WO2022236562A1 - 无人飞行器的控制装置及航线规划方法和装置 - Google Patents

无人飞行器的控制装置及航线规划方法和装置 Download PDF

Info

Publication number
WO2022236562A1
WO2022236562A1 PCT/CN2021/092720 CN2021092720W WO2022236562A1 WO 2022236562 A1 WO2022236562 A1 WO 2022236562A1 CN 2021092720 W CN2021092720 W CN 2021092720W WO 2022236562 A1 WO2022236562 A1 WO 2022236562A1
Authority
WO
WIPO (PCT)
Prior art keywords
routes
route
unmanned aerial
aerial vehicle
area
Prior art date
Application number
PCT/CN2021/092720
Other languages
English (en)
French (fr)
Inventor
黄振昊
方朝晖
何纲
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/092720 priority Critical patent/WO2022236562A1/zh
Publication of WO2022236562A1 publication Critical patent/WO2022236562A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present application relates to the field of unmanned aerial vehicles, in particular to a control device and route planning method and device for unmanned aerial vehicles.
  • the UAV can also use a shooting device with only one lens for multi-angle shooting. Specifically, plan multiple routes in the operation area , each route corresponds to a shooting angle, so as to realize multi-angle shooting. How to connect routes with different shooting angles is a problem that must be considered in efficient operations.
  • the present application provides a control device for an unmanned aerial vehicle and a route planning method and device.
  • the embodiment of the present application provides a route planning method for an unmanned aerial vehicle, the method comprising:
  • each route includes a start position and a termination position
  • the unmanned aerial vehicle is controlled to sequentially execute the operation tasks of the at least two routes according to the first operation sequence.
  • an embodiment of the present application provides a route planning device for an unmanned aerial vehicle, the device comprising:
  • a storage device for storing program instructions
  • One or more processors calling the program instructions stored in the storage device, when the program instructions are executed, the one or more processors are individually or jointly configured to implement the first aspect described method.
  • control device for an unmanned aerial vehicle, the control device comprising:
  • the route planning device is arranged in the housing.
  • an embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the method described in the first aspect is implemented.
  • the embodiment of the present application provides a route planning method for an unmanned aerial vehicle, the method comprising:
  • the location information includes at least latitude and longitude information
  • the unmanned aerial vehicle is controlled to sequentially execute the operation tasks of the plurality of operation areas according to the operation sequence.
  • an embodiment of the present application provides a route planning device for an unmanned aerial vehicle, the device comprising:
  • a storage device for storing program instructions
  • One or more processors invoke program instructions stored in the storage device, and when the program instructions are executed, the one or more processors are individually or jointly configured to implement the fifth aspect described method.
  • control device for an unmanned aerial vehicle, the control device includes:
  • the route planning device is arranged in the housing.
  • the embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the method described in the fifth aspect is implemented.
  • the application plans the mitering paths between different routes in the operation area or the mitering paths between different operation areas of the same operation task, and the optimal connection path can be selected, Improved operational efficiency of unmanned aerial vehicles.
  • Fig. 1 is a schematic flow chart of a route planning method for an unmanned aerial vehicle in an embodiment of the present application
  • FIG. 2A is a schematic diagram of the composition of the route in an embodiment of the present application.
  • Fig. 2B is a schematic diagram of routes from different angles in an embodiment of the present application.
  • Fig. 3 is a schematic flow chart of a route planning method for an unmanned aerial vehicle in another embodiment of the present application
  • Fig. 4A is a top view of multiple working areas in an embodiment of the present application.
  • Fig. 4B is a schematic diagram of one of the operation sequences of multiple operation areas shown in 4A;
  • Fig. 5 is a flowchart of an implementation of determining the second operation sequence of each operation area based on the first position information and the second position information of each operation area in an embodiment of the present application;
  • Figure 6A is a schematic diagram of multiple operation areas shown in 4A in the side view direction, and reveals that the operation sequence is take-off point -> survey area 2 -> survey area 1 -> survey area 3 -> survey area 4 -> take-off point Euclidean distance between adjacent points in the scheme;
  • Figure 6B is a schematic diagram of the multiple operation areas shown in 4A in the side view direction, and reveals that the operation sequence is takeoff point -> survey area 2 -> survey area 1 -> survey area 3 -> survey area 4 -> takeoff point the Manhattan distance between adjacent points in the scheme;
  • Fig. 7 is a schematic flow chart of a route planning method for an unmanned aerial vehicle in another embodiment of the present application.
  • Fig. 8 is a schematic diagram of planning of an alternate take-off and landing point for an unmanned aerial vehicle in another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a route planning device for an unmanned aerial vehicle in an embodiment of the present application.
  • the application determines the operation sequence of at least two routes in the operation area based on the starting position and termination position of some or all of the routes planned in the operation area of the unmanned aerial vehicle, so that it can be selected.
  • the optimal connection route between at least two routes in the same operation area improves the operation efficiency of the unmanned aerial vehicle.
  • this application puts the operation tasks of multiple operation areas into a single operation task, and based on the first position information of the take-off point of the unmanned aerial vehicle and the multiple positions of the unmanned aerial vehicle in the same operation task
  • the second position information of each operation area in the operation area determines the operation sequence of multiple operation areas, so that the optimal connection route between multiple operation areas of the same operation task can be selected, and the operation efficiency of the unmanned aerial vehicle is improved.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one (unit) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, wherein a, b, c can be single or multiple.
  • the unmanned aerial vehicle in the embodiment of the present application may be an unmanned aerial vehicle, or other types of unmanned aerial vehicles.
  • the unmanned aerial vehicle can be used in the field of surveying and mapping.
  • the ground image is collected by the unmanned aerial vehicle equipped with a shooting device, and then the ground image is reconstructed by software in 3D or 2D.
  • the map obtained through surveying and mapping can be applied to In different industries, such as in the field of power inspection, the reconstructed map can be used to check line faults; in the field of road planning, the reconstructed map can be used to select the location of the road; Poppy cultivation, etc.
  • the unmanned aerial vehicle is not limited to the field of surveying and mapping, and can also be used in other fields that need to obtain multi-directional feature information of photographed objects.
  • the photographed object is not limited to the ground, and may also be a large building, a mountain, or the like.
  • Fig. 1 is a schematic flow chart of a route planning method for an unmanned aerial vehicle in an embodiment of the present application; wherein, the execution subject of the route planning method for an unmanned aerial vehicle in an embodiment of the present application may include a control device of an unmanned aerial vehicle, such as an unmanned aerial vehicle
  • the remote control of the aircraft, ground-side equipment, intelligent terminals (such as mobile phones) or computers, etc., may also include unmanned aerial vehicles.
  • the route planning method for an unmanned aerial vehicle may include steps S11-S13.
  • each route planned in the operation area of the unmanned aerial vehicle is obtained, wherein each route includes a start position and an end position.
  • the remote controller can pre-store the data information of at least two routes planned in the operation area, or import the data information of the at least two routes planned in the operation area into the remote controller before the route needs to be planned.
  • the data information of at least two routes planned in the operation area may include the position information of the start position and the end position of each route, the position information includes at least the latitude and longitude, and of course, the position information may also include others, such as altitude information.
  • the data information of at least two routes in the operation area A is written, and a separator identifier may be added between the data information of different routes.
  • the remote control displays the map of the operation area A, and determines the boundary position of the operation area A by selecting points.
  • the remote control can plan at least two routes of the operation area A through the existing algorithm, so as to obtain at least Data information of two routes. It is also possible to set parameters such as the flight height, shooting overlap rate, and flight speed of the UAV corresponding to the operation area through the remote control.
  • the shooting directions of the unmanned aerial vehicles are different when executing different routes; it should be understood that other ways may also be used to distinguish different routes.
  • the shooting direction at least includes: the vertical shooting direction facing downwards and the oblique shooting direction inclined relative to the vertical direction; in some other embodiments, the shooting direction may include: The oblique shooting direction.
  • the oblique shot direction may include at least two of the following: a forward shot direction that is inclined relative to the vertical direction and toward the front of the drone, a back shot direction that is inclined relative to the vertical direction and toward the rear of the drone, and a relative vertical direction.
  • the left shooting direction is tilted and facing the left direction of the drone
  • the right shooting direction is tilted relative to the vertical direction and facing the right direction of the drone.
  • the angle of inclination of the shooting direction relative to the vertical direction can be set as required.
  • the angle of inclination of the shooting direction relative to the vertical direction is greater than 0° and less than 90°, such as 10°, 20°, 30° °, 45°, etc.
  • the shooting direction includes a forward shooting direction, a forward shooting direction, a rear shooting direction, a rear shooting direction and a right shooting direction, and the routes corresponding to the above shooting directions are A, B, C, D and E respectively.
  • the flying heights of the UAVs corresponding to different shooting directions can be designed according to needs, wherein the flying heights of the UAVs corresponding to different oblique shooting directions are equal.
  • the flying height of the unmanned aerial vehicle corresponding to the forward shooting direction is equal to the flying height of the unmanned aerial vehicle corresponding to the oblique shooting direction, which is suitable for operation scenarios that do not require the same ground resolution.
  • the flying height of the unmanned aerial vehicle corresponding to the forward shooting direction is greater than the flying height of the unmanned aerial vehicle corresponding to the oblique shooting direction, so as to ensure that the ground resolution is approximate.
  • each route includes multiple sub-routes in the same direction, and the start position and end position included in each route are determined based on the two endpoint positions of the outermost two sub-routes among the multiple sub-routes in the route, which can be
  • the sub-route of each route can be parallel to one of the edges of the operation area, such as the sub-route parallel to the short side or the long side of the operation area; optionally, the sub-route of each route is relatively to the edge of the operation area Inclined, such as inclined 45 °, 135 ° or other angles.
  • the sub-routes of at least two routes in the same operation area are parallel to each other, or at least partly different.
  • the route is several parallel route segments (ie sub-routes); the starting position of the route can be It is any one of the two end positions of the two outermost sub-routes. If one of the end points is selected as the starting position of the route, then the end position of the route is also determined.
  • the route in the orthographic direction of survey area 1 includes a plurality of sub-routes parallel to the short side of survey area 1, and the starting position and end position of the route in the orthographic direction of survey area 1 It may include the four cases in FIG. 2A , where "S" represents the starting position of the route, and "E” represents the end position of the route.
  • each route includes multiple preset routes, each preset route includes multiple sub-routes in the same direction, and the sub-routes of the multiple preset routes in each route have different directions.
  • the starting position and the ending position included in each route are determined based on the two endpoint positions of the outermost two sub-routes in each preset route of the route.
  • each route of survey area 2 includes preset route 1 (as shown in Fig. 2B (1)), preset route 2 (as shown in Fig.
  • the directions of the sub-routes of the multiple preset routes include at least one of the following: a direction parallel to the edge of the corresponding operation area and a direction inclined relative to the edge of the operation area.
  • the preset route includes the sub-routes shown in FIG. 2B(1) and FIG. 2B(3), or the preset route includes the sub-routes shown in FIG. 2B(3) and FIG. 2B(4).
  • composition of the route is not limited to the composition methods listed above, and may be other.
  • each route includes multiple sub-routes parallel to each other, and at least two sub-routes of the route are parallel to each other as an example for illustration.
  • the first operation sequence of the at least two routes is determined.
  • the first operation sequence is based on at least two routes, the flight required by the unmanned aerial vehicle between the end position of the previous route and the start position of the next route in each adjacent two routes Depends on distance or flight time.
  • the operation area includes route A, route B and route C
  • possible operation sequences include operation sequences 1, 2, 3, 4, 5, and 6, where operation sequence 1 is route A -> route B -> route C, operation sequence 2 is route A->route C->route B, operation sequence 3 is route B->route A->route C, operation sequence 4 is route B->route C->route A, operation sequence 5 Route C->route A->route B, operation sequence 6 is route C->route B->route A.
  • the first operation sequence is based on the flight distance or flight distance that the unmanned aerial vehicle needs to consume between the end position of the previous route and the starting position of the next route in each of the two adjacent routes in the operation sequence 1-6.
  • the duration is determined; optionally, the route A is the starting route of the operation area, and the first operation sequence is based on the termination position of the previous route to the starting position of the next route in each adjacent two routes in the operation sequence 1 and 2.
  • the flight distance or flight time required to be consumed by the unmanned aerial vehicle between the starting positions is determined; optionally, the route A is the termination route of the operation area, and the first operation sequence is based on each adjacent two of the operation sequences 4 and 6.
  • the flight distance or flight time required by the unmanned aerial vehicle between the end position of the previous route and the start position of the next route in the route is determined.
  • the total flight distance is positively correlated with the total flight time. That is, at the same flight speed of the UAV, the greater the total flight distance, the greater the total flight time. If the altitudes of multiple routes in the same operation area are at least partly different, at this time, the movement speed of the UAV in the horizontal direction is different from the movement speed of the UAV in the vertical direction. Therefore, the total flight distance and the total flight time are not necessarily the same. Positive correlation. In the following embodiments, the relationship between the total flight distance and the total flight time during the second operation sequence planning in different operation areas is similar.
  • the first operation sequence is based on the total flight distance consumed by the unmanned aerial vehicle between the end position of the previous route and the starting position of the next route in all adjacent two routes among at least two routes.
  • the shortest or the shortest total flight time is determined to improve operational efficiency.
  • the first operation sequence is that among at least two routes, the total flight distance required by the unmanned aerial vehicle between the end position of the previous route and the starting position of the next route among all adjacent two routes is the shortest Or the sequence of operations with the shortest total flight time.
  • the route A is the starting route of the operation area
  • the total flight distance corresponding to the operation sequence 1 is greater than the total flight distance corresponding to the operation sequence 2
  • the first operation sequence is the operation sequence 1.
  • the first operation sequence is based on at least two routes, and the required consumption of the unmanned aerial vehicle between the end position of the previous route and the start position of the next route in each adjacent two routes
  • the flight distance or flight duration is determined, and the starting point of the unmanned aerial vehicle is also considered.
  • the starting position of the starting route and/or the ending position of the terminating route and the starting point of the unmanned aerial vehicle in each possible operation sequence need to be considered.
  • the starting operation route or the termination operation route of the operation area is a designated route among at least two routes, such as route A in the above embodiment.
  • the first operation sequence of at least two routes is determined, that is, based on the start position and end position of some routes in the at least two routes, at least two routes are determined first job sequence.
  • the shooting direction of the unmanned aerial vehicle corresponding to the specified route is the vertically downward orthographic direction, such as the flying height of the unmanned aerial vehicle corresponding to the forward shooting direction is greater than the flying height of the unmanned aerial vehicle corresponding to the oblique shooting direction, because
  • the up and down flight adjustment of the UAV takes a lot of time.
  • the UAV first or last executes the route corresponding to the forward direction. In this way, the number of up and down flight adjustments of the UAV is only one time.
  • the UAV flies up and down. Adjustment takes the least amount of time.
  • the specified route may be any one of at least two routes.
  • the process of determining the first operation sequence is described by taking each route including multiple sub-routes in the same direction as an example.
  • the starting position and the ending position of the specified route include: taking the two end positions of the two outermost sub-routes of the designated route as the starting position or the ending position of the designated route respectively, sequentially connecting the adjacent sub-routes of the designated route When the end points on the same side of the route form a route, the start position and the end position of the specified route are respectively obtained, wherein each route includes a plurality of sub-routes parallel to each other.
  • the shooting direction includes the forward shooting direction, the front shooting direction, the rear shooting direction, the rear shooting direction and the right shooting direction.
  • the routes corresponding to the above shooting directions are A, B, C, D and E respectively. are ⁇ Ai ⁇ , ⁇ Bi ⁇ , ⁇ Ci ⁇ , ⁇ Di ⁇ and ⁇ Ei ⁇ , i is the sequence number, and i is 1, 2, 3 and 4.
  • the designated route is route A, and the determination process of the first operation sequence may include the following steps:
  • the items in l i1 are the flight distances selected after the end of each route to the nearest endpoint of the next route, and the items in S i1 are the route lengths of each route.
  • the total flight time T1 in route operation sequence 1 is:
  • v is the flight speed of UAV.
  • each preset route includes multiple sub-routes in the same direction, and the directions of the sub-routes of the multiple preset routes of each route are different, when determining the first operation sequence , if the specified route is still route A, assuming that route A includes four preset routes as shown in Figure 2B, each preset route of route A includes 4 endpoint positions, and route A includes 16 endpoint positions, based on the above steps (1) ⁇ (3) 16 kinds of operation sequences can be determined, and the operation sequence with the shortest total flight distance or the shortest flight duration among these 16 kinds of operation sequences is selected as the first operation sequence.
  • the speed and acceleration of the UAV in the horizontal direction and the vertical direction are different and cannot be confused. However, considering that the flying heights of UAVs corresponding to different oblique shooting directions are equal, they can be ignored.
  • the total flight distance may only consider the horizontal distance; of course, the total flight distance may consider both the horizontal distance and the vertical distance.
  • the initial operation route of the operation area is determined based on the start position and end position of all routes, and based on the start position and end position of some or all of the at least two routes, determine at least two
  • the first operation sequence of the routes includes: determining the first operation sequences of at least two routes based on the start positions and end positions of all routes.
  • the shooting direction includes the forward shooting direction, the front shooting direction, the rear shooting direction, the rear shooting direction and the right shooting direction.
