WO2022227495A1 - 显示面板及其制作方法、显示装置 - Google Patents

显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2022227495A1
WO2022227495A1 PCT/CN2021/130286 CN2021130286W WO2022227495A1 WO 2022227495 A1 WO2022227495 A1 WO 2022227495A1 CN 2021130286 W CN2021130286 W CN 2021130286W WO 2022227495 A1 WO2022227495 A1 WO 2022227495A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
display
functional
transparent
Prior art date
Application number
PCT/CN2021/130286
Other languages
English (en)
French (fr)
Inventor
王和金
薄赜文
项大林
汪炳伟
屈财玉
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022227495A1 publication Critical patent/WO2022227495A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel, a manufacturing method thereof, and a display device.
  • OLED Organic Light-Emitting Diode, Organic Light Emitting Diode
  • QLED Quantum Dot Light Emitting Diodes, Quantum Dot Light Emitting Diode
  • the technical problem to be solved by the present disclosure is to provide a display panel, a manufacturing method thereof, and a display device, which can improve the signal-to-noise ratio of the sensing signal.
  • a display panel including:
  • the transparent conductive layer includes a transparent metal oxide conductive layer, a metal layer and a transparent metal oxide conductive layer stacked in sequence; or
  • the transparent conductive layer includes a transparent metal oxide conductive layer and a metal layer stacked in sequence, and the metal layer is located on the side of the transparent metal oxide conductive layer close to the display function layer.
  • the ratio of the thickness of the transparent metal oxide conductive layer to the metal layer is 5-7.
  • the thickness of the metal layer is 10-250 angstroms.
  • it also includes:
  • the metal wiring layer located on the light-emitting side of the display function layer, the metal wiring layer including a plurality of metal wirings;
  • the functional electrode layer is located on a side of the insulating layer away from the display functional layer, and the functional electrode layer is electrically connected to the metal wiring through a via hole passing through the insulating layer.
  • the functional electrode layer includes multiple touch electrodes and/or multiple fingerprint recognition electrodes.
  • the transparent conductive layer includes a plurality of mutually independent transparent electrode blocks, the touch electrodes are in one-to-one correspondence with the transparent electrode blocks, and the orthographic projection of the touch electrodes on the display function layer The corresponding transparent electrode blocks are located in the orthographic projection of the display functional layer.
  • the touch electrodes are metal meshes.
  • the display functional layer includes a plurality of sub-pixels, the orthographic projection of the touch electrodes on the display functional layer covers at least one sub-pixel, and the positive projection of the metal grid on the display functional layer The projection is between adjacent subpixels.
  • the functional electrode layer includes P touch electrodes arranged in an array, the metal trace layer includes P metal traces, and the touch electrodes are connected to the metal traces in a one-to-one correspondence.
  • P is an integer greater than 1.
  • the transparent conductive layer includes a plurality of mutually independent transparent electrode blocks
  • the fingerprint identification electrodes are in one-to-one correspondence with the transparent electrode blocks
  • the orthographic projection of the fingerprint identification electrodes on the display function layer The corresponding transparent electrode blocks are located in the orthographic projection of the display functional layer.
  • the display functional layer includes a plurality of sub-pixels, and an orthographic projection of the fingerprint identification electrode on the display functional layer covers one sub-pixel or a part of a sub-pixel.
  • the functional electrode layer includes M rows of the fingerprint identification electrodes
  • the metal trace layer includes 2M metal traces extending along the column direction, the even-numbered fingerprint identification electrodes in the i-th row and the 2i-th row of the fingerprint identification electrodes.
  • the metal traces are connected, the odd-numbered fingerprint identification electrodes in the i-th column are connected to the 2i-1th metal traces, or, the even-numbered fingerprint identification electrodes in the i-th column are connected to the 2i-1th metal traces, and the i-th column
  • the odd-numbered fingerprint identification electrodes are connected to the 2ith metal trace, where i is an integer greater than or equal to 1 and less than or equal to M;
  • the functional electrode layer includes N rows of the fingerprint identification electrodes, the metal trace layer includes 2N metal traces extending along the row direction, and the even-numbered fingerprint identification electrodes in the jth row are connected to the 2jth metal traces, The odd-numbered fingerprint recognition electrodes in the jth row are connected to the 2j-1th metal trace, or, the even-numbered fingerprint recognition electrodes in the jth row are connected to the 2j-1th metal trace, and the odd-numbered fingerprint recognition electrodes in the jth row The electrode is connected to the 2jth metal trace, and j is an integer greater than or equal to 1 and less than or equal to N.
  • the transmittance of the transparent conductive layer is not greater than 60%.
  • the transmittance of the transparent conductive layer is 40%-60%.
  • it also includes:
  • a passivation layer on the side of the transparent conductive layer away from the display function layer.
  • it also includes:
  • the flat layer located on the side of the transparent conductive layer away from the display function layer has a refractive index of 1.4-1.6.
  • it also includes:
  • the black matrix is located on the side of the transparent conductive layer away from the display functional layer, and the orthographic projection of the metal wiring on the display functional layer is located within the orthographic projection of the black matrix on the display functional layer.
  • it also includes:
  • a protective layer on the side of the transparent conductive layer away from the display function layer.
  • Embodiments of the present disclosure further provide a display device, including the above-mentioned display panel and a driving chip, wherein the driving chip is connected to the functional electrode layer through metal wires.
  • FIG. 1 is a schematic plan view of a touch substrate
  • FIG. 2 is a schematic cross-sectional view of a display panel according to an embodiment of the disclosure.
  • FIG. 3 is a schematic plan view of a display panel according to an embodiment of the disclosure.
  • FIG. 4 is a light transmittance curve of a display panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view of a display panel according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic plan view of a display panel according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic plan view of a display panel according to still another embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a display panel, a manufacturing method thereof, and a display device, which can improve the signal-to-noise ratio.
