WO2022237057A1 - 压缩机、制冷***和制冷设备 - Google Patents

压缩机、制冷***和制冷设备 Download PDF

Info

Publication number
WO2022237057A1
WO2022237057A1 PCT/CN2021/121780 CN2021121780W WO2022237057A1 WO 2022237057 A1 WO2022237057 A1 WO 2022237057A1 CN 2021121780 W CN2021121780 W CN 2021121780W WO 2022237057 A1 WO2022237057 A1 WO 2022237057A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
compressor
compression
refrigerant
middle section
Prior art date
Application number
PCT/CN2021/121780
Other languages
English (en)
French (fr)
Inventor
吴昕
李镇杉
吴文辉
Original Assignee
重庆美的通用制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆美的通用制冷设备有限公司, 美的集团股份有限公司 filed Critical 重庆美的通用制冷设备有限公司
Priority to CA3216321A priority Critical patent/CA3216321A1/en
Priority to EP21941623.7A priority patent/EP4307536A1/en
Publication of WO2022237057A1 publication Critical patent/WO2022237057A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression

Definitions

  • the present application relates to the technical field of compressors, in particular to a compressor, a refrigeration system and a refrigeration device.
  • the motor as the main power input component, generates a large amount of heat. If it cannot be effectively cooled, the temperature of the stator winding will be overheated or even burned, and the rotor will also be damaged due to overheating. At the same time, the rotor will be damaged due to Overheating and excessive elongation can also cause damage to other components such as bearings.
  • the present application aims to solve or improve at least one of the technical problems existing in the prior art.
  • the first aspect of the application proposes a compressor.
  • a second aspect of the present application proposes a refrigeration system.
  • the third aspect of the present application proposes a refrigeration device.
  • the present application proposes a compressor, comprising: a casing, the casing includes a first section, a middle section and a second section from one end to the other end, and the middle section is provided with a first A through hole and a second through hole, the first through hole and the second through hole both communicate with the inside and outside of the casing;
  • the stator structure is installed in the casing and is located in the middle section;
  • the rotor structure is rotatably installed in the stator structure;
  • the first bearing structure is installed in the first section;
  • the second bearing structure is installed in the second section, and the rotor is installed in the first bearing structure and the second bearing structure;
  • the first compression structure is arranged in the first section away from the middle At one end of the section, the interior of the first compression structure communicates with the interior of the middle section through the first bearing structure;
  • the second compression structure is located at the end of the second section away from the middle section, and the interior of the second compression structure passes through the second bearing structure It communicates with
  • the compressor proposed by this application includes a casing, a stator structure, a rotor structure, a first bearing structure, a second bearing structure, a first compression structure and a second compression structure, wherein the stator structure, the first bearing structure and the second bearing
  • the structure is arranged in the casing, specifically, along the axial direction of the casing, the right casing is divided into three parts from one end to the other end, namely the first section, the middle section and the second section, and the middle section is located between the first section and the second section.
  • stator structure is located in the middle section, the first bearing structure is located in the first section, and the second bearing structure is located in the second section, and then the rotor structure is installed on the first bearing structure and the second bearing structure, and is connected with the stator
  • the structures are matched, and the two ends of the casing are respectively installed on the first compression structure and the second compression structure, that is, the first compression structure is installed on the first section, and the second compression structure is installed on the second section.
  • the first compression structure communicates with the inside of the shell, and when the first compression structure compresses the refrigerant, it will leak air into the shell, specifically, leak air into the first section, and the first section is provided with The first bearing structure, therefore, the refrigerant entering the housing from the first compression structure can cool the first bearing structure.
  • the first bearing structure can communicate with the inner space of the first compression structure and the middle section, the refrigerant entering the first section can pass through the first bearing structure and enter the middle section, thereby improving the cooling effect on the first bearing structure.
  • the second compression structure communicates with the interior of the shell, and when the second compression structure compresses the refrigerant, it will leak air into the shell, specifically, leak air into the second section, and the second section is set There is a second bearing structure, therefore, the refrigerant entering the housing from the second compression structure can cool the second bearing structure. Moreover, since the second bearing structure can communicate with the inner space of the second compression structure and the middle section, the refrigerant entering the second section can pass through the second bearing structure and enter the middle section, thereby improving the cooling effect on the second bearing structure.
  • first through hole and a second through hole are provided on the middle section, the first through hole can communicate with the inside and the outside of the housing, and the second through hole can also communicate with the inside and the outside of the housing, and then the first through hole can be connected to the outside of the housing.
  • the through hole is used as the inlet of the refrigerant, and the second through hole is used as the outlet of the refrigerant, so that the refrigerant can be passed through the first through hole to cool the stator structure and the rotor structure.
  • the refrigerant entering the middle section from the right first compression structure and the second compression structure is also discharged through the second through hole.
  • the stator structure and the rotor structure are cooled by the refrigerant entering the first through hole, while the first bearing structure is cooled by the refrigerant entering the first compression structure, and the second bearing structure is cooled by the second compression structure.
  • the structure enters the refrigerant for cooling. Therefore, the three-stage cooling method can provide better cooling effect, and each individual cooling part does not require excessive refrigerant flow, thereby reducing the impact of the refrigerant on the stator structure, rotor structure,
  • the impact of the first bearing structure and the second bearing structure ensures the stability of the operation of the compressor, and there are only two communication structures in the middle section, the first through hole and the second through hole, which are simple in structure and easy to produce.
  • the stator structure includes: a main body, the main body includes a third through hole and a fourth through hole connected to each other, the third through hole is arranged along the axial direction of the main body, and the rotor structure passes through the third through hole.
  • the through hole, the fourth through hole is arranged along the radial direction of the main body.
  • the stator structure includes a main body and third through holes and fourth through holes arranged on the main body, the third through holes are arranged along the axial direction of the main body, and the fourth through holes are arranged along the radial direction of the main body, wherein, The third through hole communicates with the fourth through hole, and when the refrigerant is delivered into the casing through the first through hole, a part of the refrigerant will enter the third through hole through the fourth through hole, thereby directly cooling the inside of the stator structure and the rotor structure , thereby improving the cooling effect on the stator structure and the rotor structure.
  • the number of the fourth through holes is one or more, and when the number of the fourth through holes is multiple, the plurality of fourth through holes are evenly distributed in the main body.
  • the number of through holes can be one or more, and the number of fourth through holes can be set according to the volume of the stator or actual needs, so as to achieve better cooling effect, and, in the fourth through hole When there are more than one, a plurality of fourth through holes are evenly distributed in the main body, so as to achieve a uniform cooling effect and avoid local overheating.
  • the fourth through hole is located in the middle of the main body.
  • the fourth through hole is located in the middle of the main body, so that the purpose of uniform cooling can be achieved on both sides of the rotor structure along the axial direction, and the stroke of the refrigerant on both sides is within a reasonable range , so as to avoid the situation that the temperature of one side of the rotor structure is too high, and improve the cooling effect.
  • the inner wall of the middle section is provided with a guide groove.
  • a guide groove is provided inside the middle section, so that the refrigerant can move along a corresponding path, thereby achieving a better cooling effect.
  • the diversion groove includes: a first diversion structure, which is spirally arranged in the middle section and communicates with the first through hole ;
  • the second diversion structure is arranged in the middle section in a spiral shape and communicates with the first through hole.
  • the diversion groove includes a first diversion structure and a second diversion structure, and the two diversion structures respectively form a spiral shape on both sides of the first through hole, so as to realize the stator structure from the middle position to the two sides.
  • the outside of the entire stator structure can be in contact with the refrigerant, and the contact time between the refrigerant and the stator structure can be prolonged, so as to better take away the heat of the stator structure and achieve a better cooling effect .
  • the first rib is connected to one side wall of the diversion groove
  • the second rib Connected with the other side wall of the diversion groove, along the circumferential direction of the casing, the first retaining ribs and the second retaining ribs are sequentially and alternately arranged on the diversion groove.
  • a first retaining rib and a second retaining rib are arranged in the diversion groove, and one of them is connected with one side wall of the diversion groove, and the other is connected with the other side wall of the diversion groove.
  • the walls are connected, and the two are staggered to form a curved flow space, thereby prolonging the flow path of the refrigerant and increasing the contact time between the refrigerant and the stator structure to better take away the heat of the stator structure and achieve a better cooling effect.
  • the guide groove is in an annular structure and surrounds the inner wall of the middle section.
  • the guide groove surrounds the inner wall of the middle section, so that the periphery of the entire stator structure can be cooled by the refrigerant, thereby improving the cooling effect.
  • the first through hole is located in the middle of the middle section and communicates with the diversion groove
  • the number of second through holes is two, respectively It is arranged on both sides of the middle section and communicated with the diversion groove.
  • the first through hole is located in the middle of the middle section, so that the purpose of uniform cooling can be achieved on both sides of the stator structure along the axial direction, and the stroke of the refrigerant on both sides is reasonable.
  • Range so as to avoid the situation that the temperature of one side of the rotor structure is too high, improve the cooling effect, and the second through hole set on both sides of the first through hole can quickly discharge the refrigerant after cooling the compressor to ensure that the refrigerant
  • the circulation effect improves the cooling effect of the compressor.
  • the compressor is a horizontal compressor, and the side walls on both sides of the diversion groove are provided with communication ports, and the diversion port is lower than one-third of the outer diameter of the diversion groove; The communication port is higher than two-thirds of the outer diameter of the diversion groove.
  • the compressor is a horizontal compressor, and the diversion opening is lower than one-third of the outer diameter of the diversion groove, so that the refrigerant enters from the lower part, and the communication port is higher than the outer diameter of the diversion groove. Two-thirds, so that the refrigerant is discharged from the upper part, and then the lower end enters the design of the upper end.
  • the refrigerant will flow in the diversion groove for a longer time, and it can also reduce the refrigerant in the shell. Possibility of interruption of flow during flow, thereby improving cooling effect.
  • the first compression structure includes: a first compression chamber and a first passage, and the first passage communicates with the first compression chamber The chamber and the interior of the housing;
  • the second compression structure includes: a second compression chamber and a second passage, and the second passage communicates the second compression chamber and the interior of the housing.
  • the first compression structure includes a first compression chamber and a first channel
  • the refrigerant can be compressed in the first compression chamber, and can leak into the shell through the first channel, so that when compressing the refrigerant , the refrigerant can leak into the casing through the first channel, thereby realizing the cooling of the first bearing structure.
  • the second compression structure includes a second compression chamber and a second passage, the refrigerant can be compressed in the second compression chamber, and can leak into the housing through the second passage, so that when the refrigerant is compressed, the refrigerant can be released by the second The channel leaks into the housing, enabling cooling of the second bearing structure.
  • the first bearing structure is an electromagnetic bearing structure
  • the second bearing structure is an electromagnetic bearing structure
  • the first bearing structure and the second bearing structure are electromagnetic bearing structures, and the electromagnetic bearing structure has low friction and fast speed, and the gap of the electromagnetic bearing structure can allow refrigerant to flow through, which improves the efficiency of the first bearing structure. and the cooling effect of the second bearing structure.
  • it further includes: a communication pipe communicating with the first compression structure and the second compression structure.
  • the first compression structure and the second compression structure are connected through a communication pipe, thereby realizing two-stage compression and improving the compression effect of the compressor.
  • the present application proposes a refrigeration system, including: the compressor provided in any one of the above technical solutions.
  • the refrigerating system proposed by the present application includes the compressor provided by any one of the above-mentioned technical solutions, therefore, it has all the beneficial effects of the compressor provided by any one of the above-mentioned technical solutions, and will not be stated one by one here. .
  • it further includes: an evaporator connected with the first compression structure and the second through hole of the compressor; a condenser connected with the first through hole and the second compression structure.
  • the refrigerating equipment further includes an evaporator and a condenser, and the gaseous refrigerant discharged from the evaporator is compressed by the first compression structure and the second compression structure, and leaks into the shell to cool the compressor, and is finally The refrigerant discharged from the second compression structure enters the condenser.
  • the liquid refrigerant discharged from the condenser enters the shell through the first through hole, and after cooling the compressor, it forms a gaseous refrigerant and enters the evaporator.
  • the compressor is cooled while exchanging heat in the refrigeration system.
  • the present application provides a refrigeration device, including: the compressor provided in any one of the above technical solutions; or the refrigeration system provided in any one of the above technical solutions.
  • the refrigerating equipment proposed by the present application includes the compressor provided by any one of the above technical solutions or the refrigeration system provided by any one of the above technical solutions, therefore, it has the compressor provided by any one of the above technical solutions Or all the beneficial effects of the refrigeration system provided by any one of the above technical solutions will not be stated one by one here.
  • Fig. 1 shows a schematic structural diagram of a compressor provided by an embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of another compressor provided by an embodiment of the present application
  • Fig. 3 shows a cross-sectional view of a compressor provided by an embodiment of the present application
  • Fig. 4 shows a cross-sectional view of a compressor provided by an embodiment of the present application
  • Fig. 5 shows a cross-sectional view of another compressor provided by an embodiment of the present application
  • Fig. 6 shows a sectional view of another compressor provided by an embodiment of the present application.
  • 100 compressor, 110 housing, 112 first section, 114 middle section, 1142 first through hole, 1144 second through hole, 116 second section, 118 guide groove, 1182 first guide structure, 1184 second guide Flow structure, 1186 first rib, 1188 second rib, 1190 first communication port, 1192 second communication port, 120 stator structure, 124 third through hole, 126 fourth through hole, 130 rotor structure, 140 first Bearing structure, 150 second bearing structure, 160 first compression structure, 162 first mounting part, 1622 first mounting plate, 1624 first shaft sleeve, 164 first impeller, 166 first compression main body, 1662 first compression chamber , 168 first channel, 170 second compression structure, 172 second mounting part, 1722 second mounting plate, 1724 second shaft sleeve, 174 second impeller, 176 second compression main body, 1762 second compression chamber, 178 Two channels, 180 connecting pipes.
  • a compressor 100 , a refrigeration system and refrigeration equipment provided according to some embodiments of the present application are described below with reference to FIGS. 1 to 6 .