  • the routes corresponding to the above shooting directions are A, B, C, D and E respectively.
  • i is the serial number, i is 1, 2, 3 and 4, starting with routes A, B, C, D and E respectively
  • a plurality of operation sequences are determined based on the above steps (1) to (3), and the operation sequence with the shortest total flight distance or the shortest total flight time among the multiple operation sequences is selected as the first operation sequence.
  • the unmanned aerial vehicle is controlled to sequentially execute the operation tasks of at least two routes according to the first operation sequence.
  • the first operation order is sent to the unmanned aerial vehicle, which is applicable to the scene where the unmanned aerial vehicle pre-stores the route information of at least two routes planned by the operation area; in other implementations, route information of at least two routes planned by the first operation sequence and the operation area are sent to the unmanned aerial vehicle.
  • route planning may also consider path planning between multiple operating areas, especially the case where a single operating area is small but close to each other.
  • Fig. 3 is a schematic flowchart of a route planning method for an unmanned aerial vehicle in another embodiment of the present application; please refer to Fig. 3 , the method may further include steps S31-S33.
  • the first position information of the take-off point of the unmanned aerial vehicle and the second position information of each operation area in a plurality of operation areas of the same operation task of the unmanned aerial vehicle are acquired, the first position information, the second position information include at least latitude and longitude information.
  • the second position information may include center position information of each work area and/or position information of a start position and an end position of each work area, but is not limited thereto.
  • the remote controller can be pre-stored with the first position information and the second position information, or before the route needs to be planned, the first position information and the second position information can be imported into the remote controller, or the user can use the display device (such as the display screen of the remote controller) ) to select the displayed map to determine the first location information and the second location information.
  • the second location information is determined by an externally imported file; or, the second location information is determined by a user's selection on a map displayed on the display device.
  • the first location information and the second location information, or the first location information, the second location information and at least two items planned in each work area are written.
  • Route data information Between the two separated work areas, a split identifier can be added, such as the beginning "AreaBegin" and the end "AreaEnd".
  • the import file recognizes the split identifier, the data information between the two split identifiers is considered It is the data information of the same work area. If there are less than three dots between the two split identifiers, an error will be prompted.
  • the height information is relative height (such as the height of the point relative to the ground) and absolute height (such as the height of the point in the world coordinate system).
  • the remote control After the remote controller imports the KML file, assuming that there are 4 work areas in the KML file, the remote control recognizes the position information of each point in the KML file, and determines the range of each work area according to the segmentation identifier.
  • the remote controller can also set operation parameters, such as overlap rate, flying height (need to be set if the height of each operation area is not set in the operation area) and so on.
  • the map displayed by the remote controller determines the first position information and the boundary position of each operation area by means of point selection, and the remote controller can plan at least two routes of each operation area and the second route of each operation area through the existing algorithm. and second position information, so as to obtain the data information of at least two routes in each operation area and the second position information of each operation area.
  • the first location information and the second location information only include latitude and longitude information; in some other embodiments, the first location information and the second location information include both latitude and longitude information and altitude information.
  • the second location information is the center location information of each work area as an example for illustration.
  • the determined second operation order of the multiple operation areas is determined based on the total flight time or the total flight distance consumed by the unmanned aerial vehicle to complete the operation tasks of the multiple operation areas.
  • the flight time or flight distance consumed by the unmanned aerial vehicle between the starting operation area and/or the terminating operation area and the take-off point in various possible operation sequences can be considered.
  • the starting point of the unmanned aerial vehicle may not be considered.
  • the possible operation sequence includes: operation sequence 21 (takeoff point -> survey area 1 -> survey area 2 -> survey area 3 -> survey area 4 -> takeoff point), operation sequence 22 (takeoff point -> survey area 1 ->survey area 2->survey area 4->survey area 3->take-off point), operation sequence 23 (take-off point->survey area 1->survey area 4->survey area 2->survey area 3->take-off point), ... etc., the second operation sequence in the embodiment of the present application is determined based on the total flight time or total flight distance consumed by the unmanned aerial vehicle to complete the operation tasks of the above possible operation sequence.
  • one operation sequence is takeoff point -> survey area 2 -> survey area 1 -> survey area 3 -> survey area 4 -> takeoff point.
  • the determined second operation sequence of the plurality of operation areas is a plurality of operation sequences (that is, the multiple possible operation sequences determined by arranging and combining the above-mentioned multiple operation areas according to different operation sequences)
  • at least one operation area has a different operation sequence to improve operation efficiency.
  • an implementation manner of determining the second operation sequence of each operation area based on the first location information and the second location information of each operation area includes steps S51 - S53 .
  • a plurality of work areas are arranged and combined according to different operation sequences to form a plurality of permutations and combinations, wherein each arrangement and combination includes the operation sequence of each operation area, and the operations of at least one operation area in different arrangements and combinations The order is different.
  • an optimal arrangement and combination is determined to determine the second operation order of multiple operation areas.
  • Exemplary the collection of central positions of multiple work areas Permutation and combination of each point in, get Group possible operation sequence schemes, and then calculate the flight time or flight distance consumed by the unmanned aerial vehicle between two adjacent points in each group of operation sequence schemes, and select the operation sequence scheme with the shortest total flight time or the shortest total flight distance as the first Two job order.
  • N is the number of center positions
  • P is position information of the center positions.
  • the total flight time or total flight distance consumed by the UAV corresponding to each arrangement combination is determined based on the distance between each adjacent two operation areas in the arrangement combination.
  • the total flight time or total flight distance consumed by the unmanned aerial vehicle corresponding to each arrangement combination in some embodiments, only the distance between each adjacent two operating areas in the arrangement combination is considered; in other implementations In this example, not only the distance between each adjacent two operation areas in the arrangement and combination is considered, but also the consumption of the unmanned aerial vehicle between the start operation area and/or the end operation area and the take-off point in various possible operation sequences is considered. flight duration or flight distance.
  • the distance may include one of horizontal distance, Euclidean distance and Manhattan distance.
  • the second location information is taken as an example to describe the central location of each work area.
  • the unmanned aerial vehicle corresponding to the scheme of taking off point -> measuring area 2 -> measuring area 1 -> measuring area 3 -> measuring area 4 -> taking off point is determined based on the Euclidean distance
  • the total flight distance D always consumed is:
  • i is the serial number between two adjacent points.
  • the total flight time T always consumed by the unmanned aerial vehicle corresponding to the scheme of take-off point->survey area 2->survey area 1->survey area 3->survey area 4->take-off point is:
  • T total ⁇ D i /v (4)
  • v is the flight speed of the UAV
  • i is the serial number between two adjacent points.
  • L is the vertical distance
  • H is the horizontal distance
  • i is the serial number between two adjacent points.
  • the total flight time T always consumed by the unmanned aerial vehicle corresponding to the scheme of take-off point->survey area 2->survey area 1->survey area 3->survey area 4->take-off point is:
  • T total ( ⁇ L i + ⁇ H i )/v (6);
  • H is the vertical distance
  • L is the horizontal distance
  • i is the serial number between two adjacent points
  • v is the flight speed of the UAV.
  • the flying speed of the UAV in the vertical direction and the horizontal direction can be equal, and the total flight time is calculated using formula (6). If the flying speed of the UAV in the vertical direction and the horizontal direction are not equal, the following formula is used to calculate the flight time:
  • H is the vertical distance
  • L is the horizontal distance
  • i is the serial number between two adjacent points
  • v is the flight speed of the UAV
  • v1 is the horizontal flight speed
  • v2 is the vertical flight speed.
  • the flight time or flight distance consumed by the unmanned aerial vehicle between each adjacent two operating areas is based on It is determined by the distance between the center position of the current work area and the center position of the next work area.
  • the second position information is the position information of the start position and the end position of each work area.
  • each route includes multiple sub-routes in the same direction, and the start position and end position included in each route are determined based on the two endpoint positions of the outermost two sub-routes among the multiple sub-routes in the route, which can be
  • the sub-route of each route can be parallel to one of the edges of the operation area, such as the sub-route parallel to the short side or the long side of the operation area; optionally, the sub-route of each route is relatively to the edge of the operation area Inclined, such as inclined 45 °, 135 ° or other angles.
  • the distance between the multiple operation areas when the above-mentioned second position information is the center position of each operation area is determined.
  • the first operation sequence of each operation area has not been determined, that is, the start position and end position of each operation area have not been determined, then when determining the second sequence, some or all of the above-mentioned routes based on at least two routes.
  • the various operation sequences between at least two routes in the operation area determined by the starting position and the end position of the operation area and the various operation sequences of the multiple operation areas determined based on the first position information and the second position information of each operation area The operation sequence is arranged and combined, and the operation plan of the operation sequence in which the unmanned aerial vehicle consumes the shortest flight time or the shortest flight distance is selected in the arrangement and combination.
  • each route includes multiple preset routes
  • each preset route includes multiple sub-routes in the same direction
  • the sub-routes of the multiple preset routes in each route have different directions.
  • the starting position and the ending position included in each route are determined based on the two endpoint positions of the outermost two sub-routes in each preset route of the route.
  • one of a plurality of routes of the route may be selected as the route. Specifically, when planning paths between multiple operating areas, the influence of sub-routes at different angles on the paths is considered.
  • each route includes multiple sub-routes in the same direction.
  • this embodiment is planning multiple sub-routes.
  • it is necessary to consider the operation order in which the flight time of the UAV determined by the preset route in each direction is the shortest or the flight distance is the shortest, and then select the route determined by the preset route in each direction.
  • the end position of the work area is also confirmed accordingly (based on the above steps (1) ⁇ (4)), then when the work area 1 and the work area 2 are calculated independently, the work area
  • a certain end point position in work area 1 is selected as the initial work position, and the corresponding work area 1
  • the unmanned aerial vehicle is controlled to sequentially execute the operation tasks of multiple operation areas according to the second operation sequence.
  • the second order is sent to the unmanned aerial vehicle, which is applicable to the scene where the unmanned aerial vehicle pre-stores the data information of each operation area; After finishing, send the data information of the second sequence and each operation area to the unmanned aerial vehicle.
  • the routes between multiple operation areas and the routes between different routes in a single operation area are planned at the same time, it is also necessary to send the route information of the first operation sequence or at least two routes planned by the first operation sequence and the operation area to unmanned aerial vehicle.
  • the application can try to set a backup take-off and landing point on the route of the UAV by setting a backup take-off and landing point. In this way, considering the impact of battery replacement and repeated take-off and landing, the take-off and landing point of the UAV can be dynamically switched. Improve work efficiency and save power.
  • FIG. 7 is a schematic flowchart of a route planning method for an unmanned aerial vehicle in another embodiment of the present application; please refer to FIG. 7 , the route planning method for an unmanned aerial vehicle in the embodiment of the present application further includes steps S71-S72.
  • the remote controller can be pre-stored with the first location information and the third location information, or before the route needs to be planned, the first location information and the third location information are imported into the remote controller, or the user bases the display device (such as the display screen of the remote controller) on the remote controller. ) to select the displayed map to determine the first location information and the third location information.
  • the third location information is determined by an externally imported file; or, the third location information is determined by a user's selection on a map displayed on the display device.
  • the return position is determined based on the flight distance or flight time or the return power consumed by the unmanned aerial vehicle between the current position and the take-off point and the backup take-off and landing point respectively. Specifically, the return position is determined based on the shortest flight distance or the shortest flight time or the minimum return power required by the unmanned aerial vehicle between the current position and the take-off point and the backup take-off and landing point.
  • At least one of the multiple operation areas has a backup take-off and landing point.
  • each operation area in the same operation task has a backup take-off and landing point.
  • the flight distance or flight time or return power consumed by the unmanned aerial vehicle between the current position of the unmanned aerial vehicle and the take-off point and each alternate take-off and landing point can be determined , and select the point between the current position of the take-off point and each backup take-off and landing point to the take-off point and the backup take-off and landing point, which takes the shortest flight distance or the shortest flight time or the smallest return power point as the point of the UAV. Home position.
  • the power of the unmanned aerial vehicle is insufficient at the current position, and the nearest rechargeable or battery replacement point from the unmanned aerial vehicle is the backup take-off and landing point of the survey area 3, then the return position of the unmanned aerial vehicle It is an alternate take-off and landing point for survey area 3.
  • the on-duty airport of the UAV can be used as an alternate take-off and landing point.
  • An embodiment of the present application also provides a route planning method for an unmanned aerial vehicle, the method including: acquiring the first position information of the take-off point of the unmanned aerial vehicle and the operation areas of the multiple operation areas of the unmanned aerial vehicle in the same operation task
  • the second position information of the first position information and the second position information include at least longitude and latitude information; based on the first position information and the second position information of each work area, determine the operation sequence of multiple work areas (that is, the above-mentioned embodiment) The second operation sequence); controlling the unmanned aerial vehicle to execute the operation tasks of multiple operation areas in sequence according to the operation sequence.
  • the determined operation sequence of the multiple operation areas is determined based on the total flight time or total flight distance consumed by the unmanned aerial vehicle to complete the operation tasks of the multiple operation areas.
  • the determined operation sequence of multiple operation areas is the operation sequence in which the total flight time consumed by the unmanned aerial vehicle is the shortest or the total flight distance is the shortest, and the operation sequence of at least one operation area in different operation sequences is different.
  • determining the operation sequence of each operation area includes:
  • the optimal arrangement and combination is determined to determine the operation sequence of multiple operation areas.
  • the total flight time or total flight distance consumed by the UAV corresponding to each arrangement combination is determined based on the distance between each adjacent two operation areas in the arrangement combination.
  • the distance includes one of a horizontal distance, a Euclidean distance, and a Manhattan distance.
  • the embodiment of the present application provides a route planning device of the unmanned aerial vehicle, please refer to FIG. 9 , the device includes:
  • a storage device for storing program instructions
  • One or more processors call the program instructions stored in the storage device.
  • the one or more processors are individually or jointly configured to implement the route of the UAV in the above-mentioned embodiments planning method.
  • the storage device stores the executable instruction computer program of the route planning method of the unmanned aerial vehicle
  • the storage device may include at least one type of storage medium, and the storage medium includes a flash memory, a hard disk, a multimedia card, and a memory card.
  • the storage medium includes a flash memory, a hard disk, a multimedia card, and a memory card.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • ROM Read Only Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • magnetic memory magnetic disk, optical disk, etc.
  • the route planning device of the UAV may cooperate with a network storage device performing a storage function of the memory through a network connection.
  • the memory may be an internal storage unit of the route planning device of the UAV, such as a hard disk or memory of the route planning device of the UAV.
  • Memory also can be the external storage device of the route planning device of unmanned aerial vehicle, for example the plug-in hard disk equipped on the route planning device of unmanned aerial vehicle, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD ) card, flash memory card (Flash Card), etc.
  • the memory may also include both an internal storage unit of the route planning device of the UAV and an external storage device. Memory is used to store computer programs and other programs and data needed by the device. The memory can also be used to temporarily store data that has been output or will be output.
  • the processor can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), on-site Programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • An embodiment of the present application also provides a control device for an unmanned aerial vehicle.
  • the control device may include a housing and the route planning device of the above embodiment, and the route planning device is disposed on the housing.
  • control device may include a remote control or an intelligent terminal of an unmanned aerial vehicle, or may be other, such as a ground terminal device, a computer, and the like.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the route planning method for the unmanned aerial vehicle in the above-mentioned embodiment is implemented.
  • the computer-readable storage medium may be an internal storage unit of the route planning device for the unmanned aerial vehicle described in any of the foregoing embodiments, such as a hard disk or a memory.
  • the computer-readable storage medium can also be an external storage device of the route planning device of the unmanned aerial vehicle, such as a plug-in hard disk equipped on the device, a smart memory card (Smart Media Card, SMC), an SD card, a flash memory card (Flash Card) etc.
  • the computer-readable storage medium may also include both an internal storage unit of the route planning device of the UAV and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the route planning device of the UAV, and can also be used to temporarily store the data that has been output or will be output.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种无人飞行器的控制装置及航线规划方法和装置,方法包括:获取无人飞行器的作业区中规划的至少两条航线,其中,每条航线均包括起始位置和终止位置(S11);基于至少两条航线中的部分或者全部航线的起始位置和终止位置,确定至少两条航线的第一作业顺序(S12);控制无人飞行器按照第一作业顺序依次执行至少两条航线的作业任务(S13)。采用无人飞行器航线规划方法对作业区内的不同航线之间的衔接路径或同一作业任务的不同作业区之间的衔接路径进行了规划,可以选取最优衔接路径,提高了无人飞行器的作业效率。

