WO2022230004A1 - Burner head device - Google Patents

Burner head device Download PDF

Info

Publication number
WO2022230004A1
WO2022230004A1 PCT/JP2021/016578 JP2021016578W WO2022230004A1 WO 2022230004 A1 WO2022230004 A1 WO 2022230004A1 JP 2021016578 W JP2021016578 W JP 2021016578W WO 2022230004 A1 WO2022230004 A1 WO 2022230004A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
burner head
buffer chamber
large number
buffer
Prior art date
Application number
PCT/JP2021/016578
Other languages
French (fr)
Japanese (ja)
Inventor
靖之 池田
隆己 西嶋
Original Assignee
株式会社旭製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社旭製作所 filed Critical 株式会社旭製作所
Priority to PCT/JP2021/016578 priority Critical patent/WO2022230004A1/en
Priority to JP2021537090A priority patent/JP7030299B1/en
Publication of WO2022230004A1 publication Critical patent/WO2022230004A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other

Definitions

  • the present invention relates to a burner that mixes gaseous fuel, liquid mist fuel, etc. with an appropriate amount of air and burns it, and in particular to a burner head device that is used for the manufacture and processing of glass products.
  • a burner is a combustion device that is widely used, from household cooking utensils such as stoves to industrial furnaces for maintaining the quality of materials.
  • household cooking utensils such as stoves
  • industrial furnaces for maintaining the quality of materials.
  • the demand for burners for processing materials for semiconductor processes, scientific research and development supplies, clean rooms, experimental and research equipment, etc. has grown significantly.
  • quartz burners for processing glass products is being actively developed.
  • Patent Document 1 the device of Patent Document 1 is known as a quartz glass burner.
  • the quartz glass burner of Patent Document 1 is made of quartz glass by forming a plurality of flow passages for gas that penetrate from the back side to the front side in an integral quartz glass rod, and using these as passages for combustion-supporting gas and fuel gas.
  • a burner head is provided, and the ends of quartz glass tubes for gas supply are welded to the rear edge of each passage as gas introduction pipes.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and one of its objectives is to provide a relatively simple manufacturing process, maintain good product precision, and enable manufacturing while keeping costs low.
  • a burner head device Another object of the present invention is to provide a burner head device which can set a wide working area by a burner flame and can be a burner corresponding to an arbitrary working area shape.
  • the present invention provides a burner head 8 made of a block body having a gas jetting surface 1F, in which a large number of gas passages 31, 41 are formed.
  • the burner head 8 for ejecting the combustion gas 1G and the combustible gas 2G from the ejection surface 1F provided with a large number of communicating gas ejection ports 21b and 22b, and the portion (XF) of the burner head 8 other than the ejection surface 1F.
  • a first inlet group 11a including a large number of gas inlets for supplying combustion gas, and a large number of gas inlets for supplying combustible gas provided in the portion XF of the burner head 8 other than the ejection surface.
  • a first buffer chamber 15 having a space shared by a second inlet group (12a-1 to 12a-4), a large number of gas inlets for supplying combustion gas, and a large number of gases for supplying combustible gas.
  • a second buffer chamber 16 having a space shared with the mouth.
  • the present invention is a burner head made of a block body having a front surface 1F, a side surface and a rear surface, and having a large number of gas passages 31 and 41 formed therein and a large number of gas ejection ports communicating with the large number of gas passages. (21b, 22b-1 to 22b-4) for ejecting the combustion gas 1G and the combustible gas 2G from the front surface 1F, and a large number of gas inlets (11a) provided on the rear surface 2F of the burner head 8. , a large number of gas introduction ports (12a-1 to 12a-4) provided on the side surfaces 3F-1 to 3F-4 of the burner head 8, and a large number of gas introduction ports (11a) on the rear surface 2F side. and a second buffer chamber 16 having a space 16S shared with many gas introduction ports 12a-1 to 12a-4 on the sides 3F-1 to 3F-4.
  • the burner head unit 10 includes:
  • a buffer frame 60 is provided in which the first buffer chamber 15 and the second buffer chamber 16 are formed by frame walls, the burner head 8 and the buffer frame 60 are made of quartz glass, and at least the first buffer chamber is The buffer frame 60 is integrally joined to the burner head 8 so that the chamber 15 and the second buffer chamber 16 communicate with the numerous gas introduction ports 11a, 12a-1 to 12a-4 of the burner head 8, respectively. I hope it is.
  • first buffer chamber 15 and the second buffer chamber 16 are separated by a partition wall 90 so that the chambers do not communicate with each other, and are integrally joined with the burner head 8 so as to enclose the burner head 8 inside. Good.
  • the burner head 8 may have a jetting surface whose front surface 1F is long in one direction.
  • the burner head 8 includes a first gas passage group 31a communicating with the gas introduction port (11a) on the side of the rear surface 2F and directly communicating with several gas ejection ports on the side of the front surface 1F, and side surfaces 3F-1 to 3F- a second gas passage group 41a that communicates with the gas introduction ports 12a-1 to 12a-4 on the 4 side and communicates with several gas ejection ports on the front face 1F side.
  • the second gas passage group 41a includes direct and/or curved gas passages communicating from the side gas introduction ports 12a-1 to 12a-4 of the burner head 8 to the front gas ejection ports 12b-1 to 12b-4. (41a) may be included.
  • Combustion gas 1G is introduced from the first buffer chamber 15, passes through the burner head 8, and is ejected from the front surface of the burner head 8.
  • the gas ejected from is preferably combustible gas 2G.
  • the burner head and the first and second chambers are basically welded together to form the device.
  • the burner head and the first and second chambers can be obtained.
  • FIG. 1A is a cross-sectional view along the line of FIG. 1A-A' showing only the portion other than the burner head of the burner head device of FIG. 3; It is the figure which showed only parts other than a burner head seeing from the bottom face of the burner head apparatus of FIG. 3 by hatching.
  • FIG. 1A is a cross-sectional view along the line of FIG. 1A-A' showing only the portion other than the burner head of the burner head device of FIG. 3; It is the figure which showed only parts other than a burner head seeing from the bottom face of the burner head apparatus of FIG. 3 by hatching.
  • FIG. 4 is a rear view of only the burner head of the burner head device of FIG. 3;
  • FIG. 4 is a perspective explanatory view of the burner head of FIG. 3;
  • FIG. 4 is a perspective explanatory view of the burner head of FIG. 3;
  • (a) is a cross-sectional view along line 7A in FIG. 8
  • (b) is a cross-sectional view along line 7B in FIG. 8
  • (c) is a cross-sectional view along line 7C in FIG. 4(a) and 4(b) are operation explanatory diagrams of the burner head device of FIG. 3.
  • FIG. 4 is a rear view of only the burner head of the burner head device of FIG. 3;
  • FIG. 4 is a perspective explanatory view of the burner head of FIG. 3;
  • FIG. 4 is a perspective explanatory view of the burner head of FIG. 3;
  • (a) is a cross-sectional view along line 7A in FIG. 8
  • (b) is a cross-
  • the burner head device of the present invention is a device for flame processing various articles and objects by flames generated by using gas or combustion fluid, and is used, for example, for physicochemical applications such as beakers and flasks, and for the manufacture of optical fiber manufacturing parts. .
  • FIGS. 1(a) and 1(b) are explanatory diagrams of the principle configuration of the present invention.
  • the burner head device of the present invention is constructed from metallic or non-metallic inorganic materials. Since the burner is equipment for flame processing, materials having heat resistance and corrosion resistance are preferably used. Among them, glass, refractories, fine ceramics, etc., which are non-metallic inorganic materials, are advantageously used. In principle, quartz glass, which is excellent in heat resistance, corrosion resistance and transparency, is particularly advantageously used. A wide flame machining area or arbitrary range of flame machining area is formed by using a gas injection nozzle processed from these materials to improve the efficiency of the flame machining work and the machining accuracy.
  • one surface of a burner head 8 made of, for example, quartz glass is a gas ejection surface 1F. 1 to 22b-4 are provided. Introducer groups 11a, 12a-1 to 12a-4 for supplying combustion gas and combustible gas are provided on the surface portion other than the ejection surface 1F, and each introduction port and each ejection port of the ejection surface 1F are one. Passages 31 and 41 for gas flow are provided inside the burner head 8 so as to communicate in pairs. Furthermore, at least two buffer chambers 15 and 16 are provided by bonding a buffer frame 60 to the surface of the burner head 8 so as to hermetically close the space adjacent to each inlet for supplying combustion gas.
  • One buffer chamber 15 is for temporary storage of combustion gas such as oxygen gas
  • the other buffer chamber 16 is for storage of combustible gas such as hydrogen gas.
  • the gas supplied from the supply pipe or the like is temporarily stored in each buffer chamber, enters the gas passages 31 and 41 through the introduction ports at substantially the same time, flows through the gas passages 31, 41, and is ejected from the ejection surface 1F. performs flame machining on the workpiece in the flame area in contact with .
  • By changing and adjusting the outer shape, size, etc. of the burner head to change the arrangement shape, spread, etc. of the group of many gas ejection ports, it is possible to freely generate a flame machining area.
  • the burner head 8 is a solid block body having a gas ejection surface 1F, and a large number of gas passages 31 and 41 are formed therein and a large number of gas passages 31 and 41 are formed therein.
  • a first inlet group 11a including a large number of gas inlets for supplying combustion gas provided in the portion (XF), and a large number for supplying combustible gas provided in a portion XF of the burner head 8 other than the ejection surface
  • a second inlet group (12a-1 to 12a-4) including gas inlets, a first buffer chamber 15 having a space shared with many gas inlets for supplying combustion gas, and combustible gas supply and a second buffer chamber 16 having a space shared with a number of gas inlets for gas.
  • the multiple gas passages within the burner head may be routed in any manner so long as the combustible and combustible gases do not come into contact.
  • the arrangement and the number of gas inlets and jet outlets can be arbitrarily set as long as the combustible and combustible gases do not come into contact with each other.
  • the buffer chamber disposed on the peripheral side of the burner head 8 may be provided only partially in the circumferential direction. It may be introduced and ejected from the ejection surface.
  • the shape of the burner head 8 may be a quadrangular prism, a cylinder, other three-dimensional polygons, and irregular shapes as long as the shape has one ejection surface (1F).
  • a block body having a three-dimensional shape or other arbitrary shape can be used.
  • the arrangement, number, and diameter of the holes in the ejection port of the ejection surface, and the arrangement, number, and diameter of the holes in the introduction port can be set arbitrarily.
  • Three or more buffer chambers may be provided.
  • the buffer chamber may be integrally joined around the burner head so as to cover the entire burner head inside, or only a part of the burner head may be used to form the burner head and the buffer chamber depending on the installation position of the inlet. 1 may be used, in which the buffer frame is joined. Also, the gas supply pipe may be made of a heat-resistant flexible tube or the like instead of quartz glass.
  • the burner head device of this embodiment is composed of a gas burner head device made of quartz (SiO2), which is excellent in corrosion resistance, heat resistance, and transparency.
  • FIG. 3 is a front view of a burner head device 10 according to an embodiment of the present invention
  • FIG. 4 is a sectional view taken along the line of FIG.
  • the apparatus 10 is configured by connecting supply pipes for the combustion gas and the combustible gas to a burner head 8 that blows out the combustion gas 1G and the combustible gas 2G from the front surface 1F.
  • the burner head device 10 includes a burner head 8 for ejecting a combustion gas 1G and a combustible gas 2G from a front surface 1F, and a gas inlet having a large number of gas inlets provided in the burner head 8.
  • Groups 11a, 12a-1, 12a-2, 12-a3, 12a-4, a first buffer chamber 15 and a second buffer chamber 16 are included.
  • the gas introduction port groups 11a, 12a-1, 12a-2, 12-a3, 12a-4 include a large number of gas introduction ports (hereinafter, not shown) 11a1, 11a2, 11a3 . . . , 12a-11, 12a-12, 12a-13. . .
  • the burner head 8 is composed of a three-dimensional block body having at least a front surface 1F and a rear surface 2F. A deformed three-dimensional shape or an irregular three-dimensional shape may be used.
  • the burner head 8 has a large number of gas passages (31, 41) inside it, and particularly in this embodiment, the gas passages are directly penetrated by an oblong cuboid-shaped block made of an integral mass made of quartz by ultrasonic machining or the like. A hole is drilled to form a passageway. Further, the burner head 8 is provided with gas ejection port groups 21b, 22b-1, 22b-2, 22b-3, and 22b-4 including a plurality or a large number of gas ejection ports on the front surface 1F.
  • the burner head 8 is a hexahedral three-dimensional quartz integral block mainly shown in FIG. , 3F-4.
  • all the small diameter holes are for the oxygen gas 1G, and all the large diameter holes are for the hydrogen gas 2G.
  • gas ejection port groups 21b, 22b-1, 22b-2, 22b-3, and 22-b4 including a large number of gas ejection ports are provided only on the front surface 1F, and the front surface 1F is the gas ejection surface. It is said that it is also possible to make the gas blow out from the side surface or other parts without providing the blowout port only on the front surface.
  • the burner head 8 has a front surface 1F formed as an ejection surface elongated in one direction. In addition, it is not necessary to provide the gas ejection ports on the entire front face 1F, and they may be unevenly distributed only on a part of the whole, or may be scattered on the whole.
  • the gas introduction port group 11a on the rear surface 2F has, for example, 7 vertical (columns) by 33 (rows) horizontal gas introduction ports with a diameter of 0.6 mm. perforated with In the embodiment, only oxygen (O2) as combustion gas is supplied to the gas introduction port on the rear surface 2F.
  • gas introduction ports are also provided on the four side surfaces (the plane, bottom surface, and left and right side surfaces of the burner head 8 in FIG. 3) as the peripheral surface of the burner head 8. is provided.
  • the plane and the bottom surface ie, the upper and lower side surfaces of FIG.
  • An opposing second side surface 3F-3 is provided.
  • a laterally elongated side gas inlet group 12a-1 including 65 gas inlets arranged in a row in the laterally elongated direction at substantially the central position of the short side width of each of the side faces 3F-1 and 3F-3, and a laterally elongated opposite side gas inlet group 12a-1.
  • a mouth group 12a-2 is formed.
  • the width is the same as the width of the short side of the oblong side 3F-1, 3F-3, respectively.
  • Five gas inlets 12-a3 and 12a-4 are perforated.
  • the gas introduction ports on the side surfaces are provided at substantially central positions of the widths of the short sides so as to encircle the peripheral side surfaces of the rectangular parallelepiped burner head.
  • the introduction ports of the introduction port groups 12a-1, 12a-2, 12a-3, and 12a-4 provided on the four side surfaces 3F-1, 3F-2, 3F-3, and 3F-4 of the burner head 8 are, for example,
  • the aperture is set to 1 mm, and in the embodiment, hydrogen (H2) as a combustible gas is supplied to each inlet of these inlet groups.
  • H2 hydrogen
  • the gas passages through which oxygen gas flows form a first gas passage group 31a.
  • the oxygen gas passage 31 has one end communicating with each gas introduction port of the gas introduction port group 11a on the back surface 2F and the other end communicating with the gas introduction port group 21b on the front surface 1F.
  • These are internal passages that respectively communicate with the ports, and in the embodiment, each is provided as a hole having a diameter of 0.6 mm and linearly penetrating from the back side to the front side.
  • the gas passage 31 directs the oxygen gas O2 for combustion supplied to the burner head 8 from the gas introduction port (11a) to the workpiece from the ejection port (21b) on the front surface of the burner head 8. erupt.
  • gas introduction ports 12a-1, 12a- provided in the side surfaces 3F-1, 3F-2, 3F-3, 3F-4 2, 12a-3, 12a-4 and gas ejection ports 22b-1, 22b-2, 22b-3, 22-b4 provided on the front surface 1F.
  • hydrogen H2 is introduced from the side surface of the head and ejected from the front ejection surface.
  • a large number of gas passages for flowing hydrogen gas form a second gas passage group 41a.
  • the gas ejection ports on the front face 1F of the burner head 8 include an oxygen gas ejection port 21b for combustion gas and hydrogen gas ejection ports 22b-1 to 22b- for combustible gas. including 4.
  • the small-diameter hole is the oxygen gas ejection port 21b
  • the large-diameter holes are set to the hydrogen gas ejection ports 22b-1 to 22b-4.
  • the small-diameter hole 21b and the large-diameter holes 22b-1 to 22b-4 are alternately arranged vertically and horizontally so that holes with different diameters are arranged around each hole. For example, in FIG.
  • a group of gas ejection ports (22b-3) of five large-diameter gas ejection port groups (22b-3) are provided vertically at required intervals. It is Seven small-diameter holes 21b for ejecting oxygen are provided in a row on the left adjacent to it with a required interval in the center, and one large-diameter hole for ejecting hydrogen is provided at each end. A hole mouth (22b-1) is arranged.