  • a compressor 100 including a casing 110, a stator structure 120, a rotor structure 130, a first bearing structure 140, a second bearing structure 150, a first compression structure 160 and a second compression structure 170 .
  • the rotor structure 130 is compatible with the stator structure 120.
  • a magnetic field is generated to drive the rotor structure 130 to rotate, and the stator structure 120 is installed inside, and the rotor structure 130 passes through the first bearing structure 140 and the second bearing structure.
  • the structure 150 is mounted inside the housing 110 , the first compression structure 160 is disposed at one end of the housing 110 , and the second compression structure 170 is disposed at the other end of the housing 110 .
  • the housing 110 includes a first section 112, a middle section 114 and a second section 116, the middle section 114 is located between the first section 112 and the second section 116, and the stator is installed in the middle In the section 114, the first bearing structure 140 is installed in the first section 112, the first compression structure 160 is connected with the first section 112, the second bearing structure 150 is installed in the second section 116, and the second compression structure 170 is connected with the second section 112. Segment 116 is connected.
  • a first through hole 1142 and a second through hole 1144 are provided, the first through hole 1142 can communicate with the inside and the outside of the housing 110, and the second through hole 1144 can communicate with the inside of the housing 110 Furthermore, the refrigerant can be input into the housing 110 through the first through hole 1142 and then discharged through the second through hole 1144 to realize the circulation of the refrigerant and realize the continuous cooling of the stator structure 120 and the rotor structure 130 .
  • the first compression structure 160 is connected to the first section 112, so that when the first compression structure 160 performs the operation of compressing the refrigerant, a part of the refrigerant will leak into the first section 112 to cool the first bearing structure 140, and , along the axial direction of the first bearing structure 140, the first bearing structure 140 is provided with a first flow channel, so that the refrigerant entering the first section 112 will pass through the first flow channel, thereby cooling the first bearing structure 140, and finally by the first The first channel discharges into the middle section 114 and then discharges through the second through hole 1144 .
  • the second compression structure 170 communicates with the second section 116, so that when the second compression structure 170 performs the operation of compressing the refrigerant, a part of the refrigerant will leak into the second section 116 to cool the second bearing structure 150, and, along In the axial direction of the second bearing structure 150, the second bearing structure 150 is provided with a second flow channel, so that the refrigerant entering the second section 116 will pass through the second flow channel, thereby cooling the second bearing structure 150, and finally by the second The flow channel discharges into the middle section 114 and then discharges through the second through hole 1144 .
  • the compressor 100 proposed in this application includes a housing 110, a stator structure 120, a rotor structure 130, a first bearing structure 140, a second bearing structure 150, a first compression structure 160 and a second compression structure 170, wherein the stator structure 120 1.
  • the first bearing structure 140 and the second bearing structure 150 are arranged in the housing 110, specifically, along the axial direction of the housing 110, the right housing 110 is divided into three parts from one end to the other end, namely the first segment 112 , the middle section 114 and the second section 116, the middle section 114 is located between the first section 112 and the second section 116, wherein the stator structure 120 is located in the middle section 114, the first bearing structure 140 is located in the first section 112, and the second bearing The structure 150 is located in the second section 116, and the rotor structure 130 is installed on the first bearing structure 140 and the second bearing structure 150, and cooperates with the stator structure 120, and is respectively installed on the first compression
  • the structure 160 and the second compression structure 170 ie, the first compression structure 160 is mounted on the first section 112 and the second compression structure 170 is mounted on the second section 116 .
  • the first compression structure 160 communicates with the inside of the housing 110, and when the first compression structure 160 compresses the refrigerant, air will leak into the housing 110, specifically, air will leak into the first section 112, while the second The first bearing structure 140 is disposed in the section 112 , so the refrigerant entering the housing 110 from the first compression structure 160 can cool the first bearing structure 140 . Moreover, since the first bearing structure 140 can communicate with the inner space of the first compression structure 160 and the middle section 114, the refrigerant entering the first section 112 can pass through the first bearing structure 140 and enter the middle section 114, thereby improving the performance of the first bearing. Cooling effect of structure 140 .
  • the second compression structure 170 communicates with the interior of the housing 110, and when the second compression structure 170 compresses the refrigerant, it will leak air into the housing 110, specifically, air leakage into the second section 116, and The second bearing structure 150 is disposed in the second section 116 , therefore, the refrigerant entering the housing 110 from the second compression structure 170 can cool the second bearing structure 150 .
  • the second bearing structure 150 can communicate with the inner space of the second compression structure 170 and the middle section 114, the refrigerant entering the second section 116 can pass through the second bearing structure 150 and enter the middle section 114, thereby lifting the pressure on the second bearing. Cooling effect of structure 150 .
  • first through hole 1142 and a second through hole 1144 are provided on the middle section 114.
  • the first through hole 1142 can communicate with the inside and the outside of the housing 110, and the second through hole 1144 can also communicate with the inside and the outside of the housing 110.
  • the first through hole 1142 can be used as the inlet of the refrigerant, and the second through hole 1144 can be used as the outlet of the refrigerant, and the refrigerant can be passed through the first through hole 1142 to cool the stator structure 120 and the rotor structure 130 .
  • the refrigerant entering the middle section 114 from the right first compression structure 160 and the second compression structure 170 is also discharged through the second through hole 1144 .
  • stator structure 120 and the rotor structure 130 are cooled by the refrigerant entering the first through hole 1142, and the first bearing structure 140 is cooled by the refrigerant entering the first compression structure 160, and the second bearing The structure 150 is cooled by the refrigerant entering the second compression structure 170.
  • the three-stage cooling method can provide a better cooling effect, and each individual cooling part does not require excessive refrigerant flow, thereby reducing the
  • the impact of the refrigerant on the stator structure 120, the rotor structure 130, the first bearing structure 140 and the second bearing structure 150 ensures the stability of the operation of the compressor 100, and in the middle section 114 there are only the first through hole 1142 and the second through hole 1142.
  • the holes 1144 have two connected structures, which are simple in structure and easy to produce.
  • the stator structure 120 includes a stator core and a winding, and then a magnetic field is generated after the winding is energized, thereby driving the rotor structure 130 to rotate.
  • the rotor structure 130 includes a rotor core and a magnetic part, and the magnetic part is driven by the magnetic field generated by the winding, thereby Drive the rotor structure 130 to rotate.
  • the stator structure 120 further includes a main body and a third through hole 124 provided on the main body.
  • the third through hole 124 penetrates the main body along the axial direction of the main body for the installation and cooperation of the rotor structure 130 and the stator structure 120, that is, the rotor structure 130 is rotatably passed through the third through hole 124, and , an air gap is formed between the stator structure 120 and the rotor structure 130 .
  • the main body is also provided with a fourth through hole 126 arranged along the radial direction of the main body.
  • the fourth through hole 126 communicates with the third through hole 124 and forms an opening on the peripheral side of the main body.
  • the refrigerant when the refrigerant is delivered into the housing 110 through the first through hole 1142, the refrigerant can flow in the housing 110, and the main body of the stator structure 120 is provided with a fourth through hole 126, which is controlled by the first through hole 1142.
  • the refrigerant entering the casing 110 through the hole 1142 first contacts the outer peripheral side of the stator structure 120, and the fourth through hole 126 has an opening on the outer peripheral side, and then the refrigerant can pass through the fourth through hole 126 and flow into the third through hole 124.
  • the refrigerant can connect with the inside of the stator structure 120, the inner peripheral side of the stator structure 120, and the outer peripheral side of the rotor, thereby taking away the stator structure
  • the temperature of the inner peripheral side of 120 and the rotor structure 130 achieves a better cooling effect on the stator structure 120 and achieves a better cooling effect on the rotor structure 130 .
  • the number of fourth through holes 126 on the stator structure 120 may be one.
  • a fourth through hole 126 is disposed on the stator structure 120 .
  • the number of the fourth through holes 126 on the stator structure 120 may be multiple, and the plurality of fourth through holes 126 are evenly distributed on the main body of the stator structure 120 .
  • the stator structure 120 is provided with two fourth through holes 126, and then the two fourth through holes 126 are oppositely arranged on the stator structure 120, and the angle formed between the two fourth through holes 126 is approximately 180 degrees.
  • the stator structure 120 is provided with three fourth through holes 126, and the angle between two adjacent fourth through holes 126 among the three fourth through holes 126 is approximately 120 degrees
  • the stator structure 120 is provided with four four fourth through holes 126, and the angle between two adjacent fourth through holes 126 among the four fourth through holes 126 is approximately 90 degrees.
  • the number of the fourth through holes 126 on the stator structure 120 can also be set to 5, 6, 7 or 8, etc. as required.
  • the refrigerant can be introduced into the air gap at different positions at the same time, and the rotor structure 130 can also be cooled at multiple positions at the same time, thereby improving the cooling of the stator structure 120 and the rotor structure 130 Effect.
  • the number of through holes can be one or more, and the number of fourth through holes 126 can be set according to the volume of the stator or actual needs, so as to achieve a better cooling effect, and, in the fourth through holes 126 When the number is multiple, the multiple fourth through holes 126 are evenly distributed on the main body, so as to achieve uniform cooling effect and avoid local overheating.
  • the fourth through hole 126 is provided in the middle of the main body of the stator structure 120 . That is, the fourth through hole 126 is disposed at about half of the axial height of the main body of the stator structure 120 .
  • the fourth through hole 126 is located at about half of the height of the main body, and then the distance between the fourth through hole 126 and one end of the main body is the same as the distance between the fourth through hole 126 and the main body.
  • the distance between the other ends is similar or the same, so that the stator structure 120 and the rotor structure 130 on both sides of the fourth through hole 126 can have the same cooling effect, so that the cooling effect on the entire stator structure 120 and the rotor structure 130 is better.
  • the structure 130 performs cooling to improve the cooling effect.
  • the inner wall of the housing 110 is provided with a guide groove 118, located in the middle section 114 , and, both the first through hole 1142 and the second through hole 1144 communicate with the flow guide groove 118, specifically, the stator structure 120 is connected with the housing 110 to form the flow guide groove 118, and the side wall of the flow guide groove 118 is provided with The communication port communicates with other spaces in the casing 110 .
  • the inner wall of the middle section 114 and the stator structure 120 form a guide groove 118, and then the refrigerant entering the casing 110 through the first through hole 1142 moves along the flow provided by the guide groove 118, thereby The movement of the refrigerant is constrained, so that the diversion groove 118 can be rationally designed to achieve a better cooling effect.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • two second through holes 1144 are further provided on the housing 110, and the flow guide groove 118 includes a first flow guide structure 1182 and a second flow guide structure 1182
  • Two guide structures 1184 along the axial direction of the housing 110, a first communication port 1190 is provided on the side of the first guide structure 1182 away from the first through hole 1142, and a side of the second guide structure 1184 away from the first through hole 1142
  • One side is provided with a second communication port 1192
  • the first flow guiding structure 1182 is arranged on the inner wall of the middle section 114 in a spiral shape
  • the second flow guiding structure 1184 is arranged on the inner wall of the middle section 114 in a spiral shape, wherein the first The flow guide structure 1182 and the second flow guide structure 1184 converge at the first through hole 1142, that is, the first flow guide structure 1182 and the second flow guide structure 1184 are respectively located on both sides of the first through hole 1142,
  • the flow guide groove 118 includes a first flow guide structure 1182 and a second flow guide structure 1184, and the two flow guide structures respectively form a spiral shape on both sides of the first through hole 1142, so that the stator structure 120 is formed by Cooling from the middle position to both sides, and because of the spiral structure, the outside of the entire stator structure 120 can be in contact with the refrigerant, and the contact time between the refrigerant and the stator structure 120 is prolonged, so as to better take away the heat of the stator structure 120 To achieve a better cooling effect, and finally, the refrigerant in the first flow guide structure 1182 and the second flow guide structure 1184 can pass through different communication ports, and then flow out of the housing 110 through different second through holes 1144 .
  • such a diversion structure can shorten the stroke of the refrigerant, thereby avoiding that the second half of the refrigerant flow has absorbed a certain amount of heat, resulting in a lower heat dissipation effect at the end, so that the entire heat dissipation effect is more uniform.
  • the helical shape of the first flow guide structure 1182 may be a single helix or a multi-helix.
  • the helical shape of the second flow guide structure 1184 can be a single helix, or a multi-helix.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • a first retaining rib 1186 and a second retaining rib 1188 are arranged in the diversion groove 118, and the two are alternately arranged on the guide groove 118.
  • the first through hole 1142 is located in the middle of the guide groove 118, specifically, the housing 110 is provided with two second through holes 1144, along the axial direction of the housing 110, the guide A first communication port 1190 is provided on a side of the flow channel 118 away from the first through hole 1142 , and a second communication port 1192 is provided on a side of the flow guide channel 118 away from the first through hole 1142 .
  • the diversion groove 118 surrounds the entire middle section 114, the diversion groove 118 is formed with a bottom wall, a first side wall and a second side wall, the number of the first ribs 1186 can be one or more, and the second ribs The number of 1188 can be one or more, here we take more than one as an example for illustration.
  • a plurality of first ribs 1186 are arranged on the first side wall, and the first ribs 1186 and the second side wall are spaced apart, and a plurality of second ribs 1188 are arranged on the second side wall, and the second ribs 1188 It is spaced from the first side wall, and a second rib 1188 is arranged between adjacent first ribs 1186, and a first rib 1186 is arranged between adjacent second ribs 1188, thereby forming Bending channel structure.
  • a first retaining rib 1186 and a second retaining rib 1188 are arranged in the diversion groove 118, and one of them is connected to one side wall of the diversion groove 118, and the other is connected to the side wall of the diversion groove 118.
  • the other side wall of the stator is connected to each other, and the two are staggered to form a curved flow space, thereby prolonging the flow path of the refrigerant, increasing the contact time between the refrigerant and the stator structure 120, and taking away the heat of the stator structure 120 better.
  • a better cooling effect is achieved, and the refrigerant in the different diversion grooves 118 can flow out of the casing 110 through the second through hole 1144 at the final communication port.
  • the lengths of the first ribs 1186 and the second ribs 1188 can take values, along the axial direction of the housing 110, less than or equal to one-tenth of the width of the flow guide groove 118, and greater than or equal to one-tenth of the width of the flow guide groove 118. Half.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the guide groove 118 is an annular structure, and is arranged on the inner wall of the middle section 114 .
  • the first through hole 1142 is located in the middle of the guide groove 118, specifically, the housing 110 is provided with two second through holes 1144, along the axial direction of the housing 110, the guide A first communication port 1190 is provided on a side of the flow channel 118 away from the first through hole 1142 , and a second communication port 1192 is provided on a side of the flow guide channel 118 away from the first through hole 1142 .
