater than the content of austenite, and the bainite is carbide-free bainite, austenite
  • the body is thin film austenite and massive austenite.
  • composition of the cast bainitic steel includes the following chemical components in mass percentage: C 0.5-0.7wt%, Si 1.5-1.8wt%, Mn 0.6-0.9wt%, Cr 1.4-1.8wt%, Mo 0.2 ⁇ 0.4wt%, Cu 0.4 ⁇ 0.6wt%, Ni: 0.3 ⁇ 0.4wt%, Al 0.03 ⁇ 0.06wt%, P ⁇ 0.03%, S ⁇ 0.025%, the rest is Fe and unavoidable impurities.
  • composition of the cast bainitic steel includes the following chemical components in mass percentage: C 0.6wt%, Si 1.6wt%, Mn 0.8wt%, C 1.6wt%, Mo 0.3wt%, Cu 0.5wt%, Ni 0.3wt%, Al 0.04wt%, P ⁇ 0.025%, S ⁇ 0.02%, the rest is Fe and unavoidable impurities.
  • the cast bainitic steel has a hardness of 45-48HRC, and an unnotched impact toughness of not less than 150J/cm 2 .
  • the present invention further discloses a method for preparing the above-mentioned cast bainite steel for semi-autogenous mills, the method comprising the following steps:
  • Resin sand molding process is adopted, the sand used for molding is scrub sand, and resin and curing agent are added; among them, the mass ratio of scrub sand to casting sand and iron is 3 to 5:1, and furan resin is used as resin, and the amount of resin added is the mass of scrub sand 1.1-1.2% of the resin, the curing agent uses benzenesulfonic acid, and the amount added is 30-50% of the resin mass;
  • Castings are obtained by pouring molten steel, and the pouring temperature is controlled at 1480°C to 1560°C;
  • Castings are pretreated in a heat treatment furnace.
  • the pretreatment includes two processes of normalizing and high temperature tempering; the normalizing process is 950-1000 ° C for 4-8 hours, air-cooled to 400 ° C, and then air-cooled to room temperature;
  • the high-temperature tempering process is to keep warm at 600-800°C for 4-8 hours, cool to 500°C with the furnace, and then air-cool to room temperature;
  • the pretreated castings are subjected to two-step isothermal quenching treatment on the isothermal quenching production line;
  • the two-step isothermal quenching treatment process is that the castings are first heated to 900-950°C in the heat treatment furnace and kept for 4-8 hours; then the castings are transferred to salt
  • the tank is subjected to isothermal quenching, the quenching temperature is 280-340°C, and the holding time is 2-5h; then the casting is transferred to the air furnace to continue the isothermal quenching process, the quenching temperature is 220-270°C, and the holding time is 10-20h;
  • the tempering treatment process is 250-300 ° C holding time for 4-8 hours.
  • the casting is cooled to less than 400°C and then unpacked; in the step (6), the casting is pretreated in the heat treatment furnace and in the step (7), the casting is austempered in the heat treatment furnace.
  • the heating rate is every 100-150°C/h; when the temperature in the heat treatment furnace exceeds 650°C, the heating rate is every 150-200°C/h.
  • the invention also discloses the application of the cast bainite steel for the semi-autogenous mill on the liner of the cast bainite steel for the semi-autogenous mill.
  • the present invention provides a cast bainitic steel liner for a semi-autogenous mill, and the cast bainitic steel liner for a semi-autogenous mill is made of the above-mentioned cast bainitic steel for a semi-autogenous mill.
  • the preparation method of cast bainite steel for semi-autogenous mills disclosed by the present invention uses a two-step austempering process to transform the matrix structure into bainite structure and a certain amount of retained austenite, and obtains a chemical composition comprising the following mass percentages Bainite steel: C 0.4 ⁇ 1.0wt%, Si 1.0 ⁇ 2.0wt%, Mn 0.5 ⁇ 1.5wt%, Cr 1.0 ⁇ 2.0wt%, Mo 0.2 ⁇ 0.8wt%, Cu 0.3 ⁇ 0.8wt%, Ni 0.3 ⁇ 1.5wt%, Al 0 ⁇ 0.08wt%, P ⁇ 0.03%, S ⁇ 0.025%, the rest is Fe and unavoidable impurities; this preparation method makes the prepared bainitic steel satisfy high wear resistance , to improve the toughness of the material itself.
  • the semi-autogenous mill casting bainitic steel lining plate made of the bainitic steel has high wear resistance, high yield and stable production process, and the service life of the lining plate is significantly improved.
  • the cast bainite steel prepared by the present invention can effectively improve the wear resistance of the material, and Mo, Ni, Cu
  • the addition of Cr element improves the hardenability of the material, and the austempering process strengthens the matrix structure of the bainitic steel, while ensuring the mechanical properties of the material.
  • Fig. 1 is the metallographic (200X) microstructure diagram of wear-resistant steel after final heat treatment in embodiment 1;
  • FIG. 2 is a metallographic (500X) microstructure diagram of the wear-resistant steel after the final heat treatment in Example 1.
  • the semi-autogenous mill cast bainitic steel liner made of 60CrMo, 70CrMo, 85CrMo and hard plate rubber composite materials has wear resistance due to low toughness and strength of the material in the re-application process.