  • This mixed jet hole group x consisting of a group of oxygen jet holes as small-diameter holes arranged vertically in a row and one hydrogen jet hole at each end, and five holes arranged vertically next to it.
  • the center interval between the large-diameter holes of the hydrogen ejection port group y arranged in a row of five vertically is, for example, 2.25 mm
  • the center interval of the small-diameter holes of the mixed ejection port group y is, for example, 1.5 mm. is set.
  • the arrangement of the large-diameter openings and the small-diameter openings, the hole diameters, and the intervals between the openings can be set arbitrarily.
  • the hydrogen gas passage 41 is formed as an L-shaped passage that connects the introduction port and the ejection port in an L-shape.
  • the second gas passage group 41a includes direct and/or curved gas passages communicating from the side gas introduction ports 12a-1 to 12a-4 of the burner head 8 to the front gas ejection ports 22b-1 to 22b-4. including. Thereby, a passage can be specifically provided from the peripheral side of the burner head to the ejection side of the front face.
  • the apertures 22b-1 to 22b-4 are arranged in a row at intervals in the width direction center positions of the oblong first side surface 3F-1 and the oblong opposing second side surface 3F-3, respectively. It is L-shaped connected to 33 hydrogen gas inlets out of the hydrogen gas inlets 13a-1 to 13a-65.
  • the remaining 32 of the 65 horizontal hydrogen gas introduction ports provided in a line at intervals in the width direction center position of the oblong first side surface 3F-1 and the oblong opposite second side surface 3F-3 is connected to any one of the large-diameter holes 22b-1 to 22b-4 as hydrogen gas ejection ports on the front surface 1F in L-shaped communication.
  • the 65 rows of large-diameter holes provided on the horizontally long first and second side faces 3F-1 and 3F-3 alternately form a row of 5 large-diameter holes on the front face 1F, which is a hydrogen ejection port group y. , are provided so as to communicate with the mixing jet hole group x.
  • seven oxygen gas passages 31 are arranged at intervals in the center of the mixing jet port group x, and from the side surfaces 3F-1 and 3F-2 at both ends thereof, L-shaped passages 41 for supplying hydrogen gas and ejecting hydrogen from the hydrogen gas ejection ports (22b-1, 22b-2) on the front surface 1F are provided at symmetrical positions.
  • L-shaped passages 41 for supplying hydrogen gas and ejecting hydrogen from the hydrogen gas ejection ports (22b-1, 22b-2) on the front surface 1F are provided at symmetrical positions.
  • oxygen gas 1G and hydrogen gas 2G are simultaneously jetted from the front surface 1F.
  • FIG. 9(b) seven oxygen gas passages 31 are arranged at intervals in the center of the mixing jet port group x, and from the side surfaces 3F-1 and 3F-2 at both ends thereof, L-shaped passages 41 for supplying hydrogen gas and ejecting hydrogen from the hydrogen gas ejection ports (22b-1, 22b-2) on the front surface 1F are provided at
  • the hydrogen gas passage 41 in the line of the hydrogen ejection port group y, includes the gas ejection port 22b-1 of the side oblong introduction port and the gas ejection port 22b-1 of the opposite side oblong introduction port.
  • a through hole 51 is provided so as to penetrate from one side to the other side so as to communicate with the port 22b-2 in a straight line, and five ejection ports 22b-1 and 22b are provided in a row on the front surface 1F. -2 and a branch passage 52 that connects the through passage 51 at right angles.
  • the gases introduced from the hydrogen gas inlets 12a-1 and 12a-2 connected thereto flow mutually in the direction of both directly connected side faces, and the through holes From 51, it passes through branch passages 52 and is divided into five ejection ports on the front surface 1F and ejected.
  • the burner head device 10 of the embodiment comprises a burner head 8, a buffer frame 60 integrated with the burner head while exposing the ejection surface of the burner head, and a buffer frame 60. and a gas supply pipe 80 for supplying combustion and combustible gases to the gas inlet group of the burner head 8 via the gas supply pipe 80 .
  • the buffer frame 60 is formed by processing quartz glass to have a horizontally elongated rectangular three-dimensional shape with a hollow interior.
  • the buffer frame 60 is made of, for example, a horizontally elongated rectangular three-dimensional glass molded body with a thickness of about several millimeters, and surrounds the burner head 8 so as to wrap the burner head 8 inside. It is integrated by joining a part of The buffer frame 60 has an airtight frame wall molded to form the hollow buffer chambers 15, 16 therein, and in this embodiment, the burner head 8 extends over more than half of the burner head 8 profile. are joined to the burner head 8 in such a manner that buffer chambers 15 and 16 are formed between them and the outer peripheral surface of the burner head 8 .
  • the buffer frame 60 includes a large number of rear gas introduction port groups 11a arranged vertically and horizontally on the rear surface 2F (FIG. 6) of the burner head 8.
  • the first buffer chamber 15 is formed so as to cover the gas introduction port of the first buffer chamber 15 with a first frame wall 60-1 with a space 15S provided therebetween.
  • the first buffer chamber 15 is oxygen gas buffering means for receiving and temporarily storing only oxygen gas as combustion gas supplied from the gas supply pipe 80, and temporarily storing the gas supplied from the gas supply pipe 80. Oxygen gas is supplied to each gas introduction port of the gas introduction port group 11a of the burner head 8 substantially at the same time.
  • a first frame wall of the buffer frame 60 forms a first buffer space 15S as a hollow portion inside, and an end of the frame wall is annularly hermetically welded to the peripheral wall portion of the burner head to communicate with the oxygen gas supply pipe 80.
  • the space 15S other than the portion is airtightly closed.
  • the first buffer chamber 15 has a buffer space 15S that communicates with each of a number of gas introduction ports (11a) provided on the back surface 2F of the burner head 8. Therefore, the back surface 2F of the burner head 8 All of the large number of gas inlets (11a) share the space 15S and each communicates with the space 15S.
  • the oxygen gas supply pipe 80 has a straight main pipe portion 85 and branch pipes 87, 87 which branch into two and extend through a connecting portion 86.
  • the ends of the respective branch pipes 87 are connected to each other through openings 88 formed in the first buffer chamber 15 of the buffer frame 60, thereby allowing oxygen gas to flow into the buffer provided on the rear surface 2F side of the burner head 8. It is supplied into the first buffer chamber 15 from the first frame wall 60-1 of the frame.
  • the oxygen gas supply pipe 80 supports the back side of the burner head 8 by joining to the buffer frame 60 forming the first buffer chamber 15 by joining to the back of the burner head 8 .
  • the buffer frame 60 has a side gas introduction port 12a-1 provided so as to circulate holes in the peripheral wall surfaces 3F-1 to 3F-4 of the burner head 8. 12a-4 are covered with a second frame wall 60-2 with a space 16S therebetween to form a second buffer chamber 16. As shown in FIG.
  • the second buffer chamber 16 is hydrogen gas buffering means for receiving and temporarily storing only hydrogen gas as a combustible gas supplied from the gas supply pipe 70 . is temporarily stored, and hydrogen gas is supplied to each of the gas introduction port groups 12a-1 to 12a-4 of the burner head 8 at substantially the same time.
  • the second buffer chamber 16 is in contact with the peripheral side of the burner head 8 by a frame wall 60-2 having a larger outer shape than the burner head 8 with the second buffer chamber 16 interposed therebetween. It is provided to surround the space like a bag. It should be noted that which of the combustible or combustible gases 1G, 2G is supplied to which of the buffer chambers 15, 16 is not limited, and can be arbitrarily changed according to various conditions and specifications.
  • the second buffer chamber 16 has a space 16S that communicates with the entire peripheral side surface of the burner head 8, and is therefore formed in a row at an intermediate position in the width direction of the short side of the peripheral side surface of the burner head 8. All of the side gas introduction ports 12a-1 to 12a-4 share the space 16S and communicate with the space 16S.
  • the hydrogen gas supply pipe 70 has a straight pipe-like main pipe portion 75 and branch pipes 77, 77 which branch into two and extend through a connecting portion 76. , the ends of the respective branch pipes 77 are connected to openings 78 provided in the second buffer chamber 16 of the buffer frame 60, whereby the hydrogen gas supply pipe 70 and the second buffer chamber 16 are connected and connected. As a result, hydrogen gas is supplied into the second buffer chamber 16 from two locations on the laterally elongated peripheral wall of the buffer frame.
  • the first buffer chamber 15 and the second buffer chamber 16 are air-tightly integrally joined to the burner head 8, and different gases are supplied to the burner head 8 from the respective buffer chambers.
  • the gas is introduced into the gas inlets (11a, 12a-1 to 12a-4).
  • the chambers of the first buffer chamber 15 and the second buffer chamber 16 are fused and joined to each other without communicating with each other. That is, in the embodiment, the first and second frame walls 60-1 and 60-2 that define the first buffer chamber 15 and the second buffer chamber 16 are melt-joined to each other with the partition wall 90 provided between them. It is As a result, the entire buffer frame 60 and the burner head 8 are physically integrated to maintain strength.
  • the main pipe portions 75, 85 of the hydrogen and oxygen gas supply pipes 70, 80 are converged so as to be arranged parallel to each other, and the grip pipes and the respective grip pipes are connected at the grip portion 92.
  • the gas supply pipes are connected to each other, and the flame processing is performed while the grip portion 92 is gripped by the chuck of the processing actuator.
  • Oxygen gas enters the first buffer chamber 15 which is airtightly joined to the rear surface 2F of the burner head 8 from the oxygen gas supply pipe 80, and flows straight through the oxygen gas passage 31 from each gas introduction port of the rear gas introduction port group 11a. , and is jetted forward from the front face of the burner head from each jetting port of the gas jetting port group 21b on the front face 1F.
  • the ejected oxygen gas is ejected so as to form a horizontally long rectangular ejection area and an ejection destination area as shown in FIGS.
  • the hydrogen gas enters from the hydrogen gas supply pipe 70 into the second buffer chamber 16 of the second frame wall 60-2 of the buffer frame 60 surrounding the peripheral side of the burner head 8, and further into the side gas inlet group 12a. -1 to 12a-4 through the hydrogen gas passage 41 and through the gas ejection port groups 21b and 22b-1 to 22b-4 on the front face 1F of the burner head 8. blow out gas.
  • part of the hydrogen gas enters from the side surfaces 3F-1 to 3F-4 of the burner head 8 as shown in FIGS. erupt.
  • part of the other hydrogen gas enters through the through hole 51 and passes through the branch passages 52 that are branched into five L-shaped passages while communicating with the through hole 51.
  • the combustion gas 1G is introduced from the first buffer chamber 15 and flows straight through the burner head 8 and is ejected from the front surface thereof.
  • the gas ejected from the front is combustible gas 2G, so that the combustible gas and combustible gas are completely cut off so that they do not come into contact with each other, and the flow route is made different for each type of gas to facilitate management and maintenance. be able to.
  • the ejection port group 21b, 22b-1 to 22b4 on the front face 1F of the burner head 8 is formed with ports concentrated in a substantially laterally long rectangular shape according to the shape of the solid body of the burner head 8.
  • Combustion gas and combustible gas form a wide rectangular flame processing area at the same time, ensuring a wide processing area to shorten processing time, perform flame processing according to the desired processing shape, and ensure processing accuracy. can do.
  • the burner head device 10 of the present invention is not limited to the configuration of the embodiment described above.
  • the diameter size of the gas introduction holes on the back and peripheral side surfaces and the diameter size of the gas ejection port holes on the front surface are not limited to the sizes in the embodiments, and are arbitrary according to the flow velocity on the gas supply side and other conditions. size can be set.
  • the arrangement of the holes and the number of holes on the front surface and the peripheral side surface are not limited to those of the embodiment.
  • the arrangement configuration of the gas passages inside the burner head 8 and the L-shaped and other route configurations are not limited to those of the embodiment.
  • the bending configuration may be shallower than 90 degrees or even deeper.
  • first buffer chamber 15 and the second buffer chamber 16 do not necessarily have to be connected.
  • first and second frame wall bodies 60-1 and 60-2 of the buffer frame 60 are cut off and the second buffer chambers 16 are individually separated from many of the gas introduction port groups 12a-1 to 12a-4 on the circumferential side.
  • the second frame wall is connected and joined to the burner head 8 so that the space is shared by the gas inlets of the first buffer chamber 15, and the space is shared by the many gas inlets of the gas inlet group 11a on the rear side.
  • the first frame wall may be connected and joined to the burner head 8 as in the case of FIG.
  • the constituent material of the burner head is not limited to quartz glass, but other glass, refractories, non-metallic inorganic materials such as fine ceramics, metals having heat resistance and corrosion resistance, alloy materials, etc. may be used. can.
  • the burner head device 10 realized in the example according to the above embodiment is a block-shaped burner head 8 having a gas ejection surface 1F, in which a large number of gas passages 31, 41 are formed and a large number of gas passages 31, 41 are formed.
  • a second inlet group (12a-1 to 12a-4) including inlets, a first buffer chamber 15 having a space shared with many gas inlets for supplying combustion gas, and many for supplying combustible gas.
  • a second buffer chamber 16 having a space shared with the gas introduction port, the outer shape, size, etc. of the burner head can be changed and adjusted, and the arrangement shape and spread of the group of many gas ejection ports can be changed.
  • the parameters, etc. it is possible to generate a free flame processing area. For example, it is possible to cope with the case of wanting to make it horizontally long or the case of wanting to obtain a wide processing area. As a result, the range of objects to be flame processed is widened, and the field of processing and processing accuracy can be greatly improved.
  • the burner head is a block body having a front surface, a side surface, and a back surface, and has a large number of gas passages formed therein and a large number of gas ejection ports communicating with the large number of gas passages.
  • a buffer frame in which a first buffer chamber and a second buffer chamber are formed by frame walls, the burner head and the buffer frame are made of quartz glass, and at least the first buffer chamber and the second buffer chamber are provided.
  • the buffer frame is joined to and integrated with the burner head so that each of the chambers communicates with a large number of gas inlets of the burner head, so that the burner head and the first and second buffer chambers are made of material.
  • first buffer chamber and the second buffer chamber are separated by a partition so that the chambers do not communicate with each other, and are joined and integrated with the burner head so as to wrap the burner head inside.
  • the burner is easy to handle, easy to manage and maintain, and by integrating the burner head and both buffer chambers, the overall strength of the device increases, and it is durable enough to withstand the chucking operation of the actuator. can retain their sexuality.
  • the burner head Since the burner head has a jet surface that is long in one direction, it is possible to reliably form a horizontally long flame processing area even for an object that has a horizontally long processing area. Contributes to shortening and improving machining accuracy.
  • the burner head includes a first gas passage group communicating with the gas introduction port on the back side and directly communicating with some gas ejection ports on the front side, and a group of gas passages on the front side communicating with the gas introduction port on the side surface side.
  • the second gas passage group communicating with the gas ejection port, it is possible to reliably prevent contact between the combustion gas and the combustible gas while facilitating management and maintenance of the gas passages.
  • the second gas passage group includes straight and/or curved gas passages communicating from the side gas introduction port of the burner head to the front gas ejection port, thereby allowing gas to flow from the side side to the front side of the burner head.
  • the passage can be specifically formed.
  • the gas introduced from the first buffer chamber, traveling straight through the burner head, and ejected from the front surface is combustion gas
  • the gas introduced from the second buffer chamber, passing through the burner head, and ejected from the front surface is combustion gas. Since it is a combustible gas, it is possible to reliably prevent contact between combustion gas and combustible gas while facilitating management and maintenance of gas passages.
  • the conventional flame machining area such as pinpoint can be greatly expanded, and the machining area can be formed in an arbitrary machining area shape.
  • the burner head device of the present invention can be used in a wide range of fields such as household cooking utensils, material processing for semiconductor processes, scientific research and development supplies, clean rooms, experimental and research instruments, and other flame processing applications. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

