WO2022237155A1 - 电池组检测控制方法、储能变换***及计算机可读存储介质 - Google Patents

电池组检测控制方法、储能变换***及计算机可读存储介质 Download PDF

Info

Publication number
WO2022237155A1
WO2022237155A1 PCT/CN2021/137378 CN2021137378W WO2022237155A1 WO 2022237155 A1 WO2022237155 A1 WO 2022237155A1 CN 2021137378 W CN2021137378 W CN 2021137378W WO 2022237155 A1 WO2022237155 A1 WO 2022237155A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
charging
mode
discharge
battery
Prior art date
Application number
PCT/CN2021/137378
Other languages
English (en)
French (fr)
Inventor
孙帅
陈鹏
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Publication of WO2022237155A1 publication Critical patent/WO2022237155A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage technology, and in particular to a detection and control method for a battery pack, an energy storage conversion system, and a computer-readable storage medium.
  • a plurality of energy storage units such as a plurality of battery packs
  • these battery packs need to be monitored to pay attention to the state of the battery pack. At present, it is usually measured with the help of special equipment, and it needs to be tested offline. During the test, the battery cannot work normally, because there are many battery packs, and the test efficiency is not high. Moreover, when the battery needs to be charged and tested, it needs to take power from the grid for testing, so that the energy storage PCS consumes energy from the grid, which is not friendly to the grid. When it is necessary to perform a discharge test on the battery, and due to the restriction of the grid dispatching order, the limited energy storage PCS cannot perform the discharge test at this time, making it difficult to perform a charge scan of the battery pack.
  • the present application proposes a battery pack detection and control method, an energy storage conversion system and a computer-readable storage medium, aiming at improving the efficiency and convenience of battery pack scan detection.
  • the present invention proposes a detection and control method for a battery pack, which is applied to an energy storage conversion system.
  • the energy storage conversion system includes N battery packs and N charge-discharge switching devices, and the N battery packs and The N charging and discharging switching devices are connected in one-to-one correspondence, and the N battery packs are interconnected through the N charging and discharging switching devices.
  • the battery pack detection and control method includes:
  • the battery pack detection control method before the step of entering the battery pack scanning working mode when the battery pack scan detection instruction is received, the battery pack detection control method further includes:
  • the battery pack scanning working mode specifically includes:
  • the battery pack Detection and control methods also include:
  • the energy storage conversion system further includes an inverter system, and the N battery packs are also electrically connected to the inverter system through the N charge-discharge switching devices;
  • the battery pack detection control method further includes:
  • the battery pack scanning working mode specifically includes:
  • the step of controlling at least part of the N charge-discharge switching devices to work in the discharge mode so that the corresponding battery packs output electric energy to the inverter system specifically includes:
  • the battery detection control method further includes:
  • the battery pack detection control method further includes:
  • the steps of the battery pack detection control method are further include:
  • the battery detection control method further includes:
  • the inverter system further includes an inverter system, and the N battery packs are also electrically connected to the inverter system through the N charge-discharge switching devices;
  • the battery pack detection and control method further includes:
  • the battery pack detection control method further includes:
  • the battery pack scanning working mode specifically includes:
  • the present invention also proposes an energy storage conversion system, the energy storage conversion system includes:
  • the N battery packs are connected to the N charging and discharging switching devices in one-to-one correspondence, and the N battery packs are interconnected through the N charging and discharging switching devices;
  • the N charging and discharging switching devices are connected to the inverter system through the same DC bus.
  • the inverter system includes N converter inverters, and the N charging and discharging switching devices are connected to the N converter inverters in one-to-one correspondence through a DC bus.
  • N charging and discharging switching devices are arranged in series on the DC side of the inverter system.
  • the energy storage conversion system further includes a power generation system, and the power generation system is electrically connected to the inverter system;
  • the controller is also communicatively connected with the inverter system; the inverter system triggers the controller to work in the battery charging mode when detecting that there is a surplus of energy in the power generation system.
  • the present invention also proposes a computer-readable storage medium, on which a battery pack detection control program is stored, and when the battery pack detection control program is executed by a processor, the above-mentioned battery pack detection control method is realized A step of.
  • the battery pack detection control method of the present invention enters the battery pack scan mode when receiving the battery pack scan detection command, and controls at least one of the N charging and discharging switching devices to work in the charging mode, so as to control The corresponding battery pack works in the charging mode and is charged; controlling at least one of the remaining charging and discharging switching devices to work in the discharging mode, so as to control the corresponding battery pack to work in the discharging mode, And discharge the battery pack in the charging mode; and detect the working parameters of each of the battery packs to obtain the charging curve of the battery pack in the charging mode, and obtain the discharging curve of the battery pack in the discharging mode.
  • the invention does not require additional measurement equipment, and can use the energy storage system body to perform online charge and discharge scanning of the battery pack at any time, and then detect the state of the battery pack, and flexibly control the energy flow inside the energy storage system without affecting the battery pack.
  • the present invention does not need to perform off-line measurement on the battery pack by performing discharge operations on the battery pack, and can perform charging and discharging scanning detection on the battery pack at the same time, which is beneficial to improving the scanning detection efficiency.
  • Fig. 1 is a schematic flow chart of an embodiment of a method for detecting and controlling a battery pack of the present invention
  • Fig. 2 is a schematic flow chart of another embodiment of the battery pack detection and control method of the present invention.
  • Fig. 3 is a schematic flowchart of another embodiment of the method for detecting and controlling a battery pack of the present invention.
  • Fig. 4 is a schematic flow chart of another embodiment of the battery pack detection and control method of the present invention.
  • FIG. 5 is a schematic diagram of a refinement process of an embodiment of step S510 in FIG. 3;
  • Fig. 6 is a schematic flowchart of another embodiment of the battery pack detection and control method of the present invention.
  • FIG. 7 is a schematic flowchart of another embodiment of the method for detecting and controlling a battery pack of the present invention.
  • FIG. 8 is a schematic flow chart of another embodiment of the method for detecting and controlling a battery pack according to the present invention.
  • Fig. 9 is a schematic diagram of functional modules of an embodiment of the energy storage conversion system of the present invention.
  • Fig. 10 is a schematic diagram of the circuit structure of an embodiment of the energy storage conversion system of the present invention.
  • Fig. 11 is a schematic diagram of the circuit structure of another embodiment of the energy storage conversion system of the present invention.
  • Fig. 12 is a schematic diagram of the circuit structure of another embodiment of the energy storage conversion system of the present invention.
  • label name label name 10 Battery 40 controller 20 Charge and discharge switching device 50 Power system 30 inverter system 60 filter
  • the directional indication is only used to explain the position in a certain posture (as shown in the accompanying drawing). If the specific posture changes, the directional indication will also change accordingly.
  • the present invention proposes a detection and control method for a battery pack, which is applied to an energy storage conversion system.
  • the energy storage conversion system includes N battery packs and N charge-discharge switching devices.
  • the discharge switching devices are connected in one-to-one correspondence, and the N battery packs are interconnected through the N charging and discharging switching devices.
  • the energy storage conversion system is usually equipped with an inverter system (such as an inverter, PCS, etc.), a battery pack, and a power generation system.
  • the inverter system realizes the charging and discharging of the energy storage components.
  • the battery in the battery pack may be a lithium battery, and in order to realize optimal operation and safety management of the battery, the ability to control and monitor the state of the battery is usually required.
  • the state of charge of the battery is a state quantity that represents the remaining capacity of the battery. Its accurate estimation can effectively prevent overcharge and overdischarge, and is also the main basis for the rational use and effective maintenance of the battery.
  • the measurement of the battery state is usually carried out with the help of special equipment, which requires the battery pack to be tested offline, which makes the battery unable to work normally during the test, because there are many battery packs, and the test efficiency is low. high.
  • the energy storage PCS will also consume energy from the grid, which is not friendly to the grid.
  • the limited energy storage PCS cannot perform the discharge test at this time.
  • this battery detection control method comprises:
  • Step S100 when receiving the battery pack scanning detection command, enter the battery pack scanning working mode:
  • the user When triggered according to the user's instruction, the user can output the battery scan detection instruction through the upper computer connected to the energy storage conversion system by wired communication or the intelligent terminal connected by wireless communication to trigger the detection of the battery state.
  • the battery pack scan detection can be generated when the battery charge and discharge times reach the preset number, and/or the service life reaches the preset number of years, etc. command to trigger the detection of the battery status.
  • the above commands are compatible with each other and can be combined in multiple ways.
  • the battery pack detection control program will be executed.
  • Step S200 controlling at least one of the N charging and discharging switching devices to work in the charging mode, so as to control the corresponding battery pack to work in the charging mode and perform charging;
  • Step S300 controlling at least one of the remaining charging and discharging switching devices to work in the discharging mode, so as to control the corresponding battery pack to work in the discharging mode, and discharge the battery pack in the charging mode;
  • the working mode of the charging and discharging switching device is the same as that of the battery pack. Specifically, by controlling the working mode of the charging and discharging switching device, the working mode of the battery pack can be controlled.
  • the charging and discharging switching device is charging In the charging mode, the corresponding battery pack works in the charging mode, and stores the electric energy output by the inverter system, or stores the electric energy output by other battery packs.
  • the charge-discharge switching device is in the discharge mode, the corresponding battery pack is working in the discharge mode, and the stored electric energy is output to the inverter system, or the electric energy is transmitted to other battery packs, so as to supply power for other battery packs.
  • each battery pack can be electrically connected through the charging and discharging switching device, so that each battery pack can form an energy circulation loop through the charging and discharging switching device to realize the internal circulation of energy, and the internal energy of the energy storage system can be used at any time.
  • the energy conducts online charging/discharging scanning of the battery pack, and then detects the state of the battery pack.
  • the depth of the battery pack can be realized without affecting the external performance of the energy storage system. Charge and discharge scan detection.
  • Step S400 detecting the working parameters of each of the battery packs, so as to obtain the charging curve of the battery pack in the charging mode, and obtain the discharging curve of the battery pack in the discharging mode.
  • the working parameters of the battery pack include but are not limited to battery voltage, current, internal resistance, power, battery charging temperature, and discharging temperature.
  • the state of charge equation draws a charge curve to realize charge scan detection, or called charge scan, or draws a discharge curve to realize discharge scan detection, or called discharge scan.
  • the method for obtaining the state of charge of the battery can be realized by one or more combinations of the voltage method, the internal resistance method, the current integration method, the Kalman filter method, and the neural network method. Specifically, when the voltage method is used for detection, the law of monotonous change of the battery voltage with the state of charge under different electric quantities is obtained.
  • the current integration method that is, the ampere-hour integration method
  • the charging current and discharging current of the battery are measured at every moment, and the change of the battery charge is calculated by integrating the current with respect to time to obtain the battery pack. state of charge.
  • the internal resistance law predicts the state of charge of the battery pack according to the change law of the internal resistance of the battery and the state of charge of the battery.
  • Kalman filtering method and neural network method are used to realize, electrical information such as battery voltage, current, and internal resistance can be measured, and then the charging/discharging curve can be estimated more accurately through mathematical processing. In this way, when performing a charge/discharge test on a battery pack, at least one target battery pack can be subjected to charge scan detection, and at least one other battery pack can be subjected to discharge scan according to power requirements.
  • the battery pack detection control method of the present invention enters the battery pack scan mode when receiving the battery pack scan detection command, and controls at least one of the N charging and discharging switching devices to work in the charging mode, so as to control The corresponding battery pack works in the charging mode and is charged; controlling at least one of the remaining charging and discharging switching devices to work in the discharging mode, so as to control the corresponding battery pack to work in the discharging mode, And discharge the battery pack in the charging mode; and detect the working parameters of each of the battery packs to obtain the charging curve of the battery pack in the charging mode, and obtain the discharging curve of the battery pack in the discharging mode.
  • the invention does not require additional measuring equipment, and can use the energy storage system body to perform online charge and discharge scanning of the battery pack at any time, and then detect the state of the battery pack, and flexibly control the energy flow inside the energy storage system without affecting the battery pack.
  • the present invention does not need to perform off-line measurement on the battery pack by performing discharge operations on the battery pack, and can perform charging and discharging scanning detection on the battery pack at the same time, which is beneficial to improving the scanning detection efficiency.
  • the battery pack detection control method before the step of entering the battery pack scanning working mode when the battery pack scan detection command is received, the battery pack detection control method further includes:
  • Step S110 determining the current working state of the energy storage conversion system
  • the energy storage conversion system usually has an offline state, or called an off-grid state, and a grid-connected state.
  • the battery pack can output the stored electric energy to the grid through the inverter system in the energy storage conversion system (such as city power) or electric loads, such as household electric loads, factory electric loads, etc.
  • the battery pack can also store the electric energy of the power grid or the power generation system of the energy storage conversion system.
  • the inverter system can realize AC-DC bidirectional conversion of electric energy. It can not only invert the DC power stored in the battery pack into AC power, or convert the DC power output by the power generation system into AC power and then send it to the power grid, but also convert it into AC power.