  • the present invention aims to propose a cast bainite steel for semi-autogenous mills, its preparation method and cast bainite steel liners for semi-autogenous mills, which are obtained by two-step austempering process
  • the bainitic matrix structure with excellent comprehensive properties, the cast bainitic steel produced not only meets high wear resistance, but also further improves the toughness of the material itself, and the produced semi-autogenous mill cast bainitic steel liner is resistant High abrasiveness, high yield, stable production process.
  • the cast bainite steel for semi-autogenous mills disclosed by the present invention comprises the following chemical components in mass percentage: C 0.4-1.0wt%, Si 1.0-2.0wt%, Mn 0.5-1.5wt%, Cr 1.0-2.0 wt%, Mo 0.2 ⁇ 0.8wt%, Cu 0.3 ⁇ 0.8wt%, Ni 0.3 ⁇ 1.5wt%, Al 0 ⁇ 0.08wt%, P ⁇ 0.03%, S ⁇ 0.025%, the rest is Fe and unavoidable impurities.
  • the preparation method of the cast bainite steel for the above-mentioned semi-autogenous mill disclosed by the present invention comprises the following steps:
  • Resin sand molding process is adopted, the sand used for molding is scrub sand, and resin and curing agent are added; among them, the mass ratio of scrub sand to casting sand and iron is 3 to 5:1, and furan resin is used as resin, and the amount of resin added is the mass of scrub sand 1.1-1.2% of the resin, the curing agent uses benzenesulfonic acid, and the amount added is 30-50% of the resin mass;
  • Castings are obtained by pouring molten steel, and the pouring temperature is controlled at 1480°C to 1560°C;
  • Castings are pretreated in a heat treatment furnace.
  • the pretreatment includes two processes of normalizing and high temperature tempering; the normalizing process is 950-1000 ° C for 4-8 hours, air-cooled to 400 ° C, and then air-cooled to room temperature;
  • the high-temperature tempering process is to keep warm at 600-800°C for 4-8 hours, cool to 500°C with the furnace, and then air-cool to room temperature;
  • the pretreated castings are subjected to two-step isothermal quenching treatment on the isothermal quenching production line;
  • the two-step isothermal quenching treatment process is that the castings are first heated to 900-950°C in the heat treatment furnace and kept for 4-8 hours; then the castings are transferred to salt
  • the tank is subjected to isothermal quenching, the quenching temperature is 280-340°C, and the holding time is 2-5h; then the casting is transferred to the air furnace to continue the isothermal quenching process, the quenching temperature is 220-270°C, and the holding time is 10-20h;
  • the tempering treatment process is 250-300 ° C holding time for 4-8 hours.
  • the temperature rise process of the casting in the heat treatment furnace in step (6) and step (7) is: when the temperature in the heat treatment furnace is less than 650°C, the heating rate is 100-150°C/h; when the temperature in the heat treatment furnace exceeds 650°C, the temperature rise rate is The speed is every 150-200°C/h.
  • composition of the cast bainite steel prepared by the present invention can also be the following chemical composition in mass percentage: C 0.5-0.7wt%, Si 1.5-1.8wt%, Mn 0.6-0.9wt%, Cr 1.4-1.8wt% %, Mo 0.2 ⁇ 0.4wt%, Cu 0.4 ⁇ 0.6wt%, Ni: 0.3 ⁇ 0.4wt%, Al 0.03 ⁇ 0.06wt%, P ⁇ 0.03%, S ⁇ 0.025%, the rest is Fe and unavoidable impurities;
  • the mass percentage of each chemical composition is preferably: C 0.6wt%, Si 1.6wt%, Mn 0.8wt%, C 1.6wt%, Mo 0.3wt%, Cu 0.5wt%, Ni 0.3wt%, Al 0.04wt%, P ⁇ 0.025%, S ⁇ 0.02%, the rest is Fe and unavoidable impurities.
  • the temperature at which each component is added into the electric furnace needs to be determined according to its alloy melting point and burning loss rate, and is added at different smelting stages; It is added in the middle stage of smelting, and copper plate, ferromanganese and ferrosilicon are added in the stage of scrap steel melting. According to the different components of the selected alloys, the addition ratio is different, as long as the composition of the molten steel is satisfied with the above-mentioned composition of the cast bainitic steel.
  • the cast bainite steel for semi-autogenous mills disclosed by the present invention its preparation method and cast bainite steel liners for semi-autogenous mills are further specifically introduced.
  • the charging ratio of materials in each embodiment is Steel scrap 92.7%, ferrosilicon 1.9%, ferrochromium 2.8%, ferromolybdenum 0.6%, nickel plate 0.3%, copper plate 0.5%, ferromanganese 0.75%, and the balance is carburizer.
  • the castings obtained in Examples 1-3 are unpacked when they are cooled to below 400°C in the sand box, usually 40 hours after pouring; after continuing to cool to normal temperature, remove the riser, flash and drape, and then perform grinding treatment .
  • the castings are pretreated in a heat treatment furnace, including two processes of normalizing and high-temperature tempering; the normalizing process is 950 ° C for 4 hours, air-cooled to 400 ° C after the furnace is released, and then air-cooled to room temperature; high-temperature tempering process Hold at 650°C for 4 hours, cool to 500°C with the furnace, and then air cool to room temperature.
