WO2022236893A1 - 一种滑坡深部多集成传感器布设设备及布设方法 - Google Patents

一种滑坡深部多集成传感器布设设备及布设方法 Download PDF

Info

Publication number
WO2022236893A1
WO2022236893A1 PCT/CN2021/098093 CN2021098093W WO2022236893A1 WO 2022236893 A1 WO2022236893 A1 WO 2022236893A1 CN 2021098093 W CN2021098093 W CN 2021098093W WO 2022236893 A1 WO2022236893 A1 WO 2022236893A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
monitoring
rod
casing
pressing
Prior art date
Application number
PCT/CN2021/098093
Other languages
English (en)
French (fr)
Inventor
唐辉明
张俊荣
张永权
李长冬
Original Assignee
中国地质大学(武汉)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国地质大学(武汉) filed Critical 中国地质大学(武汉)
Priority to US17/367,590 priority Critical patent/US11501623B1/en
Publication of WO2022236893A1 publication Critical patent/WO2022236893A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable

Definitions

  • the invention relates to the technical field of geological disaster monitoring and prevention, in particular to a multi-integrated sensor layout equipment and a layout method in the deep part of a landslide.
  • Landslides are one of the most widely distributed and frequently occurring geological disasters in nature, posing a huge threat to human living environment, natural resources, and water conservancy projects. According to reports, since the Three Gorges Reservoir was impounded for the first time in 2003, a large number of ancient landslides have re-slid under the periodic water level fluctuations and rainfall of the reservoir, which has great potential hazards. The deformation and failure of landslides is a dynamic spatio-temporal evolution process. The basic characteristics of landslides are highly correlated and matched with the evolution stage and evolution model, and the evolution process is often accompanied by multi-field coupling characteristics.
  • embodiments of the present invention provide a multi-integrated sensor deployment device and a deployment method in the deep part of a landslide.
  • An embodiment of the present invention provides a multi-integrated sensor layout equipment in the deep part of a landslide, including:
  • the penetrating monitoring body includes a casing and a sensor penetrating shear.
  • the casing extends up and down and is used to be lowered into the borehole.
  • the side wall of the casing is provided with an installation hole extending up and down.
  • the side walls opposite to the mounting holes are provided with vertical grooves extending up and down;
  • the sensor penetrating scissors are used to obtain the monitoring data of the sliding body.
  • the sensor penetrating scissors are arranged in the shape of scissors, including a first blade and a second blade connected by a pin shaft, and the first blade and the second blade are The blades are rotated in opposite directions up and down, so that the sensor penetrating scissors have an initial position and a monitoring position; the outer ends of the first blade and the second blade are shearing parts, and the inner ends are pressure receiving parts , the end of the pressure receiving part is located in the casing, the position of the pressure receiving part opposite to the vertical groove is provided with a slider, and the slider slides up and down in the vertical groove;
  • the monitoring body deployment system drives the sensor penetrating shear to move from the initial position to the monitoring position.
  • the monitoring body deployment system includes a traction mechanism and a deployment probe that can be put into the casing, the deployment probe has an upward and downward movable stroke, and the traction mechanism is connected with the deployment probe for Pulling the deployment probe to move up and down;
  • the deployment probe includes a housing, two pressing parts, two first driving mechanisms and a second driving mechanism; each of the pressing parts is movably mounted on each of the first driving mechanisms, and the two pressing parts
  • the part has an avoidance position located inside the pressure receiving part, and pressing positions respectively located on the upper and lower sides of the pressure receiving part; the first driving mechanism moves up and down and is installed on the housing to drive the The pressing part is switched between the avoidance position and the pressing position, the second driving mechanism is fixed on the housing, and drives the first driving mechanism to move up and down toward each other, so as to drive the two pressing parts Rotating in opposite directions, the sensor penetrating scissors move from the initial position to the monitoring position.
  • the deployment probe also includes two connecting rod assemblies, the housing is hollow, the side wall of the housing is penetrated with strip-shaped holes extending up and down, and the second driving mechanism is provided with two one, arranged at intervals in the housing up and down; the connecting rod assembly corresponds to the second driving mechanism one by one, and is located between the two second driving mechanisms, including a bearing box, a first hinge support seat, articulated rod and Y-shaped articulated rod;
  • the load-bearing box is fixed on the second drive mechanism, the two first hinged support seats are located between the two load-bearing boxes, and the distance between the second drive mechanism and the first hinge support bases is are connected through the first drive mechanism;
  • the Y-shaped articulated rod includes a first articulated rod and a protruding rod protruding from the middle of the first articulated rod, one end of the first articulated rod is connected to the The first hinged support base is hinged, and the other end is hinged with the load-bearing box through the hinged rod.
  • the first drive mechanism drives the first hinged support base to move up and down, driving the Y-shaped hinged rod to rotate from the
  • the strip-shaped hole is pierced so that the end of the protruding rod forms the pressing portion, which has an avoidance position inside the pressing portion and pressing positions respectively located on the upper and lower sides of the pressing portion.
  • the jacking mechanism is fixed in the housing, has an output shaft radially extending along the housing, the output shaft is opposite to the pin shaft, and the jacking mechanism The output shaft is driven to move radially along the housing, so as to push the pin to move in the direction of the sliding body.
  • the load-bearing box is hollow, and the side of the load-bearing box facing the hinge rod is provided with perforations.
  • the connecting rod assembly also includes a return spring and a moving rod, and one end of the moving rod is connected to the hinge rod.
  • the first hinged support seat is fixedly connected, and the other end passes through the perforation and is located in the load-bearing box.
  • a reset spring is sheathed on the periphery of the moving rod, and the upper and lower ends of the reset spring are respectively connected to the first hinged support.
  • the seat and the load-bearing box are opposed to each other, and the first driving mechanism is installed in the load-bearing box to drive the moving rod to move up and down.
  • the first drive mechanism includes a drive motor and a pull wire, one end of the pull wire is wound on the rotation shaft of the drive motor, and the other end is connected to one end of the moving rod located in the bearing box.
  • the middle part of the vertical groove protrudes toward the sliding body to form a horizontal groove, the horizontal groove extends radially along the sleeve, and the pin shaft is located in the horizontal groove.
  • the sleeve includes a plurality of first sleeves and a plurality of second sleeves, the first sleeves and the second sleeves are interconnected in turn, and each of the first sleeves is provided with the mounting holes.
  • monitoring equipment is also included, and the monitoring equipment includes a data acquisition unit, and the data acquisition unit communicates wirelessly with the sensor penetrating shear, and is used for lowering into the casing to receive the monitoring data.
  • Embodiments of the present invention also provide a layout method, using the above-mentioned multi-integrated sensor layout equipment in the deep part of the landslide, and including the following steps:
  • the first driving mechanism drives the pressing part to switch between the avoidance position and the pressing position
  • the second driving mechanism drives the first A driving mechanism moves up and down toward each other to drive the two pressure-receiving parts to rotate relative to each other, so that the sensor penetrating shear moves from the initial position to the monitoring position, and the sensor penetrating shear enters the sliding body outside the borehole.
  • step S1 is reversed to restore the layout probe to its original position.
  • the beneficial effect brought by the technical solution provided by the embodiment of the present invention is: the scissors-shaped sensor is installed on the casing to penetrate into the shear, and the shearing part cuts into the soil body, the force is balanced, and the requirements for the casing are small.
  • the laying device is designed for local static force application, with static force balance, not easy to fold, low requirements for pull ropes, and no entanglement.
  • the static shearing method reduces the disturbance of the monitoring environment. At the same time, this method increases the scope of the layout outside the hole, which can better approach the original underground environment and measure more accurate landslide underground multi-field information.
  • the wireless transmission and wireless power supply of the probe and monitoring equipment outside the borehole can be realized, and the monitoring results are closer to the real underground environment.
  • Fig. 1 is a structural schematic diagram of an embodiment of the landslide deep multi-integrated sensor laying equipment provided by the present invention
  • Fig. 2 is a schematic structural view of the penetrating monitoring body (the sensor penetrating shear is located in the initial position) in Fig. 1;
  • Fig. 3 is a cross-sectional schematic diagram of the penetrating monitoring body (the sensor penetrating shear is located at the monitoring position) in Fig. 2;
  • Fig. 4 is a schematic diagram of the local structure of the penetrating monitoring body (the sensor penetrating shear is located in the initial position) in Fig. 2;
  • Fig. 5 is a schematic structural view of the arrangement of probes in Fig. 1;
  • Fig. 6 is a schematic structural view of the upper hydraulic jacking device in Fig. 1;