Description

无人飞行器的控制装置及航线规划方法和装置 技术领域
本申请涉及无人飞行器领域,尤其涉及一种无人飞行器的控制装置及航线规划方法和装置。
背景技术
在无人飞行器的作业区中规划多条航线,如倾斜摄影时,为节省成本,无人机搭载也可以采用只有一个镜头的拍摄装置进行多角度拍摄,具体地,在作业区规划多条航线,每条航线对应一个拍摄角度,从而实现多角度拍摄,如何对不同拍摄角度的航线间进行衔接是高效作业中必须考虑的问题。
发明内容
本申请提供一种无人飞行器的控制装置及航线规划方法和装置。
第一方面,本申请实施例提供一种无人飞行器的航线规划方法,所述方法包括:
获取所述无人飞行器的作业区中规划的至少两条航线,其中,每条航线均包括起始位置和终止位置;
基于所述至少两条航线中的部分或者全部航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序;
控制所述无人飞行器按照所述第一作业顺序依次执行所述至少两条航线的作业任务。
第二方面,本申请实施例提供一种无人飞行器的航线规划装置,所述装置包括:
存储装置,用于存储程序指令;以及
一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施第一方面所述的方法。
第三方面,本申请实施例提供一种无人飞行器的控制装置,所述控制装置包括:
壳体;及
第二方面所述的航线规划装置,所述航线规划装置设于所述壳体。
第四方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面所述的方法。
第五方面,本申请实施例提供一种无人飞行器的航线规划方法,所述方法包括:
获取所述无人飞行器的起飞点的第一位置信息及所述无人飞行器在同一作业任务的多个作业区中各作业区的第二位置信息,所述第一位置信息、所述第二位置信息至少包括经纬度信息;
基于所述第一位置信息及各作业区的第二位置信息,确定所述多个作业区的作业顺序;
控制所述无人飞行器按照所述作业顺序依次执行所述多个作业区的作业任务。
第六方面,本申请实施例提供一种无人飞行器的航线规划装置,所述装置包括:
存储装置,用于存储程序指令;以及
一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施第五方面所述的方法。
第七方面,本申请实施例提供一种无人飞行器的控制装置,所述控制装置包括:
壳体;及
第六方面所述的航线规划装置,所述航线规划装置设于所述壳体。
第八方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现第五方面所述的方法。
根据本申请实施例提供的技术方案,本申请对作业区内的不同航线之间的斜接路径或同一作业任务的不同作业区之间的斜接路径进行了规划,可以选取最优衔接路径,提高了无人飞行器的作业效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请一实施例中的无人飞行器的航线规划方法的流程示意图;
图2A是本申请一实施例中的航线的组成示意图;
图2B是本申请一实施例中的不同角度的航线示意图;
图3是本申请另一实施例中的无人飞行器的航线规划方法的流程示意图;
图4A是本申请一实施例中的多个作业区的俯视图;
图4B是4A所示多个作业区的其中一种作业顺序示意图;
图5是本申请一实施例中的一种基于第一位置信息及各作业区的第二位置信息,确定各作业区的第二作业顺序的实现方式的流程图;
图6A是4A所示多个作业区在侧视方向的示意图,并揭示了作业顺序为起飞点->测区2->测区1->测区3->测区4->起飞点的方案中相邻点之间的欧式距离;
图6B是4A所示多个作业区在侧视方向的示意图,并揭示了作业顺序为起飞点->测区2->测区1->测区3->测区4->起飞点的方案中相邻点之间的曼哈顿距离;
图7是本申请另一实施例中的无人飞行器的航线规划方法的流程示意图;
图8是本申请另一实施例中的无人飞行器的备用起降点的规划示意图;
图9是本申请一实施例中的无人飞行器的航线规划装置的结构示意图。
具体实施方式
相关技术中,无人飞行器执行同一作业区的不同拍摄角度的航线间时未考虑同一作业区的不同拍摄角度的航线间的斜接路径的优化,导致作业效率低。对于此,本申请基于无人飞行器的作业区中规划的至少两条航线中的部分或者全部航线的起始位置和终止位置,确定该作业区中的至少两条航线的作业顺序,这样可以选取同一作业区的至少两条航线之间的最优衔接路线,提高了无人飞行器的作业效率。
另外,在航测、巡检或者建模作业过程中,如果无人飞行器续航能力较强,而针对的单个作业区较小,若干个作业测区位置接近,可能会出现无人飞行器在执行完一个作业区的作业任务后只消耗掉小部分电量(如30%)的情况,而目前的航测地面站中,大都每次上传一个作业区的数据信息给无人飞行器,无人飞行器来回返航再获取下一个作业区的数据信息以执行下一个作业区的作业任务,这种多个作业区规划多个任务,逐个进行作业的效率很低,人力、时间和电量较大浪费。对于此,本申请在航线规划时,将多个作业区的作业任务放在单次作业任务中,并基于无人飞行器的起飞点的第一位置信息及无人飞行器在同一作业任务的多个作业区中各作业区的第二位置信息,确定多个作业区的作业顺序,这样可以选取同一作业任务的多个作业区之间的最优衔接路线,提高了无人飞行器的作业效率。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
需要说明的是,在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b、或c中的至少一项(个),可以表示:a、b、c,a和b,a和c,b和c,或a和b和c,其中a、b、c可以是单个,也可以是多个。
本申请实施例的无人飞行器可以为无人机,也可以为其他类型的无人飞行器。
该无人飞行器可应用在测绘领域,以拍摄物为地面为例,通过无人飞行器搭载拍摄装置采集地面图像,再利用软件对地面图像进行三维或二维地图重建,通过测绘获得的地图可应用在不同的行业,如在电力巡检领域,可利用重建的地图检查线路故障;在道路规划领域,可利用重建的地图进行道路的选址;缉毒警察可利用重建的三维地图来检查深山中的罂粟种植情况等等。当然,该无人飞行器并不局限于测绘领域,也可应用在其他需要获取拍摄物多方位的特征信息的领域。拍摄物也不限于地面,也可为大型建筑物、山峦等。
图1是本申请一实施例中的无人飞行器的航线规划方法的流程示意图;其中,本申请实施例的无人飞行器的航线规划方法的执行主体可以包括无人飞行器的控制装置,如无人飞行器的遥控器、地面端设备、智能终端(如手机)或电脑等,也可以包括无人飞行器。
下述实施例以遥控器作为执行主体为例进行说明,应当理解的是,下述实施例的实现方式同样适用于其他执行主体,不再赘述。
请参见图1,本申请实施例的无人飞行器的航线规划方法可包括步骤S11~S13。
其中,在S11中、获取无人飞行器的作业区中规划的至少两条航线,其中,每条航线均包括起始位置和终止位置。
遥控器可预先存储有该作业区中规划的至少两条航线的数据信息,或者在需要规划航线前,将该作业区中规划的至少两条航线的数据信息导入遥控器中。其中,该作业区中规划的至少两条航线的数据信息可包括每条航线的起始位置和终止位置的位置信息,该位置信息至少包括经纬度,当然,该位置信息还可包括其他,如高度信息。
示例性的,在KML文件(也可以为其他文件类型)中,写入作业区A的至少两条航线的数据信息,可在不同航线的数据信息之间增加分隔标识符号。接着,将KML文件导入遥控器以通过遥控器进行航线规划。
又如,通过遥控器显示作业区A的地图,通过选点的方式确定作业区A的边界位置,遥控器可通过现有算法规划作业区A的至少两条航线,从而获得作业区A的至少两条航线的数据信息。还可以通过遥控器设置作业区对应的无人飞行器的飞行高度、拍摄重叠率、飞行速度等参数。
其中,无人飞行器执行不同航线时的拍摄方向各不相同;应当理解的,也可以采用其他方式来区分不同航线。
示例性的,在一些实施例中,拍摄方向至少包括:竖直朝下的正拍方向及相对竖直方向倾斜的斜拍方向;在另外一些实施例中,拍摄方向可包括相对竖直方向倾斜的斜拍方向。
其中,斜拍方向可包括以下至少两种:相对竖直方向倾斜且朝向无人机的前方的前拍方向、相对竖直方向倾斜且朝向无人机的后方的后拍方向、相对竖直方向倾斜且朝向无人机的左侧方向的左拍方向、相对竖直方向倾斜且朝向无人机的右侧方向的右拍方向。斜拍时,拍摄方向相对竖直方向倾斜的角度可根据需要设定,本申请实施例中,拍摄方向相对竖直方向倾斜的角度大于0°并小于90°,如10°、20°、30°、45°等。
可选地,拍摄方向包括正拍方向、前拍方向、后拍方向、后拍方向以及右拍方向,上述拍摄方向对应的航线分别为A、B、C、D和E。
不同拍摄方向对应的无人飞行器的飞行高度大小可以根据需要设计,其中,不同斜拍方向对应的无人飞行器的飞行高度相等。
示例性的,在一些实施例中,正拍方向对应的无人飞行器的飞行高度与斜拍方向对应的无人飞行器的飞行高度相等,适用于对未要求地面分辨率一致的作业场景。
在另外一些实施例中,正拍方向对应的无人飞行器的飞行高度大于斜拍方向对应的无人飞行器的飞行高度,从而保证地面分辨率近似。可选地,斜拍方向对应的无人飞行器的飞行高度与正拍方向对应的无人飞行器的飞行高度的比例为sinθ,其中,θ为拍摄方向相对竖直方向倾斜的角度。假设正拍方向对应的无人飞行器的飞行高度为h1,则斜拍方向对应的无人飞行器的飞行高度h2为h2=h1*sinθ。
在一些实施例中,每条航线包括同一方向的多条子航线,每条航线包括的起始位置和终止位置基于该条航线中多条子航线中最外侧两条子航线的两个端点位置确定,可选地,每条航线的子航线可以平行于该作业区的其中一个边沿,如子航线平行于该作业区的短边或长边;可选地,每条航线的子航线相对作业区的边沿倾斜,如倾斜45°、135°或其他角度。同一作业区的至少两条航线的子航线相互平行,或者至少部分不相同。
应当理解的是,对于每条航线,在没有确定该条航线的起始位置和终止位置时,该条航线为相平行的若干条航线段(即子航线);该条航线的起始位置可以为最外侧两条子航线的两个端点位置中的任一个,若选择其中一个端点位置作为该条航线的起始位置,那么该条航线的终止位置也为确定的。
示例性的,如图2A所示,测区1的正拍方向的航线包括多条平行于测区1的短边的子航线,测区1的正拍方向的航线的起始位置和终止位置可包括图2A中的四种情况,其中,“S”表示该条航线的起始位置,“E”表示该条航线的终止位置。
可选地,每条航线包括多条预设航线,每条预设航线包括同一方向的多条子航线,每条航线的多条预设航线的子航线的方向各不相同。本实施例中,每条航线包括的起始位置和终止位置基于所述航线的每条预设航线中最外侧两条子航线的两个端点位置确定。
可选地,多条预设航线的子航线的方向包括如下至少两种:平行于对应作业区的边沿的方向以及相对所述作业区的边沿倾斜的方向。示例性的,请参见图2B,测区2的每条航线包括预设航线1(如图2B(1)所示)、预设航线2(如图2B(2)所示)、预设航线3(如图2B(3)所示)和预设航线4(如图2B(4)所示),其中,预设航线1的子航线与测区2的短边平行,预设航线2的子航线与测区2的长边平行,预设航线3与测区2的长边夹角为45°,预设航线4与测区2的长边夹角为135°。
可选地,多条预设航线的子航线的方向包括如下至少一种:平行于对应作业区的边沿的方向以及相对所述作业区的边沿倾斜的方向。如预设航线包括图2B(1)及图2B(3)所示的子航线,或者预设航线包括图2B(3)及图2B(4)所示的子航线。
应当理解的是,航线的组成不限于上述列举的组成方式,也可以为其他。
下述实施例以每条航线包括多条相互平行的子航线,至少两条航线的子航线相互平行为例进行说明。
在S12中、基于至少两条航线中的部分或者全部航线的起始位置和终止位置,确定至少两条航线的第一作业顺序。
在一些实施例中,第一作业顺序是根据至少两条航线中,每相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间无人飞行器所需消耗的飞行路程或者飞行时长确定的。举例而言,作业区包括航线A、航线B和航线C,可能的作业顺序包括作业顺序1、2、3、4、5和6,其中,作业顺序1为航线A->航线B->航线C,作业顺序2为航线A->航线C->航线B,作业顺序3为航线B->航线A->航线C,作业顺序4为航线B->航线C->航线A,作业顺序5为航线C->航线A->航线B,作业顺序6为航线C->航线B->航线A。可选地,第一作业顺序根据作业顺序1-6中每相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间无人飞行器所需消耗的飞行路程或者飞行时长确定;可选地,将航线A为该作业区的起始航线,第一作业顺序根据作业顺序1和2中每相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间无人飞行器所需消耗的飞行路程或者飞行时长确定;可选地,将航线A为该作业区的终止航线,第一作业顺序根据作业顺序4和6中每相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间无人飞行器所需消耗的飞行路程或者飞行时长确。