  • air cooling to 400°C and furnace cooling to 500°C are ideal cooling temperatures. In practice, they are generally not accurate to 400°C and 500°C, and the cooling temperature meets the cooling requirements within the allowable error range.
  • the pretreated castings are subjected to two-step isothermal quenching. Specifically, the temperature is first raised to 910°C in the heat treatment furnace, and then transferred to the salt tank for isothermal quenching after 4 hours of heat preservation.
  • the isothermal quenching temperature is 300°C
  • the isothermal time is 2 hours.
  • the isothermal temperature is 260°C
  • the isothermal time is 15h
  • the tempering temperature is 300°C
  • the holding time is 6h.
  • Table 1 shows the results of the chemical composition and hardness of the semi-autogenous mill cast bainitic steel liners prepared in the above examples 1-3.
  • Table 1 The chemical composition and hardness value of the semi-autogenous mill casting bainitic steel liner made by each embodiment
  • the metallographic structure of the semi-autogenous mill cast bainite steel liner made in Example 1 is as shown in Figure 1 and Figure 2;
  • the matrix structure of the cast bainite steel is bainite interphase austenite, bainite
  • the content of the structure is greater than that of austenite, and the bainite is carbide-free bainite, and the austenite is thin film austenite and massive austenite, both thin film austenite and massive austenite Retained austenite for transformation of bainite;
  • the microstructure enables cast bainite steel to further improve the toughness of the material itself while meeting the high wear resistance required by the product; specifically, the cast bainite
  • the content of austenite in the steel matrix is 15-25%, its hardness reaches 45-48HRC, and the unnotched impact toughness is not less than 150J/cm 2 .
  • the semi-autogenous mill casting bainitic steel liner plates obtained in Example 1 are installed and applied respectively, that is, they are applied on a semi-autogenous mill in a certain mine, and the specification of the semi-autogenous mill is selected as ⁇ 7.0*3.5 meters; the original manufacturer uses rubber
  • the wear rate of the composite Hardite plate is 16mm/month, and the wear rate of the cast bainitic steel liner plate in Example 1 is 12mm/month, and the wear resistance is increased by 33%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板,涉及耐磨钢技术领域;其中铸造贝氏体钢包括以下质量百分比的化学成份:C 0.4~1.0wt%,Si 1.0~2.0wt%,Mn 0.5~1.5wt%,Cr 1.0~2.0wt%,Mo 0.2~0.8wt%,Cu 0.3~0.8wt%,Ni 0.3~1.5wt%,Al 0~0.08wt%,P≤0.03%,S≤0.025%,其余为Fe及不可避免的杂质;该制备方法利用两步等温淬火工艺使得基体组织转变为贝氏体相间奥氏体,使得制得的贝氏体钢相较于常用材质铬钼钢、高锰钢、悍达板,具有高强度、高韧性及高耐磨的性能;同时,制得的铸造贝氏体钢应用于半自磨机铸造贝氏体钢衬板中时,能显著提升衬板的使用寿命。