  • Embodiments of the present disclosure provide a display panel, including:
  • the display function layer includes a drive circuit and a light-emitting unit
  • the drive circuit may include a gate insulating layer, a gate metal layer, a source-drain metal layer, an interlayer insulating layer and other film layers
  • the light-emitting unit may include an anode, a cathode, and a the light-emitting layer between the anode and the cathode;
  • the functional electrode layer is located outside the display functional layer, so that when the functional electrode layer is used to realize the touch function or fingerprint recognition function, the distance between the functional electrode layer and the user's finger is close, which can improve the signal-to-noise ratio of the sensing signal;
  • a transparent conductive layer that is directly electrically connected to the functional electrode layer is provided on the side of the functional electrode layer away from the display functional layer. Since the transparent conductive layer has light-transmitting properties, it will not affect the display of the display functional layer. Therefore, the transparent conductive layer can be The design of the area is relatively large, so that the transparent conductive layer is electrically connected with the functional electrode layer, which can indirectly increase the area of the functional electrode layer and further increase the signal amount of the induction signal.
  • the functional electrode layer can be made of metal or other conductive materials, such as transparent conductive metal oxide, graphene, and the like.
  • the transparent conductive layer includes a transparent metal oxide conductive layer, a metal layer and a transparent metal oxide conductive layer stacked in sequence; or
  • the transparent conductive layer includes a transparent metal oxide conductive layer and a metal layer stacked in sequence, and the metal layer is located on the side of the transparent metal oxide conductive layer close to the display function layer.
  • the display panel further includes:
  • the metal wiring layer located on the light-emitting side of the display function layer, the metal wiring layer including a plurality of metal wirings;
  • the functional electrode layer is located on a side of the insulating layer away from the display functional layer, and the functional electrode layer is electrically connected to the metal wiring through a via hole passing through the insulating layer.
  • the functional electrode layer may include multiple touch electrodes and/or multiple fingerprint recognition electrodes.
  • the functional electrode layer may only include a plurality of touch electrodes, so that the display panel can realize a touch function; in some embodiments, the functional electrode layer may only include a plurality of fingerprint recognition electrodes, so that the display panel can realize fingerprint recognition. function; in some embodiments, the functional electrode layer may include multiple fingerprint identification electrodes and multiple touch electrodes, and at this time, multiple fingerprint identification electrodes and multiple touch electrodes may be arranged in different layers, so that the display panel can realize touch control at the same time. features and fingerprint recognition.
  • the functional electrode layer may include a plurality of mutually independent touch electrodes 01 .
  • the touch electrodes 01 are connected to metal traces through vias penetrating the insulating layer, and the metal traces are connected to the driving chip 02 through the functional electrodes.
  • the layer can realize the integrated touch function of the display panel.
  • the touch electrodes can use metal meshes, that is, the functional electrode layer includes a plurality of mutually independent metal mesh electrode blocks, each metal mesh electrode block is a touch electrode, transparent
  • the conductive layer includes a plurality of mutually independent transparent electrode blocks, the transparent electrode blocks are in one-to-one correspondence with the metal grid electrode blocks, the transparent electrode blocks are electrically connected with the corresponding metal grid electrode blocks, and the touch electrodes
  • the orthographic projection on the display functional layer is located within the orthographic projection of the corresponding transparent electrode block on the display functional layer.
  • the touch electrodes are located outside the display function layer and the distance between the touch electrodes and the user's finger is close, the signal-to-noise ratio of the touch sensing signal can be improved, and the touch sensing is not easily affected by the display screen signal. Furthermore, since the touch electrodes are electrically connected with the transparent conductive layer, the area of the touch electrodes can be indirectly increased, thereby increasing the signal volume of the touch sensing signals and improving the touch precision.
  • the functional electrode layer includes P touch electrodes arranged in an array, the metal trace layer includes P metal traces, and the touch electrodes are connected to the metal traces in a one-to-one correspondence.
  • P is an integer greater than 1.
  • the display panel includes a display function layer 03, a buffer layer 04 located on the display function layer 03, a metal wiring layer 06 is provided on the buffer layer 04, and the metal wiring layer 06 includes multiple A metal trace, the metal trace is the lead trace of the touch electrode; the insulating layer 05 covering the metal trace layer 06, the functional electrode layer 07 located on the insulating layer 05, the functional electrode layer 07 is in the shape of a metal grid, periodic Disconnect and form a plurality of mutually independent metal grid-shaped touch electrodes, and the touch electrodes are connected to the metal traces through the via holes penetrating the insulating layer 05; the transparent conductive layer 08 electrically connected with the functional electrode layer 07; located in the transparent conductive layer 08; The passivation layer 09 on the layer 08; the black matrix 10 on the passivation layer 09, wherein the orthographic projection of the metal traces on the display function layer is located in the orthographic projection of the black matrix on the display function layer, so that the black matrix can.
  • the metal wiring may adopt a single-layer structure or a multi-layer structure.
  • the metal wiring may adopt a Ti/Al/Ti laminated structure, so that the metal wiring has good conductivity;
  • the insulating layer 05 Inorganic insulating materials or organic insulating materials can be used, for example, silicon nitride is used to make the insulating layer 05;
  • the functional electrode layer 07 can be a single-layer structure or a multi-layer structure.
  • the functional electrode layer 07 can be made of Ti /Al/Ti laminated structure, so that the functional electrode layer has good conductivity.
  • the transparent conductive layer 08 Since the transparent conductive layer 08 has light-transmitting properties, it will not affect the display of the display function layer. Therefore, the area of the transparent conductive layer can be designed to be relatively large, so that the transparent conductive layer is electrically connected to the touch electrodes, which can indirectly increase the contact area. The area of the control electrode further increases the signal volume of the touch sensing signal.
  • the transparent conductive layer 08 also needs to be divided into a plurality of mutually independent transparent electrode blocks. As shown in FIG. 3, each transparent electrode block 084 corresponds to the corresponding The touch electrodes 071 are electrically connected together.
  • the display functional layer includes a plurality of sub-pixels 13
  • the orthographic projection of the touch electrodes 071 on the display functional layer can cover at least one sub-pixel 13
  • the metal grid is in the display
  • the orthographic projection on the functional layer is between adjacent subpixels.
  • the transparent conductive layer 08 may include a transparent metal oxide conductive layer 081, a metal layer 082 and a transparent metal oxide conductive layer 083 stacked in sequence.