  • Fig. 7 is a partial cross-sectional schematic diagram of the lower hydraulic jacking device in Fig. 1;
  • Fig. 8 is an enlarged schematic diagram of place A in Fig. 7;
  • Fig. 9 is a schematic diagram of the cross-sectional structure of the probe arrangement in Fig. 1;
  • Fig. 10 is a schematic structural diagram of the monitoring equipment of an embodiment of the multi-integrated sensor deployment equipment for deep landslide provided by the present invention.
  • Fig. 11 is a flow chart of an embodiment of a layout method provided by the present invention.
  • penetrating monitoring body 1 penetrating monitoring body 1, first bushing 101, mounting hole 1011, second bushing 102, T-shaped chute 1022, coupling coil outside the pipe 103, sensor penetrating shear 104, first blade 1041, the second Two blades 1042, pin shaft 1043, monitoring hole 1044, shearing portion 1045, pressure receiving portion 1046, sensor circuit board 1047, slider 1048, waterproof wire 105, monitoring body layout system 2, layout probe 21, upper pulley device 211, The lower pulley device 212, the housing 213, the strip hole 2131, the upper hydraulic jacking device 214, the second drive mechanism 2141, the bearing box 2142, the waterproof motor 2143, the second hinged support base 2144, the first hinged support base 2145, Hinged rod 2146, Y-shaped hinged rod 2147, first hinged rod 2147a, protruding rod 2147b, return spring 2148, moving rod 2149, jacking mechanism 215, output shaft 215a, lower hydraulic jacking device 216, win
  • the embodiment of the present invention provides a multi-integrated sensor deployment equipment in the deep part of a landslide, including a penetrating monitoring body 1 and a monitoring body deployment system 2 .
  • the penetrating monitoring body 1 includes a casing and a sensor penetrating shear 104, the casing extending vertically for lowering into a borehole.
  • a mounting hole 1011 extending vertically is formed through the side wall of the sleeve, and vertical grooves extending vertically are formed on the opposite side walls of the mounting hole 1011 .
  • the bushing is provided with a plurality of mounting holes 1011 spaced up and down, and each of the mounting holes 1011 is installed with the sensor penetrating shears 104, which can increase the number of sensors laid out.
  • the sleeve includes a plurality of first sleeves 101 and a plurality of second sleeves 102, the first sleeves 101 and the second sleeves 102 are sequentially interconnected, and the first sleeves 101
  • the material is stainless steel
  • the second casing 102 is a common casing
  • the quantity of the first casing 101 and the second casing 102 is determined according to the length of the drilled hole.
  • Each of the first sleeves 101 is provided with the installation holes 1011, and the first sleeves 101 are provided with a plurality of the installation holes 1011 at intervals in the circumferential direction.
  • Four mounting holes 1011 are evenly arranged around the circumference.
  • the sensor penetrating scissors 104 are used to obtain the monitoring data of the sliding body 7.
  • the sensor penetrating scissors 104 are arranged in the shape of scissors, and include a first blade 1041 and a second blade 1042 connected by a pin shaft 1043.
  • the blade 1041 and the second blade 1042 rotate towards each other or rotate back and forth up and down, so that the sensor penetrates into the scissors 104 to have an initial position and a monitoring position;
  • the outer ends of the first blade 1041 and the second blade 1042 It is a shearing part 1045, and the inner end is a pressure receiving part 1046.
  • the shearing part 1045 is sharpened so as to shear the sliding body 7.
  • the end of the pressure receiving part 1046 is located in the sleeve, and the pressure receiving part 1046 is connected to the pressure receiving part 1046.
  • a slide block 1048 is provided at a position opposite to the vertical slot, and the slide block 1048 slides up and down in the vertical slot.
  • the slider 1048 is arranged in a cylindrical shape and is limited in the vertical groove, so as to realize the vertical sliding of the pressure receiving part 1046 , thereby realizing the shearing action of the sensor penetrating scissors 104 .
  • the sensor penetrating shear 104 also includes a sensor and a sensor circuit board 1047, the sensor is installed on the cutting part 1045, and the cutting part 1045 is provided with a plurality of monitoring holes 1044, and various types of sensors can be installed in the monitoring holes 1044. Sensors, including earth pressure sensors, water content monitoring sensors, seepage sensors, pore water pressure sensors, etc.
  • the sensor circuit board 1047 is installed on the sensor penetrating shear 104 (specifically, on the pressure receiving part 1046 ) for realizing the processing of sensor monitoring information, and the surface of the sensor circuit board 1047 is treated with waterproof and sealing.
  • the middle part of the vertical groove protrudes toward the sliding body 7 to form a horizontal groove, and the horizontal groove extends radially along the casing, and the pin shaft 1043 is located in the horizontal groove to realize the penetration of the sensor into the shear.
  • the vertical groove and the horizontal groove form a T-shaped slide groove 1022.
  • the cross-section of the vertical groove and the horizontal groove is square, and the horizontal groove and the pin shaft 1043 on the cross-section The size is larger than the size of the vertical slot on the cross section, so that the pin shaft 1043 cannot enter the vertical slot, preventing the sensor penetrating scissors 104 from sliding into the inside of the casing.
  • the monitoring body layout system 2 drives the sensor penetrating shear 104 to move from the initial position to the monitoring position.
  • the monitoring body layout system 2 can be two hydraulic cylinders fixed on the casing.
  • the pressing parts 1046 are opposed to drive the pressing parts 1046 to move toward each other.
  • the monitoring body deployment system 2 includes a traction mechanism and a deployment probe 21 that can be put into the casing.
  • the deployment probe 21 slides up and down (the guide grooves of the first sleeve 101 and the second sleeve 102 are connected), and the traction mechanism is connected with the deployment probe 21 to pull the deployment probe 21 to move up and down.
  • the traction mechanism includes a hoist 22 , a control cable 23 , a marking ring 24 , a hydraulic oil pump 25 , a control system 26 , a power supply 27 , and a hydraulic oil pipe 28 .
  • the layout probe 21 is connected to the hoist 22 through the control cable 23. Under the control of the control system 26, the hoist 22 pulls the control cable 23 to lower the layout probe 21 into the borehole, and the power supply 27 is the whole body of the monitoring body layout system 2.
  • the hydraulic oil pump 25 is connected with the layout probe 21 through the hydraulic oil pipe 28, and the control cable 23 is equipped with a marking ring 24 every fixed distance, which is used for the control of the upward traction distance, so that when the traction stops each time, the monitoring body layout probe 21 and The position of the sensor penetrating scissors 104 corresponds.
  • the probe 21 is arranged for the static pressure of the sensor penetration scissors 104 to open until the shearing parts 1045 of the first blade 1041 and the second blade 1042 are sheared into the sliding body 7 outside the hole.
  • the deployment probe 21 includes a housing 213, two pressing parts, two first driving mechanisms and a second driving mechanism 2141, the housing 213 is hollow, and the upper and lower ends of the housing 213 are respectively provided with upper pulley devices 211 and the lower pulley device 212, the upper pulley device 211 and the lower pulley device 212 can slide up and down in the guide groove inside the bushing, and play a guiding role in the vertical sliding of the layout probe 21.
  • Each of the pressing parts is movably mounted on each of the first driving mechanisms, and the two pressing parts have an avoidance position located inside the pressing part 1046, and are respectively located on the upper and lower sides of the pressing part 1046.
  • the pressing position; the first driving mechanism is installed on the housing 213 to move up and down, and respectively drives the pressing part to switch between the avoidance position and the pressing position, and the second driving mechanism 2141 is fixed
  • the first driving mechanism is driven to move up and down toward each other, so as to drive the two pressure receiving parts 1046 to rotate toward each other, so that the sensor penetrating scissors 104 move from the initial position to the monitoring position.
  • the second driving mechanism 2141 is a jack connected to the hydraulic oil pump 25 through the hydraulic oil pipe 28 .
  • the deployment probe 21 also includes two connecting rod assemblies, the side wall of the casing 213 is provided with strip-shaped holes 2131 extending upward and downward, and the casing 213 is evenly provided with four strip-shaped holes 2131 around the circumference.
  • the connecting rod assembly is in one-to-one correspondence with the second driving mechanism 2141, and is located between the two second driving mechanisms 2141, including a bearing box 2142, a first hinge support seat 2145, a second hinge support seat 2144, and a hinge rod 2146 and a Y-shaped articulated rod 2147; the bearing box 2142 is fixed on the second driving mechanism 2141, and the bearing box 2142 can move up and down in coordination with the elongation of the jack.
  • the two first hinged support bases 2145 are located between the two bearing boxes 2142, and the second drive mechanism 2141 is connected to the first hinged support base 2145 through the first drive mechanism;
  • the Y-shaped hinged rod 2146 includes a first hinged rod 2147a and a protruding rod 2147b protruding outward from the middle of the first hinged rod 2147a. Shaped setting to prevent side slip when pressing the pressure receiving part 1046.
  • One end of the first hinged rod 2147a is hinged to the first hinged support base 2145, and the other end is hinged to the bearing box 2142 through the hinged lever 2146.
  • the bearing box 2142 is fixed with a second The hinged support base 2144, the hinged rod 2146 is hinged with the second hinged support base 2144, and the hinged rod 2146 and the Y-shaped hinged rod 2147 form a tensile truss after being hinged with the first hinged support base 2145 and the second hinged support base 2144.
