WO2022236744A1 - 一种雾化器及其电子雾化装置 - Google Patents

一种雾化器及其电子雾化装置 Download PDF

Info

Publication number
WO2022236744A1
WO2022236744A1 PCT/CN2021/093395 CN2021093395W WO2022236744A1 WO 2022236744 A1 WO2022236744 A1 WO 2022236744A1 CN 2021093395 W CN2021093395 W CN 2021093395W WO 2022236744 A1 WO2022236744 A1 WO 2022236744A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
atomizing
air outlet
outlet channel
atomizer
Prior art date
Application number
PCT/CN2021/093395
Other languages
English (en)
French (fr)
Inventor
罗智
罗帅
谢亚军
夏畅
曹润
雷桂林
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2021/093395 priority Critical patent/WO2022236744A1/zh
Publication of WO2022236744A1 publication Critical patent/WO2022236744A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps

Definitions

  • the present application relates to the technical field of atomization devices, in particular to an atomizer and an electronic atomization device thereof.
  • the electronic atomization device in the prior art is mainly composed of an atomizer and a power supply assembly.
  • the atomizer generally includes a liquid storage chamber and an atomization component.
  • the liquid storage cavity is used to store the nebulizable medium, and the nebulizer component is used to heat and atomize the nebulizable medium to form an aerosol that can be consumed by smokers.
  • the power supply component is used to supply energy to the atomizer.
  • the technical problem mainly solved by this application is to provide an atomizer and its electronic atomization device, which solves the problem in the prior art that the eddy current makes the aerosol contact with the inner wall surface of the air outlet channel and reduces the amount of atomization.
  • the first technical solution adopted by this application is to provide an atomizer, which includes: a housing with a liquid storage cavity, an installation cavity and an air outlet channel; the installation seat, at least Part of it is accommodated in the installation cavity; the atomizing core is installed in the mounting seat, the atomizing core is connected to the liquid storage cavity, the atomizing surface of the atomizing core is opposite to the air outlet channel and is arranged at intervals, and a gap is formed between the atomizing core and the air outlet channel.
  • Atomization chamber wherein, the side wall of the atomization chamber is provided with a main air inlet and a secondary air inlet, the main air inlet is arranged close to the atomizing core, and the secondary air inlet is arranged near the outlet channel, and enters through the main air inlet
  • the airflow of the atomization chamber is used to carry the aerosol into the air outlet channel and form a vortex area in the atomization chamber; the airflow entering the atomization chamber through the secondary air inlet is used to blow away the vortex area retained in the atomization chamber, so that the vortex The aerosol in the zone enters the outlet channel.
  • the air intake direction of the main air intake part is parallel to the atomization surface.
  • the main air intake part at least includes a first through hole and a second through hole, the first through hole and the second through hole are respectively arranged on two opposite side walls of the mounting base, the first through hole and/or the second through hole
  • the central axis of the hole is in the same plane as the atomizing surface.
  • the shape of the first through hole and/or the second through hole is rectangular, and the height of the side perpendicular to the atomization surface of the first through hole and/or the second through hole is not greater than that of the first through hole and/or the second through hole.
  • the width of the side parallel to the atomizing surface of the first through hole and/or the second through hole is equal to the distribution width of the heating elements of the atomizing core.
  • the positions of the first through hole and the second through hole are opposite or misaligned, and the structures are symmetrical or asymmetrical.
  • the secondary air intake portion at least includes a third through hole and a fourth through hole, the third through hole and the fourth through hole are arranged on two opposite side walls of the mounting seat, the third through hole and/or the fourth through hole
  • the edge of the port close to the atomization chamber is flush with the inner wall of the air outlet channel.
  • the central axis of the third through hole and/or the fourth through hole is parallel to the plane where the atomizing surface is located.
  • the distance between the end of the third through hole and/or the fourth through hole close to the atomization chamber and the plane where the atomization surface is located is greater than the distance between the end of the third through hole and/or the fourth through hole far away from the atomization chamber and the plane of the atomization surface. The distance between the surface planes.
  • the distance between the end of the third through hole and/or the fourth through hole close to the atomization chamber and the plane where the atomization surface is located is smaller than the distance between the end of the third through hole and/or the fourth through hole far away from the atomization chamber and the plane of the atomization surface. The distance between the surface planes.
  • the positions of the third through hole and the fourth through hole are opposite or misaligned, and the structures are symmetrical or asymmetrical.
  • the shape of the third through hole and/or the fourth through hole is rectangular, and the height of the side perpendicular to the atomizing surface of the third through hole and/or the fourth through hole is not greater than that of the third through hole and/or the fourth through hole.
  • the height of the side perpendicular to the atomizing surface of the third through hole and/or the fourth through hole is 0.3 mm to 0.6 mm.
  • the atomizing core includes a liquid guide part and a raised part, the raised part is arranged on the surface of the liquid guide part close to the air outlet channel, the surface of the raised part away from the liquid guide part is used as the atomization surface, the liquid guide part and the lower liquid The surface in contact with the wells serves as the suction surface.
  • a communication hole is arranged in the liquid guiding part, the communicating hole communicates with the lower liquid hole, and the communicating hole extends from one side surface of the liquid guiding part to the opposite surface.
  • the second technical solution adopted by the present application is to provide an electronic atomization device, the electronic atomization device includes a power supply assembly and the above-mentioned atomizer, and the power supply assembly is used to supply power to the atomizer.
  • the beneficial effect of the present application is: different from the situation of the prior art, it provides an atomizer and its electronic atomization device, an atomizer, the atomizer includes: a housing, the housing has a liquid storage chamber , the installation cavity and the air outlet channel; the installation seat, at least partly accommodated in the installation cavity; the atomizing core, installed in the installation seat, the atomization core communicates with the liquid storage cavity, and the atomization surface of the atomization core is opposite to the air outlet channel and arranged at intervals , and an atomizing cavity is formed between the atomizing core and the air outlet channel.
  • a main air inlet and a secondary air inlet are arranged on the side wall of the atomization chamber.
  • the air flow in the chamber is used to carry the aerosol into the air outlet channel and form a vortex area in the atomization chamber; the air flow entering the atomization chamber through the secondary air inlet is used to blow away the vortex area retained in the atomization chamber, so that the eddy area in the vortex area
  • the aerosol enters the outlet channel, and the gas entering the atomization chamber from the secondary air inlet forms a barrier layer on the inner wall of the outlet channel, so that the airflow carrying the aerosol does not contact the inner wall of the outlet channel, thereby preventing the aerosol from coming into contact with the outlet.
  • the inner wall surface of the channel contacts to form condensate, thereby increasing the atomization amount of the aerosol.
  • Figure 1(a) is a schematic diagram of the state fitting of the aerosol when the atomizer with the atomization side facing upwards enters the air through a single air channel on both sides of the atomization chamber;
  • Fig. 1(b) is a schematic diagram of airflow state fitting of the atomizer of Fig. 1(a);
  • Figure 1(c) is a schematic diagram of the fitting of the atomizer aerosol volume fraction of Figure 1(a);
  • Figure 1(d) is a schematic diagram of the tracking of large droplets with a particle size of 10um in the atomization chamber and outlet channel of the atomizer in Figure 1(a);
  • Fig. 2 is a schematic structural diagram of an embodiment of an electronic atomization device provided by the present application.
  • Fig. 3 is a sectional view of an embodiment of the atomizer provided by the present application.
  • Fig. 4 is a sectional view of another angle of the atomizer provided by the present application.
  • Fig. 5 is a schematic structural view of an embodiment of the housing in the atomizer provided by the present application.
  • Fig. 6 is a schematic structural view of an embodiment of the upper seat in the nebulizer provided by the present application.
  • Fig. 7 is a structural schematic diagram of another angle of the upper seat in the atomizer provided by the present application.
  • Fig. 8 is a schematic structural view of an embodiment of the atomizing core in the atomizer provided by the present application.
  • Fig. 9 is a schematic diagram of the state fitting of the aerosol in the atomization chamber and the air outlet channel in the atomizer provided by the present application;
  • Figure 10 is a schematic diagram of the fitting of the airflow state in the atomization chamber and the air outlet channel in the atomizer provided by the present application;
  • Fig. 11 is a schematic diagram of fitting the volume fraction of aerosol in the atomization chamber and the air outlet channel in the atomizer provided by the present application;
  • Figure 12 is a schematic diagram of the tracking of large droplets with a particle size of 10um in the atomizer provided by the present application;
  • Fig. 13(a) is a structural schematic diagram when the ratio of the width of the first through hole to the heating element in the atomizer provided by the present application is 1:2;
  • Fig. 13(b) is a schematic structural view of the atomizer provided by the present application when the width ratio of the first through hole to the heating element is 1:1.