  • the guide groove 118 surrounds the inner wall of the middle section 114 , so that the entire periphery of the stator structure 120 can be cooled by the refrigerant, thereby improving the cooling effect.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • the first through hole 1142 has one, and is arranged in the middle position of the middle section 114, that is, with the housing 110 Based on the axial direction, the first through hole 1142 is located at approximately half the height of the middle section 114, and communicates with the guide groove 118. There are two second through holes 1144, and the two second through holes 1144 are respectively arranged in Both sides of the first through hole 1142 further realize bidirectional discharge of refrigerant.
  • the first through hole 1142 is located in the middle of the middle section 114, so that the purpose of uniform cooling can be achieved on both sides of the stator structure 120 along the axial direction, and the stroke of the refrigerant on both sides are all within a reasonable range, so as to avoid the situation that the temperature of one side of the rotor structure 130 is too high, and improve the cooling effect, and the second through holes 1144 provided on both sides of the first through hole 1142 can quickly discharge and cool the compressor 100
  • the final refrigerant is used to ensure the circulation effect of the refrigerant and improve the cooling effect of the compressor 100 .
  • a The first communication port 1190 is provided with a second communication port 1192 on the second side wall.
  • the first through hole 1142 communicates with the diversion port 118, and the first communication port The distance between 1190 is greater than or equal to one third of the outer diameter of the diversion groove 118 and less than or equal to the outer diameter of the diversion groove 118 .
  • the distance between the first through hole 1142 and the diversion port that communicates with the diversion groove 118, and the second communication port 1192 is greater than or equal to one-third of the outer diameter of the diversion groove 118
  • the outer diameter is less than or equal to the outer diameter of the outer diameter of the guide groove 118 .
  • the distance between the first through hole 1142 and the first communication port 1190, which communicates with the flow guide groove 118, is greater than or equal to one-third of the guide
  • the outer diameter of the flow groove 118 ensures that the refrigerant entering the housing 110 through the diversion port flows a long enough distance before being discharged from the first communication port 1190 , thereby improving the cooling effect.
  • the distance between the first through hole 1142 and the diversion port that communicates with the diversion groove 118, and the second communication port 1192 is greater than or equal to one-third of the outer diameter of the diversion groove 118 outer diameter, so as to ensure that the refrigerant entering the casing 110 through the diversion port flows a long enough distance and then is discharged from the second communication port 1192, thereby improving the cooling effect.
  • first communication port 1190 faces the first segment 112
  • second communication port 1192 faces the second segment 116 .
  • the refrigerant discharged from the diversion groove 118 through the first communication port 1190 can participate in the cooling of the end of the stator structure 120 and the end of the first bearing structure 140
  • the refrigerant discharged from the diversion groove 118 through the second communication port 1192 can participate in cooling To the cooling of the end of the stator structure 120 , and the end of the second bearing structure 150 .
  • the compressor 100 is a horizontal compressor 100, and the diversion port is lower than one-third of the outer diameter of the diversion groove 118; the first communication port 1190 is higher than two-thirds of the outer diameter of the diversion groove 118 , and the second communication port 1192 is higher than two-thirds of the outer diameter of the diversion groove 118 .
  • the compressor 100 is a horizontal compressor 100, and the diversion port is lower than one-third of the outer diameter of the diversion groove 118, so that the refrigerant enters from the lower part, and the first communication port 1190 is higher than Two-thirds of the outer diameter of the diversion groove 118, so that the refrigerant is discharged from the upper part, and then the lower end enters the upper end to be discharged.
  • the refrigerant will flow in the housing 110 for a longer time, and also The possibility of interruption of the refrigerant flow in the casing 110 can be reduced, thereby improving the cooling effect.
  • the compressor 100 is a horizontal compressor 100, the diversion port is lower than one-third of the outer diameter of the diversion groove 118, so that the refrigerant enters from the lower part, and the second communication port 1192 is higher than the outer diameter of the diversion groove 118 Two-thirds of the refrigerant is discharged from the upper part, and then the lower end enters the design of the upper end.
  • the refrigerant will flow in the shell 110 for a longer time, and it can also reduce the flow of the refrigerant in the shell. It is possible to stop the flow when the flow is interrupted in 110, so as to improve the cooling effect.
  • the first compression structure 160 includes: a first installation part 162, which is arranged at one end of the casing 110; An impeller 164 is rotatable relative to the first mounting portion 162, and one end of the first impeller 164 and the rotor structure 130 is connected through the first mounting portion 162, and the first impeller 164 and/or the rotor structure 130 are connected to the first mounting portion There is a first channel 168 between 162; the first compression body 166 is installed on the first installation part 162 and/or the housing 110, and a first compression chamber 1662 is arranged in the first compression body 166; the second compression structure 170 includes : the second mounting part 172 is located at the other end of the housing 110; the second impeller 174 is rotatable relative to the second mounting part 172, and the second impeller 174 and the other end of the rotor structure 130 pass through the second mounting part 172 connected, and there is a second
  • the first compression structure 160 includes a first installation part 162, a first impeller 164, and a first compression body 166, wherein the first installation part 162 is connected to the housing 110, and the first compression body 166 has a first A compression chamber 1662, the first impeller 164 can realize the compression of the refrigerant in the first compression chamber 1662, and there is a first channel 168 between the first installation part 162 and the first impeller 164 and/or the rotor structure 130, Therefore, when the refrigerant is compressed, the refrigerant may leak into the first section 112 through the first channel 168 , thereby cooling the first bearing structure 140 .
  • the second compression structure 170 includes a second installation part 172, a second impeller 174, and a second compression body 176, wherein the second installation part 172 is connected to the casing 110, and the second compression body 176 has a second compression chamber 1762,
  • the second impeller 174 can realize the compression of the refrigerant in the second compression chamber 1762, and there is a second channel 178 between the second mounting part 172 and the second impeller 174 and/or the rotor structure 130, so that when compressing the refrigerant, The refrigerant can leak into the second section 116 through the second channel 178 , so as to cool the second bearing structure 150 .
  • the first mounting part 162 includes: a first mounting plate 1622 connected with the housing 110; a first bushing 1624 mounted on the first
  • the mounting plate 1622 has a first channel 168 between the first impeller 164 and/or the rotor structure 130 and the first shaft sleeve 1624
  • the second mounting part 172 includes: a second mounting plate 1722 connected with the housing 110;
  • the shaft sleeve 1724 is installed on the second mounting plate 1722 , and there is a second channel 178 between the second impeller 174 and/or the rotor structure 130 and the second shaft sleeve 1724 .
  • the first mounting portion 162 includes a first mounting plate 1622 and a first bushing 1624, and a first channel 168 is formed between the first impeller 164 and/or the rotor structure 130 and the first bushing 1624, so that When the refrigerant is compressed, the refrigerant can leak into the first section 112 through the first channel 168, thereby cooling the first bearing structure 140, and the first shaft sleeve 1624 can increase the service life of the first mounting part 162 and reduce the Wear as the impeller 164 rotates.
  • the second mounting part 172 includes a second mounting plate 1722 and a second bushing 1724, and a second channel 178 is formed between the second impeller 174 and/or the rotor structure 130 and the second bushing 1724, so that when the refrigerant is compressed, the refrigerant can
  • the second channel 178 leaks into the second section 116, so as to realize the cooling of the second bearing structure 150, and the second shaft sleeve 1724 can increase the service life of the second mounting part 172, and reduce the time when the second impeller 174 rotates. wear and tear.
  • first shaft sleeve 1624 is a first sealing sleeve
  • second shaft sleeve 1724 is a second sealing sleeve
  • the first bearing structure 140 and the second bearing structure 150 are electromagnetic bearing structures.
  • the first bearing structure 140 and the second bearing structure 150 are electromagnetic bearing structures, and the electromagnetic bearing structure uses magnetic force to make the inner ring in a suspended state, thereby reducing friction and increasing the speed, and the gap of the electromagnetic bearing structure The refrigerant can flow through to improve the cooling effect on the first bearing structure 140 and the second bearing structure 150 .
  • a communication pipe 180 is connected between the first compression structure and the second compression structure 170 .
  • the first compression chamber 1662 communicates with the communication pipe 180, and then the refrigerant compressed for the first time by the first impeller 164 enters the first compression chamber 1662, flows into the second impeller 174 of the second compression structure 170, and then After being pressurized by the second impeller 174, it is further compressed in the second compression chamber 1762, thereby forming a second stage of compression.
  • the refrigerant in the second compression structure 170 can be discharged into the condenser.
  • the first compression structure 160 and the second compression structure 170 are connected through a communication pipe 180 , so as to realize two-stage compression and improve the compression effect of the compressor 100 .
  • FIG. 2 , FIG. 3 , FIG. 4 , FIG. 5 and FIG. 6 indicate the flow direction of the refrigerant.
  • the evaporator exhausts air to the first compression structure 160, the first compression structure 160 compresses the refrigerant, and part of the refrigerant enters the housing 110 to cool the first bearing structure 140, and this part of the refrigerant passes through the first bearing After the structure 140 , it enters the middle section 114 and can be discharged through the second through hole 1144 .
  • Another part of the refrigerant in the first compression structure 160 is discharged to the second compression structure 170 through the connecting pipe, and a part of the refrigerant still enters the shell 110 to cool the second bearing structure 150 , and this part of the refrigerant passes through the first bearing structure 140 After that, it enters the middle section 114 and can be discharged from the second through hole 1144 .
  • Another part of the refrigerant in the second compression structure 170 is discharged into the condenser.
  • the refrigerant entering the casing 110 from the first compression structure 160 and the second compression structure 170 is a gaseous refrigerant.
  • the refrigerant in the condenser enters the casing 110 through the first through hole 1142, and can pass through the guide groove 118 to cool the stator structure 120. At the same time, a part of the refrigerant can enter the air gap through the fourth through hole 126 to cool the stator structure. 120 and the outside of the rotor structure 130 are cooled, and another part of the refrigerant located in the guide groove 118 is discharged from the guide groove 118 through the first communication port 1190 and the second communication port 1192, and can be used for the first bearing structure 140 and the second bearing structure 140.
  • the bearing structure 150 is cooled, and the refrigerant in the casing 110 is finally discharged into the evaporator through the second through hole 1144 .
  • part of the refrigerant entering the flow guide groove 118 flows around the flow guide groove 118 , and the other part enters the air gap through the fourth through hole 126 .
  • the refrigerant entering the guide groove 118 through the first through hole 1142 passes through the first guide structure 1182 and the second guide structure 1184 respectively, and then is discharged from the first communication port 1190 and the second communication port 1192 Diversion groove 118.
  • the refrigerant entering the diversion groove 118 through the first through hole 1142 is baffled by the first rib 1186 and the second rib 1188 respectively, and then flows through the first communication port 1190 and the second rib 1188 .
  • the two communication ports 1192 are discharged from the diversion groove 118 .
  • the refrigerant entering the diversion groove 118 through the first through hole 1142 passes through the diversion groove 118 respectively, and then exits the diversion groove 118 through the first communication port 1190 and the second communication port 1192 .
  • the compressor 100 provided in the present application includes a three-way refrigerant circuit for cooling the stator structure 120 , the rotor structure 130 , the first bearing structure 140 and the second bearing structure 150 respectively.
  • Cooling of the stator structure 120 the outer side of the stator structure 120 and the inner side of the housing 110 form an annular flow guide groove 118, and the flow guide groove 118 allows the refrigerant to enter the annular flow guide groove 118, and the stator structure 120 is cooled through the annular flow guide groove 118, And the cooling winding on the stator structure 120 and the ends of the first bearing structure 140 and the second bearing structure 150 flow out from the communication port from both sides.
  • Cooling of the rotor structure 130 the stator structure 120 is provided with a fourth through hole 126 , and the refrigerant enters the fourth through hole 126 to cool the surface of the rotor structure 130 .
  • the actual calorific value 0, 1 or more fourth through holes 126 can be provided.
  • Cooling of the first bearing structure 140 the refrigerant gas in the main circuit of the compressor 100 enters the interior of the housing 110 from the rear side of the first impeller 164 through the seal of the rear end of the first impeller 164, passes through the first bearing structure 140 and It performs cooling, and at the same time, part of the refrigerant in the guide groove 118 that cools the stator structure 120 will also participate in the cooling of the first bearing structure 140 at the same time.
  • Cooling of the second bearing structure 150 the refrigerant gas in the main circuit of the compressor 100 enters the interior of the housing 110 from the rear side of the second impeller 174 through the seal of the rear end of the second impeller 174, passes through the second bearing structure 150 and is opposite to the second bearing structure 150. It performs cooling, and at the same time, part of the refrigerant cooling the stator structure 120 in the guide groove 118 will also participate in the cooling of the second bearing structure 150 at the same time.
  • the compressor 100 is a horizontal compressor 100, and a communication port is arranged on the left and right sides of the diversion groove 118, and the position of the communication port is higher than 2/3 of the diameter of the annular flow channel.
  • the diversion groove 118 has three arrangements, spiral type, baffle type and straight-through type.
  • the stator structure 120 is provided with a fourth through hole 126 for cooling the rotor structure 130.
  • the fourth through hole 126 is lower than the position of the communication port. According to the difference in the calorific value of the rotor structure 130, the fourth through hole 126 can be 0, 1 or more.
  • the first impeller 164 and the second impeller 174 are arranged on both sides of the compressor 100 respectively, and the rear end seal of the first impeller 164 enters the housing 110 to cool the first bearing structure 140, and the second impeller 174 seals the rear end of the housing 110.
  • the second bearing structure 150 is cooled.
  • the present application provides a refrigeration system, including: the compressor 100 provided in any one of the above embodiments.
  • the refrigerating system proposed in this application includes the compressor 100 provided in any of the above-mentioned embodiments, and thus has all the beneficial effects of the compressor 100 provided in any of the above-mentioned embodiments, and will not be described here one by one.
  • Embodiment 17 further includes: an evaporator and a condenser, the evaporator is connected to the first compression structure 160 of the compressor 100, and is also connected to the second through hole 1144 of the compressor 100 Connection; the condenser is connected with the first through hole 1142 of the compressor 100 and also connected with the second compression structure 170 of the compressor 100 .
  • the refrigeration equipment further includes an evaporator and a condenser, and the gaseous refrigerant discharged from the evaporator is compressed by the first compression structure 160 and the second compression structure 170, and leaks into the casing 110 to cool the compressor 100, And, finally, the refrigerant discharged from the second compression structure 170 enters the condenser.
  • the liquid refrigerant discharged from the condenser enters the casing 110 through the first through hole 1142 , and after cooling the compressor 100 , it forms a gaseous refrigerant and enters the evaporator.
  • the cooling of the compressor 100 is realized while exchanging heat in the refrigeration system.
  • the present application provides a refrigeration device, including: the compressor 100 provided in any one of the above embodiments; or the refrigeration system provided in any one of the above embodiments.
  • the refrigerating equipment provided by this application includes the compressor 100 provided in any of the above embodiments or the refrigeration system provided in any of the above embodiments, therefore, it has the compressor 100 provided in any of the above embodiments or the compressor 100 provided in any of the above embodiments All the beneficial effects of the refrigeration system provided by one embodiment will not be stated here one by one.
  • the refrigeration equipment may be equipment such as a refrigerator or an air conditioner.
  • connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)