Description

一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板
相关申请的交叉引用
本申请要求2021年05月12日提交的中国专利申请202110515402.5的权益,该申请的内容通过引用被合并于本申请。
技术领域
本发明涉及耐磨钢技术领域,具体涉及一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板。
背景技术
随着我国工业技术的快速发展,半自磨技术广泛应用于矿山行业、机械、化学、和电力等工业部门。由于我国对矿石的需求量很大,自磨机技术是矿石之间的研磨,对于直径很大的矿石,很难碾碎,因此使用半自磨机进行磨矿作业。随着半自磨技术工艺愈加的成熟,其设备的直径变得越来越大,工作环境愈加恶劣。因此对材料的消耗也很巨大。
半自磨机铸造贝氏体钢衬板的工作状况非常差,它不仅保护了半自磨机的筒体,而且还要承受磨球和矿石的反复冲击,因此容易造成半自磨机铸造贝氏体钢衬板失效。在实际的应用中失效的形式有三种:断裂,磨损,变形,其中衬板断裂是主要的失效形式。
衬板断裂失效的原因有许多种而且研究起来比较复杂。包括外在因素和内部因素。外在因素有衬板本身的韧性和强度低,环境恶劣等方面;内在因素包括衬板在熔炼时造成的缺陷,缩孔或者缩松,夹杂物或者热处理工艺不合理等因素都会影响衬板的使用。
目前,常用的半自磨机铸造贝氏体钢衬板材料、如60CrMo、70CrMo、85CrMo及悍达板橡胶复合等,在应用过程中存在寿命短、断裂及与端衬板、格子板不同步等问题;其中,材料耐磨性不足和寿命短是制约矿山客户提高选矿效率的主要原因。
发明内容
本发明目的在于提供一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板,该铸造贝氏体钢具有强韧性好、腐蚀耐磨性良好、性比价高等优良性能, 是理想衬板材料;对于其在半自磨机铸造贝氏体钢衬板上的应用,对于提高衬板使用寿命、保证不断裂具有重要的现实意义。
为达成上述目的,本发明提出如下技术方案:一种半自磨机用铸造贝氏体钢,其组成包括以下质量百分比的化学成分:C 0.4~1.0wt%,Si 1.0~2.0wt%,Mn 0.5~1.5wt%,Cr 1.0~2.0wt%,Mo 0.2~0.8wt%,Cu 0.3~0.8wt%,Ni 0.3~1.5wt%,Al 0~0.08wt%,P≤0.03%,S≤0.025%,其余为Fe及不可避免的杂质。
进一步的,所述铸造贝氏体钢的基体组织为贝氏体相间奥氏体,所述贝氏体的含量大于奥氏体的含量,并且贝氏体为无碳化物贝氏体、奥氏体为薄膜状奥氏体和块状奥氏体。
进一步的,所述铸造贝氏体钢的组成包括以下质量百分比的化学成分:C 0.5~0.7wt%,Si 1.5~1.8wt%,Mn 0.6~0.9wt%,Cr 1.4~1.8wt%,Mo 0.2~0.4wt%,Cu 0.4~0.6wt%,Ni:0.3~0.4wt%,Al 0.03~0.06wt%,P≤0.03%,S≤0.025%,其余为Fe及不可避免的杂质。
进一步的,所述铸造贝氏体钢的组成包括以下质量百分比的化学成分:C 0.6wt%,Si 1.6wt%,Mn 0.8wt%,C 1.6wt%,Mo 0.3wt%,Cu 0.5wt%,Ni 0.3wt%,Al 0.04wt%,P≤0.025%,S≤0.02%,其余为Fe及不可避免的杂质。
进一步的,所述铸造贝氏体钢的硬度为45~48HRC,无缺口冲击韧性不低于150J/cm 2
本发明还进一步公开上述的半自磨机用铸造贝氏体钢的制备方法,该方法包括以下步骤:
⑴按废钢、增碳剂、铬铁、钼铁、镍板、铜板、锰铁、硅铁的加料顺序依次加入电炉内,加热熔化,获得铸造贝氏体钢化学组成的钢水;
⑵熔炼温度升至1580℃~1650℃,出炉浇注;
⑶采用树脂砂造型工艺,造型用砂子采用擦洗砂,加入树脂和固化剂;其中,擦洗砂与铸件的砂铁质量比为3~5:1,树脂使用呋喃树脂,树脂加入量为擦洗砂质量的1.1~1.2%,固化剂使用苯磺酸,加入量为树脂质量的30~50%;
⑷钢水浇注获得铸件,浇注温度控制为1480℃~1560℃;
⑸铸件开箱并冷却至室温后进行开箱清理,包括清除冒口、飞边和披缝;
⑹铸件在热处理炉中进行预处理,预处理包括正火和高温回火两道工序;所述正火工艺为950~1000℃保温4~8h,出炉风冷至400℃,然后空冷至室温;所述高温回火 工艺为600~800℃保温4~8h,随炉冷却至500℃出炉,然后空冷至室温;
⑺预处理后的铸件在等温淬火生产线上进行两步等温淬火处理;所述两步等温淬火处理工艺为铸件首先在热处理炉内升温到900~950℃,保温4~8h;然后铸件转入盐槽进行等温淬火,淬火温度为280~340℃,保温时间为2~5h;随后铸件转移至空气炉进行继续等温淬火过程,淬火温度为220~270℃,保温时间为10~20h;
⑻等温结束后,进行两次回火处理,回火处理工艺为250~300℃保温时间4~8h。
进一步的,所述步骤⑸中铸件冷却至低于400℃后开箱;所述步骤⑹中铸件在热处理炉内预处理和所述步骤⑺中铸件在热处理炉内进行等温淬火的升温过程均为:当热处理炉内温度小于650℃时,升温速度为每100~150℃/h;当热处理炉内温度超过650℃时,升温速度为每150~200℃/h。
本发明还公开了上述半自磨机用铸造贝氏体钢在半自磨机铸造贝氏体钢衬板上的应用。
进一步的,本发明提供一种半自磨机铸造贝氏体钢衬板,该半自磨机铸造贝氏体钢衬板采用上述的半自磨机用铸造贝氏体钢制造。
由以上技术方案可知,本发明的技术方案获得了如下有益效果:
本发明公开的半自磨机用铸造贝氏体钢的制备方法利用两步等温淬火工艺使得基体组织转变为贝氏体组织和一定数量的残余奥氏体,制得包括以下质量百分比的化学成份的贝氏体钢:C 0.4~1.0wt%,Si 1.0~2.0wt%,Mn 0.5~1.5wt%,Cr 1.0~2.0wt%,Mo 0.2~0.8wt%,Cu 0.3~0.8wt%,Ni 0.3~1.5wt%,Al 0~0.08wt%,P≤0.03%,S≤0.025%,其余为Fe及不可避免的杂质;该制备方法使得制得的贝氏体钢在满足高耐磨性的同时,提高材料本身的韧性。同时,采用该贝氏体钢制成的半自磨机铸造贝氏体钢衬板耐磨性高、成品率高及生产过程稳定,衬板的使用寿命显著提高。
本发明制得的铸造贝氏体钢相对于60CrMo、70CrMo、85CrMo及悍达板橡胶复合材料,本发明化学成分组织的贝氏体钢能够有效地提高材料的耐磨性,Mo、Ni、Cu、Cr元素的加入提高了材料的淬透性,等温淬火工艺强化了贝氏体钢基体组织,同时保证了材料的力学性能。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面 的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1为实施例1中最终热处理后耐磨钢的金相(200X)组织图;
图2为实施例1中最终热处理后耐磨钢的金相(500X)组织图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
本发明专利申请说明书以及权利要求书中使用的“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的特征、整体、步骤、操作、元素和/或组件,并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
基于现有技术中以60CrMo、70CrMo、85CrMo及悍达板橡胶复合材料等制成的半自磨机铸造贝氏体钢衬板再应用过程中都存在基于材料韧性和强度低导致的耐磨性不足和使用寿命短的技术问题;本发明旨在提出一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板,利用两步等温淬火工艺获得综合性能优异的贝氏体基体组织,制得的铸造贝氏体钢在满足高耐磨性的同时,还进一步提高材料本身的韧性,所制作的半自磨机铸造贝氏体钢衬板耐磨性高、成品率高,生产过程稳定。
本发明公开的半自磨机用铸造贝氏体钢,其组成包括以下质量百分比的化学成分:C 0.4~1.0wt%,Si 1.0~2.0wt%,Mn 0.5~1.5wt%,Cr 1.0~2.0wt%,Mo 0.2~0.8wt%,Cu 0.3~0.8wt%,Ni 0.3~1.5wt%,Al 0~0.08wt%,P≤0.03%,S≤0.025%,其余为Fe及不可避免的杂质。
本发明公开的上述半自磨机用铸造贝氏体钢的制备方法,包括如下步骤:
⑴按废钢、增碳剂、铬铁、钼铁、镍板、铜板、锰铁、硅铁的加料顺序依次加入电炉内,加热熔化,获得铸造贝氏体钢化学组成的钢水;
⑵熔炼温度升至1580℃~1650℃,出炉浇注;
⑶采用树脂砂造型工艺,造型用砂子采用擦洗砂,加入树脂和固化剂;其中,擦洗砂与铸件的砂铁质量比为3~5:1,树脂使用呋喃树脂,树脂加入量为擦洗砂质量的1.1~1.2%,固化剂使用苯磺酸,加入量为树脂质量的30~50%;
⑷钢水浇注获得铸件,浇注温度控制为1480℃~1560℃;
⑸铸件冷却至低于400℃后开箱,冷却至室温后进行开箱清理,包括清除冒口、飞边和披缝;
⑹铸件在热处理炉中进行预处理,预处理包括正火和高温回火两道工序;所述正火工艺为950~1000℃保温4~8h,出炉风冷至400℃,然后空冷至室温;所述高温回火工艺为600~800℃保温4~8h,随炉冷却至500℃出炉,然后空冷至室温;
⑺预处理后的铸件在等温淬火生产线上进行两步等温淬火处理;所述两步等温淬火处理工艺为铸件首先在热处理炉内升温到900~950℃,保温4~8h;然后铸件转入盐槽进行等温淬火,淬火温度为280~340℃,保温时间为2~5h;随后铸件转移至空气炉进行继续等温淬火过程,淬火温度为220~270℃,保温时间为10~20h;
⑻等温结束后,进行两次回火处理,回火处理工艺为250~300℃保温时间4~8h。
其中,步骤⑹和步骤⑺铸件在热处理炉内的升温过程均为:当热处理炉内温度小于650℃时,升温速度为每100~150℃/h;当热处理炉内温度超过650℃时,升温速度为每150~200℃/h。
另外,本发明制得的铸造贝氏体钢的组成还可以为以下质量百分比的化学成分:C 0.5~0.7wt%,Si 1.5~1.8wt%,Mn 0.6~0.9wt%,Cr 1.4~1.8wt%,Mo 0.2~0.4wt%,Cu 0.4~0.6wt%,Ni:0.3~0.4wt%,Al 0.03~0.06wt%,P≤0.03%,S≤0.025%,其余为Fe及不可避免的杂质;各化学成分质量百分比优选为:C 0.6wt%,Si 1.6wt%,Mn 0.8wt%,C 1.6wt%,Mo 0.3wt%,Cu 0.5wt%,Ni 0.3wt%,Al 0.04wt%,P≤0.025%,S≤0.02%,其余为Fe及不可避免的杂质。
各成分加入电炉内的温度需要根据其合金熔点和烧损率确定,在不同的熔炼阶段加入;例如本发明中,增碳剂、铬铁和钼铁是在废钢初始熔炼阶段加入,镍板在熔炼中期阶段加入,铜板、锰铁和硅铁在废钢熔清阶段加入。根据选择的各合金的成分不同, 加入的比例不同,只要满足钢水的组成成分为上述铸造贝氏体钢的成分即可。下面结合具体实施例,对本发明公开的半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板作进一步具体介绍,各实施例中物料的加料比例为废钢92.7%、硅铁1.9%、铬铁2.8%、钼铁0.6%、镍板0.3%、铜板0.5%、锰铁0.75%,余量为增碳剂。
实施例1