  • the alternating current from the grid is rectified to direct current to charge the batteries in the battery pack.
  • the inverter system can work in the charging mode for charging the battery pack; It can work in the discharge mode in which the energy discharged from the battery pack is supplied to the load through the grid bus, and of course it can also work in the standby mode.
  • Each battery pack acts as a load when charging each battery. And when the battery of each battery pack is discharging, it is equivalent to a power supply device. In the offline state, the battery pack can be disconnected from the power grid or the electrical load, that is, the battery pack neither draws power from the grid nor supplies power to the grid, and the battery pack can work in a shutdown state or a standby state.
  • Step S120 when the current working state of the energy storage conversion system is offline, the battery scan working mode specifically includes:
  • the working mode of the charging and discharging switching device is the same as that of the battery pack. Specifically, by controlling the working mode of the charging and discharging switching device, the working mode of the battery pack can be controlled.
  • the charging and discharging switching device is charging In the charging mode, the corresponding battery pack works in the charging mode, and stores the electric energy output by the inverter system, or stores the electric energy output by other battery packs.
  • the charge-discharge switching device is in the discharge mode, the corresponding battery pack is working in the discharge mode, and the stored electric energy is output to the inverter system, or the electric energy is transmitted to other battery packs to provide power for other battery packs.
  • Step S130 controlling the N-M charge-discharge switching devices to work in the discharge mode, so as to control the corresponding battery pack to work in the discharge mode, and discharge the battery pack in the charge mode;
  • each battery pack in the off-line state, can be electrically connected through the charging and discharging switching device, so that each battery pack can form an energy circulation loop through the charging and discharging switching device.
  • each battery pack can be charged and discharged mutually, that is, part of the battery pack can be used as a load, and part of the battery pack can be used as a power supply device.
  • the number of battery packs that need to be in charge mode and the battery pack in discharge mode can be set to be the same, for example, the number of M can be N/2, and the number of N-M can also be N/2.
  • N /2 battery packs in discharge mode can supply N/2 battery packs in charge mode one-to-one, that is, each battery pack in charge mode supplies power to a battery in discharge mode.
  • the N/2 battery packs in the discharge mode supply power to each of the N/2 battery packs in the charging mode one by one, for example, when one of the N/2 battery packs in the charging mode is fully charged Or when a certain threshold is reached, the next battery pack in the charging mode is triggered to start charging, and so on until N/2 battery packs in the charging mode complete charging.
  • each battery pack in discharge mode can output a corresponding proportion of electric energy, for example, nine battery packs in discharge mode can supply When 1 battery pack in charging mode is charging, each battery pack provides 1/9 of the power.
  • the number of battery packs that need to be in charge mode and the number of battery packs that need to be in discharge mode can also be set differently, for example, the number of battery packs that need to be in charge mode is set to be smaller than the number of batteries that need to be in discharge mode
  • the number of groups ie N ⁇ N-M.
  • the N-M battery packs in the discharge mode can supply power to each of the M battery packs in the charge mode one by one, for example, when one of the M battery packs in the charge mode is fully charged or reaches a certain threshold When , trigger the next battery pack in the charging mode to start charging, and so on until the M battery packs in the charging mode finish charging.
  • group M battery packs in charging mode, and N-M battery packs in discharging mode can supply power to the grouped battery packs in charging mode one by one until each group of battery packs in charging mode completes charging.
  • one battery pack in discharge mode can also supply power to multiple battery packs in charge mode, so as to increase the discharge speed of the battery pack and improve the discharge scan efficiency of the battery pack.
  • the energy of the battery pack itself can be used to realize electrical connection between each battery pack through the charging and discharging switching device, so that each battery pack can form an energy circulation loop through the charging and discharging switching device to realize the internal circulation of energy.
  • the energy inside the energy storage system can be used at any time for online charge/discharge scanning of the battery pack, and then the state of the battery pack can be detected.
  • By flexibly controlling the energy flow inside the energy storage system, without affecting the external performance of the energy storage system can realize the deep charge and discharge scan detection of the battery pack.
  • the above charging and discharging methods can be set according to the remaining amount of power of each battery. group to improve detection speed.
  • the power of each battery pack is not sufficient, it can be set that N-M battery packs in the discharge mode charge the battery packs in the charging mode one by one.
  • the battery packs in the charging mode are less arranged as a group, such as two or three as a group, and N-M battery packs in the discharging mode charge the battery packs in the charging mode group by group, In order to complete the charging detection of the M battery packs in the charging mode.
  • the charging and discharging switching device can include a DC-DC circuit composed of a switch tube, an inductor, a diode, etc.
  • the DC-DC circuit can realize bidirectional input and output. When the DC-DC circuit is working, it can realize the input or output of electric energy. When the DC circuit is not working, the electrical connection between the battery pack and other battery packs can be disconnected.
  • the DC-DC circuit can be a combination of step-up and step-down circuits. For example, it can be a step-up circuit when outputting, and a step-down circuit when stepping down. That is, when the battery pack is discharged, the DC-DC works in boost mode. When charging the battery pack, the DC-DC works in step-down mode.
  • the charge-discharge switching device can also include a switch device, which can be a relay, a circuit breaker, etc., and the switch device can be arranged in series between the battery pack and another switch device, and through the switching of the switch device, the connection between each battery pack can be realized. Electrically connect or disconnect the electrical connection between the individual battery packs.
  • the battery When charging the battery pack in the charging mode, the battery can be charged according to the constant current, constant voltage, and trickle charging modes until the battery is fully charged.
  • the constant current control The battery pack in the discharge mode discharges the battery pack in the charge mode until the discharge ends.
  • the battery pack when charging the battery pack in the charging mode, the battery pack can be charged from a deficient state to a saturated state, and when discharging the battery pack in the discharging mode, the battery pack can be discharged from a saturated state to a deficient state.
  • Step S140 detecting the working parameters of each of the battery packs, so as to obtain the charging curves of M battery packs in the charging mode, and obtain the discharge curves of the N-M battery packs in the discharging mode; wherein, 1 ⁇ M ⁇ N; N ⁇ 2.
  • At least one target battery pack can be charged and scanned according to power requirements, and at least one other battery pack can be discharged and scanned.
  • SOC correction can be performed according to the acquired charging curve or discharging curve, or the acquired charging curve or discharging curve can be output to the mobile terminal, so that The user knows the current status of each battery pack, completes battery operation management, detection and evaluation of the battery status, etc., for example, judges the health status of the battery according to the obtained charging curve or discharge curve of the battery pack.
  • the battery pack detection control method in the step of detecting the working parameters of each of the battery packs to obtain the charging curve of the battery pack in the charging mode and the discharge curve of the battery pack in the discharging mode Afterwards, the battery pack detection control method also includes:
  • Step S410 when it is determined according to the detected working parameters of each of the battery packs that the charging of the M battery packs in the charging mode is completed, and when the detected N-M battery packs in the discharging state are completely discharged, control the N battery packs
  • the M charging and discharging switching devices in the charging and discharging switching devices work in the discharging mode, so as to control the corresponding battery packs to work in the discharging mode and discharge;
  • Step S420 controlling the N-M charging and discharging switching devices to work in the charging mode, so as to control the corresponding battery packs to work in the charging mode, and receive the electric energy output by the battery packs working in the discharging mode for charging;
  • Step S430 detecting the working parameters of each of the battery packs, so as to obtain discharge curves of M battery packs in discharge mode, and obtain charging curves of N-M battery packs in charge mode.
  • the offline state of the battery pack may last for a long time, which is enough to perform one charge scan and one discharge scan on one or more battery packs, that is, to realize a complete charge and discharge scan.
  • the duration of the offline state of the battery pack may also be short, and only one charge scan or one discharge scan can be performed.
  • the battery pack scanning detection command is interrupted, or other working conditions cause the charging scan or discharging scan of the battery pack to be interrupted. That is to say, in this embodiment, the charge scan and discharge scan can be carried out continuously or indirectly, and during the charge scan, the charging of the battery pack can also be carried out indirectly, and the discharge of the battery pack can also be performed in the same way. indirect.
  • the M are in the charging mode
  • the charging mode of the lower battery pack and the N-M battery packs in the discharge mode is switched, that is, the M battery packs in the charging mode are switched to the discharge mode, and the N-M battery packs in the discharge mode are switched to the charging mode. model.
  • the N-M battery packs in the charging mode are charged by the M battery packs in the discharging mode.
  • the state of charge of the battery is obtained by detecting the above parameters of the battery pack and the adaptive SOC estimation algorithm, and the charging curve is drawn according to the state of charge equation to achieve Charge scan detection. Or draw the discharge curve to realize discharge scanning detection.
  • the battery packs of the present invention can be electrically connected through the charging and discharging switching device, so that each battery pack can form an energy circulation loop through the charging and discharging switching device to realize the internal circulation of energy, and the energy inside the energy storage system can be used at any time Carry out online charging/discharging scanning of the battery pack, and then complete a complete detection of the charging SOC and discharging SOC of the battery pack for a charging cycle and a discharging cycle.
  • By flexibly controlling the energy flow inside the energy storage system using the energy storage system's own architecture , without external equipment, can realize the deep charge and discharge scan detection of the battery pack.
  • the inverter system also includes an inverter system, and the N battery packs are also electrically connected to the inverter system through the N charge and discharge switching devices;
  • the battery pack detection control Methods also include:
  • Step S510 Determine the current working state of the energy storage conversion system.
  • control N charging and discharging At least part of the switching device works in discharge mode, controls a corresponding number of battery packs to work in discharge mode, and outputs electric energy to the inverter system;
  • Step S520 detecting the working parameters of the battery pack in the discharge mode, so as to obtain the corresponding discharge curve of the battery pack.
  • the battery output may be required, that is, the power of the battery pack is transmitted to the grid or power load through the inverter system.
  • the battery can be online Scanning, for example, when the battery pack is working normally, the electrical parameters of the battery pack are monitored to obtain the discharge current, discharge voltage, discharge temperature, etc. of the battery pack when connected to the grid, and through the detection of the above parameters of the battery pack and the adaptive SOC estimation algorithm Obtain the state of charge of the battery, and draw the discharge curve according to the state of charge equation, so as to realize the discharge scanning detection.
  • the charging and discharging device is the same as the conventional DC-DC circuit, that is, the electric energy stored in the battery pack is boosted and then output to the inverter system to complete the grid-connected transmission of electric energy.
  • step S510 at least some of the N charge-discharge switching devices are controlled to work in the discharge mode, so that the corresponding battery pack outputs electric energy to the inverter system.
  • the steps specifically include:
  • Step S511 obtaining the output power requirement of the battery pack
  • Step S512 according to the acquired output power requirement of the battery pack, calculate the number of battery packs that need to output power, and record it as X number;
  • Step S513 controlling the X number of charge-discharge switching devices to work in the discharge mode, so that the X number of the battery packs work in the discharge mode, and output electric energy to the inverter system.
  • the output power demand of the battery pack can be calculated according to the quantity and power of the electric load. side) and the current transformers and voltage transformers set on each grid-connected point to collect the voltage, current and other parameters of the metering point, and calculate the power demand of the electric load according to the collected current and voltage, and then calculate the output power demand of the battery pack .
  • the load is dynamically changing, that is, the load may increase or decrease, such as the peak period of power consumption and the slow period of power consumption, etc.
  • the number and power of electric loads will change accordingly, so the energy storage conversion system needs to adjust the output electric energy in real time to ensure that the output electric energy is equal to the electric energy required by the load.
  • the direction of power flows from the battery pack or the power generation system to the load during normal operation of the system.
  • This embodiment takes the power supply of each battery pack as an example for illustration, that is, the power generation system is not integrated into the grid under the current working condition.
  • the electric energy of each battery pack becomes the same frequency and phase as the grid after being inverted by the inverter system
  • the power frequency AC supplies the local power load, and the role of the battery pack is equivalent to that of the large power grid. If the output electric energy of the battery pack is equal to the demanded electric energy of the electric load, the energy storage conversion system works normally.
  • this embodiment can recalculate the output power demand of the battery pack, so as to control the corresponding number of battery packs to supply power.
  • the battery detection control method after the step of controlling at least part of the N charge-discharge switching devices to work in the discharge mode so that the corresponding battery packs output electric energy to the inverter system , the battery detection control method also includes:
  • Step S530 controlling Y of the N-X charging and discharging switching devices to work in the charging mode, so as to control the corresponding battery pack to work in the charging mode and charge;
  • Step S540 controlling the N-X-Y charge-discharge switching devices to work in the discharge mode, so as to control the corresponding battery packs to work in the discharge mode, and to discharge the battery packs in the charge mode.
  • the battery detection control method also includes:
  • Step S550 detecting the working parameters of Y battery packs in charging mode to obtain charging curves of Y battery packs in charging mode
  • Step S560 detecting the working parameters of N-X-Y battery packs in discharge mode to obtain discharge curves of the battery packs in discharge mode.