应当理解的是,本申请实施例中,在规划同一作业区的多条航线的第一作业顺序时,若该作业区的多条航线的高度相同,则总飞行路程与总飞行时长正相关,即在同一无人飞行器的飞行速度下,总飞行路程越大,总飞行时长也越大。若同一作业区的多条航线的高度至少部分不相同,此时,无人飞行器在水平方向的运动速度与无人飞行器在垂直方向的运动速度不同,因此,总飞行路程与总飞行时长不一定正相关。下述实施例中,不同作业区的第二作业顺序规划时的总飞行路程与总飞行时长之间的关系相类似。
可选地,第一作业顺序是根据至少两条航线中,全部相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间无人飞行器所需消耗的总飞行路程最短或者总飞行时长最短确定的,提升作业效率。示例性的,第一作业顺序是至少两条航线中,全部相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间无人飞行器所需消耗的总飞行路程最短或者总飞行时长最短的作业顺序。例如,沿用上述实施例,将航线A为该作业区的起始航线,作业顺序1对应总飞行路程大于作业顺序2对应的总飞行路程,则第一作业顺序为作业顺序1。
而在另外一些实施例中,第一作业顺序除了根据至少两条航线中,每相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间无人飞行器所需消耗的飞行路程或者飞行时长确定,还考虑到无人飞行器的起始点,具体还需考虑每一可能的作业顺序中起始航线的起始位置和/或终止航线的终止位置与无人飞行器的起始点之间无人飞行器所需消耗的总飞行路程或者总飞行时长。
下面,对同一作业区中的起始作业航线和终止作业航线中的一个固定以及同一作业区中的各航线的作业顺序全部不固定的情况下,第一作业顺序的确定过程进行描述。
在一些实施例中,作业区的起始作业航线或终止作业航线为至少两条航线中的指定航线,如上述实施例中的航线A。本实施例中,基于指定航线的起始位置和终止位置,确定至少两条航线的第一作业顺序,即基于至少两条航线中的部分航线的起始位置和终止位置,确定至少两条航线的第一作业顺序。
可选地,指定航线对应的无人飞行器的拍摄方向为竖直朝下的正拍方向,如正拍方向对应的无人飞行器的飞行高度大于斜拍方向对应的无人飞行器的飞行高度,由于无人飞行器上下飞行调节需要消耗较大量的时间,无人飞行器最先或最后执行正拍方向对应的航线,这样无人飞行器上下飞行调节的次数仅为1次,作业过程中无人飞行器上下飞行调节需要消耗的时间最少。
当正拍方向对应的无人飞行器的飞行高度与斜拍方向对应的无人飞行器的飞行高度相等时,指定航线可以为至少两条航线中任一条航线。
以每条航线包括同一方向的多条子航线为例对第一作业顺序的确定过程进行说明。其中,指定航线的起始位置和终止位置包括:以指定航线的两条最外侧的子航线的两个端点位置分别作为指定航线的起始位置或终止位置,依次连接指定航线的相邻子航线的同一侧端点位置形成一条航线时,分别获得的指定航线的起始位置和终止位置,其中,每条航线包括多条相互平行的子航线。比如,拍摄方向包括正拍方向、前拍方向、后拍方向、后拍方向以及右拍方向,上述拍摄方向对应的航线分别为A、B、C、D和E,各条航线的端点位置分别为{Ai}、{Bi}、{Ci}、{Di}和{Ei},i为序号,i为1、2、3和4。指定航线为航线A,第一作业顺序的确定过程可包括如下步骤:
(1)、首先选取航线A中的A1作为航线A的起始位置,航线A的终止位置也确定,如A4,找寻{Bi}、{Ci}、{Di}和{Ei}这16个端点位置中距离A4最近的端点位置,假设距离A4最近的端点位置为C4,并确定A4和C4之间无人飞行器所需消耗的飞行路程或者飞行时长,则第二条航线为航线C,航线C的起始位置为C4,将航线C中各个平行的子航线连接成弓字形航线,由此,航线C的终止位置也确定;
(2)、重复步骤(1),直到衔接起航线A、B、C、D和E,获得作业顺序1,记录作业顺序1对应的无人飞行器的总飞行路程为L1,则有:
L1=∑{l i1}+∑{S i1}  (1);
其中,l i1中的各项即为每条航线结束后选取的到下一条航线最近端点位置间的飞行路程,S i1中的各项即为各条航线的航线长度。
航线作业顺序1中总飞行时长T1为:
T1=L1/v  (2);
其中,v为无人飞行器的飞行速度。
(3)、分别选取航线A中A2、A3、A4为航线A的起始位置,重复步骤(1)和(2),对应获取航线作业顺序2、3和4,以及作业顺序2的总飞行路程L2或者飞行时长T2、作业顺序3的总飞行路程L3或者飞行时长T3、作业顺序4的总飞行路程L4或者飞行时长T4;
(4)、选取L1、L2、L3和L4中最小值所对应的作业顺序或者T1、T2、T3和T4中最小值所对应的作业顺序作为第一作业顺序。
当每条航线包括多条预设航线,每条预设航线包括同一方向的多条子航线,每条航线的多条预设航线的子航线的方向各不相同时,在确定第一作业顺序时,若指定航线仍为航线A,假设航线A包括如图2B所示的四条预设航线,则航线A的每条预设航线包括4个端点位置,航线A包括16个端点位置,基于上述步骤(1)~(3)可以确定出16种作业顺序,选取这16种作业顺序中总飞行路程最短或飞行时长最短的作业顺序作为第一作业顺序。理论上无人飞行器在水平方向和垂直方向的运动速度与加速度都不同,不能混为一谈,但是考虑到不同斜拍方向对应的无人飞行器的飞行高度相等,故可以忽略。总飞行路程可仅考虑水平距离;当然总飞行路程可同时考虑水平距离和垂直距离。
在另外一些实施例中,作业区的起始作业航线为基于全部航线的起始位置和终止位置确定,基于至少两条航线中的部分或者全部航线的起始位置和终止位置,确定至少两条航线的第一作业顺序,包括:基于全部航线的起始位置和终止位置,确定至少两条航线的第一作业顺序。比如,拍摄方向包括正拍方向、前拍方向、后拍方向、后拍方向以及右拍方向,上述拍摄方向对应的航线分别为A、B、C、D和E,各条航 线的端点位置分别为{Ai}、{Bi}、{Ci}、{Di}和{Ei},i为序号,i为1、2、3和4,以航线A、B、C、D和E分别作为起始作业航线,基于上述步骤(1)~(3)确定多个作业顺序,选取多个作业顺序中的总飞行路程最短或总飞行时长最短的作业顺序作为第一作业顺序。
在S13中、控制无人飞行器按照第一作业顺序依次执行至少两条航线的作业任务。
其中,在一些实施例中,在航线规划结束后,发送第一作业顺序至无人飞行器,适用于无人飞行器预先存储有作业区规划的至少两条航线的航线信息的场景;在另外一些实施例中,在航线规划结束后,发送第一作业顺序及作业区规划的至少两条航线的航线信息至无人飞行器。
上述实施例对单个作业区的不同航线之间的路径规划进行了说明。
在一些实施例中,航线规划还可考虑多个作业区之间的路径规划,特别是单个作业区较小,但位置接近的情况。
图3是本申请另一实施例中的无人飞行器的航线规划方法的流程示意图;请参见图3,所述方法还可包括步骤S31~S33。
其中,在S31中、获取无人飞行器的起飞点的第一位置信息及无人飞行器在同一作业任务的多个作业区中各作业区的第二位置信息,第一位置信息、第二位置信息至少包括经纬度信息。
第二位置信息可以包括各作业区的中心位置信息和/或各作业区的起始位置及终止位置的位置信息,但不限于此。
遥控器可预先存储有第一位置信息、第二位置信息,或者在需要规划航线前,将第一位置信息、第二位置信息导入遥控器中,或者用户基于显示装置(如遥控器的显示屏)显示的地图进行选择确定第一位置信息、第二位置信息。示例性的,第二位置信息由外部导入的文件确定;或者,第二位置信息由用户在显示装置显示的地图上进行选择确定。
举列而言,在KML文件(也可以为其他文件类型)中,写入第一位置信息和第二位置信息,或者第一位置信息、第二位置信息和各作业区中规划的至少两条航线的数据信息。可在相隔开的两个作业区之间,增加分割标识符,如开头“AreaBegin”和结尾“AreaEnd”,当导入文件识别到分割标识符时,认为两个分割标识符之间的数据信息为同一个作业区的数据信息。若两个分割标识符之间小于三个点,则提示错误。在KML文件中对于各个作业区可以定义是否添加高度信息,高度信息为相对高度(如点相对地面的高度)和绝对高度(如点在世界坐标系的高度)。遥控器在导入KML文件后,假设KML文件中有4个作业区,遥控器识别到KML文件中各个点的位置信 息,以及按照分割标识符确定各个作业区的范围。遥控器还可设定作业参数,如重叠率、航高(如果作业区没有设定各个作业区的高度时需要设定)等。
又如,通过遥控器显示的地图,通过选点的方式确定第一位置信息和各作业区的边界位置,遥控器可通过现有算法规划各作业区的至少两条航线以及各作业区的第二位置信息,从而获得各作业区的至少两条航线的数据信息及各作业区的第二位置信息。
其中,在一些实施例中,第一位置信息、第二位置信息仅包括经纬度信息;在另外一些实施例中,第一位置信息、第二位置信息同时包括经纬度信息和高度信息。
在S32中、基于第一位置信息及各作业区的第二位置信息,确定多个作业区的第二作业顺序。
下述实施例中,以第二位置信息为各作业区的中心位置信息为例进行说明。
其中,确定出的多个作业区的第二作业顺序是基于无人飞行器完成多个作业区的作业任务所消耗的总飞行时长或者总飞行路程确定的。可考虑各种可能的作业顺序中起始作业区和/或终止作业区至起飞点之间无人飞行器所消耗的飞行时长或者飞行路程,当然,也可不考虑无人飞行器的起始点。
示例性的,请参见图4A,需要对位置相近的测区1、2、3、4这4个作业区进行路径规划,考虑起飞点,则对多个作业区按照不同的作业顺序进行排列组合,可能的作业顺序包括:作业顺序21(起飞点->测区1->测区2->测区3->测区4->起飞点)、作业顺序22(起飞点->测区1->测区2->测区4->测区3->起飞点)、作业顺序23(起飞点->测区1->测区4->测区2->测区3->起飞点)、…等等,本申请实施例的第二作业顺序是基于无人飞行器完成上述可能的作业顺序的作业任务所消耗的总飞行时长或者总飞行路程确定的。
如图4B所示,其中一种作业顺序为起飞点->测区2->测区1->测区3->测区4->起飞点。
本申请实施例中,确定出的多个作业区的第二作业顺序是多个作业顺序(即上述对多个作业区按照不同的作业顺序进行排列组合所确定出的多个可能的作业顺序)中无人飞行器所消耗的总飞行时长最短或者总飞行路程最短的作业顺序,不同作业顺序中至少一个作业区的作业顺序不同,提升作业效率。
请参见图5,一种基于第一位置信息及各作业区的第二位置信息,确定各作业区的第二作业顺序的实现方式包括步骤S51~S53。
其中,在S51中、将多个作业区按照不同的作业顺序进行排列组合,形成多个排列组合,其中,各排列组合包括各作业区的作业顺序,且不同排列组合的至少一个作业区的作业顺序不同。
在S52中、基于第一位置信息及各作业区的第二位置信息,确定各排列组合对应的无人飞行器所消耗的总飞行时长或者总飞行路程。
在S53中、基于各排列组合对应的无人飞行器所消耗的总飞行时长或者总飞行路程,确定最优排列组合,以确定多个作业区的第二作业顺序。
示例性的,对多个作业区的中心位置的集合
Figure PCTCN2021092720-appb-000001
中的各个点进行排列组合,得到
Figure PCTCN2021092720-appb-000002
组可能的作业顺序方案,再计算每组作业顺序方案中的相邻两点之间无人飞行器所消耗的飞行时长或者飞行路程,选取总飞行时长最短或者总飞行路程最短的作业顺序方案作为第二作业顺序。其中,N为中心位置的数量,P为中心位置的位置信息。
各排列组合对应的无人飞行器所消耗的总飞行时长或者总飞行路程是基于该排列组合中每一相邻的两个作业区的距离确定。在确定各排列组合对应的无人飞行器所消耗的总飞行时长或者总飞行路程时,在一些实施例中,仅考虑该排列组合中每一相邻的两个作业区的距离;在另外一些实施例中,不仅考虑该排列组合中每一相邻的两个作业区的距离,还考虑各种可能的作业顺序中起始作业区和/或终止作业区至起飞点之间无人飞行器所消耗的飞行时长或者飞行路程。