[Problem] To provide a burner head device capable of generating an optional flame processing area shape and range. [Solution] The present invention includes: a burner head 8 that has a gas ejection surface 1F; a first inlet group 11a including a plurality of gas inlets for combustion gas supply that are provided in a portion (XF) of the burner head 8 other than the ejection surface 1F; a second inlet group (12a-1 to 12a-4) including a plurality of gas inlets for combustible gas supply that are provided in the portion (XF) of the burner head 8 other than the ejection surface; a first buffer chamber 15 that has a space shared with the plurality of gas inlets for combustion gas supply; and a second buffer chamber 16 that has a space shared with the plurality of gas inlets for combustible gas supply. The present invention is achieved by machining the burner head to provide the gas passages inside and the buffer chambers for different gases.

Description

バーナヘッド装置burner head device
 本発明は、気体燃料、霧状液体燃料等に空気を適量混合して燃焼させるバーナに関し、特に、ガラス製品製造、加工等に用いられるバーナヘッド装置に関する。 The present invention relates to a burner that mixes gaseous fuel, liquid mist fuel, etc. with an appropriate amount of air and burns it, and in particular to a burner head device that is used for the manufacture and processing of glass products.
 バーナは、コンロ等の家庭用調理器具から材料の品質保持のための工業用の工業炉まで幅広く用いられる燃焼装置である。近時、半導体プロセス用の素材加工、科学研究・開発用品、クリーンルーム、実験・研究用器具等の加工用のバーナの需要が大きく伸長しており、特に、ガラス製品加工等のための石英製バーナの開発が盛んに行われている。 A burner is a combustion device that is widely used, from household cooking utensils such as stoves to industrial furnaces for maintaining the quality of materials. In recent years, the demand for burners for processing materials for semiconductor processes, scientific research and development supplies, clean rooms, experimental and research equipment, etc., has grown significantly. Especially, quartz burners for processing glass products is being actively developed.
 従来、石英ガラス製バーナとして、特許文献1の装置が知られている。 Conventionally, the device of Patent Document 1 is known as a quartz glass burner.
特許第3222840号Patent No. 3222840
 特許文献1の石英ガラス製バーナは、一体の石英ガラスロッドに背面側から前面側に貫通するガス体の流通通路を複数形成してそれぞれ支燃性ガスと燃料性ガスの通路とした石英ガラス製バーナヘッドを設け、各通路の背面縁にそれぞれのガスの供給用石英ガラスチューブの端部をガスの導入管として溶接接続したものである。しかしながら、特許文献1の装置によれば、バーナヘッドの背面側で各流通通路の導入口に石英ガラスチューブの端部を溶接する作業を多数行う必要があり作業工数が多く製作に時間がかかり製品コストが高価である。また、数ミリ単位の各孔位置に合わせて溶接する作業であり溶接誤差を生じて完成品の精度バラツキを生じやすい。また、バーナヘッドの前面から中心軸方向前方位置に火炎焦点を設定したものであるから、バーナの火炎による加工領域を広く設定したい場合や一方向に長い長方形状等の加工領域を設定することができない、等の問題があった。 The quartz glass burner of Patent Document 1 is made of quartz glass by forming a plurality of flow passages for gas that penetrate from the back side to the front side in an integral quartz glass rod, and using these as passages for combustion-supporting gas and fuel gas. A burner head is provided, and the ends of quartz glass tubes for gas supply are welded to the rear edge of each passage as gas introduction pipes. However, according to the apparatus of Patent Document 1, it is necessary to perform many operations of welding the ends of the quartz glass tubes to the inlets of the respective distribution passages on the back side of the burner head, which requires many man-hours and takes time to manufacture the product. Cost is expensive. In addition, since welding is performed according to the position of each hole in units of several millimeters, welding errors are likely to occur, resulting in variations in the accuracy of the finished product. In addition, since the flame focus is set in front of the front surface of the burner head in the direction of the center axis, it is possible to set a wide machining area by the burner flame or to set a rectangular machining area that is long in one direction. I couldn't do it, etc.
本発明は上記従来の課題に鑑みてなされたものであり、その一つの目的は、製作工程が比較的簡単であり、かつ製品精度を良好に保持し、コストを安価に維持しつつ製作可能なバーナヘッド装置を提供することである。また、本発明の他の目的は、バーナの火炎による加工領域を広く設定でき、また、任意の加工領域形状に対応したバーナとすることのできるバーナヘッド装置を提供することである。 The present invention has been made in view of the above-mentioned problems of the prior art, and one of its objectives is to provide a relatively simple manufacturing process, maintain good product precision, and enable manufacturing while keeping costs low. To provide a burner head device. Another object of the present invention is to provide a burner head device which can set a wide working area by a burner flame and can be a burner corresponding to an arbitrary working area shape.
 上記課題を解決するために本発明は、ガスの噴出し面1Fを有するブロック体からなるバーナヘッド8であり、多数のガス通路31、41を内部に形成すると共に多数のガス通路31、41に連通する多数のガスの噴出し口21b、22bを設けた噴出し面1Fから燃焼ガス1Gと可燃ガス2Gを噴き出すバーナヘッド8と、噴出し面1F以外のバーナヘッド8の部分(XF)に設けられた燃焼ガス供給用の多数のガス導入口を含む第1導入口群11aと、噴出し面以外のバーナヘッド8の部分XFに設けられた可燃ガス供給用の多数のガスの導入口を含む第2導入口群(12a―1~12a―4)と、燃焼ガス供給用の多数のガスの導入口と共有する空間を有する第1バッファ室15と、可燃ガス供給用の多数のガスの導入口と共有する空間を有する第2バッファ室16と、を含むバーナヘッド装置200から構成される。 In order to solve the above problems, the present invention provides a burner head 8 made of a block body having a gas jetting surface 1F, in which a large number of gas passages 31, 41 are formed. The burner head 8 for ejecting the combustion gas 1G and the combustible gas 2G from the ejection surface 1F provided with a large number of communicating gas ejection ports 21b and 22b, and the portion (XF) of the burner head 8 other than the ejection surface 1F. a first inlet group 11a including a large number of gas inlets for supplying combustion gas, and a large number of gas inlets for supplying combustible gas provided in the portion XF of the burner head 8 other than the ejection surface. A first buffer chamber 15 having a space shared by a second inlet group (12a-1 to 12a-4), a large number of gas inlets for supplying combustion gas, and a large number of gases for supplying combustible gas. A second buffer chamber 16 having a space shared with the mouth.
 また、本発明は、前面1Fと側面と背面を有するブロック体からなるバーナヘッドであり、多数のガス通路31,41を内部に形成すると共に多数のガス通路に連通する多数のガスの噴出し口(21b、22b-1~22b-4)を設けた前面1Fから燃焼ガス1Gと可燃ガス2Gを噴き出すバーナヘッド8と、バーナヘッド8の背面2Fに設けられた多数のガスの導入口(11a)と、バーナへッド8の側面3F-1~3F-4に設けられた多数のガスの導入口(12a-1~12a-4)と、背面2F側の多数のガスの導入口(11a)と共有する空間15Sを有する第1バッファ室15と、側面3F-1~3F-4側の多数のガスの導入口12a-1~12a-4と共有する空間16Sを有する第2バッファ室16と、を含むバーナヘッド装置10から構成される。 Further, the present invention is a burner head made of a block body having a front surface 1F, a side surface and a rear surface, and having a large number of gas passages 31 and 41 formed therein and a large number of gas ejection ports communicating with the large number of gas passages. (21b, 22b-1 to 22b-4) for ejecting the combustion gas 1G and the combustible gas 2G from the front surface 1F, and a large number of gas inlets (11a) provided on the rear surface 2F of the burner head 8. , a large number of gas introduction ports (12a-1 to 12a-4) provided on the side surfaces 3F-1 to 3F-4 of the burner head 8, and a large number of gas introduction ports (11a) on the rear surface 2F side. and a second buffer chamber 16 having a space 16S shared with many gas introduction ports 12a-1 to 12a-4 on the sides 3F-1 to 3F-4. The burner head unit 10 includes:
その際、第1バッファ室15と、第2バッファ室16と、をフレーム壁により形成するバッファフレーム60が設けられており、バーナヘッド8とバッファフレーム60は石英ガラス製であり、少なくとも第1バッファ室15と、第2バッファ室16それぞれがバーナヘッド8の多数のガスの導入口11a、12a-1~12a-4に連通するように、バッファフレーム60は、バーナヘッド8に接合されて一体化されているとよい。 At that time, a buffer frame 60 is provided in which the first buffer chamber 15 and the second buffer chamber 16 are formed by frame walls, the burner head 8 and the buffer frame 60 are made of quartz glass, and at least the first buffer chamber is The buffer frame 60 is integrally joined to the burner head 8 so that the chamber 15 and the second buffer chamber 16 communicate with the numerous gas introduction ports 11a, 12a-1 to 12a-4 of the burner head 8, respectively. I hope it is.
また、第1バッファ室15と、第2バッファ室16とは室内どうしが連通しないように隔壁90で分離された状態でバーナヘッド8を内側に包み込むようにバーナヘッド8と接合一体化されているとよい。 Also, the first buffer chamber 15 and the second buffer chamber 16 are separated by a partition wall 90 so that the chambers do not communicate with each other, and are integrally joined with the burner head 8 so as to enclose the burner head 8 inside. Good.
さらに、バーナヘッド8は、前面1Fが一方向に長い噴出し面であるとしてもよい。 Furthermore, the burner head 8 may have a jetting surface whose front surface 1F is long in one direction.
さらに、バーナヘッド8は、背面2F側のガス導入口(11a)に連通しつつ前面1F側のいくつかのガス噴出し口に直通する第1ガス通路群31aと、側面3F-1~3F-4側のガス導入口12a-1~12a-4に連通しつつ前面1F側のいくつかのガス噴出し口に連通する第2ガス通路群41aと、を含むとよい。 Furthermore, the burner head 8 includes a first gas passage group 31a communicating with the gas introduction port (11a) on the side of the rear surface 2F and directly communicating with several gas ejection ports on the side of the front surface 1F, and side surfaces 3F-1 to 3F- a second gas passage group 41a that communicates with the gas introduction ports 12a-1 to 12a-4 on the 4 side and communicates with several gas ejection ports on the front face 1F side.
また、第2ガス通路群41aは、バーナヘッド8の側面側ガス導入口12a-1~12a-4から前面側ガス噴出し口12b-1~12b-4に連通する直通及び/又は屈曲ガス通路(41a)を含むとよい。 The second gas passage group 41a includes direct and/or curved gas passages communicating from the side gas introduction ports 12a-1 to 12a-4 of the burner head 8 to the front gas ejection ports 12b-1 to 12b-4. (41a) may be included.
また、第1バッファ室15から導入されバーナヘッド8内を直進しその前面から噴出されるガスは燃焼ガス1Gであり、第2バッファ室16から導入されバーナヘッ8ド内を経由してその前面1Fから噴出されるガスは可燃ガス2Gであるとよい。 Combustion gas 1G is introduced from the first buffer chamber 15, passes through the burner head 8, and is ejected from the front surface of the burner head 8. The gas ejected from is preferably combustible gas 2G.
 本発明のバーナヘッド装置によれば、基本的にはバーナヘッドと第1、第2チャンバとを溶接して一体化するだけで装置を構成できるので製作工程が簡単で良好な仕上がり精度で高品質のバーナヘッド装置を得ることができる。また、製作が容易で製作時間も従来に比較して飛躍的に短時間でよくコストを大幅に低減することができる。さらに、バーナの火炎による加工領域を広く設定できると共に、任意の加工領域形状や大きな領域の火炎加工領域を形成し得るバーナヘッド装置を得ることが可能である。 According to the burner head device of the present invention, the burner head and the first and second chambers are basically welded together to form the device. can be obtained. In addition, it is easy to manufacture, and the manufacturing time is much shorter than the conventional one, and the cost can be greatly reduced. Furthermore, it is possible to obtain a burner head device that can set a wide processing area by a burner flame and can form an arbitrary processing area shape and a large flame processing area.
(a)、(b)は、本発明のバーナヘッド装置の原理構成斜視説明図である。(a), (b) is a principle structure perspective explanatory view of the burner head apparatus of this invention. (a)は、図1の装置のバーナヘッドのみの斜視説明図である。(b)は、図1の装置の正面説明図である。(c)は、図1の装置の背面説明図である。2(a) is a perspective explanatory view of only the burner head of the apparatus of FIG. 1; FIG. (b) is a front explanatory view of the apparatus of FIG. 1; (c) is an explanatory rear view of the apparatus of FIG. 1; 実施形態に係るバーナヘッド装置の正面図である。It is a front view of a burner head device concerning an embodiment. 図3のバーナヘッド装置のバーナヘッド以外の部分のみの図1A-A‘線断面図である。FIG. 1A is a cross-sectional view along the line of FIG. 1A-A' showing only the portion other than the burner head of the burner head device of FIG. 3; 図3のバーナヘッド装置の底面から見てバーナヘッド以外の部分のみをハッチングで示した図である。It is the figure which showed only parts other than a burner head seeing from the bottom face of the burner head apparatus of FIG. 3 by hatching. 図3のバーナヘッド装置のバーナヘッドのみの背面図である。FIG. 4 is a rear view of only the burner head of the burner head device of FIG. 3; 図3のバーナヘッドの斜視説明図である。FIG. 4 is a perspective explanatory view of the burner head of FIG. 3; 図3のバーナヘッドの斜視説明図である。FIG. 4 is a perspective explanatory view of the burner head of FIG. 3; (a)は、図8の7A線断面図、(b)は、図8の7B線断面図、(c)は、図8の7C線断面図である。(a) is a cross-sectional view along line 7A in FIG. 8, (b) is a cross-sectional view along line 7B in FIG. 8, and (c) is a cross-sectional view along line 7C in FIG. (a)、(b)は、図3のバーナヘッド装置の作用説明図である。4(a) and 4(b) are operation explanatory diagrams of the burner head device of FIG. 3. FIG.
 以下添付図面を参照しつつ本発明のバーナヘッド装置の実施形態について説明する。 An embodiment of the burner head device of the present invention will be described below with reference to the accompanying drawings.