  • the remaining battery packs can be electrically connected through the corresponding charging and discharging switching devices, so that each battery pack that does not need to contribute The battery packs form an energy circulation loop through the charging and discharging switching device. At this time, the remaining battery packs can charge and discharge each other, that is, some of the battery packs can be used as loads, and some of the battery packs can be used as power supply devices.
  • the specific charging and discharging modes between Y battery packs in charging mode and N-X-Y battery packs in discharging mode reference may be made to the above-mentioned embodiments, and details will not be repeated here.
  • the working parameters of each battery can also be detected.
  • the state of charge of the battery is obtained by detecting the above parameters of the battery pack and the adaptive SOC estimation algorithm, and the charging curve is drawn according to the state of charge equation to achieve Charge scan detection. Or draw the discharge curve to realize discharge scanning detection.
  • the present invention can also establish an internal circulation in the battery packs that do not require output power, and each battery pack can be electrically connected through a charging and discharging switching device, so that each battery pack can be switched through charging and discharging.
  • the device forms an energy circulation loop to realize the internal circulation of energy.
  • the energy inside the energy storage system can be used at any time to perform online charging/discharging scanning of the battery pack, and then detect the state of the battery pack.
  • the working mode of the battery pack is dynamically changed, for example, according to the change of the power load or the different dispatching instructions of the power grid, the amount of output required by the battery pack may be changed in real time. Therefore, this In the embodiment, X, N-X, N-X-Y also change dynamically, for example, when the number of battery packs to be discharged increases, that is, when the number of X increases, N-X, N-X-Y decreases accordingly.
  • the battery pack after the step of controlling the N-X-Y charge-discharge switching devices to work in the discharge mode to control the corresponding battery pack to discharge the battery pack in the charge mode, the battery pack
  • the step of testing the control method also includes:
  • Step S570 after determining that Y battery packs in charging mode have been charged according to the detected operating parameters of the Y battery packs in charging mode, and the detected N-X-Y battery packs in discharging mode
  • the working parameter is to determine that when the discharge of the battery pack in N-X-Y discharge modes is completed, control Y of the N-X charge-discharge switching devices to work in the discharge mode, so as to control the corresponding battery pack to work in Discharge mode, and discharge;
  • Step S580 controlling the N-X-Y charging-discharging switching devices to work in the charging mode, so as to control the corresponding battery packs to work in the charging mode, and receive the electric energy output by the battery packs working in the discharging mode for charging.
  • the battery detection control method also includes:
  • Step S591 detecting the working parameters of Y battery packs in discharge mode to obtain discharge curves of Y battery packs in discharge mode;
  • Step S592 detecting the working parameters of N-X-Y battery packs in charging mode, so as to obtain charging curves of the battery packs in charging mode.
  • the battery pack scan detection command is interrupted, or other working conditions cause the battery pack charging scan or discharge scan to be interrupted, for example, the battery pack needs to be changed from a standby state to a working state, and connected to the power grid.
  • the charge scan and discharge scan can be carried out continuously or indirectly, and during the charge scan, the charging of the battery pack can also be carried out indirectly, and the discharge of the battery pack can also be performed in the same way. indirect.
  • the battery pack is continuously in the standby state, and the battery in the charging mode of the remaining battery pack is fully charged from the deficient state to the saturated state, and the battery pack in the discharge mode is discharged from the saturated state to the deficient state, the The charging mode of Y battery packs in charge mode and N-X-Y battery packs in discharge mode is switched, that is, Y battery packs in charge mode are switched to discharge mode, and N-X-Y batteries in discharge mode group then switches to charging mode.
  • N-X-Y battery packs in charge mode are charged by Y battery packs in discharge mode.
  • the working parameters of each battery can also be detected.
  • the state of charge of the battery is obtained by detecting the above parameters of the battery pack and the adaptive SOC estimation algorithm, and the charging curve is drawn according to the state of charge equation to achieve Charge scan detection. Or draw the discharge curve to realize discharge scanning detection.
  • the battery packs of the present invention can be electrically connected through the charging and discharging switching device, so that each battery pack can form an energy circulation loop through the charging and discharging switching device to realize the internal circulation of energy, and the energy inside the energy storage system can be used at any time Carry out online charging/discharging scanning of the battery pack, and then complete a complete detection of the charging SOC and discharging SOC of the battery pack for a charging cycle and a discharging cycle. In the case of high performance, it can realize the deep charge and discharge scan detection of the battery pack.
  • the energy storage conversion system further includes an inverter system, and the N battery packs are also electrically connected to the inverter system through the N charge-discharge switching devices; the battery pack detects Control methods also include:
  • Step S610 Determine the current working state of the energy storage conversion system.
  • the battery pack scans the working mode Specifically include:
  • Step S620 detecting the working parameters of the battery pack in the charging mode, so as to obtain the corresponding charging curve of the battery pack.
  • the power generation system such as photovoltaic power generation system, wind power generation system, etc.
  • the electric energy demand of the grid or electric load is saturated
  • the excess power generated by the power generation system can be transmitted through the inverter system. to the corresponding battery pack.
  • the electric energy of the grid can supply power to the battery pack.
  • the battery is running out of power, and at the same time it is not enough to transmit power from the power generation system, it is necessary to force emergency power supply from the power grid. can be delivered by the grid.
  • the inverter system rectifies and steps down the AC output from the grid to convert it into a DC voltage for the battery.
  • the power generation system supplies power to the battery pack
  • the normal operating power of the system flows from the power generation system to the grid, power load and each battery pack, or only to the battery pack.
  • the inverter system rectifies the AC output from the power generation system. , step-down and other processing into a DC voltage supply battery. In this process, the load capacity of the power grid or power generation system can also be calculated according to the power load.
  • the energy storage conversion system works normally. If the power load is used, the output power will be less than the demand power of the battery and the power load, resulting in overload.
  • the number of grid-connected battery packs can be reduced at this time to give priority to meeting the power demand of the grid to adapt to the increase in the number of loads or the increase in required power.
  • the overload is severe, the energy storage can also be stopped to charge the battery pack.
  • the conventional battery charge state detection can be used, that is, the battery parameters of each battery pack can be monitored by using a detection mechanism such as grid-connected charging or discharging during normal operation to obtain the discharge current of the battery pack when connected to the grid, Discharge voltage, discharge temperature, etc., and obtain the state of charge of the battery by detecting the above parameters of the battery pack and the adaptive SOC estimation algorithm, and draw the discharge curve according to the state of charge equation to realize discharge scanning detection.
  • the embodiment of the present invention can only carry out energy circulation through the inside of the energy storage system, and use the energy in the energy storage battery pack to perform offline or online charging and discharging scanning at any time, without affecting the external output and input energy changes of the energy storage PCS, and can realize online scanning. Offline scanning is also possible.
  • the number of battery packs that can be powered by the grid or power generation system can also be calculated according to the charging capacity of the power grid or power generation system.
  • the battery pack powered by the system that is, the remaining part of the battery pack can be electrically connected through the corresponding charging and discharging switching device, so that the battery packs that do not need to be powered by the power grid or the power generation system are composed of charging and discharging switching devices.
  • the working parameters of each battery can also be detected.
  • the state of charge of the battery is obtained by detecting the above parameters of the battery pack and the adaptive SOC estimation algorithm, and the charging curve is drawn according to the state of charge equation to achieve Charge scan detection. Or draw the discharge curve to realize discharge scanning detection.
  • the invention also proposes an energy storage conversion system.
  • the energy storage conversion system includes:
  • the N battery packs 10 are connected to the N charging and discharging switching devices 20 in one-to-one correspondence, and the N battery packs 10 are realized by the N charging and discharging switching devices 20 interconnection;
  • the inverter system 30 is electrically connected to the charging and discharging switching device 20 described in N through a DC bus; and,
  • the controller 40 is electrically connected to the inverter system 30 and the N charge-discharge switching devices 20 respectively.
  • the controller 40 stores a battery pack 10 detection control program, wherein the battery pack 10 detection control program When executed by the controller 40, the steps of the detection and control method for the battery pack 10 as described above are realized.
  • the energy storage conversion system further includes a power generation system 50, and the power generation system 50 is electrically connected to the inverter system 30;
  • the controller 40 is also communicatively connected with the inverter system 30; when the inverter system 30 detects that there is a surplus of energy in the power generation system 50, it triggers the controller 40 to work in the battery charging mode.
  • the battery pack 10 includes a casing and a plurality of battery cells, and the plurality of battery cells can be arranged in series, in parallel, or in series and parallel.
  • the casing is used to accommodate the battery cells, and the shape of the casing can be set according to the number and volume of the battery cells.
  • the casing is also provided with threading holes and charging and discharging interfaces, etc., and the battery pack 10 can be electrically connected to the inverter system 30 through copper bars.
  • the charge-discharge interface can specifically be a pluggable connection interface, such as a connection seat, a guide groove, and a terminal block.
  • each household battery pack 10 may be provided with at least one battery pack 10 .
  • Each of the battery packs is marked as battery pack 1# to battery pack N#.
  • the controller 40 can be implemented by microprocessors such as single-chip microcomputers, PLCs, DSPs, and FPGAs. Various interfaces and lines can be used in the controller 40 to connect various parts of the entire energy storage conversion system, and by running or executing stored software programs and/or or modules, and call the stored data, execute various functions of the energy storage conversion system and process data, so as to monitor the energy storage conversion system as a whole.
  • the controller 40 can also be set independently of the battery energy storage assembly 10 and the inverter system 30, for example, the controller 40 is set on the electric control board of the electric control box, and the charging and discharging switching device 20 It can also be set on the electric control board, which is not limited here.
  • the power generation system 50 may be one or more combinations of a photovoltaic system, a wind power generation system, a hydroelectric power generation system or a thermal power generation system.
  • the power generation system 50 may be connected to the inverter system 30 through a converter.
  • the AC side of the inverter system 30 is connected to the grid bus of the mains power grid, and/or connected to the electric load, and the DC side of the inverter system 30 is connected to one or more battery packs 10; wherein, the inverter system 30 may include an inverter Inverters, such as PCS (Power Convert System, bidirectional energy storage inverters), etc., the number of inverters can be set to multiple, and the number of inverters is equal to the number of battery packs 10.
  • One side of the power grid can also be connected in parallel with useful electric loads, and the power of the electric loads can also be loads of the same power or different power loads.
  • the inverter system 30 can realize AC-DC bidirectional conversion of electric energy, it can not only invert the DC power stored in the battery pack 10 into AC power, but also invert the DC power output by the power generation system 50 into AC power and then send it to the power grid. , the alternating current of the grid can also be rectified into direct current to charge the batteries in the battery pack 10 .
  • the inverter system 30 can work in the charging mode for charging the battery pack 10, and when the large power grid encounters a power failure, the inverter system 30 can also work in a discharge mode in which the energy discharged from the battery pack 10 is supplied to the load through the grid bus, and of course it can also work in a standby mode.
  • Each battery pack 10 corresponds to a load when charging each battery.
  • the batteries of each battery pack 10 are being discharged, they are equivalent to power supply devices.
  • the inverter system 30 can also be provided with a controller 40, such as a bottom controller 40 and a communication controller 40.
  • the communication controller 40 communicates with the controller 40 in the battery pack 10, the system controller 40 (general control), etc. through the field bus. , such as energy management system connections.
  • the bottom controller 40 may control variable current energy conversion functions and the like.
  • the bottom controller 40 may be a control chip such as a DSP or a single-chip microcomputer.
  • the communication controller 40 can realize communication such as dry contact, CAN bus, and SPI.
  • the inverter system 30 can complete the sampling, conditioning and digitization of given signals such as voltage, current, and switch signals according to the hardware devices configured by itself based on control needs, collect and quickly calculate digital signals, and output PWM signals and switch outputs. Signals, etc., for real-time control of the corresponding controlled units, such as IGBT control in bidirectional inverters, opening and closing control of main circuit breakers and contactors, etc.
  • N charging and discharging switching devices 20 are connected to the inverter system 30 through the same DC bus.
  • the N charging and discharging switching devices 20 are electrically connected to the N battery packs 10 one-to-one, the N charging and discharging switching devices 20 are set in parallel through the DC bus, and the battery packs 10 are in an offline state, and the battery packs 10 When performing charge scan or discharge scan, N battery packs 10 implement an energy circulation loop through N charge and discharge switching devices 20 and the DC bus.
  • the charging and discharging switching device may include a DC-DC circuit composed of a switching tube, an inductor, a diode, etc.
  • the DC-DC circuit includes an inductor L, a switching tube S1, and a switching tube S2, wherein the inductor L1 and switch tube S1 are sequentially arranged in series between the positive end of the battery pack 10 and the DC side of the inverter system 30 , one end of the switch tube S2 is connected to the inductor L1 and the switch tube S1 , and the other end of the switch tube S2 is connected to the positive terminal of the battery pack 10 Extreme connections.
  • the charge-discharge switching device 20 can be realized by an on-off controllable DC-DC circuit.
  • the DC-DC circuit can realize bidirectional input and output. When the DC-DC circuit is working, it can realize the input or output of electric energy.
