WO2022230648A1 - Ultrasonic flaw detection device - Google Patents

Ultrasonic flaw detection device Download PDF

Info

Publication number
WO2022230648A1
WO2022230648A1 PCT/JP2022/017498 JP2022017498W WO2022230648A1 WO 2022230648 A1 WO2022230648 A1 WO 2022230648A1 JP 2022017498 W JP2022017498 W JP 2022017498W WO 2022230648 A1 WO2022230648 A1 WO 2022230648A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
wedge
ultrasonic sensor
flaw detector
coordinate system
Prior art date
Application number
PCT/JP2022/017498
Other languages
French (fr)
Japanese (ja)
Inventor
祥 山口
聡 北澤
泰広 仁平
和也 江原
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2022230648A1 publication Critical patent/WO2022230648A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison

Definitions

  • the present invention relates to an ultrasonic flaw detector.
  • An ultrasonic flaw detector is one of the non-destructive inspection devices for detecting defects in an object.
  • the ultrasonic flaw detector is equipped with an ultrasonic sensor.
  • the ultrasonic sensor transmits ultrasonic waves to the inside of the subject. Further, when a defect exists inside the subject, the ultrasonic sensor receives ultrasonic waves reflected by the defect. Based on the reception result of this ultrasonic sensor, it is possible to obtain the dimensions of the defect and the position of the defect in a relative coordinate system with the ultrasonic sensor as a reference. By further acquiring the position of the ultrasonic sensor, it is possible to acquire the position of the defect in the subject.
  • Patent Document 1 discloses an encoder that measures the position of an ultrasonic sensor (object).
  • This encoder includes a guide rail extending in the moving direction of the ultrasonic sensor, a holder that holds the ultrasonic sensor and is movable along the guide rail, a position sensor provided on the holder, and an arithmetic unit.
  • the guide rail has a plurality of reflectors spaced apart from each other in the direction of travel of the ultrasonic sensor.
  • the position sensor transmits ultrasonic waves into the interior of the guide rail and receives ultrasonic waves reflected by the reflector.
  • the computing device computes the position of the ultrasonic sensor based on the reception result of the position sensor.
  • a position sensor for detecting the position of the ultrasonic sensor is used in addition to the ultrasonic sensor for detecting defects in the object.
  • the number of parts increases, resulting in an increase in inspection preparation time.
  • An object of the present invention is to provide an ultrasonic flaw detector that can acquire the position of a defect in an object without using another sensor that detects the position of the ultrasonic sensor.
  • the present invention provides an ultrasonic sensor having a plurality of piezoelectric elements and capable of varying the transmission range of ultrasonic waves, a wedge interposed between the ultrasonic sensor and the subject, and
  • an ultrasonic flaw detection apparatus comprising a control device that controls transmission and reception of ultrasonic waves by an ultrasonic sensor, and a computer that acquires information on defects of the object based on the reception result of the ultrasonic sensor
  • the wedge has a reflection source formed therein to reflect an ultrasonic wave
  • the computer based on the reception result of the ultrasonic sensor, determines the reflection source and the reflection source in a relative coordinate system with the ultrasonic sensor as a reference.
  • the positional relationship of the defects is calculated, and the position of the defect in the absolute coordinate system is calculated based on the positional relationship and the position of the reflection source in the absolute coordinate system with the object as a reference.
  • the present invention it is possible to acquire the position of the defect in the subject without using another sensor that detects the position of the ultrasonic sensor.
  • FIG. 1 is a schematic diagram showing the configuration of an ultrasonic flaw detector according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view according to section II-II of FIG. 1
  • FIG. 4 is a flow chart showing the operation of the ultrasonic flaw detector according to the first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the configuration of an ultrasonic flaw detector according to a second embodiment of the present invention
  • FIG. 10 is a schematic diagram showing the configuration of an ultrasonic flaw detector in a modified example of the present invention
  • a first embodiment of the present invention will be described with reference to the drawings.
  • a case of conducting a flaw detection inspection of piping will be described as an example.
  • FIG. 1 is a schematic diagram showing the configuration of the ultrasonic flaw detector in this embodiment.
  • FIG. 2 is a cross-sectional view along section II--II of FIG.
  • the ultrasonic flaw detection apparatus of this embodiment includes an ultrasonic sensor 1, a wedge 2 interposed between the ultrasonic sensor 1 and a pipe 100 (subject), and a control device for controlling transmission and reception of ultrasonic waves by the ultrasonic sensor 1. 3, a computer 4 for acquiring information on defects 101 of the pipe 100 based on the reception result of the ultrasonic sensor 1, and a display device 5.
  • the inner surface of the wedge 2 (in other words, the contact surface with the pipe 100) is formed with a curved surface according to the shape of the pipe 100, and the outer surface of the wedge 2 (in other words, the contact surface with the ultrasonic sensor 1) is an ultrasonic sensor. It is formed in a plane in accordance with the shape of the sensor 1 .
  • the wedge 2 is attached to the outer surface of the pipe 100 so that the end face on one side (left side in FIG. 1) overlaps with the reference point O of the pipe 100 .
  • the reference point O of the pipe 100 is the origin
  • the axial direction of the pipe 100 is the X axis
  • the radial direction of the pipe 100 (vertical direction in FIG. 1) is defined as the Z-axis.
  • the ultrasonic sensor 1 is arranged on the outer surface of the wedge 2 so that it can be moved in the axial direction of the pipe 100 (horizontal direction in FIG. 1) by a moving mechanism (not shown) or by an inspector.
  • the center point o of the ultrasonic sensor 1 is the origin
  • the axial direction of the pipe 100 is the x axis
  • the radial direction of the pipe 100 is the z axis.
  • a coordinate system is defined as
  • the ultrasonic sensor 1 has a plurality of piezoelectric elements 6 arranged in the axial direction of the pipe 100, and is configured so that the transmission range of ultrasonic waves can be varied.
  • the piezoelectric element 6 is oscillated by a drive signal, which will be described later, and transmits ultrasonic waves. Also, the piezoelectric element 6 receives the reflected ultrasonic wave and converts it into a waveform signal.
  • the control device 3 selects a transmitting element from among the plurality of piezoelectric elements 6, selects a pulser (not shown) that outputs a drive signal to the transmitting element, and selects a receiving element from among the plurality of piezoelectric elements 6, and receives the signal. and a receiver (not shown) for inputting the waveform signal from the element.
  • the control device 3 selects and controls a combination of a transmitting element and a receiving element from among the plurality of piezoelectric elements 6, thereby obtaining a plurality of waveform signals corresponding to the combination of the transmitting element and the receiving element.
  • the pulser selects the first piezoelectric element 6 as a transmission element and causes this piezoelectric element 6 to transmit ultrasonic waves.
  • the receiver selects, for example, all the piezoelectric elements 6 as receiving elements, and acquires N waveform signals W 11 , W 12 , . . . , W 1N input from the N piezoelectric elements 6 .
  • the pulsar selects the second piezoelectric element 6 as the transmitting element and causes this piezoelectric element 6 to transmit ultrasonic waves.
  • the receiver selects, for example, all the piezoelectric elements 6 as receiving elements, and acquires N waveform signals W 21 , W 22 , . . .
  • the receiver converts a plurality of waveform signals (analog signals) into digital signals and outputs them to the computer 4 .
  • the computer 4 has a processor (not shown) that executes processes according to programs and a memory (not shown) that stores programs and data.
  • the computer 4 calculates, for each position inside the pipe 100, the intensity of a plurality of waveform signals based on the propagation time of the ultrasonic wave according to the combination of the transmitting element and the receiving element when it is assumed that the ultrasonic wave is reflected at that position. (amplitude) are extracted and summed to generate an image of the pipe 100 showing the distribution of the summed intensity.
  • the propagation time ⁇ mi of the ultrasonic wave from the transmitting element to the position (xi, zi) and the position (xi, zi) to the receiving element the propagation time ⁇ ni of the ultrasonic wave is calculated.
  • the intensity Si ( ⁇ mi + ⁇ ni) of the plurality of waveform signals is extracted. (so-called synthetic aperture method).
  • the summed intensities are converted into pixel values to generate an image of the pipe 100 showing the distribution of the summed intensities.
  • the computer 4 uses the image of the pipe 100 described above to calculate the dimensions of the defect 101 of the pipe 100 and the position of the defect 101 in the relative coordinate system with the ultrasonic sensor 1 as a reference.
  • the wedge 2 has a reflection source 7 that is formed inside and reflects ultrasonic waves.
  • the reflection source 7 of the present embodiment is a through hole extending in a direction orthogonal to the axial direction of the pipe 100, but may be a notch opening on the inner or outer surface of the wedge 2, for example.
  • the computer 4 preliminarily inputs and stores the distance between one side end face of the wedge 2 and the reflection source 7, that is, the X coordinate (X0) of the reflection source 7 in the absolute coordinate system with the pipe 100 as a reference.
  • the computer 4 generates a plurality of waveform signals based on the propagation time of the ultrasonic wave according to the combination of the transmitting element and the receiving element when it is assumed that the ultrasonic wave is reflected at each position inside the wedge 2. are extracted and summed to produce an image of wedge 2 showing the distribution of the summed intensities. Then, using the image of the wedge 2, the x-coordinate of the reflection source 7 in the relative coordinate system with the ultrasonic sensor 1 as a reference is calculated.
  • the computer 4 calculates the X coordinate (X1) of the defect 101 in the absolute coordinate system based on the positional relationship between the reflection source 7 and the defect 101 in the relative coordinate system and the X coordinate of the reflection source 7 in the absolute coordinate system.
  • the X coordinate (X2) of the center point o of the ultrasonic sensor 1 in the absolute coordinate system is ⁇ (X coordinate of the reflection source 7 in the absolute coordinate system)-(X coordinate of the reflection source 7 in the relative coordinate system) ⁇
  • the X coordinate (X1) of the defect 101 in the absolute coordinate system is ⁇ (X coordinate of the center point o of the ultrasonic sensor 1 in the absolute coordinate system) + (X coordinate of the defect 101 in the relative coordinate system) ⁇ is calculated by
  • the X coordinate (X1) of the defect 101 in the absolute coordinate system is ⁇ (X coordinate of the reflection source 7 in the absolute coordinate system)+(X coordinate of the defect 101 in the relative coordinate system) ⁇ (Reflection source 7 in the relative coordinate system x-coordinate) ⁇
  • FIG. 3 is a flow chart showing the operation of the ultrasonic flaw detector in this embodiment.
  • step S ⁇ b>1 the control device 3 controls transmission and reception of ultrasonic waves by the ultrasonic sensor 1 . That is, by selecting and controlling a combination of a transmitting element and a receiving element from among the plurality of piezoelectric elements 6, a plurality of waveform signals corresponding to the combination of the transmitting element and the receiving element are obtained.
  • the computer 4 generates an image of the wedge 2 and the pipe 100. Then, using the images of the wedge 2 and the pipe 100, the positional relationship between the reflection source 7 and the defect 101 in the relative coordinate system with the ultrasonic sensor 1 as a reference is calculated.
  • step S3 the computer 4 detects the defect in the absolute coordinate system based on the positional relationship between the reflection source 7 and the defect 101 in the relative coordinate system and the X coordinate of the reflection source 7 in the absolute coordinate system with the pipe 100 as a reference. Calculate the X coordinate of 101. Then, the image of the wedge 2 and the pipe 100, the X coordinate of the defect 101 in the absolute coordinate system, and the like are displayed on the display device 5.
  • FIG. 1 the computer 4 detects the defect in the absolute coordinate system based on the positional relationship between the reflection source 7 and the defect 101 in the relative coordinate system and the X coordinate of the reflection source 7 in the absolute coordinate system with the pipe 100 as a reference. Calculate the X coordinate of 101. Then, the image of the wedge 2 and the pipe 100, the X coordinate of the defect 101 in the absolute coordinate system, and the like are displayed on the display device 5.
  • the position of the defect 101 in the pipe 100 can be obtained without using another sensor for detecting the position of the ultrasonic sensor 1.
  • FIG. 1 A second embodiment of the present invention will be described using FIG. 1
  • FIG. 4 is a schematic diagram showing the configuration of the ultrasonic flaw detector in this embodiment.
  • symbol is attached
  • the wedge 2 of this embodiment has a plurality of reflection sources 7a, 7b, and 7c that are separated from each other in the axial direction of the pipe 100 (that is, the movement direction of the ultrasonic sensor 1) and that are located at different positions in the depth direction of the wedge 2. .
  • the computer 4 calculates the distance between one side end surface of the wedge 2 and the reflection source 7a, that is, the X coordinate (X0a) of the reflection source 7a in the absolute coordinate system with the piping 100 as a reference, and the distance between the outer surface of the wedge 2 and the reflection source 7a.
  • the distance between them that is, the z-coordinate of the reflection source 7a in the relative coordinate system with the ultrasonic sensor 1 as a reference is previously input and stored.
  • the distance between the one side end surface of the wedge 2 and the reflection source 7b that is, the X coordinate (X0b) of the reflection source 7b in the absolute coordinate system based on the pipe 100, and the distance between the outer surface of the wedge 2 and the reflection source 7b
  • the distance, that is, the z-coordinate of the reflection source 7b in the relative coordinate system with the ultrasonic sensor 1 as a reference is previously input and stored.
  • the distance between the one side end surface of the wedge 2 and the reflection source 7c that is, the X coordinate (X0c) of the reflection source 7c in the absolute coordinate system based on the pipe 100, and the distance between the outer surface of the wedge 2 and the reflection source 7c
  • the distance, that is, the z-coordinate of the reflection source 7c in the relative coordinate system with the ultrasonic sensor 1 as a reference is previously input and stored.
  • the computer 4 uses the image of the wedge 2 to calculate the z-coordinate of the reflection source in the relative coordinate system with the ultrasonic sensor 1 as a reference. Then, the reflection source appearing in the image of the wedge 2 is identified to which one of the reflection sources 7a, 7b, and 7c corresponds by the z-coordinate of the reflection source. Then, using the identified X coordinate of the reflection source, the X coordinate of the defect 101 in the absolute coordinate system is calculated as in the first embodiment.
  • the position of the defect 101 in the pipe 100 can be obtained without using another sensor for detecting the position of the ultrasonic sensor 1. Moreover, in this embodiment, the inspection range in the axial direction of the pipe 100 can be expanded as compared with the first embodiment.
  • the wedge 2 has a plurality of reflection sources 7a, 7b, and 7c that are separated from each other in the moving direction of the ultrasonic sensor 1 and whose positions in the depth direction of the wedge 2 are different from each other. Illustrated, but not limited to.
  • the wedge 2 may have a plurality of reflection sources 7a, 7b, 7c that are separated from each other in the moving direction of the ultrasonic sensor 1 and have different shapes.
  • the computer 4 identifies the reflection source appearing in the image of the wedge 2 as one of the reflection sources 7a, 7b, and 7c according to the shape of the reflection source. Even in such a modified example, the same effect as in the second embodiment can be obtained.
  • the ultrasonic flaw detector performs control according to the synthetic aperture method.
  • the control device 3 controls the transmission timing of the plurality of ultrasonic waves by the plurality of piezoelectric elements 6 to vary the transmission direction of the composite wave composed of the plurality of ultrasonic waves, and also controls the transmission timing of the plurality of ultrasonic waves.
  • the receiving direction of the composite wave composed of a plurality of ultrasonic waves may be varied by controlling the reception timing of the ultrasonic waves.
  • the computer 4 generates an image of the wedge 2 and the pipe 100 showing the distribution of received intensity of the composite wave.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Provided is an ultrasonic flaw detection device that is capable of acquiring the position of a defect in a test target without having to use another sensor for detecting the position of an ultrasonic sensor. An ultrasonic flaw detection device according to the present invention is provided with: an ultrasonic sensor 1 having a plurality of piezoelectric elements 6 and having a variable ultrasonic-wave transmission range; a wedge 2 interposed between the ultrasonic sensor 1 and a duct 100; a control device 3 that controls transmission and reception of ultrasonic waves by the ultrasonic sensor 1; and a computer 4 that acquires information concerning a defect 101 in the duct 100 on the basis of the result of reception by the ultrasonic sensor 1. The wedge 2 has a reflection source 7 that is formed inside the wedge 2 and that reflects ultrasonic waves. The computer 4, on the basis of the result of reception by the ultrasonic sensor 1, computes the positional relationship between the reflection source 7 and the defect 101 in a relative coordinate system defined with respect to the ultrasonic sensor 1, and on the basis of the positional relationship and the position of the reflection source 7 in an absolute coordinate system defined with respect to the duct 100, computes the position of the defect 101 in the absolute coordinate system.

Description

超音波探傷装置Ultrasonic flaw detector
 本発明は、超音波探傷装置に関する。 The present invention relates to an ultrasonic flaw detector.
 発電プラント設備では、安全性の担保のため、被検体の欠陥の寸法や位置に基づいて余寿命の評価が行われる。被検体の欠陥を検出する非破壊検査装置の一つとして、超音波探傷装置がある。 For power plant equipment, the remaining life is evaluated based on the size and position of defects in the test object to ensure safety. An ultrasonic flaw detector is one of the non-destructive inspection devices for detecting defects in an object.
 超音波探傷装置は、超音波センサを備える。超音波センサは、被検体の内部へ超音波を送信する。また、超音波センサは、被検体の内部に欠陥が存在する場合に、欠陥で反射された超音波を受信する。この超音波センサの受信結果に基づいて、欠陥の寸法や、超音波センサを基準とした相対座標系における欠陥の位置を取得することが可能である。そして、超音波センサの位置を更に取得すれば、被検体における欠陥の位置を取得することが可能である。 The ultrasonic flaw detector is equipped with an ultrasonic sensor. The ultrasonic sensor transmits ultrasonic waves to the inside of the subject. Further, when a defect exists inside the subject, the ultrasonic sensor receives ultrasonic waves reflected by the defect. Based on the reception result of this ultrasonic sensor, it is possible to obtain the dimensions of the defect and the position of the defect in a relative coordinate system with the ultrasonic sensor as a reference. By further acquiring the position of the ultrasonic sensor, it is possible to acquire the position of the defect in the subject.
 特許文献1は、超音波センサ(対象物)の位置を計測するエンコーダを開示する。このエンコーダは、超音波センサの移動方向に延在するガイドレールと、超音波センサを保持すると共に、ガイドレールに沿って移動可能なホルダと、ホルダに設けられた位置センサと、演算装置とを備える。ガイドレールは、超音波センサの移動方向に互いに離間された複数の反射源を有する。位置センサは、ガイドレールの内部へ超音波を送信し、反射源で反射された超音波を受信する。演算装置は、位置センサの受信結果に基づいて、超音波センサの位置を演算する。 Patent Document 1 discloses an encoder that measures the position of an ultrasonic sensor (object). This encoder includes a guide rail extending in the moving direction of the ultrasonic sensor, a holder that holds the ultrasonic sensor and is movable along the guide rail, a position sensor provided on the holder, and an arithmetic unit. Prepare. The guide rail has a plurality of reflectors spaced apart from each other in the direction of travel of the ultrasonic sensor. The position sensor transmits ultrasonic waves into the interior of the guide rail and receives ultrasonic waves reflected by the reflector. The computing device computes the position of the ultrasonic sensor based on the reception result of the position sensor.
特開2018-059867号公報JP 2018-059867 A
 上記従来技術では、被検体の欠陥を検出する超音波センサとは別に、超音波センサの位置を検出する位置センサを用いる。そのため、部品点数が増加し、検査準備時間の増加などを招く。 In the conventional technology described above, a position sensor for detecting the position of the ultrasonic sensor is used in addition to the ultrasonic sensor for detecting defects in the object. As a result, the number of parts increases, resulting in an increase in inspection preparation time.
 本発明の目的は、超音波センサの位置を検出する他のセンサを用いなくとも、被検体における欠陥の位置を取得することができる超音波探傷装置を提供することにある。 An object of the present invention is to provide an ultrasonic flaw detector that can acquire the position of a defect in an object without using another sensor that detects the position of the ultrasonic sensor.
 上記目的を達成するために、本発明は、複数の圧電素子を有し、超音波の送信範囲が可変可能な超音波センサと、前記超音波センサと被検体の間に介在するウェッジと、前記超音波センサによる超音波の送受信を制御する制御装置と、前記超音波センサの受信結果に基づいて、前記被検体の欠陥の情報を取得するコンピュータと、を備えた超音波探傷装置において、前記ウェッジは、その内部に形成されて超音波を反射する反射源を有し、前記コンピュータは、前記超音波センサの受信結果に基づいて、前記超音波センサを基準とした相対座標系における前記反射源と前記欠陥の位置関係を演算し、前記位置関係と前記被検体を基準とした絶対座標系における前記反射源の位置とに基づいて、前記絶対座標系における前記欠陥の位置を演算する。 To achieve the above object, the present invention provides an ultrasonic sensor having a plurality of piezoelectric elements and capable of varying the transmission range of ultrasonic waves, a wedge interposed between the ultrasonic sensor and the subject, and In an ultrasonic flaw detection apparatus comprising a control device that controls transmission and reception of ultrasonic waves by an ultrasonic sensor, and a computer that acquires information on defects of the object based on the reception result of the ultrasonic sensor, the wedge has a reflection source formed therein to reflect an ultrasonic wave, and the computer, based on the reception result of the ultrasonic sensor, determines the reflection source and the reflection source in a relative coordinate system with the ultrasonic sensor as a reference. The positional relationship of the defects is calculated, and the position of the defect in the absolute coordinate system is calculated based on the positional relationship and the position of the reflection source in the absolute coordinate system with the object as a reference.
 本発明によれば、超音波センサの位置を検出する他のセンサを用いなくとも、被検体における欠陥の位置を取得することができる。 According to the present invention, it is possible to acquire the position of the defect in the subject without using another sensor that detects the position of the ultrasonic sensor.
本発明の第1の実施形態における超音波探傷装置の構成を表す概略図である。1 is a schematic diagram showing the configuration of an ultrasonic flaw detector according to a first embodiment of the present invention; FIG. 図1の断面II-IIによる断面図である。2 is a cross-sectional view according to section II-II of FIG. 1; FIG. 本発明の第1の実施形態における超音波探傷装置の動作を表すフローチャートである。4 is a flow chart showing the operation of the ultrasonic flaw detector according to the first embodiment of the present invention; 本発明の第2の実施形態における超音波探傷装置の構成を表す概略図である。FIG. 2 is a schematic diagram showing the configuration of an ultrasonic flaw detector according to a second embodiment of the present invention; 本発明の一変形例における超音波探傷装置の構成を表す概略図である。FIG. 10 is a schematic diagram showing the configuration of an ultrasonic flaw detector in a modified example of the present invention;
 本発明の第1の実施形態を、図面を参照しつつ説明する。本実施形態では、配管の探傷検査を行う場合を例にとって説明する。 A first embodiment of the present invention will be described with reference to the drawings. In the present embodiment, a case of conducting a flaw detection inspection of piping will be described as an example.
 図1は、本実施形態における超音波探傷装置の構成を表す概略図である。図2は、図1の断面II-IIによる断面図である。 FIG. 1 is a schematic diagram showing the configuration of the ultrasonic flaw detector in this embodiment. FIG. 2 is a cross-sectional view along section II--II of FIG.
 本実施形態の超音波探傷装置は、超音波センサ1と、超音波センサ1と配管100(被検体)の間に介在するウェッジ2と、超音波センサ1による超音波の送受信を制御する制御装置3と、超音波センサ1の受信結果に基づいて、配管100の欠陥101の情報を取得するコンピュータ4と、表示装置5とを備える。 The ultrasonic flaw detection apparatus of this embodiment includes an ultrasonic sensor 1, a wedge 2 interposed between the ultrasonic sensor 1 and a pipe 100 (subject), and a control device for controlling transmission and reception of ultrasonic waves by the ultrasonic sensor 1. 3, a computer 4 for acquiring information on defects 101 of the pipe 100 based on the reception result of the ultrasonic sensor 1, and a display device 5.
 ウェッジ2の内面(言い換えれば、配管100との接触面)は、配管100の形状に合わせて曲面で形成され、ウェッジ2の外面(言い換えれば、超音波センサ1との接触面)は、超音波センサ1の形状に合わせて平面で形成されている。ウェッジ2は、一方側(図1の左側)の端面が配管100の基準点Oと重なるように、配管100の外面に取付けられている。なお、本実施形態では、配管100を基準とした絶対座標系として、配管100の基準点Oを原点とし、配管100の軸方向をX軸とし、配管100の半径方向(図1の上下方向)をZ軸とする座標系が定義されている。 The inner surface of the wedge 2 (in other words, the contact surface with the pipe 100) is formed with a curved surface according to the shape of the pipe 100, and the outer surface of the wedge 2 (in other words, the contact surface with the ultrasonic sensor 1) is an ultrasonic sensor. It is formed in a plane in accordance with the shape of the sensor 1 . The wedge 2 is attached to the outer surface of the pipe 100 so that the end face on one side (left side in FIG. 1) overlaps with the reference point O of the pipe 100 . In this embodiment, as an absolute coordinate system with the pipe 100 as a reference, the reference point O of the pipe 100 is the origin, the axial direction of the pipe 100 is the X axis, and the radial direction of the pipe 100 (vertical direction in FIG. 1) is defined as the Z-axis.
 超音波センサ1は、移動機構(図示せず)又は検査者によって配管100の軸方向(図1の左右方向)に移動可能なように、ウェッジ2の外面に配置されている。なお、本実施形態では、超音波センサ1を基準とした相対座標系として、超音波センサ1の中心点oを原点とし、配管100の軸方向をx軸とし、配管100の半径方向をz軸とする座標系が定義されている。 The ultrasonic sensor 1 is arranged on the outer surface of the wedge 2 so that it can be moved in the axial direction of the pipe 100 (horizontal direction in FIG. 1) by a moving mechanism (not shown) or by an inspector. In this embodiment, as a relative coordinate system with the ultrasonic sensor 1 as a reference, the center point o of the ultrasonic sensor 1 is the origin, the axial direction of the pipe 100 is the x axis, and the radial direction of the pipe 100 is the z axis. A coordinate system is defined as
 超音波センサ1は、配管100の軸方向に配列された複数の圧電素子6を有し、超音波の送信範囲が可変可能なように構成されている。圧電素子6は、後述する駆動信号によって発振し、超音波を送信する。また、圧電素子6は、反射された超音波を受信し、波形信号に変換する。 The ultrasonic sensor 1 has a plurality of piezoelectric elements 6 arranged in the axial direction of the pipe 100, and is configured so that the transmission range of ultrasonic waves can be varied. The piezoelectric element 6 is oscillated by a drive signal, which will be described later, and transmits ultrasonic waves. Also, the piezoelectric element 6 receives the reflected ultrasonic wave and converts it into a waveform signal.
 制御装置3は、複数の圧電素子6のうちの送信素子を選択し、送信素子へ駆動信号を出力するパルサ(図示せず)と、複数の圧電素子6のうちの受信素子を選択し、受信素子からの波形信号を入力するレシーバ(図示せず)とを有する。制御装置3は、複数の圧電素子6のうちの送信素子と受信素子の組合せを選択して制御することにより、送信素子と受信素子の組合せに対応する複数の波形信号を取得するようになっている。 The control device 3 selects a transmitting element from among the plurality of piezoelectric elements 6, selects a pulser (not shown) that outputs a drive signal to the transmitting element, and selects a receiving element from among the plurality of piezoelectric elements 6, and receives the signal. and a receiver (not shown) for inputting the waveform signal from the element. The control device 3 selects and controls a combination of a transmitting element and a receiving element from among the plurality of piezoelectric elements 6, thereby obtaining a plurality of waveform signals corresponding to the combination of the transmitting element and the receiving element. there is
 詳しく説明すると、まず、パルサは、送信素子として1番目の圧電素子6を選択し、この圧電素子6から超音波を送信させる。レシーバは、受信素子として例えば全ての圧電素子6を選択し、N個の圧電素子6から入力したN個の波形信号W11,W12,…,W1Nを取得する。次に、パルサは、送信素子として2番目の圧電素子6を選択し、この圧電素子6から超音波を送信させる。レシーバは、受信素子として例えば全ての圧電素子6を選択し、N個の圧電素子6から入力したN個の波形信号W21,W22,…,W2Nを取得する。このようにして送信素子と受信素子の組合せを切り替えながら、複数の波形信号W11,W12,…,WNNを取得する。レシーバは、複数の波形信号(アナログ信号)をデジタル信号に変換してコンピュータ4へ出力する。 More specifically, first, the pulser selects the first piezoelectric element 6 as a transmission element and causes this piezoelectric element 6 to transmit ultrasonic waves. The receiver selects, for example, all the piezoelectric elements 6 as receiving elements, and acquires N waveform signals W 11 , W 12 , . . . , W 1N input from the N piezoelectric elements 6 . Next, the pulsar selects the second piezoelectric element 6 as the transmitting element and causes this piezoelectric element 6 to transmit ultrasonic waves. The receiver selects, for example, all the piezoelectric elements 6 as receiving elements, and acquires N waveform signals W 21 , W 22 , . . . , W 2N input from the N piezoelectric elements 6 . A plurality of waveform signals W 11 , W 12 , . The receiver converts a plurality of waveform signals (analog signals) into digital signals and outputs them to the computer 4 .
 コンピュータ4は、プログラムに従って処理を実行するプロセッサ(図示せず)と、プログラムやデータを記憶するメモリ(図示せず)とを有する。コンピュータ4は、配管100の内部の位置毎に、その位置で超音波が反射されたと仮定した場合の送信素子と受信素子の組合せに応じた超音波の伝播時間に基づき、複数の波形信号の強度(振幅)を抽出して合算し、合算した強度の分布を示す配管100の画像を生成する。 The computer 4 has a processor (not shown) that executes processes according to programs and a memory (not shown) that stores programs and data. The computer 4 calculates, for each position inside the pipe 100, the intensity of a plurality of waveform signals based on the propagation time of the ultrasonic wave according to the combination of the transmitting element and the receiving element when it is assumed that the ultrasonic wave is reflected at that position. (amplitude) are extracted and summed to generate an image of the pipe 100 showing the distribution of the summed intensity.
 詳しく説明すると、配管100の内部の位置(xi,zi)で超音波が反射されたと仮定し、送信素子から位置(xi,zi)までの超音波の伝播時間τmiと、位置(xi,zi)から受信素子までの超音波の伝播時間τniを演算する。そして、配管100の内部の位置(xi,zi)毎に、送信素子と受信素子の組合せに応じた超音波の伝播時間(τmi+τni)に基づき、複数の波形信号の強度Si(τmi+τni)を抽出して合算する(いわゆる開口合成法)。そして、合算した強度を画素値に変換して、合算した強度の分布を示す配管100の画像を生成する。 Specifically, assuming that the ultrasonic wave is reflected at the position (xi, zi) inside the pipe 100, the propagation time τmi of the ultrasonic wave from the transmitting element to the position (xi, zi) and the position (xi, zi) to the receiving element, the propagation time τni of the ultrasonic wave is calculated. Then, for each position (xi, zi) inside the pipe 100, based on the propagation time (τmi + τni) of the ultrasonic wave corresponding to the combination of the transmitting element and the receiving element, the intensity Si (τmi + τni) of the plurality of waveform signals is extracted. (so-called synthetic aperture method). Then, the summed intensities are converted into pixel values to generate an image of the pipe 100 showing the distribution of the summed intensities.
 コンピュータ4は、上述した配管100の画像を用いて、配管100の欠陥101の寸法や、超音波センサ1を基準とした相対座標系における欠陥101の位置を演算する。 The computer 4 uses the image of the pipe 100 described above to calculate the dimensions of the defect 101 of the pipe 100 and the position of the defect 101 in the relative coordinate system with the ultrasonic sensor 1 as a reference.
 ここで本実施形態の最も大きな特徴として、ウェッジ2は、その内部に形成されて超音波を反射する反射源7を有する。本実施形態の反射源7は、配管100の軸方向に直交する方向に延在する貫通穴であるが、例えば、ウェッジ2の内面又は外面に開口した切欠きでもよい。 Here, as the most significant feature of this embodiment, the wedge 2 has a reflection source 7 that is formed inside and reflects ultrasonic waves. The reflection source 7 of the present embodiment is a through hole extending in a direction orthogonal to the axial direction of the pipe 100, but may be a notch opening on the inner or outer surface of the wedge 2, for example.
 コンピュータ4は、ウェッジ2の一方側端面と反射源7の間の距離、すなわち配管100を基準とした絶対座標系における反射源7のX座標(X0)を予め入力して記憶している。 The computer 4 preliminarily inputs and stores the distance between one side end face of the wedge 2 and the reflection source 7, that is, the X coordinate (X0) of the reflection source 7 in the absolute coordinate system with the pipe 100 as a reference.
 また、コンピュータ4は、ウェッジ2の内部の位置毎に、その位置で超音波が反射されたと仮定した場合の送信素子と受信素子の組合せに応じた超音波の伝播時間に基づき、複数の波形信号の強度を抽出して合算し、合算した強度の分布を示すウェッジ2の画像を生成する。そして、ウェッジ2の画像を用いて、超音波センサ1を基準とした相対座標系における反射源7のx座標を演算する。 Further, the computer 4 generates a plurality of waveform signals based on the propagation time of the ultrasonic wave according to the combination of the transmitting element and the receiving element when it is assumed that the ultrasonic wave is reflected at each position inside the wedge 2. are extracted and summed to produce an image of wedge 2 showing the distribution of the summed intensities. Then, using the image of the wedge 2, the x-coordinate of the reflection source 7 in the relative coordinate system with the ultrasonic sensor 1 as a reference is calculated.
 そして、コンピュータ4は、相対座標系における反射源7と欠陥101の位置関係と、絶対座標系における反射源7のX座標に基づいて、絶対座標系における欠陥101のX座標(X1)を演算する。詳しく説明すると、絶対座標系における超音波センサ1の中心点oのX座標(X2)は、{(絶対座標系における反射源7のX座標)-(相対座標系における反射源7のx座標)}で演算され、絶対座標系における欠陥101のX座標(X1)は、{(絶対座標系における超音波センサ1の中心点oのX座標)+(相対座標系における欠陥101のx座標)}で演算される。あるいは、絶対座標系における欠陥101のX座標(X1)は、{(絶対座標系における反射源7のX座標)+(相対座標系における欠陥101のx座標)-(相対座標系における反射源7のx座標)}で演算される。 Then, the computer 4 calculates the X coordinate (X1) of the defect 101 in the absolute coordinate system based on the positional relationship between the reflection source 7 and the defect 101 in the relative coordinate system and the X coordinate of the reflection source 7 in the absolute coordinate system. . Specifically, the X coordinate (X2) of the center point o of the ultrasonic sensor 1 in the absolute coordinate system is {(X coordinate of the reflection source 7 in the absolute coordinate system)-(X coordinate of the reflection source 7 in the relative coordinate system) }, and the X coordinate (X1) of the defect 101 in the absolute coordinate system is {(X coordinate of the center point o of the ultrasonic sensor 1 in the absolute coordinate system) + (X coordinate of the defect 101 in the relative coordinate system)} is calculated by Alternatively, the X coordinate (X1) of the defect 101 in the absolute coordinate system is {(X coordinate of the reflection source 7 in the absolute coordinate system)+(X coordinate of the defect 101 in the relative coordinate system)−(Reflection source 7 in the relative coordinate system x-coordinate)}.
 次に、本実施形態の超音波探傷装置の動作を、図3を用いて説明する。図3は、本実施形態における超音波探傷装置の動作を表すフローチャートである。 Next, the operation of the ultrasonic flaw detector of this embodiment will be described using FIG. FIG. 3 is a flow chart showing the operation of the ultrasonic flaw detector in this embodiment.
 ステップS1にて、制御装置3は、超音波センサ1による超音波の送受信を制御する。すなわち、複数の圧電素子6のうちの送信素子と受信素子の組合せを選択して制御することにより、送信素子と受信素子の組合せに対応する複数の波形信号を取得する。 In step S<b>1 , the control device 3 controls transmission and reception of ultrasonic waves by the ultrasonic sensor 1 . That is, by selecting and controlling a combination of a transmitting element and a receiving element from among the plurality of piezoelectric elements 6, a plurality of waveform signals corresponding to the combination of the transmitting element and the receiving element are obtained.
 ステップS2にて、コンピュータ4は、ウェッジ2及び配管100の画像を生成する。そして、ウェッジ2及び配管100の画像を用いて、超音波センサ1を基準とした相対座標系における反射源7と欠陥101の位置関係を演算する。 At step S2, the computer 4 generates an image of the wedge 2 and the pipe 100. Then, using the images of the wedge 2 and the pipe 100, the positional relationship between the reflection source 7 and the defect 101 in the relative coordinate system with the ultrasonic sensor 1 as a reference is calculated.
 ステップS3にて、コンピュータ4は、相対座標系における反射源7と欠陥101の位置関係と、配管100を基準とした絶対座標系における反射源7のX座標とに基づいて、絶対座標系における欠陥101のX座標を演算する。そして、ウェッジ2及び配管100の画像や、絶対座標系における欠陥101のX座標などを表示装置5に表示させる。 In step S3, the computer 4 detects the defect in the absolute coordinate system based on the positional relationship between the reflection source 7 and the defect 101 in the relative coordinate system and the X coordinate of the reflection source 7 in the absolute coordinate system with the pipe 100 as a reference. Calculate the X coordinate of 101. Then, the image of the wedge 2 and the pipe 100, the X coordinate of the defect 101 in the absolute coordinate system, and the like are displayed on the display device 5. FIG.
 以上のように本実施形態においては、超音波センサ1の位置を検出する他のセンサを用いなくとも、配管100における欠陥101の位置を取得することができる。その結果、超音波センサ1の位置を検出する他のセンサを用いる場合と比べ、検査準備時間の短縮を図ることができる。 As described above, in this embodiment, the position of the defect 101 in the pipe 100 can be obtained without using another sensor for detecting the position of the ultrasonic sensor 1. As a result, compared with the case of using other sensors for detecting the position of the ultrasonic sensor 1, it is possible to reduce the time required for preparing for the inspection.
 本発明の第2の実施形態を、図4を用いて説明する。 A second embodiment of the present invention will be described using FIG.
 図4は、本実施形態における超音波探傷装置の構成を表す概略図である。なお、本実施形態において、第1の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。 FIG. 4 is a schematic diagram showing the configuration of the ultrasonic flaw detector in this embodiment. In addition, in this embodiment, the same code|symbol is attached|subjected to the part equivalent to 1st Embodiment, and description is abbreviate|omitted suitably.
 本実施形態のウェッジ2は、配管100の軸方向(すなわち、超音波センサ1の移動方向)に互いに離れると共にウェッジ2の深さ方向の位置が互いに異なる複数の反射源7a,7b,7cを有する。 The wedge 2 of this embodiment has a plurality of reflection sources 7a, 7b, and 7c that are separated from each other in the axial direction of the pipe 100 (that is, the movement direction of the ultrasonic sensor 1) and that are located at different positions in the depth direction of the wedge 2. .
 コンピュータ4は、ウェッジ2の一方側端面と反射源7aの間の距離、すなわち配管100を基準とした絶対座標系における反射源7aのX座標(X0a)と、ウェッジ2の外面と反射源7aの間の距離、すなわち超音波センサ1を基準とした相対座標系における反射源7aのz座標を予め入力して記憶している。また、ウェッジ2の一方側端面と反射源7bの間の距離、すなわち配管100を基準とした絶対座標系における反射源7bのX座標(X0b)と、ウェッジ2の外面と反射源7bの間の距離、すなわち超音波センサ1を基準とした相対座標系における反射源7bのz座標を予め入力して記憶している。また、ウェッジ2の一方側端面と反射源7cの間の距離、すなわち配管100を基準とした絶対座標系における反射源7cのX座標(X0c)と、ウェッジ2の外面と反射源7cの間の距離、すなわち超音波センサ1を基準とした相対座標系における反射源7cのz座標を予め入力して記憶している。 The computer 4 calculates the distance between one side end surface of the wedge 2 and the reflection source 7a, that is, the X coordinate (X0a) of the reflection source 7a in the absolute coordinate system with the piping 100 as a reference, and the distance between the outer surface of the wedge 2 and the reflection source 7a. The distance between them, that is, the z-coordinate of the reflection source 7a in the relative coordinate system with the ultrasonic sensor 1 as a reference is previously input and stored. In addition, the distance between the one side end surface of the wedge 2 and the reflection source 7b, that is, the X coordinate (X0b) of the reflection source 7b in the absolute coordinate system based on the pipe 100, and the distance between the outer surface of the wedge 2 and the reflection source 7b The distance, that is, the z-coordinate of the reflection source 7b in the relative coordinate system with the ultrasonic sensor 1 as a reference is previously input and stored. In addition, the distance between the one side end surface of the wedge 2 and the reflection source 7c, that is, the X coordinate (X0c) of the reflection source 7c in the absolute coordinate system based on the pipe 100, and the distance between the outer surface of the wedge 2 and the reflection source 7c The distance, that is, the z-coordinate of the reflection source 7c in the relative coordinate system with the ultrasonic sensor 1 as a reference is previously input and stored.
 コンピュータ4は、ウェッジ2の画像を用いて、超音波センサ1を基準とした相対座標系における反射源のz座標を演算する。そして、反射源のz座標により、反射源7a,7b,7cのうちのいずれに該当するか、ウェッジ2の画像に現れた反射源を識別する。そして、識別された反射源のX座標を用いて、第1の実施形態と同様、絶対座標系における欠陥101のX座標を演算する。 The computer 4 uses the image of the wedge 2 to calculate the z-coordinate of the reflection source in the relative coordinate system with the ultrasonic sensor 1 as a reference. Then, the reflection source appearing in the image of the wedge 2 is identified to which one of the reflection sources 7a, 7b, and 7c corresponds by the z-coordinate of the reflection source. Then, using the identified X coordinate of the reflection source, the X coordinate of the defect 101 in the absolute coordinate system is calculated as in the first embodiment.
 したがって、第1の実施形態と同様、超音波センサ1の位置を検出する他のセンサを用いなくとも、配管100における欠陥101の位置を取得することができる。また、本実施形態においては、第1の実施形態と比べ、配管100の軸方向における検査範囲を拡大することができる。 Therefore, as in the first embodiment, the position of the defect 101 in the pipe 100 can be obtained without using another sensor for detecting the position of the ultrasonic sensor 1. Moreover, in this embodiment, the inspection range in the axial direction of the pipe 100 can be expanded as compared with the first embodiment.
 なお、第2の実施形態において、ウェッジ2は、超音波センサ1の移動方向に互いに離れると共にウェッジ2の深さ方向の位置が互いに異なる複数の反射源7a,7b,7cを有する場合を例にとって説明したが、これに限られない。例えば図5で示す変形例のように、ウェッジ2は、超音波センサ1の移動方向に互いに離れると共に形状が互いに異なる複数の反射源7a,7b,7cを有してもよい。この場合、コンピュータ4は、反射源の形状により、反射源7a,7b,7cのうちのいずれに該当するか、ウェッジ2の画像に現れた反射源を識別する。このような変形例においても、第2の実施形態と同様の効果を得ることができる。 In the second embodiment, the wedge 2 has a plurality of reflection sources 7a, 7b, and 7c that are separated from each other in the moving direction of the ultrasonic sensor 1 and whose positions in the depth direction of the wedge 2 are different from each other. Illustrated, but not limited to. For example, like the modification shown in FIG. 5, the wedge 2 may have a plurality of reflection sources 7a, 7b, 7c that are separated from each other in the moving direction of the ultrasonic sensor 1 and have different shapes. In this case, the computer 4 identifies the reflection source appearing in the image of the wedge 2 as one of the reflection sources 7a, 7b, and 7c according to the shape of the reflection source. Even in such a modified example, the same effect as in the second embodiment can be obtained.
 また、第1及び第2の実施形態において、超音波探傷装置は、開口合成法に準じた制御を行う場合を例にとって説明したが、これに限られず、例えばフェーズドアレイ法に準じた制御を行ってもよい。詳しく説明すると、制御装置3は、複数の圧電素子6による複数の超音波の送信タイミングを制御して、複数の超音波からなる合成波の送信方向を可変すると共に、複数の圧電素子6による複数の超音波の受信タイミングを制御して、複数の超音波からなる合成波の受信方向を可変してもよい。この場合、コンピュータ4は、合成波の受信強度の分布を示すウェッジ2及び配管100の画像を生成する。 In addition, in the first and second embodiments, the ultrasonic flaw detector performs control according to the synthetic aperture method. may More specifically, the control device 3 controls the transmission timing of the plurality of ultrasonic waves by the plurality of piezoelectric elements 6 to vary the transmission direction of the composite wave composed of the plurality of ultrasonic waves, and also controls the transmission timing of the plurality of ultrasonic waves. The receiving direction of the composite wave composed of a plurality of ultrasonic waves may be varied by controlling the reception timing of the ultrasonic waves. In this case, the computer 4 generates an image of the wedge 2 and the pipe 100 showing the distribution of received intensity of the composite wave.
 1           超音波センサ
 2           ウェッジ
 3           制御装置
 4           コンピュータ
 6           圧電素子
 7,7a,7b,7c  反射源
REFERENCE SIGNS LIST 1 ultrasonic sensor 2 wedge 3 controller 4 computer 6 piezoelectric element 7, 7a, 7b, 7c reflection source

Claims (5)

  1.  複数の圧電素子を有し、超音波の送信範囲が可変可能な超音波センサと、
     前記超音波センサと被検体の間に介在するウェッジと、
     前記超音波センサによる超音波の送受信を制御する制御装置と、
     前記超音波センサの受信結果に基づいて、前記被検体の欠陥の情報を取得するコンピュータと、を備えた超音波探傷装置において、
     前記ウェッジは、その内部に形成されて超音波を反射する反射源を有し、
     前記コンピュータは、前記超音波センサの受信結果に基づいて、前記超音波センサを基準とした相対座標系における前記反射源と前記欠陥の位置関係を演算し、前記位置関係と前記被検体を基準とした絶対座標系における前記反射源の位置とに基づいて、前記絶対座標系における前記欠陥の位置を演算することを特徴とする超音波探傷装置。
    an ultrasonic sensor having a plurality of piezoelectric elements and capable of varying the transmission range of ultrasonic waves;
    a wedge interposed between the ultrasonic sensor and the subject;
    a control device for controlling transmission and reception of ultrasonic waves by the ultrasonic sensor;
    An ultrasonic flaw detector comprising a computer that acquires information about defects in the subject based on the reception result of the ultrasonic sensor,
    the wedge has a reflector formed therein for reflecting ultrasound waves;
    The computer calculates the positional relationship between the reflection source and the defect in a relative coordinate system with the ultrasonic sensor as a reference based on the reception result of the ultrasonic sensor, and calculates the positional relationship with the object as a reference. and calculating the position of the defect in the absolute coordinate system based on the position of the reflection source in the absolute coordinate system.
  2.  請求項1に記載の超音波探傷装置において、
     前記ウェッジは、前記超音波センサの移動方向に互いに離れると共に前記ウェッジの深さ方向の位置が互いに異なる複数の反射源を有し、
     前記コンピュータは、前記ウェッジの深さ方向の位置の違いによって前記複数の反射源を識別することを特徴とする超音波探傷装置。
    In the ultrasonic flaw detector according to claim 1,
    The wedge has a plurality of reflection sources separated from each other in the moving direction of the ultrasonic sensor and having different positions in the depth direction of the wedge,
    The ultrasonic flaw detector according to claim 1, wherein the computer identifies the plurality of reflection sources based on differences in depth-direction positions of the wedges.
  3.  請求項1に記載の超音波探傷装置において、
     前記ウェッジは、前記超音波センサの移動方向に互いに離れると共に形状が互いに異なる複数の反射源を有し、
     前記コンピュータは、形状の違いによって前記複数の反射源を識別することを特徴とする超音波探傷装置。
    In the ultrasonic flaw detector according to claim 1,
    The wedge has a plurality of reflection sources separated from each other in the movement direction of the ultrasonic sensor and having different shapes,
    The ultrasonic flaw detector, wherein the computer identifies the plurality of reflection sources based on differences in shape.
  4.  請求項1に記載の超音波探傷装置において、
     前記制御装置は、前記複数の圧電素子のうちの送信素子と受信素子の組合せを選択して、前記送信素子から前記ウェッジ及び前記被検体に超音波を送信させると共に、前記ウェッジの前記反射源又は前記被検体の欠陥で反射された超音波が前記受信素子で受信されて変換された波形信号を取得することにより、前記送信素子と前記受信素子の組合せに対応する複数の波形信号を取得しており、
     前記コンピュータは、前記ウェッジ及び前記被検体の内部の位置毎に、前記位置で超音波が反射されたと仮定した場合の前記送信素子と前記受信素子の組合せに応じた超音波の伝播時間に基づき、前記複数の波形信号の強度を抽出して合算し、合算した強度の分布を示す画像を生成することを特徴とする超音波探傷装置。
    In the ultrasonic flaw detector according to claim 1,
    The control device selects a combination of a transmitting element and a receiving element from among the plurality of piezoelectric elements, causes the transmitting element to transmit ultrasonic waves to the wedge and the subject, and controls the reflection source of the wedge or Acquiring a plurality of waveform signals corresponding to the combination of the transmitting element and the receiving element by acquiring waveform signals obtained by converting the ultrasonic waves reflected by the defects of the subject by the receiving elements. cage,
    The computer, for each position inside the wedge and the subject, based on the propagation time of the ultrasonic wave according to the combination of the transmitting element and the receiving element when it is assumed that the ultrasonic wave is reflected at the position, 1. An ultrasonic flaw detector that extracts and sums the intensities of the plurality of waveform signals, and generates an image showing distribution of the summed intensities.
  5.  請求項1に記載の超音波探傷装置において、
     前記制御装置は、前記複数の圧電素子による複数の超音波の送信タイミングを制御して、前記複数の超音波からなる合成波の送信方向を可変すると共に、前記複数の圧電素子による複数の超音波の受信タイミングを制御して、前記複数の超音波からなる合成波の受信方向を可変しており、
     前記コンピュータは、前記合成波の受信強度の分布を示す画像を生成することを特徴とする超音波探傷装置。
    In the ultrasonic flaw detector according to claim 1,
    The control device controls the transmission timing of the plurality of ultrasonic waves by the plurality of piezoelectric elements to vary the transmission direction of the composite wave composed of the plurality of ultrasonic waves, and transmits the plurality of ultrasonic waves by the plurality of piezoelectric elements. By controlling the reception timing of the plurality of ultrasonic waves, the reception direction of the composite wave composed of the plurality of ultrasonic waves is variable,
    The ultrasonic flaw detector, wherein the computer generates an image showing the distribution of reception intensity of the composite wave.
PCT/JP2022/017498 2021-04-28 2022-04-11 Ultrasonic flaw detection device WO2022230648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021076495A JP2022170398A (en) 2021-04-28 2021-04-28 Ultrasonic flaw detection system
JP2021-076495 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230648A1 true WO2022230648A1 (en) 2022-11-03

Family

ID=83847517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017498 WO2022230648A1 (en) 2021-04-28 2022-04-11 Ultrasonic flaw detection device

Country Status (2)

Country Link
JP (1) JP2022170398A (en)
WO (1) WO2022230648A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452287U (en) * 1977-09-20 1979-04-11
JPS55113959U (en) * 1979-02-06 1980-08-11
US20100046576A1 (en) * 2008-08-19 2010-02-25 Anand Desai Method for performing ultrasonic testing
JP2018059867A (en) * 2016-10-07 2018-04-12 株式会社Ihi検査計測 Ultrasonic encoder and position detection method using the same
JP2019045317A (en) * 2017-09-01 2019-03-22 日立Geニュークリア・エナジー株式会社 Ultrasonic probe, ultrasonic flaw detection apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452287U (en) * 1977-09-20 1979-04-11
JPS55113959U (en) * 1979-02-06 1980-08-11
US20100046576A1 (en) * 2008-08-19 2010-02-25 Anand Desai Method for performing ultrasonic testing
JP2018059867A (en) * 2016-10-07 2018-04-12 株式会社Ihi検査計測 Ultrasonic encoder and position detection method using the same
JP2019045317A (en) * 2017-09-01 2019-03-22 日立Geニュークリア・エナジー株式会社 Ultrasonic probe, ultrasonic flaw detection apparatus and method

Also Published As

Publication number Publication date
JP2022170398A (en) 2022-11-10

Similar Documents

Publication Publication Date Title
Bulavinov et al. Sampling phased array a new technique for signal processing and ultrasonic imaging
RU2521720C1 (en) Method and device for welding zone imaging
US20120191377A1 (en) Method and device for ultrasonic testing
EP2546641B1 (en) Ultrasonic flaw detector and ultrasonic flaw detection method for objects having a complex surface shape
JP2012022013A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
WO2011140911A1 (en) Crack detection system and method
US6792808B1 (en) Ultrasonic inspection method
JP2015230227A (en) Ultrasonic inspection device and ultrasonic inspection method
JP5028388B2 (en) Ultrasonic flaw detection apparatus and method
JP2006308566A (en) Ultrasonic flaw detection method and apparatus
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP5567471B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2013019715A (en) Ultrasonic inspection method and ultrasonic inspection device
WO2022230648A1 (en) Ultrasonic flaw detection device
JP2005351718A (en) Omnidirectional flaw detection probe
US20130081468A1 (en) Method and apparatus for ultrasonic testing
JP2017161513A (en) Ultrasonic flaw detecting device, and ultrasonic flaw detecting method
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2016042043A (en) Outer shell corrosion inspection apparatus and outer shell corrosion inspection method
JP2018205091A (en) Ultrasonic flaw detection device and inspection method using ultrasonic wave
JP6261699B1 (en) Ultrasonic encoder and position detection method using the same
US11054398B2 (en) Ultrasonic inspection method, ultrasonic inspection device, and computer-readable storage medium
JP4738243B2 (en) Ultrasonic flaw detection system
JP2017009313A (en) Ultrasonic flaw detection device, data processing device, and ultrasonic flaw detection method
JP2011247676A (en) Ultrasonic flaw detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795563

Country of ref document: EP

Kind code of ref document: A1