将优质废钢1135公斤、普通废钢790kg、增碳剂3.5公斤、铬铁27公斤、钼铁6.5公斤、镍板6.5公斤,铜板10公斤、硅铁22公斤,依次加入到2吨中频炉中加热熔化,熔清待钢水达到1600℃时取样分析,并根据检测结果调整成份;成份合格后,升温并脱氧,1640℃出炉。当包内测温到1550℃时,去浇注铸件。
实施例2
将优质废钢1000公斤、普通废钢920kg、增碳剂3.5公斤、铬铁31公斤、钼铁7公斤、镍板6.5公斤,铜板10公斤、锰铁2公斤、硅铁25公斤,依次加入到2吨中频炉中加热熔化,熔清待钢水达到1580℃时取样分析,并根据检测结果调整成份。成份合格后,升温并脱氧,1630℃出炉。当包内测温到1530℃时,去浇注铸件。
实施例3
将优质废钢1100公斤、普通废钢820kg、增碳剂3.5公斤、铬铁28公斤、钼铁6.5公斤、镍板6.5公斤,铜板10公斤、硅铁23公斤,依次加入到2吨中频炉中加热熔化,熔清待钢水达到1610℃时取样分析,并根据检测结果调整成份;成份合格后,升温并脱氧,1620℃出炉。当包内测温到1550℃时,去浇注铸件。上述实施例1-3采用升温的方式达到脱氧的效果,具体实施例还可以微量铝线进行脱氧。
实施例1-3获得的铸件在砂箱内冷却至400℃以下时开箱,一般是浇注后40小时开箱;继续冷却到常温后,清除冒口、飞边和披缝,再进行打磨处理。打磨后铸件在热处理炉中进行预处理,包括正火和高温回火两道工序;正火工艺为950℃保温4h,出炉后风冷至400℃停风,再空冷至室温;高温回火工艺为650℃保温4h,随炉冷却至500℃,再出炉空冷至室温。其中,风冷至400℃和随炉冷却至500℃均为理想冷却温度,具体实施时,一般不精准至400℃和500℃,冷却温度在允许误差范围内都满足冷却要求。
预处理后的铸件经过两步等温淬火,具体为先在热处理炉内升温到910℃,保温4h后转入盐槽进行等温淬火,等温淬火温度为300℃,等温时间为2h后转移至台车炉进行继续等温处理,等温温度为260℃,等温时间为15h;等温结束后,进行两次回火处理,回火温度300℃,保温时间6h。通过上述方式,能稳定的将制得的贝氏体钢应用 于半自磨机铸造贝氏体钢衬板上,并开始稳定生产半自磨机铸造贝氏体钢衬板。
上述实例1-3制得的半自磨机铸造贝氏体钢衬板,化学成分和硬度值结果如表1所示。
表1各实施例制得的半自磨机铸造贝氏体钢衬板化学成分和硬度值
Figure PCTCN2022076813-appb-000001
实施例1制得的半自磨机铸造贝氏体钢衬板其金相组织如附图1和图2所示;铸造贝氏体钢基体组织为贝氏体相间奥氏体,贝氏体组织的含量大于奥氏体的含量,并且贝氏体为无碳化物贝氏体、奥氏体为薄膜状奥氏体和块状奥氏体,薄膜状奥氏体和块状奥氏体均为转变贝氏体的残余奥氏体;该微观基体组织使得铸造贝氏体钢在满足产品所需的高耐磨性的同时,还进一步提高材料本身的韧性;具体的,该铸造贝氏体钢基体组织中奥氏体的含量为15~25%,其硬度达到45~48HRC,无缺口冲击韧性不低于150J/cm 2
对实施例1-3制得三种半自磨机铸造贝氏体钢衬板分别与悍达500在磨损试验机上做磨料冲蚀磨损实验,选择40~70目的石英砂作为磨损介质,调整转速为200r/min,材料状态选择热处理态,性能比较结果如表2所示。
表2磨损性能对比
悍达500 1
实例1 1.31
实例2 1.40
实例3 1.35
对实施例1制得的半自磨机铸造贝氏体钢衬板分别进行装机应用,即在某矿山半自磨机上应用,半自磨机规格选择φ7.0*3.5米;原厂家采用橡胶复合悍达板,磨损速率为16mm/月,采用实施例1铸造贝氏体钢衬板的磨损速率为12mm/月,耐磨性提高33%。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (10)

  1. 一种半自磨机用铸造贝氏体钢,其特征在于,所述铸造贝氏体钢的组成包括以下质量百分比的化学成分:C 0.4~1.0wt%,Si 1.0~2.0wt%,Mn 0.5~1.5wt%,Cr 1.0~2.0wt%,Mo 0.2~0.8wt%,Cu 0.3~0.8wt%,Ni 0.3~1.5wt%,Al 0~0.08wt%,P≤0.03%,S≤0.025%,其余为Fe及不可避免的杂质。
  2. 根据权利要求1所述的半自磨机用铸造贝氏体钢,其特征在于,所述铸造贝氏体钢的基体组织为贝氏体相间奥氏体,所述贝氏体的含量大于奥氏体的含量,并且贝氏体为无碳化物贝氏体、奥氏体为薄膜状奥氏体和块状奥氏体。
  3. 根据权利要求1所述的半自磨机用铸造贝氏体钢,其特征在于,所述铸造贝氏体钢的组成包括以下质量百分比的化学成分:C 0.5~0.7wt%,Si 1.5~1.8wt%,Mn 0.6~0.9wt%,Cr 1.4~1.8wt%,Mo 0.2~0.4wt%,Cu 0.4~0.6wt%,Ni:0.3~0.4wt%,Al 0.03~0.06wt%,P≤0.03%,S≤0.025%,其余为Fe及不可避免的杂质。
  4. 根据权利要求1所述的半自磨机用铸造贝氏体钢,其特征在于,所述铸造贝氏体钢的组成包括以下质量百分比的化学成分:C 0.6wt%,Si 1.6wt%,Mn 0.8wt%,C 1.6wt%,Mo 0.3wt%,Cu 0.5wt%,Ni 0.3wt%,Al 0.04wt%,P≤0.025%,S≤0.02%,其余为Fe及不可避免的杂质。
  5. 根据权利要求1所述的半自磨机用铸造贝氏体钢,其特征在于,所述铸造贝氏体钢的硬度为45~48HRC,无缺口冲击韧性不低于150J/cm 2
  6. 一种权利要求1~5任一项所述的半自磨机用铸造贝氏体钢的制备方法,其特征在于,包括以下步骤:
    (1)按废钢、增碳剂、铬铁、钼铁、镍板、铜板、锰铁、硅铁的加料顺序依次加入电炉内,加热熔化,获得铸造贝氏体钢化学组成的钢水;
    (2)熔炼温度升至1580℃~1650℃,出炉浇注;
    (3)采用树脂砂造型工艺,造型用砂子采用擦洗砂,加入树脂和固化剂;其中,擦洗砂与铸件的砂铁质量比为3~5∶1,树脂使用呋喃树脂,树脂加入量为擦洗砂质量的1.1~1.2%,固化剂使用苯磺酸,加入量为树脂质量的30~50%;