Abstract

压缩机、制冷***和制冷设备。压缩机(100)包括:壳体(110)、定子结构(120)、转子结构(130)、第一压缩结构(160)和第二压缩结构(170);壳体(110)包括第一段(112)、中间段(114)和第二段(116),中间段(114)设置有第一通孔(1142)和第二通孔(1144);第一轴承结构(140)安装于第一段内(112);第二轴承结构(150)安装于第二段(116)内;第一压缩结构(160)的内部通过第一轴承结构(140)与中间段(114)的内部相连通;第二压缩结构(170)的内部通过第二轴承结构(150)与中间段(114)的内部相连通。该压缩机具有好的制冷效果,保证了压缩机的稳定性。

Description

压缩机、制冷***和制冷设备
本申请要求于2021年05月11日提交中国专利局、申请号为“202110508906.4”、发明名称为“压缩机、制冷***和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机技术领域,具体而言涉及一种压缩机、一种制冷***和一种制冷设备。
背景技术
目前,离心式制冷压缩机在运行过程中,电机作为主要功率输入部件,发热量较大,如无法有效冷却,则会引起定子绕组温度过热甚至烧毁,转子也会因为过热而损坏,同时转子因过热而过度伸长也会造成轴承等其余部件造成损坏。
发明内容
本申请旨在至少解决或改善现有技术中存在的技术问题之一。
为此,本申请的第一方面提出了一种压缩机。
本申请的第二方面提出了一种制冷***。
本申请的第三方面提出了一种制冷设备。
有鉴于此,根据本申请的第一方面,本申请提出了一种压缩机,包括:壳体,壳体由一端到另一端包括第一段、中间段和第二段,中间段设置有第一通孔和第二通孔,第一通孔和第二通孔均连通壳体内部和外部;定子结构,安装于壳体内,位于中间段;转子结构,可转动地穿设于定子结构;第一轴承结构,安装于第一段内;第二轴承结构,安装于第二段内,且转子安装于第一轴承结构和第二轴承结构;第一压缩结构,设于第一段背离中间段的一端,第一压缩结构的内部通过第一轴承结构与中间段的内部相连通;第二压缩结构,设于第二段背离中间段的一端,第二压缩结构的内部通过第二轴承结构与中间段 的内部相连通。
本申请提出的压缩机,包括壳体、定子结构、转子结构、第一轴承结构、第二轴承结构、第一压缩结构和第二压缩结构,其中,定子结构、第一轴承结构和第二轴承结构设置在壳体内,具体地,沿壳体的轴向,右壳体的一端到另一端分为三个部分,即第一段、中间段和第二段,中间段位于第一段和第二段之间,其中,定子结构位于中间段,第一轴承结构位于第一段,第二轴承结构位于第二段,进而转子结构安装在第一轴承结构和第二轴承结构上,并与定子结构相配合,并且,在壳体的两端分别安装于第一压缩结构和第二压缩结构,即第一压缩结构安装于第一段,第二压缩结构安装于第二段。
其中,第一压缩结构和壳体内部相连通,进而在第一压缩结构压缩冷媒时,会向壳体内部漏气,具体地,向第一段的内部漏气,而第一段内设置有第一轴承结构,因此,由第一压缩结构进入壳体的冷媒可以冷却第一轴承结构。并且,由于第一轴承结构可以连通第一压缩结构和中间段的内部空间,因此,进入第一段的冷媒可经过第一轴承结构进入中间段,从而提升对第一轴承结构的冷却效果。
同理,第二压缩结构和壳体内部相连通,进而在第二压缩结构压缩冷媒时,会向壳体内部漏气,具体地,向第二段的内部漏气,而第二段内设置有第二轴承结构,因此,由第二压缩结构进入壳体的冷媒可以冷却第二轴承结构。并且,由于第二轴承结构可以连通第二压缩结构和中间段的内部空间,因此,进入第二段的冷媒可经过第二轴承结构进入中间段,从而提升对第二轴承结构的冷却效果。
并且,在中间段上设置有第一通孔和第二通孔,第一通孔可以连通壳体的内部和外部,第二通孔也可以连通壳体的内部和外部,进而可以将第一通孔作为冷媒的进入口,将第二通孔作为冷媒的排出口,进而可以通过第一通孔通入冷媒,冷却定子结构和转子结构。
进一步地,右第一压缩结构和第二压缩结构进入中间段内部的冷媒也通过第二通孔排出。
如上,本申请提供的压缩机,定子结构和转子结构是由第一通孔进入 冷媒进行冷却,而第一轴承结构是由第一压缩结构进入冷媒进行冷却,第二轴承结构是由第二压缩结构进入冷媒进行冷却,因此,三段式的分别冷却的方式,可以提供更佳的制冷效果,且每一个单独的制冷部分无需过大的冷媒流量,进而降低了冷媒对定子结构、转子结构、第一轴承结构和第二轴承结构的冲击,保证了压缩机运行的稳定性,并且,在中间段只有第一通孔和第二通孔两种连通结构,其结构简单,易于生产。
另外,根据本申请提供的上述技术方案中的压缩机,还可以具有如下附加技术特征:
在上述技术方案的基础上,进一步地,定子结构包括:主体,主体包括相连通第三通孔和第四通孔,第三通孔沿着主体的轴向设置,转子结构穿设于第三通孔,第四通孔沿着主体的径向设置。
在该技术方案中,定子结构包括主体和设置在主体上的第三通孔和第四通孔,第三通孔沿主体的轴向设置,第四通孔沿主体的径向设置,其中,第三通孔和第四通孔相连通,进而在通过第一通孔向壳体内输送冷媒时,一部分冷媒会通过第四通孔进入第三通孔,从而直接冷却定子结构的内部和转子结构,进而提升对定子结构和转子结构的冷却效果。
在上述任一技术方案的基础上,进一步地,第四通孔的数量为一个或多个,在第四通孔的数量为多个的情况下,多个第四通孔均布于主体。
在该技术方案中,通孔的数量可以是一个或多个,可以根据定子的体积,或实际需要,设置第四通孔的数量,从而达到更好的冷却效果,并且,在第四通孔的数量为多个时,多个第四通孔均布于主体,从而达到均匀冷却的效果,避免出现局部温度过高的情况。
在上述任一技术方案的基础上,进一步地,沿主体的轴向,第四通孔位于主体的中部位置。
在该技术方案中,沿主体的轴向,第四通孔位于主体的中部位置,从而可以对转子结构沿轴向的两侧达到均匀冷却的目的,并且,两侧冷媒的行程均在合理范围,从而避免出现转子结构单侧温度过高的情况,提升制冷效果。
在上述任一技术方案的基础上,进一步地,中间段的内壁设置有导流槽。
在该技术方案中,中间段的内部设置有导流槽,从而使得冷媒可以沿着相应的路径运动,从而达到更好的冷却效果。
在上述任一技术方案的基础上,进一步地,第二通孔的数量为两个,导流槽包括:第一导流结构,呈螺旋状设于中间段内,与第一通孔相连通;第二导流结构,呈螺旋状设于中间段内,与第一通孔相连通。
在该技术方案中,导流槽包括第一导流结构和第二导流结构,两个导流结构分别在第一通孔的两侧形成螺旋状,从而实现定子结构由中部位置到两侧的冷却,并且,由于是螺旋结构,进而可以对整个定子结构的外侧均与冷媒接触,并且,延长冷媒和定子结构的接触时间,从而更好地带走定子结构的热量,实现更好的冷却效果。
在上述任一技术方案的基础上,进一步地,还包括:至少一个第一挡筋和至少一个第二挡筋,第一挡筋与导流槽的一侧侧壁相连接,第二挡筋与导流槽的另一侧侧壁相连接,沿壳体的周向,第一挡筋和第二挡筋依次交错地设于导流槽。
在该技术方案中,导流槽中设置有第一挡筋和第二挡筋,并且,两者一个与导流槽的一侧侧壁相连接,另一个与导流槽的另一侧侧壁相连接,两者交错的设置,形成弯折状的流动空间,从而延长冷媒的流动路径,增加冷媒与定子结构的接触时间从而更好地带走定子结构的热量,实现更好的冷却效果。
在上述任一技术方案的基础上,进一步地,导流槽呈环形结构,环绕于中间段的内壁。
在该技术方案中,导流槽环绕在中间段的内壁,从而使得整个定子结构的周侧均能得到冷媒的冷却,进而提升冷却效果。
在上述任一技术方案的基础上,进一步地,沿壳体的轴向,第一通孔位于中间段的中部位置,并与导流槽相连通,第二通孔的数量为两个,分别设置在中间段的两侧位置,并与导流槽相连通。
在该技术方案中,沿主体的轴向,第一通孔位于中间段的中部位置,从而可以对定子结构沿轴向的两侧达到均匀冷却的目的,并且,两侧冷媒的行程均在合理范围,从而避免出现转子结构单侧温度过高的情况,提升 制冷效果,而在第一通孔两侧设置的第二通孔,可以快速地排出对压缩机进行冷却后的冷媒,以确保冷媒的循环效果,提升对压缩机的冷却效果。
在上述任一技术方案的基础上,进一步地,压缩机为卧式压缩机,导流槽的两侧侧壁均设置连通口,导流口低于导流槽外径的三分之一;连通口高于导流槽外径的三分之二。
在该技术方案中,压缩机为卧式压缩机,导流口低于导流槽外径的三分之一,从而冷媒的进入方式是由下部进入,连通口高于导流槽外径的三分之二,从而冷媒的排出方式是由上部排出,进而下端进入上端排出的设计,为克服重力,冷媒会在导流槽内流动更长的时间,并且,也可以降低冷媒在壳体内断流动时断流的可能,从而提升冷却效果。
在上述任一技术方案的基础上,进一步地,在上述任一技术方案的基础上,进一步地,第一压缩结构包括:第一压缩腔室和第一通道,第一通道连通第一压缩腔室和壳体内部;第二压缩结构包括:第二压缩腔室和第二通道,第二通道连通第二压缩腔室和壳体内部。
在该实施例中,第一压缩结构包括第一压缩腔室和第一通道,第一压缩腔室内可进行冷媒的压缩,并且,可以通过第一通道泄漏进入壳体内部,从而在压缩冷媒时,冷媒可以由第一通道泄漏进入壳体内,从而实现对第一轴承结构的冷却。
第二压缩结构包括第二压缩腔室和第二通道,第二压缩腔室内可进行冷媒的压缩,并且,可以通过第二通道泄漏进入壳体内部,从而在压缩冷媒时,冷媒可以由第二通道泄漏进入壳体内,从而实现对第二轴承结构的冷却。
在上述任一技术方案的基础上,进一步地,第一轴承结构为电磁轴承结构,第二轴承结构为电磁轴承结构。
在该技术方案中,第一轴承结构和第二轴承结构为电磁轴承结构,而电磁轴承结构摩擦力低,转速快,并且,电磁轴承结构的空隙可以供冷媒流过,提升对第一轴承结构和第二轴承结构的冷却效果。
在上述任一技术方案的基础上,进一步地,还包括:连通管,连通第一压缩结构和第二压缩结构。
在该技术方案中,第一压缩结构和第二压缩结构通过连通管相连通,进而 实现二级压缩,提升压缩机的压缩效果。
根据本申请的第二方面,本申请提出了一种制冷***,包括:如上述技术方案中任一项提供的压缩机。
本申请提出的制冷***,因包括如上述技术方案中任一项提供的压缩机,因此,具有如上述技术方案中任一项提供的压缩机的全部的有益效果,在此不再一一陈述。
在上述技术方案的基础上,进一步地,还包括:蒸发器,与压缩机的第一压缩结构和第二通孔相连接;冷凝器,与第一通孔和第二压缩结构相连接。
在该技术方案中,制冷设备还包括蒸发器和冷凝器,蒸发器排出的气态冷媒由第一压缩结构和第二压缩结构进行压缩,并泄漏进入壳体对压缩机进行冷却,并且,最终由第二压缩结构排出的冷媒进入冷凝器。
而冷凝器排出的液体冷媒通过第一通孔进入壳体,在对压缩机进行冷却后,形成气态冷媒进入蒸发器。
进而在制冷***中,在制冷***换热的同时,实现对压缩机的冷却。
根据本申请的第三方面,本申请提出了一种制冷设备,包括:如上述技术方案中任一项提出的压缩机;或如上述技术方案中任一项提出的制冷***。
本申请提出的制冷设备,因包括如上述技术方案中任一项提供的压缩机或如上述技术方案中任一项提供的制冷***,因此,具有如上述技术方案中任一项提供的压缩机或如上述技术方案中任一项提供的制冷***的全部的有益效果,在此不再一一陈述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出本申请一个实施例提供的一个压缩机的结构示意图;