  • the thickness of the metal layer 082 may be 10 -250 angstroms.
  • the ratio of the thickness of the transparent metal oxide conductive layer to the metal layer may be 5-7.
  • the transparent metal oxide conductive layer can be made of ITO or IZO, and the thickness can be about 700 angstroms, such as 500-700 angstroms, and the metal layer 082 can be made of metals with better electrical conductivity, such as Ag, Ti, etc. is about 100 angstroms.
  • the transparent conductive layer 08 may adopt a stacked structure of ITO/Ti/ITO.
  • a circular polarizer is often attached to the light-emitting side of the OLED display functional layer in the related art.
  • the circular polarizer can reduce the reflectivity of the surface of the OLED display functional layer, but this will make The overall thickness of the display panel is too large, which will affect the repeated folding ability of the display panel when applied in the field of flexible display.
  • the thickness of the transparent metal oxide conductive layer 081, the metal layer 082 and the transparent metal oxide conductive layer 083 can be adjusted so that the transmittance of the transparent conductive layer is not greater than 60%, preferably 40%- 60%, in this way, the transparent conductive layer can reduce the reflectivity of the surface of the display function layer, and there is no need to attach a circular polarizer on the light-emitting side of the display function layer, which can reduce the overall thickness of the display panel and help improve the display panel. Repeatable folding ability.
  • the stacked structure formed by disposing the transparent metal oxide conductive layer 083 and the transparent metal oxide conductive layer 081 on both sides of the metal layer 082 can achieve the effect of reducing reflection, which can reduce the reflectivity of the display panel.
  • the thickness of the passivation layer 09 can also be adjusted so that the passivation layer 09 and the transparent conductive layer 08 form an interference reduction, anti-reflection and anti-reflection structure to reduce the reflectivity of the surface of the OLED display functional layer.
  • the passivation layer 09 It can also prevent water and oxygen from eroding the functional film layer in the display panel.
  • the passivation layer 09 can be made of inorganic insulating materials, such as silicon nitride or silicon oxide or a combination of the two.
  • the thickness can be about 800 angstroms, such as 600-2000 angstroms. Egypt.
  • the transparent conductive layer 08 adopts a laminated structure of ITO/Ti/ITO
  • the thickness of ITO is 700 angstroms
  • the thickness of Ti is 100 angstroms
  • the transmittance of the semi-transparent structure formed by the transparent conductive layer 08 is The curve is shown in Figure 4.
  • the transmittance of the semi-transparent structure composed of the transparent conductive layer 08 is about 40-60%, the reflectivity of the black matrix surface is about 3%, and the reflectivity of the conventional OLED display function layer itself is about 46%.
  • the reflectivity of the display panel can be reduced to 5%, and at the same time, the display panel has the touch function.
  • the functional electrode layer may include a plurality of mutually independent fingerprint identification electrodes, the fingerprint identification electrodes are connected to metal wirings through vias penetrating the insulating layer, and the fingerprint identification function can be implemented through the fingerprint identification electrodes.
  • the fingerprint identification electrode can use a metal mesh, that is, the functional electrode layer includes a plurality of mutually independent metal mesh electrode blocks, each metal mesh electrode block is a fingerprint identification electrode, transparent
  • the conductive layer includes a plurality of mutually independent transparent electrode blocks, the transparent electrode blocks are in one-to-one correspondence with the metal grid electrode blocks, the transparent electrode blocks are electrically connected with the corresponding metal grid electrode blocks, and the fingerprint recognition electrodes
  • the orthographic projection on the display functional layer is located within the orthographic projection of the corresponding transparent electrode block on the display functional layer.
  • the fingerprint recognition electrode is located outside the display function layer, and the distance between the fingerprint recognition electrode and the user's finger is close, the signal-to-noise ratio of the fingerprint recognition sensing signal can be improved, and the fingerprint recognition sensing is not easily affected by the display screen signal.
  • the fingerprint recognition electrode is electrically connected with a transparent conductive layer, the area of the fingerprint recognition electrode can be indirectly increased, thereby increasing the signal volume of the fingerprint recognition sensing signal, making the fingerprint signal easier to be recognized and able to Improve fingerprint recognition accuracy.
  • the display panel includes a display function layer 03 , a buffer layer 04 located on the display function layer 03 , a metal wiring layer 06 is provided on the buffer layer 04 , and the metal wiring layer 06 includes multiple A metal trace, the metal trace is the lead trace of the touch electrode; the insulating layer 05 covering the metal trace layer 06, the functional electrode layer 07 located on the insulating layer 05, the functional electrode layer 07 is in the shape of a metal grid, periodic Disconnect and form a plurality of mutually independent metal mesh-shaped fingerprint identification electrodes, and the fingerprint identification electrodes are connected to the metal traces through the via holes passing through the insulating layer 05; the transparent conductive layer 08 electrically connected with the functional electrode layer 07; located in the transparent conductive layer 08 The passivation layer 09 on the layer 08; the protective layer 12 can protect the display panel.
  • the metal wiring may adopt a single-layer structure or a multi-layer structure.
  • the metal wiring may adopt a Ti/Al/Ti laminated structure, so that the metal wiring has good conductivity;
  • the insulating layer 05 Inorganic insulating materials or organic insulating materials can be used, for example, silicon nitride is used to make the insulating layer 05;
  • the functional electrode layer 07 can be a single-layer structure or a multi-layer structure.
  • the functional electrode layer 07 can be made of Ti /Al/Ti laminated structure, so that the functional electrode layer has good conductivity.
  • the transparent conductive layer 08 Since the transparent conductive layer 08 has light transmission characteristics, it will not affect the display of the display function layer. Therefore, the area of the transparent conductive layer can be designed to be relatively large, so that the transparent conductive layer can be electrically connected to the fingerprint identification electrode, which can indirectly increase the number of fingerprints. The area of the identification electrode further increases the signal volume of the fingerprint identification sensing signal.
  • the transparent conductive layer 08 also needs to be divided into a plurality of mutually independent transparent electrode blocks. As shown in FIG. 6, each transparent electrode block 084 is associated with the corresponding The fingerprint recognition electrodes 072 are electrically connected together.