  • the first driving mechanism drives the first hinged support base 2145 to move up and down, and drives the Y-shaped hinged rod 2146 to rotate and pass through the bar-shaped hole 2131, so that the end of the protruding rod 2147b forms the
  • the pressing portion has an escape position located inside the pressure receiving portion 1046 and pressing positions respectively located on the upper and lower sides of the pressure receiving portion 1046 .
  • the tensile truss can be changed into a multi-section truss according to the requirement of the measuring range, so as to expand the measuring range.
  • the load-bearing box 2142 is hollow, the side of the load-bearing box 2142 facing the hinge rod 2146 is provided with a perforation, and the position of the second hinge support seat 2144 opposite to the perforation is provided.
  • the connecting rod assembly also includes a return spring 2148 and a moving rod 2149, one end of the moving rod 2149 is fixedly connected to the first hinged support seat 2145, and the other end passes through the through hole and the relief hole is located
  • the outer periphery of the moving rod 2149 is provided with a reset spring 2148, and the upper and lower ends of the reset spring 2148 are respectively opposed to the first hinged support seat 2145 and the load-bearing box 2142.
  • the first driving mechanism is installed in the bearing box 2142, drives the moving rod 2149 to move up and down, and the moving rod 2149 moves in the perforation and the relief hole, which can guide the up and down movement of the first hinged support seat 2145, reset
  • the elastic return action of the spring 2148 ensures that the first hinge support seat 2145 returns to the initial position.
  • the size of one end of the moving rod 2149 inside the bearing box 2142 is larger than the size of the perforation, so as to limit the end of the moving rod 2149 in the bearing box 2142 and prevent the moving rod 2149 from falling off.
  • the first drive mechanism includes a drive motor and a pull wire, one end of the pull wire is wound on the rotation shaft of the drive motor, and the other end is connected to the end of the moving rod 2149 located in the bearing box 2142 Connecting, the driving motor adopts waterproof treatment, pulls the stay wire through the waterproof motor 2143, makes the stay wire wind up on the rotating shaft, and drives the moving rod 2149 to move towards the jack.
  • the connecting rod assembly, the first driving mechanism and the second driving mechanism 2141 on the upper part of the housing 213 form the upper hydraulic jacking device 214
  • the connecting rod assembly, the first driving mechanism and the second driving mechanism 2141 on the lower part of the housing 213 form the lower hydraulic jacking device.
  • the stretching device 216, the upper hydraulic jacking device 214 and the lower hydraulic jacking device 216 have the same structure and are arranged symmetrically.
  • the layout probe 21 also includes a protruding mechanism 215.
  • the protruding mechanism 215 is fixed in the housing 213 and has an output shaft 215a extending radially along the housing 213.
  • the output shaft 215a is connected to the pin shaft 1043 , the protruding mechanism 215 drives the output shaft 215 a to move radially along the housing 213 to push the pin shaft 1043 to move toward the sliding body 7 .
  • the output shaft 215a of the jacking mechanism 215 is provided with four, extends radially along the bushing, and is opposite to the four mounting holes 1011 one by one.
  • the jacking mechanism 215 is a hydraulic jack, and the output shaft 215a is the piston shaft of the hydraulic jack, which is beneficial The sensor penetrates the shearing action of the scissors 104 .
  • the present invention also provides a layout method, please refer to Figure 11, which uses the above-mentioned multi-integrated sensor layout equipment in the deep part of the landslide, and includes the following steps:
  • step S1 After using the traction mechanism to lower the deployment probe 21 to the corresponding position of the sensor penetrating scissors 104 in the casing, the first driving mechanism drives the pressing part to switch between the avoidance position and the pressing position, and the second driving mechanism 2141 drives The first driving mechanism moves up and down in opposite directions to drive the two pressure receiving parts 1046 to rotate in opposite directions, so that the sensor penetrating scissors 104 move from the initial position to the monitoring position, and the sensor penetrating scissors 104 are cut into the borehole Inside the sliding body 7; after the pressing and shearing action of S2 is completed, step S1 is reversed to restore the deployment probe 21 to its original position.
  • the laying method includes: step 1, after the laying probe 21 is lowered to the corresponding position of the first bushing 101 in the sliding body 7 according to the marking ring 24, the upper hydraulic jacking device 214 and the lower
  • the waterproof motor 2143 in the hydraulic jacking device 216 pulls the pull wire, so that the two moving rods 2149 drive the first hinged support seat 2145 to move backward until the end of the moving rod 2149 located in the bearing box 2142 is against the bearing box 2142 and approaches One side of the jack, at this time, the four tension trusses are compressed and opened, and the protruding rods 2147b of the Y-shaped hinged rods 2147 pass through the strip holes 2131 of the housing 213, and the two protruding rods 2147b are located above and below the pressure receiving part 1046 sides.
  • Step 2 the piston shaft of the jacking mechanism 215 passes through the bar-shaped hole 2131, resists the pin shaft 1043 and moves out of the borehole, and the jacks in the upper hydraulic jacking device 214 and the lower hydraulic jacking device 216 go down and up at the same time Jacking up drives the tension truss to move towards each other until the protruding rod 2147b of the Y-shaped hinged rod 2147 touches the pressure-receiving part 1046 of the first blade 1041 and the second blade 1042, and the jack continues to lift. Under the action of the jack, The sensor penetrates into the shear 104 and cuts into the sliding body 7 outside the borehole.
  • Step 3 After the compression-shearing action is completed, reverse the step 2 to restore the deployment probe 21 to its original position, and move up one position according to the marking ring 24 to the corresponding position of the previous first casing 101 .
  • Step 4 loop operation steps 1-3.
  • the multi-integrated sensor deployment equipment in the deep part of the landslide also includes monitoring equipment, and the monitoring equipment includes a data acquisition unit 3 , a power supply device and a controller 5 arranged outside the borehole.
  • the power supply device is electrically connected with the sensor and the sensor circuit board 1047.
  • the power supply device is a solar power supply assembly 4, and the solar power supply assembly 4 is electrically connected with the data acquisition unit 3 and the controller 5 through a fixed cable 6 to provide continuous power supply for it. .
  • the data acquisition unit 3 communicates wirelessly with the sensor penetrator 104, and is used for lowering into the casing to receive the monitoring data.
  • the peripheral ring of the casing (first casing 101) is provided with an external coupling coil 103, and the external coupling coil 103 is electrically connected to the sensor circuit board 1047 through a waterproof electric wire 105;
  • the data acquisition unit 3 includes a measurement circuit board 301 and a measurement coupling coil 302, the measurement coupling coil 302 is wirelessly coupled with the external coupling coil 103 and is electrically connected to the measurement circuit board 301.
  • the measuring coupling coil 302 can be wirelessly coupled with the external coupling coil 103 to realize power supply and near-field communication for the sensor penetrating shear 104 , and the measuring coupling coil 302 and the external coupling coil 103 can be sealed and protected by sealant.
  • the measurement circuit board 301 and the measurement coupling coil 302 in the data acquisition unit 3 are electrically connected to the solar power supply assembly 4 through a fixed cable 6 , and the solar power supply assembly 4 continuously supplies power to the measurement circuit board 301 and the measurement coupling coil 302 .
  • the controller 5 is electrically connected to the power supply device and the data acquisition unit 3.
  • the controller 5 is used for processing information collected by the data acquisition unit 3 and can realize communication with the outside world, including uploading monitoring information to the Internet.
  • the measurement circuit board 301 , the measurement coupling coil 302 are electrically connected to the controller 5 through a fixed cable 6 .
  • the specific structure of the monitoring equipment please refer to the patent No. CN110736498B, which is named a multi-parameter monitoring system and monitoring method outside the deep hole of the sliding body, and will not be repeated here.
  • Step 1 after completing the landslide preliminary investigation work, drilling holes in key positions of the sliding body 7, and completing the deployment of the penetrating monitoring body 1 through the monitoring body layout system 2.
  • Step 2 lower the data acquisition unit 3 to the corresponding position of the bushing through the fixed cable 6 .
  • Step 3 the solar power supply component 4 continuously supplies power to the sensor through the wireless coupling between the external coupling coil 103 and the measurement coupling coil 302, and the sensor continues to monitor after being powered on, and the monitoring information is processed by the sensor circuit board 1047 through the measurement coupling
  • the coil 302 can be wirelessly coupled with the external coupling coil 103 to realize near-field communication and transmit it to the measurement circuit board 301 .
  • the measurement circuit board 301 and the sensor circuit board 1047 include a wireless communication module such as Bluetooth or Zigbee.
  • Step 4 the measurement circuit board 301 transmits the monitoring information to the controller 5, and the controller 5 processes the monitoring information and uploads it to the network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种滑坡深部多集成传感器布设设备及布设方法,贯入式监测体(1)包括套管和传感器贯入剪(104),传感器贯入剪(104)呈剪刀状设置,第一刀片(1041)和第二刀片(1042)在上下向相向转动或背向转动,以使传感器贯入剪(104)具有初始位置和监测位置;传感器贯入剪(104)位于初始位置时,第一刀片(1041)和第二刀片(1042)的受压部(1046)端部在上下向间隔设置,传感器贯入剪(104)位于监测位置时,受压部(1046)相向移动,剪切部(1045)从安装孔(1011)穿出以剪切滑体(7);监测体布设***(2)驱动传感器贯入剪(104)由初始位置移动至监测位置。设备及方法的有益效果是:套管上安装剪刀状的传感器贯入剪(104),剪切部(1045)剪入土体,受力平衡,对套管要求小;布设装置为局部静力施加设计,静力平衡,不易翻折,对拉绳的要求低,也不会产生缠绕。