  • Figure 13(c) is a schematic diagram of airflow state fitting when the width ratio of the first through hole to the heating element in the atomizer provided by the present application is 1:2;
  • Fig. 13(d) is a schematic diagram of airflow state fitting when the ratio of the width of the first through hole to the heating element in the atomizer provided by the present application is 1:1;
  • Figure 14 is a schematic diagram of the flow velocity contours of the aerosol in the atomization chamber and the air outlet channel when the height of the third through hole provided by the present application is 0.3 mm;
  • Figure 15 is a schematic diagram of the flow velocity contours of the aerosol in the atomization chamber and the air outlet channel when the height of the third through hole provided by the present application is 0.6 mm;
  • Fig. 16 is a schematic structural view of an embodiment of the lower seat in the nebulizer provided by the present application.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one feature.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
  • the applicant of the present application has developed an atomizer with the atomization surface facing upwards, but the design of its air intake mode has become a new challenge.
  • Figure 1(a) is a schematic diagram of the state fitting of the aerosol when the nebulizer with the atomization side facing up is inhaled by a single air channel on both sides of the atomization chamber;
  • 1(b) is a schematic diagram of fitting the airflow state of the atomizer of Fig. 1(a);
  • Fig. 1(c) is a schematic diagram of fitting the aerosol volume fraction of the atomizer of Fig. 1(a);
  • Fig. 1(d) is Schematic diagram of the tracking of large droplets with a particle size of 10um in the atomization chamber and outlet channel of the nebulizer in Figure 1(a).
  • the aerosol is condensed in contact with the wall surface by the vortex in the airway, resulting in the formation of condensate.
  • Figure 2 is a schematic structural view of an embodiment of an electronic atomization device provided by this application
  • Figure 3 is a cross-sectional view of an embodiment of an atomizer provided by this application
  • Figure 4 is a schematic diagram of an embodiment of an atomizer provided by this application A sectional view of the provided atomizer from another angle.
  • the electronic atomization device 100 can be used for atomizing the substance to be atomized.
  • the electronic atomization device 100 provided in this embodiment includes an atomizer 1 and a host 2 .
  • the atomizer 1 and the main unit 2 are detachably connected.
  • the atomizer 1 specifically includes a housing 11 , a mounting base 12 and an atomizing core 16 .
  • the host 2 is provided with a power supply assembly 21, the atomizer 1 is plugged into one port of the host 2, and connected to the power supply assembly 21 in the host 2, so as to supply power to the atomizing core 16 in the atomizer 1 through the power supply assembly 21 .
  • the atomizer 1 can be disassembled and a new atomizer 1 can be installed on the host 2, so that the host 2 can be reused.
  • the provided electronic atomization device 100 includes a casing 11 , a mounting base 12 , an atomizing core 16 and a power supply assembly 21 .
  • the liquid storage chamber, the mounting base 12, the atomizing core 16 and the power supply assembly 21 are integrated and cannot be detachably connected.
  • the electronic atomization device 100 also includes other components in the existing electronic atomization device 100, such as microphones, brackets, etc.
  • the specific structures and functions of these components are the same or similar to those of the prior art. For details, please refer to the existing technology, which will not be repeated here.
  • the atomizer 1 includes a housing 11 , a mounting base 12 , an atomizing core 16 , a nozzle assembly 17 and an end cap 18 .
  • FIG. 5 is a schematic structural view of an embodiment of the housing in the nebulizer provided by the present application.
  • One end of the casing 11 is connected to the suction nozzle assembly 17 , and the other end is connected to the end cover 18 .
  • the end of the housing 11 where the end cover 18 is installed is plugged into the cavity formed at one end of the host 2 .
  • the housing 11 has a liquid storage cavity 111 , an installation cavity 112 and an air outlet channel 113 .
  • the liquid storage chamber 111 is disposed at the end of the housing 11 close to the nozzle assembly 17
  • the installation chamber 112 is disposed at the end of the housing 11 close to the end cover 18
  • the liquid storage chamber 111 is adjacent to and communicated with the installation chamber 112 .
  • the air outlet channel 113 is arranged in the housing 11 and connected to the end of the housing 11 connected to the suction nozzle assembly 17.
  • the air outlet channel 113 extends along the liquid storage chamber 111 to the end close to the installation chamber 112, and the air outlet channel 113 is far away from the liquid storage chamber 111.
  • One end extends to the installation cavity 112 and communicates with the installation cavity 112 . That is to say, the air outlet channel 113 communicates the suction nozzle assembly 17 with the installation cavity 112 .
  • the liquid storage chamber 111 is arranged around the air outlet channel 113 , and the central axis of the air outlet channel 113 is parallel to the central axis of the nebulizer 1 .
  • the central axis of the outlet channel 113 coincides with the central axis of the atomizer 1 .
  • the liquid storage cavity 111 is used for storing the substance to be atomized.
  • the air outlet channel 113 is used to communicate with the installation cavity 112 and the suction nozzle assembly 17 .
  • FIG. 6 is a schematic structural diagram of an embodiment of the upper base of the nebulizer provided by the present application
  • FIG. 7 is a schematic structural diagram of another angle of the upper base of the nebulizer provided by the present application.
  • the mounting base 12 is at least partially accommodated in the mounting cavity 112 .
  • the installation seat 12 is completely accommodated in the installation cavity 112 , and the outer sidewall of the installation seat 12 is in close contact with the inner wall of the installation cavity 112 .
  • One end of the mounting base 12 and the inner wall of the casing 11 enclose the liquid storage chamber 111 .
  • the mounting base 12 has an air outlet hole 132 and a lower liquid hole 131, the air outlet hole 132 and the lower liquid hole 131 are arranged at intervals, the air outlet hole 132 is arranged opposite to and communicated with the air outlet channel 113, and the air outlet hole 132 is located between the air outlet channel 113 and the atomizing core 16 The part in between cooperates with the atomizing core 16 to form the atomizing chamber 133 , and the primary air inlet and the secondary air inlet are arranged on the side wall of the mounting base 12 that does not belong to the lower liquid hole 131 .
  • the mounting base 12 includes an upper base body 121 and a lower base body 141 fixedly connected with the upper base body 121 .
  • the upper seat body 121 is disposed close to the liquid storage chamber 111
  • the lower seat body 141 is disposed on a side of the upper seat body 121 away from the liquid storage chamber 111 .
  • the upper base body 121 and the lower base body 141 cooperate to form an installation space for accommodating the atomizing core 16 .
  • the upper base body 121 includes an annular sidewall 122 and a top wall 130 connected to the annular sidewall 122 .
  • the top wall 130 is provided with a lower liquid hole 131 and an air outlet hole 132 , and the lower liquid hole 131 and the air outlet hole 132 are arranged at intervals.
  • part of the annular side wall 122 and the outer wall of the air outlet hole 132 form a lower liquid hole 131, one end of the lower liquid hole 131 communicates with the liquid storage chamber 111, and the other end communicates with the installation space.
  • One end of the air outlet hole 132 communicates with the air outlet channel 113 , and the other end communicates with the installation space.
  • the inner diameter of the air outlet channel 113 may not be smaller than the inner diameter of the air outlet hole 132 near the end of the air outlet channel 113 .
  • the inner diameter of the air outlet channel 113 is equal to the inner diameter of the end of the air outlet hole 132 forming the atomization cavity 133 and close to the air outlet channel 113 .
  • the inner diameter of the portion of the air outlet hole 132 where the air outlet channel 113 is installed is larger than the inner diameter of the end of the air outlet hole 132 forming the atomization cavity 133 and close to the air outlet channel 113 .
  • the end of the air outlet channel 113 may closely abut against a side of the top wall 130 away from the annular side wall 122 .
  • a first sealing member 191 is provided between the air outlet channel 113 and the upper base body 121, the first sealing member 191 is used to seal the gap between the air outlet channel 113 and the air outlet hole 132, and is also used to seal the upper base body 121 and the housing 11
  • the gap between the inner walls prevents the substance to be atomized from the liquid storage chamber 111 from leaking from the gap formed by the cooperation between the air outlet channel 113 and the air outlet 132, and also prevents the substance to be atomized from leaking from the upper base 121 and the inner wall of the housing 11
  • the material of the first sealing member 191 is silica gel.
  • the atomization chamber 133 includes a first cavity 134 and a second cavity 135 , and the first cavity 134 and the second cavity 135 communicate with each other.
  • the first cavity 134 is disposed close to the part of the air outlet 132 connected to the air outlet channel 113 , and the first cavity 134 communicates with the air outlet channel 113 , for example, one end of the air outlet channel 113 is inserted into the first cavity 134 .
  • the second cavity 135 is disposed on a side of the first cavity 134 away from the air outlet channel 113 .
  • the second cavity 135 is a columnar structure.
  • the inner diameter of the end of the second cavity 135 connected to the first cavity 134 is equal to the inner diameter of the end of the second cavity 135 away from the first cavity 134 .
  • the cross section of the first cavity 134 gradually shrinks into a constricted structure. That is to say, the inner diameter of the end of the first cavity 134 connected to the second cavity 135 is greater than the inner diameter of the end of the first cavity 134 away from the second cavity 135 .
  • the inner diameter of the end of the first cavity 134 away from the second cavity 135 is equal to the inner diameter of the air outlet channel 113 .