  • the display function layer includes a plurality of sub-pixels 13, and an orthographic projection of the fingerprint identification electrode 072 on the display function layer can cover a sub-pixel 13 or a part of a sub-pixel 13, and the fingerprint identification
  • the orthographic projection of the metal grid on the display function layer is located between adjacent sub-pixels.
  • the area of a single fingerprint identification electrode 072 is only equivalent to one or more Half the area of the sub-pixel 13, which will result in a very small signal quantity of the fingerprint identification signal; and in this embodiment, the transparent electrode block 084 is electrically connected to the fingerprint identification electrode 072, which indirectly increases the area of the fingerprint identification electrode 072, so that Even if the area of a single fingerprint identification electrode 072 is small, the signal quantity of the fingerprint identification signal and the fingerprint identification accuracy can be guaranteed.
  • the fingerprint recognition electrode 072 is connected to the metal wiring layer through the via hole 14 , and the functional electrode layer may include M rows of the fingerprint recognition electrodes, each row including a plurality of fingerprint recognition electrodes, and the metal wiring
  • the layer includes 2M metal traces extending along the column direction, the even-numbered fingerprint identification electrodes in the i-th column are connected to the 2i-th metal traces, and the odd-numbered fingerprint identification electrodes in the i-th column are connected to the 2i-1th metal traces , or, the even-numbered fingerprint identification electrodes in the i-th column are connected to the 2i-1th metal trace, the odd-numbered fingerprint identification electrodes in the i-th column are connected to the 2i-th metal trace, and i is greater than or equal to 1 and less than or equal to M integer;
  • the functional electrode layer may include N rows of the fingerprint identification electrodes, each row includes a plurality of fingerprint identification electrodes, and the metal trace layer includes 2N metal traces extending along the row direction, and the jth row includes a plurality of fingerprint identification electrodes.
  • the even-numbered fingerprint identification electrodes of the row are connected to the 2jth metal trace
  • the odd-numbered fingerprint identification electrodes of the jth row are connected to the 2j-1th metal trace
  • the even-numbered fingerprint identification electrodes of the jth row are connected to the 2jth -1 metal trace
  • the odd-numbered fingerprint identification electrodes in the jth row are connected to the 2jth metal trace
  • j is an integer greater than or equal to 1 and less than or equal to N.
  • the transparent conductive layer 08 may include a transparent metal oxide conductive layer 081, a metal layer 082 and a transparent metal oxide conductive layer 083 stacked in sequence.
  • the metal layer 082 The thickness can be 10-250 angstroms.
  • the ratio of the thickness of the transparent metal oxide conductive layer to the metal layer may be 5-7.
  • the transparent metal oxide conductive layer can be made of ITO or IZO, and the thickness can be about 700 angstroms, such as 500-700 angstroms, and the metal layer 082 can be made of metals with better electrical conductivity, such as Ag, Ti, etc. is about 10-250 angstroms.
  • the transparent conductive layer 08 may adopt a stacked structure of ITO/Ti/ITO.
  • a circular polarizer is often attached to the light-emitting side of the OLED display functional layer in the related art.
  • the circular polarizer can reduce the reflectivity of the surface of the OLED display functional layer, but this will make The overall thickness of the display panel is too large, which will affect the repeated folding ability of the display panel when applied in the field of flexible display.
  • the thickness of the transparent metal oxide conductive layer 081, the metal layer 082 and the transparent metal oxide conductive layer 083 can be adjusted so that the transmittance of the transparent conductive layer is not greater than 60%, preferably 40%- 60%, in this way, the transparent conductive layer can reduce the reflectivity of the surface of the display function layer, and there is no need to attach a circular polarizer on the light-emitting side of the display function layer, which can reduce the overall thickness of the display panel and help improve the display panel. Repeatable folding ability.
  • the stacked structure formed by disposing the transparent metal oxide conductive layer 083 and the transparent metal oxide conductive layer 081 on both sides of the metal layer 082 can achieve the effect of reducing reflection, which can reduce the reflectivity of the display panel.
  • the passivation layer 09 can form an interference reduction, anti-reflection and anti-reflection structure, which can reduce the reflectivity of the surface of the OLED display functional layer.
  • the passivation layer 09 It can also prevent water and oxygen from eroding the functional film layer in the display panel.
  • the passivation layer 09 can be made of inorganic insulating materials, such as silicon nitride or silicon oxide or a combination of the two. The thickness can be about 800 angstroms, such as 600-2000 angstroms. Egypt.
  • the transmittance of the semi-transparent structure formed by the transparent conductive layer 08 is The curve is shown in Figure 4.
  • the transmittance of the semi-transparent structure composed of the transparent conductive layer 08 is about 40-60%
  • the reflectivity of the black matrix surface is about 3%
  • the reflectivity of the conventional OLED display function layer itself is about 46%.
  • Embodiments of the present disclosure further provide a display device, including the above-mentioned display panel and a driving chip, wherein the driving chip is connected to the functional electrode layer through metal wires.
  • the display device includes but is not limited to: a radio frequency unit, a network module, an audio output unit, an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply and other components.
  • a radio frequency unit a network module
  • an audio output unit an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply and other components.
  • the structure of the above-mentioned display device does not constitute a limitation on the display device, and the display device may include more or less components described above, or combine some components, or arrange different components.
  • the display device includes, but is not limited to, a display, a mobile phone, a tablet computer, a television, a wearable electronic device, a navigation display device, and the like.
  • the display device can be any product or component with a display function, such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device further includes a flexible circuit board, a printed circuit board and a backplane.
  • Embodiments of the present disclosure also provide a method for manufacturing a display panel, including:
  • a display function layer includes a drive circuit and a light-emitting unit
  • the drive circuit may include a gate insulating layer, a gate metal layer, a source-drain metal layer, an interlayer insulating layer and other film layers
  • the light-emitting unit may include an anode, a cathode and a light-emitting layer between the anode and the cathode;
  • a transparent conductive layer electrically connected to the functional electrode layer is formed on the side of the functional electrode layer away from the display functional layer, the transparent conductive layer at least includes a metal layer and a transparent metal oxide conductive layer, The thickness of the transparent metal oxide conductive layer is greater than the thickness of the metal layer.
