WO2022234658A1 - 数値制御装置および数値制御方法 - Google Patents

数値制御装置および数値制御方法 Download PDF

Info

Publication number
WO2022234658A1
WO2022234658A1 PCT/JP2021/017515 JP2021017515W WO2022234658A1 WO 2022234658 A1 WO2022234658 A1 WO 2022234658A1 JP 2021017515 W JP2021017515 W JP 2021017515W WO 2022234658 A1 WO2022234658 A1 WO 2022234658A1
Authority
WO
WIPO (PCT)
Prior art keywords
removal
manufacturing
production process
unit
modeled object
Prior art date
Application number
PCT/JP2021/017515
Other languages
English (en)
French (fr)
Inventor
誠二 魚住
信行 鷲見
駿 萱島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180097031.1A priority Critical patent/CN117157600A/zh
Priority to PCT/JP2021/017515 priority patent/WO2022234658A1/ja
Priority to DE112021007615.9T priority patent/DE112021007615T5/de
Priority to JP2023518588A priority patent/JPWO2022234658A1/ja
Publication of WO2022234658A1 publication Critical patent/WO2022234658A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49007Making, forming 3-D object, model, surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a numerical control device and a numerical control method for controlling additive manufacturing devices and subtractive manufacturing devices.
  • An additive manufacturing device that manufactures a three-dimensional shaped object by a Direct Energy Deposition (DED) method is known.
  • One of the additive manufacturing devices is a device that locally melts a material by a beam emitted from a processing head and adds the melted material to a workpiece.
  • the additive manufacturing apparatus can form a complicated shape such as a hollow structure or an integral molding, the molding accuracy is low, so it is necessary to remove an undesired portion by using a cutting manufacturing apparatus.
  • a cutting manufacturing device is a device that manufactures a desired shape by cutting a workpiece using various cutting tools such as a drill and a milling cutter attached to a machining head.
  • a cutting manufacturing device can form a highly accurate shaped object compared to additive manufacturing.
  • the machining program input to the numerical controller is generally created by a computer aided manufacturing (CAM) equipment.
  • the numerical controller analyzes the machining program to obtain a movement path for moving the machining head, and generates a position command, which is a group of interpolation points for each unit time on the movement path.
  • the numerical control device controls the operating mechanisms of the additional manufacturing device and the cutting manufacturing device according to the position command. Also, the numerical controller generates commands according to the process conditions specified by the machining program.
  • the numerical controller controls the beam source for the additional manufacturing equipment by generating commands according to the beam output conditions. Further, the numerical controller controls the supply source of material such as metal powder or metal filament by generating a command according to the condition of the material supply amount to the additive manufacturing apparatus.
  • the numerical controller controls the beam source for the additional manufacturing equipment by generating commands according to the beam output conditions. Further, the numerical controller controls the supply source of material such as metal powder or metal filament by generating a command according to the condition of the material supply amount to the additive manufacturing apparatus.
  • a part of the workpiece is melted by irradiating the material and the workpiece with the beam, and a molten pool of molten material is formed on the workpiece. . As the molten material is fed into the weld pool and then solidified, a layer of congealed molten material is formed on the work piece.
  • the numerical control device controls the cutting edge of the cutting tool by generating a command according to the tool rotation speed condition for the cutting manufacturing device.
  • a cutting manufacturing apparatus forms a cut surface by physically cutting a workpiece with a cutting edge of a cutting tool, cutting out a part of the workpiece as chips, and removing the chips.
  • the method for generating control data described in Patent Document 1 supplies a cutting pass for cutting a shape to be generated by additive manufacturing technology with a tool, and a material so as to regenerate the cutting pass in a direction retrospectively. It determines the path of the nozzle to be used.
  • the timing of process switching between the cutting process and the additional manufacturing process is based on the know-how of the user without considering the welding state of the metal material in the additional manufacturing process and the heat accumulation state of the processed part. It is determined in advance using CAM. For this reason, in the technique of Patent Document 1, even if the shaped object is distorted or collapsed due to the welding state or heat accumulation state, the additional manufacturing process cannot be interrupted, and the shaped object is added while the distortion or collapse occurs. The manufacturing process continues. Therefore, the technique of Patent Literature 1 has a problem that a desired shaped object cannot be manufactured accurately.
  • the present disclosure has been made in view of the above, and aims to obtain a numerical control device capable of accurately manufacturing a desired modeled object.
  • the numerical control device of the present disclosure provides additive manufacturing for manufacturing a modeled object by laminating materials melted by irradiating a beam from a first processing head.
  • the numerical control device of the present disclosure receives sensor data obtained by monitoring the processing state of a model manufactured by combining two production processes, an additive manufacturing process and a removal manufacturing process, and also receives sensor data.
  • a state analysis unit that analyzes the processing state of the modeled object, based on the analysis result of the processing state, generates a switching command that instructs switching between the two production processes to be executed, and the switching command to the additive manufacturing execution unit and the removal manufacturing execution unit. Further, when the two production processes are switched, the numerical control device of the present disclosure conforms to the first process conditions used in the first production process, which is the production process before switching, of the two production processes. Based on the above, a process condition generator is provided for determining second process conditions to be used in the second production process, which is the production process after switching, of the two production processes.
  • the numerical control device has the effect of being able to accurately manufacture a desired modeled object.
  • FIG. 2 shows an additional manufacturing device and a removal manufacturing device controlled by the NC device according to the first embodiment
  • 1 is a diagram showing a functional configuration of an NC device according to Embodiment 1
  • FIG. 4 is a flow chart showing the procedure of operation by the NC device according to the first embodiment
  • FIG. 2 is a diagram for explaining a welding state during modeling of the additive manufacturing apparatus shown in FIG. 1
  • FIG. 6 is a diagram showing an example of a modeled object that is laminate-molded by the additive manufacturing apparatus using the machining program shown in FIG. 5 by the NC apparatus according to the first embodiment;
  • FIG. 4 is a diagram for explaining the relationship between temperature data of a processed portion extracted as a feature quantity during an additional manufacturing process by the NC apparatus according to the first embodiment and changes in the bead width;
  • FIG. 4 is a diagram for explaining the relationship between molten pool data of a processed portion extracted as a feature amount during an additional manufacturing process by the NC apparatus according to the first embodiment and changes in bead height;
  • FIG. 5 is a diagram showing a first example of a head movement path in a removal manufacturing process generated when the NC device according to the first embodiment is affected by heat accumulation;
  • FIG. 10 is a diagram showing a second example of a head movement path in a removal manufacturing process generated when the NC device according to the first embodiment is affected by heat accumulation;
  • FIG. 4 is a diagram showing a first example of a head movement path in a removal manufacturing process generated when the NC device according to the first embodiment is in a state of insufficient welding amount
  • FIG. 10 is a diagram showing a second example of a head movement path in a removal manufacturing process generated when the NC device according to the first embodiment is in a state of insufficient welding amount
  • 10 is a flow chart showing the operation procedure of the NC device according to the second embodiment
  • FIG. 10 is a diagram showing an example of a modeled object that has been removed and manufactured by the removal manufacturing device by the NC device according to the second embodiment
  • FIG. 4 is a diagram showing a configuration example of a processing circuit provided in the NC device according to Embodiments 1 and 2 when the processing circuit is realized by a processor and a memory;
  • FIG. 4 is a diagram showing an example of a processing circuit when the processing circuit included in the NC device according to Embodiments 1 and 2 is configured with dedicated hardware;
  • NC Numerical Control
  • FIG. 1 is a diagram showing an additional manufacturing device and a removal manufacturing device controlled by an NC device according to a first embodiment.
  • the processing system 60 is a system for manufacturing a modeled object 15 that is a three-dimensional modeled object.
  • the processing system 60 includes an additional manufacturing device 100 , a removal manufacturing device 102 , an NC device 1 and an automatic transport device 101 .
  • the additional manufacturing device 100 is an additional device that manufactures the three-dimensional modeled object 15 by the directional energy deposition method.
  • the additive manufacturing apparatus 100 is a machine tool that manufactures the modeled object 15 by adding the material 5 melted by the beam emitted from the processing head 8 to the workpiece 16 .
  • the additive manufacturing apparatus 100 has a laser oscillator 2 , a gas supply device 6 , a processing head 8 , a head drive device 12 , a material supply device 4 and a stage 13 .
  • the removal manufacturing device 102 which is a removal manufacturing device, is a machine tool that forms the modeled object 15 into a desired shape by removing a part of the modeled object 15.
  • An example of a removal manufacturing device 102 is a cutting manufacturing device.
  • the removal manufacturing device 102 has a spindle drive device 22 , a machining head 21 , a head drive device 20 and a stage 18 .
  • the machining head 8 is the first machining head
  • the machining head 21 is the second machining head.
  • the beam used by the additional manufacturing apparatus 100 is a laser beam
  • the material 5 is a metal material such as a metal filament.
  • the material 5 used in the additive manufacturing apparatus 100 is not limited to metal filaments, and may be metal powder.
  • the additive manufacturing apparatus 100 forms the model 15 on the surface of the base material 14 by stacking layers formed by solidifying the melted material 5 .
  • a base material 14 is placed on the stage 13 .
  • the workpiece 16 is an object to which the melted material 5 is applied, and refers to the base material 14 and the modeled object 15 .
  • the base material 14 shown in FIG. 1 is a plate material. Note that the base material 14 may be a material other than a plate material.
  • the processing head 8 of the additional manufacturing device 100 moves with respect to the workpiece 16 .
  • the processing head 8 has a beam nozzle 9 , a material nozzle 10 and a gas nozzle 11 .
  • Beam nozzle 9 emits a laser beam toward workpiece 16 .
  • Material nozzle 10 advances material 5 toward a laser beam irradiation position on workpiece 16 .
  • the gas nozzle 11 injects gas toward the workpiece 16 .
  • the additional manufacturing apparatus 100 suppresses oxidation of the modeled object 15 and cools the layers formed on the workpiece 16 by jetting gas.
  • a laser oscillator 2 which is a beam source, oscillates a laser beam.
  • a laser beam from a laser oscillator 2 propagates to a beam nozzle 9 through a fiber cable 3 as an optical transmission line.
  • a gas supply device 6 supplies gas to a gas nozzle 11 through a pipe 7 .
  • the material supply device 4 is a supply source of the material 5.
  • the material supply device 4 has a driving section for feeding the material 5 which is a metal filament.
  • a material 5 delivered from a material supply device 4 is supplied to a laser beam irradiation position through a material nozzle 10 .
  • the head driving device 12 has a servomotor that constitutes an operating mechanism for moving the processing head 8 .
  • the head driving device 12 moves the machining head 8 in each of the X-axis direction, Y-axis direction and Z-axis direction.
  • the X-axis, Y-axis and Z-axis are three axes perpendicular to each other.
  • the X and Y axes are horizontally parallel axes.
  • the Z-axis direction is the vertical direction.
  • illustration of each servo motor that the head driving device 12 has is omitted.
  • the laser beam irradiation position on the workpiece 16 is moved by moving the processing head 8 with the head driving device 12 .
  • the additional manufacturing apparatus 100 moves the irradiation position of the laser beam on the workpiece 16 by moving the processing head 8 with respect to the workpiece 16 .
  • the additional manufacturing apparatus 100 may move the irradiation position of the laser beam on the workpiece 16 by moving the workpiece 16 with respect to the processing head 8 .
  • the irradiation position of the laser beam may be simply referred to as "irradiation position”.
  • the NC device 1 controls the additional manufacturing device 100 according to the machining program.
  • the NC device 1 controls the position of the processing head 8 driven by the head driving device 12 by outputting a position command to the head driving device 12 .
  • the NC unit 1 controls laser oscillation by the laser oscillator 2 by outputting an output command, which is a command according to the beam output conditions, to the laser oscillator 2 .
  • the NC unit 1 controls the material supply device 4 by outputting to the material supply device 4 a supply command, which is a command according to the condition of the supply amount of the material 5 (hereinafter sometimes referred to as the metal supply amount).
  • the supply command output by the NC device 1 may be a command according to the condition of the supply speed of the material 5 .
  • the supply speed is the speed of the material 5 from the material supply device 4 toward the irradiation position.
  • the supply speed represents the amount of material 5 supplied per unit time.
  • the NC device 1 controls the amount of gas supplied from the gas supply device 6 to the gas nozzle 11 by outputting a command according to the condition of the gas supply amount to the gas supply device 6 .
  • the NC device 1 may be one of the components of the additional manufacturing device 100 or may be an external device of the additional manufacturing device 100 .
  • the automatic transport device 101 removes the modeled object 15 from the stage 13 of the additional manufacturing device 100 and installs it on the stage 18 of the removal manufacturing device 102 . Also, the automatic transport device 101 removes the modeled object 15 from the stage 18 of the removal manufacturing device 102 and installs it on the stage 13 of the additional manufacturing device 100 .
  • the automatic transport device 101 includes a hand driving device 25 and a hand mechanism 17.
  • the hand driving device 25 uses the hand mechanism 17 to grip the object 15 fixed to a jig (not shown) through the base member 14 and move it in the X-axis direction, the Y-axis direction, and the Z-axis direction. It has a servomotor that constitutes an operating mechanism that causes the motor to move. Note that illustration of each servo motor is omitted in FIG.
  • the NC device 1 controls the positions of the hand driving device 25 and the hand mechanism 17 by outputting a movement command to the automatic transport device 101 .
  • the NC device 1 may be one of the components of the automatic carrier device 101 or may be an external device of the automatic carrier device 101 .
  • the removal manufacturing device 102 forms the modeled object 15 into a desired shape by pressing the rotated tool 19 against the modeled object 15 and scraping off a part of the modeled object 15 .
  • the head driving device 20 has a servomotor that constitutes an operating mechanism for moving the processing head 21 .
  • the head driving device 20 moves the machining head 21 in each of the X-axis direction, Y-axis direction, and Z-axis direction. In FIG. 1, illustration of each servomotor included in the head driving device 20 is omitted.
  • the removal manufacturing device 102 moves the tip position of the tool 19 with respect to the workpiece 16 by moving the processing head 21 with the head driving device 20 .
  • the spindle drive device 22 may be arranged inside the machining head 21 or may be arranged outside the machining head 21 .
  • the spindle drive device 22 has a servomotor that constitutes an operating mechanism that rotates the tool 19 . In FIG. 1, illustration of each servomotor included in the spindle drive device 22 is omitted.
  • the removal manufacturing device 102 cuts off unnecessary portions of the modeled object 15 after additional manufacturing by rotating the tool 19 with the spindle drive device 22 .
  • the removal manufacturing apparatus 102 moves the tip position of the tool 19 with respect to the workpiece 16 by moving the machining head 21 with respect to the workpiece 16 .
  • the removal manufacturing apparatus 102 may move the tip position of the tool 19 with respect to the workpiece 16 by moving the workpiece 16 with respect to the machining head 21 .
  • the removal manufacturing apparatus 102 may rotate the workpiece 16 instead of the tool 19 .
  • the removal manufacturing apparatus 102 rotates the tool 19, the rotation axis of the tool 19 is the main axis, and when the workpiece 16 is rotated, the rotation axis of the workpiece 16 is the main axis.
  • the NC device 1 controls the removal manufacturing device 102 according to the machining program.
  • the NC device 1 controls the position of the processing head 21 driven by the head driving device 20 by outputting a position command to the head driving device 20 .
  • the NC unit 1 controls the tool rotation speed by outputting to the spindle drive device 22 an output command, which is a command corresponding to the tool rotation speed (spindle rotation speed) condition set in the machining program.
  • the tool rotation speed is the rotation speed of the tool 19 per unit time.
  • NC device 1 may be one of the constituent elements of the removal manufacturing device 102 or may be an external device of the removal manufacturing device 102 .
  • the additive manufacturing apparatus 100 and the removal manufacturing apparatus 102 are described as different components, but the additional manufacturing apparatus 100 and the removal manufacturing apparatus 102 have both the additive manufacturing function and the removal manufacturing function. It may be a composite manufacturing device.
  • FIG. 2 is a diagram showing the functional configuration of the NC device according to the first embodiment.
  • the NC unit 1 includes an additive manufacturing execution unit 103 , a state analysis unit 104 , a production process change unit 105 , a process condition generation unit 106 and a removal manufacturing execution unit 107 .
  • the additional manufacturing execution unit 103 accepts the machining program 23 input from the outside.
  • the processing program 23 is a program used when manufacturing the modeled object 15 by melting the material 5 with the beam emitted from the processing head 8 and adding the melted material 5 to the workpiece 16 .
  • the machining program 23 includes a movement command and a speed command necessary to move the workpiece 16 or the machining head 8 to a preset path, and a desired lamination height and lamination width necessary for lamination molding.
  • a laser beam output command and a metal powder or metal filament supply command are described.
  • the stack height and stack width are the stack height and stack width per layer.
  • a movement command is represented by a movement command value
  • a speed command is represented by a speed command value.
  • the output command is represented by an output command value
  • the supply command is represented by a supply amount command value.
  • supply of metal powder or metal filaments may be referred to as metal supply.
  • the movement command and speed command in the additional manufacturing execution unit 103 are commands in which the relative position and relative speed between the workpiece 16 and the processing head 8 are defined. Therefore, the position and speed of the processing head 8 in the additional manufacturing execution unit 103 are the relative position and relative speed between the workpiece 16 and the processing head 8 . In the following description, the case where the processing head 8 is controlled when controlling the relative position and relative speed between the workpiece 16 and the processing head 8 will be described.
  • the additional manufacturing execution unit 103 also receives a production process switching command from the production process change unit 105 .
  • the production process switching command is a switching command from an additional manufacturing process (additional processing process) to a removal manufacturing process (removal processing process) or a switching command from a removal manufacturing process to an additional manufacturing process.
  • the additional manufacturing execution unit 103 determines the movement path of the head position of the processing head 8 (hereinafter referred to as head movement path HR8), the output value of the laser beam on the head movement path HR8, and the material 5.
  • the supply amount (metal supply amount) is controlled.
  • a head movement path HR8 is a machining path by the machining head 8 . Accordingly, the additional manufacturing executing unit 103 causes the additional manufacturing apparatus 100 to additionally manufacture the modeled object 15 .
  • the additive manufacturing execution unit 103 Upon receiving a command to switch from the additive manufacturing process to the removal manufacturing process, the additive manufacturing execution unit 103 stops the additive manufacturing. The additive manufacturing executing unit 103 restarts additive manufacturing when receiving a command to switch from the removal manufacturing process to the additive manufacturing process.
  • the state analysis unit 104 accepts the sensor data 24 acquired from the additive manufacturing device 100 .
  • the state analysis unit 104 analyzes the processing state of the modeled object 15 based on the sensor data 24 .
  • the sensor data 24 includes image data, temperature data, and molten pool data, which will be described later.
  • the state analysis unit 104 sends the machining state, which is the analysis result, to the production process change unit 105 and the process condition generation unit 106 .
  • the processing state sent from the state analysis unit 104 to the process condition generation unit 106 includes the determination result as to whether or not stable modeling processing can be continued.
  • the sensor data 24 acquired from the additional manufacturing device 100 may be stored in a storage device or the like.
  • the storage device may be arranged inside the NC device 1 or may be arranged outside the NC device 1 . Further, the storage device may be arranged inside the additional manufacturing apparatus 100 or may be arranged outside the additional manufacturing apparatus 100 .
  • the production process change unit 105 automatically changes the additive manufacturing process and the removal manufacturing process according to the processing state of the modeled object 15 .
  • the production process changing unit 105 changes from the additional manufacturing process to the removal manufacturing process when the state analysis unit 104 determines that stable continuation of the modeling process is impossible. Further, when the production process change unit 105 receives a notification indicating that the removal manufacturing process has been completed from the removal manufacturing execution unit 107, the production process changing unit 105 changes from the removal manufacturing process to the additional manufacturing process.
  • the production process change unit 105 sends to the additive manufacturing execution unit 103 a switching command from the additive manufacturing process to the removal manufacturing process and a switching command from the removal manufacturing process to the additional manufacturing process. Also, the production process changing unit 105 sends a switching command to the removal manufacturing process from the additional manufacturing process to the removal manufacturing execution unit 107 .
  • the production process change unit 105 sends a transport command for the modeled object 15 to the automatic transport device 101 .
  • the process condition generation unit 106 receives the machining state from the state analysis unit 104.
  • the process condition generation unit 106 calculates process conditions to be used by the removal manufacturing apparatus 102 after the production process is changed when the state analysis unit 104 determines that stable continuation of the modeling process is impossible. In this case, the process condition generation unit 106 calculates process conditions to be used by the removal manufacturing apparatus 102 after the change of the production process, based on the process conditions and the machining state used by the additional manufacturing apparatus 100 before the change of the production process.
  • the process conditions used before changing the production process include the head movement path HR8.
  • the process condition generation unit 106 may acquire the process conditions used before the production process is changed from the additive manufacturing execution unit 103 or may calculate them from the machining program 23 .
  • the process condition generation unit 106 sends the calculated process conditions to the removal manufacturing execution unit 107 .
  • the process conditions calculated by the process condition generation unit 106 include a movement path of the head position of the processing head 21 (hereinafter referred to as a head movement path HR21) and the like.
  • a head movement path HR21 is a machining path by the machining head 21 .
  • the removal manufacturing execution unit 107 receives a production process switching command from the production process change unit 105 .
  • the removal manufacturing execution unit 107 also receives process conditions from the process condition generation unit 106 .
  • the removal manufacturing execution unit 107 controls the head movement path HR21 and the tool rotation speed on the head movement path HR21 based on the process conditions received from the process condition generation unit 106 . Accordingly, the removal manufacturing execution unit 107 causes the removal manufacturing apparatus 102 to perform removal manufacturing of a part of the modeled object 15 .
  • the movement command and speed command in the removal manufacturing execution unit 107 are commands in which the relative position and relative speed between the workpiece 16 and the processing head 21 are defined. Therefore, the position and speed of the processing head 21 in the removal manufacturing execution unit 107 are the relative position and relative speed between the workpiece 16 and the processing head 21 .
  • the machining head 21 is controlled when controlling the relative position and relative speed between the workpiece 16 and the machining head 21 will be explained.
  • FIG. 3 is a flow chart showing the operation procedure of the NC device according to the first embodiment.
  • Step S10 In step S ⁇ b>10 , the machining program 23 is externally input to the additive manufacturing execution unit 103 . As a result, the additional manufacturing executing unit 103 accepts the machining program 23 .
  • the machining program 23 includes a laser beam output command and a metal powder or metal filament supply command.
  • the machining program 23 also includes a movement command for controlling the relative position between the workpiece 16 and the machining head 8 and a speed command for controlling the relative speed between the workpiece 16 and the machining head 8. is A speed command for the processing head 8 is a scanning speed command at the laser irradiation position.
  • the contents of the movement command are specified by coordinate values and a G code (for example, G0, G1, etc.) representing the movement mode at the time of the coordinate values.
  • a G code for example, G0, G1, etc.
  • the speed command for the machining head 8 the content of the speed command is commanded by an F code in which a speed value is described.
  • the desired lamination height and lamination width set by the user, the output command value of the laser beam at this time, and the supply amount command value of the metal powder or metal filament at this time Is required. That is, in order to perform lamination molding, a laser beam output command value and a metal supply amount command value corresponding to a desired lamination height and lamination width are required.
  • the additive manufacturing apparatus 100 stores information in which the stacking height and stacking width, the laser beam output value, the metal supply amount, and the operating speed (moving speed) of the processing head 8 are associated with each other as collective data. I remember at least one. These collective data are hereinafter referred to as lamination condition data.
  • the X-axis direction is the lamination width
  • the Z-axis direction is the lamination height.
  • the laser beam output command value and the metal supply amount command value are set using the G code or M code based on the lamination condition data so as to achieve the desired lamination height and lamination width. It is That is, in the processing program 23, the information included in the lamination condition data is set using G code, M code, and the like.
  • the NC unit 1 advances the procedure to step S20.
  • Step S20 the additive manufacturing execution unit 103 analyzes the movement path for moving the machining head 8 in the additive manufacturing apparatus 100 based on the details of the process described in the externally input machining program 23, and determines the movement path. do. Further, the additional manufacturing execution unit 103 determines the scanning speed, which is the moving speed of the processing head 8, based on the processing program 23. FIG. Further, the additional manufacturing execution unit 103 determines the laser output value and metal supply amount required for the additional manufacturing process based on the processing program 23 . Then, the additional manufacturing execution unit 103 causes the additional manufacturing apparatus 100 to perform additional manufacturing using the determined movement path, scanning speed, laser output value, and metal supply amount. After executing step S20, the NC unit 1 advances the procedure to step S30.
  • step S30 In step S ⁇ b>30 , sensor data 24 for monitoring the machining state of additive manufacturing apparatus 100 is collected from additive manufacturing apparatus 100 and input to state analysis section 104 . Thereby, the state analysis unit 104 acquires the sensor data 24 .
  • the image data is data representing an image of the modeled object 15, and is acquired using at least one of a camera and a laser displacement meter.
  • the temperature data is data indicating the temperature of the modeled object 15, and is obtained using at least one of a radiation thermometer and an infrared thermography.
  • the molten pool data is data indicating information about the molten pool, and is acquired using at least one of a camera and a motor detector provided in the material supply device 4 .
  • a motor detector included in the material supply device 4 is a device that detects the load torque applied to the material supply device 4 . Accordingly, weld pool data is obtained using at least one of the data of the image captured by the camera and the load torque detected by the motor detector.
  • the welding state of the metal powder or the metal filament has three states: insufficient welding amount state, stable welding amount state, and excessive welding amount state.
  • 4A and 4B are diagrams for explaining a welding state at the time of modeling of the additional manufacturing apparatus shown in FIG. 1.
  • FIG. 4 shows examples of bead shapes for each of the three welding states of insufficient welding amount, stable welding amount, and excessive welding amount.
  • the bead shape is a three-dimensional shape for one layer of the modeled object 15 .
  • FIG. 4 shows the bead shape when the laminated shapes in three welded states are viewed from the Y direction, which is the scanning direction of the laser beam.
  • the lower part of FIG. 4 shows the bead shape when the laminated shapes in three welded states are viewed from the Z direction, which is the irradiation direction of the laser beam.