Description

一种滑坡深部多集成传感器布设设备及布设方法 技术领域
本发明涉及地质灾害监测与防治技术领域,尤其涉及一种滑坡深部多集成传感器布设设备及布设方法。
背景技术
滑坡是自然界中分布最广,发生最频繁的地质灾害之一,对人类生活环境,自然资源,水利工程等构成了巨大的威胁。据报道,自2003年三峡水库首次蓄水以来,大量的古滑坡在水库周期性的水位波动和降雨下重新复滑,具有极大的潜在致灾危险。滑坡变形破坏呈现是一个时空动态演化过程,滑坡基本特征与演化阶段和演化模式存在高度关联和配套,演化过程常伴随着多场耦合特征。
针对滑坡多场信息监测的技术近些年不断发展,单孔多传感器集成布设是一个重要方面。鉴于现有的多仪器独立分布式集成监测方法存在效率低、费用高、关联差等不足,近年来“一孔多测”理念逐渐被提出并受到工程地质学家的重视。尽管“一孔多测”普遍受到重视并有长足的发展,但在技术上仍存在不足。例如,现有的监测方法均将监测仪器安装在孔内,这对深部测斜、地下水位测量适用,但难以在原位条件下准确测量孔隙水压力、含水率等参数,同时该方法环境适应性较差,当滑坡变形增大后孔内仪器多遭受损毁而失效,难以在原位条件下实现“一孔多测”的多信息参数监测技术。同时,钻孔侧壁土质密实,部分滑体成分为碎石土或质地更密实的材料的情况下,钻孔内的多参数传感器布设往往具有一定的挑战性。因次,发展一套可以实现原位环境下“一孔多测”的多信息参数监测 技术以及相应的地下多参数监测传感器布设装置具有重要意义。
发明内容
有鉴于此,为解决上述问题,本发明的实施例提供了一种滑坡深部多集成传感器布设设备及布设方法。
本发明的实施例提供一种滑坡深部多集成传感器布设设备,包括:
贯入式监测体,包括套管和传感器贯入剪,所述套管沿上下向延伸,用于下放至钻孔中,所述套管侧壁贯穿设有沿上下向延伸的安装孔,所述安装孔相对的侧壁均设有沿上下向延伸的竖向槽;
所述传感器贯入剪用于获取滑体的监测数据,所述传感器贯入剪呈剪刀状设置,包括通过销轴连接的第一刀片和第二刀片,所述第一刀片和所述第二刀片在上下向相向转动或背向转动,以使所述传感器贯入剪具有初始位置和监测位置;所述第一刀片和所述第二刀片外端为剪切部,内端为受压部,所述受压部端部位于所述套管内,所述受压部与所述竖向槽相对的位置设有滑块,所述滑块在所述竖向槽内上下滑动;
所述传感器贯入剪位于初始位置时,所述第一刀片和所述第二刀片的受压部端部在上下向间隔设置,所述传感器贯入剪位于监测位置时,所述受压部相向移动,所述剪切部从所述安装孔穿出以剪切滑体;以及,
监测体布设***,驱动所述传感器贯入剪由初始位置移动至监测位置。
进一步地,所述监测体布设***包括牵引机构和可被放入所述套管内的布设探头,所述布设探头具有沿上下向的活动行程,所述牵引机构与所述布设探头连接,用以牵引所述布设探头沿上下向活动;
所述布设探头包括壳体、两个抵压部、两个第一驱动机构和第二驱动机构;各所述抵压部活动安装于各所述第一驱动机构上,两个所述抵压部具有位于所述受压部内侧的避让位置、和分别位于所述受压部上下两侧的压合位置;所述第一驱动机构沿上下向移动安装于所述壳体上,分别驱动 所述抵压部在避让位置和压合位置之间切换,所述第二驱动机构固定于所述壳体上,驱动所述第一驱动机构上下向相向移动,以带动两个所述受压部相向转动,使所述传感器贯入剪由初始位置移动至监测位置。
进一步地,所述布设探头还包括两个连杆组件,所述壳体呈中空设置,所述壳体侧壁贯穿设有沿上下向延伸的条形孔,所述第二驱动机构设有两个,在上下向间隔设置于所述壳体内;所述连杆组件与所述第二驱动机构一一对应,位于两个所述第二驱动机构之间,包括承力盒、第一铰接支撑座、铰接杆和Y型铰接杆;
所述承力盒固定于所述第二驱动机构上,两个所述第一铰接支撑座位于两个所述承力盒之间,所述第二驱动机构与所述第一铰接支撑座之间通过所述第一驱动机构连接;所述Y形铰接杆包括第一铰接杆和自所述第一铰接杆中部向外凸伸形成的凸伸杆,所述第一铰接杆一端与所述第一铰接支撑座铰接,另一端通过所述铰接杆与所述承力盒铰接,所述第一驱动机构驱动所述第一铰接支撑座上下移动,带动所述Y形铰接杆转动从所述条形孔穿出,以使所述凸伸杆端部形成所述抵压部,具有位于所述受压部内侧的避让位置、和分别位于所述受压部上下两侧的压合位置。
进一步地,还包括顶伸机构,所述顶伸机构固定于所述壳体内,具有沿所述壳体径向延伸的输出轴,所述输出轴与所述销轴相对,所述顶伸机构驱动所述输出轴沿所述壳体径向移动,以推动所述销轴向滑体方向移动。
进一步地,所述承力盒呈中空设置,所述承力盒面向所述铰接杆的一侧贯穿设有穿孔,所述连杆组件还包括复位弹簧和移动杆,所述移动杆一端与所述第一铰接支撑座固定连接,另一端穿过所述穿孔位于所述承力盒内,所述移动杆***套设有复位弹簧,所述复位弹簧上下两端分别与所述第一铰接支撑座、所述承力盒相抵,所述第一驱动机构安装于所述承力盒内,驱动所述移动杆上下移动。
进一步地,所述第一驱动机构包括驱动电机和拉线,所述拉线一端缠 绕至所述驱动电机的转动轴上,另一端与所述移动杆位于所述承力盒内的一端连接。
进一步地,所述竖向槽中部朝滑体方向凸伸形成水平槽,所述水平槽沿所述套管径向延伸,所述销轴位于所述水平槽内。
进一步地,所述套管包括多个第一套管和多个第二套管,所述第一套管和所述第二套管依次交互连接,每一所述第一套管上设有所述安装孔。
进一步地,还包括监测设备,所述监测设备包括数据采集单元,所述数据采集单元与所述传感器贯入剪无线通信,用于下放至所述套管内接收所述监测数据。
本发明的实施例还提供一种布设方法,使用上述滑坡深部多集成传感器布设设备,且包括以下步骤:
S1利用牵引机构将布设探头下放至套管内传感器贯入剪对应位置后,第一驱动机构驱动所述抵压部在避让位置和压合位置之间切换,所述第二驱动机构驱动所述第一驱动机构上下向相向移动,以带动两个所述受压部相向转动,使所述传感器贯入剪由初始位置移动至监测位置,传感器贯入剪剪入钻孔外滑体内。
S2压剪动作完成后,反向操作步骤S1,使布设探头恢复原位。
本发明的实施例提供的技术方案带来的有益效果是:套管上安装剪刀状的传感器贯入剪,剪切部剪入土体,受力平衡,对套管要求小。相比已有的相关技术,扩大了应用场景,对于滑体材质密实度较大的工况更能适应,可以更好的布设相关传感器。布设装置为局部静力施加设计,静力平衡,不易翻折,对拉绳的要求低,也不会产生缠绕。静力剪入的方式减小了监测环境的扰动,同时,本方法增加了孔外布设的范围,可以更好的贴近原始的地下环境,测得更准确的滑坡地下多场信息。通过钻孔侧壁外部的传感器布设,孔外布设探头与监测设备的无线传输与无线通电,可实现滑坡深部钻孔外部岩土体多参数信息监测,监测结果更加接近真实地下环 境。
附图说明
图1是本发明提供的滑坡深部多集成传感器布设设备一实施例的结构示意图;
图2是图1中贯入式监测体(传感器贯入剪位于初始位置)的结构示意图;
图3是图2中贯入式监测体(传感器贯入剪位于监测位置)剖面结构示意图;
图4是图2中贯入式监测体(传感器贯入剪位于初始位置)局部结构示意图;
图5是图1中布设探头的结构示意图;
图6是图1中上液压顶伸装置的结构示意图;