  • the electrical connection between the battery pack 10 and the DC bus can be disconnected, and then the electrical connection with other battery packs 10 or with the inverter system 30 can be disconnected.
  • the battery pack 10 supplies power, it is usually necessary to boost the voltage of the electric energy before it can be connected to the grid or supply power to electric loads.
  • the power grid or the power generation system 50 needs to supply power to the battery pack 10 , it is also necessary to reduce the voltage of the electric energy before storing the power of the power generation system 50 or the power grid in the battery pack 10 .
  • the DC-DC circuit of the present embodiment can be a combination of boost-buck circuit, for example, it can be a boost circuit when outputting, and it can be a step-down circuit when stepping down, that is, when the battery pack 10 is discharged, the DC - DC works in boost mode, and when the battery pack 10 is charging, DC-DC works in buck mode.
  • the charge-discharge switching device 20 can also include a switch device, which can be a relay, a circuit breaker, etc., and the switch device can be arranged in series between the battery pack 10 and another switch device, and through the switching of the switch device, each battery pack 10 can be realized. The electrical connection between them, or the electrical connection between each battery pack 10 is disconnected.
  • the charging and discharging switching device 20 includes a DC-DC circuit, or includes a DC-DC circuit and a switching device, or includes a charging unit, a discharging unit, and two switching devices, through a charging unit, A discharge unit and two switching devices form a charging circuit and a discharging circuit; wherein, the charging unit is a boost circuit, and the discharge unit is a step-down circuit.
  • the battery pack 10 in the charging mode the battery can be charged according to the constant current, constant voltage, and trickle charging modes until the battery is fully charged; when the battery in the control discharge mode is discharged, a constant current can be used
  • the battery pack 10 in the discharging mode is controlled to discharge the battery pack 10 in the charging mode until the discharge ends.
  • Each of the charging and discharging switching devices is marked as charging and discharging switching device 1# to charging and discharging switching device N#.
  • the controller 40 can also detect the charging/discharging current, charging/discharging voltage, temperature of the battery pack 10 during charging, and the battery pack 10 through current sensors, voltage sensors, temperature sensors, etc. 10 discharge temperature, etc., to prevent the battery pack 10 from over-current, over-voltage, over-charge, over-discharge, under-voltage, and over-high temperature of the battery pack 10 when the battery pack 10 is working normally, so as to realize the protection of the battery. Monitor and protect.
  • the battery pack 10 when the battery pack 10 in the charging mode is charged, the battery pack 10 can be charged from a power-deficiency state to a saturated state, and the battery pack 10 in the discharge mode can be charged to a saturated state.
  • the battery pack 10 When the battery pack 10 is being discharged, the battery pack 10 can be discharged from a saturated state to a depleted state.
  • the inverter system 30 includes N converter inverters, and the N charge and discharge switching devices 20 are connected to the N converter inverters in one-to-one correspondence through DC buses.
  • N battery packs 10 realize a common AC side through N converter inverters and N said converter inverters, that is, each battery pack 10 is sequentially connected with a charge-discharge switching device and After one converter inverter is set in series, then the corresponding converter inverter is set in parallel.
  • each battery pack 10 forms an energy circulation loop through the charge and discharge switching device 20 , the converter inverter and the AC bus.
  • N charging and discharging switching devices 20 are arranged in series on the DC side of the inverter system 30 .
  • the input of the charging and discharging switching device 20 can be a string of battery packs 10, that is, at least two battery packs 10 connected in series as an input to the charging and discharging switching device 20; After the charging and discharging switching devices 20 are connected, the output of at least one charging and discharging switching device 20 is connected in series, and then connected to the DC bus, and connected to the DC side of the converter inverter.
  • N battery packs 10 realize an energy circulation loop through N charge-discharge switching devices 20 and the DC bus.
  • the battery pack 10 when the battery pack 10 is not charging or discharging, the battery pack 10 can form an open circuit through the switch tube or the like provided in the charging and discharging switching device 20, that is, when it is out of the energy circulation loop.
  • the two charging and discharging A loop connection is also formed between the two output terminals of the discharge switching device 20 and the adjacent charge and discharge switching device 20, that is, when a single battery pack 10 is separated from the energy circulation loop, it will not affect the connection between other energy circulation loops. loop connection.
  • the energy storage conversion system further includes a filter 60, and the filter 60 is respectively connected to the power grid and the inverter system.
  • the filter 60 is respectively connected to the power grid and the inverter system. It should be noted that for grid-connected inverters using pulse width modulation technology, the output waveform must contain harmonic components related to the carrier, which will cause harmonic pollution. Therefore, it is necessary to A filter 60 is added on the output side to filter out this part of harmonic components.
  • the present invention also proposes a computer-readable storage medium, the computer-readable storage medium stores a battery pack detection control program, and when the battery pack detection control program is executed by the controller, the above-mentioned battery pack detection control method is realized A step of.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池组(10)检测控制方法、储能变换***及计算机可读存储介质,其中,该电池组(10)检测控制方法包括:在接收到电池组(10)扫描检测指令时,进入电池组(10)扫描工作模式(S100):控制N个充放电切换装置(20)中至少一个充放电切换装置(20)工作于充电模式,以控制对应的电池组(10)工作于充电模式,并进行充电(S200);控制剩余的充放电切换装置(20)中的至少一个充放电切换装置(20)工作于放电模式,以控制对应的电池组(10)工作于放电模式,并给充电模式下的电池组(10)进行放电(S300);以及,检测各个电池组(10)的工作参数,以获得M个处于充电模式下的电池组(10)的充电曲线,以及获得N-M个中处于放电模式下的电池组(10)的放电曲线(S140);其中,1≤M<N。该电池组(10)检测控制方法、储能变换***及计算机可读存储介质有利于提高电池组扫描检测效率和便利性。

Description

电池组检测控制方法、储能变换***及计算机可读存储介质