图2示出本申请一个实施例提供的另一个压缩机的结构示意图;
图3示出本申请一个实施例提供的压缩机的剖视图;
图4示出本申请一个实施例提供的一个压缩机的剖视图;
图5示出本申请一个实施例提供的另一个压缩机的剖视图;
图6示出本申请一个实施例提供的再一个压缩机的剖视图。
其中,图1至图6中附图标记与部件名称之间的对应关系为:
100压缩机,110壳体,112第一段,114中间段,1142第一通孔,1144第二通孔,116第二段,118导流槽,1182第一导流结构,1184第二导流结构,1186第一挡筋,1188第二挡筋,1190第一连通口,1192第二连通口,120定子结构,124第三通孔,126第四通孔,130转子结构,140第一轴承结构,150第二轴承结构,160第一压缩结构,162第一安装部,1622第一安装板,1624第一轴套,164第一叶轮,166第一压缩主体,1662第一压缩腔室,168第一通道,170第二压缩结构,172第二安装部,1722第二安装板,1724第二轴套,174第二叶轮,176第二压缩主体,1762第二压缩腔室,178第二通道,180连通管。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图6来描述根据本申请一些实施例提供的压缩机100、制冷***和制冷设备。
实施例1:
如图1、图2和图3所示,本申请提出了一种压缩机100,包括壳体110、定子结构120、转子结构130、第一轴承结构140、第二轴承结构150、第一压缩结构160和第二压缩结构170。
转子结构130和定子结构120相适配,在定子结构120通电时,产生磁场,进而驱动转子结构130转动,并且,定子结构120安装于内部,转 子结构130通过第一轴承结构140和第二轴承结构150安装于壳体110内部,第一压缩结构160设置在壳体110的一端,第二压缩结构170设置在壳体110的另一端。
具体地,沿着壳体110的轴向,壳体110包括第一段112、中间段114和第二段116,中间段114位于第一段112和第二段116之间,定子安装于中间段114内,第一轴承结构140安装于第一段112内,第一压缩结构160与第一段112相连接,第二轴承结构150安装于第二段116,第二压缩结构170与第二段116相连接。
进一步地,在中间段114上,设置有第一通孔1142进而第二通孔1144,第一通孔1142可以连通壳体110的内部和外部,第二通孔1144可以连通壳体110的内部和外部,进而可以通过第一通孔1142向壳体110内输入冷媒,再由第二通孔1144排出冷媒,实现冷媒的循环,实现对定子结构120和转子结构130的持续冷却。
进一步地,第一压缩结构160和第一段112相连通,从而在第一压缩结构160执行压缩冷媒作业时,有一部分冷媒会泄漏进入第一段112内对第一轴承结构140进行冷却,并且,沿着第一轴承结构140的轴向,第一轴承结构140上设置有第一流道,从而进入第一段112的冷媒会通过第一流道,从而冷却第一轴承结构140,并最终由第一流道排入到中间段114,再由第二通孔1144排出。
第二压缩结构170和第二段116相连通,从而在第二压缩结构170执行压缩冷媒作业时,有一部分冷媒会泄漏进入第二段116内对第二轴承结构150进行冷却,并且,沿着第二轴承结构150的轴向,第二轴承结构150上设置有第二流道,从而进入第二段116的冷媒会通过第二流道,从而冷却第二轴承结构150,并最终由第二流道排入到中间段114,再由第二通孔1144排出。
本申请提出的压缩机100,包括壳体110、定子结构120、转子结构130、第一轴承结构140、第二轴承结构150、第一压缩结构160和第二压缩结构170,其中,定子结构120、第一轴承结构140和第二轴承结构150设置在壳体110内,具体地,沿壳体110的轴向,右壳体110的一端到另一端分为三个部分,即第一段112、中间段114和第二段116,中间段114位于第 一段112和第二段116之间,其中,定子结构120位于中间段114,第一轴承结构140位于第一段112,第二轴承结构150位于第二段116,进而转子结构130安装在第一轴承结构140和第二轴承结构150上,并与定子结构120相配合,并且,在壳体110的两端分别安装于第一压缩结构160和第二压缩结构170,即第一压缩结构160安装于第一段112,第二压缩结构170安装于第二段116。
其中,第一压缩结构160和壳体110内部相连通,进而在第一压缩结构160压缩冷媒时,会向壳体110内部漏气,具体地,向第一段112的内部漏气,而第一段112内设置有第一轴承结构140,因此,由第一压缩结构160进入壳体110的冷媒可以冷却第一轴承结构140。并且,由于第一轴承结构140可以连通第一压缩结构160和中间段114的内部空间,因此,进入第一段112的冷媒可经过第一轴承结构140进入中间段114,从而提升对第一轴承结构140的冷却效果。
同理,第二压缩结构170和壳体110内部相连通,进而在第二压缩结构170压缩冷媒时,会向壳体110内部漏气,具体地,向第二段116的内部漏气,而第二段116内设置有第二轴承结构150,因此,由第二压缩结构170进入壳体110的冷媒可以冷却第二轴承结构150。并且,由于第二轴承结构150可以连通第二压缩结构170和中间段114的内部空间,因此,进入第二段116的冷媒可经过第二轴承结构150进入中间段114,从而提升对第二轴承结构150的冷却效果。
并且,在中间段114上设置有第一通孔1142和第二通孔1144,第一通孔1142可以连通壳体110的内部和外部,第二通孔1144也可以连通壳体110的内部和外部,进而可以将第一通孔1142作为冷媒的进入口,将第二通孔1144作为冷媒的排出口,进而可以通过第一通孔1142通入冷媒,冷却定子结构120和转子结构130。
进一步地,右第一压缩结构160和第二压缩结构170进入中间段114内部的冷媒也通过第二通孔1144排出。
如上,本申请提供的压缩机100,定子结构120和转子结构130是由第一通孔1142进入冷媒进行冷却,而第一轴承结构140是由第一压缩结构 160进入冷媒进行冷却,第二轴承结构150是由第二压缩结构170进入冷媒进行冷却,因此,三段式的分别冷却的方式,可以提供更佳的制冷效果,且每一个单独的制冷部分无需过大的冷媒流量,进而降低了冷媒对定子结构120、转子结构130、第一轴承结构140和第二轴承结构150的冲击,保证了压缩机100运行的稳定性,并且,在中间段114只有第一通孔1142和第二通孔1144两种连通结构,其结构简单,易于生产。
具体地,定子结构120包括定子铁芯和绕组,进而在绕组通电后会产生磁场,从而驱动转子结构130转动,转子结构130包括转子铁芯和磁性件,磁性件被绕组产生的磁场驱动,从而带动转子结构130转动。
实施例2:
如图1、图2和图3所示,在实施例1的基础上,进一步地,定子结构120包括主体,以及设置在主体上的第三通孔124。
在该实施例中,第三通孔124沿着主体的轴向贯穿主体,以供转子结构130与定子结构120的安装配合,即转子结构130可转动地穿设于第三通孔124,并且,定子结构120和转子结构130之间形成气隙。
进一步地,主体上还设置有沿主体的径向设置的第四通孔126,第四通孔126连通第三通孔124,并在主体的周侧上形成开口。
在该实施例中,在通过第一通孔1142向壳体110内输送冷媒时,冷媒可以在壳体110内流动,而定子结构120的主体上设置有第四通孔126,由第一通孔1142进入壳体110内的冷媒,是先接触到定子结构120的外周侧,而第四通孔126在外周侧上具有开口,进而冷媒可以通过第四通孔126向第三通孔124内流动,并流动至定子结构120和转子结构130之间的气隙,进而冷媒可与定子结构120的内部以及定子结构120的内周侧,和转子的外周侧相接处,从而带走定子结构120内周侧,和转子结构130的温度,实现对定子结构120更佳的冷却效果,并且实现对转子结构130更佳的冷却效果。
其中,冷媒在通过第四通孔126时,可在第四通孔126内部带走定子结构120上的热量,从而降低定子结构120的温度。
实施例3:
如图3所示,在实施例2的基础上,进一步地,定子结构120上的第四通孔126的数量可以是一个。
在该实施例中,定子结构120上设置有一个第四通孔126。
定子结构120上的第四通孔126的数量可以是多个,并且,多个第四通孔126均布于定子结构120主体。
具体地,定子结构120上设置有两个第四通孔126,进而两个第四通孔126相对的设置在定子结构120上,两个第四通孔126之间形成的角度近似于180度,或者定子结构120上设置有三个第四通孔126,三个第四通孔126中相邻的两个第四通孔126之间的夹角近似120度,或者定子结构120上设置有四个第四通孔126,四个第四通孔126中相邻的两个第四通孔126之间的夹角近似90度。当然,定子结构120上的第四通孔126的数量也可以根据需要设置5个、6个、7个或8个等等。
进而利用多个第四通孔126可以在不同的位置同时向气隙通入冷媒,进而对转子结构130也可以形成多个位置同时降温的情况,进而提升对定子结构120和转子结构130的冷却效果。
具体地,通孔的数量可以是一个或多个,可以根据定子的体积,或实际需要,设置第四通孔126的数量,从而达到更好的冷却效果,并且,在第四通孔126的数量为多个时,多个第四通孔126均布于主体,从而达到均匀冷却的效果,避免出现局部温度过高的情况。
实施例4:
如图1和图2所示,在实施例2或实施例3的基础上,进一步地,以定子结构120的轴向为基准,第四通孔126设置在定子结构120的主体的中部位置。即第四通孔126设置在定子结构120的主体的轴向高度一半左右的位置。
在该实施例中,沿主体的轴向高度,第四通孔126位于主体的高度一半左右的位置,进而在第四通孔126与主体一端之间的距离,和第四通孔126与主体另一端之间的距离近似或相同,从而可以对第四通孔126两侧的定子结构120和转子结构130都起到相同的冷却效果,使得对整个定子结构120和转子结构130的冷却效果更均匀,避免局部的温度过高,并且, 也使得第四通过到定子结构120和转子结构130两侧的路径均在一个适中的范围,从而可以更好的对定子结构120的端部,和转子结构130进行冷却,提升冷却效果。
实施例5:
如图3、图4、图5和图6所示,在实施例1至实施例4中任一者的基础上,进一步地,壳体110的内壁设置有导流槽118,位于中间段114,并且,第一通孔1142和第二通孔1144均与导流槽118相连通,具体地,定子结构120和壳体110相连接形成导流槽118,导流槽118的侧壁设置有连通口与壳体110内的其他空间相连通。
在该实施例中,中间段114的内壁和定子结构120形成有导流槽118,进而由第一通孔1142进入壳体110内的冷媒,沿着导流槽118提供的流经运动,从而对冷媒的运动方式进行约束,从而可以合理化的设计导流槽118,达到更好的冷却效果。
实施例6:
如图1、图2和图4所示,在实施例5的基础上,进一步地,壳体110上设置有两个第二通孔1144,导流槽118包括第一导流结构1182和第二导流结构1184,沿壳体110的轴向,第一导流结构1182背离第一通孔1142的一侧设置有第一连通口1190,第二导流结构1184背离第一通孔1142的一侧设置有第二连通口1192,第一导流结构1182呈螺旋状的设置在中间段114的内壁,第二导流结构1184呈螺旋状的设置在中间段114的内壁,其中,第一导流结构1182和第二导流结构1184在第一通孔1142处汇聚,即第一导流结构1182和第二导流结构1184分别位于第一通孔1142的两侧,并且,第一导流结构1182还设置有第一连通口1190,并与一个第二通孔1144相连通,第二导流结构1184还设置有第二连通口1192,并与另一个第二通孔1144相连通。具体地,第一通孔1142位置中间段114的中部位置,第一导流结构1182和第二导流结构1184位于第一通孔1142的两侧。
在该实施例中,导流槽118包括第一导流结构1182和第二导流结构1184,两个导流结构分别在第一通孔1142的两侧形成螺旋状,从而实现定子结构120 由中部位置到两侧的冷却,并且,由于是螺旋结构,进而可以对整个定子结构120的外侧均与冷媒接触,并且,延长冷媒和定子结构120的接触时间,从而更好地带走定子结构120的热量,实现更好的冷却效果,并且,最终第一导流结构1182和第二导流结构1184内的冷媒可通过不同的连通口,再由不同的第二通孔1144流出壳体110的内部。
具体地,这样的导流结构,可以缩短冷媒的行程,从而避免再冷媒流动的后半段因已经吸收一定的热量,而导致末端的散热效果底下,使得整个散热效果更均匀。
进一步地,第一导流结构1182的螺旋状可以是单股螺旋,或多股螺旋。第二导流结构1184的螺旋状可以是单股螺旋,或多股螺旋。
实施例7:
如图1、图2和图5所示,在实施例5的基础上,进一步地,在导流槽118内设置有第一挡筋1186和第二挡筋1188,两者交错的设置在导流槽118上。并且,沿壳体110的轴向,第一通孔1142位于导流槽118的中部位置,具体地,壳体110上设置有两个第二通孔1144,沿壳体110的轴向,导流槽118背离第一通孔1142的一侧设置有第一连通口1190,导流槽118背离第一通孔1142的一侧设置有第二连通口1192。具体地,第一通孔1142和连通口之间可以具有多个第一挡筋1186和第二挡筋1188分隔。
具体地,导流槽118环绕整个中间段114,导流槽118形成有底壁、第一侧壁和第二侧壁,第一挡筋1186的数量可以是一个或多个,第二挡筋1188的数量可以是一个或多个,这里以多个为例进行说明。
在第一侧壁上设置有多个第一挡筋1186,第一挡筋1186和第二侧壁相间隔,在第二侧壁上设置有多个第二挡筋1188,第二挡筋1188和第一侧壁相间隔,并且,相邻的第一挡筋1186之间设置有一个第二挡筋1188,相邻的第二挡筋1188之间设置有一个第一挡筋1186,进而形成折弯性的流道结构。
在该实施例中,导流槽118中设置有第一挡筋1186和第二挡筋1188,并且,两者一个与导流槽118的一侧侧壁相连接,另一个与导流槽118的另一侧侧壁相连接,两者交错的设置,形成弯折状的流动空间,从而延长 冷媒的流动路径,增加冷媒与定子结构120的接触时间从而更好地带走定子结构120的热量,实现更好的冷却效果,并且,最终连通口,再由不同的导流槽118中的冷媒可通过第二通孔1144流出壳体110的内部。
具体地,第一挡筋1186和第二挡筋1188的长度可以取值,沿着壳体110的轴向,小于等于导流槽118宽度的十分之一,大于等于导流槽118宽度的二分之一。
实施例8:
如图1、图2和图6所示,在实施例5的基础上,进一步地,导流槽118为一个环形结构,设置在中间段114的内壁。并且,沿壳体110的轴向,第一通孔1142位于导流槽118的中部位置,具体地,壳体110上设置有两个第二通孔1144,沿壳体110的轴向,导流槽118背离第一通孔1142的一侧设置有第一连通口1190,导流槽118背离第一通孔1142的一侧设置有第二连通口1192。
在该实施例中,导流槽118环绕在中间段114的内壁,从而使得整个定子结构120的周侧均能得到冷媒的冷却,进而提升冷却效果。
实施例9:
如图1和图2所示,在实施例1至实施例8中任一者的基础上,进一步地,第一通孔1142具有一个,设置在中间段114的中部位置,即以壳体110的轴向为基准,第一通孔1142位于中间段114高度大致一半的位置,并且,与导流槽118相连通,第二通孔1144具有两个,两个第二通孔1144分别设置在第一通孔1142的两侧,进而实现双向的排出冷媒。
在该实施例中,沿主体的轴向,第一通孔1142位于中间段114的中部位置,从而可以对定子结构120沿轴向的两侧达到均匀冷却的目的,并且,两侧冷媒的行程均在合理范围,从而避免出现转子结构130单侧温度过高的情况,提升制冷效果,而在第一通孔1142两侧设置的第二通孔1144,可以快速地排出对压缩机100进行冷却后的冷媒,以确保冷媒的循环效果,提升对压缩机100的冷却效果。
实施例10:
如图1、图2、图4、图5和图6所示,在实施例1至实施例9中任一者 的基础上,进一步地,在导流槽118的第一侧壁上设置有第一连通口1190,在第二侧壁上设置有第二连通口1192,沿壳体110的径向,第一通孔1142与导流槽118相连通的导流口,和第一连通口1190之间的距离,大于等于三分之一的导流槽118外径的外径,小于等于导流槽118外径的外径。
沿壳体110的径向,第一通孔1142与导流槽118相连通的导流口,和第二连通口1192之间的距离,大于等于三分之一的导流槽118外径的外径,小于等于导流槽118外径的外径。
在该实施例中,沿壳体110的径向,第一通孔1142与导流槽118相连通的导流口,和第一连通口1190之间的距离,大于等于三分之一的导流槽118外径的外径,从而保证由导流口进入壳体110的冷媒在流动足够长的距离后再由第一连通口1190排出,进而提升冷却效果。
沿壳体110的径向,第一通孔1142与导流槽118相连通的导流口,和第二连通口1192之间的距离,大于等于三分之一的导流槽118外径的外径,从而保证由导流口进入壳体110的冷媒在流动足够长的距离后再由第二连通口1192排出,进而提升冷却效果。
并且,第一连通口1190朝向第一段112,第二连通口1192朝向第二段116。通过第一连通口1190排出导流槽118的冷媒可以参与到对定子结构120的端部,以及第一轴承结构140端部的冷却,通过第二连通口1192排出导流槽118的冷媒可以参与到对定子结构120的端部,以及第二轴承结构150端部的冷却。
实施例11:
如图1和图2所示,在实施例10基础上,进一步地,压缩机100为卧式压缩机100,导流口低于导流槽118外径的三分之一;第一连通口1190高于导流槽118外径的三分之二,第二连通口1192高于导流槽118外径的三分之二。
在该实施例中,压缩机100为卧式压缩机100,导流口低于导流槽118外径的三分之一,从而冷媒的进入方式是由下部进入,第一连通口1190高于导流槽118外径的三分之二,从而冷媒的排出方式是由上部排出,进而下端进入上端排出的设计,为克服重力,冷媒会在壳体110内流动更长的时间,并且,也可以降低冷媒在壳体110内断流动时断流的可能,从而提升冷却效果。
压缩机100为卧式压缩机100,导流口低于导流槽118外径的三分之一,从而冷媒的进入方式是由下部进入,第二连通口1192高于导流槽118外径的三分之二,从而冷媒的排出方式是由上部排出,进而下端进入上端排出的设计,为克服重力,冷媒会在壳体110内流动更长的时间,并且,也可以降低冷媒在壳体110内断流动时断流的可能,从而提升冷却效果。
实施例12:
如图1和图2所示,在实施例1至实施例11中任一者的基础上,进一步地,第一压缩结构160包括:第一安装部162,设于壳体110的一端;第一叶轮164,相对于第一安装部162可转动,第一叶轮164和转子结构130的一端穿过第一安装部162相连接,且第一叶轮164和/或转子结构130与第一安装部162之间具有第一通道168;第一压缩主体166,安装于第一安装部162和/或壳体110,第一压缩主体166内设置有第一压缩腔室1662;第二压缩结构170包括:第二安装部172,设于壳体110的另一端;第二叶轮174,相对于第二安装部172可转动,第二叶轮174和转子结构130的另一端穿过第二安装部172相连接,且第二叶轮174和/或转子结构130与第二安装部172之间具有第二通道178;第二压缩主体176,安装于第二安装部172和/或壳体110,第二压缩主体176内设置有第二压缩腔室1762。
在该实施例中,第一压缩结构160包括第一安装部162、第一叶轮164、第一压缩主体166,其中,第一安装部162与壳体110相连接,第一压缩主体166具有第一压缩腔室1662,第一叶轮164可以将在第一压缩腔室1662实现冷媒的压缩,并且,第一安装部162和第一叶轮164和/或转子结构130之间具有第一通道168,从而在压缩冷媒时,冷媒可以由第一通道168泄漏进入第一段112内,从而实现对第一轴承结构140的冷却。
第二压缩结构170包括第二安装部172、第二叶轮174、第二压缩主体176,其中,第二安装部172与壳体110相连接,第二压缩主体176具有第二压缩腔室1762,第二叶轮174可以将在第二压缩腔室1762实现冷媒的压缩,并且,第二安装部172和第二叶轮174和/或转子结构130之间具有第二通道178,从而在压缩冷媒时,冷媒可以由第二通道178泄漏进入第二段116内,从而实现对第二轴承结构150的冷却。
实施例13:
如图1和图2所示,在实施例12的基础上,进一步地,第一安装部162包括:第一安装板1622,与壳体110相连接;第一轴套1624,安装于第一安装板1622,第一叶轮164和/或转子结构130与第一轴套1624之间具有第一通道168;第二安装部172包括:第二安装板1722,与壳体110相连接;第二轴套1724,安装于第二安装板1722,第二叶轮174和/或转子结构130与第二轴套1724之间具有第二通道178。
在该实施例中,第一安装部162包括第一安装板1622和第一轴套1624,第一叶轮164和/或转子结构130与第一轴套1624之间形成第一通道168,从而在压缩冷媒时,冷媒可以由第一通道168泄漏进入第一段112内,从而实现对第一轴承结构140的冷却,并且,第一轴套1624可以增加第一安装部162的使用寿命,降低第一叶轮164转动时的磨损。
第二安装部172包括第二安装板1722和第二轴套1724,第二叶轮174和/或转子结构130与第二轴套1724之间形成第二通道178,从而在压缩冷媒时,冷媒可以由第二通道178泄漏进入第二段116内,从而实现对第二轴承结构150的冷却,并且,第二轴套1724可以增加第二安装部172的使用寿命,降低第二叶轮174转动时的磨损。
具体地,第一轴套1624为第一密封套,且第二轴套1724为第二密封套。
实施例14:
如图1和图2所示,在实施例1至实施例13中任一者的基础上的基础上,进一步地,第一轴承结构140和第二轴承结构150均为电磁轴承结构。