图7是图1中下液压顶伸装置局部剖面示意图;
图8是图7中A处放大示意图;
图9是图1中布设探头剖面结构示意图;
图10是本发明提供的滑坡深部多集成传感器布设设备一实施例的监测设备的结构示意图。
图11为本发明提供的布设方法一实施例的流程图。
图中:贯入式监测体1、第一套管101、安装孔1011、第二套管102、T型滑槽1022、管外耦合线圈103、传感器贯入剪104、第一刀片1041、第二刀片1042、销轴1043、监测孔1044、剪切部1045、受压部1046、传感器电路板1047、滑块1048、防水电线105、监测体布设***2、布设探头21、上滑轮装置211、下滑轮装置212、壳体213、条形孔2131、上液压顶伸装置214、第二驱动机构2141、承力盒2142、防水电机2143、第二铰接支撑座2144、第一铰接支撑座2145、铰接杆2146、Y型铰接杆2147、第 一铰接杆2147a、凸伸杆2147b、复位弹簧2148、移动杆2149、顶伸机构215、输出轴215a、下液压顶伸装置216、卷扬机22、控制线缆23、标记环24、液压油泵25、控制***26、电源27、液压油管28、数据采集单元3、测量电路板301、测量耦合线圈302、太阳能供电组件4、控制器5、固定线缆6、滑体7。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
请参见图1至图9,本发明的实施例提供一种滑坡深部多集成传感器布设设备,包括贯入式监测体1和监测体布设***2。
贯入式监测体1包括套管和传感器贯入剪104,所述套管沿上下向延伸,用于下放至钻孔中。所述套管侧壁贯穿设有沿上下向延伸的安装孔1011,所述安装孔1011相对的侧壁均设有沿上下向延伸的竖向槽。所述套管在上下向间隔设有多个所述安装孔1011,每一所述安装孔1011均安装有所述传感器贯入剪104,可增加传感器布设数量。具体的,所述套管包括多个第一套管101和多个第二套管102,所述第一套管101和所述第二套管102依次交互连接,所述第一套管101材质为不锈钢,第二套管102为普通套管,第一套管101与第二套管102的数量依据钻孔长度具体确定。每一所述第一套管101上设有所述安装孔1011,第一套管101在周向上间隔设有多个所述安装孔1011,本实施例中,第一套管101上沿管周均匀设置有四个安装孔1011。
所述传感器贯入剪104用于获取滑体7的监测数据,所述传感器贯入剪104呈剪刀状设置,包括通过销轴1043连接的第一刀片1041和第二刀片1042,所述第一刀片1041和所述第二刀片1042在上下向相向转动或背向转动,以使所述传感器贯入剪104具有初始位置和监测位置;所述第一 刀片1041和所述第二刀片1042外端为剪切部1045,内端为受压部1046,剪切部1045锐化处理以便剪切滑体7,所述受压部1046端部位于所述套管内,所述受压部1046与所述竖向槽相对的位置设有滑块1048,所述滑块1048在所述竖向槽内上下滑动。本实施例中,滑块1048呈圆柱状设置,限位于竖向槽内,可实现受压部1046的垂直滑动,从而实现传感器贯入剪104的剪切动作。
所述传感器贯入剪104还包括传感器和传感器电路板1047,所述传感器安装于所述剪切部1045上,剪切部1045上设有多个监测孔1044,监测孔1044中可安装各类传感器,包括土压力传感器、含水率监测传感器、渗流传感器、孔隙水压力传感器等。所述传感器电路板1047安装于所述传感器贯入剪104上(具体安装于受压部1046上),用于实现传感器监测信息的处理,传感器电路板1047表面做防水密封处理。
进一步地,所述竖向槽中部朝滑体7方向凸伸形成水平槽,所述水平槽沿所述套管径向延伸,所述销轴1043位于所述水平槽内,实现传感器贯入剪104的水平滑动,竖向槽和水平槽形成T型滑槽1022,本实施例中,所述竖向槽和水平槽的断面为方形,所述水平槽和所述销轴1043在截面上的尺寸比所述竖向槽在截面上的尺寸大,使得所述销轴1043无法进入竖向槽内,避免传感器贯入剪104滑入至套管内侧。
所述传感器贯入剪104位于初始位置时,所述第一刀片1041和所述第二刀片1042的受压部1046端部在上下向间隔设置,所述传感器贯入剪104位于监测位置时,所述受压部1046相向移动,所述剪切部1045从所述安装孔1011穿出以剪切滑体7。
监测体布设***2驱动所述传感器贯入剪104由初始位置移动至监测位置,监测体布设***2可以为固定于套管上的两个液压油缸,各液压油缸的活塞杆端部与各受压部1046相抵,驱动受压部1046相向移动。本实施例中,监测体布设***2包括牵引机构和可被放入所述套管内的布设探 头21,所述布设探头21具有沿上下向的活动行程,套管内侧壁设有导槽可供布设探头21上下滑动(第一套管101和第二套管102的导槽连通),所述牵引机构与所述布设探头21连接,用以牵引所述布设探头21沿上下向活动。
具体的,牵引机构包括卷扬机22、控制线缆23、标记环24、液压油泵25、控制***26、电源27、液压油管28。布设探头21与卷扬机22通过控制线缆23连接,在控制***26的控制下,通过卷扬机22牵引控制线缆23将布设探头21下放至钻孔内,电源27为所述监测体布设***2整体供电,液压油泵25与布设探头21通过液压油管28连接,控制线缆23每隔固定距离安装有标记环24,用于向上牵引距离的控制,使得每次牵引停止时,监测体布设探头21与传感器贯入剪104位置对应。
布设探头21用于传感器贯入剪104的静力压开,直至所述第一刀片1041、第二刀片1042的剪切部1045剪入孔外滑体7内。所述布设探头21包括壳体213、两个抵压部、两个第一驱动机构和第二驱动机构2141,所述壳体213呈中空设置,壳体213上下两端分别设有上滑轮装置211和下滑轮装置212,上滑轮装置211、下滑轮装置212可在套管内部的导槽上下滑动,对布设探头21在上下向的滑动起到导向作用。各所述抵压部活动安装于各所述第一驱动机构上,两个所述抵压部具有位于所述受压部1046内侧的避让位置、和分别位于所述受压部1046上下两侧的压合位置;所述第一驱动机构沿上下向移动安装于所述壳体213上,分别驱动所述抵压部在避让位置和压合位置之间切换,所述第二驱动机构2141固定于所述壳体213上,驱动所述第一驱动机构上下向相向移动,以带动两个所述受压部1046相向转动,使所述传感器贯入剪104由初始位置移动至监测位置。所述第二驱动机构2141设有两个,在上下向间隔设置于所述壳体213内,本实施例中,第二驱动机构2141为千斤顶,通过液压油管28与液压油泵25连接。