本申请要求于2021年05月12日提交中国专利局、申请号为202110520960.0、发明名称为“电池组检测控制方法、储能变换***及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及储能技术领域,特别涉及一种电池组检测控制方法、储能变换***及计算机可读存储介质。
背景技术
储能变换***中,通常设置有多个储能单元,例如多个电池组,各个电池组在充电或者放电的过程中,需要对这些电池组进行监控,以关注电池组的状态。目前,通常是借助专用设备测量,并且需离线进行测试,测试期间电池无法对外正常工作,因电池组较多,测试效率也不高。并且,在需要对电池进行充电测试时,需要从电网取电进行测试,使得储能PCS从电网耗能,对电网不友好。当需要对电池进行放电测试时,又由于电网调度指令限制,此时限制储能PCS也无法进行放电测试,使得电池组的充电扫描较难进行。
发明内容
本申请提出一种电池组检测控制方法、储能变换***及计算机可读存储介质,旨在提高电池组扫描检测效率和便利性。
为实现上述目的,本发明提出一种电池组检测控制方法,应用于储能变换***中,所述储能变换***包括N个电池组及N个充放电切换装置,N个所述电池组与N个所述充放电切换装置一一对应连接,N个所述电池组之间通过N个所述充放电切换装置实现互连,所述电池组检测控制方法包括:
在接收到电池组扫描检测指令时,进入电池组扫描工作模式:
控制N个所述充放电切换装置中至少一个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;
控制剩余的所述充放电切换装置中的至少一个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电;以及,
检测各个所述电池组的工作参数,以获得处于充电模式下的电池组的充电曲线,以及获得处于放电模式下的电池组的放电曲线。
可选地,所述在接收到电池组扫描检测指令时,进入电池组扫描工作模式的步骤之前,所述电池组检测控制方法还包括:
确定所述储能变换***当前的工作状态,在所述储能变换***当前的工作状态为离线状态时,所述电池组扫描工作模式具体包括:
控制N个所述充放电切换装置中M个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;
控制N-M个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电;以及,
检测各个所述电池组的工作参数,以获得M个处于充电模式下的电池组的充电曲线,以及获得N-M个中处于放电模式下的电池组的放电曲线;其中,1≤M<N。
可选地,在所述检测各个所述电池组的工作参数,以获得处于充电模式下的电池组的充电曲线,以及获得处于放电模式下的电池组的放电曲线的步骤之后,所述电池组检测控制方法还包括:
在根据检测的各个所述电池组的工作参数确定M个处于充电模式下的电池组充电完成,以及,检测的所述N-M个处于放电状态的电池组放电完成时,控制N个所述充放电切换装置中M个所述充放电切换装置工作于放电模式,以控制对应的所述电池组工作于放电模式,并进行放电;
控制N-M个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并接收工作于放电模式的电池组输出的电能,以进行充电;以及,
检测各个所述电池组的工作参数,以获得M个处于放电模式下的电池组的放电曲线,以及获得N-M个中处于充电模式下的电池组的充电曲线。
可选地,所述储能变换***还包括逆变***,N个所述电池组还通过N个所述充放电切换装置与逆变***电连接;
所述在接收到电池组扫描检测指令时,进入电池组扫描工作模式的步骤之前,所述电池组检测控制方法还包括:
确定所述储能变换***当前的工作状态,在所述储能变换***当前的工作状态为并网状态,且所述电池组工作于出力工况时,所述电池组扫描工作模式具体包括:
控制N个所述充放电切换装置中至少部分工作于放电模式,以控制对应数量的电池组工作于放电模式,并将电能输出至所述逆变***;以及,
检测处于放电模式下的电池组的工作参数,以获得相应的电池组的放电曲线。
可选地,所述控制N个所述充放电切换装置中至少部分工作于放电模式,以使对应的所述电池组将电能输出至所述逆变***的步骤具体包括:
获取电池组需出力功率需求;
根据获取的所述电池组需出力功率需求,计算获得需要出力的电池组数量,并记为X个;
控制X个所述充放电切换装置工作于放电模式,以使X个所述电池组工作于放电模式,并将电能输出至所述逆变***。
可选地,所述电池组检测控制方法还包括:
控制N-X个所述充放电切换装置中的Y个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;
控制N-X-Y个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电。
可选地,在所述控制N-X-Y个所述充放电切换装置工作于放电模式,以控制对应的电池组给充电模式下的电池组进行放电的步骤之后,所述电池组检测控制方法还包括:
检测Y个处于充电模式下的电池组的工作参数,以获得Y个处于充电模式下的电池组的充电曲线;
检测N-X-Y个处于放电模式下的电池组的工作参数,以获得处于放电模式下的电池组的放电曲线。
可选地,在所述控制N-X-Y个所述充放电切换装置工作于放电模式,以控制对应的电池组给充电模式下的电池组进行放电的步骤之后,所述电池组检测控制方法的步骤还包括:
在根据检测的所述Y个处于充电模式下的电池组的工作参数确定Y个处于充电模式下的电池组充电完成,以及,检测的所述N-X-Y个处于放电模式下的电池组的工作参数,确定N-X-Y个放电模式下的电池组放电完成时,控制N-X个所述充放电切换装置中的Y个所述充放电切换装置工作于放电模式,以控制对应的所述电池组工作于放电模式,并进行放电;以及,
控制N-X-Y个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并接收工作于放电模式的电池组输出的电能,以进行充电。
可选地,所述电池组检测控制方法还包括:
检测Y个处于放电模式下的电池组的工作参数,以获得Y个处于放电模式下的电池组的放电曲线;
检测N-X-Y个处于充电模式下的电池组的工作参数,以获得处于充电模式下的电池组的充电曲线。
可选地,所述逆变***还包括逆变***,N个所述电池组还通过N个所述充放电切换装置与逆变***电连接;所述电池组检测控制方法还包括:
所述在接收到电池组扫描检测指令时,进入电池组扫描工作模式的步骤之前,所述电池组检测控制方法还包括:
确定所述储能变换***当前的工作状态,在所述储能变换***当前的工作状态为并网状态,且所述电池组工作于充电工况时,所述电池组扫描工作模式具体包括:
控制N个所述充放电切换装置中至少部分工作于充电模式,以控制对应的所述电池组工作于充电模式,并接收所述逆变***输出的电能,以进行充电;
检测处于充电模式下的电池组的工作参数,以获得相应的电池组的充电曲线。
本发明还提出一种储能变换***,所述储能变换***包括:
N个电池组;
N个充放电切换装置,N个所述电池组与N个所述充放电切换装置一一对应连接,N个所述电池组之间通过N个所述充放电切换装置实现互连;
逆变***,通过直流母线与N所述充放电切换装置电连接;以及,
控制器,分别与所述逆变***及N个所述充放电切换装置电连接,所述控制器内存储有电池组检测控制程序,其中,所述电池组检测控制程序被所述控制器执行时实现如上所述的电池组检测控制方法的步骤。
可选地,N个充放电切换装置通过同一直流母线与所述逆变***连接。
可选地,所述逆变***包括N个变流逆变器,N个充放电切换装置通过直流母线与N个所述变流逆变器一一对应连接。
可选地,N个充放电切换装置串联设置于所述逆变***的直流侧。
可选地,所述储能变换***还包括发电***,所述发电***与所述逆变***电连接;
所述控制器还与所述逆变***通讯连接;所述逆变***在检测到发电***的能量存在余量时,触发所述控制器工作于电池充电模式。
本发明还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有电池组检测控制程序,所述电池组检测控制程序被处理器执行时实现如上所述的电池组检测控制方法的步骤。
本发明电池组检测控制方法在接收到电池组扫描检测指令时,进入电池组扫描工作模式,并控制N个所述充放电切换装置中至少一个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;控制剩余的所述充放电切换装置中的至少一个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电;以及,检测各个所述电池组的工作参数,以获得处于充电模式下的电池组的充电曲线,以及获得处于放电模式下的电池组的放电曲线。本发明不需要额外的增加测量设备,可随时利用储能***本体进行电池组的在线充放电扫描,进而对电池组的状态进行检测,通过灵活控制储能***内部的能量流动,在不影响储能***对外性能的情况下,可实现对电池组的深度充放电扫描检测。此外,本发明无需对电池组采用设备进行放电操作等来进行离线测量,可同时对电池组进行充电与放电扫描检测,有利于提高扫描检测效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明电池组检测控制方法一实施例的流程示意图;
图2为本发明电池组检测控制方法另一实施例的流程示意图;
图3为本发明电池组检测控制方法又一实施例的流程示意图;
图4为本发明电池组检测控制方法再一实施例的流程示意图;
图5为图3中步骤S510一实施例的细化流程示意图;
图6为本发明电池组检测控制方法还一实施例的流程示意图;
图7为本发明电池组检测控制方法另一实施例的流程示意图;
图8为本发明电池组检测控制方法又一实施例的流程示意图;
图9为本发明储能变换***一实施例的功能模块示意图;
图10为本发明储能变换***一实施例的电路结构示意图;
图11为本发明储能变换***另一实施例的电路结构示意图;
图12为本发明储能变换系又一实施例的电路结构示意图。
附图标号说明:
标号 名称 标号 名称
10 电池组 40 控制器
20 充放电切换装置 50 发电***
30 逆变*** 60 滤波器
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向 性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明提出一种电池组检测控制方法,应用于储能变换***中,所述储能变换***包括N个电池组及N个充放电切换装置,N个所述电池组与N个所述充放电切换装置一一对应连接,N个所述电池组之间通过N个所述充放电切换装置实现互连。
储能变换***通常设置有逆变***(如逆变器、PCS等)、电池组及发电***,逆变***实现对储能组件的充放电,当光伏电池板或风能等发电***产生的能量传输给电网,当电网能量饱和后,光伏或风能等产生的多余的能量可以用来给电池充电。其中,电池组中的电池可以是锂电池,为了实现电池优化运行与安全管理,通常需要对电池状态的控制和监控能力。电池的荷电状态作为表征电池剩余容量的一个状态量,其精确估算可以有效预防过充和过放,同时也是电池合理使用和有效维护的主要依据。目前,对电池状态进行测量,通常是借助专用设备来进行测量,这需电池组在离线工况下才能进行测试,这使得测试期间电池无法对外正常工作,因电池组较多,测试效率也不高。并且,当需要对电池进行充电测试时,若从电网取电进行测试,也会使储能PCS从电网耗能,对电网不友好。而当需要对电池进行放电测试时,由于电网调度指令限制,此时限制储能PCS也无法进行放电测试。
为解决上述问题,参照图1,在本发明一实施例中,该电池组检测控制方 法包括:
步骤S100、在接收到电池组扫描检测指令时,进入电池组扫描工作模式:
本实施例中,在电池储能领域,为了提高电池储能应用的安全性,以及从便于电池运行管理,需要对电池的状态进行检测、评估。在对电池进行充放电测试进而获得电池组状态时,可以周期性的进行检测,或者根据用户的指令触发,或者根据电池组的充放电次数,使用年限,应用环境等设置电池组扫描检测指令。在周期性的进行检测时,可以以每三天进行一次,每周进行一次,每月进行一次,或者每半年进行一次等频率进行,例如使用计时器进行计时,达到设置的计时时间后,则生成电池组扫描检测指令。在根据用户的指令触发时,用户可以通过与储能变换***有线通讯连接的上位机或者无线通讯连接的智能终端等输出电池组扫描检测指令,以触发对电池状态的检测。在根据电池组的充放电电次数,使用年限,应用环境等设置电池组扫描检测指令时,可以在电池充放电次数达到预设次数,和/或使用年限达到预设年限等生成电池组扫描检测指令,以触发对对电池状态的检测。上述指令之间相互兼容,并且可以多种方式之间进行组合,在接收到任意一种电池组扫描检测指令时,均会执行电池组检测控制的程序。
步骤S200、控制N个所述充放电切换装置中至少一个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;
步骤S300、控制剩余的所述充放电切换装置中的至少一个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电;
本实施例中,充放电切换装置的工作模式与电池组的工作模式相同,具体而言,通过控制充放电切换装置的工作模式,即可控制电池组的工作模式,例如充放电切换装置为充电模式时,与其对应的电池组即工作于充电模式,并将逆变***输出的电能进行存储,或者将其他电池组输出的电能进行存储。充放电切换装置为放电模式时,与其对应的电池组即工作于放电模式,并将存储的电能输出至逆变***,或者将电能传输至其他电池组,从而为其他电池组供电。如此,使得各个电池组之间可以通过充放电切换装置实现电连接,从而使各个电池组之间通过充放电切换装置组成一个能量循环回路,实现能量的内部循 环,可随时利用储能***内部的能量进行电池组的在线充/放电扫描,进而对电池组的状态进行检测,通过灵活控制储能***内部的能量流动,在不影响储能***对外性能的情况下,可实现对电池组的深度充放电扫描检测。
步骤S400、检测各个所述电池组的工作参数,以获得处于充电模式下的电池组的充电曲线,以及获得处于放电模式下的电池组的放电曲线。
电池组的工作参数包括但不限于电池电压、电流、内阻、功率及电池充电时温度、放电时温度等,通过检测电池组的上述参数以及自适应SOC估计算法得到电池荷电状态,并根据荷电状态方程,绘制充电曲线,以实现充电扫描检测,或者称为充电扫描,或者绘制放电曲线,以实现放电扫描检测,或者称为放电扫描。电池荷电状态获得方法可以采用电压法、内阻法、电流积分法、卡尔曼滤波法、神经网络法中的一种或者多种组合来实现。具体而言,在采用电压法来进行检测时,获取不同电量下,电池电压随荷电状态单调变化的规律来实现。在采用电流积分法,也即安时积分法来进行检测时,测量电池的每时每刻的充电电流和放电电流,通过将电流对时间积分来计算电池的电荷量的变化量,得到电池组的荷电状态。内阻法则根据电池内阻同电池荷电状态的变化规律对电池组的荷电状态进行预测。采用卡尔曼滤波法和神经网络法来实现时,可以对电池电压、电流、内阻等电学信息进行测量,然后通过数学处理手段对充/放电曲线做更为精确的估计。如此,当对电池组进行充/放电测试时,可以根据功率需要,将至少1路目标电池组进行充电扫描检测,至少1路剩余其它电池组进行放电扫描。
本发明电池组检测控制方法在接收到电池组扫描检测指令时,进入电池组扫描工作模式,并控制N个所述充放电切换装置中至少一个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;控制剩余的所述充放电切换装置中的至少一个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电;以及,检测各个所述电池组的工作参数,以获得处于充电模式下的电池组的充电曲线,以及获得处于放电模式下的电池组的放电曲线。本发明不需要额外的增加测量设备,可随时利用储能***本体进行电池组的在线充放电扫描,进而对电池组的状态进行检测,通过灵活控制储能***内部的能量流动, 在不影响储能***对外性能的情况下,可实现对电池组的深度充放电扫描检测。此外,本发明无需对电池组采用设备进行放电操作等来进行离线测量,可同时对电池组进行充电与放电扫描检测,有利于提高扫描检测效率。