  • the functional electrode layer is located outside the display functional layer, so that when the functional electrode layer is used to realize the touch function or fingerprint recognition function, the distance between the functional electrode layer and the user's finger is close, which can improve the signal-to-noise ratio of the sensing signal;
  • a transparent conductive layer that is directly electrically connected to the functional electrode layer is provided on the side of the functional electrode layer away from the display functional layer. Since the transparent conductive layer has light-transmitting properties, it will not affect the display of the display functional layer. Therefore, the transparent conductive layer can be The design of the area is relatively large, so that the transparent conductive layer is electrically connected with the functional electrode layer, which can indirectly increase the area of the functional electrode layer and further increase the signal amount of the induction signal.
  • the functional electrode layer can be made of metal or other conductive materials, such as transparent conductive metal oxide, graphene, and the like.
  • the method further includes:
  • a metal wiring layer is formed on the light-emitting side of the display function layer, and the metal wiring layer includes a plurality of metal wirings;
  • Forming the functional electrode layer includes:
  • the functional electrode layer is formed on a side of the insulating layer away from the display functional layer, and the functional electrode layer is electrically connected to the metal wiring through a via hole passing through the insulating layer.
  • the functional electrode layer may include a plurality of mutually independent touch electrodes 01 .
  • the touch electrodes 01 are connected to metal traces through vias penetrating the insulating layer, and the metal traces are connected to the driving chip 02 .
  • the touch function can be realized through the functional electrode layer.
  • the touch electrodes can use metal meshes, that is, the functional electrode layer includes a plurality of mutually independent metal mesh electrode blocks, each metal mesh electrode block is a touch electrode, transparent
  • the conductive layer includes a plurality of mutually independent transparent electrode blocks, the transparent electrode blocks are in one-to-one correspondence with the metal grid electrode blocks, and the transparent electrode blocks are electrically connected with the corresponding metal grid electrode blocks.
  • the manufacturing method of this embodiment includes the following steps:
  • Step 1 providing a display function layer, the display function layer can be an OLED display function layer;
  • Step 2 As shown in FIG. 2, a buffer layer 04 is formed on the display function layer;
  • the buffer layer 04 can be made of inorganic insulating materials, such as silicon nitride, silicon oxide, and the like.
  • Step 3 depositing a metal layer on the buffer layer 04, and patterning the metal layer to form a metal wiring layer 06, the metal wiring layer 06 includes a plurality of metal wirings, and the metal wirings are the lead wires of the touch electrodes;
  • the metal wiring may adopt a single-layer structure or a multi-layer structure, and in some embodiments, the metal wiring may adopt a stacked structure of Ti/Al/Ti.
  • Step 4 forming an insulating layer 05 covering the metal wiring layer 06;
  • the insulating layer 05 may be an inorganic insulating material or an organic insulating material, such as silicon nitride as the insulating layer 05 .
  • Step 5 depositing a metal layer on the insulating layer 05, and patterning the metal layer to form a functional electrode layer 06;
  • the functional electrode layer 07 is in the shape of a metal grid, and is periodically disconnected to form a plurality of mutually independent metal grid-shaped touch electrodes.
  • the touch electrodes are connected to the metal traces through vias penetrating the insulating layer 05 .
  • the functional electrode layer 07 may adopt a single-layer structure or a multi-layer structure. In some embodiments, the functional electrode layer 07 may adopt a Ti/Al/Ti stacked structure.
  • Step 6 forming a transparent conductive layer 08 electrically connected to the functional electrode layer 06;
  • the transparent conductive layer 08 may include a transparent metal oxide conductive layer 081, a metal layer 082 and a transparent metal oxide conductive layer 083 stacked in sequence.
  • the thickness of the metal layer 082 may be 10 -250 angstroms.
  • the transparent metal oxide conductive layer can be made of ITO or IZO, and the thickness can be 700 angstroms, and the metal layer 082 can be made of metals with better conductivity, such as Ag, Ti, etc., and the thickness can be 100 angstroms.
  • the transparent conductive layer 08 may adopt a stacked structure of ITO/Ti/ITO.
  • Step 7 forming a passivation layer 09 covering the transparent conductive layer 08;
  • Step 8 forming a black matrix 10 on the passivation layer 09;
  • the orthographic projection of the metal traces on the display function layer is located in the orthographic projection of the black matrix on the display function layer, so that the black matrix can block the metal traces and prevent the reflection of the metal traces from affecting the display of the display function layer;
  • Step 9 forming a protective layer 11 .
  • the protective layer 11 can play a role of protecting the display panel.
  • the transparent conductive layer 08 Since the transparent conductive layer 08 has light-transmitting properties, it will not affect the display of the display function layer. Therefore, the area of the transparent conductive layer can be designed to be relatively large, so that the transparent conductive layer is electrically connected to the touch electrodes, which can indirectly increase the contact area. The area of the control electrode further increases the signal volume of the touch sensing signal.
  • the transparent conductive layer 08 also needs to be divided into a plurality of mutually independent transparent electrode blocks. As shown in FIG. 3, each transparent electrode block 084 corresponds to the corresponding The touch electrodes 071 are electrically connected together.
  • a circular polarizer is often attached to the light-emitting side of the OLED display functional layer in the related art.
  • the circular polarizer can reduce the reflectivity of the surface of the OLED display functional layer, but this will make The overall thickness of the display panel is too large, which will affect the repeated folding ability of the display panel when applied in the field of flexible display.
  • the thickness of the transparent metal oxide conductive layer 081, the metal layer 082 and the transparent metal oxide conductive layer 083 can be adjusted so that the transmittance of the transparent conductive layer is not greater than 60%, preferably 40%- 60%, in this way, the transparent conductive layer can reduce the reflectivity of the surface of the display function layer, and there is no need to attach a circular polarizer on the light-emitting side of the display function layer, which can reduce the overall thickness of the display panel and help improve the display panel. Repeatable folding ability.