所述布设探头21还包括两个连杆组件,所述壳体213侧壁贯穿设有沿 上下向延伸的条形孔2131,壳体213周向均匀设有四个条形孔2131,所述连杆组件与所述第二驱动机构2141一一对应,位于两个所述第二驱动机构2141之间,包括承力盒2142、第一铰接支撑座2145、第二铰接支撑座2144,铰接杆2146和Y型铰接杆2147;所述承力盒2142固定于所述第二驱动机构2141上,承力盒2142可以随千斤顶的伸长协同上下运动。两个所述第一铰接支撑座2145位于两个所述承力盒2142之间,所述第二驱动机构2141与所述第一铰接支撑座2145之间通过所述第一驱动机构连接;所述Y形铰接杆2146包括第一铰接杆2147a和自所述第一铰接杆2147a中部向外凸伸形成的凸伸杆2147b,凸伸杆2147b远离第一铰接杆2147a的一端在截面上呈V形设置,防止按压受压部1046时发生侧滑。所述第一铰接杆2147a一端与所述第一铰接支撑座2145铰接,另一端通过所述铰接杆2146与所述承力盒2142铰接,本实施例中,承力盒2142上固定有第二铰接支撑座2144,铰接杆2146与第二铰接支撑座2144铰接,铰接杆2146、Y型铰接杆2147在与第一铰接支撑座2145、第二铰接支撑座2144铰接后形成拉伸桁架。本实施例中,设有四个拉伸桁架,与四个条形孔2131和四个安装孔1011一一相对。所述第一驱动机构驱动所述第一铰接支撑座2145上下移动,带动所述Y形铰接杆2146转动从所述条形孔2131穿出,以使所述凸伸杆2147b端部形成所述抵压部,具有位于所述受压部1046内侧的避让位置、和分别位于所述受压部1046上下两侧的压合位置。所述拉伸桁架可依据量程需要,改变变成多节桁架的形式,以扩大量程。
进一步地,请参见图7,所述承力盒2142呈中空设置,所述承力盒2142面向所述铰接杆2146的一侧贯穿设有穿孔,第二铰接支撑座2144与穿孔相对的位置设有让位孔,所述连杆组件还包括复位弹簧2148和移动杆2149,所述移动杆2149一端与所述第一铰接支撑座2145固定连接,另一端穿过所述穿孔和让位孔位于所述承力盒2142内,所述移动杆2149***套设有复位弹簧2148,所述复位弹簧2148上下两端分别与所述第一铰接支撑座 2145、所述承力盒2142相抵,所述第一驱动机构安装于所述承力盒2142内,驱动所述移动杆2149上下移动,移动杆2149在穿孔和让位孔中移动可对第一铰接支撑座2145的上下移动起到导向作用,复位弹簧2148的弹性复位作用保证第一铰接支撑座2145回复到初始位置。所述移动杆2149位于所述承力盒2142内的一端尺寸比所述穿孔尺寸大,以将所述移动杆2149端部限位于所述承力盒2142内,防止移动杆2149脱落。
本实施例中,所述第一驱动机构包括驱动电机和拉线,所述拉线一端缠绕至所述驱动电机的转动轴上,另一端与所述移动杆2149位于所述承力盒2142内的一端连接,驱动电机采用防水处理,通过防水电机2143拽拉拉线,使拉线缠绕至转动轴上,带动移动杆2149朝千斤顶移动。
壳体213上部的连杆组件、第一驱动机构和第二驱动机构2141组成上液压顶伸装置214,壳体213下部的连杆组件、第一驱动机构和第二驱动机构2141组成下液压顶伸装置216,上液压顶伸装置214和下液压顶伸装置216结构相同且对称设置。
布设探头21还包括顶伸机构215,所述顶伸机构215固定于所述壳体213内,具有沿所述壳体213径向延伸的输出轴215a,所述输出轴215a与所述销轴1043相对,所述顶伸机构215驱动所述输出轴215a沿所述壳体213径向移动,以推动所述销轴1043向滑体7方向移动。顶伸机构215的输出轴215a设有四个,沿套管径向延伸,与四个安装孔1011一一相对,顶伸机构215为液压千斤顶,输出轴215a为液压千斤顶的活塞轴,有利于传感器贯入剪104的剪切动作。
本发明还提供一种布设方法,请参见图11,使用上述滑坡深部多集成传感器布设设备,且包括以下步骤:
S1利用牵引机构将布设探头21下放至套管内传感器贯入剪104对应位置后,第一驱动机构驱动所述抵压部在避让位置和压合位置之间切换,所述第二驱动机构2141驱动所述第一驱动机构上下向相向移动,以带动两个 所述受压部1046相向转动,使所述传感器贯入剪104由初始位置移动至监测位置,传感器贯入剪104剪入钻孔外滑体7内;S2压剪动作完成后,反向操作步骤S1,使布设探头21恢复原位。
具体的,在本实施例中,布设方法包括:步骤1,所述布设探头21按照标记环24下放至滑体7内第一套管101对应位置后,所述上液压顶伸装置214与下液压顶伸装置216中的防水电机2143拽拉拉线,使得两个移动杆2149带动第一铰接支撑座2145背向移动,直至移动杆2149位于承力盒2142内的一端抵住承力盒2142靠近千斤顶的一侧,此时四个拉伸桁架压缩张开,Y型铰接杆2147的凸伸杆2147b从壳体213的条形孔2131穿出,两个凸伸杆2147b位于受压部1046上下两侧。
步骤2,顶伸机构215的活塞轴从条形孔2131穿出,顶住销轴1043向钻孔外运动,上液压顶伸装置214与下液压顶伸装置216中的千斤顶同时向下和向上顶升,带动拉伸桁架移动相向移动,直至Y型铰接杆2147的凸伸杆2147b抵住第一刀片1041与第二刀片1042的受压部1046,千斤顶继续顶升,在千斤顶的作用下,传感器贯入剪104剪入钻孔外滑体7内。
步骤3,压剪动作完成后,反向操作步骤2,使布设探头21恢复原位,按照标记环24向上提一个位置到上一个第一套管101对应位置。
步骤4,循环操作步骤1-3。
进一步地,请参见图10,滑坡深部多集成传感器布设设备还包括监测设备,所述监测设备包括数据采集单元3、设于钻孔外的供电装置和控制器5。
供电装置与传感器和传感器电路板1047电连接,本实施例中,供电装置为太阳能供电组件4,太阳能供电组件4通过固定线缆6与数据采集单元3、控制器5电连接,为其持续供电。
所述数据采集单元3与所述传感器贯入剪104无线通信,用于下放至所述套管内接收所述监测数据。具体的,所述套管(第一套管101)***环 设有管外耦合线圈103,所述管外耦合线圈103与所述传感器电路板1047通过防水电线105电连接;所述数据采集单元3包括测量电路板301和测量耦合线圈302,所述测量耦合线圈302与所述管外耦合线圈103无线耦合,与所述测量电路板301电连接。所述测量耦合线圈302可与管外耦合线圈103无线耦合以实现对传感器贯入剪104的供电与近场通讯,所述测量耦合线圈302可与管外耦合线圈103为密封胶密封防护。
所述数据采集单元3中的测量电路板301、测量耦合线圈302与太阳能供电组件4通过固定线缆6电连接,所述太阳能供电组件4为测量电路板301、测量耦合线圈302持续供电。所述控制器5与所述供电装置、数据采集单元3电连接,控制器5用于数据采集单元3采集信息的处理并可实现与外界的通讯连接,包括将监测信息上传互联网等。所述测量电路板301、测量耦合线圈302与控制器5通过固定线缆6电连接。监测设备的具体结构可参见公告号为CN110736498B,名称为一种滑体深部孔外多参数监测***及监测方法的专利,在此不再赘述。
本发明实施例还提供无线孔外多场信息监测方法:
步骤1,在完成滑坡前期勘察工作后,在滑体7关键位置中钻孔,通过所述监测体布设***2完成所述贯入式监测体1的布设。
步骤2,通过固定线缆6下放数据采集单元3至套管对应位置。
步骤3,所述太阳能供电组件4通过所述管外耦合线圈103与测量耦合线圈302的无线耦合向传感器持续供电,传感器通电后持续监测,监测信息经过传感器电路板1047处理后通过所述测量耦合线圈302可与管外耦合线圈103的无线耦合实现近场通讯并传递到测量电路板301。所述测量电路板301与传感器电路板1047包含无线通信模块例如蓝牙或Zigbee。