参照图2,在一实施例中,所述在接收到电池组扫描检测指令时,进入电池组扫描工作模式的步骤之前,所述电池组检测控制方法还包括:
步骤S110、确定所述储能变换***当前的工作状态;
储能变换***通常具有离线状态,或者称为脱网状态,以及并网状态,在并网状态下,电池组可以将存储的电能通过储能变换***中的逆变***将电能输出至电网(例如市电)或者用电负荷,例如家用型用电负荷,工厂用型用电负荷等。电池组也可以将电网或者储能变换***的发电***的电能进行存储。具体而言,逆变***可以实现电能的交直流双向转换,既可以将电池组中电池存储的直流电逆变为交流电,或者将发电***输出的直流电逆变为交流电后输送至电网,也可以将电网的交流电整流为直流电为电池组中的电池进行充电。例如,在大电网正常供电,或者发电***存在能量富余,或者电池组电量过低时,逆变***可以工作在给电池组充电的充电模式,而在大电网遭遇故障停电时,逆变***也可以工作在将电池组放电的能量通过电网母线给负荷供电的放电模式,当然还可以工作在待机模式。在给各个电池充电时,各个电池组相当于负荷。而在各个电池组的电池进行放电时,相当于供电装置。在离线状态下,电池组可以断开与电网或者用电负荷的电连接,也即电池组即不从电网取电,也不给电网供电,电池组可以工作在停机状态或者待机状态。
步骤S120、在所述储能变换***当前的工作状态为离线状态时,所述电池组扫描工作模式具体包括:
控制N个所述充放电切换装置中M个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;
本实施例中,充放电切换装置的工作模式与电池组的工作模式相同,具体而言,通过控制充放电切换装置的工作模式,即可控制电池组的工作模式,例如充放电切换装置为充电模式时,与其对应的电池组即工作于充电模式,并将逆变***输出的电能进行存储,或者将其他电池组输出的电能进行存储。充放 电切换装置为放电模式时,与其对应的电池组即工作于放电模式,并将存储的电能输出至逆变***,或者将电能传输至其他电池组,从而为其他电池组供电。
步骤S130、控制N-M个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电;
本实施例中,在离线状态下,各个电池组之间可以通过充放电切换装置实现电连接,从而使各个电池组之间通过充放电切换装置组成一个能量循环回路。此时,各个电池组可以相互进行充放电,也即可以部分电池组作为负荷,部分电池组则作为供电装置。在这个过程中,可以将需要处于充电模式的电池组和处于放电模式的电池组的数量设置成相同,例如M的数量可以为N/2,N-M的数量也为N/2,此时,N/2个处于放电模式的电池组可以给N/2个处于充电模式的电池组一对一进行供电,也即每一个处于充电模式的电池组给一个处于放电模式的电池供电。或者,N/2个处于放电模式的电池组逐个给N/2个处于充电模式的电池组中的各个电池组进行供电,例如在N/2个处于充电模式的电池组中的一个电池组充满或者达到一定阈值时,触发下一个处于充电模式的电池组开始充电,如此,直至N/2个处于充电模式的电池组完成充电。在N/2个处于放电模式的电池组全部给一个处于充电模式的电池组进行供电时,每个处于放电模式的电池组可以输出相应比例的电能,例如在9个放电模式下的电池组给1个处于充电模式的电池组进行充电时,每个电池组提供1/9的电能。当然在其他实施例中,也可以将需要处于充电模式的电池组和处于放电模式的电池组的数量设置得不同,例如将需要处于充电模式的电池组的数量设置得小于需要处于放电模式的电池组的数量,也即N<N-M。此时,N-M个处于放电模式的电池组可以逐个给M个处于充电模式的电池组中的各个电池组进行供电,例如在M个处于充电模式的电池组中的一个电池组充满或者达到一定阈值时,触发下一个处于充电模式的电池组开始充电,如此,直至M个处于充电模式的电池组完成充电。或者,对M个处于充电模式的电池组进行分组,N-M个处于放电模式的电池组可以逐组的给分组后的充电模式的电池组进行供电,直至各组电电模式的电池组完成充电。在对电池组进行放电扫描时,还可以时一个处于放电模式的电池组对多个处于充电模式的电池组进行供电,以提高电池组的放电速 度,提高电池组的放电扫描效率。如此,即可利用电池组自身的能量,在各个电池组之间通过充放电切换装置实现电连接,从而使各个电池组之间通过充放电切换装置组成一个能量循环回路,实现能量的内部循环,可随时利用储能***内部的能量进行电池组的在线充/放电扫描,进而对电池组的状态进行检测,通过灵活控制储能***内部的能量流动,在不影响储能***对外性能的情况下,可实现对电池组的深度充放电扫描检测。
在实际应用中,上述充放电的方式可以根据各个电池的电量的剩余量进行设置,例如各个电池的电量充足时,则可以设置为多个处于放电模式的电池组同时给多个放电模式的电池组,以提高检测速度。在各个电池组的电量不充足时,则可以设置为N-M个处于放电模式的电池组逐个地对处于充电模式的电池组进行充电。或者,将处于充电模式的电池组较少地设置为一组,例如两个或者三个为一组的,N-M个处于放电模式的电池组再逐组地对处于充电模式的电池组进行充电,以完成对M个处于充电模式的电池组充电检测。
充放电切换装置可以包括由开关管、电感、二极管等组成的DC-DC电路,DC-DC电路可以实现双向输入输出,在DC-DC电路工作时,可以实现电能的输入或者输出,在DC-DC电路不工作时,则可以断开电池组与其他电池组之间的电连接。DC-DC电路可以升压-降压电路的组合,例如输出时可以是升压电路,降压时则可以为降压电路,也即在电池组放电时,DC-DC工作于升压模式,在电池组充电时,DC-DC工作于降压模式。充放电切换装置还可以包括开关装置,开关装置可以是继电器、断路器等,开关装置可以串联设置于电池组与另一开关装置之间,通过开关装置的通断,实现各个电池组之间的电连接,或者断开各个电池组之间的电连接。在给充电模式的电池组进行充电时,可以按照恒流、恒压、涓流的充电模式对电池进行充电,直至电池充满,在控制放电模式下的电池进行放电时,可以用恒定的电流控制放电模式下的电池组对充电模式下的电池组进行放电至放电结束。并且,对充电模式下的电池组进行充电时,可以是将电池组由亏电状态充至饱和状态,在放电模式下的电池组放电时,可以将电池组由饱和状态放电至亏电状态。
步骤S140、检测各个所述电池组的工作参数,以获得M个处于充电模式下的电池组的充电曲线,以及获得N-M个中处于放电模式下的电池组的放电曲 线;其中,1≤M<N;N≥2。
当对电池组进行充/放电测试时,可以根据功率需要,将至少1路目标电池组进行充电扫描检测,至少1路剩余其它电池组进行放电扫描。
可以理解的是,上述实施例中,获取到电池的充电曲线或者放电曲线后,可以根据获取的充电曲线或者放电曲线进行SOC修正,或者将获取的充电曲线或者放电曲线输出至移动终端,以使用户获知当前各个电池组的状态,完成电池运行管理、电池的状态进行检测及评估等,例如根据获取到的电池组的充电曲线或者放电曲线判断电池的健康状态。
参照图3,在一实施例中,在所述检测各个所述电池组的工作参数,以获得处于充电模式下的电池组的充电曲线,以及获得处于放电模式下的电池组的放电曲线的步骤之后,所述电池组检测控制方法还包括:
步骤S410、在根据检测的各个所述电池组的工作参数确定M个处于充电模式下的电池组充电完成,以及,检测的所述N-M个处于放电状态的电池组放电完成时,控制N个所述充放电切换装置中M个所述充放电切换装置工作于放电模式,以控制对应的所述电池组工作于放电模式,并进行放电;
步骤S420、控制N-M个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并接收工作于放电模式的电池组输出的电能,以进行充电;
步骤S430、检测各个所述电池组的工作参数,以获得M个处于放电模式下的电池组的放电曲线,以及获得N-M个中处于充电模式下的电池组的充电曲线。
可以理解的是,电池组的离线状态持续的时间可能较长,足以实现对一个或者多个电池组进行一次充电扫描和一次放电扫描,也即实现完整的一次充放电扫描。当然电池组的离线状态持续的时间可能也较短,仅能进行一次充电扫描,或者仅能进行一次放电扫描。或者电池组扫描检测指令中断,或者其他工况使得电池组的充电扫描或者放电扫描被中断。也即,本实施例中,充电扫描和放电扫描可以连续进行,也可以间接性的进行,并且充电扫描时,对电池组的充电也可以间接性的进行,同理对电池组的放电也可以间接性的进行。在电 池组持续的处于离线状态时,并且处于充电模式的电池完成由亏电状态充至饱和状态,放电模式下的电池组放电完成由饱和状态放电至亏电状态时,对M个处于充电模式下的电池组和N-M个处于放电模式下的电池组的充电模式进行切换,也即M个处于充电模式下的电池组切换为放电模式,而N-M个处于放电模式下的电池组则切换为充电模式。从而由M个处于放电模式的电池组给N-M个处于充电模式的电池组进行充电。具体地充放电模式可以参照上述实施例,此处不再赘述。在这个过程中,同样可以对各个电池的工作参数进行检测,如此,通过检测电池组的上述参数以及自适应SOC估计算法得到电池荷电状态,并根据荷电状态方程,绘制充电曲线,以实现充电扫描检测。或者绘制放电曲线,以实现放电扫描检测。本发明各个电池组之间可以通过充放电切换装置实现电连接,从而使各个电池组之间通过充放电切换装置组成一个能量循环回路,实现能量的内部循环,可随时利用储能***内部的能量进行电池组的在线充/放电扫描,进而对电池组的状态充电SOC和放电SOC完成一个充电周期和放电周期的完整检测,通过灵活控制储能***内部的能量流动,利用储能***自身的架构,无需外部设备,即可实现对电池组的深度充放电扫描检测。
参照图4,在一实施例中,所述逆变***还包括逆变***,N个所述电池组还通过N个所述充放电切换装置与逆变***电连接;所述电池组检测控制方法还包括:
步骤S510、确定所述储能变换***当前的工作状态,在所述储能变换***当前的工作状态为并网状态,且所述电池组工作于出力工况时,控制N个所述充放电切换装置中至少部分工作于放电模式,控制对应数量的电池组工作于放电模式,并将电能输出至所述逆变***;
步骤S520、检测处于放电模式下的电池组的工作参数,以获得相应的电池组的放电曲线。
本实施例中,在储能变换***处于并网状态时,可能需要电池出力,也即将电池组的电能通过逆变***将电能传输至电网或者用电负荷,在这个过程,可以对电池进行在线扫描,例如电池组正常工作时,对电池组电参数进行监测的方式获得电池组在并网时的放电电流、放电电压、放电温度等,并通过检测 电池组的上述参数以及自适应SOC估计算法得到电池荷电状态,并根据荷电状态方程,绘制放电曲线,以实现放电扫描检测。在这个过程中,充放电装置与常规的DC-DC电路相同,也即将电池组存储的电能进行升压处理后输出至逆变***,完成电能的并网传输。
参照图5,在一实施例中,步骤S510、所述控制N个所述充放电切换装置中至少部分工作于放电模式,以使对应的所述电池组将电能输出至所述逆变***的步骤具体包括:
步骤S511、获取电池组需出力功率需求;
步骤S512、根据获取的所述电池组需出力功率需求,计算获得需要出力的电池组数量,并记为X个;
步骤S513、控制X个所述充放电切换装置工作于放电模式,以使X个所述电池组工作于放电模式,并将电能输出至所述逆变***。
本实施例中,电池组需出力功率需求可以根据用电负荷的数量、功率进行计算获得,在实际应用中,可以在公共连接计量点(逆变***的共直流侧或者逆变***的共交流侧)和各个并网点上设置的电流互感器、电压互感器以采集计量点的电压、电流等参量,在根据采集的电流、电压计算用电负荷的功率需求,进而计算电池组需出力功率需求。可以理解的是,在储能变换***给用电负载供电的过程中,用电负荷是动态变化的,也即用电负荷可能会增加或者减少,例如用电高峰期和用电平缓期等,用电负荷的数量和功率都会具有相应的变化,因此储能变换***需要实时调整输出的电能,以保证输出的电能等于负荷所需的电能。在储能变换***工作于放电模式时,***正常运行时功率的方向由电池组或者发电***流向负荷。本实施例以各个电池组供电为例进行说明,也即当前工况下发电***未并入电网中,此时各个电池组的电能通过逆变***进行逆变之后,变成与电网同频同相的工频交流供给本地的用电负荷,此时电池组的作用等同于大电网。若在电池组的输出电能等于用电负荷的需求电能,则储能变换***正常工作。为了避免电负荷停止工作,使得电池组的电能大于用电负荷的需求电能,本实施例可以重新计算电池组需出力功率需求,从而控制对应数量的电池组进行供电。
参照图6,在一实施例中,在所述控制N个所述充放电切换装置中至少部分工作于放电模式,以使对应的所述电池组将电能输出至所述逆变***的步骤之后,所述电池组检测控制方法还包括:
步骤S530、控制N-X个所述充放电切换装置中的Y个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;
步骤S540、控制N-X-Y个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电。所述电池组检测控制方法还包括:
步骤S550、检测Y个处于充电模式下的电池组的工作参数,以获得Y个处于充电模式下的电池组的充电曲线;
步骤S560、检测N-X-Y个处于放电模式下的电池组的工作参数,以获得处于放电模式下的电池组的放电曲线。
若在当前工况下,例如用电平缓期,不是需要所有的电池组同时并网时,剩余部分的电池组之间可以通过对应的充放电切换装置实现电连接,从而使不需要出力的各个电池组之间通过充放电切换装置组成一个能量循环回路。此时,剩余的各个电池组可以相互进行充放电,也即可以部分电池组作为负荷,部分电池组则作为供电装置。Y个处于充电模式的电池组与N-X-Y个处于放电模式的电池组之间的具体的充放电模式可以参照上述实施例,此处不再赘述。在这个过程中,同样可以对各个电池的工作参数进行检测,如此,通过检测电池组的上述参数以及自适应SOC估计算法得到电池荷电状态,并根据荷电状态方程,绘制充电曲线,以实现充电扫描检测。或者绘制放电曲线,以实现放电扫描检测。本发明在并网状态下,也可以在不需要出力功率的电池组中建立内部循环,并且各个电池组之间可以通过充放电切换装置实现电连接,从而使各个电池组之间通过充放电切换装置组成一个能量循环回路,实现能量的内部循环,可随时利用储能***内部的能量进行电池组的在线充/放电扫描,进而对电池组的状态进行检测,通过灵活控制储能***内部的能量流动,在不影响储能***对外性能的情况下,可实现对电池组的深度充放电扫描检测。
可以理解的是,上述实施例中,电池组的工作模式是动态变化的,例如 根据用电负荷的变换,或者电网调度指令的不同,电池组需要出力的数量可能是实时变换的,因此,本实施例中,X、N-X、N-X-Y也是动态变化的,例如需要放电的电池组的数量增加,也即X的数量增加时,N-X、N-X-Y则相应的减小。
参照图7,在一实施例中,在所述控制N-X-Y个所述充放电切换装置工作于放电模式,以控制对应的电池组给充电模式下的电池组进行放电的步骤之后,所述电池组检测控制方法的步骤还包括:
步骤S570、在根据检测的所述Y个处于充电模式下的电池组的工作参数确定Y个处于充电模式下的电池组充电完成,以及,检测的所述N-X-Y个处于放电模式下的电池组的工作参数,确定N-X-Y个放电模式下的电池组放电完成时,控制N-X个所述充放电切换装置中的Y个所述充放电切换装置工作于放电模式,以控制对应的所述电池组工作于放电模式,并进行放电;以及,