其中,距离可包括水平距离、欧氏距离和曼哈顿距离中的一个。
以第二位置信息为各作业区的中心位置为例进行说明。示例性的,如图6A所示,基于欧式距离确定作业顺序为起飞点->测区2->测区1->测区3->测区4->起飞点的方案对应的无人飞行器所消耗的总飞行路程D 为:
D =∑D i   (3);
其中,i为相邻两个点之间的序号。
作业顺序为起飞点->测区2->测区1->测区3->测区4->起飞点的方案对应的无人飞行器所消耗的总飞行时长T 为:
T =∑D i/v  (4);
其中,v为无人飞行器的飞行速度,i为相邻两个点之间的序号。
又如,请参见图6B,基于曼哈顿距离确定作业顺序为起飞点->测区2->测区1->测区3->测区4->起飞点的方案对应的无人飞行器所消耗的总飞行路程D 为:
D =∑L i+∑H i  (5);
其中,L为垂直距离,H为水平距离,i为相邻两个点之间的序号。
作业顺序为起飞点->测区2->测区1->测区3->测区4->起飞点的方案对应的无人飞行器所消耗的总飞行时长T 为:
T =(∑L i+∑H i)/v  (6);
其中,H为垂直距离,L为水平距离,i为相邻两个点之间的序号,v为无人飞行器的飞行速度。
在基于曼哈顿距离确定总飞行时长时,无人飞行器在垂直方向与水平方向的飞行速度可以相等,采用公式(6)计算总飞行时长。若无人飞行器在垂直方向与水平方向的飞行速度不相等,则采用下式计算飞行时长:
Figure PCTCN2021092720-appb-000003
其中,H为垂直距离,L为水平距离,i为相邻两个点之间的序号,v为无人飞行器的飞行速度,v1为水平飞行速度,v2为垂直飞行速度。
在多个作业区之间的路径规划时,若第二位置信息为各作业区的中心位置,则每一相邻的两个作业区之间无人飞行器所消耗的飞行时长或者飞行路程是基于当前作业区的中心位置至下一作业区的中心位置之间的距离确定的。
下面,对第二位置信息为各作业区的起始位置及终止位置的位置信息进行说明。
在一些实施例中,每条航线包括同一方向的多条子航线,每条航线包括的起始位置和终止位置基于该条航线中多条子航线中最外侧两条子航线的两个端点位置确定,可选地,每条航线的子航线可以平行于该作业区的其中一个边沿,如子航线平行于该作业区的短边或长边;可选地,每条航线的子航线相对作业区的边沿倾斜,如倾斜45°、135°或其他角度。在规划多个作业区之间的路径时,无需考虑子航线的角度变化的影响。若每个作业区的第一作业顺序均确定,即每个作业区的起始位置与终止位置已经确定,则与上述第二位置信息为各作业区的中心位置时的多个作业区之间的路径规划不同在于:本实施例在规划多个作业区之间的路径时,每一相邻的两个作业区之间无人飞行器所消耗的飞行时长或者飞行路程是基于当前作业区的终止位置至下一作业区的起始位置之间的距离确定的。若每个作业区的第一作业顺序未确定,即每个作业区的起始位置与终止位置未确定,则在确定第二顺序时,需对上述基于至少两条航线中的部分或者全部航线的起始位置和终止位置所确定的该作业区的至少两条航线之间的多种作业顺序及基于第一位置信息及各作业区的第二位置信息所确定的多个作业区的多种作业顺序进行排列组合,选取该排列组合中无人飞行器所消耗的飞行时长最短或者飞行路程最短的作业顺序的作业方案。
在另外一些实施例中,各作业区中的至少两条航线的子航线的角度是不确定的,在规划多个作业区之间的路径时,需考虑子航线的角度变化的影响。示例性的, 每条航线包括多条预设航线,每条预设航线包括同一方向的多条子航线,每条航线的多条预设航线的子航线的方向各不相同。本实施例中,每条航线包括的起始位置和终止位置基于所述航线的每条预设航线中最外侧两条子航线的两个端点位置确定。对于每条航线,可选择该条航线的多条航线中的一条作为该条航线。具体而言,在规划多个作业区之间的路径时,考虑不同角度的子航线对路径的影响,与上述每条航线包括同一方向的多条子航线的情况不同在于:本实施例在规划多个作业区之间的路径时,需考虑每个方向的预设航线所确定的无人飞行器所消耗的飞行时长最短或者飞行路程最短的作业顺序,再选取每个方向的预设航线所确定的无人飞行器所消耗的飞行时长最短或者飞行路程最短的作业顺序中无人飞行器所消耗的飞行时长最短或者飞行路程最短的作业顺序的作业方案。
例如,假设将PI(180°)分成n个旋转次序,则每次旋转的角度为PI/n,如果n=4,则每次旋转角度为PI/4=45°。假设作业区1中n=4,则作业区1中的每个角度分辨率为45°,作业区2中n=8,则作业区2中每个角度分辨率为22.5°。
在一些实施例中,如果考虑对作业区1和2中的各个方向的预设航线组合进行遍历,则有4*8=32种作业顺序方案;而如果考虑到每个作业区的起始位置可选,选定作业区的起始位置后该作业区的终止位置也相应确认(基于上述步骤(1)~(4)),则当作业区1与作业区2独立进行计算时,作业区1和2种每条航线都可以选取4个端点位置作为对应作业区的起始位置,则有4*4*32=512种作业方案。
在另外一些实施例中,如果按照平均位置确认执行作业区的顺序为作业区1之后作业区2,则实际上选取作业区1内某一端点位置为起始作业位置,则相应的作业区1的终止位置也确定。之后计算作业区2的4个端点位置中哪个端点位置距离作业区1的终止位置的距离最近,选择该作业区2中距离作业区1的终止位置最近的端点位置为作业区2的起始位置,总共有4*32=128种作业方案。
在S33中、控制无人飞行器按照第二作业顺序依次执行多个作业区的作业任务。
其中,在一些实施例中,在航线规划结束后,发送第二顺序至无人飞行器,适用于无人飞行器预先存储有各作业区的数据信息的场景;在另外一些实施例中,在航线规划结束后,发送第二顺序及各作业区的数据信息至无人飞行器。当同时规划了多个作业区之间的路径及单个作业区的不同航线之间的路径时,还需发送第一作业顺序或者第一作业顺序和作业区规划的至少两条航线的航线信息至无人飞行器。
由于每个作业任务规划中,涉及多个离散的作业区,所以很容易发生作业中途无人飞行器的电量不足,需要返回起飞点换电池或充电的情况,如果每次都返回起飞点,则有可能浪费电量;无人飞行器如果粗暴地直接就地降落,可能会导致一系列安全问题。对于此,本申请通过设置备用起降点,可尽量在无人飞行器的航线上设置备 用起降点,如此,考虑到换电池与反复起降的影响,动态切换无人飞行器的起降点,提高作业效率并节省了电量。
图7是本申请另一实施例中的无人飞行器的航线规划方法的流程示意图;请参见图7,本申请实施例的无人飞行器的航线规划方法还包括步骤S71~S72。
其中,在S71中,在无人飞行器执行作业任务过程中,当无人飞行器的实时电量小于预设电量时,获取无人飞行器的当前位置信息、无人飞行器的起飞点的第一位置信息及预设的备用起降点的第三位置信息。
遥控器可预先存储有第一位置信息、第三位置信息,或者在需要规划航线前,将第一位置信息、第三位置信息导入遥控器中,或者用户基于显示装置(如遥控器的显示屏)显示的地图进行选择确定第一位置信息、第三位置信息。示例性的,第三位置信息由外部导入的文件确定;或者,第三位置信息由用户在显示装置显示的地图上进行选择确定。
在S72中,基于第一位置信息、当前位置信息及第三位置信息,确定无人飞行器的返航位置。
其中,返航位置是基于当前位置分别到起飞点、备用起降点之间无人飞行器所需消耗的飞行路程或者飞行时长或者返航电量确定的。具体而言,返航位置是基于当前位置分别到起飞点、备用起降点之间无人飞行器所需消耗的飞行路程最短或者飞行时长最短或者返航电量最小确定的。
多个作业区中至少一个作业区设有备用起降点,可选地,同一作业任务中每个作业区均设有备用起降点,备用起降点可选择作业区中四周开阔,起降无障碍的安全区域,在作业过程中,若电量不足,可确定无人飞行器的当前位置分别至起飞点及各备用起降点之间无人飞行器所需消耗的飞行路程或者飞行时长或者返航电量,并选择起飞点及各备用起降点中当前位置分别到起飞点、备用起降点之间无人飞行器所需消耗的飞行路程最短或者飞行时长最短或者返航电量最小的点作为无人飞行器的返航位置。
示例性的,如图8所示,无人飞行器在当前位置的电量不足,距离无人飞行器最近的可充电或换电池的点为测区3的备用起降点,则无人飞行器的返航位置为测区3的备用起降点。
可以将无人飞行器的值守机场作为备用起降点。
本申请实施例还提供一种无人飞行器的航线规划方法,所述方法包括:获取无人飞行器的起飞点的第一位置信息及无人飞行器在同一作业任务的多个作业区中各作业区的第二位置信息,第一位置信息、第二位置信息至少包括经纬度信息;基于第一位置信息及各作业区的第二位置信息,确定多个作业区的作业顺序(即上述实施例中 的第二作业顺序);控制无人飞行器按照作业顺序依次执行多个作业区的作业任务。
在一些实施例中,确定出的多个作业区的作业顺序是基于无人飞行器完成多个作业区的作业任务所消耗的总飞行时长或者总飞行路程确定的。
确定出的多个作业区的作业顺序是多个作业顺序中无人飞行器所消耗的总飞行时长最短或者总飞行路程最短的作业顺序,不同作业顺序中至少一个作业区的作业顺序不同。
在一些实施例中,基于第一位置信息及各作业区的第二位置信息,确定各作业区的作业顺序,包括:
将多个作业区按照不同的作业顺序进行排列组合,形成多个排列组合,其中,各排列组合包括各作业区的作业顺序,且不同排列组合的至少一个作业区的作业顺序不同;
基于第一位置信息及各作业区的第二位置信息,确定各排列组合对应的无人飞行器所消耗的总飞行时长或者总飞行路程;
基于各排列组合对应的无人飞行器所消耗的总飞行时长或者总飞行路程,确定最优排列组合,以确定多个作业区的作业顺序。
在一些实施例中,各排列组合对应的无人飞行器所消耗的总飞行时长或者总飞行路程是基于该排列组合中每一相邻的两个作业区的距离确定。
在一些实施例中,距离包括水平距离、欧氏距离和曼哈顿距离中的一个。
具体可参见上述实施例中的相应部分的描述,不再赘述。
对应与于上述实施例的无人飞行器的航线规划方法,本申请实施例提供一种无人飞行器的航线规划装置,请参见图9,所述装置包括:
存储装置,用于存储程序指令;以及
一个或多个处理器,调用存储装置中存储的程序指令,当程序指令被执行时,一个或多个处理器单独地或共同地被配置成用于实施上述实施例中的无人飞行器的航线规划方法。
其中,所述存储装置存储所述无人飞行器的航线规划方法的可执行指令计算机程序,所述存储装置可以包括至少一种类型的存储介质,存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,所述无人飞行器的航线规划装置可以与通过网络连接执行存储器的存储功能的网络存储装置协作。存储器可以是无人飞行器的航线规划装置的内部存储单元,例如无人飞行器的航线规划 装置的硬盘或内存。存储器也可以是无人飞行器的航线规划装置的外部存储设备,例如无人飞行器的航线规划装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步的,存储器还可以既包括无人飞行器的航线规划装置的内部存储单元也包括外部存储设备。存储器用于存储计算机程序以及设备所需的其他程序和数据。存储器还可以用于暂时地存储已经输出或者将要输出的数据。
所述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例还提供一种无人飞行器的控制装置,该控制装置可包括壳体及上述实施例的航线规划装置,航线规划装置设于壳体。
其中,控制装置可包括无人飞行器的遥控器或智能终端,也可为其他,如地面端设备、计算机等。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述实施例中的无人飞行器的航线规划方法。
所述计算机可读存储介质可以是前述任一实施例所述的无人飞行器的航线规划装置的内部存储单元,例如硬盘或内存。所述计算机可读存储介质也可以是无人飞行器的航线规划装置的外部存储设备,例如所述设备上配备的插接式硬盘、智能存储卡(Smart Media Card,SMC)、SD卡、闪存卡(Flash Card)等。进一步的,所述计算机可读存储介质还可以既包括无人飞行器的航线规划装置的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述无人飞行器的航线规划装置所需的其他程序和数据,还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本申请部分实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (94)