  • the inner wall of the second cavity 135 is a convex curved structure. In another specific embodiment, the inner wall of the second cavity 135 is a planar structure. In a preferred embodiment, an air guide groove 136 is formed on the inner wall of the first cavity 134, and the air guide groove 136 extends from the end of the first cavity 134 connected to the second cavity 135 to the first cavity 134 away from the end of the second cavity 135 .
  • the inner diameter of the end of the second cavity 135 connected to the first cavity 134 is equal to the inner diameter of the end of the second cavity 135 connected to the first cavity 134 .
  • the central axis of the air outlet hole 132 coincides with the central axis of the atomizer 1 .
  • the number of the lower liquid holes 131 and the shape of the lower liquid holes 131 can be set according to actual conditions.
  • FIG. 8 is a schematic structural diagram of an embodiment of an atomizing core in an atomizer provided by the present application.
  • the atomizing core 16 is disposed in the installation space formed by the upper base body 121 and the lower base body 141 .
  • the atomizing core 16 covers the lower liquid hole 131 and the air outlet hole 132, so that the lower liquid hole 131 can conduct the substance to be atomized in the liquid storage chamber 111 to the atomizing core 16, and at the same time, the atomizing core 16 can heat the mist.
  • the formed aerosol can be transported to the air outlet channel 113 through the air outlet hole 132.
  • the atomizing core 16 includes a porous base 161 and a heating element 162 .
  • the porous matrix 161 includes a liquid guiding part 163 and a protruding part 165 integrally formed.
  • a heating element 162 is disposed on a surface of the protruding portion 165 away from the liquid guiding portion 163 .
  • the raised part 165 is arranged on the side surface of the liquid guiding part 163 close to the air outlet channel 113, the surface of the raised part 165 away from the liquid guiding part 163 is used as the atomizing surface 166, and the surface of the liquid guiding part 163 in contact with the lower liquid hole 131 is used as the suction surface.
  • Liquid level 167 The atomizing surface 166 is opposite to and spaced from the air outlet channel 113 .
  • the atomizing surface 166 of the atomizing core 16 is on the same side as at least part of the liquid-absorbing surface 167 of the atomizing core 16 , and is disposed on a side of the atomizing core 16 close to the air outlet channel 113 .
  • a communication hole 164 is provided in the liquid guide part 163, and the communication hole 164 communicates with the lower liquid hole 131, and the communication hole 164 extends from one side surface of the liquid guide part 163 to the opposite surface. That is to say, both ends of the communication hole 164 communicate with the lower liquid holes 131 disposed on both sides of the air outlet hole 132 respectively.
  • the heating element 162 can be a heating film or a heating wire.
  • the material of the porous matrix 161 is porous ceramics.
  • a second sealing member 192 is provided at the connection between the atomizing core 16 and the upper base 121 , and the second sealing member 192 is used to seal the gap formed between the atomizing core 16 and the upper base 121 .
  • the material of the second sealing member 192 is silica gel.
  • Figure 9 is a schematic diagram of the state fitting of the aerosol in the atomization chamber and the air outlet channel in the nebulizer provided by this application;
  • Figure 11 is a schematic diagram of the fitting of the volume fraction of the aerosol in the atomization chamber and the outlet channel of the nebulizer provided by the application; Schematic diagram of droplet tracking.
  • a primary air intake portion 124 and a secondary air intake portion 127 are disposed on the mounting base 12 .
  • the main air inlet 124 and the secondary air inlet 127 are used to transmit the gas outside the installation seat 12 to the atomization chamber 133, so as to adjust the air flow of the aerosol delivered to the air outlet channel 113, and avoid the air flow of the aerosol from the air outlet channel 113.
  • Inner wall contact reduces condensate and increases atomization.
  • the secondary air inlet part 127 controls the externally input gas to form a barrier layer on the inner wall of the air outlet channel 113, so that the airflow of the aerosol forms an air column The diameter becomes smaller.
  • the primary air intake portion 124 and the secondary air intake portion 127 are disposed on the upper seat body 121 .
  • the primary air intake portion 124 and the secondary air intake portion 127 are disposed on the annular side wall 122 of the upper seat body 121 that does not belong to the lower liquid hole 131 .
  • the main air intake part 124 is arranged adjacent to the atomization surface 166.
  • the main air intake part 124 is used to allow the outside air to enter the atomization chamber 133 and adjust the gas carrying aerosol to form a main air column with the central axis of the air outlet channel 113 as the center of the circle.
  • Part 127 is arranged on the side of main air inlet 124 away from atomizing surface 166 , and secondary air inlet 127 is used to allow outside air to enter atomizing chamber 133 and adjust the gas to form a barrier layer on the inner wall of air outlet channel 113 .
  • the barrier layer is an air film.
  • the inner diameter of the air outlet channel 113 is fixed, and the gas transmitted by the secondary air inlet part 127 forms a barrier layer on the inner wall of the air outlet channel 113, which can reduce the diameter of the main gas column, so as to avoid contact between the aerosol and the inner wall of the air outlet channel 113, thereby improving the mist. quantitative.
  • the air intake direction of the primary air intake portion 124 and the air intake direction of the secondary air intake portion 127 are parallel to each other and on the same longitudinal section.
  • the air intake direction of the primary air intake portion 124 and the air intake direction of the secondary air intake portion 127 are parallel to the atomizing surface 166 .
  • the air intake direction of the primary air intake portion 124 and the air intake direction of the secondary air intake portion 127 may also be non-parallel to each other.
  • the main air intake portion 124 includes at least a first through hole 125 and a second through hole 126 , and the first through hole 125 and the second through hole 126 are respectively provided on two opposite side walls of the mounting base 12 , that is, on the two opposite parts of the annular side wall 122 .
  • the shape and size of the first through hole 125 and the second through hole 126 are not limited.
  • the shape of the first through hole 125 and/or the second through hole 126 is a rectangle, and the length H1 of the side parallel to the central axis of the atomizer 1 is not greater than the length H1 of the rectangle and the central axis of the atomizer 1 The length L1 of the vertical side.
  • the length of the side perpendicular to the central axis of the atomizer 1 of the first through hole 125 or the second through hole 126 is the width of the first through hole 125 or the second through hole 126 .
  • the central axis of the first through hole 125 and/or the second through hole 126 is on the same plane as the atomizing surface 166 .
  • Fig. 13(a) is a structural schematic diagram when the ratio of the width of the first through hole to the heating element in the atomizer provided by the present application is 1:2;
  • Fig. 13( b) is a schematic structural diagram when the ratio of the width of the first through hole to the heating element in the atomizer provided by this application is 1:1;
  • Fig. 13(c) is the relationship between the first through hole and the heating element in the atomizer provided by this application Schematic diagram of airflow state fitting when the width ratio of the element is 1:2;
  • Fig. 13(d) is the airflow state fitting when the width ratio of the first through hole and the heating element in the atomizer provided by the present application is 1:1 schematic diagram.
  • the width L1 of the first through hole 125 and/or the second through hole 126 is equal to the distribution width W1 of the heating element 162 .
  • the width direction of the first through hole 125 and the second through hole 126 is perpendicular to the central axis of the atomizer 1 .
  • the width direction of the heating element 162 is the direction of the line connecting the two lower liquid holes 131 .
  • the length of the side perpendicular to the central axis of the atomizer 1 of the first through hole 125 and the second through hole 126 is equal to The width of element 162.
  • the first through hole 125 and the second through hole 126 are circular in shape, and the diameters of the first through hole 125 and the second through hole 126 are equal to the width of the heating element 162 .
  • the gas transmitted into the atomization chamber 133 by the first through hole 125 and the second through hole 126 can form the atomization surface 166 More aerosols are taken away from the atomizing surface 166.
  • the width of the first through hole 125 and the second through hole 126 is equal to the distribution width of the heating element 162, which can expand the coverage of the gas delivered to the atomization chamber 133, and increase the force when the gas enters the atomization chamber 133, so that the mist
  • the aerosol in the chemical chamber 133 is concentrated on the central axis of the air outlet channel 113 , so that the cross section of the air column formed by the aerosol is reduced, preventing the aerosol from diffusing in the air outlet channel 113 .
  • the air intake of the first through hole 125 and the second through hole 126 can cover all surfaces of the aerosol generated by the heating element 162, and sufficient air intake can carry the aerosol of large-sized liquid droplets generated by the atomizing surface 166 to the air outlet channel 113 and sent into the user's mouth, to prevent the large droplet aerosol from falling back to the atomizing surface 166 due to gravity to form condensate.
  • the particle size of the large droplet is 10-170um.
  • the position of the first through hole 125 and the position of the second through hole 126 may be oppositely set.
  • the central axis of the first through hole 125 coincides with the central axis of the second through hole 126 and is parallel to the atomizing surface 166 .
  • the position of the first through hole 125 and the position of the second through hole 126 can also be disposed on the annular side wall 122 of the upper base 121 in a misaligned manner.
  • the position of the first through hole 125 and the position of the second through hole 126 may be displaced longitudinally or laterally.
  • the structure of the first through hole 125 and the structure of the second through hole 126 may be the same or different.
  • the shapes of the first through hole 125 and the second through hole 126 may be the same or different.
  • the positions of the first through hole 125 and the second through hole 126 may be offset, and the first through hole 125 and the second through hole 126 are at least partially opposite to each other.