步骤4,所述测量电路板301将监测信息传递至控制器5,所述控制器5将监测信息后处理并上传至网络。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于 图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种滑坡深部多集成传感器布设设备,其特征在于,包括:
    贯入式监测体,包括套管和传感器贯入剪,所述套管沿上下向延伸,用于下放至钻孔中,所述套管侧壁贯穿设有沿上下向延伸的安装孔,所述安装孔相对的侧壁均设有沿上下向延伸的竖向槽;
    所述传感器贯入剪用于获取滑体的监测数据,所述传感器贯入剪呈剪刀状设置,包括通过销轴连接的第一刀片和第二刀片,所述第一刀片和所述第二刀片在上下向相向转动或背向转动,以使所述传感器贯入剪具有初始位置和监测位置;所述第一刀片和所述第二刀片外端为剪切部,内端为受压部,所述受压部端部位于所述套管内,所述受压部与所述竖向槽相对的位置设有滑块,所述滑块在所述竖向槽内上下滑动;
    所述传感器贯入剪位于初始位置时,所述第一刀片和所述第二刀片的受压部端部在上下向间隔设置,所述传感器贯入剪位于监测位置时,所述受压部相向移动,所述剪切部从所述安装孔穿出以剪切滑体;以及,
    监测体布设***,驱动所述传感器贯入剪由初始位置移动至监测位置。
  2. 如权利要求1所述的滑坡深部多集成传感器布设设备,其特征在于,所述监测体布设***包括牵引机构和可被放入所述套管内的布设探头,所述布设探头具有沿上下向的活动行程,所述牵引机构与所述布设探头连接,用以牵引所述布设探头沿上下向活动;
    所述布设探头包括壳体、两个抵压部、两个第一驱动机构和第二驱动机构;各所述抵压部活动安装于各所述第一驱动机构上,两个所述抵压部具有位于所述受压部内侧的避让位置、和分别位于所述受压部上下两侧的压合位置;所述第一驱动机构沿上下向移动安装于所述壳体上,分别驱动所述抵压部在避让位置和压合位置之间切换,所述第二驱动机构固定于所述壳体上,驱动所述第一驱动机构上下向相向移动,以带动两个所述受压 部相向转动,使所述传感器贯入剪由初始位置移动至监测位置。
  3. 如权利要求2所述的滑坡深部多集成传感器布设设备,其特征在于,所述布设探头还包括两个连杆组件,所述壳体呈中空设置,所述壳体侧壁贯穿设有沿上下向延伸的条形孔,所述第二驱动机构设有两个,在上下向间隔设置于所述壳体内;所述连杆组件与所述第二驱动机构一一对应,位于两个所述第二驱动机构之间,包括承力盒、第一铰接支撑座、铰接杆和Y型铰接杆;
    所述承力盒固定于所述第二驱动机构上,两个所述第一铰接支撑座位于两个所述承力盒之间,所述第二驱动机构与所述第一铰接支撑座之间通过所述第一驱动机构连接;所述Y形铰接杆包括第一铰接杆和自所述第一铰接杆中部向外凸伸形成的凸伸杆,所述第一铰接杆一端与所述第一铰接支撑座铰接,另一端通过所述铰接杆与所述承力盒铰接,所述第一驱动机构驱动所述第一铰接支撑座上下移动,带动所述Y形铰接杆转动从所述条形孔穿出,以使所述凸伸杆端部形成所述抵压部,具有位于所述受压部内侧的避让位置、和分别位于所述受压部上下两侧的压合位置。
  4. 如权利要求3所述的滑坡深部多集成传感器布设设备,其特征在于,还包括顶伸机构,所述顶伸机构固定于所述壳体内,具有沿所述壳体径向延伸的输出轴,所述输出轴与所述销轴相对,所述顶伸机构驱动所述输出轴沿所述壳体径向移动,以推动所述销轴向滑体方向移动。
  5. 如权利要求3所述的滑坡深部多集成传感器布设设备,其特征在于,所述承力盒呈中空设置,所述承力盒面向所述铰接杆的一侧贯穿设有穿孔,所述连杆组件还包括复位弹簧和移动杆,所述移动杆一端与所述第一铰接支撑座固定连接,另一端穿过所述穿孔位于所述承力盒内,所述移动杆***套设有复位弹簧,所述复位弹簧上下两端分别与所述第一铰接支撑座、所述承力盒相抵,所述第一驱动机构安装于所述承力盒内,驱动所述移动杆上下移动。
  6. 如权利要求5所述的滑坡深部多集成传感器布设设备,其特征在于,所述第一驱动机构包括驱动电机和拉线,所述拉线一端缠绕至所述驱动电机的转动轴上,另一端与所述移动杆位于所述承力盒内的一端连接。
  7. 如权利要求1所述的滑坡深部多集成传感器布设设备,其特征在于,所述竖向槽中部朝滑体方向凸伸形成水平槽,所述水平槽沿所述套管径向延伸,所述销轴位于所述水平槽内。
  8. 如权利要求1所述的滑坡深部多集成传感器布设设备,其特征在于,所述套管包括多个第一套管和多个第二套管,所述第一套管和所述第二套管依次交互连接,每一所述第一套管上设有所述安装孔。
  9. 如权利要求1所述的滑坡深部多集成传感器布设设备,其特征在于,还包括监测设备,所述监测设备包括数据采集单元,所述数据采集单元与所述传感器贯入剪无线通信,用于下放至所述套管内接收所述监测数据。
  10. 一种布设方法,其特征在于,使用如权利要求2所述的滑坡深部多集成传感器布设设备,且包括以下步骤:
    S1利用牵引机构将布设探头下放至套管内传感器贯入剪对应位置后,第一驱动机构驱动所述抵压部在避让位置和压合位置之间切换,所述第二驱动机构驱动所述第一驱动机构上下向相向移动,以带动两个所述受压部相向转动,使所述传感器贯入剪由初始位置移动至监测位置,传感器贯入剪剪入钻孔外滑体内。
    S2压剪动作完成后,反向操作步骤S1,使布设探头恢复原位。
PCT/CN2021/098093 2021-05-14 2021-06-03 一种滑坡深部多集成传感器布设设备及布设方法 WO2022236893A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/367,590 US11501623B1 (en) 2021-05-14 2021-07-05 Arrangement apparatus for multiple integrated sensors in deep position of sliding mass and arrangement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110527817.4 2021-05-14
CN202110527817.4A CN113137985B (zh) 2021-05-14 2021-05-14 一种滑坡深部多集成传感器布设设备及布设方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/367,590 Continuation US11501623B1 (en) 2021-05-14 2021-07-05 Arrangement apparatus for multiple integrated sensors in deep position of sliding mass and arrangement method