  1. 一种无人飞行器的航线规划方法,其特征在于,所述方法包括:
    获取所述无人飞行器的作业区中规划的至少两条航线,其中,每条航线均包括起始位置和终止位置;
    基于所述至少两条航线中的部分或者全部航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序;
    控制所述无人飞行器按照所述第一作业顺序依次执行所述至少两条航线的作业任务。
  2. 根据权利要求1所述的方法,其特征在于,所述第一作业顺序是根据所述至少两条航线中,每相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间所述无人飞行器所需消耗的飞行路程或者飞行时长确定的。
  3. 根据权利要求2所述的方法,其特征在于,所述第一作业顺序是根据所述至少两条航线中,全部相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间所述无人飞行器所需消耗的总飞行路程最短或者总飞行时长最短确定的。
  4. 根据权利要求1所述的方法,其特征在于,所述作业区的起始作业航线或终止作业航线为所述至少两条航线中的指定航线,所述基于所述至少两条航线中的部分或者全部航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序,包括:
    基于所述指定航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序。
  5. 根据权利要求4所述的方法,其特征在于,所述指定航线对应的所述无人飞行器的拍摄方向为竖直朝下的正拍方向。
  6. 根据权利要求4所述的方法,其特征在于,所述指定航线的起始位置和终止位置包括:
    以所述指定航线的两条最外侧的子航线的两个端点位置分别作为所述指定航线的起始位置或终止位置,依次连接所述指定航线的相邻子航线的同一侧端点位置形成一条航线时,分别获得的所述指定航线的起始位置和终止位置,其中,每条航线包括多条相互平行的子航线。
  7. 根据权利要求1所述的方法,其特征在于,所述作业区的起始作业航线为基于所述全部航线的起始位置和终止位置确定,所述基于所述至少两条航线中的部分或者全部航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序,包括:
    基于全部航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序。
  8. 根据权利要求1所述的方法,其特征在于,所述无人飞行器执行不同所述航线时的拍摄方向各不相同。
  9. 根据权利要求8所述的方法,其特征在于,所述拍摄方向至少包括:
    竖直朝下的正拍方向及相对竖直方向倾斜的斜拍方向。
  10. 根据权利要求9所述的方法,其特征在于,所述斜拍方向包括以下至少两种:
    相对竖直方向倾斜且朝向所述无人机的前方的前拍方向、相对竖直方向倾斜且朝向所述无人机的后方的后拍方向、相对竖直方向倾斜且朝向所述无人机的左侧方向的左拍方向、相对竖直方向倾斜且朝向所述无人机的右侧方向的右拍方向。
  11. 根据权利要求9所述的方法,其特征在于,所述正拍方向对应的所述无人飞行器的飞行高度大于所述斜拍方向对应的所述无人飞行器的飞行高度。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述无人飞行器的起飞点的第一位置信息及所述无人飞行器在同一作业任务的多个作业区中各作业区的第二位置信息,所述第一位置信息、所述第二位置信息至少包括经纬度信息;
    基于所述第一位置信息及各作业区的第二位置信息,确定所述多个作业区的第二作业顺序;
    控制所述无人飞行器按照所述第二作业顺序依次执行所述多个作业区的作业任务。
  13. 根据权利要求12所述的方法,其特征在于,所述确定出的所述多个作业区的第二作业顺序是基于所述无人飞行器完成所述多个作业区的作业任务所消耗的总飞行时长或者总飞行路程确定的。
  14. 根据权利要求13所述的方法,其特征在于,所述确定出的所述多个作业区的第二作业顺序是多个作业顺序中所述无人飞行器所消耗的总飞行时长最短或者总飞行路程最短的作业顺序,不同所述作业顺序中至少一个作业区的作业顺序不同。
  15. 根据权利要求13所述的方法,其特征在于,基于所述第一位置信息及各作业区的第二位置信息,确定各作业区的第二作业顺序,包括:
    将多个所述作业区按照不同的作业顺序进行排列组合,形成多个排列组合,其中,各排列组合包括各作业区的作业顺序,且不同所述排列组合的至少一个作业区的作业顺序不同;
    基于所述第一位置信息及各作业区的第二位置信息,确定各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程;
    基于各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程,确定最优排列组合,以确定所述多个作业区的第二作业顺序。
  16. 根据权利要求15所述的方法,其特征在于,各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程是基于该排列组合中每一相邻的两个作业区的距离确定。
  17. 根据权利要求16所述的方法,其特征在于,所述距离包括水平距离、欧氏距离和曼哈顿距离中的一个。
  18. 根据权利要求12所述的方法,其特征在于,所述第二位置信息包括:
    各作业区的中心位置信息。
  19. 根据权利要求12所述的方法,其特征在于,所述第二位置信息包括:
    各作业区的起始位置及终止位置的位置信息。
  20. 根据权利要求1或19所述的方法,其特征在于,每条航线包括同一方向的多条子航线,每条航线包括的起始位置和终止位置基于所述航线中多条子航线中最外侧两条子航线的两个端点位置确定。
  21. 根据权利要求20所述的方法,其特征在于,每条航线的子航线平行于所述作业区的其中一个边沿。
  22. 根据权利要求1或19所述的方法,其特征在于,每条航线包括多条预设航线,每条预设航线包括同一方向的多条子航线,每条航线的多条预设航线的子航线的方向各不相同;
    每条航线包括的起始位置和终止位置基于所述航线的每条预设航线中最外侧两条子航线的两个端点位置确定。
  23. 根据权利要求22所述的方法,其特征在于,所述多条预设航线的子航线的方向包括如下至少两种:
    平行于对应作业区的边沿的方向;
    相对所述作业区的边沿倾斜的方向。
  24. 根据权利要求12所述的方法,其特征在于,所述第二位置信息由外部导入的文件确定;或者,
    所述第二位置信息由用户在显示装置显示的地图上进行选择确定。
  25. 根据权利要求12所述的方法,其特征在于,所述第一位置信息、所述第二位置信息还包括高度信息。
  26. 根据权利要求1或12所述的方法,其特征在于,所述方法还包括:
    在所述无人飞行器执行作业任务过程中,当所述无人飞行器的实时电量小于预设电量时,获取所述无人飞行器的当前位置信息、所述无人飞行器的起飞点的第一位置信息及预设的备用起降点的第三位置信息;
    基于所述第一位置信息、所述当前位置信息及所述第三位置信息,确定所述无人飞行器的返航位置。
  27. 根据权利要求26所述的方法,其特征在于,所述返航位置是基于所述当前位置分别到所述起飞点、所述备用起降点之间所述无人飞行器所需消耗的飞行路程或者飞行时长或者返航电量确定的。
  28. 根据权利要求27所述的方法,其特征在于,所述返航位置是基于所述当前位置分别到所述起飞点、所述备用起降点之间所述无人飞行器所需消耗的飞行路程最短或者飞行时长最短或者返航电量最小确定的。
  29. 根据权利要求26所述的方法,其特征在于,多个作业区中至少一个所述作业区设有所述备用起降点。
  30. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在航线规划结束后,发送所述第一作业顺序至所述无人飞行器。
  31. 一种无人飞行器的航线规划装置,其特征在于,所述装置包括:
    存储装置,用于存储程序指令;以及
    一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于:
    获取所述无人飞行器的作业区中规划的至少两条航线,其中,每条航线均包括起始位置和终止位置;
    基于所述至少两条航线中的部分或者全部航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序;
    控制所述无人飞行器按照所述第一作业顺序依次执行所述至少两条航线的作业任务。
  32. 根据权利要求31所述的装置,其特征在于,所述第一作业顺序是根据所述至少两条航线中,每相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间所述无人飞行器所需消耗的飞行路程或者飞行时长确定的。
  33. 根据权利要求32所述的装置,其特征在于,所述第一作业顺序是根据所述至少两条航线中,全部相邻的两条航线中前一航线的终止位置到后一航线的起始位置之间所述无人飞行器所需消耗的总飞行路程最短或者总飞行时长最短确定的。
  34. 根据权利要求31所述的装置,其特征在于,所述作业区的起始作业航线或终止作业航线为所述至少两条航线中的指定航线,所述一个或多个处理器在基于所述至少两条航线中的部分或者全部航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序时,单独地或共同地被进一步地配置成用于:
    基于所述指定航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序。
  35. 根据权利要求34所述的装置,其特征在于,所述指定航线对应的所述无人飞行器的拍摄方向为竖直朝下的正拍方向。
  36. 根据权利要求34所述的装置,其特征在于,所述指定航线的起始位置和终止位置包括:
    以所述指定航线的两条最外侧的子航线的两个端点位置分别作为所述指定航线的起始位置或终止位置,依次连接所述指定航线的相邻子航线的同一侧端点位置形成一条航线时,分别获得的所述指定航线的起始位置和终止位置,其中,每条航线包括多条相互平行的子航线。
  37. 根据权利要求31所述的装置,其特征在于,所述作业区的起始作业航线为基于所述全部航线的起始位置和终止位置确定,所述一个或多个处理器在基于所述至少两条航线中的部分或者全部航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序时,单独地或共同地被进一步地配置成用于:
    基于全部航线的起始位置和终止位置,确定所述至少两条航线的第一作业顺序。
  38. 根据权利要求31所述的装置,其特征在于,所述无人飞行器执行不同所述航 线时的拍摄方向各不相同。
  39. 根据权利要求38所述的装置,其特征在于,所述拍摄方向至少包括:
    竖直朝下的正拍方向及相对竖直方向倾斜的斜拍方向。
  40. 根据权利要求39所述的装置,其特征在于,所述斜拍方向包括以下至少两种:
    相对竖直方向倾斜且朝向所述无人机的前方的前拍方向、相对竖直方向倾斜且朝向所述无人机的后方的后拍方向、相对竖直方向倾斜且朝向所述无人机的左侧方向的左拍方向、相对竖直方向倾斜且朝向所述无人机的右侧方向的右拍方向。
  41. 根据权利要求39所述的装置,其特征在于,所述正拍方向对应的所述无人飞行器的飞行高度大于所述斜拍方向对应的所述无人飞行器的飞行高度。
  42. 根据权利要求31所述的装置,其特征在于,所述一个或多个处理器单独地或共同地还被配置成用于:
    获取所述无人飞行器的起飞点的第一位置信息及所述无人飞行器在同一作业任务的多个作业区中各作业区的第二位置信息,所述第一位置信息、所述第二位置信息至少包括经纬度信息;
    基于所述第一位置信息及各作业区的第二位置信息,确定所述多个作业区的第二作业顺序;
    控制所述无人飞行器按照所述第二作业顺序依次执行所述多个作业区的作业任务。
  43. 根据权利要求42所述的装置,其特征在于,所述确定出的所述多个作业区的第二作业顺序是基于所述无人飞行器完成所述多个作业区的作业任务所消耗的总飞行时长或者总飞行路程确定的。
  44. 根据权利要求43所述的装置,其特征在于,所述确定出的所述多个作业区的第二作业顺序是多个作业顺序中所述无人飞行器所消耗的总飞行时长最短或者总飞行路程最短的作业顺序,不同所述作业顺序中至少一个作业区的作业顺序不同。