步骤S580、控制N-X-Y个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并接收工作于放电模式的电池组输出的电能,以进行充电。
所述电池组检测控制方法还包括:
步骤S591、检测Y个处于放电模式下的电池组的工作参数,以获得Y个处于放电模式下的电池组的放电曲线;
步骤S592、检测N-X-Y个处于充电模式下的电池组的工作参数,以获得处于充电模式下的电池组的充电曲线。
可以理解的是,在用电平缓期,可能并不需要所有的电池组全部出力,在这个过程中,可能部分电池全程处于待机状态,且处于待机状态的持续的时间可能较长,足以实现对剩余的电池组进行一次充电扫描和一次放电扫描,也即实现完整的一次充放电扫描。当然电池组的待机状态持续的时间可能也较短,仅能进行一次充电扫描,或者仅能进行一次放电扫描。或者电池组扫描检测指令中断,或者其他工况使得电池组的充电扫描或者放电扫描被中断,例如电池组需要从待机状态转变为工作状态,并入电网中。也即,本实施例中,充电扫描和放电扫描可以连续进行,也可以间接性的进行,并且充电扫描时,对电池 组的充电也可以间接性的进行,同理对电池组的放电也可以间接性的进行。在电池组持续的处于待机状态时,并且剩余的电池组中处于充电模式的电池完成由亏电状态充至饱和状态,放电模式下的电池组放电完成由饱和状态放电至亏电状态时,对Y个处于充电模式下的电池组和N-X-Y个处于放电模式下的电池组的充电模式进行切换,也即Y个处于充电模式下的电池组切换为放电模式,而N-X-Y个处于放电模式下的电池组则切换为充电模式。从而由Y个处于放电模式的电池组给N-X-Y个处于充电模式的电池组进行充电。具体地充放电模式可以参照上述实施例,此处不再赘述。在这个过程中,同样可以对各个电池的工作参数进行检测,如此,通过检测电池组的上述参数以及自适应SOC估计算法得到电池荷电状态,并根据荷电状态方程,绘制充电曲线,以实现充电扫描检测。或者绘制放电曲线,以实现放电扫描检测。本发明各个电池组之间可以通过充放电切换装置实现电连接,从而使各个电池组之间通过充放电切换装置组成一个能量循环回路,实现能量的内部循环,可随时利用储能***内部的能量进行电池组的在线充/放电扫描,进而对电池组的状态充电SOC和放电SOC完成一个充电周期和放电周期的完整检测,通过灵活控制储能***内部的能量流动,在不影响储能***对外性能的情况下,可实现对电池组的深度充放电扫描检测。
参照图8,在一实施例中,所述储能变换***还包括逆变***,N个所述电池组还通过N个所述充放电切换装置与逆变***电连接;所述电池组检测控制方法还包括:
步骤S610、确定所述储能变换***当前的工作状态,在所述储能变换***当前的工作状态为并网状态,且所述电池组工作于充电工况时,所述电池组扫描工作模式具体包括:
控制N个所述充放电切换装置中至少部分工作于充电模式,以控制对应的所述电池组工作于充电模式,并接收所述逆变***输出的电能,以进行充电;
步骤S620、检测处于充电模式下的电池组的工作参数,以获得相应的电池组的充电曲线。
本实施例中,当发电***,例如光伏发电***、风力发电***等发电量充 裕,且电网或者用电负荷的电能需求饱和时,则发电***产生的多余的电量可以经过逆变***将能量传输给对应的电池组。当然也存在电网的电能给电池组供电的可能性。例如在电池亏电时,同时又不满足从发电***输送电能,需强制从电网紧急补电,例如光伏发电***的阴雨天气或者夜间等能量过低,使得发电***未输送能量的情况下,也可以由电网输送。
在电网给电池组供电时,***正常运行功率的方向由电网流向负荷和各个电池组,此时逆变***将电网输出的交流电进行整流、降压等处理变成直流电压供给电池。在发电***给电池组供电时,此时***正常运行功率的方向由发电***流向电网、用电负荷和各个电池组,或者仅流向电池组,此时逆变***将发电***输出的交流电进行整流、降压等处理变成直流电压供给电池。在这个过程中,也可以根据用电负荷计算电网或者发电***的负荷能力,当电网或者发电***的电能等于电池和用电负荷的需求电能,则储能变换***正常工作,若此时新增用电负荷,则会使得输出的电能小于电池和用电负荷的需求电能而出现过载。在***出现逆流或者过载时,使电能小于***需求时,此时可以减少并网的电池组的数量,以优先满足电网用电需求,以适应负荷的数量增加,或者所需功率的增加,在过载严重时也可以过载停止储能对电池组进行充电。在这个过程中,可以常规的电池电荷状态检测,也即采用正常工作时例如并网充电或者放电的检测机制对各个电池组的电池参数进行监测的方式获得电池组在并网时的放电电流、放电电压、放电温度等,并通过检测电池组的上述参数以及自适应SOC估计算法得到电池荷电状态,并根据荷电状态方程,绘制放电曲线,以实现放电扫描检测。本发明实施例可以仅通过储能***内部进行能量循环,随时利用储能电池组内的能量进行离线或者在线充放电扫描,不影响储能PCS对外输出与输入的能量变化,可实现在线扫描,也可以实现离线扫描。
可以理解的是,在电网或者发电***给电池组供电的过程中,也可以根据电网或者发电***的荷电能力,计算可以被电网或者发电***供电的电池组的数量,在没有被电网或者发电***供电的电池组中,也即剩余部分的电池组之间可以通过对应的充放电切换装置实现电连接,从而使不需要被电网或者发电***供电的各个电池组之间通过充放电切换装置组成一个能量循环回路。在这 个过程中,同样可以对各个电池的工作参数进行检测,如此,通过检测电池组的上述参数以及自适应SOC估计算法得到电池荷电状态,并根据荷电状态方程,绘制充电曲线,以实现充电扫描检测。或者绘制放电曲线,以实现放电扫描检测。
本发明还提出一种储能变换***。
参照图9,在本发明一实施例中,该储能变换***包括:
N个电池组10;
N个充放电切换装置20,N个所述电池组10与N个所述充放电切换装置20一一对应连接,N个所述电池组10之间通过N个所述充放电切换装置20实现互连;
逆变***30,通过直流母线与N所述充放电切换装置20电连接;以及,
控制器40,分别与所述逆变***30及N个所述充放电切换装置20电连接,所述控制器40内存储有电池组10检测控制程序,其中,所述电池组10检测控制程序被所述控制器40执行时实现如上所述的电池组10检测控制方法的步骤。
在一实施例中,所述储能变换***还包括发电***50,所述发电***50与所述逆变***30电连接;
所述控制器40还与所述逆变***30通讯连接;所述逆变***30在检测到发电***50的能量存在余量时,触发所述控制器40工作于电池充电模式。
本实施例中,电池组10包括壳体及多个电池单体,多个电池单体之间可以串联设置,与可以并联设置,或者串并联设置。壳体用于容置电池单体,壳体的形状可以根据电池单体的数量、体积等进行设置。壳体上还设置有穿线孔和充放电接口等,电池组10可以通过铜排与逆变***30实现电连接。充放电接口具体可以是可插拔连接的连接接口,例如连接座、导向槽以及接线端子等,对应的,铜排用于连接两个电池组10与逆变***30的两端可以与连接座、导向槽以及接线端子适配,例如两端可以设置为梳状齿的插接端插接连接在电池组10与逆变***30的连接座上。可以理解的是,电池组10的数量可以为两个或者两个以上,例如在应用于户用储能***中时,每户电池组10可以至少设置有一个电池组10。其中每个电池组分别被标记为电池组1#~电池组N#。
控制器40可以采用单片机、PLC、DSP、FPGA等微处理器来实现,控制器40中可以利用各种接口和线路连接整个储能变换***的各个部分,通过运行或执行存储的软件程序和/或模块,以及调用存储的数据,执行储能变换***的各种功能和处理数据,从而对储能变换***进行整体监控。当然在其他实施例中,控制器40也可以独立于电池储能组件10与所述逆变***30而设置,例如将控制器40设置在电控盒的电控板上,充放电切换装置20也可以设置于电控板上,此处不做限制。
发电***50可以是光伏***、风力发电***、水利发电***或者火力发电***中的一种或者多种组合。发电***50可以通过汇流器与逆变***30进行连接。
逆变***30的交流侧连接市电电网的电网母线,和/或连接用电负荷,逆变***30的直流侧连接一个或多个电池组10;其中,逆变***30中可以包括逆变器,例如PCS(Power Convert System,双向储能逆变器)等,逆变器的数量可以设置为多个,逆变器的个数与所述电池组10的个数相等。电网的一侧还可以并联有用电负荷,用电负荷的功率也可以是相同功率的负荷,也可以是不同功率的用电负荷。可以理解的是,逆变***30可以实现电能的交直流双向转换,既可以将电池组10中电池存储的直流电逆变为交流电,或者将发电***50输出的直流电逆变为交流电后输送至电网,也可以将电网的交流电整流为直流电为电池组10中的电池进行充电。例如,在大电网正常供电,或者发电***50存在能量富余,或者电池组10电量过低时,逆变***30可以工作在给电池组10充电的充电模式,而在大电网遭遇故障停电时,逆变***30也可以工作在将电池组10放电的能量通过电网母线给负荷供电的放电模式,当然还可以工作在待机模式。在给各个电池充电时,各个电池组10相当于负荷。而在各个电池组10的电池进行放电时,相当于供电装置。逆变***30中还可以设置有控制器40,例如底层控制器40及通讯控制器40,通讯控制器40通过现场总线与电池组10中的控制器40、***控制器40(总控)等,例如能源管理***连接。底层控制器40可以控制变流能量转换功能等。底层控制器40可以是DSP、单片机等控制芯片。通讯控制器40可以实现干接点、CAN总线、SPI等通讯。逆变***30可以根据自身基于控制需要所配置的硬件设备完成电压、电流、开关量信号等给定信号的 采样、调理和数字化,对数字信号进行采集和快速运算,输出PWM信号、开关量输出信号等,对相应受控单元进行实时控制,如双向逆变器中的IGBT控制,主电路断路器、接触器的分合闸控制等。
参照图10,在一实施例中,N个充放电切换装置20通过同一直流母线与所述逆变***30连接。
本实施例中,N个充放电切换装置20与N个电池组10一对一电连接设置后,N充放电切换装置20通过直流母线并联设置,在电池组10处于离线状态,且对电池组10进行充电扫描或者放电扫描时,N个电池组10通过N个充放电切换装置20及直流母线实现一个能量循环回路。充放电切换装置可以包括由开关管、电感、二极管等组成的DC-DC电路,具体而言,在一实施例中,DC-DC电路包括电感L、开关管S1、开关管S2,其中,电感L1、开关管S1依次串联设置于电池组10的正极端与逆变***30的直流侧之间,开关管S2一端与电感L1、开关管S1连接,开关管S2另一端与电池组10的正极端连接。充放电切换装置20可以由通断可控的DC-DC电路来实现,DC-DC电路可以实现双向输入输出,在DC-DC电路工作时,可以实现电能的输入或者输出,在DC-DC电路不工作时,则可以断开电池组10与直流母线的电连接,进而断开与其他电池组10之间或者断开与逆变***30之间的电连接。在电池组10进行供电时,通常需要将电能进行升压处理后,才能将电能并网至电网或者给用电负荷供电。反之,在电网或者发电***50需要给电池组10供电时,同样需要将电能进行降压处理后,才能将发电***50或者电网的电能存储至电池组10。为此,本实施例的DC-DC电路可以升压-降压电路的组合,例如输出时可以是升压电路,降压时则可以为降压电路,也即在电池组10放电时,DC-DC工作于升压模式,在电池组10充电时,DC-DC工作于降压模式。充放电切换装置20还可以包括开关装置,开关装置可以是继电器、断路器等,开关装置可以串联设置于电池组10与另一开关装置之间,通过开关装置的通断,实现各个电池组10之间的电连接,或者断开各个电池组10之间的电连接。在一具体实施例中,充放电切换装置20包括一DC-DC电路,或者包括一DC-DC电路及一开关装置,或者包括一充电单元、一放电单元、两开关装置,通过一充电单元、一放电单元、两开关装置构成一 条充电回路,一条放电回路;其中,充电单元为升压电路,放电单元为降压电路。在给充电模式的电池组10进行充电时,可以按照恒流、恒压、涓流的充电模式对电池进行充电,直至电池充满,在控制放电模式下的电池进行放电时,可以用恒定的电流控制放电模式下的电池组10对充电模式下的电池组10进行放电至放电结束。其中每个充放电切换装置分别被标记为充放电切换装置1#~充放电切换装置N#。
可以理解的是,并网充电或者放电时,控制器40也可以通过电流传感器、电压传感器、温度传感器等检测电池的充/放电电流、充/放电电压、电池组10充电时的温度及电池组10放电时的温度等,以防止电池组10在电池组10正常工作时,出现过流、过压、过充、过放、欠压以及电池组10电芯温度过高等问题,实现对电池的监控和保护。而在对电池组10进行充放电扫描检测的过程中,则可以在对充电模式下的电池组10进行充电时,可以是将电池组10由亏电状态充至饱和状态,在放电模式下的电池组10放电时,可以将电池组10由饱和状态放电至亏电状态。
参照图11,在一实施例中,所述逆变***30包括N个变流逆变器,N个充放电切换装置20通过直流母线与N个所述变流逆变器一一对应连接。
本实施例中,N个电池组10之间通过N个变流逆变器和N个所述变流逆变器实现共交流侧,也即每个电池组10依次与一个充放电切换装和一个变流逆变器串联设置后,再通过对应的变流逆变器并联设置。在电池组10处于离线状态,且对电池组10进行充电扫描或者放电扫描时,各个电池组10之间通过充放电切换装置20及变流逆变器及交流母线组成一个能量循环回路。
参照图12,在一实施例中,N个充放电切换装置20串联设置于所述逆变***30的直流侧。
本实施例中,充放电切换装置20的输入可以是一串电池组10,即至少2个电池组10串联后作为输入与充放电切换装置20连接;也可以是一个电池组10的输入与一个充放电切换装置20连接之后,至少一个充放电切换装置20的输出串联,串联后接至直流母线,与变流逆变器的直流侧连接。在电池组10处于离线状态,且对电池组10进行充电扫描或者放电扫描时,N个电池组10通过N个 充放电切换装置20及直流母线实现一个能量循环回路。在这个过程中,当电池组10不充电或者不放电时,电池组10可以通过设置在充放电切换装置20中的开关管等形成断路,也即脱离能量循环回路时,此时,两个充放电切换装置20的两个输出端子与相邻的充放电切换装置20之间还形成环路连接,也即在单个的电池组10脱离能量循环回路时,不会影响其他能量循环回路之间的环路连接。
上述实施例中,储能变换***还包括滤波器60,滤波器60分别与电网和逆变***连接。需要说明的是,对于采用脉宽调制技术的并网逆变器来说,其输出波形中必然含有与载波有关的谐波分量,进而引起谐波污染,因此有必要在并网逆变***的输出侧增设滤波器60以滤除这部分谐波分量。
本发明还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有电池组检测控制程序,所述电池组检测控制程序被控制器执行时实现如上所述的电池组检测控制方法的步骤。
以上所述仅为本发明的可选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (16)

  1. 一种电池组检测控制方法,应用于储能变换***中,所述储能变换***包括N个电池组及N个充放电切换装置,N个所述电池组与N个所述充放电切换装置一一对应连接,N个所述电池组之间通过N个所述充放电切换装置实现互连,其特征在于,所述电池组检测控制方法包括:
    在接收到电池组扫描检测指令时,进入电池组扫描工作模式:
    控制N个所述充放电切换装置中至少一个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;
    控制剩余的所述充放电切换装置中的至少一个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电;以及,
    检测各个所述电池组的工作参数,以获得处于充电模式下的电池组的充电曲线,以及获得处于放电模式下的电池组的放电曲线。