    (4)钢水浇注获得铸件,浇注温度控制为1480℃~1560℃;
    (5)铸件开箱并冷却至室温后进行开箱清理,包括清除冒口、飞边和披缝;
    (6)铸件在热处理炉中进行预处理,预处理包括正火和高温回火两道工序;所述正 火工艺为950~1000℃保温4~8h,出炉风冷至400℃,然后空冷至室温;所述高温回火工艺为600~800℃保温4~8h,随炉冷却至500℃出炉,然后空冷至室温;
    (7)预处理后的铸件在等温淬火生产线上进行两步等温淬火处理;所述两步等温淬火处理工艺为铸件首先在热处理炉内升温到900~950℃,保温4~8h;然后铸件转入盐槽进行等温淬火,淬火温度为280~340℃,保温时间为2~5h;随后铸件转移至空气炉进行继续等温淬火过程,淬火温度为220~270℃,保温时间为10~20h;
    (8)等温结束后,进行两次回火处理,回火处理工艺为250~300℃保温时间4~8h。
  7. 根据权利要求6所述的半自磨机用铸造贝氏体钢的制备方法,其特征在于,所述步骤(5)中铸件冷却至低于400℃后开箱。
  8. 根据权利要求6所述的半自磨机用铸造贝氏体钢的制备方法,其特征在于,所述步骤(6)中铸件在热处理炉内预处理和所述步骤(7)中铸件在热处理炉内进行等温淬火的升温过程均为:当热处理炉内温度小于650℃时,升温速度为每100~150℃/h;当热处理炉内温度超过650℃时,升温速度为每150~200℃/h。
  9. 一种权利要求1-5任一项所述的半自磨机用铸造贝氏体钢在半自磨机铸造贝氏体钢衬板上的应用。
  10. 一种半自磨机铸造贝氏体钢衬板,其特征在于,所述半自磨机铸造贝氏体钢衬板采用权利要求1-5任一项所述的半自磨机用铸造贝氏体钢制造。
PCT/CN2022/076813 2021-05-12 2022-02-18 一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板 WO2022237263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110515402.5A CN113235005B (zh) 2021-05-12 2021-05-12 一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板
CN202110515402.5 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022237263A1 true WO2022237263A1 (zh) 2022-11-17

Family

ID=77133834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076813 WO2022237263A1 (zh) 2021-05-12 2022-02-18 一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板

Country Status (2)

Country Link
CN (1) CN113235005B (zh)
WO (1) WO2022237263A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117187669A (zh) * 2023-11-06 2023-12-08 江苏星源电站冶金设备制造有限公司 一种高强度半自磨机格子板的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235005B (zh) * 2021-05-12 2021-12-21 江西耐普矿机股份有限公司 一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板
CN114277223B (zh) * 2021-12-28 2023-09-29 江阴市恒业锻造有限公司 一种高低温冲击韧性10Ni3MoVD钢锻件的热处理方法
CN115074622A (zh) * 2022-06-08 2022-09-20 中实(洛阳)新型材料有限公司 一种球磨机耐磨衬板材料及其生产工艺
CN115029616A (zh) * 2022-08-11 2022-09-09 垣曲县晋锋机械铸造有限公司 一种耐热耐磨损耐腐蚀铸铁件
CN115961215A (zh) * 2022-12-09 2023-04-14 铜陵有色金神耐磨材料有限责任公司 一种轻质半自磨机用高耐磨Cr-Mo钢衬板及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208388A (en) * 1987-08-08 1989-03-30 Auto Alloys Cast steel
JP2003306741A (ja) * 2002-04-16 2003-10-31 Japan Science & Technology Corp 高張力鋳鋼およびその製造方法
CN105018859A (zh) * 2015-07-30 2015-11-04 中煤张家口煤矿机械有限责任公司 一种耐磨贝氏体铸钢及其制备方法
CN108396237A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种高塑性冷轧板及其生产方法
CN109913751A (zh) * 2019-03-13 2019-06-21 江西耐普矿机新材料股份有限公司 适用于大型半自磨机衬板的高强韧性贝氏体耐磨钢及其制备方法
CN112695253A (zh) * 2020-12-22 2021-04-23 江西耐普矿机股份有限公司 一种含碳化物高强韧性贝氏体耐磨钢及其制备方法