 本発明のバーナヘッド装置は、ガスや燃焼流体を用いて生じた火炎により種々の物品や物体を火炎加工する装置であり、例えばビーカーやフラスコなど理化学用途や光ファイバー製造用部品の製造などに用いられる。 The burner head device of the present invention is a device for flame processing various articles and objects by flames generated by using gas or combustion fluid, and is used, for example, for physicochemical applications such as beakers and flasks, and for the manufacture of optical fiber manufacturing parts. .
 図1(a)、(b)は、本発明の原理構成説明図である。本発明のバーナヘッド装置は、金属材料又は非金属の無機材料で構成される。バーナは火炎加工の設備である点から、その中でも耐熱性、耐食性を有する材料が好適に用いられる。中でも、非金属無機材料であるガラス、耐火物、ファインセラミックス等が有利に用いられる。原理的には、耐熱性、耐食性、透明性に優れる石英ガラスが特に有利に用いられる。そして、これらの材料を加工したガスの噴射ノズルを利用し、広い火炎加工領域や任意の範囲の火炎加工領域を形成して火炎加工作業効率の向上、加工精度向上を図るものである。 FIGS. 1(a) and 1(b) are explanatory diagrams of the principle configuration of the present invention. The burner head device of the present invention is constructed from metallic or non-metallic inorganic materials. Since the burner is equipment for flame processing, materials having heat resistance and corrosion resistance are preferably used. Among them, glass, refractories, fine ceramics, etc., which are non-metallic inorganic materials, are advantageously used. In principle, quartz glass, which is excellent in heat resistance, corrosion resistance and transparency, is particularly advantageously used. A wide flame machining area or arbitrary range of flame machining area is formed by using a gas injection nozzle processed from these materials to improve the efficiency of the flame machining work and the machining accuracy.
図の原理構成例では、例えば石英ガラスを加工したソリッドブロック体のバーナヘッド8の1つの面をガスの噴出し面1Fとし、該噴出し面1Fに多数のガスの噴出し口21b、22b-1~22b-4が設けられている。噴出し面1F以外の表面部分に燃焼ガス供給用と可燃ガス供給用の導入口群11a,12a-1~12a-4を設け、各導入口と噴出し面1Fの各噴出し口とが1対1で連通するようにバーナヘッド8の内部にガス通流用の通路31、41を設けている。さらに、燃焼ガス供給用の各導入口に接する空間を気密閉鎖するようにバッファフレーム60をバーナヘッド8の表面に接合させて少なくとも2つのバッファ室15,16を設ける。1つのバッファ室15は燃焼ガスとしての例えば酸素ガスの一時貯留用であり、他のバッファ室16は可燃ガスとしての例えば水素ガス貯留用である。これによって、供給管等から供給を受けたガスは各バッファ室に一時貯留されてほぼ同時に各導入口からガス通路31,41に入り、通流して噴出し面1Fから噴出され空気中で両ガスが接する火炎領域で加工対象物に対して火炎加工を行う。バーナヘッドの外形形状やサイズ等を変更、調整して多数のガスの噴出し口群の配置形状や広がり等を変更することで自在の火炎加工領域を生成することができる。 In the principle configuration example shown in the figure, one surface of a burner head 8 made of, for example, quartz glass is a gas ejection surface 1F. 1 to 22b-4 are provided. Introducer groups 11a, 12a-1 to 12a-4 for supplying combustion gas and combustible gas are provided on the surface portion other than the ejection surface 1F, and each introduction port and each ejection port of the ejection surface 1F are one. Passages 31 and 41 for gas flow are provided inside the burner head 8 so as to communicate in pairs. Furthermore, at least two buffer chambers 15 and 16 are provided by bonding a buffer frame 60 to the surface of the burner head 8 so as to hermetically close the space adjacent to each inlet for supplying combustion gas. One buffer chamber 15 is for temporary storage of combustion gas such as oxygen gas, and the other buffer chamber 16 is for storage of combustible gas such as hydrogen gas. As a result, the gas supplied from the supply pipe or the like is temporarily stored in each buffer chamber, enters the gas passages 31 and 41 through the introduction ports at substantially the same time, flows through the gas passages 31, 41, and is ejected from the ejection surface 1F. performs flame machining on the workpiece in the flame area in contact with . By changing and adjusting the outer shape, size, etc. of the burner head to change the arrangement shape, spread, etc. of the group of many gas ejection ports, it is possible to freely generate a flame machining area.
すなわち、本発明の原理構成例によるバーナヘッド装置200によれば、ガスの噴出し面1Fを有するソリッド状ブロック体のバーナヘッド8であり、多数のガス通路31、41を内部に形成すると共に多数のガス通路31、41に連通する多数のガスの噴出し口21b、22bを設けた噴出し面1Fから燃焼ガス1Gと可燃ガス2Gを噴き出すバーナヘッド8と、噴出し面1F以外のバーナヘッド8の部分(XF)に設けられた燃焼ガス供給用の多数のガス導入口を含む第1導入口群11aと、噴出し面以外のバーナヘッド8の部分XFに設けられた可燃ガス供給用の多数のガスの導入口を含む第2導入口群(12a―1~12a―4)と、燃焼ガス供給用の多数のガスの導入口と共有する空間を有する第1バッファ室15と、可燃ガス供給用の多数のガスの導入口と共有する空間を有する第2バッファ室16と、を含む。バーナヘッド内の多数のガスの通路は燃焼及び可燃ガスが接触しなければどのような通路の経路で通流してもよい。また、ガスの導入口並びに噴出し口の配置や個数は燃焼及び可燃ガスが接触しなければ任意に設定できる。バッファ室のうちバーナヘッド8の周側面側に配置するバッファ室は周方向の一部のみに設けるようにしてもよいし、全周にわたってバッファ室を形成し周側面全体からガスをバーナヘッド内に導入し、噴出し面から噴出させるようにしてもよい。 That is, according to the burner head device 200 according to the principle configuration example of the present invention, the burner head 8 is a solid block body having a gas ejection surface 1F, and a large number of gas passages 31 and 41 are formed therein and a large number of gas passages 31 and 41 are formed therein. a burner head 8 for ejecting the combustion gas 1G and the combustible gas 2G from the ejection surface 1F provided with a large number of gas ejection ports 21b, 22b communicating with the gas passages 31, 41, and the burner head 8 other than the ejection surface 1F. A first inlet group 11a including a large number of gas inlets for supplying combustion gas provided in the portion (XF), and a large number for supplying combustible gas provided in a portion XF of the burner head 8 other than the ejection surface A second inlet group (12a-1 to 12a-4) including gas inlets, a first buffer chamber 15 having a space shared with many gas inlets for supplying combustion gas, and combustible gas supply and a second buffer chamber 16 having a space shared with a number of gas inlets for gas. The multiple gas passages within the burner head may be routed in any manner so long as the combustible and combustible gases do not come into contact. In addition, the arrangement and the number of gas inlets and jet outlets can be arbitrarily set as long as the combustible and combustible gases do not come into contact with each other. Of the buffer chambers, the buffer chamber disposed on the peripheral side of the burner head 8 may be provided only partially in the circumferential direction. It may be introduced and ejected from the ejection surface.
本発明の原理構成例によるバーナヘッド装置によれば、バーナヘッド8の形状は1つの噴出し面(1F)を有する形状であれば、四角柱体、円柱体、その他の立体多角形、不定形状立体その他任意形状のブロック体を用いることができる。噴出し面の噴出し口の孔の配置、数、孔径、導入口の孔の配置、数、孔径等は任意に設定可能である。バッファ室は3個以上設けてもよい。バッファ室はバーナヘッド全体を内側に被覆するようにバーナヘッドを囲周して一体接合させてもよいし、導入口の設置位置に応じてバーナヘッドの一部のみでバーナヘッドとバッファ室形成用のバッファフレームとが接合されている図1のような接合形態でもよい。また、ガスの供給管は石英ガラスではなくとも耐熱仕様等の可撓性チューブ等を用いてもよい。 According to the burner head device according to the example of the principle configuration of the present invention, the shape of the burner head 8 may be a quadrangular prism, a cylinder, other three-dimensional polygons, and irregular shapes as long as the shape has one ejection surface (1F). A block body having a three-dimensional shape or other arbitrary shape can be used. The arrangement, number, and diameter of the holes in the ejection port of the ejection surface, and the arrangement, number, and diameter of the holes in the introduction port can be set arbitrarily. Three or more buffer chambers may be provided. The buffer chamber may be integrally joined around the burner head so as to cover the entire burner head inside, or only a part of the burner head may be used to form the burner head and the buffer chamber depending on the installation position of the inlet. 1 may be used, in which the buffer frame is joined. Also, the gas supply pipe may be made of a heat-resistant flexible tube or the like instead of quartz glass.
次に、本発明の具体的な実施形態について説明する。本実施形態のバーナヘッド装置は、耐食性、耐熱性、透明性に優れた石英(SiO2)製のガスバーナヘッド装置で構成されている。図3は、本発明の実施形態に係るバーナヘッド装置10の正面図、図4は、バーナヘッド装置のバーナヘッド以外の部分のみの図3A-A‘線断面図であり、図において、バーナヘッド装置10は、前面1Fから燃焼ガス1Gと、可燃ガス2Gを噴き出すバーナヘッド8に燃焼ガス及び可燃性ガスの供給管を接続させて構成されている。 Next, specific embodiments of the present invention will be described. The burner head device of this embodiment is composed of a gas burner head device made of quartz (SiO2), which is excellent in corrosion resistance, heat resistance, and transparency. FIG. 3 is a front view of a burner head device 10 according to an embodiment of the present invention, and FIG. 4 is a sectional view taken along the line of FIG. The apparatus 10 is configured by connecting supply pipes for the combustion gas and the combustible gas to a burner head 8 that blows out the combustion gas 1G and the combustible gas 2G from the front surface 1F.
 即ち、本発明の実施形態に係るバーナヘッド装置10は、前面1Fから燃焼ガス1Gと、可燃ガス2Gを噴き出すバーナヘッド8と、バーナヘッド8に設けた多数のガスの導入口を有するガス導入口群11a、12a-1、12a-2、12-a3、12a-4と、第1バッファ室15と、第2バッファ室16と、を含む。ガス導入口群11a、12a-1、12a-2、12-a3、12a-4は多数のガスの導入口(以下、図示省略)11a1,11a2、11a3...、12a-11,12a-12,12a―13...、12a-21、12a-22、12a-23...、12a-31、12a-32、12a33...、12a-41、12a-42、12a-43...(以上、図示省略)を含む。 That is, the burner head device 10 according to the embodiment of the present invention includes a burner head 8 for ejecting a combustion gas 1G and a combustible gas 2G from a front surface 1F, and a gas inlet having a large number of gas inlets provided in the burner head 8. Groups 11a, 12a-1, 12a-2, 12-a3, 12a-4, a first buffer chamber 15 and a second buffer chamber 16 are included. The gas introduction port groups 11a, 12a-1, 12a-2, 12-a3, 12a-4 include a large number of gas introduction ports (hereinafter, not shown) 11a1, 11a2, 11a3 . . . , 12a-11, 12a-12, 12a-13. . . , 12a-21, 12a-22, 12a-23 . . . , 12a-31, 12a-32, 12a33 . . . , 12a-41, 12a-42, 12a-43. . . (above, illustration omitted).
 バーナヘッド8は、前面1Fと、背面2Fを少なくとも有する立体のブロック体からなり、立体形状自体は立方体、直方体、三角柱体、四角柱体、五角柱体、その他の多角柱体、立体台形、その他変形立体形状、不定形立体形状でもよい。バーナヘッド8は、その内部に多数のガス通路(31、41)を有しており、特に本実施形態では石英製の一体の塊からなる横長直方体形状ブロックに超音波加工等により直接に貫通する孔を穿孔して通路を形成している。さらに、バーナヘッド8は、前面1Fに複数又は多数のガスの噴出し口を含むガスの噴出し口群21b、22b-1、22b-2、22b-3、22b-4を設けている。 The burner head 8 is composed of a three-dimensional block body having at least a front surface 1F and a rear surface 2F. A deformed three-dimensional shape or an irregular three-dimensional shape may be used. The burner head 8 has a large number of gas passages (31, 41) inside it, and particularly in this embodiment, the gas passages are directly penetrated by an oblong cuboid-shaped block made of an integral mass made of quartz by ultrasonic machining or the like. A hole is drilled to form a passageway. Further, the burner head 8 is provided with gas ejection port groups 21b, 22b-1, 22b-2, 22b-3, and 22b-4 including a plurality or a large number of gas ejection ports on the front surface 1F.
 実施形態において、バーナヘッド8は、図8に主に示す六面体の立体形状の石英の一体ブロック体であり、前面1F、背面2Fの他に4つの側面3F-1、3F-2、3F-3、3F-4を含む。なお、図8実施形態では小径の孔口がすべて酸素ガス1Gの噴出し口であり、大径の孔口がすべて水素ガス2Gの噴出し口である。 In the embodiment, the burner head 8 is a hexahedral three-dimensional quartz integral block mainly shown in FIG. , 3F-4. In the embodiment shown in FIG. 8, all the small diameter holes are for the oxygen gas 1G, and all the large diameter holes are for the hydrogen gas 2G.
実施形態において、ガスの導入口群11a、12a-1、12a-2、12a-3、12a-4は、図4,5,6,8に示すように、背面2Fと、全ての側面3F-1、3F-2、3F-3、3F-4とに設けられている。一方、前面1Fのみに多数のガス噴出し口を含むガス噴出し口群21b、22b-1、22b-2、22b-3、22-b4が設けられており、前面1Fがガスの噴出し面とされる。なお、前面にのみ噴出し口を設けることなく、側面や他の部位からガスを噴き出させるようにすることも可能である。バーナヘッド8は、前面1Fが一方向に長い噴出し面として形成されている。なお、前面1F全体にガス噴出し口を設ける必要はなく、全体の一部にのみ偏在したり、あるいは全体に散在していてもよい。 In the embodiment, the gas inlet groups 11a, 12a-1, 12a-2, 12a-3, 12a-4, as shown in FIGS. 1, 3F-2, 3F-3, and 3F-4. On the other hand, gas ejection port groups 21b, 22b-1, 22b-2, 22b-3, and 22-b4 including a large number of gas ejection ports are provided only on the front surface 1F, and the front surface 1F is the gas ejection surface. It is said that In addition, it is also possible to make the gas blow out from the side surface or other parts without providing the blowout port only on the front surface. The burner head 8 has a front surface 1F formed as an ejection surface elongated in one direction. In addition, it is not necessary to provide the gas ejection ports on the entire front face 1F, and they may be unevenly distributed only on a part of the whole, or may be scattered on the whole.
 実施形態において、背面2Fのガス導入口群11aは、図6に示すように、例えば直径0.6mmの口径の導入口の孔が縦7個(列)×横33個(行)で整列位置で穿孔されている。実施形態において、背面2Fのガス導入口には燃焼ガスとしての酸素(O2)のみが供給される。 In the embodiment, as shown in FIG. 6, the gas introduction port group 11a on the rear surface 2F has, for example, 7 vertical (columns) by 33 (rows) horizontal gas introduction ports with a diameter of 0.6 mm. perforated with In the embodiment, only oxygen (O2) as combustion gas is supplied to the gas introduction port on the rear surface 2F.