Publications (1)

Publication Number Publication Date
WO2022236893A1 true WO2022236893A1 (zh) 2022-11-17

Family

ID=76817057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098093 WO2022236893A1 (zh) 2021-05-14 2021-06-03 一种滑坡深部多集成传感器布设设备及布设方法

Country Status (2)

Country Link
CN (1) CN113137985B (zh)
WO (1) WO2022236893A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671152B (zh) * 2021-07-29 2022-06-24 中国地质大学(武汉) 一种深部滑体多场信息监测装置及布设方法
CN113809838B (zh) * 2021-08-19 2023-06-02 中国地质大学(武汉) 滑坡监测用频率自调谐的双接收端无线输电和通信装置
CN113702211B (zh) * 2021-10-27 2022-01-04 成都理工大学 用于钻孔剪切试验的孔壁侧胀旋转剪切装置及试验方法
CN115877442B (zh) * 2022-12-13 2024-03-12 中国地震台网中心 一种深孔地震计固定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126755A (zh) * 2007-09-29 2008-02-20 建设综合勘察研究设计院 多功能触探装置及其触探测试方法
CN105806283A (zh) * 2016-05-05 2016-07-27 中国地质大学(武汉) 基于拉线姿态解译的滑坡深部位移实时监测***及方法
KR20190009869A (ko) * 2017-07-19 2019-01-30 한국지질자원연구원 산사태 감지용 센서 및 이를 포함하는 산사태 감지 시스템
CN110288808A (zh) * 2019-06-28 2019-09-27 河海大学 一种用于监测水动力型滑坡的装置及其使用方法
CN110672149A (zh) * 2019-09-17 2020-01-10 中国地质大学(武汉) 用于监测滑坡深孔的探爪贯入机构
CN110736498A (zh) * 2019-09-12 2020-01-31 中国地质大学(武汉) 一种滑体深部孔外多参数监测***及监测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2980845B2 (ja) * 1996-06-05 1999-11-22 株式会社山村鉄工所 地滑りの測定方法と測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126755A (zh) * 2007-09-29 2008-02-20 建设综合勘察研究设计院 多功能触探装置及其触探测试方法
CN105806283A (zh) * 2016-05-05 2016-07-27 中国地质大学(武汉) 基于拉线姿态解译的滑坡深部位移实时监测***及方法
KR20190009869A (ko) * 2017-07-19 2019-01-30 한국지질자원연구원 산사태 감지용 센서 및 이를 포함하는 산사태 감지 시스템
CN110288808A (zh) * 2019-06-28 2019-09-27 河海大学 一种用于监测水动力型滑坡的装置及其使用方法
CN110736498A (zh) * 2019-09-12 2020-01-31 中国地质大学(武汉) 一种滑体深部孔外多参数监测***及监测方法
CN110672149A (zh) * 2019-09-17 2020-01-10 中国地质大学(武汉) 用于监测滑坡深孔的探爪贯入机构

Also Published As

Publication number Publication date
CN113137985B (zh) 2022-02-18
CN113137985A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2022236893A1 (zh) 一种滑坡深部多集成传感器布设设备及布设方法
CN104458445B (zh) 一种原位土体孔内剪切试验装置及试验方法
US11501623B1 (en) Arrangement apparatus for multiple integrated sensors in deep position of sliding mass and arrangement method
RU2369738C2 (ru) Способ и система для бурения скважины
CN105715247B (zh) 一种根据地层自动控制钻进的旋挖钻机控制***
CN111595682B (zh) 大尺度复杂围岩条件锚注一体耦合作用试验***及方法
CN106895828B (zh) 一种自钻无缆式海底变形长期观测装置的布放及回收方法
CN104612125A (zh) 一种针对软土的双层壁封闭式取土方法及装置
CN206205886U (zh) 用于勘探取样或原位测试的水下平台
US8146418B2 (en) Apparatus and method for soil testing for jack-up rigs
CN103758453A (zh) 智能化微型钻机
CN113607573B (zh) 一种孔内黄土原位剪切测试装置及方法
TW201621293A (zh) 海底量測之十字片剪力試驗設備
CN109669024B (zh) 一种基于激光定位的相似材料模型试验开挖与支护结构的安装方法
CN217206300U (zh) 一种岩土工程勘察用钻探装置
WO2023279437A1 (zh) 一种滑体钻孔外多传感器布设装置及布设方法
CN114705126B (zh) 深部采空区光纤施工引导装置、工艺及全地层监测方法
CN215910133U (zh) 一种岩土工程勘察用深层土体钻取装置
CN113585961A (zh) 一种基于可视化技术的自动化打桩扩底方法及***
CN116427860A (zh) 一种浅表复杂地层套管辅助下入装置及方法
CN113155016A (zh) 一种埋入式多角度边坡稳定性动态监测装置与实施方法
CN112878334A (zh) 一种地铁车站深基坑内锚杆(锚索)切断机具及施工工艺
CN113671152B (zh) 一种深部滑体多场信息监测装置及布设方法
CN208201842U (zh) 一种承压水水位测定仪
CN111794222A (zh) 一种由液压伺服***控制的智能锚杆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941462

Country of ref document: EP

Kind code of ref document: A1