  • the insufficient amount of welding is a state in which the amount of welding is insufficient, so that the layer is only partially welded and the layer of the desired shape is not formed.
  • the welding amount stable state is a state in which a layer having a target shape is formed because the welding amount is appropriate.
  • the excessive welding amount state is a state in which the welded material 5 flows due to excessive welding amount, and a layer having a desired shape is not formed. In the excessive welding amount state, the shape is flatter than the target shape.
  • the lamination width of the shape when the welding amount is insufficient is smaller than the lamination width of the shape when the welding amount is stable.
  • the height of the shape in the insufficient welding amount state is higher than the height of the shape in the stable welding amount state.
  • the lamination width of the shape in the state of excessive welding amount is larger than the lamination width of the shape in the state of stable welding amount. Further, the height of the shape in the excessive welding amount state is lower than the height of the shape in the stable welding amount state.
  • step S40 the state analysis unit 104 determines whether or not stable addition molding (additional manufacturing) is possible based on the image data, temperature data, and molten pool data included in the sensor data 24 . That is, the state analysis unit 104 determines whether or not the additional manufacturing process in the additional manufacturing apparatus 100 can be stably continued.
  • the image data included in the sensor data 24 is data indicating whether or not the height and width of the additionally manufactured bead are uniform and error-free.
  • the temperature data included in the sensor data 24 is data indicating whether or not the heat storage temperature of the modeled object 15 increases the time required for solidification of the molten material.
  • the molten pool data included in the sensor data 24 is data indicating whether or not the welding state of the metal powder or the metal filament maintains a stable state of the amount of welding.
  • the state analysis unit 104 analyzes image data and temperature data to determine whether or not the time required for solidification of the molten material increases due to the influence of heat accumulation, and distortion or collapse occurs around the processed portion of the modeled object 15 due to the influence of gravity. pre-parse based on
  • the state analysis unit 104 analyzes whether or not distortion or collapse occurs around the processed portion of the modeled object 15 because the welded state is out of the range of the appropriate process conditions and the desired bead shape cannot be formed. Pre-analyze based on data and weld pool data.
  • step S40 determines that the welding amount can be maintained in a stable state, that is, when it determines that stable addition molding is possible (step S40, Yes)
  • the procedure proceeds to step S30.
  • step S40 determines that the welding amount cannot be maintained in a stable state, that is, if it determines that stable addition molding is impossible (step S40, No), the procedure proceeds to step S50.
  • Step S50 the state analysis unit 104 notifies the production process change unit 105 and the process condition generation unit 106 that stable modeling cannot be continued.
  • the production process change unit 105 interrupts the additive manufacturing and changes the process to removal manufacturing, that is, executes the switching operation of the production process.
  • the additive manufacturing process in this case is the first manufacturing process
  • the subtractive manufacturing process is the second manufacturing process.
  • the process conditions used in the additive manufacturing process are the first process conditions
  • the process conditions used in the removal manufacturing process are the second process conditions.
  • the production process switching operation includes an operation in which the production process change unit 105 transmits an additional manufacturing process interruption signal (switching command) to the additional manufacturing execution unit 103 to temporarily interrupt the additional manufacturing process. .
  • the production process switching operation includes an operation by the production process changing unit 105 to cause the automatic carrier device 101 to carry out the carrying operation of the modeled object 15 after the interruption of the additional manufacturing process is completed.
  • the production process changing unit 105 causes the automatic transport device 101 to take out the modeled object 15 from the additional manufacturing device 100 and set it on the stage 18 of the removal manufacturing device 102 .
  • the production process switching operation includes an operation in which the production process change unit 105 transmits a removal manufacturing process start signal (switching command) to the removal manufacturing execution unit 107 to prepare for the removal manufacturing process. In this way, the production process change unit 105 sends the additive manufacturing process to the removal manufacturing process switching command to the additional manufacturing execution unit 103 and the removal manufacturing execution unit 107 .
  • the additional manufacturing execution unit 103 and the removal manufacturing execution unit 107 perform the switching operation of the production process.
  • the switching process is synonymous with the process of exchanging the machining heads 8 and 21 . That is, when the additive manufacturing apparatus 100 and the removal manufacturing apparatus 102 are composite manufacturing apparatuses, the production process changing unit 105 outputs a replacement command (replacement signal) for the processing heads 8 and 21 instead of a switching command.
  • the NC unit 1 advances the procedure to step S60.
  • Step S60 the process condition generation unit 106 generates process conditions that the removal manufacturing execution unit 107 uses in the removal manufacturing process. Specifically, the process condition generation unit 106 determines the moving path and scanning speed of the machining head 21 in the removal manufacturing apparatus 102, and the tool rotation speed of the machining head 21, and sets them as process conditions for the removal manufacturing process.
  • the process condition generation unit 106 sets the head movement path HR21 in the removal manufacturing device 102 based on the machining program 23 input to the additional manufacturing device 100 . Specifically, the process condition generation unit 106 removes all locations where there is a possibility that the shape around the workpiece will be distorted or collapsed due to the effects of the heat storage temperature and the welding state of the modeled object 15. A head movement path HR21 is extracted. In this case, the process condition generation unit 106 extracts the head movement path HR21 in the removal manufacturing process so as to offset the machining program 23 in the three-dimensional space from the temporarily interrupted command location in the additional manufacturing apparatus 100 .
  • the process condition generating unit 106 causes the head movement path HR8 set in the machining program 23 to be traced in the opposite direction from the position at which the additional manufacturing apparatus 100 interrupted the additional manufacturing process. , a head movement path HR21 is set. This facilitates the setting of the starting point and the ending point of the processing head 21 in the removal manufacturing process. In addition, it becomes easy to set the starting point of the processing head 8 in subsequent additional steps.
  • the process condition generation unit 106 sets the scanning speed of the machining head 21, which is set in the machining program (machining program 33 described later) used in the removal manufacturing apparatus 102, as the process condition for the removal manufacturing process.
  • the process condition generation unit 106 also determines the tool rotation speed of the machining head 21 in the head movement path HR21 based on the maximum value of the removal amount in the removal manufacturing execution unit 107 . In other words, the process condition generation unit 106 sets the tool rotation speed at which the desired amount of removal can be achieved at the portion of the head movement path HR21 where the removal amount is the largest.
  • the process condition generation unit 106 sends the head movement path HR21 and the number of rotations of the tool on the head movement path HR21 to the removal manufacturing execution unit 107 . After executing step S60, the NC unit 1 proceeds to step S70.
  • Step S70 the removal manufacturing execution unit 107 receives the head movement path HR21 generated by the process condition generation unit 106, the scanning speed, and the tool rotation speed on the head movement path HR21. Thereby, the removal manufacturing execution unit 107 determines command values for the moving path of the machining head 21, the scanning speed, and the tool rotation speed necessary for removal manufacturing, which are output to the removal manufacturing apparatus 102. FIG. The removal manufacturing execution unit 107 causes the removal manufacturing apparatus 102 to start removal manufacturing using the determined moving path, scanning speed, and tool rotation speed. After executing step S70, the NC unit 1 advances the procedure to step S80.
  • Step S80 In step S80, after the removal manufacturing by the removal manufacturing executing section 107 is completed, the production process changing section 105 executes the restoration operation of the production process.
  • the production process return operation includes an operation in which the production process change unit 105 receives a removal manufacturing completion notification from the removal manufacturing execution unit 107 .
  • the production process return operation includes an operation of the production process change unit 105 causing the automatic transport device 101 to carry out the transport operation of the modeled object 15 .
  • the production process changing unit 105 causes the automatic transport device 101 to take out the modeled object 15 from the removal manufacturing device 102 and set it on the stage 13 of the additional manufacturing device 100 .
  • the production process return operation includes an operation in which the production process change unit 105 transmits an additional manufacturing process start signal (switching command) to the additional manufacturing execution unit 103 to prepare for the additional manufacturing process.
  • the NC unit 1 advances the procedure to step S90.
  • step S90 the additive manufacturing execution unit 103 causes the additive manufacturing apparatus 100 to resume additive manufacturing. That is, the additional manufacturing execution unit 103 analyzes the head movement path HR8 for moving the processing head 8 from the removal manufacturing end position in the removal manufacturing execution unit 107 based on the contents of the processing described in the machining program 23. Then, head movement path HR8 and scanning speed are determined. Further, the additional manufacturing execution unit 103 determines the laser output value and metal supply amount required for the additional manufacturing process based on the processing program 23 . Then, the additional manufacturing executing unit 103 causes the additional manufacturing apparatus 100 to restart the additional manufacturing using the determined movement path, scanning speed, laser output value, and metal supply amount. After executing step S90, the NC unit 1 proceeds to step S100.
  • Step S100 the NC unit 1 determines whether or not all the processes described in the machining program 23 have been completed. If all the processes described in the machining program 23 have not been completed (step S100, No), the NC unit 1 repeats the processes from steps S30 to S100. The NC unit 1 repeats the processes from steps S30 to S100 until all the processes described in the machining program 23 are completed. When all the processes described in the machining program 23 are completed (step S100, Yes), the NC device 1 completes the process of controlling the manufacturing of the modeled object 15. FIG.
  • the NC unit 1 detects in advance the distortion or collapse of the finished product of the model 15 caused by changes in the heat accumulation state or welding state during the additional manufacturing process, and removes it from the additional manufacturing process. can be changed to As a result, the NC device 1 can efficiently and accurately produce the modeled object 15 having a desired shape without interrupting the production process.
  • FIG. 5 is a diagram of an example of a machining program used by the NC device according to the first embodiment;
  • commands are issued as absolute value commands, tool length correction is executed with H1 (H1 is a natural number) th correction amount, scanning speed, laser output value and metal supply amount are determined. stipulated.
  • a plurality of correction amounts are set in the NC unit 1 as correction amounts for tool length correction.
  • the order of the correction amount to be used among the plurality of correction amounts is set.
  • a group of coordinate values for the 1st layer, a group of coordinate values for the 2nd to (N-1)th layers, a group of coordinate values for the Nth layer, etc. of the modeled object 15 are set.
  • the processing program 23 is set with a group of coordinate values for the 1st to N-th layers of the arc shape.
  • the machining program 23 is input to the additive manufacturing execution unit 103 from outside the NC unit 1 .
  • FIG. 6 is a diagram showing an example of a modeled object that is additively manufactured by the additive manufacturing apparatus using the machining program shown in FIG. 5 by the NC apparatus according to the first embodiment.
  • a modeled object 50 illustrated in FIG. 6 is an example of a modeled object 15 manufactured by the additional manufacturing apparatus 100 .
  • the additive manufacturing apparatus 100 heats and melts the material 5, which is a metal material such as a metal powder or a metal filament supplied on the base material 14, with a laser beam, and deposits a specified lamination height on the processed portion of the surface of the base material. Laminate material 5 with height and lamination width.
  • the additional manufacturing apparatus 100 repeats the process of stacking the material 5 by moving the processing head 8 so that the laser irradiation area on the base material has an arc shape when viewed from the Z-axis direction.
  • the object 50 shown in FIG. 6 is formed by stacking N (N is a natural number) layers of the material 5 in the Z-axis direction.
  • N 1 is a natural number from 1 to N
  • layer additional manufacturing process included in the processing program 23 shown in FIG. A case where the shape of the modeled object 50 is distorted or collapsed due to an increase in heat accumulation or destabilization of the welding state will be described. The operation of each component of the NC unit 1 in this case will be described in detail below.
  • the additive manufacturing execution unit 103 of the NC device 1 analyzes the machining program 23 and performs additive manufacturing using the additive manufacturing device 100 .
  • the additional manufacturing execution unit 103 analyzes processing to be performed later than the processing currently being performed in the machining program 23 shown in FIG.
  • the additional manufacturing execution unit 103 analyzes the movement path and scanning speed Fc(t) of the machining head 8 described in the machining program 23 to determine the position of the machining head 8 per unit time. Specifically, the additional manufacturing execution unit 103 performs acceleration/deceleration processing for generating a velocity waveform for accelerating/decelerating at a preset acceleration, and smoothing processing for smoothing the velocity waveform generated by the acceleration/deceleration processing. Thus, the position of the machining head 8 is determined.
  • the smoothing process is also called moving average filter process.
  • the additional manufacturing execution unit 103 performs interpolation processing for calculating an interpolation point, which is the processing head position for each unit time when moving at the scanning speed after the smoothing processing, thereby generating a command position for the processing head 8. do.
  • the additional manufacturing executing unit 103 outputs this command position to the head driving device 12 every unit time. Thereby, the machining head 8 is controlled to the desired position set in the machining program 23 .
  • the additive manufacturing execution unit 103 analyzes the supply speed of the material 5 and the intensity of the laser beam described in the processing program 23, and determines the supply speed of the material 5 per unit time and the intensity of the laser beam. do.
  • the additional manufacturing execution unit 103 calculates the laser output value Pc(t) at the laser irradiation position and the metal supply amount Wc(t) by using the following equations (1) and (2) to scan the laser irradiation position. Adjustment is made according to the speed Fc(t).
  • P, V, and F represent the laser output, metal supply amount, and scanning speed described in the processing program 23, respectively.
  • the additional manufacturing execution unit 103 outputs a laser output value Pc(t) corresponding to the scanning speed of the laser irradiation position to the laser oscillator 2 . Further, the additional manufacturing execution unit 103 outputs the metal supply amount Wc(t) of the metal powder or the metal wire to the material supply device 4 . As a result, the additional manufacturing execution unit 103 controls the laser output and the metal supply amount to values desired by the user specified by the machining program 23 . Note that the program analysis processing for the first to Nth layers by the additional manufacturing execution unit 103 and the analysis processing by the state analysis unit 104 are performed simultaneously.
  • the additional manufacturing execution unit 103 analyzes the moving path and scanning speed Fc(t) of the processing head 8 described in the processing program 23 from the end position of the removal manufacturing process, and Determine the machining head position.
  • the state analysis unit 104 of the NC unit 1 collects sensor data 24 from sensors installed in the additive manufacturing apparatus 100 and estimates the state during additive manufacturing based on the sensor data 24 . Specifically, the state analysis unit 104 acquires image data obtained by observing the modeling shape formed by the additional manufacturing apparatus 100 from the sensor data 24 . Furthermore, the state analysis unit 104 extracts the feature amount of the modeling shape from the image data obtained by observing the modeling shape formed by the additional manufacturing apparatus 100 .
  • the modeling shape feature quantity extracted here includes at least one of the stacking height and the stacking width.
  • the state analysis unit 104 calculates a feature amount including at least one of the stacking height and stacking width using image analysis techniques such as edge detection and binarization.
  • the state analysis unit 104 acquires temperature data obtained by observing the surface temperature of the processed part in the additional manufacturing process.
  • the temperature data may be a heat map in which the processed part obtained from one external thermography is displayed in different colors according to the surface temperature, or the surface temperature is described as a numerical value according to the coordinate position of the modeled object 15. It may be data. Also, the state analysis unit 104 may acquire heat maps detected from a plurality of directions using a plurality of sensors.
  • the state analysis unit 104 acquires molten pool data obtained by observing the molten pool formed by the additional manufacturing apparatus 100 .
  • the state analysis unit 104 acquires molten pool data by extracting the feature amount of the shape from the image data obtained by measuring the molten pool.
  • the shape feature quantity extracted here includes at least one of the molten pool size and the distance from the center of the molten pool to the material 5 .
  • the state analysis unit 104 calculates a feature amount including at least one of the size of the molten pool and the distance from the center of the molten pool to the material 5 using image analysis techniques such as edge detection and binarization.
  • the state analysis unit 104 may estimate the molten state by using load data (load torque) applied to the material supply device 4 instead of directly observing the molten pool from image data. Based on the image data, the temperature data, and the molten pool data, the state analysis unit 104 analyzes in advance that distortion or collapse will occur around the processed portion of the model 15 due to changes in the heat accumulation state and welding state.
  • load data load torque
  • the bead width and bead height are examples of shape states indicating the shape of the modeled object 15 .
  • FIG. 7 is a diagram for explaining the relationship between the temperature data of the processed portion and the change in the bead width, which are extracted by the NC device according to the first embodiment as the feature quantity during the additive manufacturing process.
  • FIG. 7 shows a modeled object 51A stacked up to the 10th layer and a modeled object 51B stacked up to the N1th layer when the modeled object 50 is manufactured.
  • N 1 here is a natural number greater than ten.
  • the modeled object 51A stacked up to the 10th layer has the desired stacking, and the modeled object 51B stacked up to the N1th layer does not have the desired stacking.
  • the state analysis unit 104 detects in advance that the time required for the solidification of the molten material increases due to the influence of heat accumulation, and that distortion or collapse occurs around the processed part of the modeled object 51B due to the influence of gravity. .
  • the state analysis unit 104 generates a modeling abnormality signal when the accumulated heat of the temperature data in the processed part is larger than the threshold value of accumulated heat and the lamination width is larger than the threshold value of the lamination width.
  • FIG. 8 is a diagram for explaining the relationship between the molten pool data of the processed portion extracted as the feature amount during the additive manufacturing process by the NC device according to the first embodiment and the change in bead height.
  • FIG. 8 shows a modeled object 51A stacked up to the 10th layer and a modeled object 51C stacked up to the N2th layer when the modeled object 50 is manufactured.
  • N 2 here is a natural number greater than ten.
  • the modeled object 51A stacked up to the 10th layer has the desired stacking, and the modeled object 51C stacked up to the N2th layer does not have the desired stacking.
  • the material 5 is easily melted by the heat source of the laser beam as the layered manufacturing time elapses, and the material 5 is not supplied.
  • the distance between the incoming material 5 and the weld pool formed by the molten material 5 increases.
  • the size of the molten pool becomes smaller, resulting in an insufficient amount of welding, the lamination width becomes smaller than the desired value, and the lamination height becomes higher than the desired value.
  • variations in stack width and stack height increase. This makes it easier for the shape to collapse.
  • the state analysis unit 104 detects such distortion or collapse in the periphery of the processed portion in advance.
  • the state analysis unit 104 generates a modeling abnormality signal when the molten pool size of the molten pool data in the processed portion is smaller than the threshold value of the molten pool size and the lamination height is larger than the threshold value of the lamination height.
  • the N1-th layer in the middle of the machining program 23 is distorted or collapsed due to the heat accumulation state, and the N2 - th layer is distorted or collapsed due to the welding state.
  • the state analysis unit 104 by analyzing the sensor data 24, the state analysis unit 104 generates a modeling abnormality signal only once for the N1-th layer or the N2 - th layer before distortion or collapse occurs.
  • the modeling abnormality signal may be generated a plurality of times each time the occurrence of collapse is detected.
  • the production process change unit 105 of the NC unit 1 automatically changes the additive manufacturing process and the removal manufacturing process based on the analysis result of the machining state of the state analysis unit 104 .
  • the production process change unit 105 controls the addition in the additional manufacturing apparatus 100. Continue the manufacturing process.
  • the production process change unit 105 receives the modeling abnormality signal from the state analysis unit 104, and therefore executes the production process change operation.
  • the production process change unit 105 temporarily suspends the additional manufacturing process by sending an additional manufacturing process suspension signal to the additional manufacturing execution unit 103 as a production process change operation.
  • the production process change unit 105 transmits a transport start signal for the modeled object 15 to the automatic transport apparatus 101 as a production process change operation.
  • the automatic transport device 101 takes out the modeled object 15 from the additional manufacturing device 100 and sets it on the stage 18 of the removal manufacturing device 102 .
  • the production process change unit 105 transmits a removal manufacturing process start signal to the removal manufacturing device 102 . This temporarily initiates the removal manufacturing process.
  • the production process change unit 105 When the removal manufacturing process is completed, the production process change unit 105 performs the return operation of the production process.
  • the production process change unit 105 interrupts the additional manufacturing process by transmitting a removal manufacturing stop signal to the removal manufacturing execution unit 107 . Further, when the removal manufacturing process by the removal manufacturing apparatus 102 is stopped, the production process change unit 105 transmits a transport start signal for the modeled object 15 to the automatic transport apparatus 101 as a return operation of the production process.
  • the automatic transport device 101 takes out the modeled object 15 from the removal manufacturing device 102 and sets it on the stage 13 of the additional manufacturing device 100 .
  • the production process change unit 105 transmits a restart signal for the additional manufacturing process to the additional manufacturing apparatus 100 . This restarts the additive manufacturing process.
  • the production process change unit 105 performs the production process change operation and the production process return operation only once during machining of the N1th layer of the machining program 23 has been described, but the production process change unit 105 As described with reference to FIG. 3, each time a modeling abnormality signal is input from the state analysis unit 104, the production process changing operation and the production process returning operation are executed.
  • the process condition generator 106 of the NC unit 1 determines process conditions used by the removal manufacturing apparatus 102 based on the machining program 23 used by the additive manufacturing apparatus 100 and the machining state estimated by the state analysis unit 104 .
  • the process condition generator 106 Based on the machining program 23 and the machining state, the process condition generator 106 generates a machining path for removing the N1- th layer by the removal manufacturing execution part 107, that is, the head movement path HR21.
  • the head movement path HR21 for removing the extracted N1- th layer when the influence of heat accumulation occurs will be described.
  • FIG. 9 is a diagram showing a first example of a head movement path in the removal manufacturing process generated when the NC device according to the first embodiment is affected by heat accumulation.
  • a desired shape is indicated by a shape 40DF
  • the actual lamination shape of the N1- th layer is indicated by a lamination shape 41F.
  • a removal production route 46R1 indicates a head movement route HR21, which is a processing route for removing the N1- th layer extracted when the influence of heat accumulation occurs.
  • the process condition generation unit 106 progresses in time from the N 1 -th layer of the machining program 23 to the (N 1 -1) -th layer.
  • a head movement path HR21 reproduced in reverse from the direction is extracted.
  • the process condition generation unit 106 extracts the head movement path HR21 that advances in the reverse direction along the N1- th layer additional manufacturing path 41A.
  • the process condition generation unit 106 generates a removal manufacturing path 46R1 by offsetting the head movement path HR8 in the direction perpendicular to the processing direction within a plane parallel to the XY plane with respect to the desired shape 40DF. do.
  • the offset amount is the position corresponding to the maximum value of the shape variation of the N 1th layer (the amount of deviation of the height or width of the modeled object 15 from the desired value). is set to a value that exceeds the shape variation so as to pass through .
  • the process condition generation unit 106 may cause the removal manufacturing apparatus 102 to remove the entire N 1 layer, or remove only the portion that causes distortion or collapse of the shape.
  • the process condition generation unit 106 offsets the extracted additional manufacturing route 41A multiple times. Multiple removal manufacturing paths may be generated.
  • FIG. 10 is a diagram showing a second example of a head movement path in the removal manufacturing process generated when the NC device according to the first embodiment is affected by heat accumulation.
  • a desired shape is indicated by a shape 40DF
  • a head movement path HR8 for additional manufacturing of the N1- th layer is indicated by an additional manufacturing path 41A.
  • the actual lamination shape of the N1- th layer is indicated by a lamination shape 41F.
  • the first head movement path HR21 in the case of removing the N1- th layer extracted when the influence of heat accumulation occurs is indicated by the removal manufacturing path 46R1, and the second head movement path HR21 is removed. This is indicated by manufacturing route 46R2.
  • the removal manufacturing apparatus 102 may first execute the removal manufacturing process along the removal manufacturing route 46R2 and then execute the removal manufacturing process along the removal manufacturing route 46R1.
  • the head movement path HR21 for removing the extracted N1-th layer or N2 - th layer when the welding amount is insufficient will be described. Since the removal processing of the N1-th layer and the removal processing of the N2 - th layer are the same, the removal processing of the N1-th layer will be explained here.
  • FIG. 11 is a diagram showing a first example of a head movement path in the removal manufacturing process generated when the NC device according to the first embodiment is in a state of insufficient welding amount.
  • the desired shape is indicated by shape 40DF
  • the additional manufacturing path 42A indicates the head movement path HR8 for additional manufacturing of the N1th layer.
  • the actual lamination shape of the N1- th layer is indicated by a lamination shape 42F.
  • the head movement path HR21 in the case of removing the N1- th layer extracted when the influence of the insufficient welding amount occurs is indicated by the removal manufacturing path 47R1.
  • the process condition generation unit 106 reproduces the head from the N 1 layer to the (N 1 ⁇ 1) layer of the processing program 23 in reverse from the traveling direction. A moving route HR21 is extracted. In other words, the process condition generation unit 106 extracts the head movement path HR21 that travels in the reverse direction along the N1- th layer additional manufacturing path 42A.
  • the process condition generation unit 106 generates a removal manufacturing path 47R1 by offsetting the head movement path HR8 in the Z-axis direction (depth direction) with respect to the desired shape 40DF.
  • the offset amount in this case is set to a value that exceeds the variation in shape calculated from the maximum and minimum values of the stacking height of the N1th layer.
  • the process condition generation unit 106 may cause the removal manufacturing apparatus 102 to remove the entire N 1 layer, or remove only the portion that causes distortion or collapse of the shape.
  • the process condition generation unit 106 offsets the extracted additional manufacturing route 42A multiple times. may generate a plurality of removal manufacturing paths.
  • FIG. 12 is a diagram showing a second example of a head movement path in the removal manufacturing process generated when the NC device according to the first embodiment is in a state of insufficient welding amount.
  • the desired shape is indicated by the shape 40DF
  • the additional manufacturing path 42A indicates the head movement path HR28 for the N1- th layer additional manufacturing.
  • the actual lamination shape of the N1- th layer is indicated by a lamination shape 42F.
  • the first head movement path HR21 for removing the N1- th layer extracted when the welding amount is insufficient is indicated by the removal manufacturing path 47R1
  • the second head movement path HR21 is indicated by the removal manufacturing path 47R1. This is indicated by a removal manufacturing route 47R2.
  • the process condition generation unit 106 determines the tool rotation speed in the removal manufacturing device 102 according to the removal amount of the modeled object 15 .
  • the bead shape of the modeled object 15 has uneven lamination width and lamination height due to the effects of heat accumulation and welding. Therefore, the process condition generation unit 106 derives the maximum removal volume in the head movement path HR21 (removal manufacturing paths 47R1 and 47R2) used in the removal manufacturing apparatus 102 based on the offset amount. Then, the process condition generation unit 106 determines the optimal tool rotation speed for the maximum removal volume and the scanning speed at this tool rotation speed based on the lamination condition data held by the NC unit 1 . That is, the process condition generation unit 106 generates the tool rotation number, and determine the scanning speed.
  • the process condition generation unit 106 determines the variation in the shape height or shape width of the modeled object 15 after the completion of the first process and the variation in the shape height or shape width of the modeled object 15 after the completion of the second process. , and an offset amount of the tool path in the second step. Then, based on this state quantity, the process condition generation unit 106 determines the offset amount of the tool path in the second process to reduce variations in the shape height or shape width of the modeled object 15 after the completion of the second process.
  • a learning unit for learning may be provided.
  • the removal manufacturing execution unit 107 of the NC unit 1 analyzes the process conditions including the head movement path HR21 generated by the process condition generation unit 106, and causes the removal manufacturing apparatus 102 to execute the removal manufacturing.
  • the removal manufacturing execution unit 107 analyzes the processing to be performed later than the processing currently being performed in the head movement path HR21 generated by the process condition generation unit 106 .
  • the removal manufacturing execution unit 107 analyzes the head movement path HR21 and the scanning speed in the removal manufacturing apparatus 102 generated by the process condition generation unit 106, and determines the processing head position of the processing head 21 per unit time. Specifically, the removal manufacturing execution unit 107 performs an acceleration/deceleration process for generating a velocity waveform for accelerating/decelerating at a preset acceleration and a smoothing process for smoothing the velocity waveform generated by the acceleration/deceleration process. Thus, the machining head position of the machining head 21 is determined.
  • the removal manufacturing execution unit 107 generates a command position of the machining head 21 by performing an interpolation process of calculating an interpolation point that is the machining head position for each unit time when moving at the scanning speed after the smoothing process. .
  • the removal manufacturing execution unit 107 outputs this command position to the head driving device 20 every unit time. Thereby, the processing head 21 is controlled to a desired position.
  • the removal manufacturing execution unit 107 analyzes the tool rotation speed generated by the process condition generation unit 106 and determines the tool rotation position per unit time.
  • the head driving device 20 outputs the determined tool rotation position per unit time to a spindle control device (not shown), thereby controlling the tool rotation speed to a desired value.
  • the NC device 1 detects in advance the distortion or collapse of the modeled object 15 caused by a change in the heat accumulation state or the welding state during the layered manufacturing, and removes it from the additional manufacturing process. Change to manufacturing process.
  • the NC unit 1 creates process conditions including the head movement path HR21 used in the removal manufacturing process based on the process conditions used in the additive manufacturing apparatus 100. FIG. As a result, the NC device 1 can efficiently and accurately produce the modeled object 15 in a desired shape without interrupting the production process.
  • the NC device 1 can also switch between the additional manufacturing device 100 and the removal manufacturing device 102 online. As a result, the NC device 1 can continue the production process before and after switching between the additive manufacturing process and the removal manufacturing process, so that the processes can be coordinated and the production efficiency can be improved.
  • Embodiment 2 will be described with reference to FIGS. 13 to 15.
  • FIG. 1 when the removal manufacturing device removes a part of the modeled object 15 and the finished surface has a scratch or the like, the additional manufacturing device executes the additional manufacturing process.
  • the processing system 60 of the second embodiment includes an additional manufacturing apparatus 200 instead of the additional manufacturing apparatus 100, and a removal manufacturing apparatus 202 instead of the removal manufacturing apparatus 102. Further, the machining system 60 of Embodiment 2 includes an NC device 1A instead of the NC device 1. FIG. Further, the processing system 60 of the second embodiment includes an automatic transport device 101, like the processing system 60 of the first embodiment.
  • the additive manufacturing apparatus 200 is similar to the additive manufacturing apparatus 100
  • the removal manufacturing apparatus 202 is similar to the removal manufacturing apparatus 102 .
  • FIG. 13 is a diagram showing the functional configuration of the NC device according to the second embodiment. Among the components shown in FIG. 13, the components that achieve the same functions as the components shown in FIG. 2 are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the NC unit 1A of Embodiment 2 includes an additive manufacturing execution unit 203, a state analysis unit 204, a production process change unit 205, a process condition generation unit 206, and a removal manufacturing execution unit 207.
  • the additive manufacturing execution unit 203 executes processing corresponding to the processing executed by the additive manufacturing execution unit 103
  • the state analysis unit 204 executes processing corresponding to the processing executed by the state analysis unit 104 .
  • the production process change unit 205 executes processing corresponding to the processing executed by the production process change unit 105
  • the process condition generation unit 206 executes processing corresponding to the processing executed by the process condition generation unit 106.
  • the removal manufacturing execution unit 207 executes processing corresponding to the processing executed by the removal manufacturing execution unit 107 .
  • the removal manufacturing execution unit 207 accepts the machining program 33 input from the outside.
  • the processing program 33 is a program used when forming the modeled article 15 into a desired shape by removing a part of the modeled article 15 .
  • the machining program 33 includes movement commands and speed commands necessary to move the workpiece 16 or the machining head 21 along a preset path, and tool rotation necessary to remove the desired surface roughness.
  • a number of rotation commands are described.
  • a movement command is represented by a movement command value
  • a speed command is represented by a speed command value.
  • a rotation command is represented by a rotation command value.
  • the removal manufacturing execution unit 207 receives a production process switching command from the production process change unit 205 .
  • the production process switching command is a switching command from the removal manufacturing process to the additive manufacturing process, or a switching command from the additive manufacturing process to the removal manufacturing process.
  • the removal manufacturing execution unit 207 controls the head movement path HR21 and the tool rotation speed on the head movement path HR21 based on the machining program 33. Accordingly, the removal manufacturing execution unit 207 causes the removal manufacturing apparatus 202 to perform removal manufacturing of a part of the modeled object 15 .
  • the removal manufacturing execution unit 207 When the removal manufacturing execution unit 207 receives a command to switch from the removal manufacturing process to the additional manufacturing process, it stops the removal manufacturing.
  • the additive manufacturing executing unit 203 restarts additive manufacturing when receiving a command to switch from the removal manufacturing process to the additive manufacturing process.
  • the state analysis unit 204 receives the sensor data 34 acquired from the removal manufacturing device 202 .
  • a state analysis unit 204 analyzes the processing state of the modeled object 15 based on the sensor data 34 .
  • the sensor data 34 includes image data, load torque applied to the scanning axis of the processing head 21 detected by a motor detector included in the head driving device 20, and the like.
  • the state analysis unit 204 sends the machining state, which is the analysis result, to the production process change unit 205 and the process condition generation unit 206.
  • the processing state sent from the state analysis unit 204 to the process condition generation unit 206 includes the determination result as to whether or not there is a flaw on the finished surface in the removal manufacturing process.
  • the sensor data 34 acquired from the removal manufacturing apparatus 202 may be stored in a storage device or the like.
  • the storage device may be arranged inside the NC device 1 or may be arranged outside the NC device 1 . Further, the storage device may be arranged inside the additional manufacturing apparatus 200 or may be arranged outside the additional manufacturing apparatus 200 .
  • the production process change unit 205 automatically changes the removal manufacturing process and the additional manufacturing process according to the processing state of the modeled object 15.
  • the production process changing unit 205 changes the manufacturing process from the removal manufacturing process to the additional manufacturing process when the state analysis unit 204 determines that the finished surface of the modeled object 15 is damaged. Further, when the production process change unit 205 receives a notification from the additional manufacturing execution unit 203 indicating that the additional manufacturing process has been completed, the production process change unit 205 changes from the additional manufacturing process to the removal manufacturing process.
  • the production process change unit 205 sends to the removal manufacturing execution unit 207 a switching command from the additional manufacturing process to the removal manufacturing process and a switching command from the removal manufacturing process to the additional manufacturing process.
  • the production process change unit 205 sends to the additional manufacturing execution unit 203 a command to switch from the removal manufacturing process to the additional manufacturing process.
  • the production process change unit 205 sends a transport command for the modeled object 15 to the automatic transport device 101 .
  • the process condition generation unit 206 receives the machining state from the state analysis unit 204.
  • the process condition generation unit 206 calculates process conditions to be used by the additional manufacturing apparatus 200 after the production process is changed when the state analysis unit 204 determines that there is a flaw on the finished surface.
  • the process condition generator 206 calculates the process conditions to be used by the additional manufacturing apparatus 200 after the production process is changed, based on the process conditions and the machining state used by the removal manufacturing apparatus 202 before the production process is changed.
  • the process conditions used before changing the production process include the head movement path HR21 and the like.
  • the process condition generation unit 206 may acquire the process conditions used before the production process is changed from the removal manufacturing execution unit 207 or may calculate them from the machining program 33 .
  • the process condition generation unit 206 sends the calculated process conditions to the additive manufacturing execution unit 203 .
  • the process conditions calculated by the process condition generator 206 include the head movement path HR8 and the like.
  • the additional manufacturing execution unit 203 receives a production process switching command from the production process change unit 205 .
  • the additional manufacturing execution unit 203 also receives process conditions from the process condition generation unit 206 .
  • the additional manufacturing execution unit 203 controls the head movement path HR21, the output value of the laser beam on the head movement path HR21, and the supply amount of the material 5 based on the process conditions received from the process condition generation unit 206. Accordingly, the additional manufacturing executing unit 203 causes the additional manufacturing apparatus 200 to additionally manufacture the modeled object 15 .
  • FIG. 14 is a flow chart showing the operation procedure of the NC device according to the second embodiment. It should be noted that descriptions of the same processes as those described with reference to FIG. 3 will be omitted.
  • step S110 In step S ⁇ b>110 , the machining program 33 is externally input to the removal manufacturing execution unit 207 . Thereby, the removal manufacturing execution unit 207 accepts the machining program 33 .
  • the machining program 33 includes a movement command for controlling the relative position between the workpiece 16 and the machining head 21, and a speed command for controlling the relative velocity between the workpiece 16 and the machining head 21. contains instructions.
  • a speed command for the machining head 21 is a scanning speed command for the machining position by the tool 19 .
  • the contents of the movement command are specified by coordinate values and a G code (for example, G0, G1, etc.) representing the movement mode at the time of the coordinate values.
  • a G code for example, G0, G1, etc.
  • the speed command for the machining head 21 the content of the speed command is commanded by an F code in which a speed value is described.
  • a tool rotation speed command value based on the desired surface roughness set by the user is required.
  • the tool rotation speed command value may be directly specified using an S code on the machining program 33 so as to achieve a desired surface roughness, or may be specified using a G code or an M code.
  • Step S120 the removal manufacturing execution unit 207 analyzes the movement path for moving the machining head 21 in the removal manufacturing apparatus 202 based on the details of the process described in the machining program 33 input from the outside, and determines the movement path. do.
  • the removal manufacturing execution unit 207 also determines the scanning speed, which is the moving speed of the processing head 21 , based on the processing program 33 .
  • the removal manufacturing execution unit 207 also determines the tool rotation speed required for the removal manufacturing process based on the machining program 33 .
  • the removal manufacturing execution unit 207 causes the removal manufacturing apparatus 202 to perform removal manufacturing using the determined moving path, scanning speed, and tool rotation speed.
  • the NC unit 1A proceeds to step S130.
  • step S130 sensor data 34 for monitoring the processing state of the removal manufacturing apparatus 202 is collected from the removal manufacturing apparatus 202 and input to the state analysis section 204 . Thereby, the state analysis unit 204 acquires the sensor data 34 .
  • the sensor data 34 which is sensor information, includes, for example, image data for measuring (analyzing) the result of finishing.
  • the image data is data representing an image of the modeled object 15, and is acquired using at least one of a camera and a laser displacement meter.
  • the sensor data 34 includes load data applied to the head driving device 20 (load torque applied to the scanning axis of the processing head 21) and position data of the processing head 21, instead of image data for measuring the finishing result. may be After executing step S130, the NC unit 1A proceeds to step S140.
  • Step S140 the state analysis unit 204 detects damage caused by friction or mechanical vibration caused when the direction of progress of machining is switched based on the image data included in the sensor data 34 . That is, the state analysis unit 204 determines whether or not the removal manufacturing process in the removal manufacturing apparatus 202 has been stably performed.
  • the image data included in the sensor data 34 is data obtained by observing whether or not there is no variation in the modeling surface in the removal manufacturing process and whether the removal manufacturing can be performed uniformly without error.
  • step S140 determines that the finished surface of the modeled object 15 is not damaged (step S140, Yes).
  • the procedure proceeds to step S130.
  • step S140 determines that the finished surface of the modeled object 15 is damaged (step S140, No)
  • the procedure proceeds to step S150.
  • the removal manufacturing execution unit 207 causes the removal manufacturing device 202 to perform removal manufacturing on the upper surface of the modeled object 15 so as to eliminate the scratch.
  • the state analysis unit 204 can also estimate the friction or mechanical vibration that occurs when the machining progress direction is switched from the load data applied to the head driving device 20 and the position data of the machining head 21 .
  • the state analysis unit 204 indirectly calculates the finish machining result based on the load data applied to the head driving device 20 and the position data of the machining head 21 . That is, the state analysis unit 204 calculates friction or mechanical vibration based on the load data and position data, and calculates finishing results (presence or absence of scratches, etc.) based on the friction or mechanical vibration.
  • the state analysis unit 204 analyzes the presence or absence of flaws due to friction or mechanical vibration based on the friction or mechanical vibration that occurs when the machining progress direction is switched.
  • Step S150 the state analysis unit 204 notifies the production process change unit 205 and the process condition generation unit 206 that the finished surface of the modeled object 15 has a flaw.
  • the production process change unit 205 interrupts removal manufacturing and changes the process to additive manufacturing, that is, executes a production process switching operation.
  • the removal manufacturing process in this case is the first manufacturing process
  • the additive manufacturing process is the second manufacturing process.
  • the process conditions used in the removal manufacturing process are the first process conditions
  • the process conditions used in the additive manufacturing process are the second process conditions.
  • the production process switching operation includes an operation in which the production process change unit 205 sends a removal manufacturing process interruption signal (switching command) to the removal manufacturing execution unit 207 to temporarily interrupt the removal manufacturing process.
  • the production process switching operation includes an operation by the production process changing unit 205 to cause the automatic carrier device 101 to carry out the carrying operation of the modeled object 15 after completing the interruption of the removal manufacturing process.
  • the production process changing unit 205 causes the automatic transport device 101 to take out the modeled object 15 from the removal manufacturing device 202 and set it on the stage 13 of the additional manufacturing device 200 .
  • the production process switching operation includes an operation in which the production process change unit 205 sends an additional manufacturing process start signal (switching command) to the additional manufacturing execution unit 203 to prepare for the additional manufacturing process.
  • the production process change unit 205 sends the additive manufacturing execution unit 203 and the removal manufacturing execution unit 207 a command to switch from the removal manufacturing process to the additional manufacturing process.
  • the NC unit 1A proceeds to step S160.
  • Step S160 the process condition generation unit 206 generates process conditions that the additive manufacturing execution unit 203 uses in the additive manufacturing process. Specifically, the process condition generation unit 206 determines the movement path and scanning speed of the processing head 8 in the additional manufacturing apparatus 200, the laser output value of the processing head 8, and the metal supply amount, and determines the process condition process of the additional manufacturing process. set to
  • the process condition generation unit 206 sets the head movement path HR8 in the additional manufacturing device 200 based on the machining program 33 input to the removal manufacturing device 202 . Specifically, the process condition generation unit 206 extracts the head movement path HR8 so as to remove all scratches caused by friction or mechanical vibration generated when the direction of progress of the machining is switched, and performs the process of the additional manufacturing process. set as a condition. In this case, the process condition generation unit 206 extracts the head movement path HR8 in the additional manufacturing process so as to offset the machining program 33 in the three-dimensional space from the instruction point where the removal manufacturing apparatus 202 temporarily interrupted. That is, the process condition generation unit 206 causes the additional manufacturing process to follow the head movement path HR21 set in the machining program 33 in the opposite direction from the position where the removal manufacturing apparatus 202 interrupts the removal manufacturing. , a head movement path HR8 is set.
  • the process condition generation unit 206 also sets the scanning speed of the machining head 8 set in the machining program 33 used in the additional manufacturing apparatus 200 as the process condition for the additional manufacturing process.
  • the process condition generator 206 determines command values for the laser output value and metal supply amount necessary for the additional manufacturing process so that all the generated scratches can be removed.
  • the process condition generation unit 206 calculates the additional amount in the additional manufacturing execution unit 203 based on the volume of the flaw, the volume of the portion removed to eliminate the flaw, and the like.
  • the process condition generation unit 206 determines the laser output value and the metal supply amount for the commanded path of the machining head position based on the addition amount in the additional manufacturing execution unit 203 .
  • the process condition generation unit 206 sends the head movement route HR8, the laser output value and the metal supply amount on the head movement route HR8 to the additional manufacturing execution unit 203.
  • Step S170 the additional manufacturing execution unit 203 receives the head movement path HR8 generated by the process condition generation unit 206, the scanning speed, the laser output value on the head movement path HR8, and the metal supply amount. As a result, the additional manufacturing execution unit 203 determines the movement path, scanning speed, laser output value, and metal supply amount of the processing head 8 to be output to the additional manufacturing apparatus 200 . The additional manufacturing executing unit 203 causes the additional manufacturing apparatus 200 to start additional manufacturing using the determined movement path, scanning speed, laser output value, and metal supply amount.
  • the NC unit 1A proceeds to step S180.
  • Step S180 After the additional manufacturing execution unit 203 completes the additional manufacturing, the production process changing unit 205 executes the production process recovery operation.
  • the production process return operation includes an operation for the production process change unit 205 to receive notification of completion of additional manufacturing from the additional manufacturing execution unit 203 .
  • the production process return operation includes an operation of the production process change unit 205 causing the automatic transport device 101 to carry out the transport operation of the modeled object 15 .
  • the production process changing unit 205 causes the automatic transport device 101 to take out the modeled object 15 from the additional manufacturing device 200 and set it on the stage 18 of the removal manufacturing device 202 .
  • the production process return operation includes an operation in which the production process change unit 205 sends a removal manufacturing process start signal (switching command) to the removal manufacturing execution unit 207 to prepare for the removal manufacturing process.
  • the NC unit 1A proceeds to step S190.
  • Step S190 the removal manufacturing execution unit 207 causes the removal manufacturing apparatus 202 to resume removal manufacturing. That is, the removal manufacturing execution unit 207 analyzes the head movement path HR21 for moving the processing head 21 from the end position of the additional manufacturing in the additional manufacturing execution unit 203 based on the contents of the processing described in the processing program 33. Then, the head movement path HR21 and scanning speed are determined. The removal manufacturing execution unit 207 also determines a command value for the tool rotation speed required for the removal manufacturing process based on the machining program 33 . Then, the removal manufacturing execution unit 207 causes the removal manufacturing apparatus 202 to resume removal manufacturing using the determined movement path, scanning speed, and tool rotation speed. After executing step S190, the NC unit 1A advances the procedure to step S200.
  • Step S200 the NC unit 1A determines whether all the processes described in the machining program 33 have been completed. If all the processes described in the machining program 33 have not been completed (step S200, No), the NC unit 1A repeats the processes from steps S130 to S200. The NC unit 1A repeats the processes from steps S130 to S200 until all the processes described in the machining program 33 are completed. When all the processes described in the machining program 33 are completed (step S200, Yes), the NC device 1A completes the process of controlling the manufacturing of the modeled object 15. FIG.
  • the NC unit 1A can detect flaws caused by friction or mechanical vibration that occur when the direction of machining in the removal manufacturing process is switched, and can change from the removal manufacturing process to the additional manufacturing process. As a result, even if a defect occurs in the finishing process in the removal manufacturing device 202, the NC device 1A can automatically correct the production process and efficiently and accurately produce the model 15 having the desired shape. It becomes possible.
  • 15A and 15B are diagrams illustrating an example of a modeled object which is removed and manufactured by the removal manufacturing apparatus by the NC apparatus according to the second embodiment.
  • a modeled object 53 illustrated in FIG. 15 is an example of the modeled object 15 manufactured by the removal manufacturing apparatus 202 .
  • the machining program 33 used in the removal manufacturing process according to the second embodiment includes, for example, instructions for finishing the uppermost surface of the modeled object 50 additionally manufactured in the first embodiment.
  • FIG. 15 shows a modeled object 53 modeled using the machining programs 23 and 33 .
  • the processing program 23 is a program for manufacturing the modeled object 50 by laminating the layers of the material 5 from the first layer to the N-th layer.
  • the processing program 33 is a program for manufacturing a modeled object 53 from the modeled object 50 by removing M (M is a natural number) from the first block of the upper surface of the modeled object 50 .
  • the machining program 33 is input to the removal manufacturing execution unit 207 from the outside of the NC unit 1A.
  • M 1 is any natural number from 1 to M
  • modeling A description will be given of a case in which scratches are generated on the surface of an object due to friction or mechanical vibration.
  • the operation of each component of the NC unit 1A in this case, which differs from that of the first embodiment, will be described below.
  • a state analysis unit 204 of the NC unit 1A collects sensor data 34 from sensors installed in the removal manufacturing apparatus 202, and estimates the processing state during removal manufacturing based on the sensor data 34.
  • the state analysis unit 204 extracts a shape feature amount from the image data obtained by measuring the modeling shape formed by the removal manufacturing device 202 .
  • the shape feature quantity extracted here includes at least one of curvature, shape height, shape width, and the like.
  • the state analysis unit 204 calculates feature amounts including at least one of curvature, shape height, shape width, etc., using image analysis techniques such as edge detection and binarization.
  • the state analysis unit 204 analyzes flaws caused by friction or mechanical vibration based on the image data.
  • the state analysis unit 204 compares the M1 - th block with the designated blocks other than the M1- th block, the Z-axis indicating the shape height is shifted due to friction and mechanical vibration in the M1-th block. Since the position bites in the negative direction, the shape height becomes lower than other areas. Therefore, the state analysis unit 204 generates a modeling abnormality signal when the variation in shape height is large compared to other regions.
  • the state analysis unit 204 detects a flaw caused by friction or mechanical vibration at one point in the command to the M1 block in the middle of the machining program 33, and generates a modeling abnormality signal.
  • the NC unit 1A detects surface flaws caused by friction or mechanical vibration in the removal manufacturing process, and changes the removal manufacturing process to the additional manufacturing process.
  • the NC unit 1A creates process conditions including the head movement path HR8 used in the additional manufacturing process based on the process conditions used by the removal manufacturing apparatus 202.
  • FIG. As a result, even if a defect occurs in the modeled object 15 during the finishing process, the NC unit 1A can automatically correct the production process and efficiently and accurately produce the modeled object 53 having the desired shape. becomes.
  • the NC devices 1, 1A are realized by processing circuits.
  • the processing circuit may be a processor and memory that executes a program stored in the memory, or may be dedicated hardware such as a dedicated circuit.
  • Processing circuitry is also called control circuitry.
  • FIG. 16 is a diagram showing a configuration example of a processing circuit when the processing circuit included in the NC device according to Embodiments 1 and 2 is realized by a processor and memory.
  • a processing circuit 90 shown in FIG. 16 is a control circuit and includes a processor 91 and a memory 92 .
  • each function of the processing circuit 90 is implemented by software, firmware, or a combination of software and firmware.
  • Software or firmware is written as a program and stored in memory 92 .
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92.
  • the processing circuit 90 has a memory 92 for storing a program that results in the execution of the processing of the NC units 1, 1A.
  • This program can also be said to be a program for causing the NC units 1 and 1A to execute each function realized by the processing circuit 90 .
  • This program may be provided by a storage medium storing the program, or may be provided by other means such as a communication medium.
  • the above program can also be said to be a program that causes the NC units 1 and 1A to execute numerical control processing.
  • the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the memory 92 is a non-volatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
  • a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc) is applicable.
  • FIG. 17 is a diagram showing an example of a processing circuit when the processing circuit included in the NC device according to Embodiments 1 and 2 is configured with dedicated hardware.
  • the processing circuit 93 shown in FIG. 17 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these thing applies.
  • the processing circuit 93 may be partially realized by dedicated hardware and partially realized by software or firmware.
  • the processing circuitry 93 can implement each of the functions described above by dedicated hardware, software, firmware, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
  • Numerical Control (AREA)
  • Laser Beam Processing (AREA)

Abstract

NC装置(1)が、ビームを照射することによって溶融させた材料を積層することで造形物を製造する付加製造工程を制御する付加製造実行部(103)と、工具を用いて造形物を切削する除去製造工程を制御する除去製造実行部(107)と、付加製造工程と除去製造工程との2つの生産工程が組み合わされて製造される造形物の加工状態を監視して得られるセンサデータ(24)に基づいて、造形物の加工状態を解析する状態解析部(104)と、加工状態の解析結果に基づいて、2つの生産工程のうちの何れを実行させるかの切替えを指示する切替指令を付加製造実行部および除去製造実行部に出力する生産工程変更部(105)と、2つの生産工程のうちの切替え前の生産工程において使用された工程条件に基づいて、切替え後の生産工程において使用される工程条件を決定する工程条件生成部(106)と、を備える。

Description

数値制御装置および数値制御方法
 本開示は、付加製造装置および除去製造装置を制御する数値制御装置および数値制御方法に関する。
 指向性エネルギ堆積(Direct Energy Deposition:DED)方式によって立体形状の造形物を製造する付加製造装置が知られている。付加製造装置の1つに、加工ヘッドから出射されるビームによって局所的に材料を溶融させ、溶融させた材料を被加工物へ付加する装置がある。付加製造装置は、中空構造、一体成型などの複雑な形状を造形可能な一方で、造形精度が低いので、切削製造装置によって所望しない箇所の除去処理が必要となる。切削製造装置は、加工ヘッドに取り付けられたドリル、フライスなどの様々な切削工具を使って被加工物を切り削ることで所望の形状を製造する装置である。切削製造装置は、付加製造と比較して高精度な造形物を造形可能である。
 数値制御装置によって付加製造装置および切削製造装置を制御する場合において、数値制御装置へ入力される加工プログラムは、一般に、コンピュータ支援製造(Computer Aided Manufacturing:CAM)装置によって作成される。数値制御装置は、加工プログラムの解析によって、加工ヘッドを移動させる移動経路を求め、移動経路上の単位時間ごとの補間点群である位置指令を生成する。数値制御装置は、位置指令にしたがって、付加製造装置および切削製造装置が有する動作機構を制御する。また、数値制御装置は、加工プログラムによって指定される工程条件に従った指令を生成する。
 数値制御装置は、付加製造装置に対しては、ビーム出力の条件に従った指令を生成することによって、ビーム源を制御する。また、数値制御装置は、付加製造装置に対しては、材料の供給量の条件に従った指令を生成することによって、金属粉末あるいは金属線条といった材料の供給源を制御する。付加製造の際には、材料および被加工物へのビームの照射によって被加工物の一部が溶融するとともに、被加工物上には溶融している材料が溜められた溶融池が形成される。溶融させた材料が溶融池へ供給されてから材料が凝固することによって、被加工物には、溶融させた材料の凝固物からなる層が形成される。
 また、数値制御装置は、切削製造装置に対しては、工具回転数の条件に従った指令を生成することによって、切削工具の刃先を制御する。切削製造装置は、切削工具の刃先によって被加工物を物理的に切り込んで、被加工物の一部を切り屑として削り出し排除することで切削加工面を形成する。
 特許文献1に記載の制御データの生成方法は、付加製造技術によって生成する予定の形状を工具で切削するための切削パスと、切削パスを時間的に遡る向きに再生するように、材料を供給するノズルのパスとを決定している。
特許第6626788号公報
 しかしながら、上記特許文献1の技術では、切削工程および付加製造工程の工程切替えのタイミングは、付加製造工程における金属材料の溶着状態および被加工部の蓄熱状態を考慮せず、ユーザのノウハウに基づいて予めCAMを用いて決定されている。このため、上記特許文献1の技術では、溶着状態または蓄熱状態によって造形物に歪みまたは崩れが発生した場合であっても、付加製造工程を中断できず造形物に歪みまたは崩れが発生したまま付加製造工程が継続される。したがって、上記特許文献1の技術では、所望の造形物を正確に製造することができないという問題点があった。
 本開示は、上記に鑑みてなされたものであって、所望の造形物を正確に製造することができる数値制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示の数値制御装置は、第1の加工ヘッドからビームを照射することによって溶融させた材料を積層することで造形物を製造する付加製造工程を実行する付加製造装置を制御する付加製造実行部と、第2の加工ヘッドに配置された工具を用いて造形物を切削する除去製造工程を実行する除去製造装置を制御する除去製造実行部と、を備える。また、本開示の数値制御装置は、付加製造工程と除去製造工程との2つの生産工程が組み合わされて製造される造形物の加工状態を監視して得られるセンサデータを受け付けるとともに、センサデータに基づいて、造形物の加工状態を解析する状態解析部と、加工状態の解析結果に基づいて、2つの生産工程のうちの何れを実行させるかの切替えを指示する切替指令を生成し、切替指令を付加製造実行部および除去製造実行部に出力する生産工程変更部と、を備える。また、本開示の数値制御装置は、2つの生産工程が切替えられる際には、2つの生産工程のうちの切替え前の生産工程である第1の生産工程において使用された第1の工程条件に基づいて、2つの生産工程のうちの切替え後の生産工程である第2の生産工程において使用される第2の工程条件を決定する工程条件生成部を備える。
 本開示にかかる数値制御装置は、所望の造形物を正確に製造することができるという効果を奏する。
実施の形態1にかかるNC装置によって制御される付加製造装置および除去製造装置を示す図 実施の形態1にかかるNC装置の機能構成を示す図 実施の形態1にかかるNC装置による動作の手順を示すフローチャート 図1に示す付加製造装置の造形時における溶着状態について説明するための図 実施の形態1にかかるNC装置が用いる加工プログラムの一例を示す図 実施の形態1にかかるNC装置が図5に示した加工プログラムを用いて付加製造装置に積層造形させた造形物の例を示す図 実施の形態1にかかるNC装置が、付加製造工程中における特徴量として抽出した被加工部の温度データとビード幅の変化との関係を説明するための図 実施の形態1にかかるNC装置が、付加製造工程中における特徴量として抽出した被加工部の溶融池データとビード高さの変化との関係を説明するための図 実施の形態1にかかるNC装置が蓄熱の影響が生じた場合に生成する除去製造工程のヘッド移動経路の第1例を示す図 実施の形態1にかかるNC装置が蓄熱の影響が生じた場合に生成する除去製造工程のヘッド移動経路の第2例を示す図 実施の形態1にかかるNC装置が溶着量不足状態となった場合に生成する除去製造工程のヘッド移動経路の第1例を示す図 実施の形態1にかかるNC装置が溶着量不足状態となった場合に生成する除去製造工程のヘッド移動経路の第2例を示す図 実施の形態2にかかるNC装置の機能構成を示す図 実施の形態2にかかるNC装置による動作の手順を示すフローチャート 実施の形態2にかかるNC装置が除去製造装置に除去製造させた造形物の例を示す図 実施の形態1,2に係るNC装置が備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図 実施の形態1,2に係るNC装置が備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図
 以下に、本開示の実施の形態にかかる数値制御装置および数値制御方法を図面に基づいて詳細に説明する。なお、以下の説明では、数値制御装置をNC(Numerical Control)装置と称する。
実施の形態1.
 図1は、実施の形態1にかかるNC装置によって制御される付加製造装置および除去製造装置を示す図である。加工システム60は、3次元造形物である造形物15を作製するシステムである。加工システム60は、付加製造装置100と、除去製造装置102と、NC装置1と、自動搬送装置101とを備えている。
 付加製造装置100は、指向性エネルギ堆積方式によって立体形状の造形物15を製造する付加装置である。付加製造装置100は、加工ヘッド8から出射されるビームによって溶融させた材料5を被加工物16へ付加することによって造形物15を製造する工作機械である。付加製造装置100は、レーザ発振器2と、ガス供給装置6と、加工ヘッド8と、ヘッド駆動装置12と、材料供給装置4と、ステージ13とを有している。
 除去製造装置である除去製造装置102は、造形物15の一部を除去することで造形物15を所望の形状に成形する工作機械である。除去製造装置102の例は、切削製造装置である。除去製造装置102は、主軸駆動装置22と、加工ヘッド21と、ヘッド駆動装置20と、ステージ18とを有している。加工ヘッド8が第1の加工ヘッドであり、加工ヘッド21が第2の加工ヘッドである。
 実施の形態1において、付加製造装置100が用いるビームはレーザビームであり、材料5は金属線条などの金属材料である。付加製造装置100において使用される材料5は、金属線条に限られず、金属粉末であってもよい。
 付加製造装置100は、溶融させた材料5が凝固することにより形成される層を積み重ねることによって、ベース材14の表面に造形物15を形成する。ベース材14は、ステージ13に置かれる。以下の説明において、被加工物16とは、溶融させた材料5が付加される物体であり、ベース材14と造形物15とを指すものとする。図1に示すベース材14は板材である。なお、ベース材14は、板材以外のものであってもよい。
 付加製造装置100の加工ヘッド8は、被加工物16に対して移動する。加工ヘッド8は、ビームノズル9と材料ノズル10とガスノズル11とを有する。ビームノズル9は、被加工物16へ向けてレーザビームを出射する。材料ノズル10は、被加工物16におけるレーザビームの照射位置へ向けて材料5を進行させる。ガスノズル11は、被加工物16へ向けてガスを噴射する。付加製造装置100は、ガスの噴射によって、造形物15の酸化を抑制するとともに、被加工物16に形成された層を冷却する。
 ビーム源であるレーザ発振器2は、レーザビームを発振する。レーザ発振器2からのレーザビームは、光伝送路であるファイバーケーブル3を通ってビームノズル9へ伝搬する。ガス供給装置6は、配管7を通じてガスノズル11へガスを供給する。
 材料供給装置4は、材料5の供給源である。材料供給装置4は、金属線条である材料5を送り出すための駆動部を有する。材料供給装置4から送り出された材料5は、材料ノズル10を介して、レーザビームの照射位置へ供給される。
 ヘッド駆動装置12は、加工ヘッド8の移動のための動作機構を構成するサーボモータを有している。ヘッド駆動装置12は、X軸方向、Y軸方向およびZ軸方向の各方向へ加工ヘッド8を移動させる。X軸、Y軸およびZ軸は、互いに垂直な3軸である。X軸およびY軸は、水平方向に平行な軸である。Z軸方向は、鉛直方向である。図1では、ヘッド駆動装置12が有している各サーボモータの図示を省略している。付加製造装置100では、ヘッド駆動装置12が加工ヘッド8を移動させることによって、被加工物16におけるレーザビームの照射位置を移動させる。
 付加製造装置100は、被加工物16に対して加工ヘッド8を移動させることによって、被加工物16におけるレーザビームの照射位置を移動させる。なお、付加製造装置100は、加工ヘッド8に対して被加工物16を移動させることによって、被加工物16におけるレーザビームの照射位置を移動させてもよい。なお、以下の説明にて、レーザビームの照射位置を、単に「照射位置」と称することがある。
 NC装置1は、加工プログラムに従って付加製造装置100を制御する。NC装置1は、ヘッド駆動装置12へ位置指令を出力することによって、ヘッド駆動装置12が駆動する加工ヘッド8の位置を制御する。NC装置1は、ビーム出力の条件に応じた指令である出力指令をレーザ発振器2へ出力することによって、レーザ発振器2によるレーザ発振を制御する。
 NC装置1は、材料5の供給量(以下、金属供給量という場合がある)の条件に応じた指令である供給指令を材料供給装置4へ出力することによって、材料供給装置4を制御する。材料5が金属線条である場合、NC装置1が出力する供給指令は、材料5の供給速度の条件に応じた指令であってもよい。供給速度は、材料供給装置4から照射位置へ向かう材料5の速度である。供給速度は、単位時間当たりの材料5の供給量を表す。
 NC装置1は、ガスの供給量の条件に応じた指令をガス供給装置6へ出力することによって、ガス供給装置6からガスノズル11へ供給されるガスの量を制御する。なお、NC装置1は、付加製造装置100の構成要素の1つであっても良く、付加製造装置100の外部の装置であってもよい。
 自動搬送装置101は、造形物15を付加製造装置100のステージ13から取り外し、除去製造装置102のステージ18に設置する。また、自動搬送装置101は、造形物15を除去製造装置102のステージ18から取り外し、付加製造装置100のステージ13に設置する。
 自動搬送装置101は、ハンド駆動装置25とハンド機構17とを備えている。ハンド駆動装置25は、図示しない治具に、ベース材14を介して固定された造形物15を、ハンド機構17で把持してX軸方向、Y軸方向、およびZ軸方向の各方向へ移動させる動作機構を構成するサーボモータを有している。なお、図1では、各サーボモータの図示を省略している。NC装置1は、自動搬送装置101に対して移動指令を出力することでハンド駆動装置25およびハンド機構17の位置を制御する。なお、NC装置1は、自動搬送装置101の構成要素の1つであってもよいし、自動搬送装置101の外部の装置であってもよい。
 除去製造装置102は、回転させた工具19を造形物15に押し当てて、造形物15の一部を削り取ることによって、造形物15を所望の形状に成形する。ヘッド駆動装置20は、加工ヘッド21を移動させる動作機構を構成するサーボモータを有している。ヘッド駆動装置20は、X軸方向、Y軸方向、およびZ軸方向の各方向へ加工ヘッド21を移動させる。図1では、ヘッド駆動装置20が有する各サーボモータの図示を省略している。
 除去製造装置102は、ヘッド駆動装置20が加工ヘッド21を移動させることによって、被加工物16に対する工具19の先端位置を移動させる。主軸駆動装置22は、加工ヘッド21の内部に配置されてもよいし、加工ヘッド21の外部に配置されてもよい。主軸駆動装置22は、工具19を回転させる動作機構を構成するサーボモータを有している。図1では、主軸駆動装置22が有する各サーボモータの図示を省略している。
 除去製造装置102は、主軸駆動装置22が工具19を回転させることによって、付加製造後の造形物15の不要な部分を削り取る。除去製造装置102は、被加工物16に対して加工ヘッド21を移動させることによって、工具19の先端位置を被加工物16に対して移動させる。なお、除去製造装置102は、加工ヘッド21に対して被加工物16を移動させることによって、被加工物16に対する工具19の先端位置を移動させてもよい。また、除去製造装置102は、工具19の代わりに被加工物16を回転させてもよい。除去製造装置102が工具19を回転させる場合は工具19の回転軸が主軸となり、被加工物16を回転させる場合は被加工物16の回転軸が主軸となる。
 NC装置1は、加工プログラムに従って除去製造装置102を制御する。NC装置1は、ヘッド駆動装置20へ位置指令を出力することによって、ヘッド駆動装置20が駆動する加工ヘッド21の位置を制御する。NC装置1は、加工プログラムに設定されている工具回転数(主軸回転数)の条件に応じた指令である出力指令を主軸駆動装置22へ出力することによって、工具回転数を制御する。工具回転数は、単位時間あたりの工具19の回転数である。
 なお、NC装置1は、除去製造装置102の構成要素の1つであっても良く、除去製造装置102の外部の装置であってもよい。
 また、実施の形態1では、付加製造装置100および除去製造装置102を異なる構成要素として記載しているが、付加製造装置100および除去製造装置102は、付加製造機能および除去製造機能の両方を有する複合製造装置であってもよい。
 図2は、実施の形態1にかかるNC装置の機能構成を示す図である。NC装置1は、付加製造実行部103と、状態解析部104と、生産工程変更部105と、工程条件生成部106と、除去製造実行部107とを備えている。
 付加製造実行部103は、外部入力される加工プログラム23を受け付ける。加工プログラム23は、加工ヘッド8から出射されるビームによって材料5を溶融させ、溶融させた材料5を被加工物16へ付加することによって造形物15を製造する際に用いられるプログラムである。
 加工プログラム23には、被加工物16または加工ヘッド8を予め設定された経路に移動させるために必要な移動指令および速度指令と、所望の積層高さおよび積層幅で積層造形を行うために必要なレーザビームの出力指令と、金属粉または金属線条の供給指令とが記述されている。積層高さおよび積層幅は、1層あたりの積層高さおよび積層幅である。移動指令は、移動指令値で表され、速度指令は、速度指令値で表される。出力指令は、出力指令値で表され、供給指令は、供給量指令値で表される。なお、以下の説明では、金属粉または金属線条の供給を金属供給という場合がある。
 付加製造実行部103での移動指令および速度指令は、被加工物16と加工ヘッド8との相対位置および相対速度が規定された指令である。したがって、付加製造実行部103における加工ヘッド8の位置および速度は、被加工物16と加工ヘッド8との相対位置および相対速度である。以下の説明では、被加工物16と加工ヘッド8との相対位置および相対速度を制御する際に、加工ヘッド8が制御される場合について説明する。
 また、付加製造実行部103は、生産工程変更部105から、生産工程の切替指令を受け付ける。生産工程の切替指令は、付加製造工程(付加加工工程)から除去製造工程(除去加工工程)への切替指令、または除去製造工程から付加製造工程への切替指令である。
 付加製造実行部103は、加工プログラム23に基づいて、加工ヘッド8のヘッド位置の移動経路(以下、ヘッド移動経路HR8という)と、ヘッド移動経路HR8上でのレーザビームの出力値および材料5の供給量(金属供給量)とを制御する。ヘッド移動経路HR8は、加工ヘッド8による加工経路である。これにより、付加製造実行部103は、付加製造装置100に造形物15を付加製造させる。
 付加製造実行部103は、付加製造工程から除去製造工程への切替指令を受け付けると、付加製造を停止する。付加製造実行部103は、除去製造工程から付加製造工程への切替指令を受け付けると、付加製造を再開する。
 状態解析部104は、付加製造装置100から取得されたセンサデータ24を受け付ける。状態解析部104は、センサデータ24に基づいて、造形物15の加工状態を解析する。センサデータ24には、後述する、画像データ、温度データ、および溶融池データが含まれている。
 状態解析部104は、解析結果である加工状態を生産工程変更部105および工程条件生成部106に送る。状態解析部104が工程条件生成部106に送る加工状態には、安定した造形加工が継続可能か否かの判定結果が含まれている。
 付加製造装置100から取得されたセンサデータ24は、記憶装置などに格納されてもよい。この場合において、記憶装置は、NC装置1内に配置されてもよいし、NC装置1の外部に配置されてもよい。また、記憶装置は、付加製造装置100内に配置されてもよいし、付加製造装置100の外部に配置されてもよい。
 生産工程変更部105は、造形物15の加工状態に応じて付加製造工程と除去製造工程とを自動で変更する。生産工程変更部105は、状態解析部104が、安定した造形加工の継続が不可能であると判定した場合に、付加製造工程から除去製造工程へ変更する。また、生産工程変更部105は、除去製造実行部107から、除去製造工程が完了したことを示す通知を受け付けた場合に、除去製造工程から付加製造工程へ変更する。
 生産工程変更部105は、付加製造工程から除去製造工程への切替指令、および除去製造工程から付加製造工程への切替指令を、付加製造実行部103に送る。また、生産工程変更部105は、付加製造工程から除去製造工程への切替指令を、除去製造実行部107に送る。また、生産工程変更部105は、切替指令を付加製造実行部103または除去製造実行部107に送る際には、造形物15の搬送指令を自動搬送装置101に送る。
 工程条件生成部106は、状態解析部104から加工状態を受け付ける。工程条件生成部106は、状態解析部104が、安定した造形加工の継続が不可能であると判定した場合に、生産工程変更後に除去製造装置102が用いる工程条件を算出する。この場合において、工程条件生成部106は、生産工程の変更前に付加製造装置100が使用した工程条件および加工状態に基づいて、生産工程変更後に除去製造装置102が用いる工程条件を算出する。
 生産工程の変更前に使用した工程条件には、ヘッド移動経路HR8などが含まれている。工程条件生成部106は、生産工程の変更前に使用した工程条件を、付加製造実行部103から取得してもよいし、加工プログラム23から算出してもよい。工程条件生成部106は、算出した工程条件を除去製造実行部107に送る。工程条件生成部106が算出する工程条件には、加工ヘッド21のヘッド位置の移動経路(以下、ヘッド移動経路HR21という)などが含まれている。ヘッド移動経路HR21は、加工ヘッド21による加工経路である。
 除去製造実行部107は、生産工程変更部105から、生産工程の切替指令を受け付ける。また、除去製造実行部107は、工程条件生成部106から工程条件を受け付ける。除去製造実行部107は、工程条件生成部106から受け付けた工程条件に基づいて、ヘッド移動経路HR21と、ヘッド移動経路HR21上での工具回転数とを制御する。これにより、除去製造実行部107は、除去製造装置102に造形物15の一部を除去製造させる。
 除去製造実行部107での移動指令および速度指令は、被加工物16と加工ヘッド21との相対位置および相対速度が規定された指令である。したがって、除去製造実行部107における加工ヘッド21の位置および速度は、被加工物16と加工ヘッド21との相対位置および相対速度である。以下の説明では、被加工物16と加工ヘッド21との相対位置および相対速度を制御する際に、加工ヘッド21が制御される場合について説明する。
 つぎに、NC装置1の動作の一例について説明する。図3は、実施の形態1にかかるNC装置による動作の手順を示すフローチャートである。
(ステップS10)
 ステップS10では、付加製造実行部103に、加工プログラム23が外部入力される。これにより、付加製造実行部103は、加工プログラム23を受け付ける。前述したように、加工プログラム23には、レーザビームの出力指令と、金属粉または金属線条の供給指令とが含まれている。また、加工プログラム23には、被加工物16と加工ヘッド8との相対位置を制御するための移動指令、および被加工物16と加工ヘッド8との相対速度を制御するための速度指令が含まれている。加工ヘッド8の速度指令は、レーザ照射位置での走査速度指令である。
 加工ヘッド8の移動指令では、移動指令の内容が、座標値と、この座標値の時の移動モードを表すGコード(例えば、G0,G1等)とによって指定される。また、加工ヘッド8の速度指令では、速度指令の内容が、速度値が記載されたFコードによって指令される。
 積層造形が行なわれるためには、ユーザに設定された所望の積層高さおよび積層幅と、このときのレーザビームの出力指令値と、このときの金属粉または金属線条の供給量指令値とが必要となる。すなわち、積層造形が行なわれるためには、所望の積層高さおよび積層幅に対応する、レーザビームの出力指令値と、金属供給の供給量指令値とが必要となる。付加製造装置100は、積層高さおよび積層幅と、レーザビームの出力値と、金属供給量と、加工ヘッド8の操作速度(移動速度)とが対応付けされた情報を、一括りのデータとして少なくとも1つ以上記憶している。これらの一括りのデータを、以下では積層条件データという。実施の形態1では、X軸方向が積層幅であり、Z軸方向が積層高さである。
 加工プログラム23では、所望の積層高さおよび積層幅となるように、レーザビームの出力指令値および金属供給の供給量指令値が、積層条件データに基づいて、GコードまたはMコードを用いて設定されている。すなわち、加工プログラム23では、積層条件データに含まれている情報がGコード、Mコードなどを用いて設定されている。
 なお、所望の積層高さおよび積層幅となるように、レーザビームの出力指令値、金属供給の供給量指令値が、加工プログラム23上に直接記載されていてもよい。NC装置1は、ステップS10の実行後、ステップS20に手順を進める。
(ステップS20)
 ステップS20では、付加製造実行部103が、外部入力された加工プログラム23に記述されている処理の内容に基づいて、付加製造装置100における加工ヘッド8を移動させる移動経路を解析し移動経路を決定する。また、付加製造実行部103は、加工プログラム23に基づいて、加工ヘッド8の移動速度である走査速度を決定する。また、付加製造実行部103は、加工プログラム23に基づいて、付加製造工程に必要なレーザ出力値および金属供給量を決定する。そして、付加製造実行部103は、決定した移動経路、走査速度、レーザ出力値、および金属供給量を用いて、付加製造装置100に付加製造を実施させる。NC装置1は、ステップS20の実行後、ステップS30に手順を進める。
(ステップS30)
 ステップS30では、付加製造装置100の加工状態を監視するためのセンサデータ24が付加製造装置100から収集されて、状態解析部104に入力される。これにより、状態解析部104が、センサデータ24を取得する。
 センサ情報であるセンサデータ24には、例えば、実際の積層高さおよび積層幅を計測(解析)するための画像データと、造形物15の蓄熱状態を計測(解析)するための温度データと、金属粉または金属線条の溶着状態を計測(解析)するための溶融池データとが含まれている。画像データは、造形物15の画像を示すデータであり、カメラおよびレーザ変位計の少なくとも一方を用いて取得される。温度データは、造形物15の温度を示すデータであり、放射温度計および赤外線サーモグラフィの少なくとも一方を用いて取得される。溶融池データは、溶融池の情報を示すデータであり、カメラと、材料供給装置4が備えるモータ検出器との少なくとも一方を用いて取得される。材料供給装置4が備えるモータ検出器は、材料供給装置4にかかる負荷トルクを検出する装置である。したがって、溶融池データは、カメラによって撮像された画像のデータ、およびモータ検出器によって検出された負荷トルクの少なくとも一方を用いて取得される。
 なお、金属粉または金属線条の溶着状態には、溶着量不足状態、溶着量安定状態、および溶着量過剰状態の3種類の状態が存在する。図4は、図1に示す付加製造装置の造形時における溶着状態について説明するための図である。
 図4には、溶着量不足状態、溶着量安定状態、および溶着量過剰状態の3つの溶着状態の各々について、ビード形状の例を示している。ビード形状は、造形物15の1層分の3次元形状である。
 図4の上段は、3つの溶着状態の積層形状をレーザビームの走査方向であるY方向から見た場合におけるビード形状を示している。図4の下段は、3つの溶着状態の積層形状をレーザビームの照射方向であるZ方向から見た場合におけるビード形状を示している。
 図4において、溶着量不足状態は、溶着量が不足しているため部分的にしか溶着されておらず目標とする形状の層が形成されていない状態である。溶着量安定状態は、溶着量が適切であるため目標とする形状の層が形成されている状態である。溶着量過剰状態は、溶着量が多すぎるため溶着した材料5が流れてしまい目標とする形状の層が形成されていない状態である。溶着量過剰状態では、目標形状よりも平らな形状となっている。
 溶着量不足状態における形状の積層幅は、溶着量安定状態における形状の積層幅よりも小さい。また、溶着量不足状態における形状の高さは、溶着量安定状態における形状の高さよりも高い。
 溶着量過剰状態における形状の積層幅は、溶着量安定状態における形状の積層幅よりも大きい。また、溶着量過剰状態における形状の高さは、溶着量安定状態における形状の高さよりも低い。NC装置1は、ステップS30の実行後、ステップS40に手順を進める。
(ステップS40)
 ステップS40では、状態解析部104が、センサデータ24に含まれる画像データ、温度データ、および溶融池データに基づいて、安定して付加造形(付加製造)可能か否かを判定する。すなわち、状態解析部104は、付加製造装置100における付加製造工程が安定的に継続可能か否かを判定する。
 センサデータ24に含まれる画像データは、付加製造されたビードの高さおよび幅にばらつきがなく均一に誤差なく付加製造できているか否かを示すデータである。センサデータ24に含まれる温度データは、造形物15の蓄熱温度によって溶融材料の凝固に要する時間が増加しているか否かを示すデータである。センサデータ24に含まれる溶融池データは、金属粉または金属線条の溶着状態が溶着量安定状態を維持できているか否かを示すデータである。
 状態解析部104は、蓄熱の影響によって溶融材料の凝固に要する時間が増加し、重力の影響で造形物15の被加工部周辺に歪みまたは崩れが発生するか否かを、画像データおよび温度データに基づいて事前に解析する。
 状態解析部104は、溶着状態が適切な工程条件の範囲内から外れて所望のビード形状に造形できないことによって、造形物15の被加工部周辺に歪みまたは崩れが発生するか否かを、画像データおよび溶融池データに基づいて事前に解析する。
 NC装置1の状態解析部104は、溶着量安定状態を維持できると判定した場合、すなわち安定した付加造形が可能であると判定した場合(ステップS40、Yes)、ステップS30に手順を進める。
 一方、状態解析部104は、溶着量安定状態を維持できないと判定した場合、すなわち安定した付加造形が不可能であると判定した場合(ステップS40、No)、ステップS50に手順を進める。
(ステップS50)
 ステップS50では、状態解析部104が、生産工程変更部105および工程条件生成部106に、安定した造形加工が継続できないことを通知する。これにより、生産工程変更部105は、付加製造を中断して除去製造に工程変更させる、すなわち生産工程の切替動作を実行する。この場合の付加製造工程が第1の生産工程であり、除去製造工程が第2の生産工程である。また、付加製造工程で用いられた工程条件が第1の工程条件であり、除去製造工程で用いられる工程条件が第2の工程条件である。
 生産工程の切替動作には、生産工程変更部105が、付加製造実行部103に付加製造工程の中断信号(切替指令)を送信して付加製造工程を一時的に中断させる動作が含まれている。また、生産工程の切替動作には、生産工程変更部105が、付加製造工程の中断完了後に、造形物15の搬送動作を自動搬送装置101に実行させる動作が含まれている。ここでの造形物15の搬送動作では、生産工程変更部105が、自動搬送装置101に、付加製造装置100から造形物15を取り出して除去製造装置102のステージ18にセットさせる。また、生産工程の切替動作には、生産工程変更部105が、除去製造実行部107に除去製造工程の開始信号(切替指令)を送信して除去製造工程を準備させる動作が含まれている。このように、生産工程変更部105は、付加製造工程から除去製造工程への切替指令を、付加製造実行部103および除去製造実行部107に送る。
 なお、付加製造装置100および除去製造装置102が、付加製造機能および除去製造機能の両方を有する複合製造装置である場合、生産工程の切替動作における付加製造実行部103と除去製造実行部107との切替え処理は、加工ヘッド8,21の交換処理と同義となる。すなわち、付加製造装置100および除去製造装置102が、複合製造装置である場合、生産工程変更部105は、切替指令の代わりに、加工ヘッド8,21の交換指令(交換信号)を出力する。NC装置1は、ステップS50の実行後、ステップS60に手順を進める。
(ステップS60)
 ステップS60では、工程条件生成部106は、除去製造実行部107が除去製造工程で使用する工程条件を生成する。具体的には、工程条件生成部106は、除去製造装置102における加工ヘッド21の移動経路、走査速度、および加工ヘッド21の工具回転数を決定し、除去製造工程の工程条件に設定する。
 工程条件生成部106は、除去製造装置102におけるヘッド移動経路HR21を、付加製造装置100に入力された加工プログラム23に基づいて設定する。具体的には、工程条件生成部106は、造形物15の蓄熱温度および溶着状態の影響によって発生する被加工部周辺の形状の歪みまたは崩れが生じる可能性がある箇所を全て除去できるように、ヘッド移動経路HR21を抽出する。この場合において、工程条件生成部106は、付加製造装置100において一時中断した指令箇所から加工プログラム23を3次元空間上にオフセットして遡るように、除去製造工程におけるヘッド移動経路HR21を抽出する。すなわち、工程条件生成部106は、付加製造装置100が付加製造を中断した位置から、加工プログラム23に設定されているヘッド移動経路HR8にオフセット部分を与えて逆方向に辿るように、除去製造工程におけるヘッド移動経路HR21を設定する。これにより、除去製造工程における加工ヘッド21の始点および終点の設定が容易になる。また、この後の付加工程における加工ヘッド8の始点の設定が容易になる。
 また、工程条件生成部106は、除去製造装置102に用いられる加工プログラム(後述する加工プログラム33)に設定されている、加工ヘッド21の走査速度を、除去製造工程の工程条件に設定する。また、工程条件生成部106は、ヘッド移動経路HR21における加工ヘッド21の工具回転数を、除去製造実行部107における除去量の最大値に基づいて決定する。すなわち、工程条件生成部106は、ヘッド移動経路HR21のうち、最も除去量が多い箇所に対して所望量を除去できる工具回転数を設定する。工程条件生成部106は、ヘッド移動経路HR21と、ヘッド移動経路HR21上での工具回転数とを、除去製造実行部107に送る。NC装置1は、ステップS60の実行後、ステップS70に手順を進める。
(ステップS70)
 ステップS70では、除去製造実行部107が、工程条件生成部106が生成したヘッド移動経路HR21と、走査速度と、ヘッド移動経路HR21上での工具回転数とを受け付ける。これにより、除去製造実行部107は、除去製造装置102に対して出力する加工ヘッド21の移動経路、走査速度、および除去製造に必要な工具回転数の指令値を決定する。除去製造実行部107は、決定した移動経路、走査速度、および工具回転数を用いて、除去製造装置102に除去製造を開始させる。NC装置1は、ステップS70の実行後、ステップS80に手順を進める。
(ステップS80)
 ステップS80では、除去製造実行部107による除去製造の完了後に、生産工程変更部105が、生産工程の復帰動作を実行する。生産工程の復帰動作には、生産工程変更部105が、除去製造実行部107から除去製造の完了通知を受け付ける動作が含まれている。また、生産工程の復帰動作には、生産工程変更部105が、造形物15の搬送動作を自動搬送装置101に実行させる動作が含まれている。ここでの造形物15の搬送動作では、生産工程変更部105が、自動搬送装置101に、除去製造装置102から造形物15を取り出させて付加製造装置100のステージ13にセットさせる。また、生産工程の復帰動作には、生産工程変更部105が、付加製造実行部103に付加製造工程の開始信号(切替指令)を送信して付加製造工程を準備させる動作が含まれている。NC装置1は、ステップS80の実行後、ステップS90に手順を進める。
(ステップS90)
 ステップS90では、付加製造実行部103が、付加製造装置100に付加製造を再開させる。すなわち、付加製造実行部103が、加工プログラム23に記述されている処理の内容に基づいて、除去製造実行部107での除去製造の終了位置から加工ヘッド8を移動させるヘッド移動経路HR8の解析を再開しヘッド移動経路HR8および走査速度を決定する。また、付加製造実行部103は、加工プログラム23に基づいて、付加製造工程に必要なレーザ出力値および金属供給量を決定する。そして、付加製造実行部103は、決定した移動経路、走査速度、レーザ出力値、および金属供給量を用いて、付加製造装置100に付加製造を再開させる。NC装置1は、ステップS90の実行後、ステップS100に手順を進める。
(ステップS100)
 ステップS100では、NC装置1が、加工プログラム23に記述されている処理が全て完了したか否かを判定する。加工プログラム23に記述されている処理が全て完了していない場合(ステップS100、No)、NC装置1は、ステップS30からS100までの処理を繰り返す。NC装置1は、加工プログラム23に記述されている処理が全て完了するまで、ステップS30からS100までの処理を繰り返す。加工プログラム23に記述されている処理が全て完了した場合(ステップS100、Yes)、NC装置1は、造形物15の製造を制御する処理を完了する。
 このように、NC装置1は、付加製造工程中における蓄熱状態または溶着状態の変化が原因として発生する造形物15の完成品としての歪みまたは崩れを事前に検知して付加製造工程から除去製造工程に変更することができる。これにより、NC装置1は、生産プロセスを中断することなく効率良く所望の形状を有した造形物15を正確に生産することが可能となる。
 ここで、加工プログラム23の一例について説明する。図5は、実施の形態1にかかるNC装置が用いる加工プログラムの一例を示す図である。加工プログラム23には、絶対値指令で指令を出すこと、H1(H1は自然数)番目の補正量で工具長補正を実行すること、走査速度とレーザ出力値と金属供給量を決定することなどが規定されている。NC装置1には、工具長補正の補正量として、複数の補正量が設定されている。加工プログラム23では、これらの複数の補正量のうちの何番目の補正量を用いるかが設定されている。
 また、加工プログラム23には、造形物15の1層目の座標値群、2~(N-1)層目の座標値群、N層目の座標値群などが設定されている。以下では、造形物15がZ軸方向から見て円弧形状である場合について説明する。造形物15がZ軸方向から見て円弧形状である場合、加工プログラム23には、円弧形状の1からN層目までの座標値群が設定されている。加工プログラム23は、NC装置1の外部から付加製造実行部103に入力される。
 図6は、実施の形態1にかかるNC装置が図5に示した加工プログラムを用いて付加製造装置に積層造形させた造形物の例を示す図である。図6に示す造形物50は、付加製造装置100が製造する造形物15の一例である。
 付加製造装置100は、ベース材14上に供給した金属粉または金属線条といった金属材料である材料5を、レーザビームによって加熱溶融し、母材表面の被加工部の上に指定された積層高さおよび積層幅で材料5を積層する。
 付加製造装置100は、母材上のレーザ照射領域がZ軸方向から見て円弧形状となるように加工ヘッド8を移動させて材料5を積層する処理を繰り返す。このような、材料5の層をZ軸方向にN(Nは自然数)層分重ねたものが、図6に示した造形物50である。
 実施の形態1では、図5に示す加工プログラム23に含まれる、N1(N1は、1からNの何れかの自然数)層目の付加製造工程での指令中に、造形物50の表面の蓄熱の増加または溶着状態の不安定化によって造形物50に形状の歪みまたは崩れが発生する場合について説明する。以下、この場合の、NC装置1の各構成要素の動作を詳細に説明する。
(付加製造実行部103)
 NC装置1の付加製造実行部103は、加工プログラム23を解析し、付加製造装置100を用いて付加製造を実施する。付加製造実行部103は、図5に示す加工プログラム23のうち、現在行われている処理よりも後に行われる処理についての解析を行う。
 付加製造実行部103は、加工プログラム23に記述されている加工ヘッド8の移動経路および走査速度Fc(t)を解析して、単位時間当たりの加工ヘッド8の位置を決定する。具体的には、付加製造実行部103は、予め設定された加速度で加減速するための速度波形を生成する加減速処理と、加減速処理によって生成した速度波形を滑らかにするスムージング処理とを行うことで、加工ヘッド8の位置を決定する。なお、スムージング処理は、移動平均フィルタ処理とも称呼される。
 また、付加製造実行部103は、スムージング処理後の走査速度で移動した場合の単位時間毎の加工ヘッド位置である補間点を演算する補間処理を行うことで、加工ヘッド8への指令位置を生成する。付加製造実行部103は、この指令位置を、単位時間毎にヘッド駆動装置12に出力する。これにより、加工ヘッド8が、加工プログラム23に設定されている所望の位置へと制御される。
 また、付加製造実行部103は、加工プログラム23に記述されている材料5の供給速度、およびレーザビームの強度を解析して、単位時間当たりの材料5の供給速度、およびレーザビームの強度を決定する。
 付加製造実行部103は、レーザ照射位置におけるレーザ出力値Pc(t)と、金属供給量Wc(t)とを、以下の式(1)および式(2)を用いて、レーザ照射位置の走査速度Fc(t)に応じた調整を行う。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、P、V、およびFは、それぞれ加工プログラム23に記述されているレーザ出力、金属供給量、および走査速度を表している。付加製造実行部103は、レーザ照射位置の走査速度に応じたレーザ出力値Pc(t)をレーザ発振器2に出力する。また、付加製造実行部103は、金属粉または金属線条の金属供給量Wc(t)を材料供給装置4に出力する。これにより、付加製造実行部103は、レーザ出力および金属供給量を、加工プログラム23で指定されたユーザ所望の値に制御する。なお、付加製造実行部103による1層目からN層目までのプログラム解析処理と、状態解析部104による解析処理とは、同時進行で行われる。
 付加製造実行部103は、付加製造工程の再開時に、除去製造工程の終了位置から加工プログラム23に記述されている加工ヘッド8の移動経路および走査速度Fc(t)を解析し、単位時間当たりの加工ヘッド位置を決定する。
(状態解析部104)
 NC装置1の状態解析部104は、付加製造装置100に設置されたセンサからセンサデータ24を収集し、センサデータ24に基づいて、付加製造中の状態を推定する。具体的には、状態解析部104は、付加製造装置100によって形成される造形形状を観測した画像データをセンサデータ24から取得する。さらに、状態解析部104は、付加製造装置100によって形成される造形形状が観測された画像データから造形形状の特徴量を抽出する。ここで抽出される造形形状の特徴量は、積層高さおよび積層幅の少なくとも一方を含んでいる。状態解析部104は、積層高さおよび積層幅の少なくとも一方を含んだ特徴量を、エッジ検出、二値化などの画像解析手法を用いて計算する。
 状態解析部104は、付加製造工程における被加工部分の表面温度を観測した温度データを取得する。温度データは、1つの外線サーモグラフィから取得された被加工部が表面温度に応じて色分け表示されたヒートマップであってもよいし、造形物15の座標位置に応じ表面温度が数値として記載されたデータであってもよい。また、状態解析部104は、複数のセンサを用いて複数の方向から検出されたヒートマップを取得してもよい。
 また、状態解析部104は、付加製造装置100によって形成される溶融池を観測した溶融池データを取得する。状態解析部104は、溶融池が計測された画像データから形状の特徴量を抽出することで溶融池データを取得する。ここで抽出される形状の特徴量は、溶融池サイズおよび溶融池中心から材料5までの距離の少なくとも一方を含んでいる。状態解析部104は、溶融池サイズおよび溶融池中心から材料5までの距離の少なくとも一方を含んだ特徴量を、エッジ検出、二値化などの画像解析手法を用いて計算する。
 また、状態解析部104は、画像データから溶融池を直接観測する場合に限らず、材料供給装置4にかかる負荷データ(負荷トルク)等を利用して溶融状態を推定してもよい。状態解析部104は、画像データ、温度データ、および溶融池データに基づいて、蓄熱状態および溶着状態の変化による造形物15の被加工部周辺に歪みまたは崩れが発生することを事前に解析する。
 ここで、温度データとビード幅の変化との関係を説明する。また、溶融池データとビード高さの変化との関係を説明する。ビード幅およびビード高さが、造形物15の形状を示す形状状態の一例である。
 図7は、実施の形態1にかかるNC装置が、付加製造工程中における特徴量として抽出した被加工部の温度データとビード幅の変化との関係を説明するための図である。
 図7では、造形物50が製造される場合において10層目まで積層された造形物51Aと、N1層目まで積層された造形物51Bとを示している。ここでのN1は、10よりも大きな自然数である。図7に示すように、10層目まで積層された造形物51Aは、所望の積層が行われており、N1層目まで積層された造形物51Bは、所望の積層が行われていない。
 積層造形時間が経過していくと、レーザビームが母材に照射され続ける影響で造形物51Bにおける蓄熱が大きくなる。これにより、溶融材料の凝固に要する時間が変化するので、溶融材料の重力の影響で積層幅が所望値よりも大きくなり、積層高さが所望値よりも低くなっていき、形状の崩れが発生しやすくなる。すなわち、造形物51Bでの蓄熱が大きくなると、溶融材料の凝固に要する時間が長くなるので、溶融材料が広がりすぎる。このため、状態解析部104は、蓄熱の影響によって溶融材料の凝固に要する時間が増加して、重力の影響で造形物51Bの被加工部周辺に歪みまたは崩れが発生することを事前に検知する。状態解析部104は、被加工部における温度データの蓄熱が蓄熱の閾値よりも大きく、積層幅が積層幅の閾値よりも大きい場合に、造形異常信号を生成する。
 図8は、実施の形態1にかかるNC装置が、付加製造工程中における特徴量として抽出した被加工部の溶融池データとビード高さの変化との関係を説明するための図である。
 図8では、造形物50が製造される場合において10層目まで積層された造形物51Aと、N2層目まで積層された造形物51Cとを示している。ここでのN2は、10よりも大きな自然数である。図8に示すように、10層目まで積層された造形物51Aは、所望の積層が行われており、N2層目まで積層された造形物51Cは、所望の積層が行われていない。
 造形開始時はレーザビームに対して材料5の溶融量が最適に指令されていても、積層造形時間が経過していくと、レーザビームの熱源によって、材料5が溶融しやすくなり、供給されてくる材料5と、溶融された材料5によって形成される溶融池との間の距離が大きくなる。これにより、溶融池サイズが小さくなって溶着量不足状態となり、積層幅が所望値よりも小さくなり、積層高さが所望値よりも高くなっていく。さらに、積層幅および積層高さのばらつきが増加する。これにより、形状の崩れが発生しやすくなる。このため、積層造形時間が長くなると、溶着状態が最適な条件範囲から外れて、所望のビード形状に造形できなくなり、造形物51Cの被加工部周辺に歪みまたは崩れが発生する。状態解析部104は、このようは被加工部周辺における歪みまたは崩れを事前に検知する。状態解析部104は、被加工部における溶融池データの溶融池サイズが溶融池サイズの閾値よりも小さく、積層高さが積層高さの閾値よりも大きい場合に、造形異常信号を生成する。
 実施の形態1では、加工プログラム23の途中のN1層目において蓄熱状態の影響で形状の歪みまたは崩れが発生し、N2層目において溶着状態の影響で形状の歪みまたは崩れが発生する。このため、状態解析部104は、センサデータ24を解析することで、歪みまたは崩れが発生する前に造形異常信号をN1層目またはN2層目の1度のみ生成しているが、歪みまたは崩れの発生を検知する度に複数回にわたって造形異常信号を生成してもよい。
(生産工程変更部105)
 NC装置1の生産工程変更部105は、状態解析部104の加工状態の解析結果に基づいて付加製造工程と除去製造工程とを自動で変更する。実施の形態1では、加工プログラム23において1層目から(N1-1)層目までは状態解析部104における造形異常信号は生成されないので、生産工程変更部105は、付加製造装置100における付加製造工程を継続する。一方、加工プログラム23においてN1層目になると、生産工程変更部105は、状態解析部104から造形異常信号が入力されるので、生産工程の変更動作を実行する。
 生産工程変更部105は、生産工程の変更動作として、付加製造実行部103に付加製造工程の中断信号を送信することで、付加製造工程を一時的に中断する。付加製造装置100による付加製造工程が停止されると、生産工程変更部105は、生産工程の変更動作として、自動搬送装置101に造形物15の搬送開始信号を送信する。これにより、自動搬送装置101は、付加製造装置100から造形物15を取り出し、除去製造装置102のステージ18にセットする。自動搬送装置101が、除去製造装置102のステージ18に造形物15をセットする処理を完了すると、生産工程変更部105は、除去製造装置102に、除去製造工程の開始信号を送信する。これにより、除去製造工程が一時的に開始される。
 除去製造工程が完了すると、生産工程変更部105は、生産工程の復帰動作を実施する。生産工程変更部105は、除去製造実行部107に除去製造の停止信号を送信することで、付加製造工程を中断させる。また、除去製造装置102による除去製造工程が停止すると、生産工程変更部105は、生産工程の復帰動作として、自動搬送装置101に造形物15の搬送開始信号を送信する。これにより、自動搬送装置101は、除去製造装置102から造形物15を取り出し、付加製造装置100のステージ13にセットする。自動搬送装置101が、付加製造装置100のステージ13に造形物15をセットする処理を完了すると、生産工程変更部105は、付加製造装置100に付加製造工程の再開信号を送信する。これにより、付加製造工程が再開される。
 ここでは、生産工程変更部105は、加工プログラム23のN1層目の加工中に1度だけ生産工程変更動作および生産工程復帰動作を実施する場合について説明したが、生産工程変更部105は、図3で説明したように、状態解析部104から造形異常信号が入力される度に生産工程変更動作および生産工程復帰動作を実行する。
(工程条件生成部106)
 NC装置1の工程条件生成部106は、付加製造装置100で使用した加工プログラム23、および状態解析部104が推定した加工状態に基づいて、除去製造装置102が使用する工程条件を決定する。
 工程条件生成部106は、加工プログラム23および加工状態に基づいて、除去製造実行部107でN1層目を除去する加工経路、すなわちヘッド移動経路HR21を生成する。まず、蓄熱の影響が生じた場合に抽出されたN1層目を除去するヘッド移動経路HR21について説明する。
 図9は、実施の形態1にかかるNC装置が蓄熱の影響が生じた場合に生成する除去製造工程のヘッド移動経路の第1例を示す図である。図9では、所望の形状を形状40DFで示し、N1層目の付加製造の加工経路であるヘッド移動経路HR8を付加製造経路41Aで示している。また、N1層目の実際の積層形状を積層形状41Fで示している。また、蓄熱の影響が生じた場合に抽出されたN1層目を除去する場合の加工経路であるヘッド移動経路HR21を除去製造経路46R1で示している。
 工程条件生成部106は、N1層目が歪みまたは崩れが発生している部分であるので、加工プログラム23のN1層目から(N1-1)層目にかけて時間的に遡るように進行方向から逆再生したヘッド移動経路HR21を抽出する。換言すると、工程条件生成部106は、N1層目の付加製造経路41Aを逆方向に進行するヘッド移動経路HR21を抽出する。
 また、付加製造工程によって形成されたN1層目のビードの積層幅は、蓄熱の影響で、N1層目より前に形成されたビードの積層幅と比較して幅が大きくなっている。このため、工程条件生成部106は、所望の形状40DFに対して、XY平面に平行な面内で加工方向に垂直な方向である垂線方向にヘッド移動経路HR8をオフセットした除去製造経路46R1を生成する。この場合のオフセット量は、N1層目の形状ばらつき(造形物15の高さまたは幅の所望値からのずれ量)の最大値に該当する箇所に対して、工具19が積層形状41Fの外側を通過するように、形状ばらつきを上回る値に設定される。これにより、工程条件生成部106は、除去製造装置102によってN1層の全てを除去させてもよいし、形状の歪みまたは崩れにつながる部分のみを除去させてもよい。
 なお、除去製造装置102がN1層目のビードを1回の除去製造経路で除去することができない場合には、工程条件生成部106は、抽出した付加製造経路41Aを複数回オフセットさせることで複数回の除去製造経路を生成してもよい。
 図10は、実施の形態1にかかるNC装置が蓄熱の影響が生じた場合に生成する除去製造工程のヘッド移動経路の第2例を示す図である。図10では、図9と同様に、所望の形状を形状40DFで示し、N1層目の付加製造のヘッド移動経路HR8を付加製造経路41Aで示している。また、N1層目の実際の積層形状を積層形状41Fで示している。
 また、図10では、蓄熱の影響が生じた場合に抽出されたN1層目を除去する場合の1回目のヘッド移動経路HR21を除去製造経路46R1で示し、2回目のヘッド移動経路HR21を除去製造経路46R2で示している。なお、除去製造装置102は、除去製造経路46R2に沿った除去製造工程を先に実行し、その後、除去製造経路46R1に沿った除去製造工程を実行してもよい。
 つぎに、溶着量不足状態となった場合に抽出されたN1層目またはN2層目を除去するヘッド移動経路HR21について説明する。N1層目の除去処理とN2層目の除去処理とは同様であるので、ここではN1層目の除去処理について説明する。
 図11は、実施の形態1にかかるNC装置が溶着量不足状態となった場合に生成する除去製造工程のヘッド移動経路の第1例を示す図である。図11では、所望の形状を形状40DFで示し、N1層目の付加製造のヘッド移動経路HR8を付加製造経路42Aで示している。また、N1層目の実際の積層形状を積層形状42Fで示している。また、溶着量不足状態の影響が生じた場合に抽出されたN1層目を除去する場合のヘッド移動経路HR21を除去製造経路47R1で示している。
 工程条件生成部106は、N1層目が歪みまたは崩れが発生している部分であるので、加工プログラム23のN1層目から(N1-1)層目にかけて進行方向から逆再生したヘッド移動経路HR21を抽出する。換言すると、工程条件生成部106は、N1層目の付加製造経路42Aを逆方向に進行するヘッド移動経路HR21を抽出する。
 また、付加製造工程によって形成されたN1層目のビードの積層高さは、溶着状態が不足状態となっている影響で、N1層目より前に形成されたビードの積層高さと比較して大きくなっている。このため、工程条件生成部106は、所望の形状40DFに対して、Z軸方向(深さ方向)にヘッド移動経路HR8をオフセットした除去製造経路47R1を生成する。この場合のオフセット量は、N1層目の積層高さの最大値および最小値から計算される形状ばらつきを上回る値に設定される。これにより、工程条件生成部106は、除去製造装置102によってN1層の全てを除去させてもよいし、形状の歪みまたは崩れにつながる部分のみを除去させてもよい。
 なお、除去製造装置102が、N1層目のビードを1回の除去製造経路で除去することができない場合には、工程条件生成部106は、抽出した付加製造経路42Aを複数回オフセットさせることで複数回の除去製造経路を生成してもよい。
 図12は、実施の形態1にかかるNC装置が溶着量不足状態となった場合に生成する除去製造工程のヘッド移動経路の第2例を示す図である。図12では、図11と同様に、所望の形状を形状40DFで示し、N1層目の付加製造のヘッド移動経路HR28を付加製造経路42Aで示している。また、N1層目の実際の積層形状を積層形状42Fで示している。
 また、図12では、溶着量不足状態となった場合に抽出されたN1層目を除去する場合の1回目のヘッド移動経路HR21を除去製造経路47R1で示し、2回目のヘッド移動経路HR21を除去製造経路47R2で示している。
 また、工程条件生成部106は、造形物15の除去量に合わせて除去製造装置102における工具回転数を決定する。造形物15のビード形状は、蓄熱状態および溶着状態の影響で積層幅および積層高さが不均一でありばらつきが存在している。このため、工程条件生成部106は、オフセット量に基づいて、除去製造装置102で使用するヘッド移動経路HR21(除去製造経路47R1,47R2)における最大除去体積を導出する。そして、工程条件生成部106は、最大除去体積に最適な工具回転数、およびこの工具回転数での走査速度を、NC装置1が保有する積層条件データに基づいて決定する。すなわち、工程条件生成部106は、除去製造工程で除去される造形物15の体積のうち除去製造経路47R1,47R2で最大値となる箇所での体積、および積層条件に基づいて、工具回転数、および走査速度を決定する。
 なお、工程条件生成部106は、第1の工程完了後における造形物15の形状高さまたは形状幅のばらつきと、第2の工程完了後における造形物15の形状高さまたは形状幅のばらつきと、第2の工程における工具経路のオフセット量とを含む状態量を取得する状態量取得部を備えてもよい。そして、工程条件生成部106は、この状態量に基づいて、第2の工程完了後における造形物15の形状高さまたは形状幅のばらつきを小さくする、第2の工程における工具経路のオフセット量を学習する学習部を備えていてもよい。
(除去製造実行部107)
 NC装置1の除去製造実行部107は、工程条件生成部106が生成したヘッド移動経路HR21を含んだ工程条件を解析し、除去製造を除去製造装置102に実行させる。除去製造実行部107は、工程条件生成部106が生成したヘッド移動経路HR21のうち、現在行われている処理よりも後に行われる処理についての解析を行う。
 除去製造実行部107は、工程条件生成部106が生成した除去製造装置102におけるヘッド移動経路HR21および走査速度を解析して、単位時間当たりの加工ヘッド21の加工ヘッド位置を決定する。具体的には、除去製造実行部107は、予め設定された加速度で加減速するための速度波形を生成する加減速処理と、加減速処理により生成した速度波形を滑らかにするスムージング処理とを行うことで、加工ヘッド21の加工ヘッド位置を決定する。
 また、除去製造実行部107は、スムージング処理後の走査速度で移動した場合の単位時間毎の加工ヘッド位置である補間点を演算する補間処理を行うことで、加工ヘッド21の指令位置を生成する。除去製造実行部107は、この指令位置を、単位時間毎にヘッド駆動装置20に出力する。これにより、加工ヘッド21が、所望の位置へと制御される。
 除去製造実行部107は、工程条件生成部106が生成した工具回転数を解析して、単位時間当たりの工具回転位置を決定する。ヘッド駆動装置20は、決定した単位時間当たりの工具回転位置を、主軸制御装置(図示せず)に出力し、これにより工具回転数を所望の値に制御する。
 このように実施の形態1によれば、NC装置1は、積層造形中の蓄熱状態または溶着状態の変化が原因で発生する造形物15の歪みまたは崩れを事前に検知して付加製造工程から除去製造工程に変更する。この場合において、NC装置1は、除去製造工程で使用するヘッド移動経路HR21を含んだ工程条件を、付加製造装置100で使用した工程条件に基づいて作成する。これにより、NC装置1は、生産プロセスを中断することなく、造形物15を効率良く所望の形状に正確に生産することが可能となる。
 また、NC装置1は、オンラインで付加製造装置100と除去製造装置102とを切替えることもできる。これにより、NC装置1は、付加製造工程と除去製造工程との切替えの前後の生産プロセスを継続できるので、工程間の連携が可能となり、生産効率を向上させることができる。
実施の形態2.
 つぎに、図13から図15を用いて実施の形態2について説明する。実施の形態2では、除去製造装置が、造形物15の一部を除去し、仕上げ面に傷などがあった場合に、付加製造装置が付加製造工程を実行する。
 実施の形態2の加工システム60は、付加製造装置100の代わりに付加製造装置200を備え、除去製造装置102の代わりに除去製造装置202を備えている。また、実施の形態2の加工システム60は、NC装置1の代わりにNC装置1Aを備えている。また、実施の形態2の加工システム60は、実施の形態1の加工システム60と同様に自動搬送装置101を備えている。付加製造装置200は、付加製造装置100と同様の装置であり、除去製造装置202は、除去製造装置102と同様の装置である。
 図13は、実施の形態2にかかるNC装置の機能構成を示す図である。図13に示す各構成要素のうち図2に示す各構成要素と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 実施の形態2のNC装置1Aは、付加製造実行部203と、状態解析部204と、生産工程変更部205と、工程条件生成部206と、除去製造実行部207とを備えている。付加製造実行部203は、付加製造実行部103が実行する処理に対応する処理を実行し、状態解析部204は、状態解析部104が実行する処理に対応する処理を実行する。生産工程変更部205は、生産工程変更部105が実行する処理に対応する処理を実行し、工程条件生成部206は、工程条件生成部106が実行する処理に対応する処理を実行する。除去製造実行部207は、除去製造実行部107が実行する処理に対応する処理を実行する。
 除去製造実行部207は、外部入力される加工プログラム33を受け付ける。加工プログラム33は、造形物15の一部を除去することで造形物15を所望の形状に成形する際に用いられるプログラムである。
 加工プログラム33には、被加工物16または加工ヘッド21を予め設定された経路に沿って移動させるために必要な移動指令および速度指令と、所望の表面粗さ除去を行うために必要な工具回転数の回転指令とが記述されている。移動指令は、移動指令値で表され、速度指令は、速度指令値で表される。回転指令は、回転指令値で表される。
 また、除去製造実行部207は、生産工程変更部205から、生産工程の切替指令を受け付ける。生産工程の切替指令は、除去製造工程から付加製造工程への切替指令、または付加製造工程から除去製造工程への切替指令である。
 除去製造実行部207は、加工プログラム33に基づいて、ヘッド移動経路HR21と、ヘッド移動経路HR21上での工具回転数とを制御する。これにより、除去製造実行部207は、除去製造装置202に造形物15の一部を除去製造させる。
 除去製造実行部207は、除去製造工程から付加製造工程への切替指令を受け付けると、除去製造を停止する。付加製造実行部203は、除去製造工程から付加製造工程への切替指令を受け付けると、付加製造を再開する。
 状態解析部204は、除去製造装置202から取得されたセンサデータ34を受け付ける。状態解析部204は、センサデータ34に基づいて、造形物15の加工状態を解析する。センサデータ34には、画像データ、ヘッド駆動装置20が備えるモータ検出器によって検出される、加工ヘッド21の走査軸にかかる負荷トルクなどが含まれている。
 状態解析部204は、解析結果である加工状態を生産工程変更部205および工程条件生成部206に送る。状態解析部204が工程条件生成部206に送る加工状態には、除去製造工程における仕上げ面に傷が無いか否かの判定結果が含まれている。
 除去製造装置202から取得されたセンサデータ34は、記憶装置などに格納されてもよい。この場合において、記憶装置は、NC装置1内に配置されてもよいし、NC装置1の外部に配置されてもよい。また、記憶装置は、付加製造装置200内に配置されてもよいし、付加製造装置200の外部に配置されてもよい。
 生産工程変更部205は、生産工程変更部105と同様に、造形物15の加工状態に応じて除去製造工程と付加製造工程とを自動で変更する。生産工程変更部205は、状態解析部204が、造形物15の仕上げ面に傷があると判定した場合に、除去製造工程から付加製造工程へ変更する。また、生産工程変更部205は、付加製造実行部203から、付加製造工程が完了したことを示す通知を受け付けた場合に、付加製造工程から除去製造工程へ変更する。
 生産工程変更部205は、付加製造工程から除去製造工程への切替指令、および除去製造工程から付加製造工程への切替指令を、除去製造実行部207に送る。また、生産工程変更部205は、除去製造工程から付加製造工程への切替指令を、付加製造実行部203に送る。また、生産工程変更部205は、切替指令を付加製造実行部203または除去製造実行部207に送る際には、造形物15の搬送指令を自動搬送装置101に送る。
 工程条件生成部206は、状態解析部204から加工状態を受け付ける。工程条件生成部206は、状態解析部204が、仕上げ面に傷があると判定した場合に、生産工程変更後に付加製造装置200が用いる工程条件を算出する。この場合において、工程条件生成部206は、生産工程の変更前に除去製造装置202が使用した工程条件および加工状態に基づいて、生産工程変更後に付加製造装置200が用いる工程条件を算出する。
 生産工程の変更前に使用した工程条件には、ヘッド移動経路HR21などが含まれている。工程条件生成部206は、生産工程の変更前に使用した工程条件を、除去製造実行部207から取得してもよいし、加工プログラム33から算出してもよい。工程条件生成部206は、算出した工程条件を付加製造実行部203に送る。工程条件生成部206が算出する工程条件には、ヘッド移動経路HR8などが含まれている。
 付加製造実行部203は、生産工程変更部205から、生産工程の切替指令を受け付ける。また、付加製造実行部203は、工程条件生成部206から工程条件を受け付ける。付加製造実行部203は、工程条件生成部206から受け付けた工程条件に基づいて、ヘッド移動経路HR21と、ヘッド移動経路HR21上でのレーザビームの出力値および材料5の供給量とを制御する。これにより、付加製造実行部203は、付加製造装置200に造形物15を付加製造させる。
 つぎに、NC装置1Aの動作の一例について説明する。図14は、実施の形態2にかかるNC装置による動作の手順を示すフローチャートである。なお、図3で説明した処理と同様の処理については、その説明を省略する。
(ステップS110)
 ステップS110では、除去製造実行部207に、加工プログラム33が外部入力される。これにより、除去製造実行部207は、加工プログラム33を受け付ける。前述したように、加工プログラム33には、被加工物16と加工ヘッド21との相対位置を制御するための移動指令、および被加工物16と加工ヘッド21との相対速度を制御するための速度指令が含まれている。加工ヘッド21の速度指令は、工具19による加工位置での走査速度指令である。
 加工ヘッド21の移動指令では、移動指令の内容が、座標値と、この座標値の時の移動モードを表すGコード(例えば、G0,G1等)とによって指定される。また、加工ヘッド21の速度指令では、速度指令の内容が、速度値が記載されたFコードによって指令される。
 除去製造が行なわれるためには、ユーザに設定された所望の表面粗さに基づいた工具回転数指令値が必要となる。工具回転数指令値は、加工プログラム33上でSコードを用いて所望の表面粗さとなるように直接指定されてもよいし、GコードまたはMコードを用いて指令されてもよい。NC装置1Aは、ステップS110の実行後、ステップS120に手順を進める。
(ステップS120)
 ステップS120では、除去製造実行部207が、外部入力された加工プログラム33に記述されている処理の内容に基づいて、除去製造装置202における加工ヘッド21を移動させる移動経路を解析し移動経路を決定する。また、除去製造実行部207は、加工プログラム33に基づいて、加工ヘッド21の移動速度である走査速度を決定する。また、除去製造実行部207は、加工プログラム33に基づいて、除去製造工程に必要な工具回転数を決定する。そして、除去製造実行部207は、決定した移動経路、走査速度、工具回転数を用いて、除去製造装置202に除去製造を実施させる。NC装置1Aは、ステップS120の実行後、ステップS130に手順を進める。
(ステップS130)
 ステップS130では、除去製造装置202の加工状態を監視するためのセンサデータ34が除去製造装置202から収集されて、状態解析部204に入力される。これにより、状態解析部204が、センサデータ34を取得する。
 センサ情報であるセンサデータ34には、例えば、仕上げ加工結果を計測(解析)するための画像データが含まれている。画像データは、造形物15の画像を示すデータであり、カメラおよびレーザ変位計の少なくとも一方を用いて取得される。センサデータ34には、仕上げ加工結果を計測するための画像データの代わりに、ヘッド駆動装置20にかかる負荷データ(加工ヘッド21の走査軸にかかる負荷トルク)および加工ヘッド21の位置データが含まれていてもよい。NC装置1Aは、ステップS130の実行後、ステップS140に手順を進める。
(ステップS140)
 ステップS140では、状態解析部204が、センサデータ34に含まれる画像データに基づいて、加工の進行方向が切替えられた際に生じた摩擦または機械振動によって発生した傷などを検知する。すなわち、状態解析部204は、除去製造装置202における除去製造工程が安定して実行されたか否かを判定する。センサデータ34に含まれる画像データは、除去製造工程における造形表面にばらつきがなく均一に誤差なく除去製造できているかが観測されたデータである。
 NC装置1Aの状態解析部204は、造形物15の仕上げ面に傷がないと判定した場合(ステップS140、Yes)、ステップS130に手順を進める。
 一方、状態解析部204は、造形物15の仕上げ面に傷があると判定した場合(ステップS140、No)、ステップS150に手順を進める。状態解析部204が、造形物15の仕上げ面に傷があると判定した場合、除去製造実行部207は、傷が無くなるよう、除去製造装置202に造形物15の上面への除去製造を実施させてもよい。
 なお、状態解析部204は、加工の進行方向が切替えられた際に生じる摩擦または機械振動を、ヘッド駆動装置20にかかる負荷データおよび加工ヘッド21の位置データから推定することも可能である。この場合、状態解析部204は、ヘッド駆動装置20にかかる負荷データおよび加工ヘッド21の位置データに基づいて、間接的に仕上げ加工結果を算出する。すなわち、状態解析部204は、負荷データおよび位置データに基づいて、摩擦または機械振動を算出し、摩擦または機械振動に基づいて、仕上げ加工結果(傷の有無など)を算出する。この場合、状態解析部204は、加工の進行方向が切替えられた際に生じる摩擦または機械振動に基づいて、摩擦または機械振動による傷の有無を解析する。
(ステップS150)
 ステップS150では、状態解析部204が、生産工程変更部205および工程条件生成部206に、造形物15の仕上げ面に傷があることを通知する。これにより、生産工程変更部205は、除去製造を中断して付加製造に工程変更させる、すなわち生産工程の切替動作を実行する。この場合の除去製造工程が第1の生産工程であり、付加製造工程が第2の生産工程である。また、除去製造工程で用いられた工程条件が第1の工程条件であり、付加製造工程で用いられる工程条件が第2の工程条件である。
 生産工程切替動作には、生産工程変更部205が、除去製造実行部207に除去製造工程の中断信号(切替指令)を送信して除去製造工程を一時的に中断させる動作が含まれている。また、生産工程の切替動作には、生産工程変更部205が、除去製造工程の中断完了後に、造形物15の搬送動作を自動搬送装置101に実行させる動作が含まれている。ここでの造形物15の搬送動作では、生産工程変更部205が、自動搬送装置101に、除去製造装置202から造形物15を取り出して付加製造装置200のステージ13にセットさせる。また、生産工程の切替動作には、生産工程変更部205が、付加製造実行部203に付加製造工程の開始信号(切替指令)を送信して付加製造工程を準備させる動作が含まれている。このように、生産工程変更部205は、除去製造工程から付加製造工程への切替指令を、付加製造実行部203および除去製造実行部207に送る。NC装置1Aは、ステップS150の実行後、ステップS160に手順を進める。
(ステップS160)
 ステップS160では、工程条件生成部206は、付加製造実行部203が付加製造工程で使用する工程条件を生成する。具体的には、工程条件生成部206は、付加製造装置200における加工ヘッド8の移動経路、走査速度、加工ヘッド8のレーザ出力値、および金属供給量を決定し、付加製造工程の工程条件工程に設定する。
 工程条件生成部206は、付加製造装置200におけるヘッド移動経路HR8を、除去製造装置202に入力された加工プログラム33に基づいて設定する。具体的には、工程条件生成部206は、加工の進行方向が切替えられた際に生じる摩擦または機械振動によって発生した傷を全て除去できるように、ヘッド移動経路HR8を抽出し付加製造工程の工程条件に設定する。この場合において、工程条件生成部206は、除去製造装置202において一時中断した指令箇所から加工プログラム33を3次元空間上にオフセットして遡るように、付加製造工程におけるヘッド移動経路HR8を抽出する。すなわち、工程条件生成部206は、除去製造装置202が除去製造を中断した位置から、加工プログラム33に設定されているヘッド移動経路HR21にオフセット部分を与えて逆方向に辿るように、付加製造工程におけるヘッド移動経路HR8を設定する。
 また、工程条件生成部206は、付加製造装置200に用いられる加工プログラム33に設定されている加工ヘッド8の走査速度を、付加製造工程の工程条件に設定する。また、工程条件生成部206は、発生した傷を全て除去できるように、付加製造工程に必要なレーザ出力値および金属供給量の指令値を決定する。この場合において、工程条件生成部206は、傷の体積、傷を無くすために除去された部分の体積などに基づいて、付加製造実行部203における付加量を算出する。そして、工程条件生成部206は、加工ヘッド位置の指令経路に対するレーザ出力値および金属供給量を、付加製造実行部203における付加量に基づいて決定する。工程条件生成部206は、ヘッド移動経路HR8と、ヘッド移動経路HR8上でのレーザ出力値および金属供給量とを、付加製造実行部203に送る。NC装置1Aは、ステップS160の実行後、ステップS170に手順を進める。
(ステップS170)
 ステップS170では、付加製造実行部203が、工程条件生成部206が生成したヘッド移動経路HR8と、走査速度と、ヘッド移動経路HR8上でのレーザ出力値と、金属供給量とを受け付ける。これにより、付加製造実行部203は、付加製造装置200に対して出力する加工ヘッド8の移動経路、走査速度、レーザ出力値、および金属供給量を決定する。付加製造実行部203は、決定した移動経路、走査速度、レーザ出力値、および金属供給量を用いて、付加製造装置200に付加製造を開始させる。NC装置1Aは、ステップS170の実行後、ステップS180に手順を進める。
(ステップS180)
 ステップS180では、付加製造実行部203による付加製造の完了後に、生産工程変更部205が、生産工程の復帰動作を実行する。生産工程の復帰動作には、生産工程変更部205が、付加製造実行部203から付加製造の完了通知を受け付ける動作が含まれている。また、生産工程の復帰動作には、生産工程変更部205が、造形物15の搬送動作を自動搬送装置101に実行させる動作が含まれている。ここでの造形物15の搬送動作では、生産工程変更部205が、自動搬送装置101に、付加製造装置200から造形物15を取り出させて除去製造装置202のステージ18にセットさせる。また、生産工程の復帰動作には、生産工程変更部205が、除去製造実行部207に除去製造工程の開始信号(切替指令)を送信して除去製造工程を準備させる動作が含まれている。NC装置1Aは、ステップS180の実行後、ステップS190に手順を進める。
(ステップS190)
 ステップS190では、除去製造実行部207が、除去製造装置202に除去製造を再開させる。すなわち、除去製造実行部207が、加工プログラム33に記述されている処理の内容に基づいて、付加製造実行部203での付加製造の終了位置から加工ヘッド21を移動させるヘッド移動経路HR21の解析を再開しヘッド移動経路HR21および走査速度を決定する。また、除去製造実行部207は、加工プログラム33に基づいて、除去製造工程に必要な工具回転数の指令値を決定する。そして、除去製造実行部207は、決定した移動経路、走査速度、および工具回転数を用いて、除去製造装置202に除去製造を再開させる。NC装置1Aは、ステップS190の実行後、ステップS200に手順を進める。
(ステップS200)
 ステップS200では、NC装置1Aが、加工プログラム33に記述されている処理が全て完了したか否かを判定する。加工プログラム33に記述されている処理が全て完了していない場合(ステップS200、No)、NC装置1Aは、ステップS130からS200までの処理を繰り返す。NC装置1Aは、加工プログラム33に記述されている処理が全て完了するまで、ステップS130からS200までの処理を繰り返す。加工プログラム33に記述されている処理が全て完了した場合(ステップS200、Yes)、NC装置1Aは、造形物15の製造を制御する処理を完了する。
 このように、NC装置1Aは、除去製造工程における加工の進行方向が切替えられた際に生じる摩擦または機械振動によって発生する傷を検知して除去製造工程から付加製造工程に変更することができる。これにより、NC装置1Aは、除去製造装置202における仕上げ加工に欠陥が発生した場合においても、生産工程を自動で修正して効率良く所望の形状を有した造形物15を正確に生産することが可能となる。
 ここで、付加製造装置200が製造する造形物15の具体例について説明する。図15は、実施の形態2にかかるNC装置が除去製造装置に除去製造させた造形物の例を示す図である。図15に示す造形物53は、除去製造装置202が製造する造形物15の一例である。
 実施の形態2にかかる除去製造工程に用いられる加工プログラム33には、例えば、実施の形態1において付加製造された造形物50の最上面を仕上げ加工する指令が記載されている。図15では、加工プログラム23,33を用いて造形された造形物53を示している。加工プログラム23は、材料5の層を1層目からN層目まで積層することで造形物50を作製するプログラムである。加工プログラム33は、造形物50の上面を1ブロック目からM(Mは自然数)まで除去することによって造形物50から造形物53を作製するプログラムである。
 加工プログラム33は、NC装置1Aの外部から除去製造実行部207に入力される。実施の形態2では、加工プログラム33の実行が開始された後に、除去ブロックであるM1(M1は、1からMの何れかの自然数)ブロック目付近においての製造工程の指令中に、造形物表面に摩擦もしくは機械振動起因の傷が発生する場合について説明する。以下、この場合の、NC装置1Aの各構成要素の動作について、実施の形態1とは異なる動作について説明する。
(状態解析部204)
 NC装置1Aの状態解析部204は、除去製造装置202に設置されたセンサからセンサデータ34を収集し、センサデータ34に基づいて、除去製造中の加工状態を推定する。具体的には、状態解析部204は、除去製造装置202によって形成される表面形状を観測した画像データをセンサデータ34から取得する。さらに、状態解析部204は、除去製造装置202によって形成される造形形状が計測された画像データから形状特徴量を抽出する。ここで抽出される形状特徴量は、曲率、形状高さ、形状幅等のうちの少なくとも1つを含んでいる。状態解析部204は、曲率、形状高さ、形状幅等のうちの少なくとも1つを含んだ特徴量を、エッジ検出、二値化などの画像解析手法を用いて計算する。
 状態解析部204は、画像データに基づいて、摩擦または機械振動によって生じる傷を解析する。実施の形態2においては、状態解析部204が、M1ブロック目と、M1ブロック目以外の指定ブロックとを比較すると、M1ブロック目では摩擦や機械振動によって、形状高さを示すZ軸位置がマイナス方向に食い込むので、形状高さが他の領域と比較して低くなる。このため、状態解析部204は、形状高さのばらつきが他の領域と比較して大きい場合に、造形異常信号を生成する。
 実施の形態2では、状態解析部204が、加工プログラム33の途中のM1ブロック目への指令の一か所における摩擦または機械振動が原因の傷を検知して造形異常信号を生成しているが、1または複数の他の箇所の傷を検知することも可能である。
 このように実施の形態2によれば、NC装置1Aは、除去製造工程における摩擦または機械振動が原因で発生する表面形状の傷を検知して除去製造工程から付加製造工程に変更する。この場合において、NC装置1Aは、付加製造工程で使用するヘッド移動経路HR8を含んだ工程条件を、除去製造装置202で使用した工程条件に基づいて作成する。これにより、NC装置1Aは、仕上げ加工において造形物15に欠陥が発生した場合においても、生産工程を自動で修正して効率良く所望の形状を有した造形物53を正確に生産することが可能となる。
 つづいて、NC装置1,1Aのハードウェア構成について説明する。NC装置1,1Aは、処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用回路などの専用のハードウェアであってもよい。処理回路は制御回路とも呼ばれる。
 図16は、実施の形態1,2に係るNC装置が備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図である。図16に示す処理回路90は制御回路であり、プロセッサ91およびメモリ92を備える。処理回路90がプロセッサ91およびメモリ92で構成される場合、処理回路90の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路90では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路90は、NC装置1,1Aの処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。このプログラムは、処理回路90により実現される各機能をNC装置1,1Aに実行させるためのプログラムであるともいえる。このプログラムは、プログラムが記憶された記憶媒体により提供されてもよいし、通信媒体など他の手段により提供されてもよい。上記プログラムは、数値制御処理をNC装置1,1Aに実行させるプログラムであるとも言える。
 ここで、プロセッサ91は、例えば、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などである。また、メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。
 図17は、実施の形態1,2に係るNC装置が備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図である。図17に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。処理回路93については、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路93は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1A NC装置、2 レーザ発振器、3 ファイバーケーブル、4 材料供給装置、5 材料、6 ガス供給装置、7 配管、8,21 加工ヘッド、9 ビームノズル、10 材料ノズル、11 ガスノズル、12,20 ヘッド駆動装置、13,18 ステージ、14 ベース材、15,50,51A~51C,53 造形物、16 被加工物、17 ハンド機構、19 工具、22 主軸駆動装置、23,33 加工プログラム、24,34 センサデータ、25 ハンド駆動装置、41A,42A 付加製造経路、41F,42F 積層形状、46R1,46R2,47R1,47R2 除去製造経路、60 加工システム、90,93 処理回路、91 プロセッサ、92 メモリ、100,200 付加製造装置、101 自動搬送装置、102,202 除去製造装置、103,203 付加製造実行部、104,204 状態解析部、105,205 生産工程変更部、106,206 工程条件生成部、107,207 除去製造実行部。
 

Claims (11)

  1.  第1の加工ヘッドからビームを照射することによって溶融させた材料を積層することで造形物を製造する付加製造工程を実行する付加製造装置を制御する付加製造実行部と、
     第2の加工ヘッドに配置された工具を用いて前記造形物を切削する除去製造工程を実行する除去製造装置を制御する除去製造実行部と、
     前記付加製造工程と前記除去製造工程との2つの生産工程が組み合わされて製造される前記造形物の加工状態を監視して得られるセンサデータを受け付けるとともに、前記センサデータに基づいて、前記造形物の加工状態を解析する状態解析部と、
     前記加工状態の解析結果に基づいて、2つの前記生産工程のうちの何れを実行させるかの切替えを指示する切替指令を生成し、前記切替指令を前記付加製造実行部および前記除去製造実行部に出力する生産工程変更部と、
     2つの前記生産工程が切替えられる際には、2つの前記生産工程のうちの切替え前の生産工程である第1の生産工程において使用された第1の工程条件に基づいて、2つの前記生産工程のうちの切替え後の生産工程である第2の生産工程において使用される第2の工程条件を決定する工程条件生成部と、
     を備える、
     ことを特徴とする数値制御装置。
  2.  前記第2の生産工程で用いられる加工経路は、前記第1の生産工程で用いられる加工経路を3次元空間上でオフセットした経路であるオフセット部分を含む、
     ことを特徴とする請求項1に記載の数値制御装置。
  3.  前記第2の生産工程で用いられる加工経路での移動方向と、前記第1の生産工程で用いられる加工経路での移動方向とは、逆方向である、
     ことを特徴とする請求項1または2に記載の数値制御装置。
  4.  前記第1の生産工程が前記付加製造工程であり、前記第2の生産工程が前記除去製造工程である場合、
     前記工程条件生成部は、
     前記オフセット部分として、前記第1の生産工程における前記造形物の高さまたは幅の所望値からのずれ量を除去できるオフセット量を設定する、
     ことを特徴とする請求項2に記載の数値制御装置。
  5.  前記第1の生産工程が前記付加製造工程であり、前記第2の生産工程が前記除去製造工程である場合、
     前記第2の工程条件は、第2の加工ヘッドの走査速度および主軸回転数を含み、
     前記工程条件生成部は、前記第2の生産工程において除去される前記造形物の体積に基づいて、前記第2の加工ヘッドの前記走査速度および前記主軸回転数を決定する、
     ことを特徴とする請求項1から4の何れか1つに記載の数値制御装置。
  6.  前記第1の生産工程が前記除去製造工程であり、前記第2の生産工程が前記付加製造工程である場合、
     前記第2の工程条件は、前記第1の加工ヘッドの走査速度、レーザ出力、および前記材料の供給量を含み、
     前記工程条件生成部は、前記第2の生産工程において付加される前記造形物の体積に基づいて、前記第1の加工ヘッドの前記走査速度、前記レーザ出力、および前記材料の供給量を決定する、
     ことを特徴とする請求項1から3の何れか1つに記載の数値制御装置。
  7.  前記状態解析部は、
     前記センサデータに基づいて前記造形物の溶着状態または形状状態を推定し、
     前記生産工程変更部は、
     前記状態解析部が推定した結果に基づいて前記第1の生産工程を継続するか切替指令出力するかの判定を行う、
     ことを特徴とする請求項1から6の何れか1つに記載の数値制御装置。
  8.  前記センサデータには、前記造形物の特定層における高さ、幅、および温度の少なくとも1つのデータを含んでいる、
     ことを特徴とする請求項1から3の何れか1つに記載の数値制御装置。
  9.  前記センサデータには、前記材料を供給する材料供給装置にかかる負荷トルクが含まれている、
     ことを特徴とする請求項1から3の何れか1つに記載の数値制御装置。
  10.  前記センサデータには、前記除去製造装置の走査軸にかかる負荷トルクが含まれている、
     ことを特徴とする請求項1から3の何れか1つに記載の数値制御装置。
  11.  数値制御装置が、第1の加工ヘッドからビームを照射することによって溶融させた材料を積層することで造形物を製造する付加製造工程を実行する付加製造装置を制御する付加製造実行ステップと、
     数値制御装置が、第2の加工ヘッドに配置された工具を用いて前記造形物を切削する除去製造工程を実行する除去製造装置を制御する除去製造実行ステップと、
     数値制御装置が、前記付加製造工程と前記除去製造工程との2つの生産工程が組み合わされて製造される前記造形物の加工状態を監視して得られるセンサデータを受け付けるとともに、前記センサデータに基づいて、前記造形物の加工状態を解析する状態解析ステップと、
     数値制御装置が、前記加工状態の解析結果に基づいて、2つの前記生産工程のうちの何れを実行するかの切替えを行う生産工程変更ステップと、
     数値制御装置が、2つの前記生産工程を切替える際には、2つの前記生産工程のうちの切替え前の生産工程である第1の生産工程において使用された第1の工程条件に基づいて、2つの前記生産工程のうちの切替え後の生産工程である第2の生産工程において使用される第2の工程条件を決定する工程条件生成ステップと、
     を含む、
     ことを特徴とする数値制御方法。
PCT/JP2021/017515 2021-05-07 2021-05-07 数値制御装置および数値制御方法 WO2022234658A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180097031.1A CN117157600A (zh) 2021-05-07 2021-05-07 数控装置及数控方法
PCT/JP2021/017515 WO2022234658A1 (ja) 2021-05-07 2021-05-07 数値制御装置および数値制御方法
DE112021007615.9T DE112021007615T5 (de) 2021-05-07 2021-05-07 Numerische steuervorrichtung und numerisches steuerverfahren
JP2023518588A JPWO2022234658A1 (ja) 2021-05-07 2021-05-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017515 WO2022234658A1 (ja) 2021-05-07 2021-05-07 数値制御装置および数値制御方法

Publications (1)

Publication Number Publication Date
WO2022234658A1 true WO2022234658A1 (ja) 2022-11-10

Family

ID=83932699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017515 WO2022234658A1 (ja) 2021-05-07 2021-05-07 数値制御装置および数値制御方法

Country Status (4)

Country Link
JP (1) JPWO2022234658A1 (ja)
CN (1) CN117157600A (ja)
DE (1) DE112021007615T5 (ja)
WO (1) WO2022234658A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115004A (ja) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2006124733A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 光造形方法と光造形システム並びに光造形用プログラム
JP2008291315A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2008307895A (ja) * 2007-05-14 2008-12-25 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法及び製造装置
US20100161105A1 (en) * 2008-12-22 2010-06-24 Stratasys, Inc. Combined process for building three-dimensional models
JP2013006269A (ja) * 2011-06-23 2013-01-10 Raytheon Bbn Technologies Corp ロボット加工装置
US20150061170A1 (en) * 2013-09-02 2015-03-05 Thomas Engel Method and arrangement for producing a workpiece by using additive manufacturing techniques
JP2017194942A (ja) * 2016-04-15 2017-10-26 マシン・ツール・テクノロジーズ・リサーチ・ファウンデーションMachine Tool Technologies Research Foundation 制御データの生成方法、情報処理装置、工作機械、およびプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326788A (ja) 1989-06-23 1991-02-05 Mitsui Constr Co Ltd 石炭の脱水燃焼方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115004A (ja) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2006124733A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 光造形方法と光造形システム並びに光造形用プログラム
JP2008307895A (ja) * 2007-05-14 2008-12-25 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法及び製造装置
JP2008291315A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
US20100161105A1 (en) * 2008-12-22 2010-06-24 Stratasys, Inc. Combined process for building three-dimensional models
JP2013006269A (ja) * 2011-06-23 2013-01-10 Raytheon Bbn Technologies Corp ロボット加工装置
US20150061170A1 (en) * 2013-09-02 2015-03-05 Thomas Engel Method and arrangement for producing a workpiece by using additive manufacturing techniques
JP2017194942A (ja) * 2016-04-15 2017-10-26 マシン・ツール・テクノロジーズ・リサーチ・ファウンデーションMachine Tool Technologies Research Foundation 制御データの生成方法、情報処理装置、工作機械、およびプログラム

Also Published As

Publication number Publication date
DE112021007615T5 (de) 2024-02-29
CN117157600A (zh) 2023-12-01
JPWO2022234658A1 (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
JP6140130B2 (ja) 工具及び被加工物を保護する数値制御装置
JP4959508B2 (ja) 工作機械のワーク加工方法及び挙動計測装置
JP6062915B2 (ja) 工作機械への切削液供給システム
JP3607259B2 (ja) 3次元線状加工装置
JP5465957B2 (ja) 加工状態確認方法及び加工状態確認装置
US7740797B2 (en) Photo-shaping method, photo-shaping system, and photo-shaping program
JP2009266221A (ja) 加工シミュレーション方法及び加工シミュレーション装置
JP2007098464A (ja) レーザー加工ロボット制御装置、レーザー加工ロボット制御方法およびレーザー加工ロボット制御プログラム
JP6209392B2 (ja) 干渉確認装置
GB2364012A (en) Method and apparatus for controlling a laser-equipped machine tool
CN102331744A (zh) 具有控制圆弧动作的速度的功能的机床的数值控制装置
JP4628129B2 (ja) レーザ加工方法及び装置
JP6173490B2 (ja) 切削加工方法および工具経路生成装置
US20230072167A1 (en) Machine tool control device
US20080086221A1 (en) Machine-tool controller
WO2022234658A1 (ja) 数値制御装置および数値制御方法
WO2015037150A1 (ja) 工具経路生成方法および工具経路生成装置
US20220179390A1 (en) Chip processing device for machine tool and chip processing method
JP6921361B1 (ja) 付加製造装置および付加製造方法
JPH0531659A (ja) バリ取り方法及びその装置
JP7203686B2 (ja) 造形物の製造方法
JP6062971B2 (ja) スカイビング加工指令に基づいて工作機械を制御する数値制御装置
US20240231312A1 (en) Numerical control device and numerical control method
JP7355701B2 (ja) 積層造形方法
JP4605690B2 (ja) ワーク切断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518588

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18288997

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021007615

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939850

Country of ref document: EP

Kind code of ref document: A1