在该实施例中,第一轴承结构140和第二轴承结构150为电磁轴承结构,电磁轴承结构,利用磁力使得内圈处于悬浮状态,进而降低摩擦力,提升转速,并且,电磁轴承结构的空隙可以供冷媒流过,提升对第一轴承结构140和第二轴承结构150的冷却效果。
实施例15:
如图2所示,在实施例1至实施例14中任一者的基础上的基础上,进一步地,在第一压缩和第二压缩结构170之间连接有连通管180。具体地,第一压缩腔室1662与连通管180相连通,进而通过第一叶轮164第一次压 缩的冷媒进入第一压缩腔室1662后,流入第二压缩结构170的第二叶轮174,再经过第二叶轮174的加压,在第二压缩腔室1762内进一步压缩,进而形成二级压缩。具体地,第二压缩结构170内的冷媒可排入冷凝器。
在该实施例中,第一压缩结构160和第二压缩结构170通过连通管180相连通,进而实现二级压缩,提升压缩机100的压缩效果。
具体地,图2、图3、图4、图5和图6中的箭头方向表示冷媒的流向。
如图2所示,蒸发器向第一压缩结构160排气,第一压缩结构160压缩冷媒,并有部分冷媒进入壳体110内对第一轴承结构140进行冷却,该部分冷媒通过第一轴承结构140后,进入中间段114,并可由第二通孔1144排出。第一压缩结构160中的另一部分冷媒通过连接管排向第二压缩结构170结构,依然有一部分冷媒进入壳体110,并对第二轴承结构150进行冷却,该部分冷媒通过第一轴承结构140后,进入中间段114,并可由第二通孔1144排出。第二压缩结构170中的另一部分冷媒排入冷凝器。具体地,由第一压缩结构160和第二压缩结构170进入壳体110内的冷媒为气态冷媒。
冷凝器内的冷媒通过第一通孔1142进入壳体110内,并可通过导流槽118,对定子结构120进冷却,同时,一部分冷媒可通过第四通孔126进入气隙内对定子结构120的内侧和转子结构130的外侧进行冷却,而位于导流槽118另一部分冷媒通过第一连通口1190和第二连通口1192排出导流槽118,并可对第一轴承结构140和第二轴承结构150进行冷却,并且,壳体110内的冷媒最终通过第二通孔1144排入到蒸发器。
如图3所示,进入导流槽118中的冷媒,一部分环绕导流槽118流动,另一部分通过第四通孔126进入气隙。
如图4所示,通过第一通孔1142进入导流槽118的冷媒,分别通过第一导流结构1182和第二导流结构1184,之后由第一连通口1190和第二连通口1192排出导流槽118。
如图5所示,通过第一通孔1142进入导流槽118的冷媒,分别通过经过第一挡筋1186和第二挡筋1188的遮挡,进行折流,之后由第一连通口1190和第二连通口1192排出导流槽118。
如图5所示,通过第一通孔1142进入导流槽118的冷媒,分别通过导流 槽118,之后由第一连通口1190和第二连通口1192排出导流槽118。
实施例16:
本申请提供的压缩机100,包括三通冷媒回路,分别于对定子结构120、转子结构130、第一轴承结构140和第二轴承结构150进行冷却。
定子结构120的冷却:定子结构120外侧与壳体110内侧形成环形的导流槽118,导流槽118供冷媒进入环形导流槽118后,通过环形导流槽118对定子结构120进行冷却,并从连通口从两侧流出冷却定子结构120上的绕组和第一轴承结构140和第二轴承结构150的端部。
转子结构130的冷却:定子结构120设置有第四通孔126,冷媒进入第四通孔126后对转子结构130的表面进行冷却。根据实际发热量,第四通孔126可设置0、1或多个。
第一轴承结构140的冷却:压缩机100的主回路的冷媒气体,通过第一叶轮164后端的密封从第一叶轮164的后侧进入壳体110的内部,经过对第一轴承结构140并对其进行冷却,同时导流槽118中冷却定子结构120的部分冷媒也将同时参与第一轴承结构140的冷却。
第二轴承结构150的冷却:压缩机100的主回路的冷媒气体,通过第二叶轮174后端的密封从第二叶轮174的后侧进入壳体110的内部,经过对第二轴承结构150并对其进行冷却,同时导流槽118中冷却定子结构120的部分冷媒也将同时参与第二轴承结构150的冷却。
具体地,压缩机100为卧式压缩机100,导流槽118左右各布置一个连通口,连通口位置高于环形流道直径2/3以上。
导流槽118具有3种布置方式,螺旋式、折流式和直通式。
定子结构120中设置用于对转子结构130进行冷却的第四通孔126,第四通孔126低于连通口的位置,根据转子结构130发热量的不同,第四通孔126可为0、1或多个。
压缩机100两侧分别设置第一叶轮164和第二叶轮174,通过第一叶轮164后端密封进入壳体110对第一轴承结构140进行冷却,通过第二叶轮174后端密封进行壳体110对第二轴承结构150进行冷却。
实施例17:
本申请提供了一种制冷***,包括:如上述任一实施例提供的压缩机100。
本申请提出的制冷***,因包括如上述任一实施例提供的压缩机100,因此,具有如上述任一实施例提供的压缩机100的全部的有益效果,在此不再一一陈述。
实施例18:
在实施例17的基础上的基础上,进一步地,还包括:蒸发器和冷凝器,蒸发器和压缩机100的第一压缩结构160相连接,还与压缩机100的第二通孔1144相连接;冷凝器与压缩机100的第一通孔1142相连接,还与压缩机100的第二压缩结构170相连接。
在该实施例中,制冷设备还包括蒸发器和冷凝器,蒸发器排出的气态冷媒由第一压缩结构160和第二压缩结构170进行压缩,并泄漏进入壳体110对压缩机100进行冷却,并且,最终由第二压缩结构170排出的冷媒进入冷凝器。
而冷凝器排出的液体冷媒通过第一通孔1142进入壳体110,在对压缩机100进行冷却后,形成气态冷媒进入蒸发器。
进而在制冷***中,在制冷***换热的同时,实现对压缩机100的冷却。
实施例19:
本申请提供了一种制冷设备,包括:如上述任一实施例提供的压缩机100;或如上述任一实施例提供的制冷***。
本申请提供的制冷设备,因包括如上述任一实施例提供的压缩机100或如上述任一实施例提供的制冷***,因此,具有如上述任一实施例提供的压缩机100或如上述任一实施例提供的制冷***的全部的有益效果,在此不再一一陈述。
具体地,制冷设备可以是冰箱或空调器等设备。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种压缩机,其中,包括:
    壳体,所述壳体由一端到另一端包括第一段、中间段和第二段,所述中间段设置有第一通孔和第二通孔,所述第一通孔和所述第二通孔均连通所述壳体内部和外部;
    定子结构,安装于所述壳体内,位于所述中间段;
    转子结构,可转动地穿设于所述定子结构;
    第一轴承结构,安装于所述第一段内;
    第二轴承结构,安装于所述第二段内,且所述转子安装于所述第一轴承结构和所述第二轴承结构;
    第一压缩结构,设于所述第一段背离所述中间段的一端,所述第一压缩结构的内部通过所述第一轴承结构与中间段的内部相连通;
    第二压缩结构,设于所述第二段背离所述中间段的一端,所述第二压缩结构的内部通过第二轴承结构与中间段的内部相连通。
  2. 根据权利要求1所述的压缩机,其中,所述定子结构包括:
    主体,所述主体包括相连通第三通孔和第四通孔,所述第三通孔沿着所述主体的轴向设置,所述转子结构穿设于所述第三通孔,所述第四通孔沿着所述主体的径向设置。
  3. 根据权利要求2所述的压缩机,其中,
    所述第四通孔的数量为一个或多个,在所述第四通孔的数量为多个的情况下,多个所述第四通孔均布于所述主体。
  4. 根据权利要求2所述的压缩机,其中,
    沿所述主体的轴向,所述第四通孔位于所述主体的中部位置。
  5. 根据权利要求1至4中任一项所述的压缩机,其中,
    所述中间段的内壁设置有导流槽。
  6. 根据权利要求5所述的压缩机,其中,所述导流槽包括:
    第一导流结构,呈螺旋状设于所述中间段内,与所述第一通孔相连通;
    第二导流结构,呈螺旋状设于所述中间段内,与所述第一通孔相连通。
  7. 根据权利要求5所述的压缩机,其中,还包括:
    至少一个第一挡筋和至少一个第二挡筋,所述第一挡筋与所述导流槽的一侧侧壁相连接,所述第二挡筋与所述导流槽的另一侧侧壁相连接,沿所述壳体的周向,所述第一挡筋和所述第二挡筋依次交错地设于所述导流槽。
  8. 根据权利要求5所述的压缩机,其中,
    所述导流槽呈环形结构,环绕于所述中间段的内壁。
  9. 根据权利要求5所述的压缩机,其中,
    沿所述壳体的轴向,所述第一通孔位于所述中间段的中部位置,并与所述导流槽相连通,所述第二通孔的数量为两个,分别设置在所述中间段的两侧位置,并与所述导流槽相连通。
  10. 根据权利要求5所述的压缩机,其中,所述压缩机为卧式压缩机,所述导流槽的两侧侧壁均设置连通口,
    所述导流口低于所述导流槽外径的三分之一;
    所述连通口高于所述导流槽外径的三分之二。
  11. 根据权利要求1至3中任一项所述的压缩机,其中,
    所述第一压缩结构包括:
    第一压缩腔室和第一通道,所述第一通道连通所述第一压缩腔室和壳体内部;
    所述第二压缩结构包括:
    第二压缩腔室和第二通道,所述第二通道连通所述第二压缩腔室和壳体内部。
  12. 根据权利要求1至3中任一项所述的压缩机,其中,
    所述第一轴承结构为电磁轴承结构,所述第二轴承结构为电磁轴承结构。
  13. 根据权利要求1至3中任一项所述的压缩机,其中,还包括:
    连通管,连通所述第一压缩结构和所述第二压缩结构。
  14. 一种制冷***,其中,包括:
    如权利要求1至13中任一项所述的压缩机。
  15. 根据权利要求14所述的制冷***,其中,还包括:
    蒸发器,与所述压缩机的第一压缩结构和所述压缩机的第二通孔相连接;
    冷凝器,与所述压缩机的第一通孔和所述压缩机的第二压缩结构相连接。
  16. 一种制冷设备,其中,包括:
    如权利要求1至13中任一项所述的压缩机;或
    如权利要求14或15所述的制冷***。
PCT/CN2021/121780 2021-05-11 2021-09-29 压缩机、制冷***和制冷设备 WO2022237057A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3216321A CA3216321A1 (en) 2021-05-11 2021-09-29 Compressor, refrigeration system, and refrigeration apparatus
EP21941623.7A EP4307536A1 (en) 2021-05-11 2021-09-29 Compressor, refrigeration system and refrigeration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110508906.4 2021-05-11
CN202110508906.4A CN115324912A (zh) 2021-05-11 2021-05-11 压缩机、制冷***和制冷设备