  45. 根据权利要求43所述的装置,其特征在于,所述一个或多个处理器在基于所述第一位置信息及各作业区的第二位置信息,确定各作业区的第二作业顺序时,单独地或共同地被进一步地配置成用于:
    将多个所述作业区按照不同的作业顺序进行排列组合,形成多个排列组合,其中,各排列组合包括各作业区的作业顺序,且不同所述排列组合的至少一个作业区的作业顺序不同;
    基于所述第一位置信息及各作业区的第二位置信息,确定各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程;
    基于各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程,确定最优排列组合,以确定所述多个作业区的第二作业顺序。
  46. 根据权利要求45所述的装置,其特征在于,各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程是基于该排列组合中每一相邻的两个作业区的 距离确定。
  47. 根据权利要求46所述的装置,其特征在于,所述距离包括水平距离、欧氏距离和曼哈顿距离中的一个。
  48. 根据权利要求42所述的装置,其特征在于,所述第二位置信息包括:
    各作业区的中心位置信息。
  49. 根据权利要求42所述的装置,其特征在于,所述第二位置信息包括:
    各作业区的起始位置及终止位置的位置信息。
  50. 根据权利要求31或49所述的装置,其特征在于,每条航线包括同一方向的多条子航线,每条航线包括的起始位置和终止位置基于所述航线中多条子航线中最外侧两条子航线的两个端点位置确定。
  51. 根据权利要求50所述的装置,其特征在于,每条航线的子航线平行于所述作业区的其中一个边沿。
  52. 根据权利要求31或49所述的装置,其特征在于,每条航线包括多条预设航线,每条预设航线包括同一方向的多条子航线,每条航线的多条预设航线的子航线的方向各不相同;
    每条航线包括的起始位置和终止位置基于所述航线的每条预设航线中最外侧两条子航线的两个端点位置确定。
  53. 根据权利要求52所述的装置,其特征在于,所述多条预设航线的子航线的方向包括如下至少两种:
    平行于对应作业区的边沿的方向;
    相对所述作业区的边沿倾斜的方向。
  54. 根据权利要求42所述的装置,其特征在于,所述第二位置信息由外部导入的文件确定;或者,
    所述第二位置信息由用户在显示装置显示的地图上进行选择确定。
  55. 根据权利要求42所述的装置,其特征在于,所述第一位置信息、所述第二位置信息还包括高度信息。
  56. 根据权利要求31或45所述的装置,其特征在于,所述一个或多个处理器单独地或共同地还被配置成用于:
    在所述无人飞行器执行作业任务过程中,当所述无人飞行器的实时电量小于预设电量时,获取所述无人飞行器的当前位置信息、所述无人飞行器的起飞点的第一位置信息及预设的备用起降点的第三位置信息;
    基于所述第一位置信息、所述当前位置信息及所述第三位置信息,确定所述无人飞行器的返航位置。
  57. 根据权利要求56所述的装置,其特征在于,所述返航位置是基于所述当前位置分别到所述起飞点、所述备用起降点之间所述无人飞行器所需消耗的飞行路程或者飞行时长或者返航电量确定的。
  58. 根据权利要求57所述的装置,其特征在于,所述返航位置是基于所述当前位置分别到所述起飞点、所述备用起降点之间所述无人飞行器所需消耗的飞行路程最短或者飞行时长最短或者返航电量最小确定的。
  59. 根据权利要求56所述的装置,其特征在于,所述多个作业区中至少一个所述作业区设有所述备用起降点。
  60. 根据权利要求31所述的装置,其特征在于,所述一个或多个处理器单独地或共同地还被配置成用于:
    在航线规划结束后,发送所述第一作业顺序至所述无人飞行器。
  61. 一种无人飞行器的控制装置,其特征在于,所述控制装置包括:
    壳体;及
    权利要求31至60任一项所述的航线规划装置,所述航线规划装置设于所述壳体。
  62. 根据权利要求61所述的无人飞行器的控制装置,其特征在于,所述控制装置包括所述无人飞行器的遥控器或智能终端。
  63. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至30任一项所述的方法。
  64. 一种无人飞行器的航线规划方法,其特征在于,所述方法包括:
    获取所述无人飞行器的起飞点的第一位置信息及所述无人飞行器在同一作业任务的多个作业区中各作业区的第二位置信息,所述第一位置信息、所述第二位置信息至少包括经纬度信息;
    基于所述第一位置信息及各作业区的第二位置信息,确定所述多个作业区的作业顺序;
    控制所述无人飞行器按照所述作业顺序依次执行所述多个作业区的作业任务。
  65. 根据权利要求64所述的方法,其特征在于,所述确定出的所述多个作业区的作业顺序是基于所述无人飞行器完成所述多个作业区的作业任务所消耗的总飞行时长或者总飞行路程确定的。
  66. 根据权利要求65所述的方法,其特征在于,所述确定出的所述多个作业区的作业顺序是多个作业顺序中所述无人飞行器所消耗的总飞行时长最短或者总飞行路程最短的作业顺序,不同所述作业顺序中至少一个作业区的作业顺序不同。
  67. 根据权利要求65所述的方法,其特征在于,基于所述第一位置信息及各作业区的第二位置信息,确定各作业区的作业顺序,包括:
    将多个所述作业区按照不同的作业顺序进行排列组合,形成多个排列组合,其中,各排列组合包括各作业区的作业顺序,且不同所述排列组合的至少一个作业区的作业顺序不同;
    基于所述第一位置信息及各作业区的第二位置信息,确定各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程;
    基于各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程,确 定最优排列组合,以确定所述多个作业区的作业顺序。
  68. 根据权利要求67所述的方法,其特征在于,各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程是基于该排列组合中每一相邻的两个作业区的距离确定。
  69. 根据权利要求68所述的方法,其特征在于,所述距离包括水平距离、欧氏距离和曼哈顿距离中的一个。
  70. 根据权利要求64所述的方法,其特征在于,所述第二位置信息包括:
    各作业区的中心位置信息。
  71. 根据权利要求64所述的方法,其特征在于,所述第二位置信息包括:
    各作业区的起始位置及终止位置的位置信息。
  72. 根据权利要求71所述的方法,其特征在于,每条航线包括同一方向的多条子航线,每条航线包括的起始位置和终止位置基于所述航线中多条子航线中最外侧两条子航线的两个端点位置确定。
  73. 根据权利要求72所述的方法,其特征在于,每条航线的子航线平行于所述作业区的其中一个边沿。
  74. 根据权利要求71所述的方法,其特征在于,每条航线包括多条预设航线,每条预设航线包括同一方向的多条子航线,每条航线的多条预设航线的子航线的方向各不相同;
    每条航线包括的起始位置和终止位置基于所述航线的每条预设航线中最外侧两条子航线的两个端点位置确定。
  75. 根据权利要求74所述的方法,其特征在于,所述多条预设航线的子航线的方向包括如下至少两种:
    平行于对应作业区的边沿的方向;
    相对所述作业区的边沿倾斜的方向。
  76. 根据权利要求64所述的方法,其特征在于,所述第二位置信息由外部导入的文件确定;或者,
    所述第二位置信息由用户在显示装置显示的地图上进行选择确定。
  77. 根据权利要求64所述的方法,其特征在于,所述第一位置信息、所述第二位置信息还包括高度信息。
  78. 一种无人飞行器的航线规划装置,其特征在于,所述装置包括:
    存储装置,用于存储程序指令;以及
    一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于:
    获取所述无人飞行器的起飞点的第一位置信息及所述无人飞行器在同一作业任务的多个作业区中各作业区的第二位置信息,所述第一位置信息、所述第二位置信息至少包括经纬度信息;
    基于所述第一位置信息及各作业区的第二位置信息,确定所述多个作业区的作业顺序;
    控制所述无人飞行器按照所述作业顺序依次执行所述多个作业区的作业任务。
  79. 根据权利要求78所述的装置,其特征在于,所述确定出的所述多个作业区的作业顺序是基于所述无人飞行器完成所述多个作业区的作业任务所消耗的总飞行时长或者总飞行路程确定的。
  80. 根据权利要求79所述的装置,其特征在于,所述确定出的所述多个作业区的作业顺序是多个作业顺序中所述无人飞行器所消耗的总飞行时长最短或者总飞行路程最短的作业顺序,不同所述作业顺序中至少一个作业区的作业顺序不同。
  81. 根据权利要求79所述的装置,其特征在于,所述一个或多个处理器在基于所述第一位置信息及各作业区的第二位置信息,确定各作业区的作业顺序时,单独地或共同地还被进一步地配置成用于:
    将多个所述作业区按照不同的作业顺序进行排列组合,形成多个排列组合,其中,各排列组合包括各作业区的作业顺序,且不同所述排列组合的至少一个作业区的作业顺序不同;
    基于所述第一位置信息及各作业区的第二位置信息,确定各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程;
    基于各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程,确定最优排列组合,以确定所述多个作业区的作业顺序。
  82. 根据权利要求81所述的装置,其特征在于,各排列组合对应的所述无人飞行器所消耗的总飞行时长或者总飞行路程是基于该排列组合中每一相邻的两个作业区的距离确定。
  83. 根据权利要求82所述的装置,其特征在于,所述距离包括水平距离、欧氏距离和曼哈顿距离中的一个。
  84. 根据权利要求78所述的装置,其特征在于,所述第二位置信息包括:
    各作业区的中心位置信息。
  85. 根据权利要求78所述的装置,其特征在于,所述第二位置信息包括:
    各作业区的起始位置及终止位置的位置信息。
  86. 根据权利要求85所述的装置,其特征在于,每条航线包括同一方向的多条子航线,每条航线包括的起始位置和终止位置基于所述航线中多条子航线中最外侧两条子航线的两个端点位置确定。
  87. 根据权利要求86所述的装置,其特征在于,每条航线的子航线平行于所述作业区的其中一个边沿。
  88. 根据权利要求85所述的装置,其特征在于,每条航线包括多条预设航线,每条预设航线包括同一方向的多条子航线,每条航线的多条预设航线的子航线的方向各不相同;
    每条航线包括的起始位置和终止位置基于所述航线的每条预设航线中最外侧两条子航线的两个端点位置确定。
  89. 根据权利要求88所述的装置,其特征在于,所述多条预设航线的子航线的方向包括如下至少两种:
    平行于对应作业区的边沿的方向;
    相对所述作业区的边沿倾斜的方向。
  90. 根据权利要求78所述的装置,其特征在于,所述第二位置信息由外部导入的文件确定;或者,
    所述第二位置信息由用户在显示装置显示的地图上进行选择确定。
  91. 根据权利要求78所述的装置,其特征在于,所述第一位置信息、所述第二位置信息还包括高度信息。
  92. 一种无人飞行器的控制装置,其特征在于,所述控制装置包括:
    壳体;及
    权利要求78至91任一项所述的航线规划装置,所述航线规划装置设于所述壳体。
  93. 根据权利要求92所述的无人飞行器的控制装置,其特征在于,所述控制装置包括所述无人飞行器的遥控器或智能终端。
  94. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求64至77任一项所述的方法。
PCT/CN2021/092720 2021-05-10 2021-05-10 无人飞行器的控制装置及航线规划方法和装置 WO2022236562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092720 WO2022236562A1 (zh) 2021-05-10 2021-05-10 无人飞行器的控制装置及航线规划方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092720 WO2022236562A1 (zh) 2021-05-10 2021-05-10 无人飞行器的控制装置及航线规划方法和装置