  • the functional electrode layer may include a plurality of mutually independent fingerprint identification electrodes, the fingerprint identification electrodes are connected to metal wirings through vias penetrating the insulating layer, and the fingerprint identification function can be implemented through the fingerprint identification electrodes.
  • the fingerprint identification electrode can use a metal mesh, that is, the functional electrode layer includes a plurality of mutually independent metal mesh electrode blocks, each metal mesh electrode block is a fingerprint identification electrode, transparent
  • the conductive layer includes a plurality of mutually independent transparent electrode blocks, the transparent electrode blocks are in one-to-one correspondence with the metal grid electrode blocks, and the transparent electrode blocks are electrically connected with the corresponding metal grid electrode blocks.
  • the fingerprint recognition electrode is located outside the display function layer and the distance between the fingerprint recognition electrode and the user's finger is close, the signal-to-noise ratio of the fingerprint recognition sensing signal can be improved, and the fingerprint recognition sensing is not easily affected by the display screen signal.
  • the fingerprint identification electrode is electrically connected with a transparent conductive layer, the area of the fingerprint identification electrode can be indirectly increased, thereby increasing the signal volume of the fingerprint identification sensing signal, making the fingerprint signal easier to identify and able to Improve fingerprint recognition accuracy.
  • the manufacturing method of this embodiment includes the following steps:
  • Step 1 providing a display function layer, the display function layer can be an OLED display function layer;
  • Step 2 As shown in FIG. 5, a buffer layer 04 is formed on the display function layer;
  • the buffer layer 04 can be made of inorganic insulating materials, such as silicon nitride, silicon oxide, and the like.
  • Step 3 depositing a metal layer on the buffer layer 04, and patterning the metal layer to form a metal wiring layer 06, the metal wiring layer 06 includes a plurality of metal wirings, and the metal wirings are the fingerprint identification electrode lead-out wirings;
  • the metal wiring may adopt a single-layer structure or a multi-layer structure, and in some embodiments, the metal wiring may adopt a stacked structure of Ti/Al/Ti.
  • Step 4 forming an insulating layer 05 covering the metal wiring layer 06;
  • the insulating layer 05 may be an inorganic insulating material or an organic insulating material, such as silicon nitride as the insulating layer 05 .
  • Step 5 depositing a metal layer on the insulating layer 05, and patterning the metal layer to form a functional electrode layer 06;
  • the functional electrode layer 07 is in the shape of a metal grid, and is periodically disconnected to form a plurality of mutually independent metal grid-shaped fingerprint identification electrodes.
  • the functional electrode layer 07 may adopt a single-layer structure or a multi-layer structure.
  • the functional electrode layer 07 may adopt a Ti/Al/Ti stacked structure.
  • Step 6 forming a transparent conductive layer 08 electrically connected to the functional electrode layer 06;
  • the transparent conductive layer 08 may include a transparent metal oxide conductive layer 081, a metal layer 082 and a transparent metal oxide conductive layer 083 stacked in sequence.
  • the thickness of the metal layer 082 may be 10 -250 angstroms.
  • the transparent metal oxide conductive layer can be made of ITO or IZO, and the thickness can be 700 angstroms, and the metal layer 082 can be made of metals with better conductivity, such as Ag, Ti, etc., and the thickness can be 100 angstroms.
  • the transparent conductive layer 08 may adopt a stacked structure of ITO/Ti/ITO.
  • Step 7 forming a passivation layer 09 covering the transparent conductive layer 08;
  • Step 8 coating a layer of organic insulating material, and forming a protective layer 12 after curing.
  • the protective layer 12 can play a role of protecting the display panel.
  • the transparent conductive layer 08 Since the transparent conductive layer 08 has light transmission characteristics, it will not affect the display of the display function layer. Therefore, the area of the transparent conductive layer can be designed to be relatively large, so that the transparent conductive layer can be electrically connected to the fingerprint identification electrode, which can indirectly increase the number of fingerprints. The area of the identification electrode further increases the signal volume of the fingerprint identification sensing signal.
  • the transparent conductive layer 08 also needs to be divided into a plurality of mutually independent transparent electrode blocks. As shown in FIG. 6, each transparent electrode block 084 is associated with the corresponding The fingerprint recognition electrodes 072 are electrically connected together.
  • the area of a single fingerprint recognition electrode 072 is only equivalent to one or more The area of the two sub-pixels 13 will result in a very small signal amount of the fingerprint identification signal; in this embodiment, the transparent electrode block 084 is electrically connected to the fingerprint identification electrode 072, which indirectly increases the area of the fingerprint identification electrode 072, so that Even if the area of a single fingerprint identification electrode 072 is small, the signal quantity of the fingerprint identification signal and the fingerprint identification accuracy can be guaranteed.
  • a circular polarizer is often attached to the light-emitting side of the OLED display functional layer in the related art.
  • the circular polarizer can reduce the reflectivity of the surface of the OLED display functional layer, but this will make The overall thickness of the display panel is too large, which will affect the repeated folding ability of the display panel when applied in the field of flexible display.
  • the thickness of the transparent metal oxide conductive layer 081, the metal layer 082 and the transparent metal oxide conductive layer 083 can be adjusted so that the transmittance of the transparent conductive layer is not greater than 60%, preferably 40%- 60%, in this way, the transparent conductive layer can reduce the reflectivity of the surface of the display function layer, and there is no need to attach a circular polarizer on the light-emitting side of the display function layer, which can reduce the overall thickness of the display panel and help improve the display panel. Repeatable folding ability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示面板及其制作方法、显示装置,属于显示技术领域。其中,显示面板包括:显示功能层;位于所述显示功能层一侧的功能电极层;位于所述功能电极层远离所述显示功能层一侧、与所述功能电极层电连接的透明导电层,所述透明导电层至少包括一层金属层和一层透明金属氧化物导电层,所述透明金属氧化物导电层的厚度大于所述金属层的厚度。本公开的技术方案能够提高感应信号的信噪比。

Description

显示面板及其制作方法、显示装置
本申请是主张在2021年4月30日在中国提交的中国专利申请No.202110482195.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,特别是指一种显示面板及其制作方法、显示装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)显示装置以及QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示装置由于具有薄、轻、宽视角、主动发光、发光颜色连续可调、成本低、响应速度快、能耗小、驱动电压低、工作温度范围宽、生产工艺简单、发光效率高及可柔性显示等优点,已被列为极具发展前景的下一代显示技术。
相关技术中,可以在OLED显示屏内集成指纹识别或触控等功能,但存在信号的信噪比低等问题。
发明内容
本公开要解决的技术问题是提供一种显示面板及其制作方法、显示装置,能够提高感应信号的信噪比。
为解决上述技术问题,本公开的实施例提供技术方案如下:
一方面,提供一种显示面板,包括:
显示功能层;
位于所述显示功能层一侧的功能电极层;
位于所述功能电极层远离所述显示功能层一侧、与所述功能电极层电连接的透明导电层,所述透明导电层至少包括一层金属层和一层透明金属氧化物导电层,所述透明金属氧化物导电层的厚度大于所述金属层的厚度。
一些实施例中,所述透明导电层包括依次层叠的透明金属氧化物导电层、金属层和透明金属氧化物导电层;或
所述透明导电层包括依次层叠的透明金属氧化物导电层和金属层,所述金属层位于所述透明金属氧化物导电层靠近所述显示功能层的一侧。
一些实施例中,所述透明金属氧化物导电层与所述金属层与的厚度之比为5-7。
一些实施例中,所述金属层的厚度为10-250埃。
一些实施例中,还包括:
位于所述显示功能层出光侧的金属走线层,所述金属走线层包括多个金属走线;
位于所述金属走线层远离所述显示功能层一侧的绝缘层;
所述功能电极层位于所述绝缘层远离所述显示功能层的一侧,所述功能电极层通过贯穿所述绝缘层的过孔与所述金属走线电连接。
一些实施例中,所述功能电极层包括多个触控电极和/或多个指纹识别电极。
一些实施例中,所述透明导电层包括多个相互独立的透明电极块,所述触控电极与所述透明电极块一一对应,所述触控电极在所述显示功能层上的正投影位于对应的透明电极块在所述显示功能层的正投影内。
一些实施例中,所述触控电极采用金属网格。
一些实施例中,所述显示功能层包括多个子像素,所述触控电极在所述显示功能层上的正投影覆盖至少一个子像素,所述金属网格在所述显示功能层上的正投影位于相邻子像素之间。
一些实施例中,所述功能电极层包括阵列排布的P个触控电极,所述金属走线层包括P个金属走线,所述触控电极与所述金属走线一一对应连接,P为大于1的整数。
一些实施例中,所述透明导电层包括多个相互独立的透明电极块,所述指纹识别电极与所述透明电极块一一对应,所述指纹识别电极在所述显示功能层上的正投影位于对应的透明电极块在所述显示功能层的正投影内。
一些实施例中,所述显示功能层包括多个子像素,一个所述指纹识别电极在所述显示功能层上的正投影覆盖一个子像素或一个子像素的一部分。
一些实施例中,所述功能电极层包括M列所述指纹识别电极,所述金属走线层包括2M个沿列方向延伸的金属走线,第i列的偶数个指纹识别电极与第2i个金属走线连接,第i列的奇数个指纹识别电极与第2i-1个金属走线连接,或,第i列的偶数个指纹识别电极与第2i-1个金属走线连接,第i列的奇数个指纹识别电极与第2i个金属走线连接,i为大于等于1小于等于M的整数;
所述功能电极层包括N行所述指纹识别电极,所述金属走线层包括2N个沿行方向延伸的金属走线,第j行的偶数个指纹识别电极与第2j个金属走线连接,第j行的奇数个指纹识别电极与第2j-1个金属走线连接,或,第j行的偶数个指纹识别电极与第2j-1个金属走线连接,第j行的奇数个指纹识别电极与第2j个金属走线连接,j为大于等于1小于等于N的整数。
一些实施例中,所述透明导电层的透过率不大于60%。
一些实施例中,所述透明导电层的透过率为40%-60%。
一些实施例中,还包括:
位于所述透明导电层远离所述显示功能层一侧的钝化层。
一些实施例中,还包括:
位于所述透明导电层远离所述显示功能层一侧的平坦层,所述平坦层的折射率为1.4-1.6。
一些实施例中,还包括:
位于所述透明导电层远离所述显示功能层一侧的黑矩阵,所述金属走线在所述显示功能层上的正投影位于所述黑矩阵在所述显示功能层的正投影内。
一些实施例中,还包括:
位于所述透明导电层远离所述显示功能层一侧的保护层。
本公开实施例还提供了一种显示装置,包括如上所述的显示面板和驱动芯片,所述驱动芯片通过金属走线与所述功能电极层连接。
附图说明
图1为触控基板的平面示意图;
图2为本公开一实施例显示面板的截面示意图;
图3为本公开一实施例显示面板的平面示意图;