Publications (1)

Publication Number Publication Date
WO2022237057A1 true WO2022237057A1 (zh) 2022-11-17

Family

ID=83912745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121780 WO2022237057A1 (zh) 2021-05-11 2021-09-29 压缩机、制冷***和制冷设备

Country Status (4)

Country Link
EP (1) EP4307536A1 (zh)
CN (1) CN115324912A (zh)
CA (1) CA3216321A1 (zh)
WO (1) WO2022237057A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016367A (zh) * 2011-09-26 2013-04-03 珠海格力电器股份有限公司 离心压缩机
JP2013207864A (ja) * 2012-03-27 2013-10-07 Taiyo Nippon Sanso Corp 圧縮機
US20150008771A1 (en) * 2013-07-05 2015-01-08 Korea Institute Of Science And Technology Motor having cooling means
CN105422479A (zh) * 2015-12-16 2016-03-23 重庆美的通用制冷设备有限公司 离心压缩机和具有其的制冷***
CN111486109A (zh) * 2019-01-29 2020-08-04 青岛海尔智能技术研发有限公司 离心压缩机、热泵***
CN212337669U (zh) * 2020-08-06 2021-01-12 珠海格力电器股份有限公司 压缩机、燃料电池***和车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138962A (ja) * 2000-11-02 2002-05-17 Ishikawajima Harima Heavy Ind Co Ltd 圧縮機駆動用高速モータとその冷却方法
TWI375385B (en) * 2008-12-09 2012-10-21 Ind Tech Res Inst Motor coil cooling apparatus for centrifugal refrigerant compressor
KR101552124B1 (ko) * 2013-11-28 2015-09-11 포스코에너지 주식회사 일체형 밀봉 펌프
CN207647779U (zh) * 2017-11-08 2018-07-24 珠海格力电器股份有限公司 压缩机及具有其的空调***
JP7204524B2 (ja) * 2019-02-25 2023-01-16 三菱重工コンプレッサ株式会社 圧縮機
CN211397824U (zh) * 2020-01-09 2020-09-01 珠海格力电器股份有限公司 压缩机及空调
CN212672115U (zh) * 2020-01-16 2021-03-09 江苏乐科节能科技股份有限公司 一种全封闭式双级离心水蒸气压缩机的自冷却***
CN111810420A (zh) * 2020-08-06 2020-10-23 珠海格力电器股份有限公司 压缩机、燃料电池***和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016367A (zh) * 2011-09-26 2013-04-03 珠海格力电器股份有限公司 离心压缩机
JP2013207864A (ja) * 2012-03-27 2013-10-07 Taiyo Nippon Sanso Corp 圧縮機
US20150008771A1 (en) * 2013-07-05 2015-01-08 Korea Institute Of Science And Technology Motor having cooling means
CN105422479A (zh) * 2015-12-16 2016-03-23 重庆美的通用制冷设备有限公司 离心压缩机和具有其的制冷***
CN111486109A (zh) * 2019-01-29 2020-08-04 青岛海尔智能技术研发有限公司 离心压缩机、热泵***
CN212337669U (zh) * 2020-08-06 2021-01-12 珠海格力电器股份有限公司 压缩机、燃料电池***和车辆

Also Published As

Publication number Publication date
CN115324912A (zh) 2022-11-11
CA3216321A1 (en) 2022-11-17
EP4307536A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
CN107664143B (zh) 压缩机及具有其的空调器
EP3628871B1 (en) Compressor, air conditioner, and method for assembling compressor
US11286944B2 (en) Centrifugal compressor and method for manufacturing centrifugal compressor
US20160177954A1 (en) Multi-stage centrifugal compressor and air conditioning unit
CN113123983A (zh) 一种具有双冷却***的燃料电池用两级高速离心空压机
KR20040084978A (ko) 냉매 사이클 장치
JP2012026446A (ja) スクロール圧縮機
WO2022001019A1 (zh) 压缩机和制冷装置
WO2022237057A1 (zh) 压缩机、制冷***和制冷设备
WO2022154098A1 (ja) 回転機械及びそれを用いた冷凍装置
CN111878391B (zh) 一种压缩机、控制方法和空调器
JP7267798B2 (ja) 圧縮機及びシェルアンドチューブ型熱交換器
CN110939573A (zh) 压缩泵体冷却结构、压缩机
CN107560041B (zh) 冷水机组
CN218598360U (zh) 涡旋压缩机和空调器
CN219774377U (zh) 离心式压缩机及制冷***
CN216056688U (zh) 一种压缩机及具有该压缩机的空调和汽车
CN218906851U (zh) 一种基于气浮离心压缩机的汽车热管理装置
US11973381B2 (en) Fluid machine
CN216490115U (zh) 一种水冷式永磁滚筒电机
CN111102191B (zh) 一种压缩机、空调***和控制方法
WO2021131647A1 (ja) 回転機械及びそれを用いた冷凍装置
CN201590695U (zh) 一种涡旋压缩机及其电机转子
CN116480598A (zh) 一种离心式压缩机
KR20240104619A (ko) 극저온 초전도 회전기의 커플링부 씰링 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941623

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021941623

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021941623

Country of ref document: EP

Effective date: 20231010

WWE Wipo information: entry into national phase

Ref document number: 3216321

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202327073015

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE