WO2022230578A1 - 表示装置及び電子機器 - Google Patents

表示装置及び電子機器 Download PDF

Info

Publication number
WO2022230578A1
WO2022230578A1 PCT/JP2022/015941 JP2022015941W WO2022230578A1 WO 2022230578 A1 WO2022230578 A1 WO 2022230578A1 JP 2022015941 W JP2022015941 W JP 2022015941W WO 2022230578 A1 WO2022230578 A1 WO 2022230578A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitor
display device
transistor
electrically connected
Prior art date
Application number
PCT/JP2022/015941
Other languages
English (en)
French (fr)
Inventor
尭之 坂口
圭 木村
一樹 横山
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021074288A external-priority patent/JP2024084872A/ja
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202280029726.0A priority Critical patent/CN117178315A/zh
Publication of WO2022230578A1 publication Critical patent/WO2022230578A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • Embodiments according to the present disclosure relate to display devices and electronic devices.
  • a plurality of capacitors may be provided in a pixel circuit, for example, for correcting variations in transistor characteristics and assisting the capacitance of organic EL elements (see Patent Document 1).
  • the present disclosure provides a display device and an electronic device capable of further reducing manufacturing processes and improving display characteristics.
  • a light emitting element a first capacitor having a first electrode and a second electrode; a second capacitor having a third electrode and a fourth electrode; a driving transistor that supplies a current corresponding to the voltage accumulated in the first capacitor and the voltage accumulated in the second capacitor to the light emitting element, the second electrode is electrically connected to the third electrode;
  • a display device is provided, wherein the second electrode and the third electrode are arranged in different layers, respectively.
  • the second electrode and the third capacitor are arranged in a different layer from the first capacitor and the second capacitor so as to overlap the first electrode and the second electrode.
  • the metal layer may be arranged so as to cover the first electrode and the second electrode when viewed from the stacking direction.
  • the metal layer may be arranged so as to overlap with the first electrode arranged to cover the second electrode when viewed from the stacking direction.
  • the first electrode is electrically connected to the gate of the drive transistor;
  • the second electrode, the third electrode and the metal layer may be electrically connected to the source of the drive transistor.
  • the first electrode is electrically connected to a voltage supply wiring that supplies a predetermined voltage;
  • the second electrode, the third electrode and the metal layer may be electrically connected to the gate of the drive transistor.
  • the metal layer may be arranged so as to overlap a voltage supply wiring that supplies a predetermined voltage when viewed from the stacking direction.
  • the fourth electrode may be electrically connected to the voltage supply wiring.
  • the metal layer may be arranged so as to overlap the first electrode electrically connected to the gate of the driving transistor when viewed from the stacking direction.
  • the metal layer may be arranged in a layer between a layer in which the first electrode is arranged and a layer in which the signal line is arranged.
  • the metal layer may be arranged to electrically connect the second electrode and the third electrode via the plurality of columnar electrode portions.
  • the first capacitor stores a first voltage associated with operation of the drive transistor;
  • the second capacitor may store a second voltage different from the first voltage.
  • the plurality of capacitors may be at least one or more of MIM (Metal-Insulator-Metal) capacitors, MOM (Metal-Oxide-Metal) capacitors, and MOS (Metal-Oxide-Semiconductor) capacitors.
  • MIM Metal-Insulator-Metal
  • MOM Metal-Oxide-Metal
  • MOS Metal-Oxide-Semiconductor
  • a light emitting element a first capacitor having a first electrode and a second electrode; a second capacitor having a third electrode and a fourth electrode; a driving transistor that supplies a current corresponding to the voltage accumulated in the first capacitor and the voltage accumulated in the second capacitor to the light emitting element, the second electrode is electrically connected to the third electrode;
  • An electronic device is provided in which the second electrode and the third electrode are arranged in different layers.
  • FIG. 1 is a block diagram showing a schematic configuration of a display device according to a first embodiment of the present disclosure
  • FIG. 2 is a circuit diagram showing an example of the internal configuration of a pixel circuit according to the first embodiment
  • FIG. 4 is a timing chart showing an example of the operation of the pixel circuit 11 according to the first embodiment
  • 3 is a cross-sectional view showing an example of the configuration of a first capacitor and a second capacitor according to the first embodiment
  • FIG. 4 is a plan view showing an example of the configuration of a first capacitor and a second capacitor according to the first embodiment
  • FIG. FIG. 4 is a cross-sectional view showing an example of the configuration of a first capacitor and a second capacitor according to a first comparative example
  • FIG. 11 is a cross-sectional view showing an example of the configuration of a first capacitor and a second capacitor according to a second comparative example
  • FIG. 5 is a circuit diagram showing an example of the internal configuration of a pixel circuit according to a modification of the first embodiment
  • FIG. 7 is a circuit diagram showing an example of the internal configuration of a pixel circuit according to a second embodiment
  • FIG. 11 is a circuit diagram showing an example of the internal configuration of a pixel circuit according to a third embodiment
  • FIG. 11 is a cross-sectional view showing an example of a capacitor and a configuration of the capacitor according to a third embodiment
  • FIG. 10 is a plan view showing an example of a capacitor and a configuration of the capacitor according to a third embodiment
  • FIG. 11 is a circuit diagram showing an example of the internal configuration of a pixel circuit according to a fourth embodiment;
  • FIG. 11 is a circuit diagram showing an example of the internal configuration of a pixel circuit according to a fifth embodiment;
  • FIG. 11 is a circuit diagram showing an example of the internal configuration of a pixel circuit according to a sixth embodiment; It is a figure which shows the state inside a vehicle from the back of a vehicle to the front. It is a figure which shows the state inside a vehicle from the diagonal back of a vehicle to the diagonal front.
  • FIG. 10 is a front view of a digital camera, which is a second application example of the electronic device; 2 is a rear view of the digital camera;
  • FIG. 10 is an external view of an HMD, which is a third application example of the electronic device; 1 is an external view of smart glasses; FIG. FIG. 11 is an external view of a TV, which is a fourth application example of the electronic device; FIG. 12 is an external view of a smartphone, which is a fifth application example of the electronic device;
  • Embodiments of a display device and an electronic device will be described below with reference to the drawings.
  • the main components of the display device and the electronic device will be mainly described below, the display device and the electronic device may have components and functions that are not illustrated or described. The following description does not exclude components or features not shown or described.
  • FIG. 1 is a block diagram showing a schematic configuration of a display device 1 according to the first embodiment of the present disclosure.
  • the display device 1 in FIG. 1 can be exemplified by an organic EL display device, a liquid crystal display device, a plasma display device, and the like.
  • the organic EL display device utilizes electroluminescence of an organic material, and an organic EL element (hereinafter referred to as OLED: Organic Light Emitting Device) using a phenomenon of light emission when an electric field is applied to an organic thin film is used as a pixel. is used as a light-emitting element (electro-optical element) for
  • OLED Organic Light Emitting Device
  • a display device 1 in FIG. 1 A display device 1 in FIG. 1
  • the pixel array section 2 has a plurality of pixels 8 arranged in row and column directions. Each pixel 8 has a plurality of sub-pixels 8a.
  • the plurality of sub-pixels 8a includes, for example, three sub-pixels 8a of red, blue and green.
  • the plurality of sub-pixels 8a may include sub-pixels 8a of colors other than red, blue and green (for example, white).
  • the sub-pixels 8a may be collectively referred to as pixels 8 herein.
  • Each sub-pixel 8a in the pixel 8 has a display element and a pixel circuit, as will be described later.
  • the display element is, for example, an OLED.
  • the display element may be a liquid crystal element or a self-luminous element other than an OLED.
  • the pixel array section 2 has a plurality of scanning lines WSL arranged for each pixel group in the row direction, and a plurality of signal lines SIG arranged for each pixel group in the column direction. Pixels 8 are provided near each intersection of these scanning lines WSL and signal lines SIG.
  • the row direction is sometimes called the horizontal line direction
  • the column direction is sometimes called the vertical line direction.
  • the scanning line driving section 3 sequentially drives the scanning lines WSL.
  • the signal line driving unit 4 drives the plurality of signal lines SIG in the horizontal line direction at the same timing in synchronization with the timing at which the scanning line WSL drives each horizontal line.
  • Driving the signal lines SIG means supplying a grayscale signal corresponding to each signal line SIG.
  • the video signal processing unit 5 performs predetermined signal processing on a video signal supplied from the outside (for example, a processor) to generate a gradation signal.
  • the predetermined signal processing is, for example, gamma correction, overdrive correction, or the like.
  • the timing generation unit 6 supplies timing control signals to the scanning line driving unit 3 and the signal line driving unit 4 based on the synchronization signal supplied from the outside, and the scanning line driving unit 3 and the signal line driving unit 4 are operated. operate synchronously.
  • the number of pixels in the pixel array section 2 in FIG. 1 is not particularly limited.
  • the scanning line driving section 3 may be arranged at both ends in the horizontal line direction. Further, in order to divide and drive the plurality of signal lines SIG in the horizontal line direction, a plurality of signal line driving units 4 may be provided.
  • FIG. 2 is a circuit diagram showing an example of the internal configuration of the pixel circuit 11 according to the first embodiment.
  • FIG. 2 shows an example of the pixel circuit 11 that controls light emission of the OLED 12 when the OLED 12 is used as a display element.
  • the pixel circuit 11 of FIG. 2 has four transistors Q1-Q4 called 4Tr2C and two capacitors (a first capacitor Cs and a second capacitor Csub).
  • the four transistors Q1-Q4 in the pixel circuit 11 are called drive transistor Q1, sampling transistor Q2, drive scan transistor Q3, and auto-zero transistor Q4.
  • the drive transistor Q1 may be abbreviated as Drv transistor Q1, the sampling transistor Q2 as WS transistor Q2, the drive scan transistor Q3 as DS transistor Q3, and the auto-zero transistor Q4 as AZ transistor Q4.
  • the pixel circuit 11 of FIG. 2 shows an example in which the Drv transistor Q1, the WS transistor Q2, the DS transistor Q3, and the AZ transistor Q4 are composed of P-type MOS (Metal-Oxide-Semiconductor) transistors. , N-type MOS transistors.
  • P-type MOS Metal-Oxide-Semiconductor
  • the DS transistor Q3 and the Drv transistor Q1 are cascode-connected between the power supply voltage node VCCP and the anode of the OLED12.
  • the WS transistor Q2 is connected between the signal line SIG and the gate of the Drv transistor Q1.
  • a signal input to the gate of the WS transistor Q2 is called a WS signal
  • a signal input to the gate of the DS transistor Q3 is called a DS signal.
  • a gradation signal and an offset signal are supplied to the signal line SIG at different timings.
  • the AZ transistor Q4 is connected between the anode of the OLED 12 and the ground voltage node VSSP. An AZ signal is supplied to the gate of the AZ transistor Q4. If the AZ transistor Q4 is a P-type MOS transistor, the source-drain current of the Drv transistor Q1 flows through the AZ transistor Q4 to the ground voltage node VSSP when the AZ signal is low. Therefore, while the AZ transistor Q4 is on, the anode voltage of the OLED 12 is suppressed from rising, and no current flows through the OLED 12.
  • a first capacitor Cs is connected between the gate and source of the Drv transistor Q1.
  • a second capacitor Csub is connected between the source and drain of the DS transistor Q3. That is, the first capacitor Cs and the second capacitor Csub are connected in series between the power supply voltage node VCCP and the gate of the Drv transistor Q1.
  • the first capacitor Cs is sometimes called a pixel capacitance
  • the second capacitor Csub is sometimes called an auxiliary capacitance.
  • the first capacitor Cs and the second capacitor Csub are, for example, MIM (Metal-Insulator-Metal) capacitors.
  • MIM Metal-Insulator-Metal
  • at least one electrode of the capacitor is arranged in the wiring layer.
  • the cathode of the OLED 12 is fixed at a predetermined voltage (eg ground voltage).
  • FIG. 3 is a timing chart showing an example of the operation of the pixel circuit 11 according to the first embodiment.
  • the signal line driving section 4 generates driving voltages for all the signal lines SIG each time the scanning line driving section 3 drives one scanning line WSL.
  • a plurality of scanning lines WSL are provided in one frame, and a plurality of pixels connected to one scanning line WSL is called one horizontal line (1H).
  • FIG. 3 shows a timing chart of typical signals in the pixel circuit when all pixels in one frame are driven in turn for each horizontal line.
  • a signal DS is a gate signal of the DS transistor Q3.
  • Signal AZ is the gate signal of AZ transistor Q4.
  • Signal WS is the gate signal of WS transistor Q2.
  • the operation of the pixel circuit in FIG. 2 will be described below based on the timing chart in FIG. First, at time t1, the signal AZ transitions from high to low, so that the AZ transistor Q4 turns on and the OLED 12 stops emitting light. Also, the WS transistor Q2 is turned on, and the offset voltage Vofs on the signal line SIG is supplied to one end of the first capacitor Cs. At this time, the DS transistor Q3 is on, and the power supply voltage VCCP is supplied to the other end of the first capacitor Cs. Therefore, a voltage of (VCCP-Vofs) is applied across the first capacitor Cs.
  • the DS transistor Q3 is turned off. As a result, part of the charge accumulated in the first capacitor Cs moves to the second capacitor Csub, and the charge is distributed. Specifically, electric charges corresponding to the threshold voltage of the Drv transistor Q1 are accumulated in the first capacitor Cs.
  • the WS transistor Q2 is turned off.
  • the signal line voltage Vsig is supplied to the signal line SIG.
  • the WS transistor Q2 is turned on, and the signal line voltage Vsig is supplied to the gate of the Drv transistor Q1. Since the threshold voltage of the Drv transistor Q1 is corrected by the first capacitor Cs, a voltage obtained by performing offset correction and threshold correction with respect to the signal line voltage Vsig is applied between the gate and source of the Drv transistor Q1. be.
  • the first capacitor Cs and the second capacitor Csub are used for offset correction and threshold correction, for example.
  • the threshold value correction it is possible to correct variations in the threshold voltage of the Drv transistor Q1, thereby suppressing deterioration in image quality of the display image.
  • surface roughness can be corrected by threshold correction.
  • the larger the capacitance of the first capacitor Cs and the second capacitor Csub the more appropriately the correction can be performed.
  • FIG. 4 is a cross-sectional view showing an example of the configuration of the first capacitor Cs and the second capacitor Csub according to the first embodiment.
  • FIG. 5 is a plan view showing an example of the configuration of the first capacitor Cs and the second capacitor Csub according to the first embodiment.
  • Layers L1, L2, and L3 are wiring layers, and are layers in which, for example, wiring and one electrode part of a capacitor are arranged.
  • the layer L1 is the lowest layer and the layer L3 is the uppermost layer.
  • the layer L11 is a layer between the layer L1 and the layer L2, and is a layer in which, for example, the other electrode portion of the capacitor is arranged.
  • the layers L1, L2, and L3 may be layers between wiring layers, and the layer L11 may be a wiring layer. Wirings arranged in different layers, and wirings and electrode portions arranged in different layers are partially electrically connected by vias V (columnar electrodes), for example.
  • the pixel circuit 11 shown in FIGS. 4 and 5 includes a first capacitor Cs, a second capacitor Csub, a metal layer ML, and a via V.
  • the first capacitor Cs has two electrode portions and holds a first voltage for operation of the OLED 12 . More specifically, the first capacitor Cs has a first electrode portion E1 and a second electrode portion E2. The first electrode portion E1 and the second electrode portion E2 are arranged with an insulating layer interposed therebetween.
  • the second capacitor Csub is arranged in the same layer as the first capacitor Cs.
  • a second capacitor Csub has two electrodes and holds a second voltage for operation of the OLED 12 .
  • the second voltage is, for example, different than the first voltage. That is, the first capacitor Cs and the second capacitor Csub have different functions. However, the second voltage may be the same as the first voltage.
  • the two electrode portions of the second capacitor Csub are arranged in the same layer as the two electrode portions of the first capacitor Cs. More specifically, the second capacitor Csub has a third electrode portion E3 and a fourth electrode portion E4.
  • the third electrode portion E3 and the fourth electrode portion E4 are arranged with an insulating layer interposed therebetween.
  • the first electrode part E1 (first electrode) is arranged on the layer L1, for example.
  • the second electrode part E2 (second electrode) is arranged on the layer L11, for example.
  • the lower first electrode portion E1 is formed larger than the upper second electrode portion E2 by the manufacturing process. That is, the second electrode portion E2 is included in the first electrode portion E1 when viewed from the stacking direction.
  • the stacking direction is the vertical direction along the paper surface of FIG. 4 and the vertical direction of the paper surface of FIG.
  • the third electrode portion E3 (third electrode) is arranged on the layer L1, which is the same layer as the first electrode portion E1.
  • the fourth electrode portion E4 (fourth electrode) is arranged on the layer L11, which is the same layer as the second electrode portion E2.
  • the lower third electrode portion E3 is formed larger than the upper fourth electrode portion E4 by the manufacturing process. That is, the fourth electrode portion E4 is included in the third electrode portion E3 when viewed from the stacking direction.
  • one electrode portion of the first capacitor Cs and one electrode portion of the second capacitor Csub are common electrode portions.
  • a common electrode portion is one electrode portion of a certain capacitor, and is an electrode portion electrically connected between a plurality of capacitors.
  • the common electrode portion is arranged in each of the two layers in which the two electrode portions of the capacitor are arranged.
  • the second electrode portion E2 arranged on the layer L11 and the third electrode portion E3 arranged on the layer L1 are common electrode portions.
  • the source DRs of the Drv transistor Q1 is connected to the node between the first capacitor Cs and the second capacitor Csub. Therefore, the source DRs is electrically connected to one electrode portion (one end) of each capacitor electrically connected between the first capacitor Cs and the second capacitor Csub. In the examples shown in FIGS. 4 and 5, the source DRs is electrically connected to the common electrode portion, that is, the second electrode portion E2 and the third electrode portion E3.
  • the gate DRg of the Drv transistor Q1 is connected to the other end of the first capacitor Cs.
  • the gate DRg is electrically connected to the first electrode portion E1.
  • the power supply voltage node VCCP is connected to the other end of the second capacitor Csub.
  • the power supply voltage VCCP is input to the fourth electrode portion E4 via the wiring of the layer L2.
  • the metal layer ML is arranged in a layer different from the first capacitor Cs and the second capacitor Csub.
  • the metal layer ML is arranged, for example, on the layer L2.
  • the metal layer ML is electrically connected to the common electrode portion, that is, the second electrode portion E2 and the third electrode portion E3. Therefore, the metal layer ML is also electrically connected to the source DRs.
  • the metal layer ML is arranged so as to overlap at least one electrode portion of at least one capacitor when viewed from the stacking direction.
  • “overlapping” indicates that the outer edge of the metal layer ML does not necessarily have to be located outside the outer edge of the electrode portion in plan view.
  • the metal layer ML is arranged to cover at least one electrode portion of at least one capacitor when viewed from the stacking direction.
  • “cover” indicates that the outer edge of the metal layer ML is located outside the outer edge of the electrode portion in plan view.
  • the metal layer ML covers the first electrode portion E1 in plan view. More preferably, the metal layer ML is arranged to cover the first electrode portion E1. However, the metal layer ML does not necessarily have to be arranged so as to cover the first electrode portion E1.
  • the metal layer ML is arranged so as to cover the first electrode portion E1 electrically connected to the gate DRg when viewed from the stacking direction. Moreover, the metal layer ML is arranged so that at least a part thereof overlaps with the third electrode part E3 when viewed from the stacking direction. This is for connecting the metal layer ML and the third electrode portion E3 through the via V (via V2).
  • the via V is provided so as to extend in the stacking direction.
  • a plurality of vias V electrically connect each common electrode portion and the metal layer ML.
  • the metal layer ML is arranged through a plurality of vias V to electrically connect the respective common electrode portions. More specifically, the via V electrically connects the second electrode portion E2 and the third electrode portion E3 arranged in different layers through the metal layer ML.
  • the via V has a via V1 and a via V2.
  • the via V1 electrically connects the second electrode portion E2 and the metal layer ML.
  • the via V2 electrically connects the third electrode portion E3 and the metal layer ML.
  • the capacitance of the first capacitor Cs is usually determined by the overlapping area of the first electrode portion E1 and the second electrode portion E2 when viewed from the stacking direction. However, increasing the overlapping area is limited by layout and area restrictions. Here, the capacitance of the first capacitor Cs can be improved by using the parasitic capacitance in the circuit.
  • the first electrode portion E1 is larger than the second electrode portion E2, and the metal layer ML is larger than the first electrode portion E1. Therefore, as shown in FIG. 5, part of the metal layer ML faces part of the first electrode portion E1. That is, the metal layer ML is arranged to cover the first electrode portion E1, which is arranged to cover the common electrode portion (second electrode portion E2) and is different from the common electrode portion, when viewed from the stacking direction. As a result, as shown in FIG. 4, a parasitic capacitance Cp1 is generated between the metal layer ML and the first electrode portion E1 facing each other. Note that the parasitic capacitance Cp1 does not occur in the region of the second electrode portion E2 in plan view.
  • the second electrode portion E2, the third electrode portion E3, and the metal layer ML are electrically connected to the source DRs.
  • a first electrode portion E1 covered with the metal layer ML and different from the common electrode portion (second electrode portion E2) is electrically connected to the gate DRg. Therefore, the parasitic capacitance Cp1 is the parasitic capacitance Cgs between the gate and source of the Drv transistor Q1, and can improve the capacitance of the first capacitor Cs.
  • a signal line SIG is arranged on a layer L3 above the layers L1 and L2.
  • parasitic capacitance is generated between the first electrode portion E1 and the signal line SIG.
  • the first electrode portion E1 is electrically connected to the gate DRg. Therefore, the parasitic capacitance may adversely affect the operation of the Drv transistor Q1 and increase noise.
  • the metal layer ML is arranged so as to cover the first electrode portion E1 electrically connected to the gate DRg and different from the common electrode portion when viewed from the stacking direction. be.
  • the metal layer ML is arranged in the layer L2 between the layer L1 in which the first electrode portion E1 is arranged and the layer L3 in which the signal line SIG is arranged. Therefore, the metal layer ML is arranged between the first electrode portion E1 and the signal line SIG to shield the first electrode portion E1. As a result, the influence of parasitic capacitance in the first electrode portion E1 (gate DRg) can be suppressed, and noise can be suppressed.
  • the voltage supply wiring and the signal line SIG are arranged on the same layer L3, they may be arranged on separate layers.
  • the capacitance of the second capacitor Csub is usually determined by the overlapping area of the third electrode portion E3 and the fourth electrode portion E4 when viewed from the stacking direction.
  • increasing the overlapping area is limited by layout and area restrictions.
  • the effective capacitance of the second capacitor Csub can be improved by using the parasitic capacitance within the circuit.
  • a voltage supply wiring for supplying a predetermined voltage (power supply voltage VCCP) is arranged on a layer L3 above the layers L1 and L2.
  • a parasitic capacitance Cp2 is generated between the power supply wiring and the metal layer ML, as shown in FIG.
  • the third electrode portion E3 and the metal layer ML are electrically connected to the source DRs.
  • a fourth electrode portion E4 different from the common electrode portion in at least one capacitor (second capacitor Csub) is electrically connected to the voltage supply wiring. Therefore, the parasitic capacitance Cp2 can improve the effective capacitance of the second capacitor Csub.
  • the overlapping area with the metal layer ML may be increased by enlarging the voltage supply wiring or the like. Thereby, the parasitic capacitance Cp2 can be further increased. As a result, the second capacitor Csub can be made even larger.
  • the first capacitor Cs and the second capacitor Csub are arranged in the same layer. As a result, two capacitors can be formed at once, so the number of steps and costs can be reduced.
  • FIG. 6 is a cross-sectional view showing an example of the configuration of the first capacitor Cs and the second capacitor Csub according to the first comparative example.
  • the first comparative example differs from the first embodiment in that two first capacitors Cs and two second capacitors Csub are arranged in different layers.
  • the third electrode portion E3 is arranged on the layer L2, and the fourth electrode portion E4 is arranged on the layer L21.
  • Layer L21 is a layer between layer L2 and layer L3. In this case, since the first capacitor Cs and the second capacitor Csub are separately formed, the number of steps is increased and the cost is increased.
  • the first capacitor Cs and the second capacitor Csub can be formed at once, and the number of steps and cost can be reduced.
  • the second electrode portion E2 and the third electrode portion E3, which are common electrode portions, are arranged in two layers different from each other.
  • the capacitance of the first capacitor Cs and the second capacitor Csub can be increased by the parasitic capacitance in the circuit.
  • the increase in capacitance can make correction such as threshold value correction more advantageous, and for example, surface roughness can be suppressed and image quality can be improved.
  • the first electrode portion E1 electrically connected to the gate DRg can be shielded. As a result, the influence of noise due to the parasitic capacitance from the signal line SIG to the gate DRg can be suppressed, and the image quality can be improved.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of the first capacitor Cs and the second capacitor Csub according to the second comparative example.
  • the second comparative example differs from the first embodiment in that the common electrodes of the two capacitors are arranged in the same layer.
  • the first electrode portion E1 and the third electrode portion E3 are electrically connected.
  • the first electrode portion E1 and the third electrode portion E3 are electrically connected to the source DRs.
  • the second electrode portion E2 is electrically connected to the gate DRg. In this case, the influence of noise due to parasitic capacitance from the signal line SIG to the second electrode portion E2 may increase.
  • the first electrode portion E1 electrically connected to the gate DRg is arranged on the lower layer L1.
  • the common electrode portion (metal layer ML) is arranged so as to cover the first electrode portion E11 when viewed from the stacking direction.
  • the first electrode portion E1 can be shielded, and the generation of parasitic capacitance and noise can be suppressed.
  • image quality can be improved.
  • the parasitic capacitance in the circuit can improve the effective capacitance of the first capacitor Cs and the second capacitor Csub. As a result, threshold value correction and the like can be performed more appropriately, and image quality can be improved.
  • first capacitors Cs and second capacitors Csub have been described. However, three or more capacitors may be provided. In this case, the multiple capacitors are arranged in the same layer. A plurality of capacitors each hold a voltage (charge) associated with the operation of OLED 12 . Also, a plurality of sets of the first capacitor Cs and the second capacitor Csub may be provided. In this case, the layers arranged between each set may be different.
  • the first capacitor Cs and the second capacitor Csub are electrically connected to the Drv transistor Q1 for threshold correction of the Drv transistor Q1.
  • the Drv transistor Q1 is a transistor that drives the OLED 12 based on the signal voltage held in the first capacitor Cs. However, depending on the purpose of providing the capacitor, it is not necessarily limited to the Drv transistor Q1.
  • the first capacitor Cs and the second capacitor Csub may be electrically connected to other transistors involved in the operation of the OLED 12, such as WS transistor Q2, DS transistor Q3 or AZ transistor Q4.
  • the common electrode portion of the two first capacitors Cs and second capacitors Csub is electrically connected to the source of the transistor (Drv transistor Q1).
  • terminals other than the source of the transistor may be electrically connected to the common electrode portion.
  • the first capacitor Cs and the second capacitor Csub are MIM capacitors.
  • other capacitors are possible, as will be explained later with reference to the third and fourth embodiments.
  • the embodiment of the present disclosure can be applied when a plurality of capacitors having common electrodes are provided without being limited to the first embodiment.
  • FIG. 8 is a circuit diagram showing an example of the internal configuration of the pixel circuit 11a according to the modification of the first embodiment.
  • the modified example of the first embodiment differs from the first embodiment in the conductivity type of the transistors in the pixel circuit. Differences will be mainly described below.
  • the pixel circuit 11 in FIG. 2 has four transistors Q1 to Q4 made up of P-type MOS transistors, but may be made up of N-type MOS transistors.
  • FIG. 8 is a circuit diagram of a modified pixel circuit 11a in which the transistors Q1 to Q4 in the pixel circuit 11 of FIG. 2 are composed of N-type MOS transistors Q1a, Q2a, Q3a and Q4a.
  • the pixel circuit 11a in FIG. 8 performs the same operation as the pixel circuit 11 in FIG. 2, although the conductivity type is different.
  • the transistors may have different conductivity types as in the modification of the first embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 9 is a circuit diagram showing an example of the internal configuration of the pixel circuit 11a according to the second embodiment. 2nd Embodiment is provided with the capacitor Coled compared with 1st Embodiment. Differences will be mainly described below.
  • a capacitor Coled is arranged in parallel with the OLED 12 in the pixel circuit 11b of FIG.
  • Capacitor Coled is an auxiliary capacitance.
  • a capacitor Coled may be provided as in the second embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 10 is a circuit diagram showing an example of the internal configuration of the pixel circuit 11c according to the third embodiment.
  • the third embodiment differs from the first embodiment in the common electrodes of the two capacitors. Differences will be mainly described below.
  • a capacitor C1 and a capacitor C2 are provided instead of the first capacitor Cs and the second capacitor Csub. Although only one capacitor is shown in the circuit diagram shown in FIG. 10, two capacitors C1 and C2 connected in parallel are provided.
  • Capacitor C1 and capacitor C2 are connected between gate DRg and ground voltage node VSSP. Capacitor C1 and capacitor C2 are connected in parallel with each other. Therefore, capacitor C1 and capacitor C2 have a common electrode. A common electrode of the capacitor C1 and the capacitor C2 is electrically connected to the gate DRg of the Drv transistor Q1.
  • Capacitor C1 and capacitor C2 are, for example, an MIM capacitor and a MOM (Metal-Oxide-Metal) capacitor, respectively.
  • the WS transistor Q2 is CMOS, and the AZ transistor Q4 is not provided.
  • the WS transistor Q2 has a WS transistor Q2n and a WS transistor Q2p connected in parallel to form a transfer gate.
  • WS transistor Q2n is an N-type MOS transistor, and receives signal WSn at its gate.
  • the WS transistor W2p is a P-type MOS transistor and has a gate to which a signal WSp is input.
  • the on/off timings of the WS transistor W2n and the WS transistor W2p are controlled to have a predetermined phase difference. As a result, regardless of the amplitude level of signals to other pixels in the same row, it is possible to reduce the influence of waveform blunting of the write scanning pulse on the mobility correction period, and to reduce display unevenness.
  • FIG. 11 is a cross-sectional view showing an example of the configuration of capacitors C1 and C2 according to the third embodiment.
  • FIG. 12 is a plan view showing an example of the configuration of capacitors C1 and C2 according to the third embodiment.