  • the stagnant area formed near the atomizing surface 166 is on the central axis of the atomizer 1; when the positions of the first through hole 125 and the second through hole 126 When called asymmetric arrangement, the stagnant area formed near the atomizing surface 166 deviates from the central axis of the atomizer 1 .
  • the secondary air intake portion 127 at least includes a third through hole 128 and a fourth through hole 129 , and the third through hole 128 and the fourth through hole 129 are disposed on two opposite side walls of the mounting seat 12 .
  • the third through hole 128 and/or the fourth through hole 129 are disposed on the upper base body 121 and disposed on a side of the first through hole 125 and the second through hole 126 away from the lower base body 141 .
  • the third through hole 128 and/or the fourth through hole 129 is disposed on a part of the side wall of the air outlet hole 132 where the air outlet channel 113 is installed.
  • the end surface of the air outlet channel 113 serves as part of the side walls of the third through hole 128 and the fourth through hole 129 .
  • the port of the third through hole 128 and the fourth through hole 129 close to the inner wall of the air outlet hole 132 is flush with the inner wall surface of the air outlet channel 113 and the inner wall surface of the first cavity 134, avoiding the third through hole 128 and the fourth through hole 129 A dead angle is formed between the end surface of the air outlet channel 113 .
  • the airflow entering the atomization chamber 133 through the third through hole 128 and the fourth through hole 129 is used to blow away the vortex region stagnant in the atomization chamber 133 , so that the aerosol in the vortex region enters the air outlet channel 113 .
  • the port of the third through hole 128 and the fourth through hole 129 close to the atomization chamber 133 is flush with the inner wall surface of the gas outlet channel 113, so that the gas entering from the third through hole 128 and the fourth through hole 129 can enter more smoothly
  • the central axis of the third through hole 128 and/or the fourth through hole 129 is parallel to the plane where the atomizing surface 166 is located.
  • the distance between the end of the third through hole 128 and/or the fourth through hole 129 close to the atomizing cavity 133 and the plane where the atomizing surface 166 is located is greater than that of the third through hole 128 and/or the fourth through hole 128. The distance between the four through holes 129 and the plane of the atomizing surface 166 is away from one end of the atomizing chamber 133 .
  • the distance between the end of the third through hole 128 and/or the fourth through hole 129 close to the atomization cavity 133 and the plane where the atomization surface 166 is located is smaller than that of the third through hole 128 and/or The fourth through hole 129 is away from the distance between the end of the atomization chamber 133 and the plane of the atomization surface 166 .
  • the position of the third through hole 128 and the position of the fourth through hole 129 may be set opposite to each other.
  • the central axis of the third through hole 128 coincides with the central axis of the fourth through hole 129 and is parallel to the atomizing surface 166 .
  • the position of the third through hole 128 and the position of the fourth through hole 129 can also be arranged on the annular side wall 122 of the upper base body 121 in an offset manner.
  • the position of the third through hole 128 and the position of the fourth through hole 129 may be displaced longitudinally or laterally.
  • the structure of the third through hole 128 and the structure of the fourth through hole 129 may be the same or different.
  • the shapes of the third through hole 128 and the fourth through hole 129 may be the same or different. In another optional embodiment, the positions of the third through hole 128 and the fourth through hole 129 may be misaligned, and at least part of the third through hole 128 and the fourth through hole 129 are oppositely arranged. In a preferred embodiment, the shape of the third through hole 128 and/or the fourth through hole 129 is a rectangle, and the length of the side of the rectangle parallel to the central axis of the atomizer 1 is not greater than the length of the rectangle and the central axis of the atomizer 1 The length of the vertical side.
  • the third through hole 128 and the first through hole 125 , and the fourth through hole 129 and the second through hole 126 may be arranged opposite to each other, or may be arranged in offset positions.
  • the third through hole 128 and the first through hole 125 , and the fourth through hole 129 and the second through hole 126 may be misaligned in the direction of the central axis of the atomizer 1 .
  • the height direction of the through hole is the direction extending along the central axis of the atomizer 1 .
  • the airflow velocity of the first through hole 125 and/or the second through hole 126 is small, and a larger stagnation area will be formed near the atomizing surface 166 , the aerosol in the stagnant area is difficult to be brought to the outside world.
  • the height of the third through hole 128 and/or the fourth through hole 129 is larger, the vortex area formed by the gas transmitted through the first through hole 125 and/or the second through hole 126 and the inner wall of the second cavity 135 becomes smaller , so that the passing rate of the aerosol in the atomizing chamber 133 increases.
  • Figure 14 is a schematic diagram of the flow velocity contours of the aerosol in the atomization chamber and the air outlet channel when the height of the third through hole provided by the present application is 0.3mm;
  • Figure 15 It is a schematic diagram of the flow velocity contours of the aerosol in the atomization chamber and the air outlet channel when the height of the third through hole is 0.6mm provided in the present application.
  • the third through hole 128 And/or the height of the fourth through hole 129 increases, the gas in the third through hole 128 and/or the fourth through hole 129 impacts the first through hole 125 and/or the second through hole 126 and the inner wall of the atomization chamber 133 to form The vortex area formed by the first through hole 125 and/or the second through hole 126 being located on the inner wall of the atomizing chamber 133 is reduced.
  • the gas entering the third through hole 128 and/or the fourth through hole 129 will give a certain pressure to the gas entering the first through hole 125 and the second through hole 126, so that the first through hole 125 and/or the second through hole
  • the aerosol carried by the gas entering the hole 126 is squeezed to a certain extent, so that the stagnation area formed near the atomizing surface 166 is slightly enlarged, thereby affecting the passing rate of the aerosol. Therefore, the heights of the first through hole 125 , the second through hole 126 , the third through hole 128 and the fourth through hole 129 can be designed according to the passing rate of the aerosol.
  • the outer wall surface of the annular side wall 122 is provided with a sump 137, the sump 137 is used to collect the liquid leaked from the main air intake portion 124 and the secondary air intake portion 127, and is also used to collect the liquid leaked from the air intake space 151 .
  • FIG. 16 is a schematic structural diagram of an embodiment of the lower base of the nebulizer provided by the present application.
  • the lower base body 141 is disposed on the side of the upper base body 121 away from the air outlet channel 113 , and is fixedly connected with the upper base body 121 , specifically, the upper base body 121 can be engaged with the lower base body 141 .
  • the lower base body 141 includes a base plate 142 and a supporting component 145 disposed on a surface of the base plate 142 close to the atomizing core 16 .
  • the support assembly 145 includes a first support arm 146 and a second support arm 147 , and the first support arm 146 and the second support arm 147 are oppositely disposed on the base plate 142 at intervals.
  • a boss 148 is formed on a surface of the first support arm 146 opposite to the second support arm 147 .
  • the boss 148 is used to support the atomizing core 16 , and the boss 148 is in contact with the side of the atomizing core 16 away from the atomizing surface 166 .
  • the boss 148 is provided with a first capillary groove 149 for receiving liquid missing from the atomizing core 16 .
  • the base plate 142 is provided with an air intake hole 144, and an air intake space 151 is formed between the base plate 142 and the atomizing core 16.
  • An air intake passage 150 is formed between the annular side wall 122 and the housing 11, and one end of the air intake passage 150 is It communicates with the air intake space 151 , and the other end communicates with the main air intake portion 124 and the secondary air intake portion 127 .
  • the surface of the substrate 142 provided with the first support arm 146 and the second support arm 147 is provided with a second capillary groove 143 , and the second capillary groove 143 communicates with the first capillary groove 149 .
  • the second capillary groove 143 is used to store the leaked liquid missed by the first capillary groove 149 and the leaked liquid leaked through the atomizing core 16 .
  • the first support arm 146 and the second support arm 147 are used for connecting the upper base body 121 .
  • the atomizer includes: a casing, the casing has a liquid storage cavity, an installation cavity, and an air outlet channel; an installation seat, at least partially accommodated in the installation cavity; In the installation seat, the atomizing core communicates with the liquid storage chamber, the atomizing surface of the atomizing core is opposite to the air outlet channel and arranged at intervals, and an atomizing chamber is formed between the atomizing core and the air outlet channel.
  • a main air inlet and a secondary air inlet are arranged on the side wall of the atomization chamber.
  • the air flow in the chamber is used to carry the aerosol into the air outlet channel and form a vortex area in the atomization chamber; the air flow entering the atomization chamber through the secondary air inlet is used to blow away the vortex area retained in the atomization chamber, so that the eddy area in the vortex area
  • the aerosol enters the outlet channel, and the gas entering the atomization chamber from the secondary air inlet forms a barrier layer on the inner wall of the outlet channel, so that the airflow carrying the aerosol does not contact the inner wall of the outlet channel, thereby preventing the aerosol from coming into contact with the outlet.
  • the inner wall surface of the channel contacts to form condensate, thereby increasing the atomization amount of the aerosol.

