WO2022230682A1 - 高周波モジュール及び通信装置 - Google Patents

高周波モジュール及び通信装置 Download PDF

Info

Publication number
WO2022230682A1
WO2022230682A1 PCT/JP2022/017827 JP2022017827W WO2022230682A1 WO 2022230682 A1 WO2022230682 A1 WO 2022230682A1 JP 2022017827 W JP2022017827 W JP 2022017827W WO 2022230682 A1 WO2022230682 A1 WO 2022230682A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
frequency module
mounting substrate
main surface
metal electrode
Prior art date
Application number
PCT/JP2022/017827
Other languages
English (en)
French (fr)
Inventor
孝紀 上嶋
宏通 北嶋
大 中川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022230682A1 publication Critical patent/WO2022230682A1/ja
Priority to US18/492,051 priority Critical patent/US20240047377A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other

Definitions

  • the present invention generally relates to high-frequency modules and communication devices, and more particularly to high-frequency modules including mounting substrates and communication devices including high-frequency modules.
  • Patent Document 1 discloses a module substrate (mounting substrate), electronic components mounted on the mounting surface of the module substrate, and a mounting surface provided on the mounting surface of the module substrate so as to cover the side surface (peripheral surface) of the electronic components.
  • a module high frequency module
  • a metal film metal electrode layer
  • An object of the present invention is to provide a high frequency module and a communication device capable of suppressing deterioration of isolation between terminals.
  • a high-frequency module includes a mounting substrate, first electronic components and second electronic components, a resin layer, and a metal electrode layer.
  • the mounting substrate has a first main surface and a second main surface facing each other.
  • the first electronic component and the second electronic component are arranged on the first main surface of the mounting substrate.
  • the resin layer is arranged on the first main surface of the mounting board, and covers at least part of the outer peripheral surface of the first electronic component and at least part of the outer peripheral surface of the second electronic component.
  • the metal electrode layer covers at least a portion of the resin layer, and covers at least a portion of the first electronic component and at least a portion of the second electronic component in plan view from the thickness direction of the mounting substrate. overlapping.
  • the first electronic component has a first signal terminal.
  • the second electronic component has a second signal terminal.
  • the metal electrode layer has a through portion between the first signal terminal and the second signal terminal in plan view from the thickness direction of the mounting substrate.
  • a high-frequency module includes a mounting board, a first electronic component, a second electronic component, a first metal member, a second metal member, a resin layer, and a metal electrode layer.
  • the mounting substrate has a first main surface and a second main surface facing each other.
  • the first electronic component and the second electronic component are arranged on the first main surface of the mounting board.
  • the first metal member is arranged on the main surface of the first electronic component opposite to the mounting board side.
  • the second metal member is arranged on the main surface of the second electronic component opposite to the mounting board side.
  • the resin layer is disposed on the first main surface of the mounting substrate, and includes at least a portion of an outer peripheral surface of the first electronic component, at least a portion of an outer peripheral surface of the second electronic component, and the first metal. It covers at least part of the outer peripheral surface of the member and at least part of the outer peripheral surface of the second metal member.
  • the metal electrode layer covers at least a portion of the resin layer, and covers at least a portion of the first metal member and at least a portion of the second metal member in plan view from the thickness direction of the mounting substrate. overlapping. At least a portion of the main surface of the first metal member on the side opposite to the mounting board is in contact with the metal electrode layer.
  • the first electronic component has a first signal terminal.
  • the second electronic component has a second signal terminal.
  • the metal electrode layer has a through portion between the first signal terminal and the second signal terminal in plan view from the thickness direction of the mounting substrate.
  • a high-frequency module includes a mounting substrate, an electronic component, a resin layer, and a metal electrode layer.
  • the mounting substrate has a first main surface and a second main surface facing each other.
  • the electronic component is arranged on the first main surface of the mounting substrate.
  • the resin layer is arranged on the first main surface of the mounting substrate and covers at least a portion of the outer peripheral surface of the electronic component.
  • the metal electrode layer covers at least a portion of the resin layer, and overlaps at least a portion of the electronic component in plan view from the thickness direction of the mounting substrate. At least a portion of the main surface of the electronic component opposite to the mounting substrate is in contact with the metal electrode layer.
  • the electronic component has a first signal terminal and a second signal terminal.
  • the metal electrode layer has a through portion between the first signal terminal and the second signal terminal in plan view from the thickness direction of the mounting substrate.
  • a communication device includes the high-frequency module and a signal processing circuit.
  • the signal processing circuit is connected to the high frequency module.
  • the high-frequency module and the communication device it is possible to suppress deterioration in isolation between terminals.
  • FIG. 1 is a schematic diagram of a communication device according to Embodiment 1.
  • FIG. FIG. 2 is a plan view of the high-frequency module according to Embodiment 1.
  • FIG. FIG. 3 is a cross-sectional view of the same high-frequency module.
  • FIG. 4 is a cross-sectional view of a high-frequency module according to Embodiment 2.
  • FIG. 5 is a cross-sectional view of a high-frequency module according to Embodiment 3.
  • FIG. FIG. 6 is a cross-sectional view of a high-frequency module according to Embodiment 4.
  • FIG. FIG. 7 is a cross-sectional view of a high-frequency module according to Embodiment 5.
  • FIG. 8 is a plan view of a high-frequency module according to Embodiment 6.
  • FIG. FIG. 9 is a plan view of a high frequency module according to Embodiment 7.
  • FIG. 10 is a cross-sectional view of a high-frequency module according to Embodiment 8.
  • FIG. 11 is a cross-sectional view of a high-frequency module according to Embodiment 9.
  • FIG. 12 is a cross-sectional view of a high frequency module according to the tenth embodiment.
  • FIG. 13 is a cross-sectional view of a high frequency module according to the eleventh embodiment.
  • FIG. 14 is a cross-sectional view of a high frequency module according to a twelfth embodiment.
  • Embodiments 1 to 12 will be described below with reference to the drawings. 2 to 14, which are referred to in the following embodiments, etc., are all schematic diagrams, and the ratio of the size and thickness of each component in the diagram does not necessarily reflect the actual dimensional ratio. Not necessarily.
  • the high-frequency module 1 is used, for example, in a communication device 300 as shown in FIG.
  • Communication device 300 is, for example, a mobile phone such as a smart phone.
  • the communication device 300 is not limited to a mobile phone, and may be a wearable terminal such as a smartwatch, for example.
  • the high-frequency module 1 is a module compatible with, for example, the 4G (fourth generation mobile communication) standard, the 5G (fifth generation mobile communication) standard, and the like.
  • the 4G standard is, for example, the 3GPP (registered trademark, Third Generation Partnership Project) LTE (registered trademark, Long Term Evolution) standard.
  • the 5G standard is, for example, 5G NR (New Radio).
  • the high-frequency module 1 is, for example, a module capable of supporting carrier aggregation and dual connectivity.
  • the communication device 300 performs communication in a plurality of communication bands. More specifically, the communication device 300 transmits transmission signals in multiple communication bands and receives reception signals in multiple communication bands.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the high-frequency module 1 includes a plurality of (two in the illustrated example) power amplifiers 11A and 11B, a plurality of (two in the illustrated example) transmission filters 12A and 12B, and a plurality of It includes (two in the illustrated example) receive filters 15A and 15B, a plurality of (two in the illustrated example) low noise amplifiers 14A and 14B, and a transmit/receive filter 17 .
  • the high-frequency module 1 also includes a plurality of (two in the illustrated example) output matching circuits 13A and 13B, a plurality of (two in the illustrated example) input matching circuits 16A and 16B, and a plurality of (four in the illustrated example) Matching circuits 18A to 18C and 19 are further provided.
  • the high frequency module 1 further includes a first switch 21 , a second switch 22 , a third switch 23 , a fourth switch 24 and a controller 20 .
  • the high-frequency module 1 further includes a plurality of (four in the illustrated example) external connection electrodes 8 .
  • Each of the plurality of power amplifiers 11A and 11B shown in FIG. 1 is an amplifier that amplifies a transmission signal.
  • the power amplifier 11A is provided between a signal input terminal 82A and a plurality of transmission filters 12A and 12B in a transmission path T1 connecting an antenna terminal 81 and a signal input terminal 82A, which will be described later.
  • the power amplifier 11B is provided between a signal input terminal 82B and the transmission/reception filter 17 in a transmission path T2 connecting an antenna terminal 81 and a signal input terminal 82B, which will be described later.
  • Each of the power amplifiers 11A and 11B has an input terminal (not shown) and an output terminal (not shown).
  • An input terminal of the power amplifier 11A is connected to an external circuit (for example, the signal processing circuit 301) via a signal input terminal 82A.
  • An output terminal of the power amplifier 11A is connected to a plurality of transmission filters 12A and 12B.
  • An input terminal of the power amplifier 11B is connected to an external circuit (for example, the signal processing circuit 301) via the signal input terminal 82B.
  • An output terminal of the power amplifier 11B is connected to the transmission/reception filter 17 .
  • a plurality of power amplifiers 11A and 11B are controlled by a controller 20, for example. Note that the power amplifier 11A may be directly or indirectly connected to the plurality of transmission filters 12A and 12B. In the example of FIG.
  • the power amplifier 11A is connected to a plurality of transmission filters 12A and 12B via an output matching circuit 13A.
  • the power amplifier 11B may be directly or indirectly connected to the transmission/reception filter 17 .
  • the power amplifier 11B is connected to the transmission/reception filter 17 via the output matching circuit 13B.
  • the transmission path T1 includes a first transmission path T11 and a second transmission path T12.
  • the first transmission path T11 includes a signal input terminal 82A, a power amplifier 11A, an output matching circuit 13A, a second switch 22, a transmission filter 12A, a matching circuit 18A, a first switch 21, a matching circuit 19 and This path passes through the antenna terminal 81 .
  • the second transmission path T12 includes a signal input terminal 82A, a power amplifier 11A, an output matching circuit 13A, a second switch 22, a transmission filter 12B, a matching circuit 18B, a first switch 21, a matching circuit 19 and This path passes through the antenna terminal 81 .
  • the plurality of transmission filters 12A and 12B shown in FIG. 1 are filters that pass transmission signals of communication bands different from each other.
  • a plurality of transmission filters 12A and 12B are provided between the power amplifier 11A and the first switch 21 in the transmission path T1.
  • Each of the plurality of transmission filters 12A and 12B passes a transmission signal in the transmission band of the corresponding communication band among the high frequency signals amplified by the power amplifier 11A.
  • the plurality of reception filters 15A and 15B shown in FIG. 1 are filters that pass reception signals of communication bands different from each other.
  • a plurality of reception filters 15A and 15B are provided between the first switch 21 and the low noise amplifier 14A in a reception path R1 connecting an antenna terminal 81 and a signal output terminal 83A, which will be described later.
  • Each of the plurality of reception filters 15A and 15B passes the reception signal in the reception band of the corresponding communication band among the high frequency signals input from the antenna terminal 81 .
  • the transmission/reception filter 17 shown in FIG. 1 is a filter that allows transmission signals of one communication band and reception signals of one communication band to pass through.
  • the transmission/reception filter 17 is provided between the first switch 21 and the power amplifier 11B in the transmission path T2.
  • the transmission/reception filter 17 is provided between the first switch 21 and the low noise amplifier 14B in the reception path R2 connecting the antenna terminal 81 and the signal output terminal 83B, which will be described later.
  • the transmission/reception filter 17 passes transmission signals in the transmission band of the corresponding communication band among the high-frequency signals amplified by the power amplifier 11B. Transmitting/receiving filter 17 passes the received signal in the receiving band of the corresponding communication band among the high-frequency signals input from antenna terminal 81 .
  • the reception path R1 includes a first reception path R11 and a second reception path R12.
  • the first receiving path R11 includes a signal output terminal 83A, a low noise amplifier 14A, an input matching circuit 16A, a third switch 23, a receiving filter 15A, a matching circuit 18A, a first switch 21, a matching circuit 19 and This path passes through the antenna terminal 81 .
  • the second receiving path R12 includes a signal output terminal 83A, a low noise amplifier 14A, an input matching circuit 16A, a third switch 23, a receiving filter 15B, a matching circuit 18B, a first switch 21, a matching circuit 19 and This path passes through the antenna terminal 81 .
  • Each of the plurality of low-noise amplifiers 14A and 14B shown in FIG. 1 is an amplifier that amplifies a received signal with low noise.
  • the low-noise amplifier 14A is provided between the plurality of reception filters 15A and 15B and the signal output terminal 83A in the reception path R1.
  • the low-noise amplifier 14B is provided between the transmission/reception filter 17 and the signal output terminal 83B in the reception path R2.
  • Each of the plurality of low noise amplifiers 14A, 14B has an input terminal (not shown) and an output terminal (not shown). The input terminal of the low noise amplifier 14A is connected to the input matching circuit 16A.
  • An output terminal of the low noise amplifier 14A is connected to an external circuit (for example, the signal processing circuit 301) via a signal output terminal 83A.
  • the input terminal of the low noise amplifier 14B is connected to the input matching circuit 16B.
  • An output terminal of the low noise amplifier 14B is connected to an external circuit (for example, the signal processing circuit 301) via a signal output terminal 83B.
  • the output matching circuit 13A is provided between the power amplifier 11A and the multiple transmission filters 12A and 12B in the transmission path T1.
  • the output matching circuit 13A is a circuit for impedance matching between the power amplifier 11A and the plurality of transmission filters 12A and 12B.
  • the output matching circuit 13B is provided between the power amplifier 11B and the transmission/reception filter 17 in the transmission path T2, as shown in FIG.
  • the output matching circuit 13B is a circuit for impedance matching between the power amplifier 11B and the transmission/reception filter 17.
  • the output matching circuit 13A has a configuration including an inductor.
  • the inductor of the output matching circuit 13A is provided on the output side of the power amplifier 11A in the transmission path T1.
  • the output matching circuit 13B is configured to include an inductor.
  • the inductor of the output matching circuit 13B is provided on the output side of the power amplifier 11B in the transmission path T2.
  • each of the output matching circuits 13A and 13B is not limited to a configuration including one inductor, and may include, for example, a configuration including a plurality of inductors, or a configuration including a plurality of inductors and a plurality of capacitors. may be In short, each output matching circuit 13A, 13B includes at least one inductor.
  • the input matching circuit 16A is provided between the plurality of receive filters 15A and 15B and the low noise amplifier 14A in the receive path R1.
  • the input matching circuit 16A is a circuit for impedance matching between the plurality of reception filters 15A and 15B and the low noise amplifier 14A.
  • the input matching circuit 16B is provided between the transmission/reception filter 17 and the low noise amplifier 14B in the reception path R2, as shown in FIG.
  • the input matching circuit 16B is a circuit for impedance matching between the transmission/reception filter 17 and the low noise amplifier 14B.
  • the input matching circuit 16A is configured to include an inductor.
  • the inductor of the input matching circuit 16A is provided on the input side of the low noise amplifier 14A in the receiving path R1.
  • the input matching circuit 16B is configured to include an inductor.
  • the inductor of the input matching circuit 16B is provided on the input side of the low noise amplifier 14B in the receiving path R2.
  • each of the input matching circuits 16A and 16B is not limited to a configuration including one inductor, and may include, for example, a configuration including a plurality of inductors, or a configuration including a plurality of inductors and a plurality of capacitors. may be In short, each input matching circuit 16A, 16B includes at least one inductor.
  • the matching circuit 18A is provided between the transmission filter 12A and the reception filter 15A and the first switch 21, as shown in FIG.
  • the matching circuit 18A is a circuit for impedance matching between the first switch 21 and the transmission filter 12A and the reception filter 15A.
  • the matching circuit 18B is provided between the transmission filter 12B and the reception filter 15B and the first switch 21, as shown in FIG.
  • the matching circuit 18B is a circuit for achieving impedance matching between the first switch 21 and the transmission filter 12B and the reception filter 15B.
  • the matching circuit 18C is provided between the transmission/reception filter 17 and the first switch 21, as shown in FIG.
  • the matching circuit 18C is a circuit for impedance matching between the first switch 21 and the transmission/reception filter 17 .
  • the matching circuit 19 is provided between the first switch 21 and the antenna terminal 81, as shown in FIG.
  • the matching circuit 19 is a circuit for impedance matching between the antenna 310 connected to the antenna terminal 81 and the first switch 21 .
  • the first switch 21 shown in FIG. 1 switches the filter connected to the antenna terminal 81 among the multiple transmission filters 12A and 12B, the multiple reception filters 15A and 15B, and the transmission/reception filter 17. . That is, the first switch 21 is a switch for switching the path to be connected to the antenna 310 .
  • the first switch 21 has a common terminal 210 and a plurality of (three in the illustrated example) selection terminals 211 to 213 .
  • Common terminal 210 is connected to antenna terminal 81 .
  • a selection terminal 211 among the plurality of selection terminals 211 to 213 is connected to the transmission filter 12A and the reception filter 15A.
  • a selection terminal 212 among the plurality of selection terminals 211 to 213 is connected to the transmission filter 12B and the reception filter 15B.
  • a selection terminal 213 among the plurality of selection terminals 211 to 213 is connected to the transmission/reception filter 17 .
  • the first switch 21 switches the connection state between the common terminal 210 and the plurality of selection terminals 211-213.
  • the first switch 21 is controlled by the signal processing circuit 301, for example.
  • the first switch 21 electrically connects the common terminal 210 and at least one of the plurality of selection terminals 211 to 213 according to the control signal from the RF signal processing circuit 302 of the signal processing circuit 301 .
  • the second switch 22 shown in FIG. 1 switches the transmission filter connected to the power amplifier 11A among the plurality of transmission filters 12A and 12B.
  • the second switch 22 is a switch for switching the path to be connected to the power amplifier 11A.
  • the second switch 22 has a common terminal 220 and a plurality of (two in the illustrated example) selection terminals 221 and 222 .
  • Common terminal 220 is connected to power amplifier 11A.
  • the selection terminal 221 among the plurality of selection terminals 221 and 222 is connected to the transmission filter 12A.
  • the selection terminal 222 among the plurality of selection terminals 221 and 222 is connected to the transmission filter 12B.
  • the second switch 22 switches the connection state between the common terminal 220 and the plurality of selection terminals 221 and 222 .
  • the second switch 22 is controlled by the signal processing circuit 301, for example.
  • the second switch 22 electrically connects the common terminal 220 and at least one of the plurality of selection terminals 221 and 222 according to the control signal from the RF signal processing circuit 302 of the signal processing circuit 301 .
  • the third switch 23 shown in FIG. 1 switches the reception filter connected to the low-noise amplifier 14A among the plurality of reception filters 15A and 15B.
  • the third switch 23 is a switch for switching the path to be connected to the low noise amplifier 14A.
  • the third switch 23 has a common terminal 230 and a plurality of (two in the illustrated example) selection terminals 231 and 232 .
  • the common terminal 230 is connected to the low noise amplifier 14A.
  • the selection terminal 231 among the plurality of selection terminals 231 and 232 is connected to the reception filter 15A.
  • a selection terminal 232 among the plurality of selection terminals 231 and 232 is connected to the reception filter 15B.
  • the third switch 23 switches the connection state between the common terminal 230 and the plurality of selection terminals 231 and 232 .
  • the third switch 23 is controlled by the signal processing circuit 301, for example.
  • the third switch 23 electrically connects the common terminal 230 and at least one of the plurality of selection terminals 231 and 232 according to the control signal from the RF signal processing circuit 302 of the signal processing circuit 301 .
  • the fourth switch 24 shown in FIG. 1 is a switch for switching the signal paths (the transmission path T2 and the reception path R2) connected to the transmission/reception filter 17 . That is, the fourth switch 24 switches the signal path connected to the transmission/reception filter 17 to the transmission path T2 or the reception path R2.
  • the fourth switch 24 has a common terminal 240 and a plurality of (two in the illustrated example) selection terminals 241 and 242 .
  • Common terminal 240 is connected to transmission/reception filter 17 .
  • the selection terminal 241 among the plurality of selection terminals 241 and 242 is connected to the power amplifier 11B included in the transmission path T2.
  • the selection terminal 242 among the plurality of selection terminals 241 and 242 is connected to the low noise amplifier 14B included in the reception path R2.
  • the fourth switch 24 switches the connection state between the common terminal 240 and the plurality of selection terminals 241 and 242 .
  • the fourth switch 24 is controlled by the signal processing circuit 301, for example.
  • the fourth switch 24 electrically connects the common terminal 240 and one of the plurality of selection terminals 241 and 242 according to the control signal from the RF signal processing circuit 302 of the signal processing circuit 301 .
  • the controller 20 controls the power amplifiers 11A and 11B according to control signals from the signal processing circuit 301, for example.
  • the controller 20 is connected to multiple power amplifiers 11A and 11B.
  • the controller 20 is connected to the signal processing circuit 301 via a plurality of (for example, four) control terminals 84 .
  • a plurality of control terminals 84 are terminals for inputting control signals from an external circuit (for example, the signal processing circuit 301 ) to the controller 20 .
  • the controller 20 controls the multiple power amplifiers 11A and 11B based on control signals obtained from the multiple control terminals 84 .
  • the control signals acquired by the controller 20 from the plurality of control terminals 84 are digital signals. Although the number of control terminals 84 is four, for example, only one is illustrated in FIG.
  • the plurality of external connection electrodes 8 are terminals for electrical connection with an external circuit (for example, the signal processing circuit 301).
  • the plurality of external connection electrodes 8 includes an antenna terminal 81, a plurality of signal input terminals 82A and 82B, a plurality of signal output terminals 83A and 83B, a plurality of control terminals 84, and a plurality of ground terminals 86 (see FIG. 3). and including.
  • the antenna terminal 81 is connected to the antenna 310 . Inside the high frequency module 1 , the antenna terminal 81 is connected to the first switch 21 . Also, the antenna terminal 81 is connected to the multiple transmission filters 12A and 12B, the multiple reception filters 15A and 15B, and the transmission/reception filter 17 via the first switch 21 .
  • the plurality of signal input terminals 82A and 82B are terminals for inputting transmission signals from an external circuit (for example, the signal processing circuit 301) to the high frequency module 1.
  • the signal input terminal 82A is connected to the power amplifier 11A.
  • the signal input terminal 82B is connected to the power amplifier 11B.
  • the signal output terminal 83A is a terminal for outputting the received signal from the low noise amplifier 14A to an external circuit (for example, the signal processing circuit 301).
  • the signal output terminal 83B is a terminal for outputting the received signal from the low noise amplifier 14B to an external circuit (for example, the signal processing circuit 301).
  • the signal output terminal 83A is connected to the low noise amplifier 14A.
  • the signal output terminal 83B is connected to the low noise amplifier 14B.
  • a plurality of control terminals 84 are terminals for inputting control signals from an external circuit (for example, the signal processing circuit 301 ) to the high-frequency module 1 .
  • a plurality of control terminals 84 are connected to the controller 20 in the high-frequency module 1 .
  • the plurality of ground terminals 86 are terminals that are electrically connected to the ground electrode of the external substrate 304 of the communication device 300 and are supplied with a ground potential. In the high frequency module 1 , the multiple ground terminals 86 are connected to the ground layer 34 of the mounting board 3 .
  • the high-frequency module 1 includes a mounting board 3, a plurality of (eg, 10) electronic components 4, and a plurality of external connection electrodes 8. Moreover, the high frequency module 1 further includes a resin layer 51 and a metal electrode layer 6 .
  • the high frequency module 1 can be electrically connected to the external board 304 .
  • the external board 304 corresponds to, for example, a mother board of the communication device 300 such as a mobile phone and communication equipment.
  • the high-frequency module 1 can be electrically connected to the external substrate 304 not only when the high-frequency module 1 is directly mounted on the external substrate 304 but also when the high-frequency module 1 is indirectly mounted on the external substrate 304. including cases where it is implemented
  • the case where the high-frequency module 1 is indirectly mounted on the external substrate 304 is, for example, the case where the high-frequency module 1 is mounted on another high-frequency module mounted on the external substrate 304 .
  • the mounting board 3 has a first main surface 31 and a second main surface 32, as shown in FIGS.
  • the first main surface 31 and the second main surface 32 face each other in the thickness direction D1 of the mounting substrate 3 .
  • the second main surface 32 faces the main surface 306 of the external substrate 304 on the mounting substrate 3 side when the high-frequency module 1 is provided on the external substrate 304 .
  • the mounting board 3 is a single-sided mounting board in which a plurality of electronic components 4 are mounted on the first main surface 31 .
  • the thickness direction D1 of the mounting board 3 is the first direction (hereinafter also referred to as "first direction D1").
  • the mounting board 3 is a multilayer board in which a plurality of dielectric layers are laminated.
  • the mounting board 3 has a plurality of conductive layers and a plurality of via conductors 35 (including through electrodes).
  • the plurality of conductive layers includes a ground layer 34 at ground potential.
  • a plurality of via conductors 35 are used for electrical connection between the elements (including the electronic component 4 described above) mounted on the first main surface 31 and the conductive layers of the mounting substrate 3 .
  • a plurality of via conductors 35 are used for electrical connection between the conductive layer of the mounting board 3 and the external connection electrodes 8 .
  • a plurality of electronic components 4 are arranged on the first main surface 31 of the mounting substrate 3 .
  • the multiple electronic components 4 include a first electronic component 4A and a second electronic component 4B.
  • a plurality of external connection electrodes 8 are arranged on the second main surface 32 of the mounting substrate 3 .
  • each electronic component 4 is mounted on the first main surface 31 of the mounting substrate 3 . More specifically, each electronic component 4 is mounted on the first main surface 31 of the mounting substrate 3 via a plurality of connecting portions 44 (eg, bumps). In each electronic component 4 , a part of the electronic component 4 may be mounted on the first main surface 31 of the mounting substrate 3 and the rest of the electronic component 4 may be mounted inside the mounting substrate 3 . In short, each electronic component 4 is arranged closer to the first main surface 31 than the second main surface 32 on the mounting substrate 3 and has at least a portion mounted on the first main surface 31 .
  • Each of the plurality of electronic components 4 includes a plurality of power amplifiers 11A and 11B, a plurality of transmission filters 12A and 12B, a plurality of reception filters 15A and 15B, a plurality of low noise amplifiers 14A and 14B, a transmission/reception filter 17, and a plurality of output matching circuits. 13A, 13B, a plurality of input matching circuits 16A, 16B, a plurality of matching circuits 18A to 18C, 19, a first switch 21, a third switch 23, a fourth switch 24, and an IC chip 26. Also, the first electronic component 4A is the transmission/reception filter 17, and the second electronic component 4B is the transmission filter 12A.
  • Each of the plurality of transmission filters 12A, 12B, the plurality of reception filters 15A, 15B, and the transmission/reception filter 17 is, for example, an elastic wave filter including a plurality of series arm resonators and a plurality of parallel arm resonators.
  • the acoustic wave filter is, for example, a SAW (Surface Acoustic Wave) filter that utilizes surface acoustic waves.
  • each of the plurality of transmission filters 12A, 12B, the plurality of reception filters 15A, 15B, and the transmission/reception filter 17 may include at least one of an inductor and a capacitor connected in series with one of the plurality of series arm resonators. , an inductor or capacitor connected in series with any of the plurality of parallel arm resonators.
  • the first electronic component 4A has a first signal terminal 44A.
  • the first signal terminal 44A is an input terminal or an output terminal of the transmission/reception filter 17 as the first electronic component 4A.
  • the second electronic component 4B has a second signal terminal 44B.
  • the second signal terminal 44B is an input terminal or an output terminal of the transmission filter 12A as the second electronic component 4B.
  • Each of the first signal terminal 44A and the second signal terminal 44B is, for example, a bump, as described above.
  • the first electronic component 4 ⁇ /b>A and the second electronic component 4 ⁇ /b>B are arranged along a second direction D ⁇ b>2 orthogonal (crossing) to the first direction D ⁇ b>1 that is the thickness direction of the mounting substrate 3 .
  • each of the first signal terminal and the second signal terminal is an RF (Radio Frequency) signal terminal through which a high frequency signal passes.
  • the IC chip 26 includes a controller 20 and a second switch 22. In plan view from the thickness direction D1 of the mounting substrate 3, the outer peripheral shape of the IC chip 26 is square.
  • the plurality of external connection electrodes 8 are terminals for electrically connecting the mounting substrate 3 and the external substrate 304 .
  • the plurality of external connection electrodes 8 are arranged on the second main surface 32 of the mounting substrate 3, as shown in FIG.
  • the plurality of external connection electrodes 8 are in one-to-one correspondence with the plurality of external connection electrodes 305 arranged on the main surface 306 of the external substrate 304 .
  • Each of the plurality of external connection electrodes 8 is connected to the corresponding external connection electrode 305 among the plurality of external connection electrodes 305 via a connection portion 85 (eg, bump).
  • the plurality of external connection electrodes 8 are columnar (for example, prismatic) electrodes provided on the second main surface 32 of the mounting substrate 3 .
  • the material of the plurality of external connection electrodes 8 is, for example, metal (eg, copper, copper alloy, etc.).
  • Each of the plurality of external connection electrodes 8 has a base end joined to the second main surface 32 of the mounting board 3 in the thickness direction D1 of the mounting board 3 and a tip end opposite to the base end. , has A tip portion of each of the plurality of external connection electrodes 8 may include, for example, a gold plating layer.
  • the resin layer 51 is arranged on the first main surface 31 of the mounting board 3 as shown in FIG.
  • the resin layer 51 covers the electronic components 4 .
  • the resin layer 51 covers the outer peripheral surface 43 of each of the plurality of electronic components 4 .
  • the resin layer 51 covers the main surface 41 of each of the electronic components 4 other than the first electronic component 4A and the second electronic component 4B among the plurality of electronic components 4 on the side opposite to the mounting substrate 3 side.
  • the outer peripheral surface 43 of each of the plurality of electronic components 4 includes four side surfaces connecting the main surface 41 opposite to the mounting board 3 side and the main surface 42 on the mounting board 3 side of the electronic component 4 .
  • the resin layer 51 contains resin (for example, epoxy resin).
  • the resin layer 51 may contain filler in addition to the resin.
  • the metal electrode layer 6 covers the resin layer 51 as shown in FIG.
  • the metal electrode layer 6 has conductivity.
  • the metal electrode layer 6 is a shield layer provided for the purpose of electromagnetic shielding inside and outside the high frequency module 1 .
  • the metal electrode layer 6 has a multi-layer structure in which a plurality of metal layers are laminated, but is not limited to this and may be one metal layer.
  • the metal layer contains one or more metals.
  • the metal electrode layer 6 covers the main surface of the resin layer 51 opposite to the mounting substrate 3 side, the outer peripheral surface of the resin layer 51 , and part of the outer peripheral surface 33 of the mounting substrate 3 .
  • the metal electrode layer 6 covers the main surface 41 of each of the first electronic component 4A and the second electronic component 4B on the side opposite to the mounting substrate 3 side.
  • the metal electrode layer 6 is in contact with at least part of the outer peripheral surface of the ground layer 34 of the mounting board 3 . Thereby, the potential of the metal electrode layer 6 can be made the same as the potential of the ground layer 34 .
  • the metal electrode layer 6 has a through portion (slit) 61 as shown in FIG.
  • the penetrating portion 61 is formed so as to penetrate the metal electrode layer 6 in the thickness direction D1 of the mounting substrate 3 (vertical direction in FIG. 3).
  • the through portion 61 is formed between the first electronic component 4A and the second electronic component 4B in plan view from the thickness direction D1 of the mounting board 3 . More specifically, the through portion 61 is located between the first signal terminal 44A of the first electronic component 4A and the second signal terminal 44B of the second electronic component 4B in plan view from the thickness direction D1 of the mounting substrate 3. is formed in Details of the penetrating portion 61 will be described in detail in the section "(6) Details of Metal Electrode Layer".
  • the mounting substrate 3 shown in FIGS. 2 and 3 is, for example, a multilayer substrate including a plurality of dielectric layers and a plurality of conductive layers.
  • a plurality of dielectric layers and a plurality of conductive layers are laminated in the thickness direction D1 of the mounting substrate 3 .
  • a plurality of conductive layers are formed in a predetermined pattern defined for each layer.
  • Each of the plurality of conductive layers includes one or more conductor portions within one plane orthogonal to the thickness direction D1 of the mounting board 3 .
  • the material of each conductive layer is copper, for example.
  • the plurality of conductive layers includes ground layer 34 .
  • the mounting substrate 3 is, for example, an LTCC (Low Temperature Co-fired Ceramics) substrate.
  • the mounting substrate 3 is not limited to an LTCC substrate, and may be, for example, a printed wiring board, an HTCC (High Temperature Co-fired Ceramics) substrate, or a resin multilayer substrate.
  • the mounting substrate 3 is not limited to the LTCC substrate, and may be, for example, a wiring structure.
  • the wiring structure is, for example, a multilayer structure.
  • the multilayer structure includes at least one insulating layer and at least one conductive layer.
  • the insulating layer is formed in a predetermined pattern. When there are multiple insulating layers, the multiple insulating layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer is formed in a predetermined pattern different from the predetermined pattern of the insulating layer. When there are a plurality of conductive layers, the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer may include one or more redistribution portions.
  • the first surface of the two surfaces facing each other in the thickness direction of the multilayer structure is the first principal surface 31 of the mounting substrate 3, and the second surface is the second principal surface 32 of the mounting substrate 3.
  • the wiring structure may be, for example, an interposer.
  • the interposer may be an interposer using a silicon substrate, or may be a multi-layered substrate.
  • the first main surface 31 and the second main surface 32 of the mounting board 3 are separated in the thickness direction D1 of the mounting board 3 and intersect the thickness direction D1.
  • the first main surface 31 of the mounting substrate 3 is, for example, orthogonal to the thickness direction D1 of the mounting substrate 3, but may include, for example, the side surface of the conductor as a surface that is not orthogonal to the thickness direction D1.
  • the second main surface 32 of the mounting substrate 3 is, for example, orthogonal to the thickness direction D1 of the mounting substrate 3, but includes, for example, the side surface of the conductor portion as a surface that is not orthogonal to the thickness direction D1. You can Further, the first main surface 31 and the second main surface 32 of the mounting substrate 3 may have fine unevenness, concave portions, or convex portions.
  • the filter is a one-chip filter.
  • each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of an elastic wave resonator.
  • the filter includes, for example, a substrate, a piezoelectric layer, and a plurality of IDT (Interdigital Transducer) electrodes.
  • the substrate has a first side and a second side.
  • the piezoelectric layer is provided on the first surface of the substrate.
  • the piezoelectric layer is provided on the low sound velocity film.
  • a plurality of IDT electrodes are provided on the piezoelectric layer.
  • the low acoustic velocity film is provided directly or indirectly on the substrate.
  • the piezoelectric layer is directly or indirectly provided on the low-temperature-velocity film.
  • the sound velocity of the bulk wave propagating is lower than the sound velocity of the bulk wave propagating through the piezoelectric layer.
  • the acoustic velocity of the propagating bulk wave is higher than the acoustic velocity of the acoustic wave propagating through the piezoelectric layer.
  • the material of the piezoelectric layer is lithium tantalate, for example.
  • the material of the low sound velocity film is, for example, silicon oxide.
  • the substrate is, for example, a silicon substrate.
  • the thickness of the piezoelectric layer is, for example, 3.5 ⁇ or less, where ⁇ is the wavelength of the elastic wave determined by the electrode finger period of the IDT electrode.
  • the thickness of the low sound velocity film is, for example, 2.0 ⁇ or less.
  • the piezoelectric layer may be made of, for example, lithium tantalate, lithium niobate, zinc oxide, aluminum nitride, or lead zirconate titanate.
  • the low sound velocity film may contain at least one material selected from the group consisting of silicon oxide, glass, silicon oxynitride, tantalum oxide, and a compound obtained by adding fluorine, carbon, or boron to silicon oxide.
  • the substrate may be from silicon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, sapphire, lithium tantalate, lithium niobate, quartz, alumina, zirconia, cordierite, mullite, steatite, forsterite, magnesia and diamond. It is sufficient that at least one material selected from the group consisting of is included.
  • the filter further comprises, for example, a spacer layer and a cover member.
  • a spacer layer and a cover member are provided on the first surface of the substrate.
  • the spacer layer surrounds the plurality of IDT electrodes in plan view from the thickness direction of the substrate.
  • the spacer layer has a frame shape (rectangular frame shape) when viewed from the thickness direction of the substrate.
  • the spacer layer has electrical insulation.
  • the material of the spacer layer is, for example, synthetic resin such as epoxy resin or polyimide.
  • the cover member has a flat plate shape. Although the cover member has a rectangular shape in plan view from the thickness direction of the substrate, it is not limited to this, and may have a square shape, for example.
  • the external size of the cover member, the external size of the spacer layer, and the external size of the cover member are substantially the same in plan view from the thickness direction of the substrate.
  • the cover member is arranged on the spacer layer so as to face the substrate in the thickness direction of the substrate.
  • the cover member overlaps with the plurality of IDT electrodes in the thickness direction of the substrate and is separated from the plurality of IDT electrodes in the thickness direction of the substrate.
  • the cover member has electrical insulation.
  • the material of the cover member is, for example, synthetic resin such as epoxy resin or polyimide.
  • the filter has a space surrounded by a substrate, a spacer layer and a cover member. In the filter, the space contains gas.
  • the gas is, for example, air, inert gas (eg, nitrogen gas), or the like.
  • a plurality of terminals are exposed from the cover member.
  • Each of the multiple terminals is, for example, a bump.
  • Each bump is, for example, a solder bump.
  • Each bump is not limited to a solder bump, and may be, for example, a gold bump.
  • the filter may include, for example, an adhesion layer interposed between the low-frequency film and the piezoelectric layer.
  • the adhesion layer is made of resin (epoxy resin, polyimide resin), for example.
  • the filter may also include a dielectric film either between the low acoustic velocity film and the piezoelectric layer, on the piezoelectric layer, or under the low acoustic velocity film.
  • the filter may also include, for example, a high acoustic velocity film interposed between the substrate and the low acoustic velocity film.
  • the high acoustic velocity film is provided directly or indirectly on the substrate.
  • the low acoustic velocity membrane is directly or indirectly provided on the high acoustic velocity membrane.
  • the piezoelectric layer is provided directly or indirectly on the low acoustic velocity film.
  • the acoustic velocity of propagating bulk waves is higher than the acoustic velocity of acoustic waves propagating through the piezoelectric layer.
  • the sound velocity of the bulk wave propagating is lower than the sound velocity of the bulk wave propagating through the piezoelectric layer.
  • High acoustic velocity films include diamond-like carbon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, zirconia, cordierite, mullite, and steatite. , various ceramics such as forsterite, magnesia, diamond, materials containing the above materials as main components, and materials containing mixtures of the above materials as main components.
  • the thicker the high acoustic velocity film the more desirable it is because the high acoustic velocity film has the function of confining the elastic wave in the piezoelectric layer and the low acoustic velocity film.
  • Each of the plurality of series arm resonators and the plurality of parallel arm resonators is not limited to the elastic wave resonators described above, and may be SAW resonators or BAW (Bulk Acoustic Wave) resonators, for example.
  • the SAW resonator includes, for example, a piezoelectric substrate and IDT electrodes provided on the piezoelectric substrate.
  • the filter includes a plurality of IDTs corresponding to the plurality of series arm resonators on one piezoelectric substrate.
  • the piezoelectric substrate is, for example, a lithium tantalate substrate, a lithium niobate substrate, or the like.
  • Each of the plurality of power amplifiers 11A and 11B shown in FIG. 1 is, for example, a one-chip IC including a substrate and an amplification function section.
  • the substrate has a first side and a second side facing each other.
  • the substrate is, for example, a gallium arsenide substrate.
  • the amplification function section includes at least one transistor formed on the first surface of the substrate.
  • the amplification function unit is a function unit that has a function of amplifying a transmission signal in a predetermined frequency band.
  • the transistor is, for example, an HBT (Heterojunction Bipolar Transistor).
  • each of the plurality of power amplifiers 11A and 11B a power supply voltage from a power supply circuit (not shown) is applied between the collector and emitter of the HBT.
  • Each of the plurality of power amplifiers 11A and 11B may include, for example, a DC cut capacitor in addition to the amplification function section.
  • Each of the plurality of power amplifiers 11A and 11B is flip-chip mounted on the first main surface 31 of the mounting substrate 3 so that the first surface of the substrate faces the first main surface 31 of the mounting substrate 3, for example.
  • each of the plurality of power amplifiers 11A and 11B has a quadrangular outer peripheral shape.
  • Each of the plurality of low-noise amplifiers 14A and 14B shown in FIG. 1 is, for example, a one-chip IC including a substrate and an amplification function section.
  • the substrate has a first side and a second side facing each other.
  • the substrate is, for example, a silicon substrate.
  • the amplification function section is formed on the first surface of the substrate.
  • the amplification function unit is a function unit that has a function of amplifying a received signal in a predetermined frequency band.
  • Each of the plurality of low-noise amplifiers 14A and 14B is flip-chip mounted on the first main surface 31 of the mounting substrate 3 so that the first surface of the substrate faces the first main surface 31 of the mounting substrate 3, for example.
  • the outer peripheral shape of each of the plurality of low noise amplifiers 14A and 14B is square.
  • the communication device 300 includes a high frequency module 1, an antenna 310, and a signal processing circuit 301, as shown in FIG.
  • the antenna 310 is connected to the antenna terminal 81 of the high frequency module 1 .
  • the antenna 310 has a transmission function of radiating a transmission signal output from the high-frequency module 1 as a radio wave and a reception function of receiving a reception signal as a radio wave from the outside and outputting it to the high-frequency module 1 .
  • the signal processing circuit 301 includes an RF signal processing circuit 302 and a baseband signal processing circuit 303 .
  • the signal processing circuit 301 processes signals passing through the high frequency module 1 . More specifically, the signal processing circuit 301 processes transmitted and received signals.
  • the RF signal processing circuit 302 is, for example, an RFIC (Radio Frequency Integrated Circuit).
  • the RF signal processing circuit 302 performs signal processing on high frequency signals.
  • the RF signal processing circuit 302 performs signal processing such as up-conversion on the high frequency signal output from the baseband signal processing circuit 303 and outputs the processed high frequency signal to the high frequency module 1 . Specifically, the RF signal processing circuit 302 performs signal processing such as up-conversion on the transmission signal output from the baseband signal processing circuit 303 , and transmits the signal-processed transmission signal to the high-frequency module 1 . Output to either path T1 or T2.
  • the RF signal processing circuit 302 performs signal processing such as down-conversion on the high frequency signal output from the high frequency module 1 and outputs the processed high frequency signal to the baseband signal processing circuit 303 . Specifically, the RF signal processing circuit 302 performs signal processing on the received signal output from one of the receiving paths R1 and R2 of the high-frequency module 1, and converts the processed received signal into a baseband signal. Output to the processing circuit 303 .
  • the baseband signal processing circuit 303 is, for example, a BBIC (Baseband Integrated Circuit).
  • the baseband signal processing circuit 303 performs predetermined signal processing on a transmission signal from the outside of the signal processing circuit 301 .
  • the received signal processed by the baseband signal processing circuit 303 is used, for example, as an image signal for image display, or as an audio signal for a call.
  • the RF signal processing circuit 302 controls each of the first switch 21, the second switch 22, the third switch 23, and the fourth switch 24 of the high frequency module 1 based on transmission and reception of high frequency signals (transmission signal, reception signal). It also functions as a control unit that controls the connection of the Specifically, the RF signal processing circuit 302 switches connection of each of the first switch 21, the second switch 22, the third switch 23 and the fourth switch 24 of the high frequency module 1 by a control signal (not shown). .
  • the control unit may be provided outside the RF signal processing circuit 302 , and may be provided in the high frequency module 1 or the baseband signal processing circuit 303 , for example.
  • the metal electrode layer 6 covers the main surface of the resin layer 51 opposite to the mounting board 3 side, the outer peripheral surface of the resin layer 51 , and part of the outer peripheral surface 33 of the mounting board 3 . ing. Moreover, the metal electrode layer 6 covers the main surface 41 of each of the first electronic component 4A and the second electronic component 4B on the side opposite to the mounting substrate 3 side. In the high-frequency module 1 according to the first embodiment, the main surface 41 of each of the first electronic component 4A and the second electronic component 4B, which is opposite to the mounting substrate 3 side, is in contact with the metal electrode layer 6 .
  • the heat generated in each of the first electronic component 4A and the second electronic component 4B is transferred to the metal electrode layer 6, the ground layer 34 (of the mounting substrate 3), and the via conductor 35. Also, heat can be radiated to the external substrate 304 via the external connection electrodes 8 .
  • the metal electrode layer 6 has a penetrating portion 61 as shown in FIGS.
  • the through portion 61 is a through hole formed to penetrate the metal electrode layer 6 in the thickness direction D ⁇ b>1 of the mounting substrate 3 .
  • a portion of the main surface of the resin layer 51 opposite to the mounting substrate 3 side is exposed to the outside through the through portion 61 (see FIG. 3).
  • the cross-sectional shape of the penetrating portion 61 is rectangular.
  • the length L2 of the penetrating portion 61 in the third direction D3, which is one direction orthogonal (crossing) to the thickness direction D1 of the mounting substrate 3, is the first electron It is longer than the length L11 of the component 4A and the length L12 of the second electronic component 4B, and longer than the length L3 of the mounting board 3 in the third direction D3. That is, in the high-frequency module 1 according to Embodiment 1, the through portion 61 is formed over the entire length of the mounting board 3 in the third direction D3 that is one direction intersecting the thickness direction D1 of the mounting board 3 .
  • the first signal terminal 44A is, for example, an input terminal or an output terminal of the transmission/reception filter 17 as the first electronic component 4A.
  • the second signal terminal 44B is, for example, an input terminal or an output terminal of the transmission filter 12A as the second electronic component 4B.
  • the method for manufacturing the high-frequency module 1 includes, for example, a first process, a second process, a third process, a fourth process, and a fifth process.
  • the first step is a step of arranging a plurality of electronic components 4 on the first main surface 31 of the mounting board 3 .
  • the second step is a step of forming a resin material layer covering the plurality of electronic components 4 and forming the base of the resin layer 51 on the first main surface 31 side of the mounting board 3 .
  • the resin material layer is ground from the main surface of the resin material layer opposite to the mounting substrate 3 side to expose the surface (upper surface) of each of the first electronic component 4A and the second electronic component 4B. Then, by grinding the resin material layer, the first electronic component 4A and the second electronic component 4B, the resin layer 51 is formed and the first electronic component 4A and the second electronic component 4B are thinned.
  • the metal electrode layer 6 in contact with the main surface of the resin layer 51 opposite to the mounting substrate 3 side, the main surface 41 of the first electronic component 4A and the main surface 41 of the second electronic component 4B is removed, for example, , sputtering, vapor deposition, or printing.
  • the fifth step is, for example, a step of forming the penetrating portion 61 in the metal electrode layer 6 using a laser.
  • the through portion 61 of the metal electrode layer 6 is the first signal terminal 44A of the first electronic component 4A and the first signal terminal 44A of the first electronic component 4A when viewed from the thickness direction D1 of the mounting substrate 3 in plan view. It is provided between the second signal terminal 44B of the second electronic component 4B.
  • the first signal terminal 44A and the second signal terminal 44B are connected. It becomes possible to suppress the deterioration of the isolation between the 2-signal terminal 44B.
  • the first electronic component 4A and the second electronic component 4B are high-frequency components provided on the transmission paths T1 and T2.
  • a main surface 41 of the first electronic component 4A on the side opposite to the mounting board 3 and a main surface 41 of the second electronic component 4B on the side opposite to the mounting board 3 are in contact with the metal electrode layer 6 .
  • the heat generated in each of the first electronic component 4A and the second electronic component 4B can be dissipated via the metal electrode layer 6. As shown in FIG.
  • the length L2 of the through portion 61 in the third direction (one direction) D3 is equal to the length L11 of the first electronic component 4A and the length L11 of the second electronic component 4B in the third direction D3. It is longer than the length L12 and longer than the total length L3 of the mounting substrate 3 in the third direction D3. As a result, the length L2 of the through portion 61 in the third direction D3 is shorter than the length L11 of the first electronic component 4A and the length L12 of the second electronic component 4B in the third direction D3. It becomes possible to more effectively suppress a decrease in isolation between the first signal terminal 44A of the first electronic component 4A and the second signal terminal 44B of the second electronic component 4B.
  • the penetrating portion 61 of the metal electrode layer 6 exposes a portion of the main surface 41 of the first electronic component 4A opposite to the mounting substrate 3 side. It is different from the high-frequency module 1 (see FIG. 3) according to the first embodiment in that it is formed so as to
  • a high-frequency module 1a according to the second embodiment includes a mounting board 3, a plurality of electronic components 4, and a plurality of external connection electrodes 8, as shown in FIG. Moreover, the high frequency module 1 a further includes a resin layer 51 and a metal electrode layer 6 . Regarding the high-frequency module 1a according to the second embodiment, the same components as those of the high-frequency module 1 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the metal electrode layer 6 has a through portion 61, like the high frequency module 1 according to the first embodiment.
  • the cross-sectional shape of the penetrating portion 61 is rectangular.
  • the through portion 61 extends the entire length of the mounting board 3 in a third direction (a direction perpendicular to the first direction D1 and the second direction D2) that is one direction orthogonal (crossing) to the thickness direction D1 of the mounting board 3. formed over the Further, as shown in FIG. 4, the penetrating portion 61 is formed so as to expose a portion of the main surface 41 of the first electronic component 4A on the side opposite to the mounting board 3 side.
  • the through portion 61 is located between the first signal terminal 44A of the first electronic component 4A and the second electronic component 4B when viewed from the thickness direction D1 of the mounting board 3 in plan view. It is located between the second signal terminal 44B.
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A of the first electronic component 4A and the second signal terminal 44B of the second electronic component 4B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • the high frequency module 1b according to the third embodiment is similar to the high frequency module 1 according to the first embodiment (FIG. 3) in that the resin member 53 is arranged in the through portion 61 of the metal electrode layer 6. reference).
  • a high-frequency module 1b according to the third embodiment includes a mounting board 3, a plurality of electronic components 4, and a plurality of external connection electrodes 8, as shown in FIG. Moreover, the high frequency module 1 b further includes a resin layer 51 and a metal electrode layer 6 . Regarding the high-frequency module 1b according to the third embodiment, the same components as those of the high-frequency module 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the metal electrode layer 6 has a through portion 61, like the high frequency module 1 according to the first embodiment.
  • the cross-sectional shape of the penetrating portion 61 is rectangular.
  • the through portion 61 extends the entire length of the mounting board 3 in a third direction (a direction perpendicular to the first direction D1 and the second direction D2) that is one direction orthogonal (crossing) to the thickness direction D1 of the mounting board 3. formed over the In the high frequency module 1b according to the third embodiment, the resin member 53 is arranged inside the through portion 61 as shown in FIG.
  • the resin member 53 is arranged over the entire length of the through portion 61 in the third direction D3, but may be arranged in a part of the through portion 61 . That is, in the high-frequency module 1b according to the third embodiment, a portion of the main surface of the resin layer 51 opposite to the mounting board 3 side, which corresponds to the through portion 61, is not exposed to the outside through the through portion 61. .
  • the material of the resin member 53 may be the same material as that of the resin layer 51, or may be a different material.
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A of the first electronic component 4A and the second signal terminal 44B of the second electronic component 4B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • the penetrating portion 61 is formed so as to overlap the first electronic component 4A in plan view from the thickness direction D1 of the mounting substrate 3. , is different from the high-frequency module 1 (see FIG. 3) according to the first embodiment.
  • a high-frequency module 1c according to Embodiment 4 includes a mounting board 3, a plurality of electronic components 4, and a plurality of external connection electrodes 8, as shown in FIG. Moreover, the high frequency module 1 c further includes a resin layer 51 and a metal electrode layer 6 . Regarding the high-frequency module 1c according to the fourth embodiment, the same components as those of the high-frequency module 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the metal electrode layer 6 has a through portion 61, like the high frequency module 1 according to the first embodiment.
  • the cross-sectional shape of the penetrating portion 61 is rectangular.
  • the through portion 61 extends the entire length of the mounting board 3 in a third direction (a direction perpendicular to the first direction D1 and the second direction D2) that is one direction orthogonal (crossing) to the thickness direction D1 of the mounting board 3. formed over the In addition, as shown in FIG. 6, the through portion 61 overlaps the first electronic component 4A in plan view from the thickness direction D1 of the mounting substrate 3 .
  • the through portion 61 is provided between the first signal terminal 44A and the second signal terminal 44B in plan view from the thickness direction D1 of the mounting substrate 3.
  • the first signal terminal 44A is, for example, an input terminal of the transmission/reception filter 17 as the first electronic component 4A.
  • the second signal terminal 44B is, for example, an output terminal of the transmission/reception filter 17 as the first electronic component 4A.
  • the first signal terminal 44A may be the output terminal of the transmission/reception filter 17, and the second signal terminal 44B may be the input terminal of the transmission/reception filter 17.
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A and the second signal terminal 44B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • the high-frequency module 1d according to the fifth embodiment is different from the embodiment in that the first metal member 10A is arranged on the main surface 41 of the first electronic component 4A on the side opposite to the mounting substrate 3 side. It differs from the high-frequency module 1 (see FIG. 3) according to the first embodiment. Further, the high-frequency module 1d is different from the high-frequency module 1 according to the first embodiment in that the second metal member 10B is arranged on the main surface 41 of the second electronic component 4B opposite to the mounting substrate 3 side. .
  • a high-frequency module 1d according to the fifth embodiment includes a mounting board 3, a plurality of electronic components 4, and a plurality of external connection electrodes 8, as shown in FIG. Moreover, the high frequency module 1 d further includes a resin layer 51 and a metal electrode layer 6 . The high frequency module 1d further includes a first metal member 10A and a second metal member 10B. Regarding the high-frequency module 1d according to the fifth embodiment, the same components as those of the high-frequency module 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the first metal member 10A is arranged on the main surface 41 of the first electronic component 4A on the side opposite to the mounting substrate 3 side.
  • the second metal member 10B is arranged on the main surface 41 of the second electronic component 4B on the side opposite to the mounting substrate 3 side.
  • each of the first metal member 10A and the second metal member 10B has a quadrangular shape, but is not limited to a quadrangular shape.
  • the first metal member 10A has the same size as the first electronic component 4A, but may be larger or smaller than the first electronic component 4A.
  • the second metal member 10B has the same size as the second electronic component 4B, but may be larger or smaller than the second electronic component 4B.
  • the material of the first metal member 10A and the second metal member 10B is, for example, copper or a copper alloy.
  • the first metal member 10A may be joined to the main surface 41 of the first electronic component 4A opposite to the mounting substrate 3 side, or may be in contact therewith.
  • the second metal member 10B may be joined to the main surface 41 of the second electronic component 4B opposite to the mounting board 3 side, or may be in contact therewith.
  • the material of the first metal member 10A and the material of the second metal member 10B are preferably the same, but may be different.
  • the main surface 101 of the first metal member 10A on the side opposite to the mounting board 3 side is in contact with the metal electrode layer 6.
  • the first electronic component 4A is connected to the metal electrode layer 6 via the first metal member 10A.
  • heat generated in the first electronic component 4A can be dissipated to the metal electrode layer 6 via the first metal member 10A.
  • the main surface 101 of the second metal member 10B on the side opposite to the mounting substrate 3 side is in contact with the metal electrode layer 6.
  • the second electronic component 4B is connected to the metal electrode layer 6 via the second metal member 10B.
  • the heat generated by the second electronic component 4B can be dissipated to the metal electrode layer 6 via the second metal member 10B.
  • the metal electrode layer 6 has a through portion 61, like the high frequency module 1 according to the first embodiment.
  • the cross-sectional shape of the penetrating portion 61 is rectangular.
  • the through portion 61 extends the entire length of the mounting board 3 in a third direction (a direction perpendicular to the first direction D1 and the second direction D2) that is one direction orthogonal (crossing) to the thickness direction D1 of the mounting board 3. formed over the Further, as shown in FIG. 7, the penetrating portion 61 is formed between the first signal terminal 44A of the first electronic component 4A and the second signal terminal of the second electronic component 4B in plan view from the thickness direction D1 of the mounting substrate 3. 44B.
  • the first signal terminal 44A is, for example, an input terminal or an output terminal of the transmission/reception filter 17 as the first electronic component 4A.
  • the second signal terminal 44B is, for example, an input terminal or an output terminal of the transmission filter 12A as the second electronic component 4B.
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A and the second signal terminal 44B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • the penetrating portion 61 is formed between the first inductor 131 and the second inductor 161 in plan view from the thickness direction D1 of the mounting substrate 3. is different from the high-frequency module 1 (see FIG. 3) according to the first embodiment.
  • a high frequency module 1e according to Embodiment 6 includes a mounting board 3, a plurality of electronic components 4, and a plurality of external connection electrodes (not shown). Moreover, the high frequency module 1 e further includes a resin layer (not shown) and a metal electrode layer 6 . Regarding the high-frequency module 1e according to the sixth embodiment, the same components as those of the high-frequency module 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the metal electrode layer 6 has a through portion 61, like the high frequency module 1 according to the first embodiment.
  • the cross-sectional shape of the penetrating portion 61 is rectangular.
  • the penetrating portion 61 is, in a plan view from the thickness direction of the mounting substrate 3 (a direction orthogonal to the second direction D2 and the third direction D3), It is formed between the first inductor 131 and the second inductor 161 .
  • the length L2 of the through portion 61 in the third direction D3 is longer than the length L11 of the first electronic component 4A in the third direction D3 and longer than the length L12 of the second electronic component 4B in the third direction D3. Also, the length L2 of the through portion 61 in the third direction D3 is shorter than the length (total length) L3 of the mounting board 3 in the third direction D3.
  • the first inductor 131 is, for example, an inductor that configures the output matching circuit 13A and corresponds to the first electronic component 4A. That is, the first inductor 131 is an inductor provided in the signal path (transmission path T1) through which the transmission signal passes. The first inductor 131 is connected, for example, between the transmission path T1 and ground.
  • the first electronic component 4A that constitutes the first inductor 131 is mounted on the first principal surface 31 of the mounting substrate 3 via a plurality of connection portions 44. As shown in FIG. In the high-frequency module 1e according to the sixth embodiment, one of the plurality of connection portions 44 is the first signal terminal 44A, and the first signal terminal 44A is a terminal connected to the transmission path T1.
  • the second inductor 161 is, for example, an inductor that configures the input matching circuit 16A and corresponds to the second electronic component 4B. That is, the second inductor 161 is an inductor provided in the signal path (reception path R1) through which the received signal passes. The second inductor 161 is connected, for example, between the receiving path R1 and ground.
  • a second electronic component 4 ⁇ /b>B forming the second inductor 161 is mounted on the first main surface 31 of the mounting substrate 3 via a plurality of connection portions 44 .
  • one of the plurality of connection portions 44 is the second signal terminal 44B, and the second signal terminal 44B is a terminal connected to the reception path R1.
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A and the second signal terminal 44B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • the high-frequency module 1f according to Embodiment 7 is different from Embodiment 1 in that the through portion 61 is formed in an L shape when viewed from the thickness direction D1 of the mounting substrate 3 in plan view. It is different from the high-frequency module 1 (see FIG. 3).
  • a high frequency module 1f according to Embodiment 7 includes a mounting board 3, a plurality of electronic components 4, and a plurality of external connection electrodes (not shown). Moreover, the high frequency module 1 f further includes a resin layer (not shown) and a metal electrode layer 6 . Regarding the high-frequency module 1f according to the seventh embodiment, the same components as those of the high-frequency module 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the metal electrode layer 6 has a through portion 61 as in the high-frequency module 1 according to the first embodiment.
  • the cross-sectional shape of the penetrating portion 61 is rectangular. Further, the through portion 61 is formed in an L shape in a plan view from the thickness direction D1 of the mounting board 3 .
  • the penetrating portion 61 is formed so as to surround the second electronic component 4B in plan view from the thickness direction D1 of the mounting board 3, as shown in FIG.
  • the second electronic component 4B is, for example, a reception filter 15A.
  • the first electronic component 4A is, for example, a transmission filter 12A.
  • the first electronic component 4A has a first signal terminal 44A.
  • the first signal terminal 44A is an input terminal or an output terminal of the transmission filter 12A as the first electronic component 4A.
  • the second electronic component 4B has a second signal terminal 44B.
  • the second signal terminal 44B is an input terminal or an output terminal of the reception filter 15A as the second electronic component 4B.
  • Each of the first signal terminal 44A and the second signal terminal 44B is, for example, a bump.
  • the penetrating portion 61 is located between the first signal terminal 44A and the second signal terminal 44B in plan view from the thickness direction D1 of the mounting substrate 3. As shown in FIG.
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A and the second signal terminal 44B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • the high-frequency module 1g according to the eighth embodiment is similar to the high-frequency module 1 according to the first embodiment (FIG. 3) in that the power amplifier 11A provided in the transmission path T1 is the first electronic component 4A. reference). Further, the high frequency module 1g differs from the high frequency module 1 according to the first embodiment in that the transmission/reception filter 17 provided on the transmission path T2 is the second electronic component 4B.
  • a high-frequency module 1g according to the eighth embodiment includes a mounting substrate 3, a plurality of electronic components 4, and a plurality of external connection electrodes 8, as shown in FIG. Moreover, the high frequency module 1 g further includes a resin layer 51 and a metal electrode layer 6 . Regarding the high-frequency module 1g according to the eighth embodiment, the same components as those of the high-frequency module 1 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the metal electrode layer 6 has a through portion 61, like the high frequency module 1 according to the first embodiment.
  • the cross-sectional shape of the penetrating portion 61 is rectangular.
  • the through portion 61 extends the entire length of the mounting board 3 in a third direction (a direction perpendicular to the first direction D1 and the second direction D2) that is one direction orthogonal (crossing) to the thickness direction D1 of the mounting board 3. formed over the
  • the penetrating portion 61 has a plurality (two in the illustrated example) of the first electronic component 4A in plan view from the thickness direction D1 of the mounting substrate 3. and the second electronic component 4B.
  • the first electronic component 4A is, for example, the power amplifier 11A provided on the transmission path T1.
  • the first electronic component 4A has a first signal terminal 44A.
  • the first signal terminal 44A is, for example, a bump.
  • the first signal terminal 44A is an input terminal or an output terminal of the power amplifier 11A as the first electronic component 4A.
  • a main surface 41 of the first electronic component 4 ⁇ /b>A on the side opposite to the mounting substrate 3 side is in contact with the metal electrode layer 6 . As a result, the heat generated in the first electronic component 4A can be dissipated through the metal electrode layer 6. As shown in FIG.
  • the first electronic component 4A is the power amplifier 11A as described above.
  • the substrate constituting the power amplifier 11A is a gallium arsenide substrate as in the high-frequency module 1 according to the first embodiment, it is difficult to cut the surface of the first electronic component 4A opposite to the mounting substrate 3 side. be. Therefore, the substrate constituting the power amplifier 11A is preferably a silicon substrate or a substrate obtained by bonding a silicon substrate and a gallium arsenide substrate together.
  • Each of the plurality of second electronic components 4B is, for example, the transmission/reception filter 17 provided on the transmission path T2 or the transmission filter 12A provided on the transmission path T1.
  • Each of the plurality of second electronic components 4B has a second signal terminal 44B.
  • the second signal terminal 44B is, for example, a bump.
  • the second signal terminal 44B is the input terminal or the output terminal of the transmission/reception filter 17.
  • FIG. When the second electronic component 4B is the transmission filter 12A, the second signal terminal 44B is the input terminal or the output terminal of the transmission filter 12A.
  • the mounting substrate 3 has through electrodes 35A.
  • the through electrode 35A penetrates the mounting board 3 in the thickness direction D1 of the mounting board 3 .
  • the through electrode 35A connects the connection portion 44 of the first electronic component 4A and the ground terminal 86 .
  • the power amplifier 11A as the first electronic component 4A can radiate heat generated by the power amplifier 11A to the external substrate 304 via the through electrode 35A.
  • the through portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A and the second signal terminal 44B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • the high frequency module 1h according to the ninth embodiment is similar to the high frequency module according to the first embodiment in that the metal electrode member 7 is arranged between the first electronic component 4A and the second electronic component 4B. It differs from module 1 (see FIG. 3).
  • a high-frequency module 1h according to Embodiment 9 includes a mounting board 3, a plurality of electronic components 4, and a plurality of external connection electrodes 8, as shown in FIG. Moreover, the high frequency module 1 h further includes a resin layer 51 and a metal electrode layer 6 . Moreover, the high frequency module 1 h further includes a metal electrode member 7 . Regarding the high-frequency module 1h according to the ninth embodiment, the same components as those of the high-frequency module 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the metal electrode layer 6 has a through portion 61, like the high frequency module 1 according to the first embodiment.
  • the cross-sectional shape of the penetrating portion 61 is rectangular.
  • the through portion 61 extends the entire length of the mounting board 3 in a third direction (a direction perpendicular to the first direction D1 and the second direction D2) that is one direction orthogonal (crossing) to the thickness direction D1 of the mounting board 3. formed over the In the high frequency module 1h according to the ninth embodiment, as shown in FIG.
  • a part of the main surface 41 of the first electronic component 4A opposite to the mounting board 3 side and a part of the main surface of the resin layer 51 opposite to the mounting board 3 side are , are exposed to the outside through the through portion 61 .
  • the first electronic component 4A is the transmission/reception filter 17, like the high-frequency module 1 according to the first embodiment.
  • the first electronic component 4A has a first signal terminal 44A.
  • the first signal terminal 44A is, for example, a bump.
  • the first signal terminal 44A is an input terminal or an output terminal of the transmission/reception filter 17 as the first electronic component 4A.
  • a main surface 41 of the first electronic component 4 ⁇ /b>A on the side opposite to the mounting substrate 3 side is in contact with the metal electrode layer 6 . As a result, the heat generated in the first electronic component 4A can be dissipated through the metal electrode layer 6. As shown in FIG.
  • the second electronic component 4B is a transmission filter 12A, like the high frequency module 1 according to the first embodiment.
  • the second electronic component 4B has a second signal terminal 44B.
  • the second signal terminal 44B is, for example, a bump.
  • the second signal terminal 44B is an input terminal or an output terminal of the transmission filter 12A as the second electronic component 4B.
  • a main surface 41 of the second electronic component 4 ⁇ /b>B on the side opposite to the mounting substrate 3 side is in contact with the metal electrode layer 6 . Thereby, the heat generated in the second electronic component 4B can be dissipated through the metal electrode layer 6. As shown in FIG.
  • the penetrating portion 61 includes the first signal terminal 44A and the second It is located between the second signal terminal 44B of the electronic component 4B.
  • the metal electrode member 7 is a member for providing isolation between the first electronic component 4A and the second electronic component 4B.
  • the material of the metal electrode member 7 is, for example, copper or copper alloy.
  • the end surface of the metal electrode member 7 on the side opposite to the mounting substrate 3 side is in contact with the metal electrode layer 6 on the second electronic component 4B side with respect to the penetrating portion 61 . That is, the metal electrode member 7 does not overlap the through portion 61 when viewed from the thickness direction D ⁇ b>1 of the mounting substrate 3 .
  • the end surface of the metal electrode member 7 on the side of the mounting board 3 is in contact with the through electrode 35B penetrating through the mounting board 3 in the thickness direction D1 of the mounting board 3 .
  • the through electrode 35B is connected to the ground terminal 86.
  • the metal electrode member 7 is formed over the entire length of the mounting board 3 in the third direction (the direction orthogonal to the first direction D1 and the second direction D2).
  • the metal electrode layer 6 is not in contact with the ground layer 34 of the mounting substrate 3, but in the outer peripheral portion covering the outer peripheral surface 33 of the mounting substrate 3 and the outer peripheral surface of the resin layer 51, It is in contact with the ground terminal 86 .
  • the heat generated in the first electronic component 4A can be dissipated to the external substrate 304 via the metal electrode layer 6 and the ground terminal 86. becomes. Further, regarding the second electronic component 4B, heat generated in the second electronic component 4B can be dissipated to the external substrate 304 via the metal electrode layer 6 and the ground terminal 86, and the metal electrode layer 6, Heat can be dissipated to the external substrate 304 via the metal electrode member 7 , the through electrode 35 ⁇ /b>B, and the ground terminal 86 .
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A and the second signal terminal 44B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • the high frequency module 1i according to the tenth embodiment is similar to the ninth embodiment in that the metal electrode member 7 is in contact with the metal electrode layer 6 on the first electronic component 4A side with respect to the penetrating portion 61, as shown in FIG. 1h (see FIG. 11).
  • a high-frequency module 1i according to the tenth embodiment includes a mounting substrate 3, a plurality of electronic components 4, and a plurality of external connection electrodes 8, as shown in FIG. Moreover, the high frequency module 1 i further includes a resin layer 51 and a metal electrode layer 6 . Moreover, the high frequency module 1 i further includes a metal electrode member 7 . Regarding the high-frequency module 1i according to the tenth embodiment, the same components as those of the high-frequency module 1h according to the ninth embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the metal electrode member 7 is in contact with the metal electrode layer 6 on the first electronic component 4A side with respect to the through portion 61 of the metal electrode layer 6, as shown in FIG. That is, also in the high-frequency module 1i according to the tenth embodiment, the metal electrode member 7 does not overlap the through portion 61 in plan view from the thickness direction D1 of the mounting board 3 .
  • the heat generated in the first electronic component 4A can be dissipated to the external substrate 304 via the metal electrode layer 6 and the ground terminal 86. At the same time, heat can be dissipated to the external substrate 304 via the metal electrode layer 6, the metal electrode member 7, the through electrode 35B and the ground terminal 86. Further, as for the second electronic component 4B, heat generated in the second electronic component 4B can be dissipated to the external substrate 304 via the metal electrode layer 6 and the ground terminal 86.
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A and the second signal terminal 44B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • the high frequency module 1j according to the eleventh embodiment differs from the high frequency module 1h according to the ninth embodiment (see FIG. 11) in that the metal electrode member 7 is exposed from the metal electrode layer 6 as shown in FIG. .
  • a high-frequency module 1j according to the eleventh embodiment includes a mounting board 3, a plurality of electronic components 4, and a plurality of external connection electrodes 8, as shown in FIG. Moreover, the high-frequency module 1 j further includes a resin layer 51 and a metal electrode layer 6 . Moreover, the high-frequency module 1 j further includes a metal electrode member 7 . Regarding the high-frequency module 1i according to the eleventh embodiment, the same components as those of the high-frequency module 1h according to the ninth embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the metal electrode member 7 is exposed from the metal electrode layer 6 in the thickness direction D1 of the mounting substrate 3, as shown in FIG. More specifically, the metal electrode member 7 is exposed from the metal electrode layer 6 through the through portion 61 of the metal electrode layer 6 . That is, the metal electrode member 7 overlaps the through portion 61 in plan view from the thickness direction D1 of the mounting substrate 3 . Further, the end portion of the outer peripheral surface 73 of the metal electrode member 7 on the side opposite to the mounting substrate 3 side is in contact with the metal electrode layer 6 on the second electronic component 4B side with respect to the penetrating portion 61 .
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A and the second signal terminal 44B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • a high-frequency module 1k according to the twelfth embodiment includes a mounting board 3, a plurality of electronic components 4, and a plurality of external connection electrodes 8, as shown in FIG.
  • the high-frequency module 1 k further includes a resin layer 51 (hereinafter referred to as “first resin layer 51 ”) and a metal electrode layer 6 .
  • the high frequency module 1 k further includes a second resin layer 52 and a plurality of connection terminals 9 .
  • the same components as those of the high-frequency module 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the electronic components 4 are arranged on the first main surface 31 and the second main surface 32 of the mounting board 3 respectively.
  • the electronic components 4 arranged on the first main surface 31 of the mounting board 3 include the power amplifier 11A, the transmission filter 12A, the transmission/reception filter 17, the matching circuit 19, the first A switch 21 and a second switch 22 .
  • the electronic components 4 arranged on the second main surface 32 of the mounting substrate 3 among the plurality of electronic components 4 are the low noise amplifier 14A and the controller 20 .
  • the first resin layer 51 covers the electronic components 4 arranged on the first main surface 31 of the mounting board 3 among the plurality of electronic components 4 .
  • the first resin layer 51 covers the outer peripheral surface 43 of the electronic component 4 arranged on the first main surface 31 of the mounting board 3 .
  • the first resin layer 51 is formed on the mounting board 3 of the remaining electronic components 4 other than the first electronic component 4A and the second electronic component 4B among the electronic components 4 mounted on the first main surface 31 of the mounting board 3. It covers the main surface 41 on the side opposite to the side.
  • the second resin layer 52 covers the electronic components 4 arranged on the second main surface 32 of the mounting substrate 3 among the plurality of electronic components 4 and the plurality of connection terminals 9 .
  • the second resin layer 52 covers the outer peripheral surface 43 of the electronic component 4 and the outer peripheral surfaces of the plurality of connection terminals 9 arranged on the second main surface 32 of the mounting board 3 .
  • the material of the second resin layer 52 may be the same as or different from the material of the first resin layer 51 .
  • the plurality of connection terminals 9 are arranged on the second main surface 32 of the mounting board 3 .
  • the plurality of connection terminals 9 are columnar (for example, columnar) electrodes provided on the second main surface 32 of the mounting substrate 3 .
  • the material of the plurality of connection terminals 9 is, for example, metal (eg, copper, copper alloy, etc.).
  • Each of the plurality of connection terminals 9 has a base end joined to the second main surface 32 of the mounting board 3 and a tip end opposite to the base end in the thickness direction D1 of the mounting board 3. have.
  • a tip portion of each of the plurality of connection terminals 9 may include, for example, a gold plating layer.
  • a plurality of connection terminals 9 are terminals for connecting the mounting board 3 and the ground terminal 86 .
  • the mounting substrate 3 has a plurality of ground layers 34, as shown in FIG. At least part of the outer peripheral surface of each of the plurality of ground layers 34 is in contact with the metal electrode layer 6 . Thereby, the potential of the metal electrode layer 6 can be made the same as the potential of the ground layer 34 .
  • the metal electrode layer 6 has a penetrating portion 61, like the high-frequency module 1 according to the first embodiment.
  • the cross-sectional shape of the penetrating portion 61 is rectangular.
  • the through portion 61 extends the entire length of the mounting board 3 in a third direction (a direction perpendicular to the first direction D1 and the second direction D2) that is one direction orthogonal (crossing) to the thickness direction D1 of the mounting board 3. formed over the In the high-frequency module 1k according to the twelfth embodiment, as shown in FIG. 14, the penetrating portion 61 includes the first signal terminal 44A of the first electronic component 4A and the second It is located between the second signal terminal 44B of the electronic component 4B.
  • the penetrating portion 61 of the metal electrode layer 6 is It is located between the first signal terminal 44A and the second signal terminal 44B. This makes it possible to suppress the deterioration of the isolation between the first signal terminal 44A and the second signal terminal 44B.
  • Embodiments 1 to 12, etc. are only one of various embodiments of the present invention.
  • the above-described Embodiments 1 to 12 and the like can be modified in various ways in accordance with design and the like as long as the object of the present invention can be achieved, and different constituent elements of different embodiments may be appropriately combined.
  • Each of the plurality of transmission filters 12A, 12B, the plurality of reception filters 15A, 15B, and the transmission/reception filter 17 according to Embodiments 1 to 12 is not limited to a surface acoustic wave filter, but may be, for example, a BAW (Bulk Acoustic Wave) filter. good too.
  • Resonators in BAW filters are, for example, FBARs (Film Bulk Acoustic Resonators) or SMRs (Solidly Mounted Resonators).
  • a BAW filter has a substrate.
  • the substrate is, for example, a silicon substrate.
  • each of the plurality of transmission filters 12A and 12B, the plurality of reception filters 15A and 15B, and the transmission/reception filter 17 according to Embodiments 1 to 12 is not limited to a ladder filter, and may be, for example, a longitudinally coupled resonator surface acoustic wave filter. It's okay.
  • acoustic wave filter is an acoustic wave filter that utilizes surface acoustic waves or bulk acoustic waves, it is not limited to this, and may be an acoustic wave filter that utilizes boundary acoustic waves, plate waves, or the like, for example. good.
  • the communication device 300 may include any one of the high-frequency modules 1a to 1k instead of the high-frequency module 1.
  • the element is arranged on the first major surface of the substrate means not only when the element is mounted directly on the first major surface of the substrate, but also when the element is mounted on the first major surface separated by the substrate. This includes the case where the element is arranged in the space on the first main surface side, out of the space on the main surface side and the space on the second main surface side. In other words, “the element is arranged on the first main surface of the substrate” includes the case where the element is mounted on the first main surface of the substrate via other circuit elements, electrodes, or the like.
  • the element is, for example, the electronic component 4, but is not limited to the electronic component 4.
  • the board is, for example, the mounting board 3 . When the substrate is the mounting substrate 3 , the first major surface is the first major surface 31 and the second major surface is the second major surface 32 .
  • the element is disposed on the second major surface of the substrate means not only when the element is mounted directly on the second major surface of the substrate, but also when the element is mounted on the first major surface separated by the substrate. Of the space on the side of the main surface and the space on the side of the second main surface, the case where the element is arranged in the space on the side of the second main surface is included. In other words, “the element is arranged on the second main surface of the substrate” includes the case where the element is mounted on the second main surface of the substrate via other circuit elements, electrodes, or the like.
  • the elements are, for example, the electronic component 4 and the connection terminals 9 , but are not limited to the electronic component 4 and the connection terminals 9 .
  • the board is, for example, the mounting board 3 . When the substrate is the mounting substrate 3 , the first major surface is the first major surface 31 and the second major surface is the second major surface 32 .
  • the first element overlaps with the second element in plan view from the thickness direction of the substrate means that the first element is entirely covered in plan view from the thickness direction of the substrate.
  • the second element overlaps When all of the second element overlaps, When all of the first element overlaps with part of the second element, When part of the first element overlaps with all of the second element, A portion of the first element overlaps a portion of the second element.
  • the first element overlaps the second element in plan view from the thickness direction of the substrate means “at least a portion of the first element overlaps at least a portion of the second element”.
  • the first element is, for example, the metal electrode member 7 .
  • the second element is, for example, the penetrating portion 61 of the metal electrode layer 6 .
  • the board is, for example, the mounting board 3 .
  • the third element is arranged between the first element and the second element in plan view from the thickness direction of the substrate
  • in plan view from the thickness direction of the substrate It means that at least one of a plurality of line segments connecting an arbitrary point within the first element and an arbitrary point within the second element passes through the area of the third element.
  • a plan view from the thickness direction of the board means that the board and electronic components mounted on the board are orthographically projected onto a plane parallel to the main surface of the board.
  • the board is, for example, the mounting board 3 .
  • a high-frequency module (1; 1a; 1b; 1e to 1k) includes a mounting board (3), a first electronic component (4A) and a second electronic component (4B), and a resin layer (51). and a metal electrode layer (6).
  • the mounting substrate (3) has a first main surface (31) and a second main surface (32) facing each other.
  • the first electronic component (4A) and the second electronic component (4B) are arranged on the first main surface (31) of the mounting board (3).
  • the resin layer (51) is arranged on the first main surface (31) of the mounting board (3) and covers at least a part of the outer peripheral surface (43) of the first electronic component (4A) and the second electronic component (4B). ) covers at least a portion of the outer peripheral surface (43).
  • the metal electrode layer (6) covers at least part of the resin layer (51), and covers at least part of the first electronic component (4A) in plan view from the thickness direction (D1) of the mounting board (3). and at least part of the second electronic component (4B). At least part of the main surface (41) of the first electronic component (4A) on the side opposite to the mounting board (3) is in contact with the metal electrode layer (6).
  • the first electronic component (4A) has a first signal terminal (44A).
  • the second electronic component (4B) has a second signal terminal (44B).
  • the metal electrode layer (6) has a through portion (61) between the first signal terminal (44A) and the second signal terminal (44B) in plan view from the thickness direction (D1) of the mounting substrate (3).
  • the heat generated in the first electronic component (4A) can be dissipated through the metal electrode layer (6).
  • At least part of the main surface (41) of the second electronic component (4B) on the side opposite to the mounting substrate (3) is made of metal It is in contact with the electrode layer (6).
  • the heat generated in the second electronic component (4B) can be dissipated through the metal electrode layer (6).
  • a high-frequency module (1d) includes a mounting board (3), a first electronic component (4A) and a second electronic component (4B), a first metal member (10A), and a second metal member. (10B), a resin layer (51), and a metal electrode layer (6).
  • the mounting substrate (3) has a first main surface (31) and a second main surface (32) facing each other.
  • the first electronic component (4A) and the second electronic component (4B) are arranged on the first main surface (31) of the mounting board (3).
  • the first metal member (10A) is arranged on the main surface (41) of the first electronic component (4A) opposite to the mounting substrate (3) side.
  • the second metal member (10B) is arranged on the main surface (41) of the second electronic component (4B) opposite to the mounting board (3).
  • the resin layer (51) is arranged on the first main surface (31) of the mounting substrate (3) and covers at least a part of the outer peripheral surface (43) of the first electronic component (4A), the second electronic component (4B ), at least part of the outer peripheral surface (103) of the first metal member (10A) and at least part of the outer peripheral surface (103) of the second metal member (10B) there is
  • the metal electrode layer (6) covers at least part of the resin layer (51), and covers at least part of the first metal member (10A) in plan view from the thickness direction (D1) of the mounting board (3). and at least part of the second metal member (10B). At least part of the main surface (101) of the first metal member (10A) on the side opposite to the mounting board (3) is in contact with the metal electrode layer (6).
  • the first electronic component (4A) has a first signal terminal (44A).
  • the second electronic component (4B) has a second signal terminal (44B).
  • the metal electrode layer (6) has a through portion (61) between the first signal terminal (44A) and the second signal terminal (44B) in plan view from the thickness direction (D1) of the mounting substrate (3).
  • each of the first electronic component (4A) and the second electronic component (4B) High-frequency components (4A, 4B) provided in signal paths (T1, T2) through which transmission signals pass.
  • the high-frequency components (4A, 4B) include transmission filters (12A, 12B), transmission/reception filters (17), or power amplifiers (11A ).
  • the first electronic component (4A) is provided in the signal path (T1) through which the transmission signal passes.
  • the second electronic component (4B) is a second inductor (161) provided in the signal path (R1) through which the received signal passes.
  • one direction ( The length (L2) of the through portion (61) in D3) is longer than the length (L11) of the first electronic component (4A) in one direction (D3).
  • one direction ( The length (L2) of the through portion (61) in D3) is longer than the length (L12) of the second electronic component (4B) in one direction (D3).
  • a high-frequency module (1c) includes a mounting board (3), an electronic component (4A), a resin layer (51), and a metal electrode layer (6).
  • the mounting substrate (3) has a first main surface (31) and a second main surface (32) facing each other.
  • the electronic component (4A) is arranged on the first main surface (31) of the mounting board (3).
  • the resin layer (51) is arranged on the first main surface (31) of the mounting substrate (3) and covers at least part of the outer peripheral surface (43) of the electronic component (4A).
  • the metal electrode layer (6) covers at least a portion of the resin layer (51), and overlaps at least a portion of the electronic component (4A) in plan view from the thickness direction (D1) of the mounting substrate (3). ing.
  • the electronic component (4A) has a first signal terminal (44A) and a second signal terminal (44B).
  • the metal electrode layer (6) has a through portion (61) between the first signal terminal (44A) and the second signal terminal (44B) in plan view from the thickness direction (D1) of the mounting substrate (3).
  • the through portion (61) has a thickness of the mounting substrate (3) It is formed over the entire length (L3) of the mounting substrate (3) in one direction (D3) intersecting the direction (D1).
  • the through portion (61) has a , it is formed in an L shape.
  • a high-frequency module (1j) in any one of the first to eleventh aspects, further comprises a metal electrode member (7).
  • the metal electrode member (7) is arranged on the first main surface (31) of the mounting board (3) and connected to the ground.
  • the metal electrode member (7) overlaps the through portion (61) in plan view from the thickness direction (D1) of the mounting substrate (3).
  • the metal electrode member (7) is exposed from the metal electrode layer (6) in the thickness direction (D1) of the mounting substrate (3). ing.
  • a high-frequency module (1h; 1i) according to a fourteenth aspect, in any one of the first to eleventh aspects, further comprises a metal electrode member (7).
  • the metal electrode member (7) is arranged on the first main surface (31) of the mounting board (3) and connected to the ground. The metal electrode member (7) does not overlap the through portion (61) in plan view from the thickness direction (D1) of the mounting substrate (3).
  • a communication device (300) comprises a high-frequency module (1; 1a-1k) according to any one of the first to fourteenth aspects, and a signal processing circuit (301).
  • the signal processing circuit (301) is connected to the high frequency modules (1; 1a-1k).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Acoustics & Sound (AREA)
  • Transceivers (AREA)

Abstract

端子間のアイソレーションの低下を抑制する。高周波モジュール(1)は、実装基板(3)と、第1電子部品(4A)及び第2電子部品(4B)と、樹脂層(51)と、金属電極層(6)と、を備える。第1電子部品(4A)及び第2電子部品(4B)は、実装基板(3)の第1主面(31)に配置されている。金属電極層(6)は、樹脂層(51)の少なくとも一部を覆っており、実装基板(3)の厚さ方向(D1)からの平面視において第1電子部品(4A)の少なくとも一部及び第2電子部品(4B)の少なくとも一部に重なっている。第1電子部品(4A)における実装基板(3)側とは反対側の主面(41)の少なくとも一部は金属電極層(6)に接している。金属電極層(6)は、実装基板(3)の厚さ方向(D1)からの平面視において、第1電子部品(4A)の第1信号端子(44A)と第2電子部品(4B)の第2信号端子(44B)との間に貫通部(61)を有する。

Description

高周波モジュール及び通信装置
 本発明は、一般に高周波モジュール及び通信装置に関し、より詳細には、実装基板を備える高周波モジュール、及び高周波モジュールを備える通信装置に関する。
 特許文献1には、モジュール基板(実装基板)と、モジュール基板の実装面上に実装された電子部品と、電子部品の側面(外周面)を被覆するようにモジュール基板の実装面上に設けられた樹脂層と、を備えるモジュール(高周波モジュール)が記載されている。特許文献1に記載のモジュールでは、電子部品及び樹脂層それぞれの上面の少なくとも一部に金属膜(金属電極層)が形成されている。
国際公開第2014/013831号
 特許文献1に記載のモジュールでは、端子間のアイソレーションが低下する場合がある。
 本発明の目的は、端子間のアイソレーションの低下を抑制することが可能な高周波モジュール及び通信装置を提供することにある。
 本発明の一態様に係る高周波モジュールは、実装基板と、第1電子部品及び第2電子部品と、樹脂層と、金属電極層と、を備える。前記実装基板は、互いに対向する第1主面及び第2主面を有する。前記第1電子部品及び前記第2電子部品は、前記実装基板の前記第1主面に配置されている。前記樹脂層は、前記実装基板の前記第1主面に配置されており、前記第1電子部品の外周面の少なくとも一部及び前記第2電子部品の外周面の少なくとも一部を覆っている。前記金属電極層は、前記樹脂層の少なくとも一部を覆っており、前記実装基板の厚さ方向からの平面視において前記第1電子部品の少なくとも一部及び前記第2電子部品の少なくとも一部に重なっている。前記第1電子部品における前記実装基板側とは反対側の主面の少なくとも一部は、前記金属電極層に接している。前記第1電子部品は、第1信号端子を有する。前記第2電子部品は、第2信号端子を有する。前記金属電極層は、前記実装基板の前記厚さ方向からの平面視において、前記第1信号端子と前記第2信号端子との間に貫通部を有する。
 本発明の別の一態様に係る高周波モジュールは、実装基板と、第1電子部品及び第2電子部品と、第1金属部材と、第2金属部材と、樹脂層と、金属電極層と、を備える。前記実装基板は、互いに対向する第1主面及び第2主面を有する。前記第1電子部品及び前記第2電子部品は、前記実装基板の前記第1主面に配置されている。前記第1金属部材は、前記第1電子部品における前記実装基板側とは反対側の主面に配置されている。前記第2金属部材は、前記第2電子部品における前記実装基板側とは反対側の主面に配置されている。前記樹脂層は、前記実装基板の前記第1主面に配置されており、前記第1電子部品の外周面の少なくとも一部、前記第2電子部品の外周面の少なくとも一部、前記第1金属部材の外周面の少なくとも一部及び前記第2金属部材の外周面の少なくとも一部を覆っている。前記金属電極層は、前記樹脂層の少なくとも一部を覆っており、前記実装基板の厚さ方向からの平面視において前記第1金属部材の少なくとも一部及び前記第2金属部材の少なくとも一部に重なっている。前記第1金属部材における前記実装基板側とは反対側の主面の少なくとも一部は、前記金属電極層に接している。前記第2金属部材における前記実装基板側とは反対側の主面の少なくとも一部は、前記金属電極層に接している。前記第1電子部品は、第1信号端子を有する。前記第2電子部品は、第2信号端子を有する。前記金属電極層は、前記実装基板の前記厚さ方向からの平面視において、前記第1信号端子と前記第2信号端子との間に貫通部を有する。
 本発明のさらに別の一態様に係る高周波モジュールは、実装基板と、電子部品と、樹脂層と、金属電極層と、を備える。前記実装基板は、互いに対向する第1主面及び第2主面を有する。前記電子部品は、前記実装基板の前記第1主面に配置されている。前記樹脂層は、前記実装基板の前記第1主面に配置されており、前記電子部品の外周面の少なくとも一部を覆っている。前記金属電極層は、前記樹脂層の少なくとも一部を覆っており、前記実装基板の厚さ方向からの平面視において前記電子部品の少なくとも一部に重なっている。前記電子部品における前記実装基板側とは反対側の主面の少なくとも一部は、前記金属電極層に接している。前記電子部品は、第1信号端子と、第2信号端子と、を有する。前記金属電極層は、前記実装基板の前記厚さ方向からの平面視において、前記第1信号端子と前記第2信号端子との間に貫通部を有する。
 本発明の一態様に係る通信装置は、前記高周波モジュールと、信号処理回路と、を備える。前記信号処理回路は、前記高周波モジュールに接続されている。
 本発明の一態様に係る高周波モジュール及び通信装置によれば、端子間のアイソレーションの低下を抑制することが可能となる。
図1は、実施形態1に係る通信装置の概略図である。 図2は、実施形態1に係る高周波モジュールの平面図である。 図3は、同上の高周波モジュールの断面図である。 図4は、実施形態2に係る高周波モジュールの断面図である。 図5は、実施形態3に係る高周波モジュールの断面図である。 図6は、実施形態4に係る高周波モジュールの断面図である。 図7は、実施形態5に係る高周波モジュールの断面図である。 図8は、実施形態6に係る高周波モジュールの平面図である。 図9は、実施形態7に係る高周波モジュールの平面図である。 図10は、実施形態8に係る高周波モジュールの断面図である。 図11は、実施形態9に係る高周波モジュールの断面図である。 図12は、実施形態10に係る高周波モジュールの断面図である。 図13は、実施形態11に係る高周波モジュールの断面図である。 図14は、実施形態12に係る高周波モジュールの断面図である。
 以下、実施形態1~12に係る高周波モジュール及び通信装置について、図面を参照して説明する。下記の実施形態等において参照する図2~図14は、いずれも模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態1)
 (1)高周波モジュール
 実施形態1に係る高周波モジュール1の構成について、図面を参照して説明する。
 高周波モジュール1は、図1に示すように、例えば、通信装置300に用いられる。通信装置300は、例えば、スマートフォンのような携帯電話である。なお、通信装置300は、携帯電話であることに限定されず、例えば、スマートウォッチのようなウェアラブル端末等であってもよい。高周波モジュール1は、例えば、4G(第4世代移動通信)規格、5G(第5世代移動通信)規格等に対応可能なモジュールである。4G規格は、例えば、3GPP(登録商標、Third Generation Partnership Project) LTE(登録商標、Long Term Evolution)規格である。5G規格は、例えば、5G NR(New Radio)である。高周波モジュール1は、例えば、キャリアアグリゲーション及びデュアルコネクティビティに対応可能なモジュールである。
 通信装置300は、複数の通信バンドの通信を行う。より詳細には、通信装置300は、複数の通信バンドの送信信号の送信、及び、複数の通信バンドの受信信号の受信を行う。
 複数の通信バンドの送信信号及び受信信号の一部は、FDD(Frequency Division Duplex)の信号である。なお、複数の通信バンドの送信信号及び受信信号は、FDDの信号に限定されず、TDD(Time Division Duplex)の信号であってもよい。FDDは、無線通信における送信と受信とに異なる周波数帯域を割り当てて、送信及び受信を行う無線通信技術である。TDDは、無線通信における送信と受信とに同一の周波数帯域を割り当てて、送信と受信とを時間ごとに切り替えて行う無線通信技術である。
 (2)高周波モジュールの回路構成
 以下、実施形態1に係る高周波モジュール1の回路構成について、図1を参照して説明する。
 実施形態1に係る高周波モジュール1は、図1に示すように、複数(図示例では2つ)のパワーアンプ11A,11Bと、複数(図示例では2つ)の送信フィルタ12A,12Bと、複数(図示例では2つ)の受信フィルタ15A,15Bと、複数(図示例では2つ)のローノイズアンプ14A,14Bと、送受信フィルタ17と、を備える。また、高周波モジュール1は、複数(図示例では2つ)の出力整合回路13A,13Bと、複数(図示例では2つ)の入力整合回路16A,16Bと、複数(図示例では4つ)の整合回路18A~18C,19と、を更に備える。また、高周波モジュール1は、第1スイッチ21と、第2スイッチ22と、第3スイッチ23と、第4スイッチ24と、コントローラ20と、を更に備える。また、高周波モジュール1は、複数(図示例では4つ)の外部接続電極8を更に備える。
 (2.1)パワーアンプ
 図1に示す複数のパワーアンプ11A,11Bの各々は、送信信号を増幅する増幅器である。パワーアンプ11Aは、後述のアンテナ端子81と信号入力端子82Aとを結ぶ送信経路T1のうち信号入力端子82Aと複数の送信フィルタ12A,12Bとの間に設けられている。パワーアンプ11Bは、後述のアンテナ端子81と信号入力端子82Bとを結ぶ送信経路T2のうち信号入力端子82Bと送受信フィルタ17との間に設けられている。複数のパワーアンプ11A,11Bの各々は、入力端子(図示せず)及び出力端子(図示せず)を有する。パワーアンプ11Aの入力端子は、信号入力端子82Aを介して外部回路(例えば、信号処理回路301)に接続される。パワーアンプ11Aの出力端子は、複数の送信フィルタ12A,12Bに接続されている。パワーアンプ11Bの入力端子は、信号入力端子82Bを介して外部回路(例えば、信号処理回路301)に接続される。パワーアンプ11Bの出力端子は、送受信フィルタ17に接続されている。複数のパワーアンプ11A,11Bは、例えば、コントローラ20によって制御される。なお、パワーアンプ11Aは、直接又は間接的に、複数の送信フィルタ12A,12Bに接続されていればよい。図1の例では、パワーアンプ11Aは、出力整合回路13Aを介して複数の送信フィルタ12A,12Bに接続されている。パワーアンプ11Bは、直接又は間接的に、送受信フィルタ17に接続されていればよい。図1の例では、パワーアンプ11Bは、出力整合回路13Bを介して送受信フィルタ17に接続されている。
 送信経路T1は、第1送信経路T11と、第2送信経路T12と、を含む。第1送信経路T11は、図1に示すように、信号入力端子82A、パワーアンプ11A、出力整合回路13A、第2スイッチ22、送信フィルタ12A、整合回路18A、第1スイッチ21、整合回路19及びアンテナ端子81を通る経路である。第2送信経路T12は、図1に示すように、信号入力端子82A、パワーアンプ11A、出力整合回路13A、第2スイッチ22、送信フィルタ12B、整合回路18B、第1スイッチ21、整合回路19及びアンテナ端子81を通る経路である。
 (2.2)送信フィルタ
 図1に示す複数の送信フィルタ12A,12Bは、互いに異なる通信バンドの送信信号を通過させるフィルタである。複数の送信フィルタ12A,12Bは、送信経路T1のうちパワーアンプ11Aと第1スイッチ21との間に設けられている。複数の送信フィルタ12A,12Bの各々は、パワーアンプ11Aで増幅された高周波信号のうち、対応する通信バンドの送信帯域の送信信号を通過させる。
 (2.3)受信フィルタ
 図1に示す複数の受信フィルタ15A,15Bは、互いに異なる通信バンドの受信信号を通過させるフィルタである。複数の受信フィルタ15A,15Bは、後述のアンテナ端子81と信号出力端子83Aとを結ぶ受信経路R1のうち第1スイッチ21とローノイズアンプ14Aとの間に設けられている。複数の受信フィルタ15A,15Bの各々は、アンテナ端子81から入力された高周波信号のうち、対応する通信バンドの受信帯域の受信信号を通過させる。
 (2.4)送受信フィルタ
 図1に示す送受信フィルタ17は、1つの通信バンドの送信信号及び1つの通信バンドの受信信号を通過させるフィルタである。送受信フィルタ17は、送信経路T2のうち第1スイッチ21とパワーアンプ11Bとの間に設けられている。また、送受信フィルタ17は、後述のアンテナ端子81と信号出力端子83Bとを結ぶ受信経路R2のうち第1スイッチ21とローノイズアンプ14Bとの間に設けられている。送受信フィルタ17は、パワーアンプ11Bで増幅された高周波信号のうち、対応する通信バンドの送信帯域の送信信号を通過させる。送受信フィルタ17は、アンテナ端子81から入力された高周波信号のうち、対応する通信バンドの受信帯域の受信信号を通過させる。
 受信経路R1は、第1受信経路R11と、第2受信経路R12と、を含む。第1受信経路R11は、図1に示すように、信号出力端子83A、ローノイズアンプ14A、入力整合回路16A、第3スイッチ23、受信フィルタ15A、整合回路18A、第1スイッチ21、整合回路19及びアンテナ端子81を通る経路である。第2受信経路R12は、図1に示すように、信号出力端子83A、ローノイズアンプ14A、入力整合回路16A、第3スイッチ23、受信フィルタ15B、整合回路18B、第1スイッチ21、整合回路19及びアンテナ端子81を通る経路である。
 (2.5)ローノイズアンプ
 図1に示す複数のローノイズアンプ14A,14Bの各々は、受信信号を低雑音で増幅する増幅器である。ローノイズアンプ14Aは、受信経路R1のうち複数の受信フィルタ15A,15Bと信号出力端子83Aとの間に設けられている。ローノイズアンプ14Bは、受信経路R2のうち送受信フィルタ17と信号出力端子83Bとの間に設けられている。複数のローノイズアンプ14A,14Bの各々は、入力端子(図示せず)及び出力端子(図示せず)を有する。ローノイズアンプ14Aの入力端子は、入力整合回路16Aに接続されている。ローノイズアンプ14Aの出力端子は、信号出力端子83Aを介して外部回路(例えば、信号処理回路301)に接続される。ローノイズアンプ14Bの入力端子は、入力整合回路16Bに接続されている。ローノイズアンプ14Bの出力端子は、信号出力端子83Bを介して外部回路(例えば、信号処理回路301)に接続される。
 (2.6)出力整合回路
 出力整合回路13Aは、図1に示すように、送信経路T1のうちパワーアンプ11Aと複数の送信フィルタ12A,12Bとの間に設けられている。出力整合回路13Aは、パワーアンプ11Aと複数の送信フィルタ12A,12Bとのインピーダンス整合をとるための回路である。出力整合回路13Bは、図1に示すように、送信経路T2のうちパワーアンプ11Bと送受信フィルタ17との間に設けられている。出力整合回路13Bは、パワーアンプ11Bと送受信フィルタ17とのインピーダンス整合をとるための回路である。
 出力整合回路13Aは、インダクタを含む構成である。出力整合回路13Aのインダクタは、送信経路T1において、パワーアンプ11Aの出力側に設けられている。出力整合回路13Bは、インダクタを含む構成である。出力整合回路13Bのインダクタは、送信経路T2において、パワーアンプ11Bの出力側に設けられている。なお、各出力整合回路13A,13Bは、1つのインダクタを含む構成であることに限定されず、例えば、複数のインダクタを含む構成であってもよいし、複数のインダクタ及び複数のキャパシタを含む構成であってもよい。要するに、各出力整合回路13A,13Bは、少なくとも1つのインダクタを含む。
 (2.7)入力整合回路
 入力整合回路16Aは、図1に示すように、受信経路R1のうち複数の受信フィルタ15A,15Bとローノイズアンプ14Aとの間に設けられている。入力整合回路16Aは、複数の受信フィルタ15A,15Bとローノイズアンプ14Aとのインピーダンス整合をとるための回路である。入力整合回路16Bは、図1に示すように、受信経路R2のうち送受信フィルタ17とローノイズアンプ14Bとの間に設けられている。入力整合回路16Bは、送受信フィルタ17とローノイズアンプ14Bとのインピーダンス整合をとるための回路である。
 入力整合回路16Aは、インダクタを含む構成である。入力整合回路16Aのインダクタは、受信経路R1において、ローノイズアンプ14Aの入力側に設けられている。入力整合回路16Bは、インダクタを含む構成である。入力整合回路16Bのインダクタは、受信経路R2において、ローノイズアンプ14Bの入力側に設けられている。なお、各入力整合回路16A,16Bは、1つのインダクタを含む構成であることに限定されず、例えば、複数のインダクタを含む構成であってもよいし、複数のインダクタ及び複数のキャパシタを含む構成であってもよい。要するに、各入力整合回路16A,16Bは、少なくとも1つのインダクタを含む。
 (2.8)整合回路
 整合回路18Aは、図1に示すように、送信フィルタ12A及び受信フィルタ15Aと第1スイッチ21との間に設けられている。整合回路18Aは、第1スイッチ21と送信フィルタ12A及び受信フィルタ15Aとのインピーダンス整合をとるための回路である。整合回路18Bは、図1に示すように、送信フィルタ12B及び受信フィルタ15Bと第1スイッチ21との間に設けられている。整合回路18Bは、第1スイッチ21と送信フィルタ12B及び受信フィルタ15Bとのインピーダンス整合をとるための回路である。整合回路18Cは、図1に示すように、送受信フィルタ17と第1スイッチ21との間に設けられている。整合回路18Cは、第1スイッチ21と送受信フィルタ17とのインピーダンス整合をとるための回路である。
 整合回路19は、図1に示すように、第1スイッチ21とアンテナ端子81との間に設けられている。整合回路19は、アンテナ端子81に接続されるアンテナ310と第1スイッチ21とのインピーダンス整合をとるための回路である。
 (2.9)第1スイッチ
 図1に示す第1スイッチ21は、複数の送信フィルタ12A,12B、複数の受信フィルタ15A,15B及び送受信フィルタ17の中からアンテナ端子81に接続されるフィルタを切り替える。つまり、第1スイッチ21は、アンテナ310に接続させる経路を切り替えるためのスイッチである。第1スイッチ21は、共通端子210と、複数(図示例では3つ)の選択端子211~213と、を有する。共通端子210は、アンテナ端子81に接続されている。複数の選択端子211~213のうち選択端子211は、送信フィルタ12A及び受信フィルタ15Aに接続されている。また、複数の選択端子211~213のうち選択端子212は、送信フィルタ12B及び受信フィルタ15Bに接続されている。また、複数の選択端子211~213のうち選択端子213は、送受信フィルタ17に接続されている。
 第1スイッチ21は、共通端子210と複数の選択端子211~213との接続状態を切り替える。第1スイッチ21は、例えば、信号処理回路301によって制御される。第1スイッチ21は、信号処理回路301のRF信号処理回路302からの制御信号に従って、共通端子210と複数の選択端子211~213の少なくとも1つとを電気的に接続させる。
 (2.10)第2スイッチ
 図1に示す第2スイッチ22は、複数の送信フィルタ12A,12Bの中からパワーアンプ11Aに接続される送信フィルタを切り替える。第2スイッチ22は、パワーアンプ11Aに接続させる経路を切り替えるためのスイッチである。第2スイッチ22は、共通端子220と、複数(図示例では2つ)の選択端子221,222と、を有する。共通端子220は、パワーアンプ11Aに接続されている。複数の選択端子221,222のうち選択端子221は、送信フィルタ12Aに接続されている。また、複数の選択端子221,222のうち選択端子222は、送信フィルタ12Bに接続されている。
 第2スイッチ22は、共通端子220と複数の選択端子221,222との接続状態を切り替える。第2スイッチ22は、例えば、信号処理回路301によって制御される。第2スイッチ22は、信号処理回路301のRF信号処理回路302からの制御信号に従って、共通端子220と複数の選択端子221,222の少なくとも1つとを電気的に接続させる。
 (2.11)第3スイッチ
 図1に示す第3スイッチ23は、複数の受信フィルタ15A,15Bの中からローノイズアンプ14Aに接続される受信フィルタを切り替える。第3スイッチ23は、ローノイズアンプ14Aに接続させる経路を切り替えるためのスイッチである。第3スイッチ23は、共通端子230と、複数(図示例では2つ)の選択端子231,232と、を有する。共通端子230は、ローノイズアンプ14Aに接続されている。複数の選択端子231,232のうち選択端子231は、受信フィルタ15Aに接続されている。また、複数の選択端子231,232のうち選択端子232は、受信フィルタ15Bに接続されている。
 第3スイッチ23は、共通端子230と複数の選択端子231,232との接続状態を切り替える。第3スイッチ23は、例えば、信号処理回路301によって制御される。第3スイッチ23は、信号処理回路301のRF信号処理回路302からの制御信号に従って、共通端子230と複数の選択端子231,232の少なくとも1つとを電気的に接続させる。
 (2.12)第4スイッチ
 図1に示す第4スイッチ24は、送受信フィルタ17に接続させる信号経路(送信経路T2、受信経路R2)を切り替えるためのスイッチである。すなわち、第4スイッチ24は、送受信フィルタ17に接続される信号経路を、送信経路T2又は受信経路R2に切り替える。第4スイッチ24は、共通端子240と、複数(図示例では2つ)の選択端子241,242と、を有する。共通端子240は、送受信フィルタ17に接続されている。複数の選択端子241,242のうち選択端子241は、送信経路T2に含まれるパワーアンプ11Bに接続されている。また、複数の選択端子241,242のうち選択端子242は、受信経路R2に含まれるローノイズアンプ14Bに接続されている。
 第4スイッチ24は、共通端子240と複数の選択端子241,242との接続状態を切り替える。第4スイッチ24は、例えば、信号処理回路301によって制御される。第4スイッチ24は、信号処理回路301のRF信号処理回路302からの制御信号に従って、共通端子240と複数の選択端子241,242の1つとを電気的に接続させる。
 (2.13)コントローラ
 コントローラ20は、例えば、信号処理回路301からの制御信号に従って複数のパワーアンプ11A,11Bを制御する。コントローラ20は、複数のパワーアンプ11A,11Bに接続されている。また、コントローラ20は、複数(例えば、4つ)の制御端子84を介して信号処理回路301に接続されている。複数の制御端子84は、外部回路(例えば、信号処理回路301)からの制御信号をコントローラ20に入力するための端子である。コントローラ20は、複数の制御端子84から取得した制御信号に基づいて複数のパワーアンプ11A,11Bを制御する。複数の制御端子84からコントローラ20が取得する制御信号は、デジタル信号である。制御端子84の数は、例えば、4つであるが、図1では1つのみを図示している。
 (2.14)外部接続電極
 複数の外部接続電極8は、図1に示すように、外部回路(例えば、信号処理回路301)と電気的に接続させるための端子である。複数の外部接続電極8は、アンテナ端子81と、複数の信号入力端子82A,82Bと、複数の信号出力端子83A,83Bと、複数の制御端子84と、複数のグランド端子86(図3参照)と、を含む。
 アンテナ端子81は、アンテナ310に接続される。高周波モジュール1内において、アンテナ端子81は、第1スイッチ21に接続されている。また、アンテナ端子81は、第1スイッチ21を介して、複数の送信フィルタ12A,12B、複数の受信フィルタ15A,15B及び送受信フィルタ17に接続されている。
 複数の信号入力端子82A,82Bは、外部回路(例えば、信号処理回路301)からの送信信号を高周波モジュール1に入力するための端子である。高周波モジュール1内において、信号入力端子82Aは、パワーアンプ11Aに接続されている。また、高周波モジュール1内において、信号入力端子82Bは、パワーアンプ11Bに接続されている。
 信号出力端子83Aは、ローノイズアンプ14Aからの受信信号を外部回路(例えば、信号処理回路301)へ出力するための端子である。信号出力端子83Bは、ローノイズアンプ14Bからの受信信号を外部回路(例えば、信号処理回路301)へ出力するための端子である。高周波モジュール1内において、信号出力端子83Aは、ローノイズアンプ14Aに接続されている。また、高周波モジュール1内において、信号出力端子83Bは、ローノイズアンプ14Bに接続されている。
 複数の制御端子84は、外部回路(例えば、信号処理回路301)からの制御信号を高周波モジュール1に入力するための端子である。高周波モジュール1内において、複数の制御端子84は、コントローラ20に接続されている。
 複数のグランド端子86は、通信装置300の備える外部基板304のグランド電極と電気的に接続されてグランド電位が与えられる端子である。高周波モジュール1内において、複数のグランド端子86は、実装基板3のグランド層34に接続されている。
 (3)高周波モジュールの構造
 以下、実施形態1に係る高周波モジュール1の構造について、図面を参照して説明する。
 高周波モジュール1は、図2及び図3に示すように、実装基板3と、複数(例えば、10個)の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1は、樹脂層51と、金属電極層6と、を更に備える。
 高周波モジュール1は、外部基板304に電気的に接続可能である。外部基板304は、例えば、携帯電話及び通信機器等の通信装置300のマザー基板に相当する。なお、高周波モジュール1が外部基板304に電気的に接続可能であるとは、高周波モジュール1が外部基板304上に直接的に実装される場合だけでなく、高周波モジュール1が外部基板304上に間接的に実装される場合も含む。なお、高周波モジュール1が外部基板304上に間接的に実装される場合とは、高周波モジュール1が、外部基板304上に実装された他の高周波モジュール上に実装される場合等である。
 (3.1)実装基板
 実装基板3は、図2及び図3に示すように、第1主面31及び第2主面32を有する。第1主面31及び第2主面32は、実装基板3の厚さ方向D1において互いに対向する。第2主面32は、高周波モジュール1が外部基板304に設けられたときに、外部基板304における実装基板3側の主面306と対向する。実装基板3は、第1主面31に複数の電子部品4が実装された片面実装基板である。実施形態1では、実装基板3の厚さ方向D1が第1方向(以下、「第1方向D1」ともいう)である。
 実装基板3は、複数の誘電体層が積層された多層基板である。実装基板3は、複数の導電層と、複数のビア導体35(貫通電極を含む)と、を有する。複数の導電層は、グランド電位のグランド層34を含む。複数のビア導体35は、第1主面31に実装されている素子(上述の電子部品4を含む)と実装基板3の導電層との電気的接続に用いられる。また、複数のビア導体35は、実装基板3の導電層と外部接続電極8との電気的接続に用いられる。
 実装基板3の第1主面31には、複数の電子部品4が配置されている。複数の電子部品4は、第1電子部品4Aと、第2電子部品4Bと、を含む。実装基板3の第2主面32には、複数の外部接続電極8が配置されている。
 (3.2)電子部品
 複数の電子部品4は、図2及び図3に示すように、実装基板3の第1主面31に配置されている。図3の例では、各電子部品4は、実装基板3の第1主面31に実装されている。より詳細には、各電子部品4は、複数の接続部44(例えば、バンプ)を介して実装基板3の第1主面31に実装されている。なお、各電子部品4において、電子部品4の一部が実装基板3の第1主面31に実装されており、電子部品4の残りが実装基板3に内装されていてもよい。要するに、各電子部品4は、実装基板3において第2主面32よりも第1主面31側に配置されており、かつ、第1主面31に実装されている部分を少なくとも有する。
 複数の電子部品4の各々は、複数のパワーアンプ11A,11B、複数の送信フィルタ12A,12B、複数の受信フィルタ15A,15B、複数のローノイズアンプ14A,14B、送受信フィルタ17、複数の出力整合回路13A,13B、複数の入力整合回路16A,16B、複数の整合回路18A~18C,19、第1スイッチ21、第3スイッチ23、第4スイッチ24及びICチップ26のいずれかである。また、第1電子部品4Aは、送受信フィルタ17であり、第2電子部品4Bは、送信フィルタ12Aである。
 複数の送信フィルタ12A,12B、複数の受信フィルタ15A,15B及び送受信フィルタ17の各々は、例えば、複数の直列腕共振子及び複数の並列腕共振子を含む弾性波フィルタである。弾性波フィルタは、例えば、弾性表面波を利用するSAW(Surface Acoustic Wave)フィルタである。さらに、複数の送信フィルタ12A,12B、複数の受信フィルタ15A,15B及び送受信フィルタ17の各々は、複数の直列腕共振子のいずれかと直列に接続されるインダクタ及びキャパシタの少なくとも一方を含んでもよいし、複数の並列腕共振子のいずれかと直列に接続されるインダクタ又はキャパシタを含んでもよい。
 第1電子部品4Aは、第1信号端子44Aを有する。第1信号端子44Aは、第1電子部品4Aとしての送受信フィルタ17の入力端子又は出力端子である。第2電子部品4Bは、第2信号端子44Bを有する。第2信号端子44Bは、第2電子部品4Bとしての送信フィルタ12Aの入力端子又は出力端子である。第1信号端子44A及び第2信号端子44Bの各々は、上述したように、例えば、バンプである。第1電子部品4Aと第2電子部品4Bとは、実装基板3の厚さ方向である第1方向D1に直交(交差)する第2方向D2に沿って並んでいる。本明細書において、第1信号端子及び第2信号端子の各々は、高周波信号が通るRF(Radio Frequency)信号端子である。
 ICチップ26は、コントローラ20と、第2スイッチ22と、を含む。実装基板3の厚さ方向D1からの平面視において、ICチップ26の外周形状は、四角形状である。
 (3.3)外部接続電極
 複数の外部接続電極8は、実装基板3と外部基板304とを電気的に接続させるための端子である。
 複数の外部接続電極8は、図3に示すように、実装基板3の第2主面32に配置されている。複数の外部接続電極8は、外部基板304の主面306に配置されている複数の外部接続電極305と一対一に対応している。複数の外部接続電極8の各々は、接続部85(例えば、バンプ)を介して、複数の外部接続電極305のうち対応する外部接続電極305に接続される。複数の外部接続電極8は、実装基板3の第2主面32上に設けられた柱状(例えば、角柱状)の電極である。複数の外部接続電極8の材料は、例えば、金属(例えば、銅、銅合金等)である。複数の外部接続電極8の各々は、実装基板3の厚さ方向D1において、実装基板3の第2主面32に接合されている基端部と、基端部とは反対側の先端部と、を有する。複数の外部接続電極8の各々の先端部は、例えば、金めっき層を含んでいてもよい。
 (3.4)樹脂層
 樹脂層51は、図3に示すように、実装基板3の第1主面31に配置されている。樹脂層51は、複数の電子部品4を覆っている。ここで、樹脂層51は、複数の電子部品4の各々の外周面43を覆っている。また、樹脂層51は、複数の電子部品4のうち第1電子部品4A及び第2電子部品4Bを除いた残りの電子部品4の各々における実装基板3側とは反対側の主面41を覆っている。複数の電子部品4の各々の外周面43は、電子部品4において、実装基板3側とは反対側の主面41と実装基板3側の主面42とをつないでいる4つの側面を含む。樹脂層51は、樹脂(例えば、エポキシ樹脂)を含む。樹脂層51は、樹脂の他にフィラーを含んでいてもよい。
 (3.5)金属電極層
 金属電極層6は、図3に示すように、樹脂層51を覆っている。金属電極層6は、導電性を有する。高周波モジュール1では、金属電極層6は、高周波モジュール1の内外の電磁シールドを目的として設けられているシールド層である。金属電極層6は、複数の金属層を積層した多層構造を有しているが、これに限らず、1つの金属層であってもよい。金属層は、1又は複数種の金属を含む。金属電極層6は、樹脂層51における実装基板3側とは反対側の主面と、樹脂層51の外周面と、実装基板3の外周面33の一部と、を覆っている。また、金属電極層6は、第1電子部品4A及び第2電子部品4Bの各々における実装基板3側とは反対側の主面41を覆っている。金属電極層6は、実装基板3のグランド層34の外周面の少なくとも一部と接触している。これにより、金属電極層6の電位をグランド層34の電位と同じにすることができる。
 金属電極層6は、図3に示すように、貫通部(スリット)61を有する。貫通部61は、実装基板3の厚さ方向D1(図3の上下方向)において金属電極層6を貫通するように形成されている。貫通部61は、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aと第2電子部品4Bとの間に形成されている。より詳細には、貫通部61は、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に形成されている。貫通部61の詳細については、「(6)金属電極層の詳細」の欄で詳しく説明する。
 (4)高周波モジュールの各構成要素の詳細構造
 (4.1)実装基板
 図2及び図3に示す実装基板3は、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。複数の誘電体層及び複数の導電層は、実装基板3の厚さ方向D1において積層されている。複数の導電層は、層ごとに定められた所定パターンに形成されている。複数の導電層の各々は、実装基板3の厚さ方向D1に直交する一平面内において1つ又は複数の導体部を含む。各導電層の材料は、例えば、銅である。複数の導電層は、グランド層34を含む。高周波モジュール1では、複数のグランド端子86とグランド層34とが、実装基板3のビア導体35等を介して電気的に接続されている。実装基板3は、例えば、LTCC(Low Temperature Co-fired Ceramics)基板である。実装基板3は、LTCC基板に限らず、例えば、プリント配線板、HTCC(High Temperature Co-fired Ceramics)基板、樹脂多層基板であってもよい。
 また、実装基板3は、LTCC基板に限らず、例えば、配線構造体であってもよい。配線構造体は、例えば、多層構造体である。多層構造体は、少なくとも1つの絶縁層と、少なくとも1つの導電層とを含む。絶縁層は、所定パターンに形成されている。絶縁層が複数の場合は、複数の絶縁層は、層ごとに定められた所定パターンに形成されている。導電層は、絶縁層の所定パターンとは異なる所定パターンに形成されている。導電層が複数の場合は、複数の導電層は、層ごとに定められた所定パターンに形成されている。導電層は、1つ又は複数の再配線部を含んでもよい。配線構造体では、多層構造体の厚さ方向において互いに対向する2つの面のうち第1面が実装基板3の第1主面31であり、第2面が実装基板3の第2主面32である。配線構造体は、例えば、インタポーザであってもよい。インタポーザは、シリコン基板を用いたインタポーザであってもよいし、多層で構成された基板であってもよい。
 実装基板3の第1主面31及び第2主面32は、実装基板3の厚さ方向D1において離れており、厚さ方向D1に交差する。実装基板3における第1主面31は、例えば、実装基板3の厚さ方向D1に直交しているが、例えば、厚さ方向D1に直交しない面として導体部の側面等を含んでいてもよい。また、実装基板3における第2主面32は、例えば、実装基板3の厚さ方向D1に直交しているが、例えば、厚さ方向D1に直交しない面として、導体部の側面等を含んでいてもよい。また、実装基板3の第1主面31及び第2主面32は、微細な凹凸又は凹部又は凸部が形成されていてもよい。
 (4.2)フィルタ
 図1に示す複数の送信フィルタ12A,12B、複数の受信フィルタ15A,15B及び送受信フィルタ17の詳細な構造について説明する。以下の説明では、送信フィルタ12A,12B、受信フィルタ15A,15B及び送受信フィルタ17を区別せずにフィルタとする。
 フィルタは、1チップのフィルタである。ここにおいて、フィルタでは、例えば、複数の直列腕共振子及び複数の並列腕共振子の各々が弾性波共振子により構成されている。この場合、フィルタは、例えば、基板と、圧電体層と、複数のIDT(Interdigital Transducer)電極と、を備える。基板は、第1面及び第2面を有する。圧電体層は、基板の第1面に設けられている。圧電体層は、低音速膜上に設けられている。複数のIDT電極は、圧電体層上に設けられている。ここにおいて、低音速膜は、基板上に直接的又は間接的に設けられている。また、圧電体層は、低音速膜上に直接的又は間接的に設けられている。低音速膜では、圧電体層を伝搬するバルク波の音速よりも、伝搬するバルク波の音速が低速である。基板では、圧電体層を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が高速である。圧電体層の材料は、例えば、リチウムタンタレートである。低音速膜の材料は、例えば、酸化ケイ素である。基板は、例えば、シリコン基板である。圧電体層の厚さは、例えば、IDT電極の電極指周期で定まる弾性波の波長をλとしたときに、3.5λ以下である。低音速膜の厚さは、例えば、2.0λ以下である。
 圧電体層は、例えば、リチウムタンタレート、リチウムニオベイト、酸化亜鉛、窒化アルミニウム、又は、チタン酸ジルコン酸鉛のいずれかにより形成されていればよい。また、低音速膜は、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、酸化ケイ素にフッ素又は炭素又はホウ素を加えた化合物からなる群から選択される少なくとも1種の材料を含んでいればよい。また、基板は、シリコン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、サファイア、リチウムタンタレート、リチウムニオベイト、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、マグネシア及びダイヤモンドからなる群から選択される少なくとも1種の材料を含んでいればよい。
 フィルタは、例えば、スペーサ層と、カバー部材と、を更に備える。スペーサ層及びカバー部材は、基板の第1面に設けられている。スペーサ層は、基板の厚さ方向からの平面視で、複数のIDT電極を囲んでいる。基板の厚さ方向からの平面視で、スペーサ層は枠状(矩形枠状)である。スペーサ層は、電気絶縁性を有する。スペーサ層の材料は、例えば、エポキシ樹脂、ポリイミド等の合成樹脂である。カバー部材は、平板状である。基板の厚さ方向からの平面視で、カバー部材は、長方形状であるが、これに限らず、例えば、正方形状であってもよい。フィルタでは、基板の厚さ方向からの平面視で、カバー部材の外形サイズと、スペーサ層の外形サイズと、カバー部材の外形サイズとが略同じである。カバー部材は、基板の厚さ方向において基板に対向するようにスペーサ層に配置されている。カバー部材は、基板の厚さ方向において複数のIDT電極と重複し、かつ、基板の厚さ方向において複数のIDT電極から離れている。カバー部材は、電気絶縁性を有する。カバー部材の材料は、例えば、エポキシ樹脂、ポリイミド等の合成樹脂である。フィルタは、基板とスペーサ層とカバー部材とで囲まれた空間を有する。フィルタでは、空間には、気体が入っている。気体は、例えば、空気、不活性ガス(例えば、窒素ガス)等である。複数の端子は、カバー部材から露出している。複数の端子の各々は、例えば、バンプである。各バンプは、例えば、はんだバンプである。各バンプは、はんだバンプに限らず、例えば、金バンプであってもよい。
 フィルタは、例えば、低音速膜と圧電体層との間に介在する密着層を含んでいてもよい。密着層は、例えば、樹脂(エポキシ樹脂、ポリイミド樹脂)からなる。また、フィルタは、低音速膜と圧電体層との間、圧電体層上、又は低音速膜下のいずれかに誘電体膜を備えていてもよい。
 また、フィルタは、例えば、基板と低音速膜との間に介在する高音速膜を備えていてもよい。ここにおいて、高音速膜は、基板上に直接的又は間接的に設けられている。低音速膜は、高音速膜上に直接的又は間接的に設けられている。圧電体層は、低音速膜上に直接的又は間接的に設けられている。高音速膜では、圧電体層を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が高速である。低音速膜では、圧電体層を伝搬するバルク波の音速よりも、伝搬するバルク波の音速が低速である。
 高音速膜は、ダイヤモンドライクカーボン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチウムニオベイト、水晶等の圧電体、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、マグネシア、ダイヤモンド、又は、上記各材料を主成分とする材料、上記各材料の混合物を主成分とする材料からなる。
 高音速膜の厚さに関しては、弾性波を圧電体層及び低音速膜に閉じ込める機能を高音速膜が有するため、高音速膜の厚さは厚いほど望ましい。
 複数の直列腕共振子及び複数の並列腕共振子の各々は、上記の弾性波共振子に限らず、例えば、SAW共振子又はBAW(Bulk Acoustic Wave)共振子であってもよい。ここにおいて、SAW共振子は、例えば、圧電体基板と、圧電体基板上に設けられているIDT電極と、を含む。フィルタは、複数の直列腕共振子及び複数の並列腕共振子の各々をSAW共振子により構成する場合、1つの圧電体基板上に、複数の直列腕共振子に一対一に対応する複数のIDT電極と、複数の並列腕共振子に一対一に対応する複数のIDT電極と、を有している。圧電体基板は、例えば、リチウムタンタレート基板、リチウムニオベイト基板等である。
 (4.3)パワーアンプ
 図1に示す複数のパワーアンプ11A,11Bの各々は、例えば、基板と増幅機能部とを備える1チップのICである。基板は、互いに対向する第1面及び第2面を有する。基板は、例えば、ガリウム砒素基板である。増幅機能部は、基板の第1面に形成された少なくとも1つのトランジスタを含む。増幅機能部は、所定の周波数帯域の送信信号を増幅する機能を有する機能部である。トランジスタは、例えば、HBT(Heterojunction Bipolar Transistor)である。複数のパワーアンプ11A,11Bの各々では、電源回路(図示せず)からの電源電圧がHBTのコレクタ-エミッタ間に印加される。複数のパワーアンプ11A,11Bの各々は、増幅機能部に加えて、例えば、直流カット用のキャパシタを含んでいてもよい。複数のパワーアンプ11A,11Bの各々は、例えば、基板の第1面が実装基板3の第1主面31側となるように実装基板3の第1主面31にフリップチップ実装されている。実装基板3の厚さ方向D1からの平面視で、複数のパワーアンプ11A,11Bの各々の外周形状は、四角形状である。
 (4.4)ローノイズアンプ
 図1に示す複数のローノイズアンプ14A,14Bの各々は、例えば、基板と増幅機能部とを備える1チップのICである。基板は、互いに対向する第1面及び第2面を有する。基板は、例えば、シリコン基板である。増幅機能部は、基板の第1面に形成されている。増幅機能部は、所定の周波数帯域の受信信号を増幅する機能を有する機能部である。複数のローノイズアンプ14A,14Bの各々は、例えば、基板の第1面が実装基板3の第1主面31側となるように実装基板3の第1主面31にフリップチップ実装されている。実装基板3の厚さ方向D1からの平面視で、複数のローノイズアンプ14A,14Bの各々の外周形状は、四角形状である。
 (5)通信装置
 通信装置300は、図1に示すように、高周波モジュール1と、アンテナ310と、信号処理回路301と、を備える。
 (5.1)アンテナ
 アンテナ310は、高周波モジュール1のアンテナ端子81に接続されている。アンテナ310は、高周波モジュール1から出力された送信信号を電波にて放射する送信機能と、受信信号を電波として外部から受信して高周波モジュール1へ出力する受信機能と、を有する。
 (5.2)信号処理回路
 信号処理回路301は、RF信号処理回路302と、ベースバンド信号処理回路303と、を含む。信号処理回路301は、高周波モジュール1を通る信号を処理する。より詳細には、信号処理回路301は、送信信号及び受信信号を処理する。
 RF信号処理回路302は、例えば、RFIC(Radio Frequency Integrated Circuit)である。RF信号処理回路302は、高周波信号に対する信号処理を行う。
 RF信号処理回路302は、ベースバンド信号処理回路303から出力された高周波信号に対してアップコンバート等の信号処理を行い、信号処理が行われた高周波信号を高周波モジュール1に出力する。具体的には、RF信号処理回路302は、ベースバンド信号処理回路303から出力された送信信号に対してアップコンバート等の信号処理を行い、信号処理が行われた送信信号を高周波モジュール1の送信経路T1,T2のいずれかに出力する。
 RF信号処理回路302は、高周波モジュール1から出力された高周波信号に対してダウンコンバート等の信号処理を行い、信号処理が行われた高周波信号をベースバンド信号処理回路303に出力する。具体的には、RF信号処理回路302は、高周波モジュール1の受信経路R1,R2のいずれかから出力された受信信号に対して信号処理を行い、信号処理が行われた受信信号をベースバンド信号処理回路303に出力する。
 ベースバンド信号処理回路303は、例えば、BBIC(Baseband Integrated Circuit)である。ベースバンド信号処理回路303は、信号処理回路301の外部からの送信信号に対する所定の信号処理を行う。ベースバンド信号処理回路303で処理された受信信号は、例えば、画像信号として画像表示のための画像信号として使用され、又は、通話のための音声信号として使用される。
 また、RF信号処理回路302は、高周波信号(送信信号、受信信号)の送受に基づいて、高周波モジュール1が有する第1スイッチ21、第2スイッチ22、第3スイッチ23及び第4スイッチ24の各々の接続を制御する制御部としての機能も有する。具体的には、RF信号処理回路302は、制御信号(図示せず)によって、高周波モジュール1の第1スイッチ21、第2スイッチ22、第3スイッチ23及び第4スイッチ24の各々の接続を切り替える。なお、制御部は、RF信号処理回路302の外部に設けられていてもよく、例えば、高周波モジュール1又はベースバンド信号処理回路303に設けられていてもよい。
 (6)金属電極層の詳細
 以下、金属電極層6の詳細について、図面を参照して説明する。
 金属電極層6は、上述したように、樹脂層51における実装基板3側とは反対側の主面と、樹脂層51の外周面と、実装基板3の外周面33の一部と、を覆っている。また、金属電極層6は、第1電子部品4A及び第2電子部品4Bの各々における実装基板3側とは反対側の主面41を覆っている。そして、実施形態1に係る高周波モジュール1では、第1電子部品4A及び第2電子部品4Bの各々における実装基板3側とは反対側の主面41は、金属電極層6に接している。これにより、実施形態1に係る高周波モジュール1では、第1電子部品4A及び第2電子部品4Bの各々で発生する熱を、金属電極層6、(実装基板3の)グランド層34、ビア導体35及び外部接続電極8を介して外部基板304に放熱することが可能となる。
 ここで、実施形態1に係る高周波モジュール1では、図2及び図3に示すように、金属電極層6は、貫通部61を有する。貫通部61は、実装基板3の厚さ方向D1において金属電極層6を貫通するように形成された貫通孔である。これにより、樹脂層51における実装基板3側とは反対側の主面の一部が、貫通部61を通して外部に露出している(図3参照)。貫通部61の断面形状は、矩形状である。また、実装基板3の厚さ方向D1に直交(交差)する一の方向である第3方向D3における貫通部61の長さL2は、図2に示すように、第3方向D3における第1電子部品4Aの長さL11及び第2電子部品4Bの長さL12より長く、かつ、第3方向D3における実装基板3の長さL3より長い。すなわち、実施形態1に係る高周波モジュール1では、貫通部61は、実装基板3の厚さ方向D1に交差する一の方向である第3方向D3において、実装基板3の全長にわたって形成されている。
 また、実施形態1に係る高周波モジュール1では、貫通部61は、図3に示すように、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に位置している。第1信号端子44Aは、例えば、第1電子部品4Aとしての送受信フィルタ17の入力端子又は出力端子である。第2信号端子44Bは、例えば、第2電子部品4Bとしての送信フィルタ12Aの入力端子又は出力端子である。このように、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に貫通部61を設けることにより、第1信号端子44A及び第2信号端子44Bの一方を通る信号が金属電極層6を介して他方に伝達されるのを抑制することが可能となる。すなわち、実施形態1に係る高周波モジュール1によれば、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (7)高周波モジュールの製造方法
 次に、実施形態1に係る高周波モジュール1の製造方法について簡単に説明する。
 高周波モジュール1の製造方法は、例えば、第1工程と、第2工程と、第3工程と、第4工程と、第5工程と、を備える。
 第1工程は、複数の電子部品4を実装基板3の第1主面31に配置する工程である。第2工程は、複数の電子部品4を覆い、樹脂層51の元になる樹脂材料層を実装基板3の第1主面31側に形成する工程である。第3工程は、樹脂材料層における実装基板3側とは反対側の主面から樹脂材料層を研削して第1電子部品4A及び第2電子部品4Bの各々の表面(上面)を露出させた後、樹脂材料層、第1電子部品4A及び第2電子部品4Bを研削することで、樹脂層51を形成すると共に第1電子部品4A及び第2電子部品4Bを薄くする工程である。第4工程は、樹脂層51における実装基板3側とは反対側の主面、第1電子部品4Aの主面41及び第2電子部品4Bの主面41とに接する金属電極層6を、例えば、スパッタ法、蒸着法又は印刷法によって形成する工程である。第5工程は、例えば、レーザを用いて金属電極層6に貫通部61を形成する工程である。
 (8)効果
 実施形態1に係る高周波モジュール1では、金属電極層6の貫通部61は、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に設けられている。これにより、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に貫通部61が設けられていない場合に比べて、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 実施形態1に係る高周波モジュール1では、第1電子部品4A及び第2電子部品4Bは、送信経路T1,T2に設けられている高周波部品である。そして、第1電子部品4Aにおける実装基板3側とは反対側の主面41及び第2電子部品4Bにおける実装基板3側とは反対側の主面41は、金属電極層6に接している。これにより、第1電子部品4A及び第2電子部品4Bの各々で発生する熱を、金属電極層6を介して放熱することが可能となる。
 実施形態1に係る高周波モジュール1では、第3方向(一の方向)D3における貫通部61の長さL2は、第3方向D3における第1電子部品4Aの長さL11及び第2電子部品4Bの長さL12より長く、かつ、第3方向D3における実装基板3の全長L3より長い。これにより、第3方向D3における貫通部61の長さL2が、第3方向D3における第1電子部品4Aの長さL11及び第2電子部品4Bの長さL12よりも短い場合に比べて、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとのアイソレーションの低下をより効果的に抑制することが可能となる。
 (実施形態2)
 実施形態2に係る高周波モジュール1aは、図4に示すように、金属電極層6の貫通部61が、第1電子部品4Aにおける実装基板3側とは反対側の主面41の一部を露出させるように形成されている点で、実施形態1に係る高周波モジュール1(図3参照)と相違する。
 (1)構成
 実施形態2に係る高周波モジュール1aは、図4に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1aは、樹脂層51と、金属電極層6と、を更に備える。なお、実施形態2に係る高周波モジュール1aに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態2に係る高周波モジュール1aでは、金属電極層6は、実施形態1に係る高周波モジュール1と同様、貫通部61を有する。貫通部61の断面形状は、矩形状である。また、貫通部61は、実装基板3の厚さ方向D1に直交(交差)する一の方向である第3方向(第1方向D1及び第2方向D2と直交する方向)における実装基板3の全長にわたって形成されている。また、貫通部61は、図4に示すように、第1電子部品4Aにおける実装基板3側とは反対側の主面41の一部を露出させるように形成されている。なお、実施形態2に係る高周波モジュール1aにおいても、貫通部61は、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に位置している。
 (2)効果
 実施形態2に係る高周波モジュール1aにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態3)
 実施形態3に係る高周波モジュール1bは、図5に示すように、樹脂部材53が、金属電極層6の貫通部61内に配置されている点で、実施形態1に係る高周波モジュール1(図3参照)と相違する。
 (1)構成
 実施形態3に係る高周波モジュール1bは、図5に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1bは、樹脂層51と、金属電極層6と、を更に備える。なお、実施形態3に係る高周波モジュール1bに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態3に係る高周波モジュール1bでは、金属電極層6は、実施形態1に係る高周波モジュール1と同様、貫通部61を有する。貫通部61の断面形状は、矩形状である。また、貫通部61は、実装基板3の厚さ方向D1に直交(交差)する一の方向である第3方向(第1方向D1及び第2方向D2と直交する方向)における実装基板3の全長にわたって形成されている。実施形態3に係る高周波モジュール1bでは、図5に示すように、樹脂部材53が貫通部61内に配置されている。樹脂部材53は、例えば、第3方向D3における貫通部61の全長にわたって配置されているが、貫通部61の一部に配置されていてもよい。すなわち、実施形態3に係る高周波モジュール1bでは、樹脂層51における実装基板3側とは反対側の主面のうち貫通部61に対応する部分は、貫通部61を介して外部に露出していない。樹脂部材53の材料は、樹脂層51と同じ材料であってもよいし、異なる材料であってもよい。
 (2)効果
 実施形態3に係る高周波モジュール1bにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態4)
 実施形態4に係る高周波モジュール1cは、図6に示すように、貫通部61が、実装基板3の厚さ方向D1からの平面視において第1電子部品4Aと重なるように形成されている点で、実施形態1に係る高周波モジュール1(図3参照)と相違する。
 (1)構成
 実施形態4に係る高周波モジュール1cは、図6に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1cは、樹脂層51と、金属電極層6と、を更に備える。なお、実施形態4に係る高周波モジュール1cに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態4に係る高周波モジュール1cでは、金属電極層6は、実施形態1に係る高周波モジュール1と同様、貫通部61を有する。貫通部61の断面形状は、矩形状である。また、貫通部61は、実装基板3の厚さ方向D1に直交(交差)する一の方向である第3方向(第1方向D1及び第2方向D2と直交する方向)における実装基板3の全長にわたって形成されている。また、貫通部61は、図6に示すように、実装基板3の厚さ方向D1からの平面視において第1電子部品4Aと重なっている。これにより、第1電子部品4Aにおける実装基板3側とは反対側の主面41の一部が貫通部61を通して外部に露出している。また、貫通部61は、図6に示すように、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に設けられている。第1信号端子44Aは、例えば、第1電子部品4Aとしての送受信フィルタ17の入力端子である。第2信号端子44Bは、例えば、第1電子部品4Aとしての送受信フィルタ17の出力端子である。なお、第1信号端子44Aが送受信フィルタ17の出力端子で、第2信号端子44Bが送受信フィルタ17の入力端子であってもよい。
 (2)効果
 実施形態4に係る高周波モジュール1cにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態5)
 実施形態5に係る高周波モジュール1dは、図7に示すように、第1電子部品4Aにおける実装基板3側とは反対側の主面41に第1金属部材10Aが配置されている点で、実施形態1に係る高周波モジュール1(図3参照)と相違する。また、高周波モジュール1dは、第2電子部品4Bにおける実装基板3側とは反対側の主面41に第2金属部材10Bが配置されている点で、実施形態1に係る高周波モジュール1と相違する。
 (1)構成
 実施形態5に係る高周波モジュール1dは、図7に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1dは、樹脂層51と、金属電極層6と、を更に備える。また、高周波モジュール1dは、第1金属部材10Aと、第2金属部材10Bと、を更に備える。なお、実施形態5に係る高周波モジュール1dに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態5に係る高周波モジュール1dでは、図7に示すように、第1電子部品4Aにおける実装基板3側とは反対側の主面41に第1金属部材10Aが配置されている。また、高周波モジュール1dでは、第2電子部品4Bにおける実装基板3側とは反対側の主面41に第2金属部材10Bが配置されている。実装基板3の厚さ方向D1からの平面視において、第1金属部材10A及び第2金属部材10Bの各々は、四角形状であるが、四角形状に限定されない。また、実装基板3の厚さ方向D1からの平面視において、第1金属部材10Aは、第1電子部品4Aと同じ大きさであるが、第1電子部品4Aよりも大きくてもよいし、小さくてもよい。また、実装基板3の厚さ方向D1からの平面視において、第2金属部材10Bは、第2電子部品4Bと同じ大きさであるが、第2電子部品4Bよりも大きくてもよいし、小さくてもよい。また、第1金属部材10A及び第2金属部材10Bの材料は、例えば、銅又は銅合金である。第1金属部材10Aは、第1電子部品4Aにおける実装基板3側とは反対側の主面41に接合されていてもよいし、接しているだけでもよい。また、第2金属部材10Bは、第2電子部品4Bにおける実装基板3側とは反対側の主面41に接合されていてもよいし、接しているだけでもよい。第1金属部材10Aの材料と第2金属部材10Bの材料とは、同じであることが好ましいが、異なっていてもよい。
 実施形態5に係る高周波モジュール1dでは、図7に示すように、第1金属部材10Aにおける実装基板3側とは反対側の主面101が金属電極層6に接している。これにより、第1電子部品4Aは、第1金属部材10Aを介して金属電極層6に接続されている。その結果、第1電子部品4Aで発生する熱を、第1金属部材10Aを介して金属電極層6に放熱することが可能となる。また、高周波モジュール1dでは、図7に示すように、第2金属部材10Bにおける実装基板3側とは反対側の主面101が金属電極層6に接している。これにより、第2電子部品4Bは、第2金属部材10Bを介して金属電極層6に接続されている。その結果、第2電子部品4Bで発生する熱を、第2金属部材10Bを介して金属電極層6に放熱することが可能となる。
 実施形態5に係る高周波モジュール1dでは、金属電極層6は、実施形態1に係る高周波モジュール1と同様、貫通部61を有する。貫通部61の断面形状は、矩形状である。また、貫通部61は、実装基板3の厚さ方向D1に直交(交差)する一の方向である第3方向(第1方向D1及び第2方向D2と直交する方向)における実装基板3の全長にわたって形成されている。また、貫通部61は、図7に示すように、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に設けられている。第1信号端子44Aは、例えば、第1電子部品4Aとしての送受信フィルタ17の入力端子又は出力端子である。第2信号端子44Bは、例えば、第2電子部品4Bとしての送信フィルタ12Aの入力端子又は出力端子である。
 (2)効果
 実施形態5に係る高周波モジュール1dにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態6)
 実施形態6に係る高周波モジュール1eは、図8に示すように、貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1インダクタ131と第2インダクタ161との間に形成されている点で、実施形態1に係る高周波モジュール1(図3参照)と相違する。
 (1)構成
 実施形態6に係る高周波モジュール1eは、図8に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極(図示せず)と、を備える。また、高周波モジュール1eは、樹脂層(図示せず)と、金属電極層6と、を更に備える。なお、実施形態6に係る高周波モジュール1eに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態6に係る高周波モジュール1eでは、金属電極層6は、実施形態1に係る高周波モジュール1と同様、貫通部61を有する。貫通部61の断面形状は、矩形状である。実施形態6に係る高周波モジュール1eでは、図8に示すように、貫通部61は、実装基板3の厚さ方向(第2方向D2及び第3方向D3と直交する方向)からの平面視において、第1インダクタ131と第2インダクタ161との間に形成されている。第3方向D3における貫通部61の長さL2は、第3方向D3における第1電子部品4Aの長さL11より長く、かつ、第3方向D3における第2電子部品4Bの長さL12より長い。また、第3方向D3における貫通部61の長さL2は、第3方向D3における実装基板3の長さ(全長)L3より短い。
 第1インダクタ131は、例えば、出力整合回路13Aを構成するインダクタであって、第1電子部品4Aに相当する。すなわち、第1インダクタ131は、送信信号が通る信号経路(送信経路T1)に設けられているインダクタである。第1インダクタ131は、例えば、送信経路T1とグランドとの間に接続されている。第1インダクタ131を構成する第1電子部品4Aは、複数の接続部44を介して実装基板3の第1主面31に実装されている。実施形態6に係る高周波モジュール1eでは、複数の接続部44のうちの1つが第1信号端子44Aであって、第1信号端子44Aは、送信経路T1に接続される端子である。
 第2インダクタ161は、例えば、入力整合回路16Aを構成するインダクタであって、第2電子部品4Bに相当する。すなわち、第2インダクタ161は、受信信号が通る信号経路(受信経路R1)に設けられているインダクタである。第2インダクタ161は、例えば、受信経路R1とグランドとの間に接続されている。第2インダクタ161を構成する第2電子部品4Bは、複数の接続部44を介して実装基板3の第1主面31に実装されている。実施形態6に係る高周波モジュール1eでは、複数の接続部44のうちの1つが第2信号端子44Bであって、第2信号端子44Bは、受信経路R1に接続される端子である。
 (2)効果
 実施形態6に係る高周波モジュール1eにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態7)
 実施形態7に係る高周波モジュール1fは、図9に示すように、貫通部61が、実装基板3の厚さ方向D1からの平面視においてL字状に形成されている点で、実施形態1に係る高周波モジュール1(図3参照)と相違する。
 (1)構成
 実施形態7に係る高周波モジュール1fは、図9に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極(図示せず)と、を備える。また、高周波モジュール1fは、樹脂層(図示せず)と、金属電極層6と、を更に備える。なお、実施形態7に係る高周波モジュール1fに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態7に係る高周波モジュール1fでは、金属電極層6は、実施形態1に係る高周波モジュール1と同様、貫通部61を有する。貫通部61の断面形状は、矩形状である。また、貫通部61は、実装基板3の厚さ方向D1からの平面視においてL字状に形成されている。実施形態7に係る高周波モジュール1fでは、貫通部61は、図9に示すように、実装基板3の厚さ方向D1からの平面視において、第2電子部品4Bを囲むように形成されている。第2電子部品4Bは、例えば、受信フィルタ15Aである。また、第1電子部品4Aは、例えば、送信フィルタ12Aである。
 第1電子部品4Aは、第1信号端子44Aを有する。第1信号端子44Aは、第1電子部品4Aとしての送信フィルタ12Aの入力端子又は出力端子である。第2電子部品4Bは、第2信号端子44Bを有する。第2信号端子44Bは、第2電子部品4Bとしての受信フィルタ15Aの入力端子又は出力端子である。第1信号端子44A及び第2信号端子44Bの各々は、例えば、バンプである。実施形態7に係る高周波モジュール1fでは、貫通部61は、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。
 (2)効果
 実施形態7に係る高周波モジュール1fにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態8)
 実施形態8に係る高周波モジュール1gは、図10に示すように、送信経路T1に設けられているパワーアンプ11Aが第1電子部品4Aである点で、実施形態1に係る高周波モジュール1(図3参照)と相違する。また、高周波モジュール1gは、送信経路T2に設けられている送受信フィルタ17が第2電子部品4Bである点で、実施形態1に係る高周波モジュール1と相違する。
 (1)構成
 実施形態8に係る高周波モジュール1gは、図10に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1gは、樹脂層51と、金属電極層6と、を更に備える。なお、実施形態8に係る高周波モジュール1gに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態8に係る高周波モジュール1gでは、金属電極層6は、実施形態1に係る高周波モジュール1と同様、貫通部61を有する。貫通部61の断面形状は、矩形状である。また、貫通部61は、実装基板3の厚さ方向D1に直交(交差)する一の方向である第3方向(第1方向D1及び第2方向D2と直交する方向)における実装基板3の全長にわたって形成されている。実施形態8に係る高周波モジュール1gでは、貫通部61は、図10に示すように、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aと複数(図示例では2つ)の第2電子部品4Bとの間に位置している。
 第1電子部品4Aは、例えば、送信経路T1に設けられているパワーアンプ11Aである。第1電子部品4Aは、第1信号端子44Aを有する。第1信号端子44Aは、例えば、バンプである。第1信号端子44Aは、第1電子部品4Aとしてのパワーアンプ11Aの入力端子又は出力端子である。第1電子部品4Aにおける実装基板3側とは反対側の主面41は、金属電極層6に接している。これにより、第1電子部品4Aで発生した熱を、金属電極層6を介して放熱することが可能となる。
 ここで、第1電子部品4Aは、上述したように、パワーアンプ11Aである。実施形態1に係る高周波モジュール1のように、パワーアンプ11Aを構成する基板がガリウム砒素基板である場合、第1電子部品4Aにおける実装基板3側とは反対側の表面を切削することが困難である。そのため、パワーアンプ11Aを構成する基板は、シリコン基板、又は、シリコン基板とガリウム砒素基板とを貼り合わせた基板であることが好ましい。
 複数の第2電子部品4Bの各々は、例えば、送信経路T2に設けられている送受信フィルタ17、又は、送信経路T1に設けられている送信フィルタ12Aである。複数の第2電子部品4Bの各々は、第2信号端子44Bを有する。第2信号端子44Bは、例えば、バンプである。第2電子部品4Bが送受信フィルタ17である場合、第2信号端子44Bは、送受信フィルタ17の入力端子又は出力端子である。第2電子部品4Bが送信フィルタ12Aである場合、第2信号端子44Bは、送信フィルタ12Aの入力端子又は出力端子である。複数の第2電子部品4Bの各々における実装基板3側とは反対側の主面41は、金属電極層6に接している。これにより、各第2電子部品4Bで発生した熱を、金属電極層6を介して放熱することが可能となる。
 また、実施形態8に係る高周波モジュール1gでは、実装基板3は、貫通電極35Aを有する。貫通電極35Aは、実装基板3の厚さ方向D1に実装基板3を貫通している。貫通電極35Aは、第1電子部品4Aの接続部44とグランド端子86とを接続する。これにより、第1電子部品4Aとしてのパワーアンプ11Aは、パワーアンプ11Aで発生した熱を、貫通電極35Aを介して外部基板304に放熱することも可能となる。
 (2)効果
 実施形態8に係る高周波モジュール1gにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態9)
 実施形態9に係る高周波モジュール1hは、図11に示すように、第1電子部品4Aと第2電子部品4Bとの間に金属電極部材7が配置されている点で、実施形態1に係る高周波モジュール1(図3参照)と相違する。
 (1)構成
 実施形態9に係る高周波モジュール1hは、図11に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1hは、樹脂層51と、金属電極層6と、を更に備える。また、高周波モジュール1hは、金属電極部材7を更に備える。なお、実施形態9に係る高周波モジュール1hに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態9に係る高周波モジュール1hでは、金属電極層6は、実施形態1に係る高周波モジュール1と同様、貫通部61を有する。貫通部61の断面形状は、矩形状である。また、貫通部61は、実装基板3の厚さ方向D1に直交(交差)する一の方向である第3方向(第1方向D1及び第2方向D2と直交する方向)における実装基板3の全長にわたって形成されている。実施形態9に係る高周波モジュール1hでは、貫通部61は、図11に示すように、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aと第2電子部品4Bとの間に位置している。また、高周波モジュール1hでは、第1電子部品4Aにおける実装基板3側とは反対側の主面41の一部、及び、樹脂層51における実装基板3側とは反対側の主面の一部が、貫通部61を介して外部に露出している。
 第1電子部品4Aは、実施形態1に係る高周波モジュール1と同様、送受信フィルタ17である。第1電子部品4Aは、第1信号端子44Aを有する。第1信号端子44Aは、例えば、バンプである。第1信号端子44Aは、第1電子部品4Aとしての送受信フィルタ17の入力端子又は出力端子である。第1電子部品4Aにおける実装基板3側とは反対側の主面41は、金属電極層6に接している。これにより、第1電子部品4Aで発生した熱を、金属電極層6を介して放熱することが可能となる。
 第2電子部品4Bは、実施形態1に係る高周波モジュール1と同様、送信フィルタ12Aである。第2電子部品4Bは、第2信号端子44Bを有する。第2信号端子44Bは、例えば、バンプである。第2信号端子44Bは、第2電子部品4Bとしての送信フィルタ12Aの入力端子又は出力端子である。第2電子部品4Bにおける実装基板3側とは反対側の主面41は、金属電極層6に接している。これにより、第2電子部品4Bで発生した熱を、金属電極層6を介して放熱することが可能となる。
 実施形態9に係る高周波モジュール1hでは、貫通部61は、図11に示すように、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に位置している。
 金属電極部材7は、第1電子部品4Aと第2電子部品4Bとの間でアイソレーションをとるための部材である。金属電極部材7の材料は、例えば、銅又は銅合金である。金属電極部材7における実装基板3側とは反対側の端面は、貫通部61に対して第2電子部品4B側において金属電極層6に接している。すなわち、金属電極部材7は、実装基板3の厚さ方向D1からの平面視において、貫通部61と重なっていない。また、金属電極部材7における実装基板3側の端面は、実装基板3の厚さ方向D1に実装基板3を貫通する貫通電極35Bに接している。貫通電極35Bは、グランド端子86に接続されている。また、金属電極部材7は、第3方向(第1方向D1及び第2方向D2と直交する方向)における実装基板3の全長にわたって形成されている。
 また、実施形態9に係る高周波モジュール1hでは、金属電極層6は、実装基板3のグランド層34に接していないが、実装基板3の外周面33及び樹脂層51の外周面を覆う外周部分においてグランド端子86に接している。
 したがって、実施形態9に係る高周波モジュール1hでは、第1電子部品4Aについて、第1電子部品4Aで発生した熱を、金属電極層6及びグランド端子86を介して外部基板304に放熱することが可能となる。また、第2電子部品4Bについては、第2電子部品4Bで発生した熱を、金属電極層6及びグランド端子86を介して外部基板304に放熱することが可能となると共に、金属電極層6、金属電極部材7、貫通電極35B及びグランド端子86を介して外部基板304に放熱することが可能となる。
 (2)効果
 実施形態9に係る高周波モジュール1hにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態10)
 実施形態10に係る高周波モジュール1iは、図12に示すように、金属電極部材7が、貫通部61に対して第1電子部品4A側において金属電極層6に接している点で、実施形態9に係る高周波モジュール1h(図11参照)と相違する。
 (1)構成
 実施形態10に係る高周波モジュール1iは、図12に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1iは、樹脂層51と、金属電極層6と、を更に備える。また、高周波モジュール1iは、金属電極部材7を更に備える。なお、実施形態10に係る高周波モジュール1iに関し、実施形態9に係る高周波モジュール1hと同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態10に係る高周波モジュール1iでは、金属電極部材7は、図12に示すように、金属電極層6の貫通部61に対して第1電子部品4A側において金属電極層6に接している。すなわち、実施形態10に係る高周波モジュール1iにおいても、金属電極部材7は、実装基板3の厚さ方向D1からの平面視において、貫通部61と重なっていない。
 実施形態10に係る高周波モジュール1iでは、第1電子部品4Aについては、第1電子部品4Aで発生した熱を、金属電極層6及びグランド端子86を介して外部基板304に放熱することが可能となると共に、金属電極層6、金属電極部材7、貫通電極35B及びグランド端子86を介して外部基板304に放熱することが可能となる。また、第2電子部品4Bについては、第2電子部品4Bで発生した熱を、金属電極層6及びグランド端子86を介して外部基板304に放熱することが可能となる。
 (2)効果
 実施形態10に係る高周波モジュール1iにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態11)
 実施形態11に係る高周波モジュール1jは、図13に示すように、金属電極部材7が金属電極層6から露出している点で、実施形態9に係る高周波モジュール1h(図11参照)と相違する。
 (1)構成
 実施形態11に係る高周波モジュール1jは、図13に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1jは、樹脂層51と、金属電極層6と、を更に備える。また、高周波モジュール1jは、金属電極部材7を更に備える。なお、実施形態11に係る高周波モジュール1iに関し、実施形態9に係る高周波モジュール1hと同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態11に係る高周波モジュール1jでは、金属電極部材7は、図13に示すように、実装基板3の厚さ方向D1において金属電極層6から露出している。より詳細には、金属電極部材7は、金属電極層6の貫通部61を通して金属電極層6から露出している。すなわち、金属電極部材7は、実装基板3の厚さ方向D1からの平面視において、貫通部61と重なっている。また、金属電極部材7の外周面73における実装基板3側とは反対側の端部は、貫通部61に対して第2電子部品4B側において金属電極層6に接している。
 (2)効果
 実施形態11に係る高周波モジュール1jにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (実施形態12)
 実施形態12に係る高周波モジュール1kは、図14に示すように、実装基板3の第1主面31及び第2主面32それぞれに電子部品4が配置されている点で、実施形態1に係る高周波モジュール1と相違する。
 (1)構成
 実施形態12に係る高周波モジュール1kは、図14に示すように、実装基板3と、複数の電子部品4と、複数の外部接続電極8と、を備える。また、高周波モジュール1kは、樹脂層51(以下、「第1樹脂層51」という)と、金属電極層6と、を更に備える。また、高周波モジュール1kは、第2樹脂層52と、複数の接続端子9と、を更に備える。なお、実施形態12に係る高周波モジュール1kに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態12に係る高周波モジュール1kでは、実装基板3の第1主面31及び第2主面32それぞれに電子部品4が配置されている。図14の例では、複数の電子部品4のうち実装基板3の第1主面31に配置されている電子部品4は、パワーアンプ11A、送信フィルタ12A、送受信フィルタ17、整合回路19、第1スイッチ21及び第2スイッチ22である。また、図14の例では、複数の電子部品4のうち実装基板3の第2主面32に配置されている電子部品4は、ローノイズアンプ14A及びコントローラ20である。
 第1樹脂層51は、複数の電子部品4のうち実装基板3の第1主面31に配置されている電子部品4を覆っている。ここで、第1樹脂層51は、実装基板3の第1主面31に配置されている電子部品4の外周面43を覆っている。また、第1樹脂層51は、実装基板3の第1主面31に実装されている電子部品4のうち第1電子部品4A及び第2電子部品4B以外の残りの電子部品4における実装基板3側とは反対側の主面41を覆っている。
 第2樹脂層52は、複数の電子部品4のうち実装基板3の第2主面32に配置されている電子部品4及び複数の接続端子9を覆っている。ここで、第2樹脂層52は、実装基板3の第2主面32に配置されている電子部品4の外周面43及び複数の接続端子9の外周面を覆っている。第2樹脂層52の材料は、第1樹脂層51の材料と同じであってもよいし、異なっていてもよい。
 複数の接続端子9は、実装基板3の第2主面32に配置されている。複数の接続端子9は、実装基板3の第2主面32上に設けられた柱状(例えば、円柱状)の電極である。複数の接続端子9の材料は、例えば、金属(例えば、銅、銅合金等)である。複数の接続端子9の各々は、実装基板3の厚さ方向D1において、実装基板3の第2主面32に接合されている基端部と、基端部とは反対側の先端部とを有する。複数の接続端子9の各々の先端部は、例えば、金めっき層を含んでいてもよい。複数の接続端子9は、実装基板3とグランド端子86とを接続するための端子である。
 実施形態12に係る高周波モジュール1kでは、実装基板3は、図14に示すように、複数のグランド層34を有する。複数のグランド層34の各々における外周面の少なくとも一部は、金属電極層6に接している。これにより、金属電極層6の電位をグランド層34の電位と同じにすることができる。
 実施形態12に係る高周波モジュール1kでは、金属電極層6は、実施形態1に係る高周波モジュール1と同様、貫通部61を有する。貫通部61の断面形状は、矩形状である。また、貫通部61は、実装基板3の厚さ方向D1に直交(交差)する一の方向である第3方向(第1方向D1及び第2方向D2と直交する方向)における実装基板3の全長にわたって形成されている。実施形態12に係る高周波モジュール1kでは、貫通部61は、図14に示すように、実装基板3の厚さ方向D1からの平面視において、第1電子部品4Aの第1信号端子44Aと第2電子部品4Bの第2信号端子44Bとの間に位置している。
 (2)効果
 実施形態12に係る高周波モジュール1kにおいても、実施形態1に係る高周波モジュール1と同様、金属電極層6の貫通部61が、実装基板3の厚さ方向D1からの平面視において、第1信号端子44Aと第2信号端子44Bとの間に位置している。これにより、第1信号端子44Aと第2信号端子44Bとの間のアイソレーションの低下を抑制することが可能となる。
 (変形例)
 上述の実施形態1~12等は、本発明の様々な実施形態の一つに過ぎない。上述の実施形態1~12等は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能であり、互いに異なる実施形態の互いに異なる構成要素を適宜組み合わせてもよい。
 実施形態1~12に係る複数の送信フィルタ12A,12B、複数の受信フィルタ15A,15B及び送受信フィルタ17の各々は、表面弾性波フィルタに限らず、例えば、BAW(Bulk Acoustic Wave)フィルタであってもよい。BAWフィルタにおける共振子は、例えば、FBAR(Film Bulk Acoustic Resonator)又はSMR(Solidly Mounted Resonator)である。BAWフィルタは、基板を有している。基板は、例えば、シリコン基板である。
 また、実施形態1~12に係る複数の送信フィルタ12A,12B、複数の受信フィルタ15A,15B及び送受信フィルタ17の各々は、ラダー型フィルタに限らず、例えば、縦結合共振子型弾性表面波フィルタでもよい。
 また、上述の弾性波フィルタは、表面弾性波又はバルク弾性波を利用する弾性波フィルタであるが、これに限らず、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。
 また、実施形態1に係る通信装置300は、高周波モジュール1の代わりに、高周波モジュール1a~1kのいずれかを備えてもよい。
 本明細書において、「要素は、基板の第1主面に配置されている」は、要素が基板の第1主面上に直接実装されている場合だけでなく、基板で隔された第1主面側の空間及び第2主面側の空間のうち、第1主面側の空間に要素が配置されている場合を含む。つまり、「要素は、基板の第1主面に配置されている」は、要素が基板の第1主面上に、他の回路素子又は電極等を介して実装されている場合を含む。要素は、例えば、電子部品4であるが、電子部品4に限定されない。基板は、例えば、実装基板3である。基板が実装基板3である場合、第1主面は第1主面31であり、第2主面は第2主面32である。
 本明細書において、「要素は、基板の第2主面に配置されている」は、要素が基板の第2主面上に直接実装されている場合だけでなく、基板で隔された第1主面側の空間及び第2主面側の空間のうち、第2主面側の空間に要素が配置されている場合を含む。つまり、「要素は、基板の第2主面に配置されている」は、要素が基板の第2主面上に、他の回路素子又は電極等を介して実装されている場合を含む。要素は、例えば、電子部品4及び接続端子9であるが、電子部品4及び接続端子9に限定されない。基板は、例えば、実装基板3である。基板が実装基板3である場合、第1主面は第1主面31であり、第2主面は第2主面32である。
 本明細書において、「第1要素は、基板の厚さ方向からの平面視で、第2要素と重なっている」とは、基板の厚さ方向からの平面視で、第1要素の全部が第2要素の全部と重なっている場合と、第1要素の全部が第2要素の一部と重なっている場合と、第1要素の一部が第2要素の全部と重なっている場合と、第1要素の一部が第2要素の一部と重なっている場合とを含む。要するに、「第1要素は、基板の厚さ方向からの平面視で、第2要素と重なっている」とは、「第1要素の少なくとも一部が第2要素の少なくとも一部と重なっている」ことをいう。第1要素は、例えば、金属電極部材7である。第2要素は、例えば、金属電極層6の貫通部61である。基板は、例えば、実装基板3である。
 本明細書において、「基板の厚さ方向からの平面視において、第1要素と第2要素との間に第3要素が配置されている」とは、基板の厚さ方向からの平面視において第1要素内の任意の点と第2要素内の任意の点とを結ぶ複数の線分の少なくとも1つが第3要素の領域を通ることを意味する。また、基板の厚さ方向からの平面視とは、基板及び基板に実装された電子部品を基板の主面に平行な平面に正投影して見ることを意味する。基板は、例えば、実装基板3である。
 (態様)
 本明細書には、以下の態様が開示されている。
 第1の態様に係る高周波モジュール(1;1a;1b;1e~1k)は、実装基板(3)と、第1電子部品(4A)及び第2電子部品(4B)と、樹脂層(51)と、金属電極層(6)と、を備える。実装基板(3)は、互いに対向する第1主面(31)及び第2主面(32)を有する。第1電子部品(4A)及び第2電子部品(4B)は、実装基板(3)の第1主面(31)に配置されている。樹脂層(51)は、実装基板(3)の第1主面(31)に配置されており、第1電子部品(4A)の外周面(43)の少なくとも一部及び第2電子部品(4B)の外周面(43)の少なくとも一部を覆っている。金属電極層(6)は、樹脂層(51)の少なくとも一部を覆っており、実装基板(3)の厚さ方向(D1)からの平面視において第1電子部品(4A)の少なくとも一部及び第2電子部品(4B)の少なくとも一部に重なっている。第1電子部品(4A)における実装基板(3)側とは反対側の主面(41)の少なくとも一部は、金属電極層(6)に接している。第1電子部品(4A)は、第1信号端子(44A)を有する。第2電子部品(4B)は、第2信号端子(44B)を有する。金属電極層(6)は、実装基板(3)の厚さ方向(D1)からの平面視において、第1信号端子(44A)と第2信号端子(44B)との間に貫通部(61)を有する。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションの低下を抑制することが可能となる。また、この態様によれば、第1電子部品(4A)で発生する熱を、金属電極層(6)を介して放熱することが可能となる。
 第2の態様に係る高周波モジュール(1)では、第1の態様において、第2電子部品(4B)における実装基板(3)側とは反対側の主面(41)の少なくとも一部は、金属電極層(6)に接している。
 この態様によれば、第2電子部品(4B)で発生する熱を、金属電極層(6)を介して放熱することが可能となる。
 第3の態様に係る高周波モジュール(1d)は、実装基板(3)と、第1電子部品(4A)及び第2電子部品(4B)と、第1金属部材(10A)と、第2金属部材(10B)と、樹脂層(51)と、金属電極層(6)と、を備える。実装基板(3)は、互いに対向する第1主面(31)及び第2主面(32)を有する。第1電子部品(4A)及び第2電子部品(4B)は、実装基板(3)の第1主面(31)に配置されている。第1金属部材(10A)は、第1電子部品(4A)における実装基板(3)側とは反対側の主面(41)に配置されている。第2金属部材(10B)は、第2電子部品(4B)における実装基板(3)側とは反対側の主面(41)に配置されている。樹脂層(51)は、実装基板(3)の第1主面(31)に配置されており、第1電子部品(4A)の外周面(43)の少なくとも一部、第2電子部品(4B)の外周面(43)の少なくとも一部、第1金属部材(10A)の外周面(103)の少なくとも一部及び第2金属部材(10B)の外周面(103)の少なくとも一部を覆っている。金属電極層(6)は、樹脂層(51)の少なくとも一部を覆っており、実装基板(3)の厚さ方向(D1)からの平面視において第1金属部材(10A)の少なくとも一部及び第2金属部材(10B)の少なくとも一部に重なっている。第1金属部材(10A)における実装基板(3)側とは反対側の主面(101)の少なくとも一部は、金属電極層(6)に接している。第2金属部材(10B)における実装基板(3)側とは反対側の主面(101)の少なくとも一部は、金属電極層(6)に接している。第1電子部品(4A)は、第1信号端子(44A)を有する。第2電子部品(4B)は、第2信号端子(44B)を有する。金属電極層(6)は、実装基板(3)の厚さ方向(D1)からの平面視において、第1信号端子(44A)と第2信号端子(44B)との間に貫通部(61)を有する。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションの低下を抑制することが可能となる。また、第1電子部品(4A)及び第2電子部品(4B)で発生する熱を、第1金属部材(10A)、第2金属部材(10B)及び金属電極層(6)を介して放熱することが可能となる。
 第4の態様に係る高周波モジュール(1;1a~1k)では、第1~第3の態様のいずれか1つにおいて、第1電子部品(4A)及び第2電子部品(4B)の各々は、送信信号が通る信号経路(T1,T2)に設けられている高周波部品(4A,4B)である。
 この態様によれば、高周波部品(4A,4B)の発熱の影響を抑制することが可能となる。
 第5の態様に係る高周波モジュール(1;1a~1k)では、第4の態様において、高周波部品(4A,4B)は、送信フィルタ(12A,12B)、送受信フィルタ(17)又はパワーアンプ(11A)である。
 第6の態様に係る高周波モジュール(1e)では、第1~第3の態様のいずれか1つにおいて、第1電子部品(4A)は、送信信号が通る信号経路(T1)に設けられている第1インダクタ(131)である。第2電子部品(4B)は、受信信号が通る信号経路(R1)に設けられている第2インダクタ(161)である。
 この態様によれば、第1インダクタ(131)と第2インダクタ(161)との間のアイソレーションの低下を抑制することが可能となる。
 第7の態様に係る高周波モジュール(1;1a~1k)では、第1~第6の態様のいずれか1つにおいて、実装基板(3)の厚さ方向(D1)に交差する一の方向(D3)における貫通部(61)の長さ(L2)は、一の方向(D3)における第1電子部品(4A)の長さ(L11)より長い。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションをより効果的に抑制することが可能となる。
 第8の態様に係る高周波モジュール(1;1a~1k)では、第1~第7の態様のいずれか1つにおいて、実装基板(3)の厚さ方向(D1)に交差する一の方向(D3)における貫通部(61)の長さ(L2)は、一の方向(D3)における第2電子部品(4B)の長さ(L12)より長い。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションをより効果的に抑制することが可能となる。
 第9の態様に係る高周波モジュール(1c)は、実装基板(3)と、電子部品(4A)と、樹脂層(51)と、金属電極層(6)と、を備える。実装基板(3)は、互いに対向する第1主面(31)及び第2主面(32)を有する。電子部品(4A)は、実装基板(3)の第1主面(31)に配置されている。樹脂層(51)は、実装基板(3)の第1主面(31)に配置されており、電子部品(4A)の外周面(43)の少なくとも一部を覆っている。金属電極層(6)は、樹脂層(51)の少なくとも一部を覆っており、実装基板(3)の厚さ方向(D1)からの平面視において電子部品(4A)の少なくとも一部に重なっている。電子部品(4A)における実装基板(3)側とは反対側の主面(41)の少なくとも一部は、金属電極層(6)に接している。電子部品(4A)は、第1信号端子(44A)と、第2信号端子(44B)と、を有する。金属電極層(6)は、実装基板(3)の厚さ方向(D1)からの平面視において、第1信号端子(44A)と第2信号端子(44B)との間に貫通部(61)を有する。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションの低下を抑制することが可能となる。
 第10の態様に係る高周波モジュール(1;1a~1d;1g~1k)では、第1~第9の態様のいずれか1つにおいて、貫通部(61)は、実装基板(3)の厚さ方向(D1)に交差する一の方向(D3)において、実装基板(3)の全長(L3)にわたって形成されている。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションをより効果的に抑制することが可能となる。
 第11の態様に係る高周波モジュール(1f)では、第1~第9の態様のいずれか1つにおいて、貫通部(61)は、実装基板(3)の厚さ方向(D1)からの平面視において、L字状に形成されている。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションをより効果的に抑制することが可能となる。
 第12の態様に係る高周波モジュール(1j)は、第1~第11の態様のいずれか1つにおいて、金属電極部材(7)を更に備える。金属電極部材(7)は、実装基板(3)の第1主面(31)に配置されており、グランドに接続されている。金属電極部材(7)は、実装基板(3)の厚さ方向(D1)からの平面視において、貫通部(61)と重なっている。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションをより効果的に抑制することが可能となる。
 第13の態様に係る高周波モジュール(1j)では、第12の態様において、金属電極部材(7)は、実装基板(3)の厚さ方向(D1)において、金属電極層(6)から露出している。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションをより効果的に抑制することが可能となる。
 第14の態様に係る高周波モジュール(1h;1i)は、第1~第11の態様のいずれか1つにおいて、金属電極部材(7)を更に備える。金属電極部材(7)は、実装基板(3)の第1主面(31)に配置されており、グランドに接続されている。金属電極部材(7)は、実装基板(3)の厚さ方向(D1)からの平面視において、貫通部(61)と重なっていない。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションをより効果的に抑制することが可能となる。
 第15の態様に係る通信装置(300)は、第1~第14の態様のいずれか1つに係る高周波モジュール(1;1a~1k)と、信号処理回路(301)と、を備える。信号処理回路(301)は、高周波モジュール(1;1a~1k)に接続されている。
 この態様によれば、第1信号端子(44A)と第2信号端子(44B)との間のアイソレーションの低下を抑制することが可能となる。
1,1a~1k 高周波モジュール
10A 第1金属部材
10B 第2金属部材
101 主面
103 外周面
11A,11B パワーアンプ
12A,12B 送信フィルタ
13A,13B 出力整合回路
131 第1インダクタ
14A,14B ローノイズアンプ
15A,15B 受信フィルタ
16A,16B 入力整合回路
161 第2インダクタ
17 送受信フィルタ
18A,18B,18C 整合回路
19 整合回路
20 コントローラ
21 第1スイッチ
22 第2スイッチ
23 第3スイッチ
24 第4スイッチ
3 実装基板
31 第1主面
32 第2主面
33 外周面
34 グランド層
35 ビア導体
4 電子部品
4A 第1電子部品(高周波部品)
4B 第2電子部品(高周波部品)
41 主面
42 主面
43 外周面
44 接続部
44A 第1信号端子
44B 第2信号端子
51 樹脂層
52 第2樹脂層
6 金属電極層
61 貫通部
7 金属電極部材
73 外周面
8 外部接続電極
81 アンテナ端子
82A,82B 信号入力端子
83A,83B 信号出力端子
84 制御端子
85 接続部
86 グランド端子
9 接続端子
300 通信装置
301 信号処理回路
302 RF信号処理回路
303 ベースバンド信号処理回路
304 外部基板
305 外部接続電極
306 主面
D1 厚さ方向(第1方向)
D2 第2方向
D3 一の方向(第3方向)
L11 第1電子部品の長さ
L12 第2電子部品の長さ
L2 貫通部の長さ
L3 基板の全長
T1,T2 送信経路
R1,R2 受信経路
T11 第1送信経路
T12 第2送信経路
R11 第1受信経路
R12 第2受信経路

Claims (15)

  1.  互いに対向する第1主面及び第2主面を有する実装基板と、
     前記実装基板の前記第1主面に配置されている第1電子部品及び第2電子部品と、
     前記実装基板の前記第1主面に配置されており、前記第1電子部品の外周面の少なくとも一部及び前記第2電子部品の外周面の少なくとも一部を覆っている樹脂層と、
     前記樹脂層の少なくとも一部を覆っており、前記実装基板の厚さ方向からの平面視において前記第1電子部品の少なくとも一部及び前記第2電子部品の少なくとも一部に重なっている金属電極層と、を備え、
     前記第1電子部品における前記実装基板側とは反対側の主面の少なくとも一部は、前記金属電極層に接しており、
     前記第1電子部品は、第1信号端子を有し、
     前記第2電子部品は、第2信号端子を有し、
     前記金属電極層は、前記実装基板の前記厚さ方向からの平面視において、前記第1信号端子と前記第2信号端子との間に貫通部を有する、
     高周波モジュール。
  2.  前記第2電子部品における前記実装基板側とは反対側の主面の少なくとも一部は、前記金属電極層に接している、
     請求項1に記載の高周波モジュール。
  3.  互いに対向する第1主面及び第2主面を有する実装基板と、
     前記実装基板の前記第1主面に配置されている第1電子部品及び第2電子部品と、
     前記第1電子部品における前記実装基板側とは反対側の主面に配置されている第1金属部材と、
     前記第2電子部品における前記実装基板側とは反対側の主面に配置されている第2金属部材と、
     前記実装基板の前記第1主面に配置されており、前記第1電子部品の外周面の少なくとも一部、前記第2電子部品の外周面の少なくとも一部、前記第1金属部材の外周面の少なくとも一部及び前記第2金属部材の外周面の少なくとも一部を覆っている樹脂層と、
     前記樹脂層の少なくとも一部を覆っており、前記実装基板の厚さ方向からの平面視において前記第1金属部材の少なくとも一部及び前記第2金属部材の少なくとも一部に重なっている金属電極層と、を備え、
     前記第1金属部材における前記実装基板側とは反対側の主面の少なくとも一部は、前記金属電極層に接しており、
     前記第2金属部材における前記実装基板側とは反対側の主面の少なくとも一部は、前記金属電極層に接しており、
     前記第1電子部品は、第1信号端子を有し、
     前記第2電子部品は、第2信号端子を有し、
     前記金属電極層は、前記実装基板の前記厚さ方向からの平面視において、前記第1信号端子と前記第2信号端子との間に貫通部を有する、
     高周波モジュール。
  4.  前記第1電子部品及び前記第2電子部品の各々は、送信信号が通る信号経路に設けられている高周波部品である、
     請求項1~3のいずれか1項に記載の高周波モジュール。
  5.  前記高周波部品は、送信フィルタ、送受信フィルタ又はパワーアンプである、
     請求項4に記載の高周波モジュール。
  6.  前記第1電子部品は、送信信号が通る信号経路に設けられている第1インダクタであり、
     前記第2電子部品は、受信信号が通る信号経路に設けられている第2インダクタである、
     請求項1~3のいずれか1項に記載の高周波モジュール。
  7.  前記実装基板の前記厚さ方向に交差する一の方向における前記貫通部の長さは、前記一の方向における前記第1電子部品の長さより長い、
     請求項1~6のいずれか1項に記載の高周波モジュール。
  8.  前記実装基板の前記厚さ方向に交差する一の方向における前記貫通部の長さは、前記一の方向における前記第2電子部品の長さより長い、
     請求項1~7のいずれか1項に記載の高周波モジュール。
  9.  互いに対向する第1主面及び第2主面を有する実装基板と、
     前記実装基板の前記第1主面に配置されている電子部品と、
     前記実装基板の前記第1主面に配置されており、前記電子部品の外周面の少なくとも一部を覆っている樹脂層と、
     前記樹脂層の少なくとも一部を覆っており、前記実装基板の厚さ方向からの平面視において前記電子部品の少なくとも一部に重なっている金属電極層と、を備え、
     前記電子部品における前記実装基板側とは反対側の主面の少なくとも一部は、前記金属電極層に接しており、
     前記電子部品は、
      第1信号端子と、
      第2信号端子と、を有し、
     前記金属電極層は、前記実装基板の前記厚さ方向からの平面視において、前記第1信号端子と前記第2信号端子との間に貫通部を有する、
     高周波モジュール。
  10.  前記貫通部は、前記実装基板の前記厚さ方向に交差する一の方向において、前記実装基板の全長にわたって形成されている、
     請求項1~9のいずれか1項に記載の高周波モジュール。
  11.  前記貫通部は、前記実装基板の前記厚さ方向からの平面視において、L字状に形成されている、
     請求項1~9のいずれか1項に記載の高周波モジュール。
  12.  前記実装基板の前記第1主面に配置されており、グランドに接続されている金属電極部材を更に備え、
     前記金属電極部材は、前記実装基板の前記厚さ方向からの平面視において、前記貫通部と重なっている、
     請求項1~11のいずれか1項に記載の高周波モジュール。
  13.  前記金属電極部材は、前記実装基板の前記厚さ方向において、前記金属電極層から露出している、
     請求項12に記載の高周波モジュール。
  14.  前記実装基板の前記第1主面に配置されており、グランドに接続されている金属電極部材を更に備え、
     前記金属電極部材は、前記実装基板の前記厚さ方向からの平面視において、前記貫通部と重なっていない、
     請求項1~11のいずれか1項に記載の高周波モジュール。
  15.  請求項1~14のいずれか1項に記載の高周波モジュールと、
     前記高周波モジュールに接続されている信号処理回路と、を備える、
     通信装置。
PCT/JP2022/017827 2021-04-26 2022-04-14 高周波モジュール及び通信装置 WO2022230682A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/492,051 US20240047377A1 (en) 2021-04-26 2023-10-23 High-frequency module and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-074437 2021-04-26
JP2021074437 2021-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/492,051 Continuation US20240047377A1 (en) 2021-04-26 2023-10-23 High-frequency module and communication device

Publications (1)

Publication Number Publication Date
WO2022230682A1 true WO2022230682A1 (ja) 2022-11-03

Family

ID=83847441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017827 WO2022230682A1 (ja) 2021-04-26 2022-04-14 高周波モジュール及び通信装置

Country Status (2)

Country Link
US (1) US20240047377A1 (ja)
WO (1) WO2022230682A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117196A1 (ja) * 2015-01-21 2016-07-28 株式会社村田製作所 電力増幅モジュール
WO2018194012A1 (ja) * 2017-04-19 2018-10-25 株式会社村田製作所 モジュール
WO2020017582A1 (ja) * 2018-07-20 2020-01-23 株式会社村田製作所 モジュール
JP2020102693A (ja) * 2018-12-20 2020-07-02 株式会社村田製作所 高周波モジュールおよび通信装置
JP2020113559A (ja) * 2017-03-30 2020-07-27 株式会社村田製作所 回路モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117196A1 (ja) * 2015-01-21 2016-07-28 株式会社村田製作所 電力増幅モジュール
JP2020113559A (ja) * 2017-03-30 2020-07-27 株式会社村田製作所 回路モジュール
WO2018194012A1 (ja) * 2017-04-19 2018-10-25 株式会社村田製作所 モジュール
WO2020017582A1 (ja) * 2018-07-20 2020-01-23 株式会社村田製作所 モジュール
JP2020102693A (ja) * 2018-12-20 2020-07-02 株式会社村田製作所 高周波モジュールおよび通信装置

Also Published As

Publication number Publication date
US20240047377A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
CN114144976B (zh) 高频模块和通信装置
WO2021006020A1 (ja) 高周波モジュール及び通信装置
WO2021002454A1 (ja) 高周波モジュール及び通信装置
CN213585766U (zh) 高频模块和通信装置
WO2021124691A1 (ja) 高周波モジュール及び通信装置
WO2021002157A1 (ja) 高周波モジュール及び通信装置
US11881879B2 (en) Radio-frequency module and communication device
US20240105628A1 (en) Radio frequency module and communication apparatus
CN114731170B (zh) 高频模块以及通信装置
US20230283306A1 (en) High frequency module and communication apparatus
WO2023026812A1 (ja) 高周波モジュール、通信装置及び高周波モジュールの製造方法
US20220123728A1 (en) Radio frequency module, communication device, and acoustic wave device
US20220085836A1 (en) Radio frequency module and communication device
WO2021251217A1 (ja) 高周波モジュール及び通信装置
WO2022230682A1 (ja) 高周波モジュール及び通信装置
JP2021052248A (ja) 高周波モジュール及び通信装置
WO2022185692A1 (ja) 高周波モジュール及び通信装置
WO2021117294A1 (ja) 高周波モジュール及び通信装置
WO2022145412A1 (ja) 高周波モジュール及び通信装置
US11368177B2 (en) Radio frequency module and communication device
WO2023047957A1 (ja) 高周波モジュール、及び、通信装置
WO2022259763A1 (ja) 高周波モジュール、通信装置及び高周波モジュールの製造方法
WO2021157177A1 (ja) 高周波モジュール及び通信装置
JP2022157185A (ja) 高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795596

Country of ref document: EP

Kind code of ref document: A1