 一方、図4、5、8、9、10に示すように、バーナヘッド8の周面としての4側面(図3のバーナヘッド8の平面、底面及び左右両側面)にもそれぞれガスの導入口が設けられている。図3の正面図から見て平面及び底面(図5)すなわち、図3の上下の側面側には、バーナヘッド8の底面となる横長第1側面3F-1、バーナヘッド8の平面となる横長対向第2側面3F-3が設けられている。そして、それぞれの側面3F-1、3F-3のそれぞれ短辺側幅の略中央位置に横長方向一列に65個のガス導入口を含む側面横長ガス導入口群12a-1、対向側面横長ガス導入口群12a-2が形成されている。また、面が狭い右小第1側面、左小対向第2側面3F-2、3F-4にはそれぞれ横長側面3F-1、3F-3の短辺側幅と同じ幅の略中央位置一列に5個のガス導入口12-a3、12a-4が穿孔されている。すなわち、側面側のガス導入口は直方体形状のバーナヘッドの周側面を一周するようにそれぞれ短辺側幅の略中央位置で設けられている。バーナヘッド8の4側面3F-1、3F-2、3F-3、3F-4に設けられた導入口群12a-1、12a-2、12a-3、12a-4の各導入口はそれぞれ例えば1mmの口径に設定されており、実施形態においては、これらの導入口群のそれぞれの導入口には可燃ガスとしての水素(H2)が供給される。なお、燃焼及び可燃のいずれのガスの導入口を背面側とするか側面側とするかは実施形態構成に限定されるものではなく、装置の製造しやすさやガス流通の効率、その他の条件から任意に設定することができる。また、燃焼ガスや可燃ガスの導入口の数や配置構成もこの実施態様構成に限定されることなく、任意に設定することができる。   On the other hand, as shown in FIGS. 4, 5, 8, 9, and 10, gas introduction ports are also provided on the four side surfaces (the plane, bottom surface, and left and right side surfaces of the burner head 8 in FIG. 3) as the peripheral surface of the burner head 8. is provided. When viewed from the front view of FIG. 3, the plane and the bottom surface (FIG. 5), ie, the upper and lower side surfaces of FIG. An opposing second side surface 3F-3 is provided. Then, a laterally elongated side gas inlet group 12a-1 including 65 gas inlets arranged in a row in the laterally elongated direction at substantially the central position of the short side width of each of the side faces 3F-1 and 3F-3, and a laterally elongated opposite side gas inlet group 12a-1. A mouth group 12a-2 is formed. In addition, on the first narrow side of the right small side and the second side facing the left small side 3F-2, 3F-4, the width is the same as the width of the short side of the oblong side 3F-1, 3F-3, respectively. Five gas inlets 12-a3 and 12a-4 are perforated. That is, the gas introduction ports on the side surfaces are provided at substantially central positions of the widths of the short sides so as to encircle the peripheral side surfaces of the rectangular parallelepiped burner head. The introduction ports of the introduction port groups 12a-1, 12a-2, 12a-3, and 12a-4 provided on the four side surfaces 3F-1, 3F-2, 3F-3, and 3F-4 of the burner head 8 are, for example, The aperture is set to 1 mm, and in the embodiment, hydrogen (H2) as a combustible gas is supplied to each inlet of these inlet groups. It should be noted that it is not limited to the configuration of the embodiment whether the inlet port for the combustible gas or the combustible gas is on the back side or on the side side. Can be set arbitrarily. Further, the number and layout of inlets for combustion gas and combustible gas are not limited to this embodiment, and can be arbitrarily set.  
 バーナヘッド8の内部に設けられた多数のガス通路31中、酸素ガスを通流させるガス通路は、第1ガス通路群31aを形成している。酸素ガス通路31は、図8,9,10に示すように、背面2Fのガス導入口群11aの各ガス導入口に一端が連通し他端が前面1Fの噴出し口群21bのガス噴出し口にそれぞれ連通する内部通路であり、実施形態において、それぞれ直径0.6mm径の孔として背面側から前面に向けて直線状に貫通して設けられている。実施形態において、ガス通路31は、ガスの導入口(11a)からバーナヘッド8に供給された燃焼用の酸素ガスO2をバーナヘッド8の前面の噴出し口(21b)から加工対象物に向けて噴出す。 Among the many gas passages 31 provided inside the burner head 8, the gas passages through which oxygen gas flows form a first gas passage group 31a. As shown in FIGS. 8, 9, and 10, the oxygen gas passage 31 has one end communicating with each gas introduction port of the gas introduction port group 11a on the back surface 2F and the other end communicating with the gas introduction port group 21b on the front surface 1F. These are internal passages that respectively communicate with the ports, and in the embodiment, each is provided as a hole having a diameter of 0.6 mm and linearly penetrating from the back side to the front side. In the embodiment, the gas passage 31 directs the oxygen gas O2 for combustion supplied to the burner head 8 from the gas introduction port (11a) to the workpiece from the ejection port (21b) on the front surface of the burner head 8. erupt.
 バーナヘッド8の内部に設けられた他の多数のガス通路41は、バーナヘッド8の側面3F-1、3F-2、3F-3、3F-4に設けたガス導入口12a-1、12a-2、12a-3、12a-4と、前面1Fに設けたガス噴出し口22b-1、22b-2、22b-3、22-b4を連通接続する通路であり、実施形態において、可燃ガスとしての水素H2をヘッドの側面から導入させ前面の噴出し面から噴出させる。水素ガス通流用の多数のガス通路は第2ガス通路群41aを形成している。 Other numerous gas passages 41 provided inside the burner head 8 are gas introduction ports 12a-1, 12a- provided in the side surfaces 3F-1, 3F-2, 3F-3, 3F-4 2, 12a-3, 12a-4 and gas ejection ports 22b-1, 22b-2, 22b-3, 22-b4 provided on the front surface 1F. of hydrogen H2 is introduced from the side surface of the head and ejected from the front ejection surface. A large number of gas passages for flowing hydrogen gas form a second gas passage group 41a.
 一方、図3,8に戻ってバーナヘッド8の前面1Fのガス噴出し口は、燃焼用ガスとしての酸素ガス噴出し口21bと、可燃ガスとしての水素ガス噴出し口22b-1~22b-4を含む。図において小径の孔口は酸素ガス噴出し口21bであり、大径の孔口は水素ガス噴出し口22b-1~22b-4に設定されている。小径孔口21bと大径孔口22b-1~22b-4はそれぞれの孔の周囲に異なる径の孔が配置されるように縦横に交互に小径孔と大径孔を配置させている。例えば、図8において、バーナヘッド8の長手方向一端には、所要の間隔を空けて縦に5個の大径孔口としてのガス噴出し口群(22b-3)のガス噴出し口が設けられている。そして、それに隣接する左隣りに中央7個を縦に所要間隔を空けて酸素噴出し用としての小径孔口21bが一列に設けられ、その両端に1個ずつの水素噴出し用としての大径孔口(22b-1)を配置している。この縦に7個一列の小径孔口としての酸素噴出し口群と両端1個ずつの水素噴出し口孔との混合噴出し口孔群xと、さらにその隣に縦に5個配置された大径孔口yとの並びを交互に繰り返してバーナヘッドの横長方向にわたって設けられている。このとき、縦5個一列の水素噴出し口群yの大径孔口どうしの中心間隔は例えば2.25mm、混合噴出し口孔群yの小径孔口どうしの中心間隔は例えば1.5mmに設定されている。これらの大径孔口、小径孔口の配置形態や孔径、孔口どうしの間隔は任意に設定できる。 On the other hand, referring back to FIGS. 3 and 8, the gas ejection ports on the front face 1F of the burner head 8 include an oxygen gas ejection port 21b for combustion gas and hydrogen gas ejection ports 22b-1 to 22b- for combustible gas. including 4. In the figure, the small-diameter hole is the oxygen gas ejection port 21b, and the large-diameter holes are set to the hydrogen gas ejection ports 22b-1 to 22b-4. The small-diameter hole 21b and the large-diameter holes 22b-1 to 22b-4 are alternately arranged vertically and horizontally so that holes with different diameters are arranged around each hole. For example, in FIG. 8, at one end in the longitudinal direction of the burner head 8, a group of gas ejection ports (22b-3) of five large-diameter gas ejection port groups (22b-3) are provided vertically at required intervals. It is Seven small-diameter holes 21b for ejecting oxygen are provided in a row on the left adjacent to it with a required interval in the center, and one large-diameter hole for ejecting hydrogen is provided at each end. A hole mouth (22b-1) is arranged. This mixed jet hole group x consisting of a group of oxygen jet holes as small-diameter holes arranged vertically in a row and one hydrogen jet hole at each end, and five holes arranged vertically next to it. They are provided over the horizontal direction of the burner head by alternately repeating the arrangement with the large-diameter holes y. At this time, the center interval between the large-diameter holes of the hydrogen ejection port group y arranged in a row of five vertically is, for example, 2.25 mm, and the center interval of the small-diameter holes of the mixed ejection port group y is, for example, 1.5 mm. is set. The arrangement of the large-diameter openings and the small-diameter openings, the hole diameters, and the intervals between the openings can be set arbitrarily.
図8において、バーナヘッド8の右小第1側面3F-2には、短辺方向である幅方向に5個の大径孔口としての小側面ガス導入口(12a-3)が所要間隔を空けて一列に設けられている。そして、これらの小側面ガス導入口(12a-3)は、前面1Fの長手方向一端側の縦5個の大径孔口ガス噴出し口(22b-3)に連通接続されている。すなわち、実施形態において、水素ガス通路41は、L字状に導入口と噴出し口を連通接続させるL字通路として形成されている。すなわち、第2ガス通路群41aは、バーナヘッド8の側面側ガス導入口12a-1~12a-4から前面側ガス噴出し口22b-1~22b-4に連通する直通及び/又は屈曲ガス通路を含む。これによって、バーナヘッドの周側面側から前面の噴出し面側に具体的に通路を設けることができる。 In FIG. 8, on the right small first side face 3F-2 of the burner head 8, there are five small side gas inlets (12a-3) as large diameter holes in the width direction, which is the direction of the short side, at required intervals. They are arranged in a line with space between them. These small side gas inlets (12a-3) are connected in communication with longitudinally five large-diameter gas outlets (22b-3) on one end side in the longitudinal direction of the front surface 1F. That is, in the embodiment, the hydrogen gas passage 41 is formed as an L-shaped passage that connects the introduction port and the ejection port in an L-shape. That is, the second gas passage group 41a includes direct and/or curved gas passages communicating from the side gas introduction ports 12a-1 to 12a-4 of the burner head 8 to the front gas ejection ports 22b-1 to 22b-4. including. Thereby, a passage can be specifically provided from the peripheral side of the burner head to the ejection side of the front face.
さらに、バーナヘッド8の前面1Fの最も平面(横長対向第2側面3F-3)及び底面(横長第1側面3F-1)寄りに設けられたそれぞれ33個の水素ガス噴出し口としての大径孔口22b-1~22b-4は、それぞれ横長第1側面3F-1と横長対向第2側面3F-3の幅方向中央位置に間隔を空けて一列状に設けられたそれぞれ65個の横並びの水素ガス導入口13a-1~13a-65のうちの33個の水素ガス導入口にL字接続されている。さらに、横長第1側面3F-1と横長対向第2側面3F-3の幅方向中央位置に間隔を空けて一列状に設けられた65個の横並びの水素ガス導入口のうちの残りの32個が前面1Fの水素ガス噴出し口としての大径孔口22b-1~22b-4のいずれかにL字連通接続されている。横長第1、第2側面3F-1、3F-3に設けた65個の一列の大径口孔はそれぞれ交互に前面1Fの5個一列の大径孔口としての水素噴出し口群yと、混合噴出し口孔群xに連通接続するように設けられている。 Furthermore, 33 large diameter hydrogen gas ejection ports provided on the front surface 1F of the burner head 8 (horizontally opposite second side surface 3F-3) and on the bottom surface (horizontally long first side surface 3F-1). The apertures 22b-1 to 22b-4 are arranged in a row at intervals in the width direction center positions of the oblong first side surface 3F-1 and the oblong opposing second side surface 3F-3, respectively. It is L-shaped connected to 33 hydrogen gas inlets out of the hydrogen gas inlets 13a-1 to 13a-65. Furthermore, the remaining 32 of the 65 horizontal hydrogen gas introduction ports provided in a line at intervals in the width direction center position of the oblong first side surface 3F-1 and the oblong opposite second side surface 3F-3 is connected to any one of the large-diameter holes 22b-1 to 22b-4 as hydrogen gas ejection ports on the front surface 1F in L-shaped communication. The 65 rows of large-diameter holes provided on the horizontally long first and second side faces 3F-1 and 3F-3 alternately form a row of 5 large-diameter holes on the front face 1F, which is a hydrogen ejection port group y. , are provided so as to communicate with the mixing jet hole group x.
 実施形態において、図9(b)に示すように混合噴出し口孔群xは中央に間隔を空けて7個の酸素ガス通路31が配置され、その両端に側面3F-1、3F-2から水素ガスを供給させ前面1Fの水素ガス噴出し口(22b-1、22b-2)から水素を噴き出すL字通路41が対称位置に設けられている。これより、酸素ガス1Gと水素ガス2Gが同時に前面1Fから噴出される。また、図9(c)に示すように、水素噴出し口群yのラインでは水素ガス通路41は、側面横長導入口のガス噴出し口22b-1、と対向側面横長導入口のガス噴出し口22b-2を直線状に連通するように、一側面から他の側面を貫通するように設けられた貫通孔51と、前面1Fの5個一列に設けられた噴出し口22b-1、22b-2とこの貫通路51とを直角状に連通接続する枝通路52と、で形成されている。したがって、水素噴出し口群yのラインではこれに接続される水素ガス導入口12a―1、12a-2から導入されるガスは直通されたいずれの側面方向にも相互に流通するとともに、貫通孔51から枝通路52を経由してそれぞれ前面1Fの5個の噴出し口に分かれて噴出される。 In the embodiment, as shown in FIG. 9(b), seven oxygen gas passages 31 are arranged at intervals in the center of the mixing jet port group x, and from the side surfaces 3F-1 and 3F-2 at both ends thereof, L-shaped passages 41 for supplying hydrogen gas and ejecting hydrogen from the hydrogen gas ejection ports (22b-1, 22b-2) on the front surface 1F are provided at symmetrical positions. As a result, oxygen gas 1G and hydrogen gas 2G are simultaneously jetted from the front surface 1F. In addition, as shown in FIG. 9(c), in the line of the hydrogen ejection port group y, the hydrogen gas passage 41 includes the gas ejection port 22b-1 of the side oblong introduction port and the gas ejection port 22b-1 of the opposite side oblong introduction port. A through hole 51 is provided so as to penetrate from one side to the other side so as to communicate with the port 22b-2 in a straight line, and five ejection ports 22b-1 and 22b are provided in a row on the front surface 1F. -2 and a branch passage 52 that connects the through passage 51 at right angles. Therefore, in the line of the hydrogen jet port group y, the gases introduced from the hydrogen gas inlets 12a-1 and 12a-2 connected thereto flow mutually in the direction of both directly connected side faces, and the through holes From 51, it passes through branch passages 52 and is divided into five ejection ports on the front surface 1F and ejected.