Landscapes

  • Nozzles (AREA)

Abstract

一种雾化器(1)及其电子雾化装置(100),该雾化器(1)包括:壳体(11),壳体(11)具有储液腔(111)、安装腔(112)和出气通道(113);安装座(12),至少部分收容于安装腔(112);雾化芯(16),安装于安装座(12)内,雾化芯(16)与储液腔(111)连通,雾化芯(16)的雾化面与出气通道(113)相对且间隔设置,且雾化芯(16)与出气通道(113)之间形成雾化腔(133)。次进气部(127)进入雾化腔(133)的气流用于吹散雾化腔(133)内滞留的涡流区,以使涡流区中的气溶胶进入出气通道(113),同时次进气部(127)进入雾化腔(133)中的气体在出气通道(113)的内壁上形成阻隔层,以使携带气溶胶的气流与出气通道(113)的内壁不接触,进而避免气溶胶与出气通道(113)的内壁面接触形成冷凝液,进而提升气溶胶的雾化量。

Description

一种雾化器及其电子雾化装置 技术领域
本申请涉及雾化装置技术领域,特别是涉及一种雾化器及其电子雾化装置。
背景技术
现有技术中电子雾化装置主要由雾化器和电源组件构成。雾化器一般包括储液腔和雾化组件,储液腔用于储存可雾化介质,雾化组件用于对可雾化介质进行加热并雾化,以形成可供吸食者食用的气雾;电源组件用于向雾化器提供能量。其中,雾化器大都采用雾化面朝下、底部直冲进气的布置方式,导致了雾化腔内存在大量的涡流,冷凝烟油、炸油液滴残留在雾化腔内,长期积累最终发生漏液。
发明内容
本申请主要解决的技术问题是提供一种雾化器及其电子雾化装置,解决现有技术中涡流作用使气溶胶与出气通道的内壁面接触,降低雾化量的问题。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种雾化器,该雾化器包括:壳体,壳体具有储液腔、安装腔和出气通道;安装座,至少部分收容于安装腔;雾化芯,安装于安装座内,雾化芯与储液腔连通,雾化芯的雾化面与出气通道相对且间隔设置,且雾化芯与出气通道之间形成雾化腔;其中,雾化腔的侧壁上设置有主进气部和次进气部,主进气部靠近雾化芯设置,次进气部靠近出气通道设置,通过主进气部进入雾化腔的气流用于携带气溶胶进入出气通道且在雾化腔内形成涡流区;通过次进气部进入雾化腔的气流用于吹散雾化腔内滞留的涡流区,以使涡流区中的气溶胶进入出气通道。
其中,主进气部的进气方向与雾化面相互平行。
其中,主进气部至少包括第一通孔和第二通孔,第一通孔和第二通孔分别设置于安装座相对的两个侧壁上,第一通孔和/或第二通孔的中轴线与雾化面处于同一平面。
其中,第一通孔和/或第二通孔的形状为矩形,第一通孔和/或第二通孔与雾化面垂直的边的高度不大于第一通孔和/或第二通孔与雾化面平行的边的宽度。
其中,第一通孔和/或第二通孔与雾化面平行的边的宽度等于雾化芯的发热元件的分布宽度。
其中,第一通孔和第二通孔的位置相对或错位且结构对称或非对称设置。
其中,次进气部至少包括第三通孔和第四通孔,第三通孔和第四通孔设置于安装座相对的两个侧壁上,第三通孔和/或第四通孔靠近雾化腔的端口边沿与出气通道的内壁面平齐。
其中,第三通孔和/或第四通孔的中轴线与雾化面所处平面相互平行。
其中,第三通孔和/或第四通孔靠近雾化腔的一端与雾化面所处平面之间的距离大于第三通孔和/或第四通孔远离雾化腔的一端与雾化面平面之间的距离。
其中,第三通孔和/或第四通孔靠近雾化腔的一端与雾化面所处平面之间的距离小于第三通孔和/或第四通孔远离雾化腔的一端与雾化面平面之间的距离。
其中,第三通孔和第四通孔的位置相对或错位且结构对称或非对称设置。
其中,第三通孔和/或第四通孔的形状为矩形,第三通孔和/或第四通孔与雾化面 垂直的边的高度不大于第三通孔和/或第四通孔与雾化面平行的边的宽度。
其中,第三通孔和/或第四通孔与雾化面垂直的边的高度为0.3mm至0.6mm。
其中,雾化芯包括导液部和凸起部,凸起部设置于导液部靠近出气通道的一侧表面,凸起部远离导液部的表面作为雾化面,导液部与下液孔接触的表面作为吸液面。
其中,导液部内设置有连通孔,连通孔与下液孔连通,连通孔从导液部的一侧表面延伸至与其相对的表面。
为解决上述技术问题,本申请采用的第二个技术方案是:提供一种电子雾化装置,电子雾化装置包括电源组件和如上述的雾化器,电源组件用于对雾化器供电。
本申请的有益效果是:区别于现有技术的情况,提供的一种雾化器及其电子雾化装置,一种雾化器,该雾化器包括:壳体,壳体具有储液腔、安装腔和出气通道;安装座,至少部分收容于安装腔;雾化芯,安装于安装座内,雾化芯与储液腔连通,雾化芯的雾化面与出气通道相对且间隔设置,且雾化芯与出气通道之间形成雾化腔。本申请通过在雾化腔的侧壁上设置有主进气部和次进气部,主进气部靠近雾化芯设置,次进气部靠近出气通道设置,通过主进气部进入雾化腔的气流用于携带气溶胶进入出气通道且在雾化腔内形成涡流区;通过次进气部进入雾化腔的气流用于吹散雾化腔内滞留的涡流区,以使涡流区中的气溶胶进入出气通道,同时次进气部进入雾化腔中的气体在出气通道的内壁上形成阻隔层,以使携带气溶胶的气流与出气通道的内壁不接触,进而避免气溶胶与出气通道的内壁面接触形成冷凝液,进而提升气溶胶的雾化量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1(a)是雾化面朝上的雾化器在雾化腔二侧单气道进气时气溶胶的状态拟合示意图;
图1(b)是图1(a)的雾化器的气流状态拟合示意图;
图1(c)是图1(a)的雾化器气溶胶体积分数拟合示意图;
图1(d)是10um粒径大液滴在图1(a)的雾化器的雾化腔及出气通道的追踪示意图;
图2是本申请提供的电子雾化装置一实施例的结构示意图;
图3是本申请提供的雾化器一实施例的剖视图;
图4是本申请提供的雾化器另一角度的剖视图;
图5是本申请提供的雾化器中壳体一实施例的结构示意图;
图6是本申请提供的雾化器中上座体一实施例的结构示意图;
图7是本申请提供的雾化器中上座体另一角度的结构示意图;
图8是本申请提供的雾化器中雾化芯一实施例的结构示意图;
图9是本申请提供的雾化器中雾化腔与出气通道中气溶胶的状态拟合示意图;
图10是本申请提供的雾化器中雾化腔与出气通道中的气流状态拟合示意图;
图11是本申请提供的雾化器中雾化腔与出气通道中气溶胶体积分数拟合示意图;
图12是本申请提供的雾化器中10um粒径大液滴的追踪示意图;
图13(a)是本申请提供的雾化器中第一通孔与发热元件的宽度比例为1:2时的结构示意图;
图13(b)是本申请提供的雾化器中第一通孔与发热元件的宽度比例为1:1时的结构示意图。
图13(c)是本申请提供的雾化器中第一通孔与发热元件的宽度比例为1:2时的气流状态拟合示意图;
图13(d)是本申请提供的雾化器中第一通孔与发热元件的宽度比例为1:1时的气流状态拟合示意图;
图14是本申请提供的第三通孔的高度为0.3mm时雾化腔与出气通道中气溶胶的流速等值线示意图;
图15是本申请提供的第三通孔的高度为0.6mm时雾化腔与出气通道中气溶胶的流速等值线示意图;
图16是本申请提供的雾化器中下座体一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果特定姿态发生改变时,则方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
对于底部直冲进气影响雾化量的问题,本申请的申请人开发了雾化面朝上的雾化器,但其进气方式的设计成为了新的挑战。
请参阅图1(a)至图1(d),图1(a)是雾化面朝上的雾化器在雾化腔二侧单气道进气时气溶胶的状态拟合示意图;图1(b)是图1(a)的雾化器的气流状态拟合示意图;图1(c)是图1(a)的雾化器气溶胶体积分数拟合示意图;图1(d)是10um粒径大液滴在图1(a)的雾化器的雾化腔及出气通道的追踪示意图。若设计为对称的对冲进气方式,容易在发热元件的中心区域形成“滞止区”,气溶胶难以被带走。同时在进气口附近的漩涡会导致炸油液滴被带入到涡流中心区域,导致了液滴在雾化腔壁面的黏附;若设计为非对称的进气方式,则会导致液滴被直接吹向进气口相对的壁面,无法随主气流到达外界。
与此同时,气溶胶受到气道内的涡流作用与壁面接触发生凝结,导致了冷凝液的生成。
本申请的申请人在上述技术手段的基础上,持续改进和优化,提出了以下实施例:
请参阅图2、图3和图4,图2是本申请提供的电子雾化装置一实施例的结构示意图;图3是本申请提供的雾化器一实施例的剖视图;图4是本申请提供的雾化器另一角度的剖视图。该电子雾化装置100可用于对待雾化基质的雾化。本实施例中提供的电子雾化装置100包括雾化器1和主机2。雾化器1和主机2可拆卸连接。其中,雾化器1具体包括壳体11、安装座12和雾化芯16。主机2内设置有电源组件21,雾化器1插接在主机2的一端端口,并与主机2内的电源组件21连接,以通过电源组件21给雾化器1中的雾化芯16供电。当雾化器1需要更换时,可以将雾化器1拆卸并在主机2上安装新的雾化器1,实现主机2的重复使用。
在另一可选实施例中,提供的电子雾化装置100包括壳体11、安装座12、雾化芯16和电源组件21。其中,储液仓、安装座12、雾化芯16和电源组件21一体设置,不可拆卸连接。
当然,该电子雾化装置100还包括现有电子雾化装置100中的其它部件,比如,咪头、支架等,这些部件的具体结构和功能与现有技术相同或相似,具体可参见现有技术,在此不再赘述。
雾化器1包括壳体11、安装座12、雾化芯16、吸嘴组件17和端盖18。
请参阅图5,图5是本申请提供的雾化器中壳体一实施例的结构示意图。壳体11的一端与吸嘴组件17连接,另一端与端盖18连接。具体地,壳体11安装端盖18的端部插接于主机2一端形成的腔体内。壳体11具有储液腔111、安装腔112和出气通道113。其中,储液腔111设置于壳体11靠近吸嘴组件17的端部,安装腔112设置于壳体11靠近端盖18的端部,储液腔111于安装腔112相邻且连通。出气通道113设置于壳体11内,且与壳体11连接吸嘴组件17的端部连接,出气通道113沿储液腔111向靠近安装腔112的一端延伸,出气通道113远离储液腔111的一端延伸至安装腔112且与安装腔112连通。也就是说,出气通道113将吸嘴组件17与安装腔112连通。在一可选实施例中,储液腔111围绕出气通道113设置,出气通道113的中心轴与雾化器1的中心轴平行。在一优选实施中,出气通道113的中心轴与雾化器1的中心轴重合。其中,储液腔111用于存储待雾化基质。出气通道113用于将安装腔112和吸嘴组件17连通。