CN113235005A (zh) * 2021-05-12 2021-08-10 江西耐普矿机股份有限公司 一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555896B (zh) * 2013-10-28 2015-11-11 武汉科技大学 一种超高强度高韧性多步等温贝氏体钢及其制备方法
CN103639357B (zh) * 2013-12-25 2015-08-05 马鞍山市盛磊耐磨合金制造有限公司 一种磨煤机磨碗衬板的制备方法
KR102022787B1 (ko) * 2015-03-16 2019-09-18 제이에프이 스틸 가부시키가이샤 복합 용기 축압기 라이너용 강관 및, 복합 용기 축압기 라이너용 강관의 제조 방법
KR20190042943A (ko) * 2017-10-17 2019-04-25 유성기업 주식회사 내연기관용 주철제 실린더라이너의 열처리 방법
CN108754304A (zh) * 2018-04-24 2018-11-06 北京交通大学 一种耐腐蚀贝氏体钢、包含其的车轮及制造方法
KR102119959B1 (ko) * 2018-09-27 2020-06-05 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
CN112593157B (zh) * 2020-12-09 2021-09-17 暨南大学 一种高硬韧贝氏体耐磨铸钢及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208388A (en) * 1987-08-08 1989-03-30 Auto Alloys Cast steel
JP2003306741A (ja) * 2002-04-16 2003-10-31 Japan Science & Technology Corp 高張力鋳鋼およびその製造方法
CN105018859A (zh) * 2015-07-30 2015-11-04 中煤张家口煤矿机械有限责任公司 一种耐磨贝氏体铸钢及其制备方法
CN108396237A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种高塑性冷轧板及其生产方法
CN109913751A (zh) * 2019-03-13 2019-06-21 江西耐普矿机新材料股份有限公司 适用于大型半自磨机衬板的高强韧性贝氏体耐磨钢及其制备方法
CN112695253A (zh) * 2020-12-22 2021-04-23 江西耐普矿机股份有限公司 一种含碳化物高强韧性贝氏体耐磨钢及其制备方法
CN113235005A (zh) * 2021-05-12 2021-08-10 江西耐普矿机股份有限公司 一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117187669A (zh) * 2023-11-06 2023-12-08 江苏星源电站冶金设备制造有限公司 一种高强度半自磨机格子板的制备方法
CN117187669B (zh) * 2023-11-06 2024-01-30 江苏星源电站冶金设备制造有限公司 一种高强度半自磨机格子板的制备方法

Also Published As

Publication number Publication date
CN113235005B (zh) 2021-12-21
CN113235005A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022237263A1 (zh) 一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板
CN106521318A (zh) 一种高强度Fe‑Mn‑Al‑C系低密度铸钢及其制备方法
CN108707790B (zh) 一种高强铸造铝合金
CN108707813B (zh) 铸态高强度球铁及其制造工艺
CN111286681B (zh) 一种高耐磨低成本锻造湿磨球用钢及其制备方法
CN110257695B (zh) 一种含铜cadi耐磨材料及其热处理工艺
CN105950957A (zh) 一种高铬耐磨铸件及其制备工艺
CN111485164B (zh) 一种强化低铬合金铸件耐磨性能的铸造方法
CN113174527A (zh) 一种湿型砂铸造生产球墨铸铁的方法
CN104878298B (zh) 粉末冶金耐磨损耐腐蚀合金
CN112553521A (zh) 一种球铁材质轴承座及其制备方法
CN103305772B (zh) 一种高硬度渣浆泵泵体及其制备方法
CN102851569A (zh) 一种耐高温抗磨白口铸铁件及生产方法
WO2021035898A1 (zh) 一种斗轮机料斗耐磨衬板及其制备方法
CN114318115A (zh) 一种球墨铸铁材料及其制备方法
CN113502431A (zh) 一种等温淬火球墨铸铁材料及其制备方法和应用
CN116426827A (zh) 一种适用于半自磨机衬板用的铸造复相钢材料及其制备方法
CN105506438A (zh) 一种新型合金铸铁的生产工艺
CN105463314A (zh) 一种用于轧制橡塑的无石墨辊筒及其制造方法
CN104988378A (zh) 一种球墨铸铁磨球专用模具及其制备工艺
CN109112245B (zh) 一种提高生铁铸件耐磨损性能的方法
CN107022713A (zh) 一种防腐耐磨铬铜合金铸铁及其制备
CN112921233A (zh) 一种合成铸铁气缸套及其制备方法
CN105803340B (zh) 一种耐磨铸钢及其制备方法
CN110551940A (zh) 一种叶轮成型工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806240

Country of ref document: EP

Kind code of ref document: A1