  2. 如权利要求1所述的电池组检测控制方法,其特征在于,所述在接收到电池组扫描检测指令时,进入电池组扫描工作模式的步骤之前,所述电池组检测控制方法还包括:
    确定所述储能变换***当前的工作状态,在所述储能变换***当前的工作状态为离线状态时,所述电池组扫描工作模式具体包括:
    控制N个所述充放电切换装置中M个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;
    控制N-M个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电;以及,
    检测各个所述电池组的工作参数,以获得M个处于充电模式下的电池组的充电曲线,以及获得N-M个中处于放电模式下的电池组的放电曲线;其中,1≤M<N。
  3. 如权利要求2所述的电池组检测控制方法,其特征在于,在所述检测各个所述电池组的工作参数,以获得处于充电模式下的电池组的充电曲线,以及获得处于放电模式下的电池组的放电曲线的步骤之后,所述电池组检测控制 方法还包括:
    在根据检测的各个所述电池组的工作参数确定M个处于充电模式下的电池组充电完成,以及,检测的所述N-M个处于放电状态的电池组放电完成时,控制N个所述充放电切换装置中M个所述充放电切换装置工作于放电模式,以控制对应的所述电池组工作于放电模式,并进行放电;
    控制N-M个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并接收工作于放电模式的电池组输出的电能,以进行充电;以及,
    检测各个所述电池组的工作参数,以获得M个处于放电模式下的电池组的放电曲线,以及获得N-M个中处于充电模式下的电池组的充电曲线。
  4. 如权利要求1所述的电池组检测控制方法,其特征在于,所述储能变换***还包括逆变***,N个所述电池组还通过N个所述充放电切换装置与逆变***电连接;
    所述在接收到电池组扫描检测指令时,进入电池组扫描工作模式的步骤之前,所述电池组检测控制方法还包括:
    确定所述储能变换***当前的工作状态,在所述储能变换***当前的工作状态为并网状态,且所述电池组工作于出力工况时,所述电池组扫描工作模式具体包括:
    控制N个所述充放电切换装置中至少部分工作于放电模式,以控制对应数量的电池组工作于放电模式,并将电能输出至所述逆变***;以及,
    检测处于放电模式下的电池组的工作参数,以获得相应的电池组的放电曲线。
  5. 如权利要求4所述的电池组检测控制方法,其特征在于,所述控制N个所述充放电切换装置中至少部分工作于放电模式,以使对应的所述电池组将电能输出至所述逆变***的步骤具体包括:
    获取电池组需出力功率需求;
    根据获取的所述电池组需出力功率需求,计算获得需要出力的电池组数量,并记为X个;
    控制X个所述充放电切换装置工作于放电模式,以使X个所述电池组工 作于放电模式,并将电能输出至所述逆变***。
  6. 如权利要求5所述的电池组检测控制方法,其特征在于,所述电池组检测控制方法还包括:
    控制N-X个所述充放电切换装置中的Y个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并进行充电;
    控制N-X-Y个所述充放电切换装置工作于放电模式,以控制对应的电池组工作于放电模式,并给充电模式下的电池组进行放电。
  7. 如权利要求6所述的电池组检测控制方法,其特征在于,在所述控制N-X-Y个所述充放电切换装置工作于放电模式,以控制对应的电池组给充电模式下的电池组进行放电的步骤之后,所述电池组检测控制方法还包括:
    检测Y个处于充电模式下的电池组的工作参数,以获得Y个处于充电模式下的电池组的充电曲线;
    检测N-X-Y个处于放电模式下的电池组的工作参数,以获得处于放电模式下的电池组的放电曲线。
  8. 如权利要求7所述的电池组检测控制方法,其特征在于,在所述控制N-X-Y个所述充放电切换装置工作于放电模式,以控制对应的电池组给充电模式下的电池组进行放电的步骤之后,所述电池组检测控制方法的步骤还包括:
    在根据检测的所述Y个处于充电模式下的电池组的工作参数确定Y个处于充电模式下的电池组充电完成,以及,检测的所述N-X-Y个处于放电模式下的电池组的工作参数,确定N-X-Y个放电模式下的电池组放电完成时,控制N-X个所述充放电切换装置中的Y个所述充放电切换装置工作于放电模式,以控制对应的所述电池组工作于放电模式,并进行放电;以及,
    控制N-X-Y个所述充放电切换装置工作于充电模式,以控制对应的所述电池组工作于充电模式,并接收工作于放电模式的电池组输出的电能,以进行充电。
  9. 如权利要求8所述的电池组检测控制方法,其特征在于,所述电池组检测控制方法还包括:
    检测Y个处于放电模式下的电池组的工作参数,以获得Y个处于放电模式下的电池组的放电曲线;
    检测N-X-Y个处于充电模式下的电池组的工作参数,以获得处于充电模式下的电池组的充电曲线。
  10. 如权利要求1至9任意一项所述的电池组检测控制方法,其特征在于,所述逆变***还包括逆变***,N个所述电池组还通过N个所述充放电切换装置与逆变***电连接;所述电池组检测控制方法还包括:
    所述在接收到电池组扫描检测指令时,进入电池组扫描工作模式的步骤之前,所述电池组检测控制方法还包括:
    确定所述储能变换***当前的工作状态,在所述储能变换***当前的工作状态为并网状态,且所述电池组工作于充电工况时,所述电池组扫描工作模式具体包括:
    控制N个所述充放电切换装置中至少部分工作于充电模式,以控制对应的所述电池组工作于充电模式,并接收所述逆变***输出的电能,以进行充电;
    检测处于充电模式下的电池组的工作参数,以获得相应的电池组的充电曲线。
  11. 一种储能变换***,其特征在于,所述储能变换***包括:
    N个电池组;
    N个充放电切换装置,N个所述电池组与N个所述充放电切换装置一一对应连接,N个所述电池组之间通过N个所述充放电切换装置实现互连;
    逆变***,通过直流母线与N个所述充放电切换装置电连接;以及,
    控制器,分别与所述逆变***及N个所述充放电切换装置电连接,所述控制器内存储有电池组检测控制程序,其中,所述电池组检测控制程序被所述控制器执行时实现如权利要求1至10中任意一项所述的电池组检测控制方法的步骤。
  12. 如权利要求11所述的储能变换***,其特征在于,N个充放电切换装置通过同一直流母线与所述逆变***连接。
  13. 如权利要求11所述的储能变换***,其特征在于,所述逆变***包括N个变流逆变器,N个充放电切换装置通过直流母线与N个所述变流逆变器一一对应连接。
  14. 如权利要求11所述的储能变换***,其特征在于,N个充放电切换装置串联设置于所述逆变***的直流侧。
  15. 如权利要求11所述的储能变换***,其特征在于,所述储能变换***还包括发电***,所述发电***与所述逆变***电连接;
    所述控制器还与所述逆变***通讯连接;所述逆变***在检测到发电***的能量存在余量时,触发所述控制器工作于电池充电模式。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有电池组检测控制程序,所述电池组检测控制程序被处理器执行时实现如权利要求1至10中任意一项所述的电池组检测控制方法的步骤。
PCT/CN2021/137378 2021-05-12 2021-12-13 电池组检测控制方法、储能变换***及计算机可读存储介质 WO2022237155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110520960.0 2021-05-12
CN202110520960.0A CN113281672B (zh) 2021-05-12 2021-05-12 电池组检测控制方法、储能变换***及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022237155A1 true WO2022237155A1 (zh) 2022-11-17

Family

ID=77279068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137378 WO2022237155A1 (zh) 2021-05-12 2021-12-13 电池组检测控制方法、储能变换***及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113281672B (zh)
WO (1) WO2022237155A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281672B (zh) * 2021-05-12 2024-04-12 阳光电源股份有限公司 电池组检测控制方法、储能变换***及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236726A (zh) * 2013-04-23 2013-08-07 深圳市乐迪电子有限公司 电池的独立充电控制***和充放电快速检测控制***
CN104362711A (zh) * 2014-11-13 2015-02-18 广东欧赛能源与自动化技术有限公司 Agv小车电池组高效充放电检测***
US20170366023A1 (en) * 2015-02-17 2017-12-21 Mitsubishi Electric Corporation Power conversion system
CN109860739A (zh) * 2019-02-19 2019-06-07 湖北鹏程新锐科技发展有限公司 一种非等容电池组的组配方法、***、存储介质及装置
CN110994773A (zh) * 2019-10-18 2020-04-10 湖南小步科技有限公司 一种ups***及ups***的电池包剩余电量估算方法
CN113281672A (zh) * 2021-05-12 2021-08-20 阳光电源股份有限公司 电池组检测控制方法、储能变换***及计算机可读存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074785B1 (ko) * 2010-05-31 2011-10-19 삼성에스디아이 주식회사 배터리 관리 시스템 및 이의 제어 방법, 및 배터리 관리 시스템을 포함한 에너지 저장 시스템
CN101865945B (zh) * 2010-06-11 2013-05-15 李小平 机械扫描式串联电池组电压检测方法及***
DE102014214996A1 (de) * 2014-07-30 2016-02-04 Robert Bosch Gmbh Verfahren zum Betrieb eines Batteriesystems
CN206775172U (zh) * 2017-04-19 2017-12-19 孙亮 通信蓄电池组的在线自动检测与主动均衡管理***
CN107632269A (zh) * 2017-09-21 2018-01-26 孙亮 通信蓄电池在线充放电测试***
KR102678203B1 (ko) * 2019-02-01 2024-06-26 에스케이온 주식회사 배터리 관리 시스템
CN111181207B (zh) * 2020-01-07 2021-09-21 重庆理工大学 一种分布式锂电池组储能***
CN111864778B (zh) * 2020-07-14 2024-05-28 易事特集团股份有限公司 充换电控制***和充换电柜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236726A (zh) * 2013-04-23 2013-08-07 深圳市乐迪电子有限公司 电池的独立充电控制***和充放电快速检测控制***
CN104362711A (zh) * 2014-11-13 2015-02-18 广东欧赛能源与自动化技术有限公司 Agv小车电池组高效充放电检测***
US20170366023A1 (en) * 2015-02-17 2017-12-21 Mitsubishi Electric Corporation Power conversion system
CN109860739A (zh) * 2019-02-19 2019-06-07 湖北鹏程新锐科技发展有限公司 一种非等容电池组的组配方法、***、存储介质及装置
CN110994773A (zh) * 2019-10-18 2020-04-10 湖南小步科技有限公司 一种ups***及ups***的电池包剩余电量估算方法
CN113281672A (zh) * 2021-05-12 2021-08-20 阳光电源股份有限公司 电池组检测控制方法、储能变换***及计算机可读存储介质

Also Published As

Publication number Publication date
CN113281672A (zh) 2021-08-20
CN113281672B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
CN110803051B (zh) 一种储能型充电桩及充电***
CN103427430B (zh) 一种混合储能***在微网中的能量管理方法
CN102170150B (zh) 蓄电***
EP2566007B1 (en) Cell balancing device and method
CN101867217B (zh) 智能供电逆变装置和控制方法
US9190915B2 (en) Electric-power conversion device
CN102570539B (zh) 充电控制装置和充电控制方法
JP5485857B2 (ja) 電力管理システム
US20220285950A1 (en) Energy storage system and battery management method
CN104092278A (zh) 应用于光伏储能***的能量管理方法
CN110120679B (zh) 一种与光伏逆变器直流侧耦合的户用光伏储能变换器
CN109768561A (zh) 一种电动汽车控制方法及***
JP2012249500A (ja) 電力系統管理システム及び電力系統の管理方法
CN112952910A (zh) 光储离网***控制方法、装置、控制器及存储介质
EP4064516A1 (en) Battery management system
CN110994681A (zh) 一种实现光伏消纳的储能控制***及光伏消纳方法
CN102170151A (zh) 蓄电***
WO2022237155A1 (zh) 电池组检测控制方法、储能变换***及计算机可读存储介质
CN103904768B (zh) 供电控制方法和供电控制装置
CN108616135B (zh) 分布式光伏电站用户侧三相不平衡逆流防止装置及方法
CN102170163A (zh) 蓄电***
CN206422586U (zh) 一种家庭能量管理***的智能调度设备
CN202210696U (zh) 一种家用太阳能充放电***
CN116455045A (zh) 一种基于铅酸蓄电池的基站光储备电源保障***
CN209803301U (zh) 一种基于燃料电池测试的微网***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941717

Country of ref document: EP

Kind code of ref document: A1