进一步参阅图6和图7,图6是本申请提供的雾化器中上座体一实施例的结构示意图;图7是本申请提供的雾化器中上座体另一角度的结构示意图。安装座12至少部分收容于安装腔112内。在一具体实施例中,安装座12全部收容于安装腔112内,安装座12的外侧壁与安装腔112的内壁紧密贴合。安装座12的一端与壳体11的内壁围成上述储液腔111。安装座12的一端具有出气孔132和下液孔131,出气孔132和下液孔131间隔设置,出气孔132与出气通道113相对设置且连通,出气孔132位于出气通道113与雾化芯16之间的部分与雾化芯16配合形成雾化腔133,主进气部和次进气部设置于安装座12不属于下液孔131的侧壁上。在一具体实施例中,安装座12包括上座体121以及与上座体121固定连接的下座体141。其中,上座体121靠近储液腔111设置,下座体141设置于上座体121远离储液腔111的一侧。上座体121和下座体141配合形成安装空间,安装空间用于容纳雾化芯16。
上座体121包括环形侧壁122以及与环形侧壁122连接的顶壁130。顶壁130上设置有下液孔131和出气孔132,下液孔131和出气孔132间隔设置。在一具体 实施例中,部分环形侧壁122与出气孔132的外壁围成下液孔131,下液孔131的一端与储液腔111连通,另一端与安装空间连通。出气孔132的一端与出气通道113连通,另一端与安装空间连通。其中,出气通道113的内径可以不小于出气孔132靠近出气通道113端部的内径。在一可选实施例中,出气通道113的内径等于出气孔132形成雾化腔133且靠近出气通道113的端部的内径。出气孔132安装出气通道113的部分的内径大于出气孔132形成雾化腔133且靠近出气通道113的端部的内径。在一可选实施例中,出气通道113的端部可以与顶壁130远离环形侧壁122的一侧紧密抵接。其中,出气通道113与上座体121之间设置有第一密封件191,第一密封件191用于密封出气通道113与出气孔132之间的间隙,还用于密封上座体121与壳体11内壁之间的间隙,避免储液腔111的待雾化基质从出气通道113与出气孔132之间配合形成的间隙漏出,也可以避免待雾化基质从上座体121与壳体11内壁之间配合形成的间隙漏出。其中,第一密封件191的材料为硅胶。在一具体实施例中,雾化腔133包括第一腔体134和第二腔体135,第一腔体134与第二腔体135相互连通。第一腔体134靠近出气孔132连接出气通道113的部分设置,且第一腔体134与出气通道113连通,例如出气通道113的一端***第一腔体134内。第二腔体135设置于第一腔体134远离出气通道113的一侧。第二腔体135为柱状结构。也就是说,第二腔体135的连接第一腔体134的端部与第二腔体135远离第一腔体134的端部的内径相等。从第一腔体134连接第二腔体135的端部到第一腔体134远离第二腔体135的端部之间,第一腔体134的横截面逐渐收缩成一缩口结构。也就是说,第一腔体134连接第二腔体135的端部的内径大于第一腔体134远离第二腔体135端部的内径。第一腔体134远离第二腔体135的端部的内径等于出气通道113的内径。在一具体实施例中,第二腔体135的内壁面为凸型曲面结构。在另一具体实施例中,第二腔体135的内壁面为平面结构。在一优选实施例中,第一腔体134的内壁面上形成有导气槽136,导气槽136从第一腔体134连接第二腔体135的端部延伸至第一腔体134远离第二腔体135的端部。第二腔体135连接第一腔体134的端部的内径与第二腔体135连接第一腔体134的端部的内径相等。其中,出气孔132的中轴线与雾化器1的中轴线重合。
在一具体实施例中,下液孔131为两个且设置于对称设置于出气孔132的两侧,也可以非对称设置于出气孔132的两侧。具体地,下液孔131的个数以及下液孔131的形状均可以根据实际情况设置。
请参阅图8,图8是本申请提供的雾化器中雾化芯一实施例的结构示意图。雾化芯16设置于上座体121和下座体141形成的安装空间。雾化芯16覆盖下液孔131和出气孔132,以使下液孔131可以将储液腔111中的待雾化基质传导至雾化芯16上,同时,可以使雾化芯16加热雾化形成的气溶胶可以通过出气孔132传输至出气通道113。雾化芯16包括多孔基体161和发热元件162。其中,多孔基体161包括一体成型的导液部163和凸起部165。凸起部165远离导液部163的一侧表面设置有发热元件162。凸起部165设置于导液部163靠近出气通道113的一侧表面,凸起部165远离导液部163的表面作为雾化面166,导液部163与下液孔131接触的表面作为吸液面167。雾化面166与出气通道113相对且间隔设置。也就是说,雾化芯16的雾化面166与雾化芯16的至少部分吸液面167处于同一侧,且设置于雾化芯16靠近出气通道113的一侧。在另一具体实施例中,为了增加吸液面167,导液部163内设置有连通孔164,连通孔164与下液孔131连通,连通孔164从导液部163的一侧表面延伸至与其相对的表面。也就是说,连通孔164的两端分别与设置于出气孔132两侧的下液孔131连通。其中,发热元件162可以为发热膜,也可 以为发热丝。其中,多孔基体161的材料为多孔陶瓷。
在一具体实施例中,雾化芯16与上座体121的连接处设置有第二密封件192,第二密封件192用于密封雾化芯16与上座体121之间形成的空隙。其中,第二密封件192的材料为硅胶。
请参阅图9至图12,图9是本申请提供的雾化器中雾化腔与出气通道中气溶胶的状态拟合示意图;图10是本申请提供的雾化器中雾化腔与出气通道中的气流状态拟合示意图;图11是本申请提供的雾化器中雾化腔与出气通道中气溶胶体积分数拟合示意图;图12是本申请提供的雾化器中10um粒径大液滴的追踪示意图。安装座12上设置有主进气部124和次进气部127。主进气部124和次进气部127用于将安装座12外部的气体传输至雾化腔133,以调节输送至出气通道113的气溶胶的气流,避免气溶胶的气流与出气通道113的内壁面接触,进而减小冷凝液,提升雾化量。具体地,气溶胶的气流从雾化腔133进入出气通道113时,次进气部127控制外部输入的气体在出气通道113的内壁面上形成阻隔层,以使气溶胶的气流形成的气柱直径变小。
参见图4和图6,具体地,主进气部124和次进气部127设置于上座体121上。具体地,主进气部124和次进气部127设置于上座体121不属于下液孔131的环形侧壁122上。主进气部124邻近雾化面166设置,主进气部124用于使外界气体进入雾化腔133并调节气体携带气溶胶以出气通道113的中心轴为圆心形成主流气柱,次进气部127设置于主进气部124远离雾化面166的一侧,次进气部127用于使外界气体进入雾化腔133并调节气体在出气通道113的内壁上形成阻隔层。其中,阻隔层为空气膜。出气通道113的内径一定,次进气部127传输的气体在出气通道113的内壁上形成阻隔层可以减小主流气柱的直径,以避免气溶胶与出气通道113的内壁面接触,进而提升雾化量。
在一具体实施例中,主进气部124的进气方向与次进气部127的进气方向相互平行且处于同一纵切面上。主进气部124的进气方向与次进气部127的进气方向平行于雾化面166。在另一具体实施例中,主进气部124的进气方向和次进气部127的进气方向也可以非相互平行设置。
参见图4,具体地,主进气部124至少包括第一通孔125和第二通孔126,第一通孔125和第二通孔126分别设置于安装座12相对的两个侧壁上,即环形侧壁122相对设置的两部分上。第一通孔125和第二通孔126的形状和尺寸不限。在一实施例中,第一通孔125和/或第二通孔126的形状为矩形,矩形与雾化器1的中轴线平行的边的长度H1不大于矩形与雾化器1的中轴线垂直的边的长度L1。第一通孔125或第二通孔126与雾化器1的中轴线垂直的边的长度为第一通孔125和或第二通孔126的宽度。在一优选实施例中,第一通孔125和/或第二通孔126的中轴线与雾化面166处于同一平面。通过第一通孔125和/或第二通孔126进入雾化腔133的气流用于携带气溶胶进入出气通道113且在雾化腔133内形成涡流区.
请参阅图13(a)至图13(d),图13(a)是本申请提供的雾化器中第一通孔与发热元件的宽度比例为1:2时的结构示意图;图13(b)是本申请提供的雾化器中第一通孔与发热元件的宽度比例为1:1时的结构示意图;图13(c)是本申请提供的雾化器中第一通孔与发热元件的宽度比例为1:2时的气流状态拟合示意图;图13(d)是本申请提供的雾化器中第一通孔与发热元件的宽度比例为1:1时的气流状态拟合示意图。在一可选实施例中,第一通孔125和/或第二通孔126的宽度L1等于发热元件162的分布宽度W1。第一通孔125和第二通孔126的宽度方向为垂直于雾化器1中轴线的方向。发热元件162的宽度方向为两个下液孔131的连线方向。在一 可选实施例中,第一通孔125和第二通孔126的形状为矩形时,第一通孔125和第二通孔126垂直雾化器1的中轴线的边的长度等于发热元件162的宽度。在另一可选实施例中,第一通孔125和第二通孔126的形状为圆形,第一通孔125和第二通孔126的直径等于发热元件162的宽度。
当第一通孔125和第二通孔126的宽度等于发热元件162的分布宽度时,第一通孔125和第二通孔126传输进雾化腔133中的气体可以将雾化面166生成的气溶胶更多的带离雾化面166。第一通孔125和第二通孔126的宽度等于发热元件162的分布宽度可以扩大输送至雾化腔133的气体的覆盖面,同时提高气体进入雾化腔133时的作用力,以便于将雾化腔133中的气溶胶集中于出气通道113的中轴线上,使得气溶胶形成的气柱横截面减小,避免气溶胶在出气通道113中扩散。第一通孔125和第二通孔126的进气可以覆盖发热元件162生成的气溶胶所有表面,充足的进气量可以将雾化面166产生的大尺寸液滴的气溶胶携带至出气通道113并送入用户口中,避免大液滴气溶胶由于重力作用回落至雾化面166形成冷凝液。其中,大液滴的粒径为10-170um。
在一具体实施例中,第一通孔125的位置和第二通孔126的位置可以相对设置。在一具体实施例中,第一通孔125的中轴线和第二通孔126的中轴线重合且平行于雾化面166。第一通孔125的位置和第二通孔126的位置也可以错位设置于上座体121的环形侧壁122上。在一具体实施例中,第一通孔125的位置可以与第二通孔126的位置可以纵向错位,也可以横向错位。第一通孔125的结构和第二通孔126的结构可以相同,也可以不同。第一通孔125与第二通孔126的形状可以相同,也可以不同。在另一可选实施例中,第一通孔125和第二通孔126的位置可以错位设置,第一通孔125和第二通孔126至少部分相对设置。当第一通孔125和第二通孔126的位置对称时,雾化面166附近形成的停滞区域处于雾化器1的中轴线上;当第一通孔125和第二通孔126的位置称非对称设置时,雾化面166附近形成的停滞区域偏离雾化器1的中轴线。