  • the capacitor C1 has a first electrode portion E1 and a second electrode portion E2.
  • the capacitor C2 has a third electrode portion E3 and a fourth electrode portion E4.
  • the common electrode portions are the second electrode portion E2 and the third electrode portion E3.
  • the first electrode portion E1 is larger than the second electrode portion E2, and the metal layer ML is larger than the first electrode portion E1. Therefore, as shown in FIG. 12, part of the metal layer ML faces part of the first electrode portion E1. As a result, as shown in FIG. 11, a parasitic capacitance Cp1 is generated between the metal layer ML and the first electrode portion E1.
  • the second electrode portion E2, the third electrode portion E3, and the metal layer ML are electrically connected to the gate DRg.
  • the first electrode portion E1 covered with the metal layer ML and different from the common electrode portion (second electrode portion E2) is electrically connected to the voltage supply wiring.
  • the first electrode portion E1 is electrically connected to the ground voltage node VSSP, and the potential is fixed.
  • the fourth electrode portion E4 is also electrically connected to the ground voltage node VSSP and fixed in potential. Therefore, the parasitic capacitance Cp1 can improve the capacitance of the capacitors C1 and C2.
  • the common electrode portion of the two capacitors C1 and C2 may be electrically connected to the gate DRg of the transistor (Drv transistor Q1). Also in this case, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 13 is a circuit diagram showing an example of the internal configuration of the pixel circuit 11d according to the fourth embodiment.
  • the fourth embodiment differs in circuit configuration from the third embodiment. Differences will be mainly described below.
  • the Drv transistor Q1 and the DS transistor Q3 are N-type MOS transistors.
  • the capacitor C1 and the capacitor C2 are, for example, a MOM capacitor and a MOS capacitor, respectively.
  • the fourth embodiment as in the third embodiment, the common electrode portion of the two capacitors C1 and C2 is electrically connected to the gate DRg of the Drv transistor Q1. Therefore, the fourth embodiment can obtain the same effect as the third embodiment.
  • FIG. 14 is a circuit diagram showing an example of the internal configuration of the pixel circuit 11e according to the fifth embodiment.
  • the fifth embodiment differs in circuit configuration from the third embodiment. Differences will be mainly described below.
  • the capacitors C1 and C2 are connected between the power supply voltage node VCCP and the gate DRg of the Drv transistor Q1.
  • the capacitor C1 and the capacitor C2 are, for example, an MIM capacitor and a MOM capacitor, respectively.
  • a signal relay line is arranged between the signal line SIG and the gate DRg (WS transistor Q2) of the Drv transistor Q1.
  • AZ transistors Q41, Q42, Q43 and a capacitor Ca are also provided.
  • AZ1 signal, AZ2 signal and AZ3 signal are input to the gates of AZ transistors Q41, Q42 and Q43, which are P-type MOS transistors, respectively.
  • the common electrode portion of the two capacitors C1 and C2 is electrically connected to the gate DRg of the Drv transistor Q1. Therefore, the fifth embodiment can obtain the same effect as the third embodiment.
  • FIG. 15 is a circuit diagram showing an example of the internal configuration of the pixel circuit 11f according to the sixth embodiment.
  • the sixth embodiment differs in circuit configuration from the third embodiment.
  • the capacitors C1 and C2 are connected between the power supply voltage node VCCP and the gate DRg of the Drv transistor Q1.
  • the common electrode portion of the two capacitors C1 and C2 is electrically connected to the gate DRg of the Drv transistor Q1. Therefore, the sixth embodiment can obtain the same effect as the third embodiment.
  • FIG. 16A and 16B are diagrams showing the internal configuration of a vehicle 100 that is a first application example of an electronic device 50 that includes the display device 1 according to the present disclosure.
  • 16A is a view showing the interior of vehicle 100 from the rear to the front of vehicle 100
  • FIG. 16B is a view showing the interior of vehicle 100 from the oblique rear to oblique front of vehicle 100.
  • FIG. 16A is a view showing the interior of vehicle 100 from the rear to the front of vehicle 100
  • FIG. 16B is a view showing the interior of vehicle 100 from the oblique rear to oblique front of vehicle 100.
  • a vehicle 100 in FIGS. 16A and 16B has a center display 101, a console display 102, a head-up display 103, a digital rear mirror 104, a steering wheel display 105, and a rear entertainment display 106.
  • the center display 101 is arranged on the dashboard 107 at a location facing the driver's seat 108 and the passenger's seat 109 .
  • FIG. 16 shows an example of a horizontally elongated center display 101 extending from the driver's seat 108 side to the front passenger's seat 109 side, but the screen size and layout of the center display 101 are arbitrary.
  • Information detected by various sensors can be displayed on the center display 101 .
  • the center display 101 displays images captured by an image sensor, images of distances to obstacles in front of and to the sides of the vehicle measured by a ToF sensor, body temperature of passengers detected by an infrared sensor, and the like. Displayable.
  • Center display 101 can be used, for example, to display at least one of safety-related information, operation-related information, lifelogs, health-related information, authentication/identification-related information, and entertainment-related information.
  • the safety-related information includes information such as the detection of dozing off, the detection of looking away, the detection of mischief by a child riding in the same vehicle, the presence or absence of a seatbelt being worn, the detection of an abandoned passenger, and the like. It is information detected by The operation-related information uses a sensor to detect a gesture related to the operation of the passenger. Detected gestures may include manipulation of various equipment within vehicle 100 . For example, it detects the operation of an air conditioner, a navigation device, an AV device, a lighting device, or the like.
  • the lifelog includes lifelogs of all crew members. For example, the lifelog includes a record of each occupant's behavior during the ride.
  • the health-related information detects the body temperature of the occupant using a temperature sensor, and infers the health condition of the occupant based on the detected body temperature.
  • an image sensor may be used to capture an image of the occupant's face, and the occupant's health condition may be estimated from the captured facial expression.
  • an automated voice conversation may be conducted with the passenger, and the health condition of the passenger may be estimated based on the content of the passenger's answers.
  • Authentication/identification-related information includes a keyless entry function that performs face authentication using a sensor, and a function that automatically adjusts seat height and position by face recognition.
  • the entertainment-related information includes a function of detecting operation information of the AV device by the passenger using a sensor, a function of recognizing the face of the passenger with the sensor, and providing content suitable for the passenger with the AV device.
  • the console display 102 can be used, for example, to display lifelog information.
  • Console display 102 is located near shift lever 111 on center console 110 between driver's seat 108 and passenger's seat 109 .
  • Information detected by various sensors can also be displayed on the console display 102 .
  • the console display 102 may display an image of the surroundings of the vehicle captured by an image sensor, or may display an image of the distance to obstacles around the vehicle.
  • the head-up display 103 is virtually displayed behind the windshield 112 in front of the driver's seat 108 .
  • the heads-up display 103 can be used to display at least one of safety-related information, operation-related information, lifelogs, health-related information, authentication/identification-related information, and entertainment-related information, for example.
  • the heads-up display 103 is often placed virtually in front of the driver's seat 108 and is therefore used to display information directly related to the operation of the vehicle 100, such as vehicle 100 speed and fuel (battery) level. Are suitable.
  • the digital rear mirror 104 can display not only the rear of the vehicle 100 but also the state of the occupants in the rear seats. be able to.
  • the steering wheel display 105 is arranged near the center of the steering wheel 113 of the vehicle 100 .
  • the steering wheel display 105 can be used, for example, to display at least one of safety-related information, operational-related information, lifelogs, health-related information, authentication/identification-related information, and entertainment-related information.
  • lifelog information such as the driver's body temperature and information regarding the operation of AV equipment, air conditioning equipment, and the like.
  • the rear entertainment display 106 is attached to the rear side of the driver's seat 108 and the passenger's seat 109, and is intended for viewing by passengers in the rear seats.
  • Rear entertainment display 106 can be used, for example, to display at least one of safety-related information, operation-related information, lifelogs, health-related information, authentication/identification-related information, and entertainment-related information.
  • information relevant to the rear seat occupants is displayed. For example, information about the operation of an AV device or an air conditioner may be displayed, or the results obtained by measuring the body temperature of passengers in the rear seats with a temperature sensor may be displayed.
  • the display device 1 can be applied to the center display 101, console display 102, head-up display 103, digital rear mirror 104, steering wheel display 105, and rear entertainment display 106.
  • the display device 1 according to the present disclosure can be applied not only to various displays used in vehicles, but also to displays mounted on various electronic devices 50 .
  • FIG. 17A is a front view of a digital camera 120 as a second application example of the electronic device 50
  • FIG. 17B is a rear view of the digital camera 120.
  • the digital camera 120 in FIGS. 17A and 17B shows an example of a single-lens reflex camera with an interchangeable lens 121, it can also be applied to a camera in which the lens 121 is not interchangeable.
  • FIGS. 17A and 17B when the photographer holds the grip 123 of the camera body 122, looks through the electronic viewfinder 124, determines the composition, adjusts the focus, and presses the shutter 125,
  • the shooting data is saved in the memory of the On the rear side of the camera, as shown in FIG. 17B, a monitor screen 126 for displaying photographed data and the like, a live image and the like, and an electronic viewfinder 124 are provided.
  • a sub-screen for displaying setting information such as shutter speed and exposure value is provided on the upper surface of the camera.
  • the display device 1 By applying the display device 1 according to the present disclosure to the monitor screen 126, electronic viewfinder 124, sub-screen, etc. used in cameras, it is possible to reduce costs and improve display quality.
  • the display device 1 according to the present disclosure can also be applied to a head-mounted display (hereinafter referred to as HMD).
  • HMD head-mounted display
  • the HMD can be used for VR (Virtual Reality), AR (Augmented Reality), MR (Mixed Reality), SR (Substitutional Reality), or the like.
  • FIG. 18A is an external view of the HMD 130, which is a third application example of the electronic device 50.
  • FIG. The HMD 130 of FIG. 18A has a wearing member 131 for wearing so as to cover human eyes. This mounting member 131 is fixed by being hooked on a human ear, for example.
  • a display device 132 is provided inside the HMD 130 , and the wearer of the HMD 130 can view a stereoscopic image or the like on the display device 132 .
  • the HMD 130 has, for example, a wireless communication function and an acceleration sensor, and can switch stereoscopic images and the like displayed on the display device 132 according to the posture and gestures of the wearer.
  • the display device 1 shown in FIG. 1 can be applied to the display device 132 of FIG. 18A.
  • the HMD 130 may be provided with a camera to capture an image of the wearer's surroundings, and the display device 132 may display an image obtained by synthesizing the image captured by the camera and an image generated by a computer.
  • a camera is placed on the back side of the display device 132 that is visually recognized by the wearer of the HMD 130, and the surroundings of the wearer's eyes are photographed with this camera. By displaying it on the display, people around the wearer can grasp the wearer's facial expressions and eye movements in real time.
  • FIG. 18B the display device 1 according to the present disclosure can also be applied to smart glasses 130a that display various information on glasses 134.
  • FIG. A smart glass 130 a in FIG. 18B has a body portion 135 , an arm portion 136 and a barrel portion 137 .
  • the body portion 135 is connected to the arm portion 136 .
  • the body portion 135 is detachable from the glasses 134 .
  • the body portion 135 incorporates a control board and a display portion for controlling the operation of the smart glasses 130a.
  • the body portion 135 and the lens barrel are connected to each other via an arm portion 136 .
  • the lens barrel portion 137 emits the image light emitted from the main body portion 135 via the arm portion 136 to the lens 138 side of the glasses 134 .
  • This image light enters the human eye through lens 138 .
  • the wearer of the smart glasses 130a in FIG. 18B can visually recognize not only the surrounding situation but also various information emitted from the lens barrel 137 in the same manner as ordinary glasses.
  • the display device 1 according to the present disclosure can also be applied to a television device (hereinafter referred to as TV).
  • TV television device
  • FIG. 19 is an external view of a TV 330, which is a fourth application example of the electronic device 50.
  • the TV 330 has an image display screen portion 331 including, for example, a front panel 332 and a filter glass 333 .
  • the display device 1 according to the present disclosure can be applied to the video display screen section 331 .
  • the TV 330 with low cost and excellent display quality can be realized.
  • FIG. 20 is an external view of a smartphone 600 that is a fifth application example of the electronic device 50.
  • the smartphone 600 includes a display unit 602 that displays various types of information, and an operation unit that includes buttons and the like for accepting scanning input by the user.
  • the display device 1 according to the present disclosure can be applied to the display unit 602 .
  • this technique can take the following structures.
  • a light emitting element a first capacitor having a first electrode and a second electrode; a second capacitor having a third electrode and a fourth electrode; a driving transistor that supplies a current corresponding to the voltage accumulated in the first capacitor and the voltage accumulated in the second capacitor to the light emitting element, the second electrode is electrically connected to the third electrode;
  • the display device wherein the second electrode and the third electrode are arranged in different layers.
  • the display device according to (1) further comprising a metal layer electrically connected to the third electrode.
  • the display device wherein the metal layer is arranged to cover the first electrode and the second electrode when viewed from the stacking direction.
  • the metal layer is arranged so as to overlap with the first electrode arranged to cover the second electrode when viewed from the stacking direction.
  • the first electrode is electrically connected to the gate of the drive transistor;
  • the display device wherein the second electrode, the third electrode and the metal layer are electrically connected to the source of the drive transistor.
  • the first electrode is electrically connected to a voltage supply wiring that supplies a predetermined voltage;
  • the display device according to (4), wherein the second electrode, the third electrode and the metal layer are electrically connected to the gate of the drive transistor.
  • the first electrode electrically connected to the gate is arranged so as to overlap the signal line when viewed from the stacking direction;
  • (11) further comprising a plurality of columnar electrode portions extending in the stacking direction and electrically connecting each of the second electrode and the third electrode to the metal layer; any one of (2) to (10), wherein the metal layer is arranged to electrically connect the second electrode and the third electrode via the plurality of columnar electrode portions;
  • each of the first capacitor and the second capacitor is a MIM (Metal-Insulator-Metal) capacitor, a MOM (Metal-Oxide-Metal) capacitor, or a MOS (Metal-Oxide-Semiconductor) capacitor;
  • MIM Metal-Insulator-Metal
  • MOM Metal-Oxide-Metal
  • MOS Metal-Oxide-Semiconductor
  • a light emitting element a first capacitor having a first electrode and a second electrode; a second capacitor having a third electrode and a fourth electrode; a driving transistor that supplies a current corresponding to the voltage accumulated in the first capacitor and the voltage accumulated in the second capacitor to the light emitting element, the second electrode is electrically connected to the third electrode;
  • the electronic device wherein the second electrode and the third electrode are arranged in different layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