Publications (1)

Publication Number Publication Date
WO2022236562A1 true WO2022236562A1 (zh) 2022-11-17

Family

ID=84028681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092720 WO2022236562A1 (zh) 2021-05-10 2021-05-10 无人飞行器的控制装置及航线规划方法和装置

Country Status (1)

Country Link
WO (1) WO2022236562A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160202695A1 (en) * 2014-09-12 2016-07-14 4D Tech Solutions, Inc. Unmanned aerial vehicle 3d mapping system
CN108344397A (zh) * 2017-12-28 2018-07-31 中国公路工程咨询集团有限公司 基于倾斜摄影技术的自动化建模方法、***及其辅助装置
CN108919832A (zh) * 2018-07-23 2018-11-30 京东方科技集团股份有限公司 无人机作业航线规划方法、无人机施药方法及装置
CN109655065A (zh) * 2018-12-29 2019-04-19 湖北无垠智探科技发展有限公司 一种无人机五航线规划方法及装置
CN111752300A (zh) * 2019-12-30 2020-10-09 广州极飞科技有限公司 无人机航线规划方法、装置、***及计算机可读存储介质
CN112212835A (zh) * 2020-09-15 2021-01-12 广州全成多维信息技术有限公司 一种基于单镜头无人机的倾斜摄影及控制方法
CN112313476A (zh) * 2019-11-05 2021-02-02 深圳市大疆创新科技有限公司 无人飞行器的航线规划方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160202695A1 (en) * 2014-09-12 2016-07-14 4D Tech Solutions, Inc. Unmanned aerial vehicle 3d mapping system
CN108344397A (zh) * 2017-12-28 2018-07-31 中国公路工程咨询集团有限公司 基于倾斜摄影技术的自动化建模方法、***及其辅助装置
CN108919832A (zh) * 2018-07-23 2018-11-30 京东方科技集团股份有限公司 无人机作业航线规划方法、无人机施药方法及装置
CN109655065A (zh) * 2018-12-29 2019-04-19 湖北无垠智探科技发展有限公司 一种无人机五航线规划方法及装置
CN112313476A (zh) * 2019-11-05 2021-02-02 深圳市大疆创新科技有限公司 无人飞行器的航线规划方法和装置
CN111752300A (zh) * 2019-12-30 2020-10-09 广州极飞科技有限公司 无人机航线规划方法、装置、***及计算机可读存储介质
CN112212835A (zh) * 2020-09-15 2021-01-12 广州全成多维信息技术有限公司 一种基于单镜头无人机的倾斜摄影及控制方法

Similar Documents

Publication Publication Date Title
US11275375B1 (en) Fiducial-based navigation of unmanned vehicles
Barry et al. High‐speed autonomous obstacle avoidance with pushbroom stereo
US9847033B1 (en) Communication of navigation data spoofing between unmanned vehicles
US20200103529A1 (en) Data collecting method and system
EP3920095A1 (en) Image processing method and apparatus, moveable platform, unmanned aerial vehicle and storage medium
WO2017211029A1 (zh) 无人机飞行路径规划方法和装置
US9725171B1 (en) Analyzing navigation data to detect navigation data spoofing
CN108508916B (zh) 一种无人机编队的控制方法、装置、设备及存储介质
CN108594843A (zh) 无人机自主飞行方法、装置及无人机
CN110597937B (zh) 一种无人智能巡检的方法、装置、设备及存储介质
WO2021003657A1 (zh) 一种无人机协同作业的控制方法、电子设备及***
WO2022016320A1 (zh) 地图更新方法、装置、计算机设备和存储介质
CN112154303B (zh) 高精度地图定位方法、***、平台及计算机可读存储介质
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
CN111444786A (zh) 基于无人机群的人群疏散方法、装置、***及存储介质
US20190285418A1 (en) Method and device for the robust localization of a vehicle
CN114495568A (zh) 一种泊车方法、设备、存储介质和泊车***
CN114926809A (zh) 可通行区域检测方法及装置、移动工具、存储介质
CN111712687B (zh) 航测方法、飞行器及存储介质
WO2022236562A1 (zh) 无人飞行器的控制装置及航线规划方法和装置
US20230290055A1 (en) Surveying assistance system, information display terminal, surveying assistance method, and storage medium storing surveying assistance program
WO2021031192A1 (zh) 多机作业航线规划方法、控制终端及计算机可读存储介质
WO2024000746A1 (zh) 一种获取电子围栏的方法、设备、介质及程序产品
CN112346446A (zh) 自动导引运输车脱码恢复方法、装置及电子设备
CN112154397A (zh) 飞行控制方法、遥控器、无人飞行器、***及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941138

Country of ref document: EP

Kind code of ref document: A1