次进气部127至少包括第三通孔128和第四通孔129,第三通孔128和第四通孔129设置于安装座12相对的两个侧壁上。第三通孔128和/或第四通孔129设置于上座体121上,且设置于第一通孔125和第二通孔126远离下座体141的一侧。在一具体实施例中,第三通孔128和/或第四通孔129设置于出气孔132安装出气通道113的部分侧壁上。出气通道113的端面作为第三通孔128和第四通孔129的部分侧壁。第三通孔128和第四通孔129的靠近出气孔132内壁的端口与出气通道113的内壁面和第一腔体134的内壁面平齐,避免第三通孔128和第四通孔129与出气通道113的端面之间形成死角。通过第三通孔128和第四通孔129进入雾化腔133的气流用于吹散雾化腔133内滞留的涡流区,以使涡流区中的气溶胶进入出气通道113。第三通孔128和第四通孔129靠近雾化腔133的端口与出气通道113的内壁面平齐,可以使得从第三通孔128和第四通孔129进入的气体可以更顺畅的进入出气通道113,并在出气通道113的内壁面上形成阻隔层,避免气溶胶与出气通道113的内壁面接触。
在一具体实施例中,第三通孔128和/或第四通孔129的中轴线与雾化面166所处平面相互平行。在另一具体实施例中,第三通孔128和/或第四通孔129靠近雾化腔133的一端与雾化面166所处平面之间的距离大于第三通孔128和/或第四通孔129远离雾化腔133的一端与雾化面166平面之间的距离。在另一可选实施例中,第三通孔128和/或第四通孔129靠近雾化腔133的一端与雾化面166所处平面之间的距离小于第三通孔128和/或第四通孔129远离雾化腔133的一端与雾化面166平 面之间的距离。
在一具体实施例中,第三通孔128的位置和第四通孔129的位置可以相对设置。在一具体实施例中,第三通孔128的中轴线和第四通孔129的中轴线重合且平行于雾化面166。第三通孔128的位置和第四通孔129的位置也可以错位设置于上座体121的环形侧壁122上。在一具体实施例中,第三通孔128的位置可以与第四通孔129的位置纵向错位,也可以横向错位。第三通孔128的结构和第四通孔129的结构可以相同,也可以不同。第三通孔128与第四通孔129的形状可以相同,也可以不同。在另一可选实施例中,第三通孔128和第四通孔129的位置可以错位设置,第三通孔128和第四通孔129的至少部分相对设置。在一优选实施例中,第三通孔128和/或第四通孔129的形状为矩形,矩形与雾化器1的中轴线平行的边的长度不大于矩形与雾化器1的中轴线垂直的边的长度。
第三通孔128与第一通孔125,第四通孔129与第二通孔126可以相对设置,也可以错位设置。在一具体实施例中,第三通孔128与第一通孔125,第四通孔129与第二通孔126可以在雾化器1的中心轴方向上错位。
通孔的高度方向为沿雾化器1的中心轴延伸的方向。当第一通孔125和/或第二通孔126的高度较小时,第一通孔125和/或第二通孔126的气流流速较小,雾化面166附近会形成更大的停滞区域,停滞区域的气溶胶难以被带到外界。当第三通孔128和/或第四通孔129的高度较大时,通过第一通孔125和/或第二通孔126传输的气体与第二腔体135内壁形成的涡流区域变小,使得雾化腔133中的气溶胶的通过率增加。在一具体实施例中,请参阅图14和图15,图14是本申请提供的第三通孔的高度为0.3mm时雾化腔与出气通道中气溶胶的流速等值线示意图;图15是本申请提供的第三通孔的高度为0.6mm时雾化腔与出气通道中气溶胶的流速等值线示意图。当第一通孔125和/或第二通孔126的高度分别为0.3mm,第三通孔128和/或第四通孔129的高度从0.3mm增加到0.6mm时,第三通孔128和/或第四通孔129的高度增加,第三通孔128和/或第四通孔129中的气体冲击第一通孔125和/或第二通孔126与雾化腔133的内壁形成的涡流区域,第一通孔125和/或第二通孔126处于雾化腔133的内壁形成的涡流区域有所减小。由于第三通孔128和/或第四通孔129进入的气体会给第一通孔125和第二通孔126进入的气体一定的压力,以使第一通孔125和/或第二通孔126进入的气体所携带的气溶胶一定程度上被挤压,使得雾化面166的附近形成的停滞区域略有增大,进而影响气溶胶的通过率。因此,第一通孔125、第二通孔126、第三通孔128和第四通孔129的高度可以根据气溶胶的通过率来进行设计。
环形侧壁122的外壁面上设置有集液槽137,集液槽137用于收集从主进气部124和次进气部127中漏出的液体,也用于收集进气空间151漏出的液体。
请参阅图16,图16是本申请提供的雾化器中下座体一实施例的结构示意图。下座体141设置于上座体121远离出气通道113的一侧,且与上座体121固定连接,具体的,上座体121可以与下座体141卡接。在一具体实施例中,下座体141包括基板142以及设置于基板142靠近雾化芯16一表面的支撑组件145。在一具体实施例中,支撑组件145包括第一支撑臂146和第二支撑臂147,第一支撑臂146和第二支撑臂147相对且间隔设置于基板142上。第一支撑臂146与第二支撑臂147相对的表面设有凸台148。凸台148用于支撑雾化芯16,凸台148与雾化芯16远离雾化面166的一侧接触。凸台148上设有第一毛细槽149,第一毛细槽149用于接收雾化芯16中遗漏的液体。基板142上设置有进气孔144,基板142与雾化芯16之间间隔设置并形成有进气空间151,环形侧壁122与壳体11之间形成进气通道150, 进气通道150一端与进气空间151连通,另一端与主进气部124和次进气部127连通。基板142设有第一支撑臂146和第二支撑臂147的表面设置有第二毛细槽143,第二毛细槽143与第一毛细槽149连通。第二毛细槽143用于存储第一毛细槽149遗漏的漏液以及通过雾化芯16漏出的漏液。第一支撑臂146第二支撑臂147用于连接上座体121。
本实施例提供的一种电子雾化装置,其中该雾化器包括:壳体,壳体具有储液腔、安装腔和出气通道;安装座,至少部分收容于安装腔;雾化芯,安装于安装座内,雾化芯与储液腔连通,雾化芯的雾化面与出气通道相对且间隔设置,且雾化芯与出气通道之间形成雾化腔。本申请通过在雾化腔的侧壁上设置有主进气部和次进气部,主进气部靠近雾化芯设置,次进气部靠近出气通道设置,通过主进气部进入雾化腔的气流用于携带气溶胶进入出气通道且在雾化腔内形成涡流区;通过次进气部进入雾化腔的气流用于吹散雾化腔内滞留的涡流区,以使涡流区中的气溶胶进入出气通道,同时次进气部进入雾化腔中的气体在出气通道的内壁上形成阻隔层,以使携带气溶胶的气流与出气通道的内壁不接触,进而避免气溶胶与出气通道的内壁面接触形成冷凝液,进而提升气溶胶的雾化量。
以上仅为本申请的实施方式,并非因此限制本申请的专利保护范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种雾化器,其中,所述雾化器包括:
    壳体,所述壳体具有储液腔、安装腔和出气通道;
    安装座,至少部分收容于所述安装腔;
    雾化芯,安装于所述安装座内,所述雾化芯与所述储液腔连通,所述雾化芯的雾化面与所述出气通道相对且间隔设置,且所述雾化芯与所述出气通道之间形成雾化腔;
    其中,所述雾化腔的侧壁上设置有主进气部和次进气部,所述主进气部靠近所述雾化芯设置,所述次进气部靠近所述出气通道设置,通过所述主进气部进入所述雾化腔的气流用于携带气溶胶进入所述出气通道且在所述在所述雾化腔内形成涡流区;通过所述次进气部进入所述雾化腔的气流用于吹散所述雾化腔内滞留的所述涡流区,以使所述涡流区中的气溶胶进入所述出气通道。
  2. 根据权利要求1所述的雾化器,其中,所述主进气部的进气方向与所述雾化面相互平行。
  3. 根据权利要求2所述的雾化器,其中,所述主进气部至少包括第一通孔和第二通孔,所述第一通孔和所述第二通孔分别设置于所述安装座相对的两个侧壁上,所述第一通孔和/或所述第二通孔的中轴线与所述雾化面处于同一平面。
  4. 根据权利要求3所述的雾化器,其中,所述第一通孔和/或所述第二通孔的形状为矩形,所述第一通孔和/或所述第二通孔与所述雾化面垂直的边的高度不大于所述第一通孔和/或所述第二通孔与所述雾化面平行的边的宽度。
  5. 根据权利要求3所述的雾化器,其中,所述第一通孔和/或所述第二通孔与所述雾化面平行的边的宽度等于所述雾化芯的发热元件的分布宽度。
  6. 根据权利要求3所述的雾化器,其中,所述第一通孔和所述第二通孔的位置相对或错位且结构对称或非对称设置。
  7. 根据权利要求2所述的雾化器,其中,所述次进气部至少包括第三通孔和第四通孔,所述第三通孔和所述第四通孔设置于所述安装座相对的两个侧壁上,所述第三通孔和/或所述第四通孔靠近所述雾化腔的端口边沿与所述出气通道的内壁面平齐。
  8. 根据权利要求7所述的雾化器,其中,所述第三通孔和/或所述第四通孔的中轴线与所述雾化面所处平面相互平行。
  9. 根据权利要求7所述的雾化器,其中,所述第三通孔和/或所述第四通孔靠近所述雾化腔的一端与所述雾化面所处平面之间的距离大于所述第三通孔和/或所述第四通孔远离所述雾化腔的一端与所述雾化面所述平面之间的距离。
  10. 根据权利要求7所述的雾化器,其中,所述第三通孔和/或所述第四通孔靠近所述雾化腔的一端与所述雾化面所处平面之间的距离小于所述第三通孔和/或所述第四通孔远离所述雾化腔的一端与所述雾化面所述平面之间的距离。
  11. 根据权利要求7所述的雾化器,其中,所述第三通孔和所述第四通孔的位置相对或错位且结构对称或非对称设置。
  12. 根据权利要求7所述的雾化器,其中,所述第三通孔和/或所述第四通孔的形状为矩形,所述第三通孔和/或所述第四通孔与所述雾化面垂直的边的高度不大于所述第三通孔和/或所述第四通孔与所述雾化面平行的边的宽度。
  13. 根据权利要求12所述的雾化器,其中,所述第三通孔和/或所述第四通孔 与所述雾化面垂直的边的高度为0.3mm至0.6mm。
  14. 根据权利要求1所述的雾化器,其中,所述雾化芯包括导液部和凸起部,所述凸起部设置于所述导液部靠近所述出气通道的一侧表面,所述凸起部远离所述导液部的表面作为所述雾化面,所述导液部与所述下液孔接触的表面作为吸液面。
  15. 根据权利要求14所述的雾化器,其中,所述导液部内设置有连通孔,所述连通孔与下液孔连通,所述连通孔从所述导液部的一侧表面延伸至与其相对的表面。
  16. 一种电子雾化装置,其中,所述电子雾化装置包括电源组件和如上述权利要求1中所述的雾化器,所述电源组件用于对所述雾化器供电。
PCT/CN2021/093395 2021-05-12 2021-05-12 一种雾化器及其电子雾化装置 WO2022236744A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093395 WO2022236744A1 (zh) 2021-05-12 2021-05-12 一种雾化器及其电子雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093395 WO2022236744A1 (zh) 2021-05-12 2021-05-12 一种雾化器及其电子雾化装置