[課題]製造工程をより削減し、かつ、表示特性を向上させる。 [解決手段]表示装置は、発光素子と、第1の電極および第2の電極を有する第1のキャパシタと、第3の電極および第4の電極を有する第2のキャパシタと、前記第1のキャパシタに蓄積された電圧と、第2のキャパシタに蓄積された電圧と、に応じた電流を前記発光素子に供給する駆動トランジスタと、を備え、前記第2の電極は、前記第3の電極と電気的に接続され、前記第2の電極と前記第3の電極は、それぞれ異なる層に配置される。

Description

表示装置及び電子機器
 本開示による実施形態は、表示装置及び電子機器に関する。
 近年、画像表示を行う表示装置の分野では、発光素子を含む画素(画素回路)が行列状に配置された平面型の表示装置が急速に普及している。平面型の表示装置としては、画素の発光素子として、デバイスに流れる電流値に応じて発光輝度が変化するいわゆる電流駆動型の電気光学素子、例えば有機薄膜に電界をかけると発光する現象を利用した有機EL(Electro Luminescence)素子を用いた有機EL表示装置が開発され、商品化が進められている。
 画素回路内に、例えば、トランジスタの特性ばらつきの補正、及び、有機EL素子の容量の補助等に用いられる複数のキャパシタが設けられる場合がある(特許文献1参照)。
特開2009-47765号公報
 しかしながら、複数のキャパシタを複数の層に分けて配置すると、工程数が多くコストが高くまってしまう。また、レイアウト上の制約等により、キャパシタの静電容量を大きくすることが困難な場合がある。この場合、例えば、トランジスタの特性ばらつきの補正等を適切に行うことができなくなり、画質等の表示特性の向上が困難になってしまう可能性がある。
 そこで、本開示では、製造工程をより削減することができ、かつ、表示特性を向上させることができる表示装置及び電子機器を提供するものである。
 上記の課題を解決するために、本開示によれば、
 発光素子と、
 第1の電極および第2の電極を有する第1のキャパシタと、
 第3の電極および第4の電極を有する第2のキャパシタと、
 前記第1のキャパシタに蓄積された電圧と、第2のキャパシタに蓄積された電圧と、に応じた電流を前記発光素子に供給する駆動トランジスタと、を備え、
 前記第2の電極は、前記第3の電極と電気的に接続され、
 前記第2の電極と前記第3の電極は、それぞれ異なる層に配置される、表示装置が提供される。
 積層方向から見て、前記第1の電極および前記第2の電極と重なるように、前記第1のキャパシタおよび前記第2のキャパシタとは異なる層に配置され、前記第2の電極および前記第3の電極と電気的に接続される金属層をさらに備えてもよい。
 前記金属層は、積層方向から見て、前記第1の電極および前記第2の電極を覆うように配置されてもよい。
 前記金属層は、積層方向から見て、前記第2の電極を覆うように配置された前記第1の電極と重なるように配置されてもよい。
 前記第1の電極は、前記駆動トランジスタのゲートと電気的に接続され、
 前記第2の電極、前記第3の電極及び前記金属層は、前記駆動トランジスタのソースと電気的に接続されてもよい。
 前記第1の電極は、所定の電圧を供給する電圧供給配線と電気的に接続され、
 前記第2の電極、前記第3の電極及び前記金属層は、前記駆動トランジスタのゲートと電気的に接続されてもよい。
 前記金属層は、積層方向から見て、所定の電圧を供給する電圧供給配線と重なるように配置されてもよい。
 前記第4の電極は、前記電圧供給配線と電気的に接続されてもよい。
 前記金属層は、積層方向から見て、前記駆動トランジスタのゲートと電気的に接続される前記第1の電極と重なるように配置されてもよい。
 前記ゲートと電気的に接続される前記第1の電極は、積層方向から見て、信号線と重なるように配置され、
 前記金属層は、前記第1の電極が配置される層と、前記信号線が配置される層と、の間の層に配置されてもよい。
 積層方向に延伸するように設けられ、前記第2の電極および前記第3の電極のそれぞれと、前記金属層と、を電気的に接続させる複数の柱状電極部をさらに備え、
 前記金属層は、複数の前記柱状電極部を介して、前記第2の電極と前記第3の電極とを電気的に接続させるように配置されてもよい。
 前記第1のキャパシタは、前記駆動トランジスタの動作に関する第1電圧を蓄積し、
 前記第2のキャパシタは、前記第1電圧とは異なる第2電圧を蓄積してもよい。
 複数の前記キャパシタは、MIM(Metal-Insulator-Metal)キャパシタ、MOM(Metal-Oxide-Metal)キャパシタ及びMOS(Metal-Oxide-Semiconductor)キャパシタのうちの少なくとも1つ以上のキャパシタであってもよい。
 本開示によれば、発光素子と、
 第1の電極および第2の電極を有する第1のキャパシタと、
 第3の電極および第4の電極を有する第2のキャパシタと、
 前記第1のキャパシタに蓄積された電圧と、第2のキャパシタに蓄積された電圧と、に応じた電流を前記発光素子に供給する駆動トランジスタと、を備え、
 前記第2の電極は、前記第3の電極と電気的に接続され、
 前記第2の電極と前記第3の電極は、それぞれ異なる層に配置される、電子機器が提供される。
本開示の第1実施形態による表示装置の概略構成を示すブロック図である。 第1実施形態による画素回路の内部構成の一例を示す回路図である。 第1実施形態による画素回路11の動作の一例を示すタイミングチャートである。 第1実施形態による第1キャパシタ及び第2キャパシタの構成の一例を示す断面図である。 第1実施形態による第1キャパシタ及び第2キャパシタの構成の一例を示す平面図である。 第1比較例による第1キャパシタ及び第2キャパシタの構成の一例を示す断面図である。 第2比較例による第1キャパシタ及び第2キャパシタの構成の一例を示す断面図である。 第1実施形態の変形例による画素回路の内部構成の一例を示す回路図である。 第2実施形態による画素回路の内部構成の一例を示す回路図である。 第3実施形態による画素回路の内部構成の一例を示す回路図である。 第3実施形態によるキャパシタ及びキャパシタの構成の一例を示す断面図である。 第3実施形態によるキャパシタ及びキャパシタの構成の一例を示す平面図である。 第4実施形態による画素回路の内部構成の一例を示す回路図である。 第5実施形態による画素回路の内部構成の一例を示す回路図である。 第6実施形態による画素回路の内部構成の一例を示す回路図である。 乗物の後方から前方にかけての乗物の内部の様子を示す図である。 乗物の斜め後方から斜め前方にかけての乗物の内部の様子を示す図である。 電子機器の第2適用例であるデジタルカメラの正面図である。 デジタルカメラの背面図である。 電子機器の第3適用例であるHMDの外観図である。 スマートグラスの外観図である。 電子機器の第4適用例であるTVの外観図である。 電子機器の第5適用例であるスマートフォンの外観図である。
 以下、図面を参照して、表示装置及び電子機器の実施形態について説明する。以下では、表示装置及び電子機器の主要な構成部分を中心に説明するが、表示装置及び電子機器には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
 (第1実施形態)
 図1は本開示の第1実施形態による表示装置1の概略構成を示すブロック図である。図1の表示装置1は、有機EL表示装置、液晶表示装置、プラズマ表示装置などを例示することができる。これらの表示装置のうち、有機EL表示装置は、有機材料のエレクトロルミネッセンスを利用し、有機薄膜に電界をかけると発光する現象を用いた有機EL素子(以下、OLED:Organic Light Emitting Devise)を画素の発光素子(電気光学素子)として用いている。
 図1の表示装置1は、画素アレイ部2と、走査線駆動部3と、信号線駆動部4と、映像信号処理部5と、タイミング生成部6とを備えている。
 画素アレイ部2は、行方向及び列方向に複数個ずつ配置された画素8を有する。各画素8は、複数のサブ画素8aを有する。複数のサブ画素8aは、例えば、赤青緑の3つのサブ画素8aを含む。複数のサブ画素8aは、赤青緑以外の色(例えば白色)のサブ画素8aを含んでいてもよい。本明細書では、サブ画素8aを総称して画素8と呼ぶ場合もある。
 画素8内の各サブ画素8aは、後述するように、表示素子と画素回路を有する。表示素子は、例えばOLEDである。なお、表示素子は、液晶素子でもよいし、OLED以外の自発光素子でもよい。
 画素アレイ部2は、行方向の画素群ごとに配置される複数の走査線WSLと、列方向の画素群ごとに配置される複数の信号線SIGとを有する。これら走査線WSLと信号線SIGの各交点付近に画素8が設けられている。本明細書では、行方向を水平ライン方向と呼び、列方向を垂直ライン方向と呼ぶことがある。
 走査線駆動部3は、複数の走査線WSLを順繰りに駆動する。信号線駆動部4は、走査線WSLが各水平ラインを駆動するタイミングに同期させて、水平ライン方向の複数の信号線SIGを同タイミングで駆動する。信号線SIGの駆動とは、各信号線SIGに対応する階調信号を供給することを意味する。
 映像信号処理部5は、外部(例えばプロセッサなど)から供給される映像信号に対して所定の信号処理を行って、階調信号を生成する。所定の信号処理は、例えば、ガンマ補正やオーバードライブ補正などの処理である。
 タイミング生成部6は、外部から供給される同期信号に基づいて、走査線駆動部3と信号線駆動部4に対してタイミング制御信号を供給し、走査線駆動部3と信号線駆動部4を同期して動作させる。
 図1の画素アレイ部2内の画素数には特に制限はない。画素数が多い高精細の表示装置1では、走査線駆動部3が水平ライン方向の両端側に配置される場合がありうる。また、水平ライン方向の複数の信号線SIGをいくつかに分けて駆動するために、複数の信号線駆動部4を設ける場合もありうる。
 図2は第1実施形態による画素回路11の内部構成の一例を示す回路図である。図2は、表示素子としてOLED12を用いた場合のOLED12の発光を制御する画素回路11の一例を示している。図2の画素回路11は、4Tr2Cと呼ばれる4つのトランジスタQ1~Q4と、2つのキャパシタ(第1キャパシタCsと第2キャパシタCsub)とを有する。本明細書では、画素回路11内の4つのトランジスタQ1~Q4を、ドライブトランジスタQ1、サンプリングトランジスタQ2、ドライブスキャントランジスタQ3、オートゼロトランジスタQ4と呼ぶ。ドライブトランジスタQ1を略してDrvトランジスタQ1、サンプリングトランジスタQ2をWSトランジスタQ2、ドライブスキャントランジスタQ3をDSトランジスタQ3、オートゼロトランジスタQ4をAZトランジスタQ4と呼ぶこともある。
 図2の画素回路11では、DrvトランジスタQ1、WSトランジスタQ2、DSトランジスタQ3、及びAZトランジスタQ4をP型MOS(Metal-Oxide-Semiconductor)トランジスタで構成する例を示しているが、後述するように、N型MOSトランジスタで構成することも可能である。
 DSトランジスタQ3とDrvトランジスタQ1は、電源電圧ノードVCCPとOLED12のアノードとの間にカスコード接続されている。WSトランジスタQ2は、信号線SIGとDrvトランジスタQ1のゲートとの間に接続されている。図2では、WSトランジスタQ2のゲートに入力される信号をWS信号と呼び、DSトランジスタQ3のゲートに入力される信号をDS信号と呼ぶ。信号線SIGには、階調信号とオフセット信号とがタイミングをずらして供給される。
 AZトランジスタQ4は、OLED12のアノードと接地電圧ノードVSSPとの間に接続されている。AZトランジスタQ4のゲートにはAZ信号が供給される。AZトランジスタQ4がP型MOSトランジスタの場合、AZ信号がローのときに、DrvトランジスタQ1のソース-ドレイン間電流が、AZトランジスタQ4を通過して接地電圧ノードVSSPに流れる。よって、AZトランジスタQ4がオンの期間は、OLED12のアノード電圧の上昇が抑制され、OLED12に電流が流れなくなる。
 DrvトランジスタQ1のゲートとソースとの間には第1キャパシタCsが接続されている。また、DSトランジスタQ3のソースとドレインとの間には第2キャパシタCsubが接続されている。すなわち、第1キャパシタCsと第2キャパシタCsubは、電源電圧ノードVCCPとDrvトランジスタQ1のゲートとの間に直列に接続されている。第1キャパシタCsは画素容量、第2キャパシタCsubは補助容量と呼ばれることもある。
 第1キャパシタCs及び第2キャパシタCsubは、例えば、MIM(Metal-Insulator-Metal)キャパシタである。この場合、例えば、キャパシタの少なくとも一方の電極は、配線層に配置される。
 OLED12のカソードは、所定電圧(例えば接地電圧)に固定されている。
 次に、図2に示す画素回路11の動作について説明する。
 図3は、第1実施形態による画素回路11の動作の一例を示すタイミングチャートである。
 信号線駆動部4は、走査線駆動部3が1本の走査線WSLを駆動するたびに、全信号線SIGの駆動電圧を生成する。1フレームには、複数の走査線WSLが設けられており、1本の走査線WSLに接続された複数の画素を1水平ライン(1H)と呼ぶ。図3は、1フレーム内の全画素を、1水平ラインごとに順繰りに駆動する場合の画素回路内の代表的な信号のタイミングチャートを示している。信号DSは、DSトランジスタQ3のゲート信号である。信号AZは、AZトランジスタQ4のゲート信号である。信号WSはWSトランジスタQ2のゲート信号である。
 以下、図3のタイミングチャートに基づいて、図2の画素回路の動作を説明する。まず、時刻t1で、信号AZがハイからローに遷移するため、AZトランジスタQ4はオンし、OLED12の発光は停止される。また、WSトランジスタQ2がオンし、信号線SIG上のオフセット電圧Vofsが第1キャパシタCsの一端に供給される。このとき、DSトランジスタQ3はオンしており、第1キャパシタCsの他端には電源電圧VCCPが供給されている。よって、第1キャパシタCsの両端には、(VCCP-Vofs)の電圧が印加されている。
 その後、時刻t2になると、DSトランジスタQ3はオフする。これにより、第1キャパシタCsに蓄積されていた電荷の一部は、第2キャパシタCsubに移動し、電荷の分配が行われる。具体的には、DrvトランジスタQ1の閾値電圧に応じた電荷が第1キャパシタCsに蓄積される。
 その後、時刻t3になると、WSトランジスタQ2がオフする。その後、時刻t4になると、信号線SIG上には、信号線電圧Vsigが供給される。その後、時刻t5になると、WSトランジスタQ2がオンし、DrvトランジスタQ1のゲートには、信号線電圧Vsigが供給される。第1キャパシタCsによりDrvトランジスタQ1の閾値電圧分の補正が行われているため、DrvトランジスタQ1のゲート-ソース間には、信号線電圧Vsigに対してオフセット補正及び閾値補正された電圧が印加される。
 このように、第1キャパシタCs及び第2キャパシタCsubは、例えば、オフセット補正及び閾値補正に用いられる。閾値補正を行うことにより、DrvトランジスタQ1の閾値電圧のばらつきを補正することができ、表示画像の画質の劣化を抑制することができる。閾値補正により、例えば、面ザラを補正することができる。また、第1キャパシタCs及び第2キャパシタCsubの容量が大きいほど、補正をより適切に行うことができる。
 次に、第1キャパシタCs及び第2キャパシタCsub、並びに、その周辺の構成について説明する。
 図4は、第1実施形態による第1キャパシタCs及び第2キャパシタCsubの構成の一例を示す断面図である。図5は、第1実施形態による第1キャパシタCs及び第2キャパシタCsubの構成の一例を示す平面図である。
 図4及び図5は、第1キャパシタCsおよび第2キャパシタCsubの周辺における画素回路11の積層構造の一部を示す。レイヤL1、L2、L3は、配線層であり、例えば、配線及びキャパシタの一方の電極部が配置される層である。レイヤL1、L2、L3のうち、レイヤL1が最下層であり、レイヤL3が最上層である。また、レイヤL11は、レイヤL1とレイヤL2との間の層であり、例えば、キャパシタの他方の電極部が配置される層である。しかし、これに限られず、レイヤL1、L2、L3が配線層の間の層であってもよく、レイヤL11が配線層であってもよい。また、異なる層に配置される配線同士、並びに、異なる層に配置される配線及び電極部は、例えば、ビアV(柱状電極)により、一部において電気的に接続されている。
 図4及び図5に示す画素回路11は、第1キャパシタCsと、第2キャパシタCsubと、金属層MLと、ビアVと、を備える。
 第1キャパシタCsは、2つの電極部を有し、OLED12の動作に関する第1電圧を保持する。より詳細には、第1キャパシタCsは、第1電極部E1と、第2電極部E2と、を有する。第1電極部E1及び第2電極部E2は、絶縁層を間に挟むように配置される。
 第2キャパシタCsubは、第1キャパシタCsと同層に配置される。第2キャパシタCsubは、2つの電極部を有し、OLED12の動作に関する第2電圧を保持する。第2電圧は、例えば、第1電圧とは異なる。すなわち、第1キャパシタCsと第2キャパシタCsubとは、互いに異なる機能を有する。しかし、第2電圧は、第1電圧と同じであってもよい。第2キャパシタCsubの2つの電極部は、第1キャパシタCsの2つの電極部のそれぞれと同層に配置される。より詳細には、第2キャパシタCsubは、第3電極部E3と、第4電極部E4と、を有する。第3電極部E3及び第4電極部E4は、絶縁層を間に挟むように配置される。
 第1電極部E1(第1の電極)は、例えば、レイヤL1に配置される。第2電極部E2(第2の電極)は、例えば、レイヤL11に配置される。図5に示す例では、製造プロセスによって、下側の第1電極部E1は、上側の第2電極部E2よりも大きく形成される。すなわち、第2電極部E2は、積層方向から見て、第1電極部E1に含まれる。積層方向は、図4の紙面に沿った上下方向であり、図5の紙面垂直方向である。
 第3電極部E3(第3の電極)は、第1電極部E1と同層であるレイヤL1に配置される。第4電極部E4(第4の電極)は、第2電極部E2と同層であるレイヤL11に配置される。図5に示す例では、製造プロセスによって、下側の第3電極部E3は、上側の第4電極部E4よりも大きく形成される。すなわち、第4電極部E4は、積層方向から見て、第3電極部E3に含まれる。
 また、第1キャパシタCsの一方の電極部、及び、第2キャパシタCsubの一方の電極部は、共通電極部である。共通電極部は、或るキャパシタの一方の電極部であり、複数のキャパシタの間で電気的に接続される電極部である。また、共通電極部は、キャパシタの2つの電極部が配置される2つの層のそれぞれに配置される。図4及び図5に示す例では、レイヤL11に配置される第2電極部E2、及び、レイヤL1に配置される第3電極部E3が、共通電極部である。
 また、図2に示すように、DrvトランジスタQ1のソースDRsは、第1キャパシタCsと第2キャパシタCsubとの間のノードに接続される。従って、ソースDRsは、第1キャパシタCsと第2キャパシタCsubとの間で互いに電気的に接続される、それぞれのキャパシタの一方の電極部(一端)と電気的に接続される。図4及び図5に示す例では、ソースDRsは、共通電極部、すなわち、第2電極部E2及び第3電極部E3と電気的に接続される。
 また、図2に示すように、DrvトランジスタQ1のゲートDRgは、第1キャパシタCsの他端と接続される。図4及び図5に示す例では、ゲートDRgは、第1電極部E1と電気的に接続される。
 また、図2に示すように、電源電圧ノードVCCPは、第2キャパシタCsubの他端と接続される。図4及び図5に示す例では、電源電圧VCCPは、レイヤL2の配線を介して、第4電極部E4に入力される。
 金属層MLは、第1キャパシタCs及び第2キャパシタCsubとは異なる層に配置される。金属層MLは、例えば、レイヤL2に配置される。金属層MLは、共通電極部、すなわち、第2電極部E2及び第3電極部E3と電気的に接続される。従って、金属層MLは、ソースDRsとも電気的に接続されている。
 また、金属層MLは、積層方向から見て、少なくとも1つのキャパシタの少なくとも一方の電極部と重なるように配置される。ここで、「重なる」は、平面視において、金属層MLの外縁が必ずしも電極部の外縁よりも外側に位置しなくてもよいことを示す。より詳細には、金属層MLは、積層方向から見て、少なくとも1つのキャパシタの少なくとも一方の電極部を覆うように配置される。ここで、「覆う」は、平面視において、金属層MLの外縁が電極部の外縁よりも外側に位置することを示す。以下では、金属層MLが平面視で第1電極部E1を覆うとして説明する。金属層MLは、第1電極部E1を覆うように配置されることがより好ましい。しかし、金属層MLは、必ずしも第1電極部E1を覆うように配置されなくてもよい。
 図5に示す例では、金属層MLは、積層方向から見て、ゲートDRgと電気的に接続される第1電極部E1を覆うように配置される。また、金属層MLは、積層方向からみて、少なくとも一部が第3電極部E3と重なるように配置される。これは、ビアV(ビアV2)を介して金属層MLと第3電極部E3とを接続するためである。
 ビアVは、積層方向に延伸するように設けられる。複数のビアVは、それぞれの共通電極部と金属層MLとを電気的に接続させる。金属層MLは、複数のビアVを介して、それぞれの共通電極部を電気的に接続させるように配置される。より詳細には、ビアVは、金属層MLを介して、互いに異なる層に配置される第2電極部E2と第3電極部E3とを電気的に接続させる。
 また、ビアVは、ビアV1と、ビアV2と、を有する。
 ビアV1は、第2電極部E2と金属層MLとを電気的に接続する。ビアV2は、第3電極部E3と金属層MLとを電気的に接続する。
 次に、第1キャパシタCs及び第2キャパシタCsubの静電容量について説明する。
 第1キャパシタCsの容量は、通常、積層方向から見た、第1電極部E1と第2電極部E2とが重なる面積によって決まる。しかし、重なりの面積を広くすることは、レイアウト上の配置及び面積の制約による限界がある。ここで、回路内で寄生容量を利用することにより、第1キャパシタCsの静電容量を向上させることができる。
 上記のように、第1電極部E1は第2電極部E2よりも大きく、金属層MLは第1電極部E1よりも大きい。従って、図5に示すように、金属層MLの一部は、第1電極部E1の一部と対向する。すなわち、金属層MLは、積層方向から見て、共通電極部(第2電極部E2)を覆うように配置された、共通電極部とは異なる第1電極部E1を覆うように配置される。この結果、図4に示すように、互いに対向する金属層MLと第1電極部E1との間で寄生容量Cp1が生じる。なお、平面視で第2電極部E2の領域には、寄生容量Cp1は生じない。また、上記のように、第2電極部E2、第3電極部E3及び金属層MLは、ソースDRsと電気的に接続される。金属層MLに覆われ、かつ、共通電極部(第2電極部E2)とは異なる第1電極部E1は、ゲートDRgと電気的に接続される。従って、寄生容量Cp1は、DrvトランジスタQ1のゲートソース間の寄生容量Cgsであり、第1キャパシタCsの静電容量を向上させることができる。
 また、レイヤL1、L2の上方のレイヤL3には、信号線SIGが配置される。積層方向から見て、信号線SIGと第1電極部E1とが重なる場合、第1電極部E1と信号線SIGとの間で寄生容量が生じてしまう。上記のように、第1電極部E1は、ゲートDRgと電気的に接続される。従って、寄生容量によってDrvトランジスタQ1の動作に悪影響を与え、ノイズが増大してしまう可能性がある。しかし、図4及び図5に示すように、金属層MLは、積層方向から見て、ゲートDRgと電気的に接続される、共通電極部とは異なる第1電極部E1を覆うように配置される。また、金属層MLは、第1電極部E1が配置されるレイヤL1と、信号線SIGが配置されるレイヤL3と、の間のレイヤL2に配置される。従って、金属層MLは、第1電極部E1と信号線SIGとの間に配置され、第1電極部E1をシールドする。これにより、第1電極部E1(ゲートDRg)における寄生容量の影響を抑制することができ、ノイズを抑制することができる。なお、電圧供給配線及び信号線SIGは同じレイヤL3に配置されているが、それぞれ別の層に配置されていてもよい。
 第2キャパシタCsubの静電容量は、通常、積層方向から見た、第3電極部E3と第4電極部E4とが重なる面積によって決まる。しかし、重なりの面積を広くすることは、レイアウト上の配置及び面積の制約による限界がある。ここで、回路内で寄生容量を利用することにより、第2キャパシタCsubの実効的な静電容量を向上させることができる。
 レイヤL1、L2の上方のレイヤL3には、所定の電圧(電源電圧VCCP)を供給する電圧供給配線が配置される。積層方向から見て、金属層MLが電圧供給配線と重なると、図4に示すように、電源供給配線と金属層MLとの間で寄生容量Cp2が生じる。また、上記のように、第3電極部E3及び金属層MLは、ソースDRsと電気的に接続される。少なくとも1つのキャパシタ(第2キャパシタCsub)における共通電極部とは異なる第4電極部E4は、電圧供給配線と電気的に接続される。従って、寄生容量Cp2は、第2キャパシタCsubの実効的な静電容量を向上させることができる。また、電圧供給配線を大きくする等により、金属層MLとの重なり面積を大きくしてもよい。これにより、寄生容量Cp2をさらに増大させることができる。この結果、第2キャパシタCsubをさらに大きくすることができる。
 以上のように、第1実施形態によれば、第1キャパシタCs及び第2キャパシタCsubが同層に配置される。これにより、2つのキャパシタを一度で形成することができるため、工程数及びコストを低減することができる。
 図6は、第1比較例による第1キャパシタCs及び第2キャパシタCsubの構成の一例を示す断面図である。第1比較例は、2つの第1キャパシタCs及び第2キャパシタCsubがそれぞれ別の層に配置される点で、第1実施形態とは異なっている。
 図6に示す例では、第3電極部E3は、レイヤL2に配置され、第4電極部E4は、レイヤL21に配置される。レイヤL21は、レイヤL2とレイヤL3との間の層である。この場合、第1キャパシタCs及び第2キャパシタCsubを分けて形成することになるため、工程数が多くコストが高くなってしまう。
 これに対して、第1実施形態では、上記のように、第1キャパシタCs及び第2キャパシタCsubを一度に形成することができ、工程数及びコストを低減することができる。
 また、第1実施形態では、共通電極部である第2電極部E2及び第3電極部E3が、互いに異なる2つの層に配置される。これにより、回路内の寄生容量によって第1キャパシタCs及び第2キャパシタCsubの静電容量を増大させることができる。静電容量の増大により、発光中のリークに伴う輝度変動の耐性を向上させることができ、画質を向上させることができる。また、静電容量の増大により、閾値補正等の補正をより有利にすることができ、例えば、面ザラ等を抑制して画質を向上させることができる。また、ゲートDRgと電気的に接続される第1電極部E1をシールドすることができる。この結果、信号線SIGからゲートDRgへの寄生容量によるノイズの影響を抑制することができ、画質を向上させることができる。
 図7は、第2比較例による第1キャパシタCs及び第2キャパシタCsubの構成の一例を示す断面図である。第2比較例は、2つのキャパシタの共通電極が同層に配置される点で、第1実施形態とは異なっている。
 図7に示す例では、第1電極部E1及び第3電極部E3は、電気的に接続されている。第1電極部E1及び第3電極部E3は、ソースDRsと電気的に接続されている。第2電極部E2は、ゲートDRgと電気的に接続されている。この場合、信号線SIGから第2電極部E2への寄生容量によるノイズの影響が増大してしまう可能性がある。
 これに対して、第1実施形態では、ゲートDRgと電気的に接続される第1電極部E1が下層のレイヤL1に配置される。また、共通電極部(金属層ML)は、積層方向から見て、第1電極部E11を覆うように配置される。これにより、第1電極部E1をシールドすることができ、寄生容量の発生及びノイズを抑制することができる。この結果、画質を向上させることができる。また、回路内の寄生容量により、第1キャパシタCs及び第2キャパシタCsubの実効的な静電容量を向上させることができる。この結果、より適切に閾値補正等を行うことができ、画質を向上させることができる。
 なお、第1実施形態では、2つの第1キャパシタCs、第2キャパシタCsubについて説明した。しかし、キャパシタが3つ以上設けられてもよい。この場合、複数のキャパシタは、互いに同層に配置される。複数のキャパシタは、OLED12の動作に関する電圧(電荷)をそれぞれ保持する。また、第1キャパシタCs及び第2キャパシタCsubの1セットが複数セット設けられてもよい。この場合、各セット間で配置される層が異なっていてもよい。
 また、第1実施形態では、第1キャパシタCs及び第2キャパシタCsubは、DrvトランジスタQ1の閾値補正のため、DrvトランジスタQ1と電気的に接続される。DrvトランジスタQ1は、第1キャパシタCsに保持される信号電圧に基づいて、OLED12を駆動するトランジスタである。しかし、キャパシタを設ける目的によっては、必ずしもDrvトランジスタQ1に限られない。第1キャパシタCs及び第2キャパシタCsubは、例えば、WSトランジスタQ2、DSトランジスタQ3又はAZトランジスタQ4等の、OLED12の動作に関する他のトランジスタと電気的に接続されてもよい。
 また、第1実施形態では、2つの第1キャパシタCs及び第2キャパシタCsubの共通電極部は、トランジスタ(DrvトランジスタQ1)のソースと電気的に接続される。しかし、第3実施形態を参照して後で説明するように、トランジスタのソース以外の端子が、共通電極部と電気的に接続されてもよい。
 また、第1実施形態では、第1キャパシタCs及び第2キャパシタCsubは、MIMキャパシタである。しかし、第3実施形態及び第4実施形態を参照して後で説明するように、他のキャパシタであってもよい。
 また、第1実施形態に限られず、共通の電極を有する複数のキャパシタが設けられる場合、本開示の実施形態を適用することができる。
 (第1実施形態の変形例)
 図8は、第1実施形態の変形例による画素回路11aの内部構成の一例を示す回路図である。第1実施形態の変形例は、第1実施形態と比較して、画素回路内のトランジスタの導電型が異なっている。以下では、相違点を中心に説明する。
 図2の画素回路11は、P型MOSトランジスタからなる4つのトランジスタQ1~Q4を有するが、N型MOSトランジスタで構成してもよい。図8は図2の画素回路11内のトランジスタQ1~Q4をN型MOSトランジスタQ1a、Q2a、Q3a、Q4aで構成した変形例による画素回路11aの回路図である。図8の画素回路11aは、導電型が異なるものの、図2の画素回路11と同様の動作を行う。
 第1実施形態の変形例のように、トランジスタの導電型が異なっていてもよい。この場合にも、第1実施形態と同等の効果を得ることができる。
 (第2実施形態)
 図9は、第2実施形態による画素回路11aの内部構成の一例を示す回路図である。第2実施形態は、第1実施形態と比較して、キャパシタColedが設けられている。以下では、相違点を中心に説明する。
 図9の画素回路11bは、OLED12と並列にキャパシタColedが配置される。キャパシタColedは、補助容量である。キャパシタColedを設けることにより、OLED12の容量不足分を補い、保持容量である第1キャパシタCsに対する映像信号の書き込みゲインを高めることができる。
 第2実施形態のように、キャパシタColedが設けられていてもよい。この場合にも、第1実施形態と同等の効果を得ることができる。
 (第3実施形態)
 図10は、第3実施形態による画素回路11cの内部構成の一例を示す回路図である。第3実施形態は、第1実施形態と比較して、2つのキャパシタの共通電極が異なっている。以下では、相違点を中心に説明する。
 第1キャパシタCs、第2キャパシタCsubに代えて、キャパシタC1及びキャパシタC2を有する。なお、図10に示す回路図では、1つのキャパシタしか示されていないが、並列に接続された2つのキャパシタC1及びキャパシタC2が設けられている。
 キャパシタC1及びキャパシタC2は、ゲートDRgと接地電圧ノードVSSPとの間に接続される。キャパシタC1及びキャパシタC2は、互いに並列に接続されている。従って、キャパシタC1及びキャパシタC2は、共通電極を有している。また、キャパシタC1及びキャパシタC2の共通電極は、DrvトランジスタQ1のゲートDRgと電気的に接続される。
 キャパシタC1及びキャパシタC2は、例えば、それぞれMIMキャパシタ及びMOM(Metal-Oxide-Metal)キャパシタである。
 次に、キャパシタ以外の他の構成について説明する。
 図10では、第1実施形態の図2と比較して、WSトランジスタQ2がCMOS化され、また、AZトランジスタQ4が設けられない。WSトランジスタQ2は、トランスファーゲートを構成するように並列接続された、WSトランジスタQ2n及びWSトランジスタQ2pを有する。WSトランジスタQ2nは、N型MOSトランジスタであり、ゲートに信号WSnが入力される。WSトランジスタW2pは、P型MOSトランジスタであり、ゲートに信号WSpが入力される。例えば、WSトランジスタW2nとWSトランジスタW2pとの間でオンオフのタイミングが所定の位相差を持つように制御される。これにより、同一行の他画素への信号振幅レベルに関わらず、書込走査パルスの波形鈍りが移動度補正期間に与える影響を緩和でき、表示むらを緩和できる。
 次に、キャパシタC1及びキャパシタC2、並びに、その周辺の構成について説明する。
 図11は、第3実施形態によるキャパシタC1及びキャパシタC2の構成の一例を示す断面図である。図12は、第3実施形態によるキャパシタC1及びキャパシタC2の構成の一例を示す平面図である。
 図11に示す例では、キャパシタC1は、第1電極部E1と、第2電極部E2と、を有する。キャパシタC2は、第3電極部E3と、第4電極部E4と、を有する。第1実施形態と同様に、共通電極部は、第2電極部E2及び第3電極部E3である。
 第1実施形態と同様に、第1電極部E1は第2電極部E2よりも大きく、金属層MLは第1電極部E1よりも大きい。従って、図12に示すように、金属層MLの一部は、第1電極部E1の一部と対向する。この結果、図11に示すように、金属層MLと第1電極部E1との間で寄生容量Cp1が生じる。
 また、第2電極部E2、第3電極部E3及び金属層MLは、ゲートDRgと電気的に接続される。金属層MLに覆われ、かつ、共通電極部(第2電極部E2)とは異なる第1電極部E1は、電圧供給配線と電気的に接続される。図10及び図11に示す例では、第1電極部E1は、接地電圧ノードVSSPと電気的に接続され、電位が固定される。なお、第4電極部E4も、接地電圧ノードVSSPと電気的に接続され、電位が固定される。従って、寄生容量Cp1は、キャパシタC1及びキャパシタC2の静電容量を向上させることができる。
 第3実施形態のように、2つのキャパシタC1及びキャパシタC2の共通電極部は、トランジスタ(DrvトランジスタQ1)のゲートDRgと電気的に接続されてもよい。この場合にも、第1実施形態と同等の効果を得ることができる。
 (第4実施形態)
 図13は、第4実施形態による画素回路11dの内部構成の一例を示す回路図である。第4実施形態は、第3実施形態と比較して、回路構成が異なっている。以下では、相違点を中心に説明する。
 図13に示す例では、DrvトランジスタQ1及びDSトランジスタQ3はN型MOSトランジスタである。また、N型MOSトランジスタであるAZトランジスタQ4が設けられている。
 また、キャパシタC1及びキャパシタC2は、例えば、それぞれMOMキャパシタ及びMOSキャパシタである。
 第4実施形態では、第3実施形態と同様に、2つのキャパシタC1及びキャパシタC2の共通電極部は、DrvトランジスタQ1のゲートDRgと電気的に接続される。従って、第4実施形態は、第3実施形態と同等の効果を得ることができる。
 (第5実施形態)
 図14は、第5実施形態による画素回路11eの内部構成の一例を示す回路図である。第5実施形態は、第3実施形態と比較して、回路構成が異なっている。以下では、相違点を中心に説明する。
 図14に示す例では、キャパシタC1及びキャパシタC2は、電源電圧ノードVCCPと、DrvトランジスタQ1のゲートDRgと、の間に接続される。
 また、キャパシタC1及びキャパシタC2は、例えば、それぞれMIMキャパシタ及びMOMキャパシタである。
 また、信号線SIGと、DrvトランジスタQ1のゲートDRg(WSトランジスタQ2)と、の間に信号中継線中継線が配置される。また、AZトランジスタQ41、Q42、Q43及びキャパシタCaが設けられる。P型MOSトランジスタであるAZトランジスタQ41、Q42、Q43のゲートには、それぞれAZ1信号、AZ2信号及びAZ3信号が入力される。
 第5実施形態では、第3実施形態と同様に、2つのキャパシタC1及びキャパシタC2の共通電極部は、DrvトランジスタQ1のゲートDRgと電気的に接続される。従って、第5実施形態は、第3実施形態と同等の効果を得ることができる。
 (第6実施形態)
 図15は、第6実施形態による画素回路11fの内部構成の一例を示す回路図である。第6実施形態は、第3実施形態と比較して、回路構成が異なっている。
 図15に示す例では、図14と同様に、キャパシタC1及びキャパシタC2は、電源電圧ノードVCCPと、DrvトランジスタQ1のゲートDRgと、の間に接続される。
 第6実施形態では、第3実施形態と同様に、2つのキャパシタC1及びキャパシタC2の共通電極部は、DrvトランジスタQ1のゲートDRgと電気的に接続される。従って、第6実施形態は、第3実施形態と同等の効果を得ることができる。
 (本開示による表示装置1及び電子機器50の適用例)
 (第1適用例)
 本開示による表示装置1は種々の電子機器に搭載可能である。図16A及び図16Bは本開示による表示装置1を備えた電子機器50の第1適用例である乗物100の内部の構成を示す図である。図16Aは乗物100の後方から前方にかけての乗物100の内部の様子を示す図、図16Bは乗物100の斜め後方から斜め前方にかけての乗物100の内部の様子を示す図である。
 図16A及び図16Bの乗物100は、センターディスプレイ101と、コンソールディスプレイ102と、ヘッドアップディスプレイ103と、デジタルリアミラー104と、ステアリングホイールディスプレイ105と、リアエンタテイメントディスプレイ106とを有する。
 センターディスプレイ101は、ダッシュボード107上の運転席108及び助手席109に対向する場所に配置されている。図16では、運転席108側から助手席109側まで延びる横長形状のセンターディスプレイ101の例を示すが、センターディスプレイ101の画面サイズや配置場所は任意である。センターディスプレイ101には、種々のセンサで検知された情報を表示可能である。具体的な一例として、センターディスプレイ101には、イメージセンサで撮影した撮影画像、ToFセンサで計測された乗物前方や側方の障害物までの距離画像、赤外線センサで検出された乗客の体温などを表示可能である。センターディスプレイ101は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。
 安全関連情報は、居眠り検知、よそ見検知、同乗している子供のいたずら検知、シートベルト装着有無、乗員の置き去り検知などの情報であり、例えばセンターディスプレイ101の裏面側に重ねて配置されたセンサにて検知される情報である。操作関連情報は、センサを用いて乗員の操作に関するジェスチャを検知する。検知されるジェスチャは、乗物100内の種々の設備の操作を含んでいてもよい。例えば、空調設備、ナビゲーション装置、AV装置、照明装置等の操作を検知する。ライフログは、乗員全員のライフログを含む。例えば、ライフログは、乗車中の各乗員の行動記録を含む。ライフログを取得及び保存することで、事故時に乗員がどのような状態であったかを確認できる。健康関連情報は、温度センサを用いて乗員の体温を検知し、検知した体温に基づいて乗員の健康状態を推測する。あるいは、イメージセンサを用いて乗員の顔を撮像し、撮像した顔の表情から乗員の健康状態を推測してもよい。さらに、乗員に対して自動音声で会話を行って、乗員の回答内容に基づいて乗員の健康状態を推測してもよい。認証/識別関連情報は、センサを用いて顔認証を行うキーレスエントリ機能や、顔識別でシート高さや位置の自動調整機能などを含む。エンタテイメント関連情報は、センサを用いて乗員によるAV装置の操作情報を検出する機能や、センサで乗員の顔を認識して、乗員に適したコンテンツをAV装置にて提供する機能などを含む。
 コンソールディスプレイ102は、例えばライフログ情報の表示に用いることができる。コンソールディスプレイ102は、運転席108と助手席109の間のセンターコンソール110のシフトレバー111の近くに配置されている。コンソールディスプレイ102にも、種々のセンサで検知された情報を表示可能である。また、コンソールディスプレイ102には、イメージセンサで撮像された車両周辺の画像を表示してもよいし、車両周辺の障害物までの距離画像を表示してもよい。
 ヘッドアップディスプレイ103は、運転席108の前方のフロントガラス112の奥に仮想的に表示される。ヘッドアップディスプレイ103は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。ヘッドアップディスプレイ103は、運転席108の正面に仮想的に配置されることが多いため、乗物100の速度や燃料(バッテリ)残量などの乗物100の操作に直接関連する情報を表示するのに適している。
 デジタルリアミラー104は、乗物100の後方を表示できるだけでなく、後部座席の乗員の様子も表示できるため、デジタルリアミラー104の裏面側に重ねてセンサを配置することで、例えばライフログ情報の表示に用いることができる。
 ステアリングホイールディスプレイ105は、乗物100のハンドル113の中心付近に配置されている。ステアリングホイールディスプレイ105は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、ステアリングホイールディスプレイ105は、運転者の手の近くにあるため、運転者の体温等のライフログ情報を表示したり、AV装置や空調設備等の操作に関する情報などを表示するのに適している。
 リアエンタテイメントディスプレイ106は、運転席108や助手席109の背面側に取り付けられており、後部座席の乗員が視聴するためのものである。リアエンタテイメントディスプレイ106は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、リアエンタテイメントディスプレイ106は、後部座席の乗員の目の前にあるため、後部座席の乗員に関連する情報が表示される。例えば、AV装置や空調設備の操作に関する情報を表示したり、後部座席の乗員の体温等を温度センサで計測した結果を表示してもよい。
 センターディスプレイ101、コンソールディスプレイ102、ヘッドアップディスプレイ103、デジタルリアミラー104、ステアリングホイールディスプレイ105、及び、リアエンタテイメントディスプレイ106に、本開示による表示装置1を適用することができる。
 (第2適用例)
 本開示による表示装置1は、乗物で用いられる種々のディスプレイに適用されるだけでなく、種々の電子機器50に搭載されるディスプレイにも適用可能である。
 図17Aは電子機器50の第2適用例であるデジタルカメラ120の正面図、図17Bはデジタルカメラ120の背面図である。図17A及び図17Bのデジタルカメラ120は、レンズ121を交換可能な一眼レフカメラの例を示しているが、レンズ121を交換できないカメラにも適用可能である。
 図17A及び図17Bのカメラは、撮影者がカメラボディ122のグリップ123を把持した状態で電子ビューファインダ124を覗いて構図を決めて、焦点調節を行った状態でシャッタ125を押すと、カメラ内のメモリに撮影データが保存される。カメラの背面側には、図17Bに示すように、撮影データ等やライブ画像等を表示するモニタ画面126と、電子ビューファインダ124とが設けられている。また、カメラの上面には、シャッタ速度や露出値などの設定情報を表示するサブ画面が設けられる場合もある。
 カメラに用いられるモニタ画面126、電子ビューファインダ124、サブ画面等に、本開示による表示装置1を適用することで、低コスト化及び表示品質の向上が可能になる。
 (第3適用例)
 本開示による表示装置1は、ヘッドマウントディスプレイ(以下、HMDと呼ぶ)にも適用可能である。HMDは、VR(Virtual Reality)、AR(Augmented Reality)、MR(Mixed Reality)、又はSR(Substitutional Reality)等に利用されることができる。
 図18Aは電子機器50の第3適用例であるHMD130の外観図である。図18AのHMD130は、人間の目を覆うように装着するための装着部材131を有する。この装着部材131は例えば人間の耳に引っ掛けて固定される。HMD130の内側には表示装置132が設けられており、HMD130の装着者はこの表示装置132にて立体映像等を視認できる。HMD130は例えば無線通信機能と加速度センサなどを備えており、装着者の姿勢やジェスチャなどに応じて、表示装置132に表示される立体映像等を切り換えることができる。図1に示す表示装置1を図18Aの表示装置132に適用可能である。
 また、HMD130にカメラを設けて、装着者の周囲の画像を撮影し、カメラの撮影画像とコンピュータで生成した画像とを合成した画像を表示装置132で表示してもよい。例えば、HMD130の装着者が視認する表示装置132の裏面側に重ねてカメラを配置して、このカメラで装着者の目の周辺を撮影し、その撮影画像をHMD130の外表面に設けた別のディスプレイに表示することで、装着者の周囲にいる人間は、装着者の顔の表情や目の動きをリアルタイムに把握可能となる。
 なお、HMD130には種々のタイプが考えられる。例えば、図18Bのように、本開示による表示装置1は、メガネ134に種々の情報を映し出すスマートグラス130aにも適用可能である。図18Bのスマートグラス130aは、本体部135と、アーム部136と、鏡筒部137とを有する。本体部135はアーム部136に接続されている。本体部135は、メガネ134に着脱可能とされている。本体部135は、スマートグラス130aの動作を制御するための制御基板や表示部を内蔵している。本体部135と鏡筒は、アーム部136を介して互いに連結されている。鏡筒部137は、本体部135からアーム部136を介して出射される画像光を、メガネ134のレンズ138側に出射する。この画像光は、レンズ138を通して人間の目に入る。図18Bのスマートグラス130aの装着者は、通常のメガネと同様に、周囲の状況だけでなく、鏡筒部137から出射された種々の情報を合わせて視認できる。
 (第4適用例)
 本開示による表示装置1は、テレビジョン装置(以下、TV)にも適用可能である。
 図19は電子機器50の第4適用例であるTV330の外観図である。このTV330は、例えば、フロントパネル332及びフィルターガラス333を含む映像表示画面部331を有する。この映像表示画面部331には、本開示による表示装置1が適用可能である。
 上述したように、本開示の表示装置1によれば、低コストかつ優れた表示品質のTV330を実現できる。
 (第5適用例)
 本開示による表示装置1は、スマートフォンや携帯電話にも適用可能である。図20は電子機器50の第5適用例であるスマートフォン600の外観図である。スマートフォン600は、各種情報を表示する表示部602、及び、ユーザによる走査入力を受け付けるボタン等を含む操作部等を有する。上記表示部602には、本開示による表示装置1が適用可能である。
 なお、本技術は以下のような構成を取ることができる。
 (1)発光素子と、
 第1の電極および第2の電極を有する第1のキャパシタと、
 第3の電極および第4の電極を有する第2のキャパシタと、
 前記第1のキャパシタに蓄積された電圧と、第2のキャパシタに蓄積された電圧と、に応じた電流を前記発光素子に供給する駆動トランジスタと、を備え、
 前記第2の電極は、前記第3の電極と電気的に接続され、
 前記第2の電極と前記第3の電極は、それぞれ異なる層に配置される、表示装置。
 (2)積層方向から見て、前記第1の電極および前記第2の電極と重なるように、前記第1のキャパシタおよび前記第2のキャパシタとは異なる層に配置され、前記第2の電極および前記第3の電極と電気的に接続される金属層をさらに備える、(1)に記載の表示装置。
 (3)前記金属層は、積層方向から見て、前記第1の電極および前記第2の電極を覆うように配置される、(2)に記載の表示装置。
 (4)前記金属層は、積層方向から見て、前記第2の電極を覆うように配置された前記第1の電極と重なるように配置される、(2)又は(3)に記載の表示装置。
 (5)前記第1の電極は、前記駆動トランジスタのゲートと電気的に接続され、
 前記第2の電極、前記第3の電極及び前記金属層は、前記駆動トランジスタのソースと電気的に接続される、(4)に記載の表示装置。
 (6)前記第1の電極は、所定の電圧を供給する電圧供給配線と電気的に接続され、
 前記第2の電極、前記第3の電極及び前記金属層は、前記駆動トランジスタのゲートと電気的に接続される、(4)に記載の表示装置。
 (7)前記金属層は、積層方向から見て、所定の電圧を供給する電圧供給配線と重なるように配置される、(2)乃至(6)のいずれか一項に記載の表示装置。
 (8)前記第4の電極は、前記電圧供給配線と電気的に接続される、(7)に記載の表示装置。
 (9)前記金属層は、積層方向から見て、前記駆動トランジスタのゲートと電気的に接続される前記第1の電極と重なるように配置される、(2)乃至(8)のいずれか一項に記載の表示装置。
 (10)前記ゲートと電気的に接続される前記第1の電極は、積層方向から見て、信号線と重なるように配置され、
 前記金属層は、前記第1の電極が配置される層と、前記信号線が配置される層と、の間の層に配置される、(9)に記載の表示装置。
 (11)積層方向に延伸するように設けられ、前記第2の電極および前記第3の電極のそれぞれと、前記金属層と、を電気的に接続させる複数の柱状電極部をさらに備え、
 前記金属層は、複数の前記柱状電極部を介して、前記第2の電極と前記第3の電極とを電気的に接続させるように配置される、(2)乃至(10)のいずれか一項に記載の表示装置。
 (12)前記第1のキャパシタは、前記駆動トランジスタの動作に関する第1電圧を蓄積し、
 前記第2のキャパシタは、前記第1電圧とは異なる第2電圧を蓄積する、(1)乃至(11)に記載の表示装置。
 (13)前記第1のキャパシタ及び前記第2のキャパシタのそれぞれは、MIM(Metal-Insulator-Metal)キャパシタ、MOM(Metal-Oxide-Metal)キャパシタまたはMOS(Metal-Oxide-Semiconductor)キャパシタである、(1)乃至(12)のいずれか一項に記載の表示装置。
 (14)発光素子と、
 第1の電極および第2の電極を有する第1のキャパシタと、
 第3の電極および第4の電極を有する第2のキャパシタと、
 前記第1のキャパシタに蓄積された電圧と、第2のキャパシタに蓄積された電圧と、に応じた電流を前記発光素子に供給する駆動トランジスタと、を備え、
 前記第2の電極は、前記第3の電極と電気的に接続され、
 前記第2の電極と前記第3の電極は、それぞれ異なる層に配置される、電子機器。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
1 表示装置、12 OLED、50 電子機器、Cs 第1キャパシタ、Csub 第2キャパシタ、C1 キャパシタ、C2 キャパシタ、VCCP 電源電圧ノード、Q1 Drvトランジスタ、Q2 WSトランジスタ、Q3 DSトランジスタ、Q4 AZトランジスタ

Claims (14)

  1.  発光素子と、
     第1の電極および第2の電極を有する第1のキャパシタと、
     第3の電極および第4の電極を有する第2のキャパシタと、
     前記第1のキャパシタに蓄積された電圧と、第2のキャパシタに蓄積された電圧と、に応じた電流を前記発光素子に供給する駆動トランジスタと、を備え、
     前記第2の電極は、前記第3の電極と電気的に接続され、
     前記第2の電極と前記第3の電極は、それぞれ異なる層に配置される、表示装置。
  2.  積層方向から見て、前記第1の電極および前記第2の電極と重なるように、前記第1のキャパシタおよび前記第2のキャパシタとは異なる層に配置され、前記第2の電極および前記第3の電極と電気的に接続される金属層をさらに備える、請求項1に記載の表示装置。
  3.  前記金属層は、積層方向から見て、前記第1の電極および前記第2の電極を覆うように配置される、請求項2に記載の表示装置。
  4.  前記金属層は、積層方向から見て、前記第2の電極を覆うように配置された前記第1の電極と重なるように配置される、請求項2に記載の表示装置。
  5.  前記第1の電極は、前記駆動トランジスタのゲートと電気的に接続され、
     前記第2の電極、前記第3の電極及び前記金属層は、前記駆動トランジスタのソースと電気的に接続される、請求項4に記載の表示装置。
  6.  前記第1の電極は、所定の電圧を供給する電圧供給配線と電気的に接続され、
     前記第2の電極、前記第3の電極及び前記金属層は、前記駆動トランジスタのゲートと電気的に接続される、請求項4に記載の表示装置。
  7.  前記金属層は、積層方向から見て、所定の電圧を供給する電圧供給配線と重なるように配置される、請求項2に記載の表示装置。
  8.  前記第4の電極は、前記電圧供給配線と電気的に接続される、請求項7に記載の表示装置。
  9.  前記金属層は、積層方向から見て、前記駆動トランジスタのゲートと電気的に接続される前記第1の電極と重なるように配置される、請求項2に記載の表示装置。
  10.  前記ゲートと電気的に接続される前記第1の電極は、積層方向から見て、信号線と重なるように配置され、
     前記金属層は、前記第1の電極が配置される層と、前記信号線が配置される層と、の間の層に配置される、請求項9に記載の表示装置。
  11.  積層方向に延伸するように設けられ、前記第2の電極および前記第3の電極のそれぞれと、前記金属層と、を電気的に接続させる複数の柱状電極部をさらに備え、
     前記金属層は、複数の前記柱状電極部を介して、前記第2の電極と前記第3の電極とを電気的に接続させるように配置される、請求項2に記載の表示装置。
  12.  前記第1のキャパシタは、前記駆動トランジスタの動作に関する第1電圧を蓄積し、
     前記第2のキャパシタは、前記第1電圧とは異なる第2電圧を蓄積する、請求項1に記載の表示装置。
  13.  前記第1のキャパシタ及び前記第2のキャパシタのそれぞれは、MIM(Metal-Insulator-Metal)キャパシタ、MOM(Metal-Oxide-Metal)キャパシタまたはMOS(Metal-Oxide-Semiconductor)キャパシタである、請求項1に記載の表示装置。
  14.  発光素子と、
     第1の電極および第2の電極を有する第1のキャパシタと、
     第3の電極および第4の電極を有する第2のキャパシタと、
     前記第1のキャパシタに蓄積された電圧と、第2のキャパシタに蓄積された電圧と、に応じた電流を前記発光素子に供給する駆動トランジスタと、を備え、
     前記第2の電極は、前記第3の電極と電気的に接続され、
     前記第2の電極と前記第3の電極は、それぞれ異なる層に配置される、電子機器。
PCT/JP2022/015941 2021-04-26 2022-03-30 表示装置及び電子機器 WO2022230578A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280029726.0A CN117178315A (zh) 2021-04-26 2022-03-30 显示装置及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021074288A JP2024084872A (ja) 2021-04-26 表示装置及び電子機器
JP2021-074288 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022230578A1 true WO2022230578A1 (ja) 2022-11-03

Family

ID=83848011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015941 WO2022230578A1 (ja) 2021-04-26 2022-03-30 表示装置及び電子機器

Country Status (2)

Country Link
CN (1) CN117178315A (ja)
WO (1) WO2022230578A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104890A (ja) * 2011-11-10 2013-05-30 Seiko Epson Corp 電気光学装置および電子機器
US20140291636A1 (en) * 2013-03-26 2014-10-02 Lg Display Co., Ltd. Organic Light Emitting Diode Display Device and Method for Manufacturing the Same
JP2020076841A (ja) * 2018-11-06 2020-05-21 キヤノン株式会社 表示装置および電子機器
WO2020100616A1 (ja) * 2018-11-16 2020-05-22 ソニーセミコンダクタソリューションズ株式会社 画素回路、表示装置、画素回路の駆動方法および電子機器
US20210012707A1 (en) * 2019-07-09 2021-01-14 Samsung Display Co., Ltd. Pixel of an organic light emitting diode display device, and organic light emitting diode display device
JP2021033289A (ja) * 2019-08-19 2021-03-01 三星電子株式会社Samsung Electronics Co.,Ltd. ディスプレイ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104890A (ja) * 2011-11-10 2013-05-30 Seiko Epson Corp 電気光学装置および電子機器
US20140291636A1 (en) * 2013-03-26 2014-10-02 Lg Display Co., Ltd. Organic Light Emitting Diode Display Device and Method for Manufacturing the Same
JP2020076841A (ja) * 2018-11-06 2020-05-21 キヤノン株式会社 表示装置および電子機器
WO2020100616A1 (ja) * 2018-11-16 2020-05-22 ソニーセミコンダクタソリューションズ株式会社 画素回路、表示装置、画素回路の駆動方法および電子機器
US20210012707A1 (en) * 2019-07-09 2021-01-14 Samsung Display Co., Ltd. Pixel of an organic light emitting diode display device, and organic light emitting diode display device
JP2021033289A (ja) * 2019-08-19 2021-03-01 三星電子株式会社Samsung Electronics Co.,Ltd. ディスプレイ装置

Also Published As

Publication number Publication date
CN117178315A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
US10274734B2 (en) Personal immersive display device and driving method thereof
US11551617B2 (en) Display device, electronic device, and driving method of display device
US9219087B2 (en) Display, display drive method, method of manufacturing display, and electronic apparatus
JP2015158572A (ja) 表示装置、電子機器
US20230180578A1 (en) Image display device and electronic apparatus
WO2022230578A1 (ja) 表示装置及び電子機器
US20230343292A1 (en) Light emitting device, display device, photoelectric conversion device, electronic apparatus, illumination device, and moving body
WO2022196492A1 (ja) 表示装置及び電子機器
JP2024084872A (ja) 表示装置及び電子機器
US20220223120A1 (en) Light-emitting apparatus, display apparatus, photoelectric conversion apparatus, electronic device, illumination apparatus, moving body, and wearable device
WO2024048268A1 (ja) 表示装置、電子機器及び表示装置の駆動方法
WO2023013247A1 (ja) 表示装置、電子機器、及び表示制御方法
WO2024101213A1 (ja) 表示装置
WO2024084876A1 (ja) 表示装置および電子機器
WO2023119861A1 (ja) 表示装置
WO2023176166A1 (ja) 表示装置及び電子機器
US12027123B2 (en) Light emitting device having a pixel, a driving transistor, a light emission control transistor, a write transistor, and a capacitive element
EP4307283A1 (en) Display device and control method
WO2023181652A1 (ja) 表示装置
WO2023182097A1 (ja) 表示装置及びその駆動方法
US20230306910A1 (en) Light emitting device, display device, photoelectric conversion device, electronic apparatus, illumination device, moving body, and wearable device
WO2023189312A1 (ja) 表示装置
WO2023062976A1 (ja) 表示装置及び電子機器
WO2023243474A1 (ja) 表示装置
US11842682B2 (en) Light emitting device, photoelectric conversion device, electronic device, lighting device, and mobile body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795494

Country of ref document: EP

Kind code of ref document: A1