 図3ないし図7において、実施形態のバーナヘッド装置10は、バーナヘッド8と、該バーナヘッドの噴出し面を露出させつつバーナヘッドを内包して一体化したバッファフレーム60と、バッファフレーム60を介してバーナヘッド8のガス導入口群に燃焼及び可燃ガスを供給するガス供給管80と、を備えている。 3 to 7, the burner head device 10 of the embodiment comprises a burner head 8, a buffer frame 60 integrated with the burner head while exposing the ejection surface of the burner head, and a buffer frame 60. and a gas supply pipe 80 for supplying combustion and combustible gases to the gas inlet group of the burner head 8 via the gas supply pipe 80 .
 実施形態において、バッファフレーム60は、石英ガラスを加工して内部が中空の横長矩形立体形状として形成されている。図3ないし図5に示すように、バッファフレーム60は、例えば数ミリメール程度の厚さの横長矩形立体状のガラス成型体からなり、バーナヘッド8を内側に包み込むようにバーナヘッド8の周側面に一部を接合して一体化されている。バッファフレーム60は、内部に中空のバッファ室15,16を形成するように成型した気密のフレーム壁体を有しており、実施形態においてはバーナヘッド8の外形の半分以上の部分でバーナヘッド8の外周面との間にバッファ室15,16を形成する状態でバーナヘッド8に接合されている。 In the embodiment, the buffer frame 60 is formed by processing quartz glass to have a horizontally elongated rectangular three-dimensional shape with a hollow interior. As shown in FIGS. 3 to 5, the buffer frame 60 is made of, for example, a horizontally elongated rectangular three-dimensional glass molded body with a thickness of about several millimeters, and surrounds the burner head 8 so as to wrap the burner head 8 inside. It is integrated by joining a part of The buffer frame 60 has an airtight frame wall molded to form the hollow buffer chambers 15, 16 therein, and in this embodiment, the burner head 8 extends over more than half of the burner head 8 profile. are joined to the burner head 8 in such a manner that buffer chambers 15 and 16 are formed between them and the outer peripheral surface of the burner head 8 .
 すなわち、図4,5、7に示すように、本実施形態ではバッファフレーム60は、バーナヘッド8の背面2F(図6)に縦横に整列配置状態で設けられた背面ガス導入口群11aの多数のガス導入口を覆い、間に空間15Sを設ける形態で第1フレーム壁体60-1で被覆するように第1バッファ室15を形成している。第1バッファ室15は、ガス供給管80から供給される燃焼ガスとしての酸素ガスのみを受け入れて一時貯留する酸素ガスのバッファリング手段であり、ガス供給管80により供給されるガスを一時貯留してほぼ同時にバーナヘッド8のガス導入口群11aの各ガス導入口に酸素ガスを供給する。バッファフレーム60の第1フレーム壁は内部に中空部としての第1バッファ空間15Sを形成しつつ、フレーム壁端をバーナヘッドの周壁部に環状に気密溶融接合させ酸素ガス供給管80との連通開口部分以外の空間15Sを気密閉鎖している。ここにおいて、第1バッファ室15は、バーナヘッド8の背面2Fに設けた多数のガス導入口(11a)のそれぞれに連通するバッファ空間15Sを有しており、したがって、バーナヘッドの8の背面2Fの多数のガス導入口(11a)全体が空間15Sを共有しそれぞれが該空間15Sに連通している。 That is, as shown in FIGS. 4, 5, and 7, in this embodiment, the buffer frame 60 includes a large number of rear gas introduction port groups 11a arranged vertically and horizontally on the rear surface 2F (FIG. 6) of the burner head 8. The first buffer chamber 15 is formed so as to cover the gas introduction port of the first buffer chamber 15 with a first frame wall 60-1 with a space 15S provided therebetween. The first buffer chamber 15 is oxygen gas buffering means for receiving and temporarily storing only oxygen gas as combustion gas supplied from the gas supply pipe 80, and temporarily storing the gas supplied from the gas supply pipe 80. Oxygen gas is supplied to each gas introduction port of the gas introduction port group 11a of the burner head 8 substantially at the same time. A first frame wall of the buffer frame 60 forms a first buffer space 15S as a hollow portion inside, and an end of the frame wall is annularly hermetically welded to the peripheral wall portion of the burner head to communicate with the oxygen gas supply pipe 80. The space 15S other than the portion is airtightly closed. Here, the first buffer chamber 15 has a buffer space 15S that communicates with each of a number of gas introduction ports (11a) provided on the back surface 2F of the burner head 8. Therefore, the back surface 2F of the burner head 8 All of the large number of gas inlets (11a) share the space 15S and each communicates with the space 15S.
 そして、酸素ガス供給管80は、図4、5,7に示すように、直管状の本管部85と、接続部86を介して二股に分岐して延長した分岐管87、87を有しており、それぞれの分岐管87の端部がバッファフレーム60の第1バッファ室15に形成した開口88において連通接合されており、これによって、酸素ガスがバーナヘッド8の背面2F側に設けたバッファフレームの第1フレーム壁体60-1から第1バッファ室15内に供給される。酸素ガス供給管80は、バーナヘッド8の背面に接合して第1バッファ室15を形成するバッファフレーム60に接合することで、バーナヘッド8の背面側を支持している。 As shown in FIGS. 4, 5 and 7, the oxygen gas supply pipe 80 has a straight main pipe portion 85 and branch pipes 87, 87 which branch into two and extend through a connecting portion 86. The ends of the respective branch pipes 87 are connected to each other through openings 88 formed in the first buffer chamber 15 of the buffer frame 60, thereby allowing oxygen gas to flow into the buffer provided on the rear surface 2F side of the burner head 8. It is supplied into the first buffer chamber 15 from the first frame wall 60-1 of the frame. The oxygen gas supply pipe 80 supports the back side of the burner head 8 by joining to the buffer frame 60 forming the first buffer chamber 15 by joining to the back of the burner head 8 .
 一方、図4,5に示すように、本実施形態ではバッファフレーム60は、バーナヘッド8の周壁面3F-1~3F-4に孔が周回するように設けられた側面ガス導入口12a-1~12a-4部分を、間に空間16Sを設ける形態で第2フレーム壁体60-2で被覆し第2バッファ室16を形成している。 On the other hand, as shown in FIGS. 4 and 5, in the present embodiment, the buffer frame 60 has a side gas introduction port 12a-1 provided so as to circulate holes in the peripheral wall surfaces 3F-1 to 3F-4 of the burner head 8. 12a-4 are covered with a second frame wall 60-2 with a space 16S therebetween to form a second buffer chamber 16. As shown in FIG.
 実施形態において、第2バッファ室16は、ガス供給管70から供給する可燃性ガスとしての水素ガスのみを受け入れて一時貯留する水素ガスのバッファリング手段であり、ガス供給管70により供給されるガスを一時貯留してほぼ同時にバーナヘッド8のガス導入口群12a-1~12a-4の各ガス導入口に水素ガスを供給する。第2バッファ室16は、バーナヘッド8の周側部を間に第2バッファ室16を介在させてバーナヘッド8の外形より大きな外形のフレーム壁体60-2によりバーナヘッド8の周側面に接する空間を袋状に取り囲んで設けられている。なお、いずれのバッファ室15,16に燃焼又は可燃のいずれのガス1G,2Gを供給するかは限定的なものではなく、諸種の条件、仕様に則して任意に変更できる。 In the embodiment, the second buffer chamber 16 is hydrogen gas buffering means for receiving and temporarily storing only hydrogen gas as a combustible gas supplied from the gas supply pipe 70 . is temporarily stored, and hydrogen gas is supplied to each of the gas introduction port groups 12a-1 to 12a-4 of the burner head 8 at substantially the same time. The second buffer chamber 16 is in contact with the peripheral side of the burner head 8 by a frame wall 60-2 having a larger outer shape than the burner head 8 with the second buffer chamber 16 interposed therebetween. It is provided to surround the space like a bag. It should be noted that which of the combustible or combustible gases 1G, 2G is supplied to which of the buffer chambers 15, 16 is not limited, and can be arbitrarily changed according to various conditions and specifications.
 第2バッファ室16は、バーナヘッド8の周側面全体に連通する空間16Sを有しており、したがって、バーナヘッドの8の周側面の短辺方向幅の中間位置に一列状に周回形成された側面ガス導入口12a-1~12a-4全体が空間16Sを共有しそれぞれが該空間16Sに連通している。 The second buffer chamber 16 has a space 16S that communicates with the entire peripheral side surface of the burner head 8, and is therefore formed in a row at an intermediate position in the width direction of the short side of the peripheral side surface of the burner head 8. All of the side gas introduction ports 12a-1 to 12a-4 share the space 16S and communicate with the space 16S.
 一方、水素ガス供給管70は、図4、7に示すように、直管状の本管部75と、接続部76を介して二股に分岐して延長した分岐管77、77を有しており、それぞれの分岐管77の端部がバッファフレーム60の第2バッファ室16に設けた開口78に接続され、これによって水素ガス供給管70と第2バッファ室16とは連通接合されている。これによって、水素ガスがバッファフレームの横長周壁の2か所から第2バッファ室16内に供給される。 On the other hand, as shown in FIGS. 4 and 7, the hydrogen gas supply pipe 70 has a straight pipe-like main pipe portion 75 and branch pipes 77, 77 which branch into two and extend through a connecting portion 76. , the ends of the respective branch pipes 77 are connected to openings 78 provided in the second buffer chamber 16 of the buffer frame 60, whereby the hydrogen gas supply pipe 70 and the second buffer chamber 16 are connected and connected. As a result, hydrogen gas is supplied into the second buffer chamber 16 from two locations on the laterally elongated peripheral wall of the buffer frame.
図4、5,7に示すように第1バッファ室15と、第2バッファ室16とはそれぞれがバーナヘッド8に気密に一体接合されて、それぞれのバッファ室から異なるガスをバーナヘッド8の各ガス導入口(11a、12a-1~12a-4)に導入させている。それと同時に本実施形態では、第1バッファ室15と第2バッファ室16の室内どうしが連通しない状態で相互に溶融接合されている。すなわち、実施形態において、第1バッファ室15と第2バッファ室16を画成する第1、第2フレーム壁体60-1、60-2が中間に隔壁90を設けた状態で相互に溶融接合されている。これによって、バッファフレーム60全体とバーナヘッド8が物理的に一体化し強度を保持している。 As shown in FIGS. 4, 5 and 7, the first buffer chamber 15 and the second buffer chamber 16 are air-tightly integrally joined to the burner head 8, and different gases are supplied to the burner head 8 from the respective buffer chambers. The gas is introduced into the gas inlets (11a, 12a-1 to 12a-4). At the same time, in this embodiment, the chambers of the first buffer chamber 15 and the second buffer chamber 16 are fused and joined to each other without communicating with each other. That is, in the embodiment, the first and second frame walls 60-1 and 60-2 that define the first buffer chamber 15 and the second buffer chamber 16 are melt-joined to each other with the partition wall 90 provided between them. It is As a result, the entire buffer frame 60 and the burner head 8 are physically integrated to maintain strength.
さらに、図7に示すように、実施形態において、水素及び酸素ガス供給管70,80の本管部75、85どうしは平行に配置されるように収束されてグリップ部92においてグリップ管とそれぞれのガス供給管が相互に接合連結されおり、該グリップ部92部分を加工用アクチュエータのチャックに把持させた状態で火炎加工する。 Further, as shown in FIG. 7, in the embodiment, the main pipe portions 75, 85 of the hydrogen and oxygen gas supply pipes 70, 80 are converged so as to be arranged parallel to each other, and the grip pipes and the respective grip pipes are connected at the grip portion 92. The gas supply pipes are connected to each other, and the flame processing is performed while the grip portion 92 is gripped by the chuck of the processing actuator.
次に、本発明の実施形態のバーナヘッド装置10の作用について、説明すると、図4,8、9、10にも示すようにガス噴射用スイッチをオンにすると、ガス供給管70、80から同時に燃焼用ガスとしての酸素ガスと、可燃ガスとしての水素ガスがそれぞれの供給管に案内されてそれぞれ、第1、第2バッファ室15,16内に供給される。 Next, the operation of the burner head device 10 of the embodiment of the present invention will be explained. When the gas injection switch is turned on as shown in FIGS. Oxygen gas as combustion gas and hydrogen gas as combustible gas are guided to respective supply pipes and supplied into first and second buffer chambers 15 and 16, respectively.
酸素ガスは、酸素ガス供給管80からバーナヘッド8の背面2Fに気密接合される第1バッファ室15に進入し背面ガス導入口群11aの各ガス導入口から酸素ガス通路31を直線状にまっすぐに通流してそのまま前面1Fのガス噴出し口群21bの各吹き出し口からバーナヘッド前面の前方に向けて噴出される。このとき、噴出される酸素ガスは、図2、4,5,6に示すように横長矩形状の噴出し領域と噴出し先領域を形成するように噴出される。 Oxygen gas enters the first buffer chamber 15 which is airtightly joined to the rear surface 2F of the burner head 8 from the oxygen gas supply pipe 80, and flows straight through the oxygen gas passage 31 from each gas introduction port of the rear gas introduction port group 11a. , and is jetted forward from the front face of the burner head from each jetting port of the gas jetting port group 21b on the front face 1F. At this time, the ejected oxygen gas is ejected so as to form a horizontally long rectangular ejection area and an ejection destination area as shown in FIGS.
一方、水素ガスは、水素ガス供給管70からバーナヘッド8の周側面を囲繞するバッファフレーム60の第2フレーム壁体60-2の第2バッファ室16内に進入しさらに側面ガス導入口群12a-1~12a-4の各ガス導入口から水素ガス通路41内を通流してバーナヘッド8の前面1Fのガス噴出し口群21b、22b-1~22b-4の各ガス噴出し口から水素ガスを噴き出す。この時、水素ガスの一部は図9(a),(b)のようにバーナヘッド8の側面3F-1~3F-4から進入して通路をL字状に屈曲案内されて前面1Fから噴き出す。また、他の水素ガスの一部は、図9(c)のように、貫通孔51から進入し、これに連通しつつそれぞれL字状に5つに分岐された枝通路52を経由して前面1Fから噴き出す。実施形態では、第1バッファ室15から導入されバーナヘッド8内を直進しその前面から噴出されるガスは燃焼ガス1Gであり、第2バッファ室16から導入されバーナヘッド8内を経由してその前面から噴出されるガスは可燃ガス2Gであることにより、燃焼ガスと可燃ガスが接触しないように完全に遮断しつつガスの種類ごとに通流するルートを異ならせて管理やメンテナンスを容易にさせることができる。 On the other hand, the hydrogen gas enters from the hydrogen gas supply pipe 70 into the second buffer chamber 16 of the second frame wall 60-2 of the buffer frame 60 surrounding the peripheral side of the burner head 8, and further into the side gas inlet group 12a. -1 to 12a-4 through the hydrogen gas passage 41 and through the gas ejection port groups 21b and 22b-1 to 22b-4 on the front face 1F of the burner head 8. blow out gas. At this time, part of the hydrogen gas enters from the side surfaces 3F-1 to 3F-4 of the burner head 8 as shown in FIGS. erupt. Further, as shown in FIG. 9(c), part of the other hydrogen gas enters through the through hole 51 and passes through the branch passages 52 that are branched into five L-shaped passages while communicating with the through hole 51. It shoots out from the front 1F. In this embodiment, the combustion gas 1G is introduced from the first buffer chamber 15 and flows straight through the burner head 8 and is ejected from the front surface thereof. The gas ejected from the front is combustible gas 2G, so that the combustible gas and combustible gas are completely cut off so that they do not come into contact with each other, and the flow route is made different for each type of gas to facilitate management and maintenance. be able to.
バーナヘッド8の前面1Fの噴出し口群21b、22b-1~22b4は、バーナヘッド8のソリッド体の形状に応じて略横長四角形状に集中して口孔が形成されており、これによって、燃焼ガス及び可燃ガスが同時に横長四角形状の広域な加炎加工領域を形成し、加工領域を広く確保して加工時間短縮、所望の加工形状に則した火炎加工の実施、加工精度の確保を実現することができる。 The ejection port group 21b, 22b-1 to 22b4 on the front face 1F of the burner head 8 is formed with ports concentrated in a substantially laterally long rectangular shape according to the shape of the solid body of the burner head 8. Combustion gas and combustible gas form a wide rectangular flame processing area at the same time, ensuring a wide processing area to shorten processing time, perform flame processing according to the desired processing shape, and ensure processing accuracy. can do.
本発明のバーナヘッド装置10は、上記した実施形態の構成のみに限定されるものではない。例えば、背面、周側面のガス導入孔の直径サイズや前面のガス噴出し口孔の直径サイズは実施例のサイズに限定されるものではなく、ガスの供給側の流速その他の条件に応じて任意サイズに設定することができる。また、前面や周側面における孔の配置や孔の数も実施例構成に限定されるものではない。また、バーナヘッド8の内部のガス通路の配置構成やL字その他のルート構成も実施例構成に限定されない。例えば、直角L字でなく屈曲が90度より浅い、あるいはさらに深い屈曲構成としてもよい。また、第1バッファ室15と第2バッファ室16とは必ずしも連結している必要はない。例えば、バッファフレーム60の第1、第2フレーム壁体60-1,60-2を切り離しそれぞれ個別にのみ第2バッファ室16が周側面側のガス導入口群12a-1~12a-4の多数のガス導入口に空間を共有されるように第2フレーム壁をバーナヘッド8に連結接合させ、第1バッファ室15が背面側のガス導入口群11aの多数のガス導入口に空間を共有されるように第1フレーム壁をバーナヘッド8に連結接合させてもよい。また、バーナヘッドの構成材料は、石英ガラスに限定されるものではなく、その他のガラス、耐火物、ファインセラミックス等の非金属無機材料、耐熱性、耐食性を有する金属、合金材料等を用いることができる。 The burner head device 10 of the present invention is not limited to the configuration of the embodiment described above. For example, the diameter size of the gas introduction holes on the back and peripheral side surfaces and the diameter size of the gas ejection port holes on the front surface are not limited to the sizes in the embodiments, and are arbitrary according to the flow velocity on the gas supply side and other conditions. size can be set. Also, the arrangement of the holes and the number of holes on the front surface and the peripheral side surface are not limited to those of the embodiment. Also, the arrangement configuration of the gas passages inside the burner head 8 and the L-shaped and other route configurations are not limited to those of the embodiment. For example, instead of the right-angled L-shape, the bending configuration may be shallower than 90 degrees or even deeper. Also, the first buffer chamber 15 and the second buffer chamber 16 do not necessarily have to be connected. For example, the first and second frame wall bodies 60-1 and 60-2 of the buffer frame 60 are cut off and the second buffer chambers 16 are individually separated from many of the gas introduction port groups 12a-1 to 12a-4 on the circumferential side. The second frame wall is connected and joined to the burner head 8 so that the space is shared by the gas inlets of the first buffer chamber 15, and the space is shared by the many gas inlets of the gas inlet group 11a on the rear side. The first frame wall may be connected and joined to the burner head 8 as in the case of FIG. In addition, the constituent material of the burner head is not limited to quartz glass, but other glass, refractories, non-metallic inorganic materials such as fine ceramics, metals having heat resistance and corrosion resistance, alloy materials, etc. may be used. can.
上記の実施形態による例で実現されるバーナヘッド装置10は、ガスの噴出し面1Fを有するブロック体のバーナヘッド8であり、多数のガス通路31、41を内部に形成すると共に多数のガス通路31、41に連通する多数のガスの噴出し口21b、22bを設けた噴出し面1Fから燃焼ガス1Gと可燃ガス2Gを噴き出すバーナヘッド8と、噴出し面1F以外のバーナヘッド8の部分(XF)に設けられた燃焼ガス供給用の多数のガス導入口を含む第1導入口群11aと、噴出し面以外のバーナヘッド8の部分XFに設けられた可燃ガス供給用の多数のガスの導入口を含む第2導入口群(12a―1~12a―4)と、燃焼ガス供給用の多数のガスの導入口と共有する空間を有する第1バッファ室15と、可燃ガス供給用の多数のガスの導入口と共有する空間を有する第2バッファ室16と、を含むことにより、バーナヘッドの外形形状やサイズ等を変更、調整して多数のガスの噴出し口群の配置形状や広がり等を変更することで自在の火炎加工領域を生成することができる。例えば、横長にしたい場合や広い加工領域を得たい場合にも対応できる。この結果、火炎加工対象物の範囲が広くなり、加工分野、加工精度も大幅に向上させることが可能である。 The burner head device 10 realized in the example according to the above embodiment is a block-shaped burner head 8 having a gas ejection surface 1F, in which a large number of gas passages 31, 41 are formed and a large number of gas passages 31, 41 are formed. The burner head 8 for ejecting the combustion gas 1G and the combustible gas 2G from the ejection surface 1F provided with a large number of gas ejection ports 21b and 22b communicating with 31 and 41, and the portion of the burner head 8 other than the ejection surface 1F ( XF), which includes a large number of gas inlets for supplying combustion gas, and a large number of gases for supplying combustible gas, which are provided in a portion XF of the burner head 8 other than the ejection surface. A second inlet group (12a-1 to 12a-4) including inlets, a first buffer chamber 15 having a space shared with many gas inlets for supplying combustion gas, and many for supplying combustible gas. By including a second buffer chamber 16 having a space shared with the gas introduction port, the outer shape, size, etc. of the burner head can be changed and adjusted, and the arrangement shape and spread of the group of many gas ejection ports can be changed. By changing the parameters, etc., it is possible to generate a free flame processing area. For example, it is possible to cope with the case of wanting to make it horizontally long or the case of wanting to obtain a wide processing area. As a result, the range of objects to be flame processed is widened, and the field of processing and processing accuracy can be greatly improved.
また、前面と側面と背面を有するブロック体からなるバーナヘッドであり、多数のガス通路を内部に形成すると共に多数のガス通路に連通する多数のガスの噴出し口を設けた前面から燃焼ガスと可燃ガスを噴き出すバーナヘッドと、バーナヘッドの背面に設けられた多数のガスの導入口と、バーナへッドの側面に設けられた多数のガスの導入口と、背面側の多数のガスの導入口と共有する空間を有する第1バッファ室と、側面側の多数のガスの導入口と共有する空間を有する第2バッファ室と、を含むことにより、火炎加工領域を自在に変更でき、火炎加工対象物の範囲が広くなり、加工分野、加工精度も大幅に向上させ得るバーナヘッド装置を具体的に製作することができる。 Also, the burner head is a block body having a front surface, a side surface, and a back surface, and has a large number of gas passages formed therein and a large number of gas ejection ports communicating with the large number of gas passages. A burner head that blows out combustible gas, a large number of gas inlets provided on the back of the burner head, a large number of gas inlets provided on the side of the burner head, and a large number of gas inlets on the back side. By including a first buffer chamber having a space shared with the port and a second buffer chamber having a space shared with a large number of gas introduction ports on the lateral side, the flame processing area can be freely changed. It is possible to specifically manufacture a burner head device that can handle a wide range of objects and greatly improve the processing field and processing accuracy.
また、第1バッファ室と、第2バッファ室と、をフレーム壁により形成するバッファフレームが設けられており、バーナヘッドとバッファフレームは石英ガラス製であり、少なくとも第1バッファ室と、第2バッファ室それぞれがバーナヘッドの多数のガスの導入口に連通するように、バッファフレームは、バーナヘッドに接合されて一体化されていることにより、バーナヘッドと第1、第2バッファ室を構成材料で一体化することにより、精密加工仕上がり精度が良好で故障が少なく耐久性が高い共に、火炎加工用バーナとして取扱いが容易である上に、石英ガラスを素材とすることにより耐熱性、耐食性に優れる。 A buffer frame is provided in which a first buffer chamber and a second buffer chamber are formed by frame walls, the burner head and the buffer frame are made of quartz glass, and at least the first buffer chamber and the second buffer chamber are provided. The buffer frame is joined to and integrated with the burner head so that each of the chambers communicates with a large number of gas inlets of the burner head, so that the burner head and the first and second buffer chambers are made of material. By integrating the burner, the finishing precision of precision machining is good, failure is low, and durability is high. In addition, it is easy to handle as a burner for flame processing.
また、第1バッファ室と、第2バッファ室とは室内どうしが連通しないように隔壁で分離された状態でバーナヘッドを内側に包み込むようにバーナヘッドと接合一体化されていることにより、加工用バーナとしての作業上の取扱いが簡単で管理、メンテナンスも容易であるとともに、バーナヘッドと両バッファ室が一体化されることで装置全体の強度が高くなり、アクチュエータのチャッキング操作などに耐え得る耐久性を保持し得る。 In addition, the first buffer chamber and the second buffer chamber are separated by a partition so that the chambers do not communicate with each other, and are joined and integrated with the burner head so as to wrap the burner head inside. The burner is easy to handle, easy to manage and maintain, and by integrating the burner head and both buffer chambers, the overall strength of the device increases, and it is durable enough to withstand the chucking operation of the actuator. can retain their sexuality.
バーナヘッドは、前面が一方向に長い噴出し面であることとすることにより、例えば横長い加工領域を有する対象物に対しても横長の火炎加工領域を確実に形成することができ、加工時間短縮、加工精度向上に資する。 Since the burner head has a jet surface that is long in one direction, it is possible to reliably form a horizontally long flame processing area even for an object that has a horizontally long processing area. Contributes to shortening and improving machining accuracy.
また、バーナヘッドは、背面側のガス導入口に連通しつつ前面側のいくつかのガス噴出し口に直通する第1ガス通路群と、側面側のガス導入口に連通しつつ前面側のいくつかのガス噴出し口に連通する第2ガス通路群と、を含むことにより、燃焼ガスと可燃ガスとの接触を確実に防止しつつガス通路の管理、メンテナンスを容易に行える。 In addition, the burner head includes a first gas passage group communicating with the gas introduction port on the back side and directly communicating with some gas ejection ports on the front side, and a group of gas passages on the front side communicating with the gas introduction port on the side surface side. By including the second gas passage group communicating with the gas ejection port, it is possible to reliably prevent contact between the combustion gas and the combustible gas while facilitating management and maintenance of the gas passages.
また、第2ガス通路群は、バーナヘッドの側面側ガス導入口から前面側ガス噴出し口に連通する直通及び/又は屈曲ガス通路を含むことにより、バーナヘッドの側面側から前面側にガスの通路を具体的に形成させることができる。 In addition, the second gas passage group includes straight and/or curved gas passages communicating from the side gas introduction port of the burner head to the front gas ejection port, thereby allowing gas to flow from the side side to the front side of the burner head. The passage can be specifically formed.
また、第1バッファ室から導入されバーナヘッド内を直進しその前面から噴出されるガスは燃焼ガスであり、第2バッファ室から導入されバーナヘッド内を経由してその前面から噴出されるガスは可燃ガスであることにより、燃焼ガスと可燃ガスとの接触を確実に防止しつつガス通路の管理、メンテナンスを容易に行える。 Further, the gas introduced from the first buffer chamber, traveling straight through the burner head, and ejected from the front surface is combustion gas, and the gas introduced from the second buffer chamber, passing through the burner head, and ejected from the front surface is combustion gas. Since it is a combustible gas, it is possible to reliably prevent contact between combustion gas and combustible gas while facilitating management and maintenance of gas passages.
 以上のように、本発明のバーナヘッド装置によれば、ピンポイント等の従来の火炎加工領域を大幅に広げるとともに任意の加工領域形状の加工範囲を形成できるから、被加工物の対象範囲を大幅に大きくでき、さらに、加工時間短縮、加工精度向上等を実現することが可能である。 As described above, according to the burner head device of the present invention, the conventional flame machining area such as pinpoint can be greatly expanded, and the machining area can be formed in an arbitrary machining area shape. In addition, it is possible to shorten the machining time and improve the machining accuracy.
 本発明のバーナヘッド装置は、家庭用調理器具、半導体プロセス用の素材加工、科学研究・開発用品、クリーンルーム、実験・研究用器具等の加工用途、その他火炎加工の幅広い分野において利用することができる。 INDUSTRIAL APPLICABILITY The burner head device of the present invention can be used in a wide range of fields such as household cooking utensils, material processing for semiconductor processes, scientific research and development supplies, clean rooms, experimental and research instruments, and other flame processing applications. .
 1F 前面(噴出し面)
 2F 背面
 3F-1~3F-4 側面
 1G 燃焼ガス
 2G 可燃ガス
 8 バーナヘッド
 10 バーナヘッド装置
 11a 背面ガス導入口群
12a-1~12a-4 側面ガス導入口群
21 前面ガス噴出し口群
22b-1~22b-4 側面ガス噴出し口群
15 第1バッファ室
15S バッファ空間
16 第2バッファ室
16S バッファ空間
31 酸素ガス通路
31a 第1ガス通路群
41 水素ガス通路
41a 第2ガス通路群
60 バッファフレーム
70 水素ガス供給管
80 酸素ガス供給管
 