Publications (1)

Publication Number Publication Date
WO2022236744A1 true WO2022236744A1 (zh) 2022-11-17

Family

ID=84027917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093395 WO2022236744A1 (zh) 2021-05-12 2021-05-12 一种雾化器及其电子雾化装置

Country Status (1)

Country Link
WO (1) WO2022236744A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205757214U (zh) * 2016-07-01 2016-12-07 湖南中烟工业有限责任公司 一种雾化芯及其雾化器
US20170196266A1 (en) * 2014-09-26 2017-07-13 Shenzhen Smoore Technology Limited Inhaler, atomizing assembly and atomizing core
CN207355476U (zh) * 2017-07-27 2018-05-15 深圳市沁园春科技有限公司 通气座及其组成的自动吸电子烟结构
CN208523780U (zh) * 2018-06-29 2019-02-22 深圳市博迪科技开发有限公司 一种双气道电子烟雾化器及电子烟
CN210581001U (zh) * 2019-06-14 2020-05-22 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热组件
CN111359060A (zh) * 2020-02-20 2020-07-03 深圳麦克韦尔科技有限公司 雾化吸嘴及雾化装置
CN112056628A (zh) * 2019-06-10 2020-12-11 湖南中烟工业有限责任公司 一种超声波电子烟雾化芯、雾化器及超声波电子烟
CN212971657U (zh) * 2020-07-21 2021-04-16 湖南中烟工业有限责任公司 一种超声波雾化器及电子烟
CN212971655U (zh) * 2020-07-21 2021-04-16 湖南中烟工业有限责任公司 一种超声波雾化器及电子烟

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170196266A1 (en) * 2014-09-26 2017-07-13 Shenzhen Smoore Technology Limited Inhaler, atomizing assembly and atomizing core
CN205757214U (zh) * 2016-07-01 2016-12-07 湖南中烟工业有限责任公司 一种雾化芯及其雾化器
CN207355476U (zh) * 2017-07-27 2018-05-15 深圳市沁园春科技有限公司 通气座及其组成的自动吸电子烟结构
CN208523780U (zh) * 2018-06-29 2019-02-22 深圳市博迪科技开发有限公司 一种双气道电子烟雾化器及电子烟
CN112056628A (zh) * 2019-06-10 2020-12-11 湖南中烟工业有限责任公司 一种超声波电子烟雾化芯、雾化器及超声波电子烟
CN210581001U (zh) * 2019-06-14 2020-05-22 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热组件
CN111359060A (zh) * 2020-02-20 2020-07-03 深圳麦克韦尔科技有限公司 雾化吸嘴及雾化装置
CN212971657U (zh) * 2020-07-21 2021-04-16 湖南中烟工业有限责任公司 一种超声波雾化器及电子烟
CN212971655U (zh) * 2020-07-21 2021-04-16 湖南中烟工业有限责任公司 一种超声波雾化器及电子烟

Similar Documents

Publication Publication Date Title
US11375750B2 (en) Atomizer and electronic cigarette thereof
WO2018188638A1 (zh) 一种超声波电子烟雾化器
US11805814B2 (en) High efficiency atomizer and electronic cigarette thereof
WO2021180061A1 (zh) 雾化器及其气溶胶发生装置
CN214710376U (zh) 雾化器及电子雾化装置
CN112493546A (zh) 电子雾化装置及其雾化器
CN113317561A (zh) 一种雾化器及其电子雾化装置
CN215684794U (zh) 雾化器和电子雾化装置
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
WO2022236744A1 (zh) 一种雾化器及其电子雾化装置
WO2023185155A1 (zh) 一种电子雾化装置及其雾化器
CN219069464U (zh) 雾化器及气溶胶生成装置
WO2022237453A1 (zh) 一种雾化器及其电子雾化装置
WO2023155476A1 (zh) 雾化器和雾化装置
CN216088897U (zh) 一种电子雾化装置及其雾化器
EP4029389B1 (en) Atomizer and electronic atomizing device having the same
WO2022241619A1 (zh) 一种雾化器及其电子雾化装置
CN114747810A (zh) 一种雾化器及电子雾化装置
WO2023123243A1 (zh) 电子雾化装置、雾化器及其雾化器的装配方法
CN221179393U (zh) 一种电子雾化装置
WO2023123248A1 (zh) 电子雾化装置及其雾化器
WO2023123244A1 (zh) 一种电子雾化装置及其雾化器
CN217184861U (zh) 一种雾化器及其电子雾化装置
WO2023124524A1 (zh) 一种电子雾化装置及其雾化器
CN218474041U (zh) 一种雾化组件和气溶胶发生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941317

Country of ref document: EP

Kind code of ref document: A1