1F front (spout surface)
2F Rear 3F-1 to 3F-4 Side 1G Combustion gas 2G Combustible gas 8 Burner head 10 Burner head device 11a Rear gas introduction port group 12a-1 to 12a-4 Side gas introduction port group 21 Front gas ejection port group 22b- 1 to 22b-4 Side gas outlet group 15 First buffer chamber 15S Buffer space 16 Second buffer chamber 16S Buffer space 31 Oxygen gas passage 31a First gas passage group 41 Hydrogen gas passage 41a Second gas passage group 60 Buffer frame 70 hydrogen gas supply pipe 80 oxygen gas supply pipe

Claims (8)

  1.  ガスの噴出し面を有するブロック体からなるバーナヘッドであり、多数のガス通路を内部に形成すると共に多数のガス通路に連通する多数のガスの噴出し口を設けた噴出し面から燃焼ガスと可燃ガスを噴き出すバーナヘッドと、
     噴出し面以外のバーナヘッドの部分に設けられた燃焼ガス供給用の多数のガス導入口を含む第1導入口群と、
    噴出し面以外のバーナヘッドの部分に設けられた可燃ガス供給用の多数のガスの導入口を含む第2導入口群と、
     燃焼ガス供給用の多数のガスの導入口と共有する空間を有する第1バッファ室と、
    可燃ガス供給用の多数のガスの導入口と共有する空間を有する第2バッファ室と、を含むことを特徴とするバーナヘッド装置。
    A burner head consisting of a block body having a gas ejection surface, and having a large number of gas passages formed therein and provided with a large number of gas ejection ports communicating with the large number of gas passages. a burner head that spouts combustible gas;
    a first inlet group including a large number of gas inlets for supplying combustion gas provided in a portion of the burner head other than the ejection surface;
    a second inlet group including a large number of gas inlets for supplying combustible gas provided in a portion of the burner head other than the ejection surface;
    a first buffer chamber having a space in common with a number of gas inlets for supplying combustion gases;
    a second buffer chamber having a common space with multiple gas inlets for supplying combustible gas.
  2.  前面と側面と背面を有するブロック体からなるバーナヘッドであり、多数のガス通路を内部に形成すると共に多数のガス通路に連通する多数のガスの噴出し口を設けた前面から燃焼ガスと可燃ガスを噴き出すバーナヘッドと、
     バーナヘッドの背面に設けられた多数のガスの導入口と、
     バーナへッドの側面に設けられた多数のガスの導入口と、
     背面側の多数のガスの導入口と共有する空間を有する第1バッファ室と、
    側面側の多数のガスの導入口と共有する空間を有する第2バッファ室と、を含むことを特徴とするバーナヘッド装置。
    A burner head consisting of a block body having a front surface, a side surface and a back surface. A large number of gas passages are formed inside and combustion gas and combustible gas are emitted from the front surface provided with a large number of gas ejection ports communicating with the large number of gas passages. with a burner head that spouts
    a large number of gas inlets provided on the back of the burner head;
    a large number of gas introduction ports provided on the side surface of the burner head;
    a first buffer chamber having a space shared with many gas inlets on the back side;
    a second buffer chamber having a space shared with a number of gas inlets on the lateral side.
  3. 第1バッファ室と、第2バッファ室と、をフレーム壁により形成するバッファフレームが設けられており、
    バーナヘッドとバッファフレームは石英ガラス製であり、
    少なくとも第1バッファ室と、第2バッファ室それぞれがバーナヘッドの多数のガスの導入口に連通するように、バッファフレームは、バーナヘッドに接合されて一体化されていることを特徴とする請求項2記載のバーナヘッド装置。
    A buffer frame is provided in which a first buffer chamber and a second buffer chamber are formed by frame walls,
    The burner head and buffer frame are made of quartz glass,
    The buffer frame is joined and integrated with the burner head so that at least the first buffer chamber and the second buffer chamber communicate with a plurality of gas inlets of the burner head, respectively. 3. The burner head device according to 2.
  4. 第1バッファ室と、第2バッファ室とは室内どうしが連通しないように隔壁で分離された状態でバーナヘッドを内側に包み込むようにバーナヘッドと接合一体化されていることを特徴とする請求項2又は3記載のバーナヘッド装置。 The first buffer chamber and the second buffer chamber are joined and integrated with the burner head so as to enclose the burner head while being separated by a partition so that the chambers do not communicate with each other. 4. Burner head device according to 2 or 3.
  5. バーナヘッドは、前面が一方向に長い噴出し面であることを特徴とする請求項2ないし4のいずれかに記載のバーナヘッド装置。 5. The burner head device according to claim 2, wherein the burner head has a jet surface whose front surface is elongated in one direction.
  6. バーナヘッドは、背面側のガス導入口に連通しつつ前面側のいくつかのガス噴出し口に直通する第1ガス通路群と、
    側面側のガス導入口に連通しつつ前面側のいくつかのガス噴出し口に連通する第2ガス通路群と、を含むことを特徴とする請求項2ないし5のいずれかに記載のバーナヘッド装置。
    The burner head includes a first gas passage group that communicates with the gas introduction port on the back side and directly communicates with several gas ejection ports on the front side;
    6. The burner head according to any one of claims 2 to 5, further comprising a second gas passage group that communicates with the gas introduction port on the side surface and also communicates with several gas ejection ports on the front side. Device.
  7. 第2ガス通路群は、バーナヘッドの側面側ガス導入口から前面側ガス噴出し口に連通する直通及び/又は屈曲ガス通路を含むことを特徴とする請求項6記載のバーナヘッド装置。 7. The burner head apparatus according to claim 6, wherein the second gas passage group includes straight and/or curved gas passages communicating from the side gas introduction port of the burner head to the front gas ejection port.
  8. 第1バッファ室から導入されバーナヘッド内を直進しその前面から噴出されるガスは燃焼ガスであり、
    第2バッファ室から導入されバーナヘッド内を経由してその前面から噴出されるガスは可燃ガスであることを特徴とする請求項2ないし7のいずれかに記載のバーナヘッド装置。
     
    The gas introduced from the first buffer chamber, traveling straight through the burner head, and ejected from the front thereof is combustion gas,
    8. A burner head apparatus according to claim 2, wherein the gas introduced from the second buffer chamber, passed through the burner head and ejected from the front surface thereof is combustible gas.
PCT/JP2021/016578 2021-04-26 2021-04-26 Burner head device WO2022230004A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/016578 WO2022230004A1 (en) 2021-04-26 2021-04-26 Burner head device
JP2021537090A JP7030299B1 (en) 2021-04-26 2021-04-26 Burner head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016578 WO2022230004A1 (en) 2021-04-26 2021-04-26 Burner head device

Publications (1)

Publication Number Publication Date
WO2022230004A1 true WO2022230004A1 (en) 2022-11-03

Family

ID=81212842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016578 WO2022230004A1 (en) 2021-04-26 2021-04-26 Burner head device

Country Status (2)

Country Link
JP (1) JP7030299B1 (en)
WO (1) WO2022230004A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911035A (en) * 1956-12-05 1959-11-03 Bethlehem Apparatus Company In Polymix gas burner
US3204682A (en) * 1963-08-26 1965-09-07 American Gas Furnace Co Oxy-gas blowpipe
JPS56157706A (en) * 1980-04-10 1981-12-05 Union Carbide Corp Oxygen aspirator for furnace combustion and method thereof
US5112219A (en) * 1990-09-14 1992-05-12 Rocky Mountain Emprise, Inc. Dual mixing gas burner
JPH10281416A (en) * 1997-04-04 1998-10-23 Toto Ltd Liquid fuel vaporizing combustion equipment
JP2000104909A (en) * 1998-09-29 2000-04-11 Shinetsu Quartz Prod Co Ltd Quartz glass burner and production thereof
CN102022732A (en) * 2010-12-11 2011-04-20 巨石集团有限公司 Burner for heating glass metal
JP2014029256A (en) * 2012-07-06 2014-02-13 Tokyo Gas Co Ltd Infrared combustion device
CN104279561A (en) * 2014-10-29 2015-01-14 高俊飞 External mixing type glass polishing combustor
CN104791798A (en) * 2015-03-31 2015-07-22 蚌埠市晶辉玻璃制品厂 External-mixing polishing gun for glass ware

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911035A (en) * 1956-12-05 1959-11-03 Bethlehem Apparatus Company In Polymix gas burner
US3204682A (en) * 1963-08-26 1965-09-07 American Gas Furnace Co Oxy-gas blowpipe
JPS56157706A (en) * 1980-04-10 1981-12-05 Union Carbide Corp Oxygen aspirator for furnace combustion and method thereof
US5112219A (en) * 1990-09-14 1992-05-12 Rocky Mountain Emprise, Inc. Dual mixing gas burner
JPH10281416A (en) * 1997-04-04 1998-10-23 Toto Ltd Liquid fuel vaporizing combustion equipment
JP2000104909A (en) * 1998-09-29 2000-04-11 Shinetsu Quartz Prod Co Ltd Quartz glass burner and production thereof
CN102022732A (en) * 2010-12-11 2011-04-20 巨石集团有限公司 Burner for heating glass metal
JP2014029256A (en) * 2012-07-06 2014-02-13 Tokyo Gas Co Ltd Infrared combustion device
CN104279561A (en) * 2014-10-29 2015-01-14 高俊飞 External mixing type glass polishing combustor
CN104791798A (en) * 2015-03-31 2015-07-22 蚌埠市晶辉玻璃制品厂 External-mixing polishing gun for glass ware

Also Published As

Publication number Publication date
JPWO2022230004A1 (en) 2022-11-03
JP7030299B1 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP2013239707A (en) Gas shower head, manufacturing method of the same, and thin film growth reactive device
US20180170750A1 (en) MILLIMETER-SCALE EXCHANGER-REACTOR FOR HYDROGEN PRODUCTION OF LESS THAN 10 Nm3/h
WO2022230004A1 (en) Burner head device
US11377731B2 (en) Film-forming device
JP4351628B2 (en) Multi-service heat conversion unit
SE530353C2 (en) DFI burner comprising a metal block and two nozzles extending from the metal block
US9587823B2 (en) Laminar flow jets
JP4241173B2 (en) Method for producing porous glass fine particle deposit and burner for glass synthesis used in the production method
CN110744193B (en) Shielding gas device and laser welding equipment
KR101778655B1 (en) Combustion device for melting furnace, and melting furnace
KR102545710B1 (en) Burner for synthesizing
JP6944066B2 (en) Plasma generator
JP2010110663A (en) Gas mixer
JP2011036773A (en) Reactor and reaction plant
JP2006002973A (en) Line burner and its manufacturing method
JP7154430B2 (en) Gas guide, laser cutting head and laser cutting machine
KR102587593B1 (en) Laser welding jig
CN218983545U (en) Composite nozzle for flame-assisted laser cutting
JP2017078562A (en) Method of manufacturing glass article and glass processing device
US20190310022A1 (en) Exchanger-reactor comprising connectors with supports
JP7357686B2 (en) compact flame curtain burner
KR102621868B1 (en) Gas burner
JP2013528251A (en) Large area vapor deposition equipment for gas mixing prevention
JP2006056743A (en) Heating method for glass preform
EP3677832B1 (en) Oxygen-enriched burner and heating method using oxygen-enriched burner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021537090

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939168

Country of ref document: EP

Kind code of ref document: A1