图4为本公开实施例显示面板的透光率曲线。
图5为本公开另一实施例显示面板的截面示意图;
图6为本公开另一实施例显示面板的平面示意图;
图7为本公开又一实施例显示面板的平面示意图。
附图标记
01触控电极
02驱动芯片
03显示功能层
04缓冲层
05绝缘层
06金属走线层
07功能电极层
071触控电极
072指纹识别电极
08透明导电层
081透明金属氧化物导电层
082金属层
083透明金属氧化物导电层
084透明电极块
09钝化层
10黑矩阵
11、12保护层
13子像素
14过孔
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开的实施例提供一种显示面板及其制作方法、显示装置,能够提高信噪比。
本公开的实施例提供一种显示面板,包括:
显示功能层,其中,显示功能层包括驱动电路和发光单元,驱动电路可以包括栅绝缘层、栅金属层、源漏金属层、层间绝缘层等膜层,发光单元可以包括阳极、阴极以及位于阳极和阴极之间的发光层;
位于所述显示功能层一侧的功能电极层;
位于所述功能电极层远离所述显示功能层一侧、与所述功能电极层电连接的透明导电层,所述透明导电层至少包括一层金属层和一层透明金属氧化物导电层,所述透明金属氧化物导电层的厚度大于所述金属层的厚度。
本实施例中,功能电极层位于显示功能层外,这样在利用功能电极层实现触控功能或指纹识别功能时,功能电极层与使用者手指的距离近,能够提高感应信号的信噪比;并且在功能电极层远离显示功能层一侧设置有与功能电极层直接电连接的透明导电层,由于透明导电层具有透光特性,不会影响显示功能层的显示,因此,可以将透明导电层的面积设计的比较大,这样通过透明导电层与功能电极层电连接,可以间接增大功能电极层的面积,进一步增加感应信号的信号量。
其中,功能电极层可以采用金属,也可以采用其他导电材料,比如透明导电金属氧化物、石墨烯等。
一些实施例中,所述透明导电层包括依次层叠的透明金属氧化物导电层、金属层和透明金属氧化物导电层;或
所述透明导电层包括依次层叠的透明金属氧化物导电层和金属层,所述金属层位于所述透明金属氧化物导电层靠近所述显示功能层的一侧。
一些实施例中,显示面板还包括:
位于所述显示功能层出光侧的金属走线层,所述金属走线层包括多个金属走线;
位于所述金属走线层远离所述显示功能层一侧的绝缘层;
所述功能电极层位于所述绝缘层远离所述显示功能层的一侧,所述功能电极层通过贯穿所述绝缘层的过孔与所述金属走线电连接。
其中,所述功能电极层可以包括多个触控电极和/或多个指纹识别电极。一些实施例中,功能电极层可以仅包括多个触控电极,这样显示面板能够实现触控功能;一些实施例中,功能电极层可以仅包括多个指纹识别电极,这样显示面板能够实现指纹识别功能;一些实施例中,功能电极层可以包括多个指纹识别电极和多个触控电极,这时多个指纹识别电极和多个触控电极可以异层设置,这样显示面板能够同时实现触控功能和指纹识别功能。
如图1所示,功能电极层可以包括多个相互独立的触控电极01,触控电极01通过贯穿绝缘层的过孔与金属走线连接,金属走线与驱动芯片02连接,通过功能电极层可以实现显示面板集成触控功能。为了不影响显示功能层的显示,触控电极可以采用金属网格,即,功能电极层包括多个相互独立的金属网格电极块,每一金属网格电极块即为一触控电极,透明导电层包括多个相互独立的透明电极块,所述透明电极块与所述金属网格电极块一一对应,所述透明电极块与对应的金属网格电极块电连接,所述触控电极在所述显示功能层上的正投影位于对应的透明电极块在所述显示功能层的正投影内。在实现触控功能时,由于触控电极位于显示功能层外,触控电极与使用者手指的距离近,能够提高触控感应信号的信噪比,并且,触控感应不易受到显示屏幕信号的影响;再者,由于触控电极电连接有透明导电层,能够间接增大触控电极的面积,进而增加触控感应信号的信号量,提高触控精度。
一些实施例中,所述功能电极层包括阵列排布的P个触控电极,所述金属走线层包括P个金属走线,所述触控电极与所述金属走线一一对应连接,P为大于1的整数。
一具体示例中,如图2所示,显示面板包括显示功能层03,位于显示功 能层03上的缓冲层04,在缓冲层04上设置有金属走线层06,金属走线层06包括多个金属走线,金属走线为触控电极引出走线;覆盖金属走线层06的绝缘层05,位于绝缘层05上的功能电极层07,功能电极层07呈金属网格状,周期性断开形成多个相互独立的金属网格状的触控电极,触控电极通过贯穿绝缘层05的过孔与金属走线连接;与功能电极层07电连接的透明导电层08;位于透明导电层08上的钝化层09;位于钝化层09上的黑矩阵10,其中,金属走线在显示功能层上的正投影位于黑矩阵在显示功能层上的正投影内,这样黑矩阵可以对金属走线进行遮挡,避免金属走线反光影响显示功能层的显示;保护层(Overcoat)11,可以对显示面板进行保护。
其中,金属走线可以采用单层结构也可以采用多层结构,一些实施例中,金属走线可以采用Ti/Al/Ti的叠层结构,这样金属走线具有良好的导电性;绝缘层05可以采用无机绝缘材料也可以采用有机绝缘材料,比如采用氮化硅制作绝缘层05;功能电极层07可以采用单层结构也可以采用多层结构,一些实施例中,功能电极层07可以采用Ti/Al/Ti的叠层结构,这样功能电极层具有良好的导电性。
由于透明导电层08具有透光特性,不会影响显示功能层的显示,因此,可以将透明导电层的面积设计的比较大,这样通过透明导电层与触控电极电连接,可以间接增大触控电极的面积,进一步增加触控感应信号的信号量。当然,为了避免不同的触控电极通过透明导电层08连接在一起,透明导电层08也需要分割为多个相互独立的透明电极块,如图3所示,每一透明电极块084与对应的触控电极071电连接在一起。
如图3所示,所述显示功能层包括多个子像素13,所述触控电极071在所述显示功能层上的正投影可以覆盖至少一个子像素13,所述金属网格在所述显示功能层上的正投影位于相邻子像素之间。
透明导电层08可以包括依次层叠的透明金属氧化物导电层081、金属层082和透明金属氧化物导电层083,为了保证透明导电层08的透光性,所述金属层082的厚度可以为10-250埃。
一些实施例中,所述透明金属氧化物导电层与所述金属层与的厚度之比 可以为5-7。
一些实施例中,透明金属氧化物导电层可以采用ITO或IZO,厚度可以为700埃左右,比如500-700埃,金属层082可以采用导电性能较好的金属,比如Ag、Ti等,厚度可以为100埃左右。一具体示例中,透明导电层08可以采用ITO/Ti/ITO的叠层结构。
为了降低OLED显示功能层表面的反射率,相关技术常在OLED显示功能层的出光侧贴附圆偏光片,圆偏光片可以起到降低OLED显示功能层表面的反射率的作用,但这样会使得显示面板的整体厚度偏大,在应用于柔性显示领域中时,会影响显示面板的反复折叠能力。本实施例中,可以通过调整透明金属氧化物导电层081、金属层082和透明金属氧化物导电层083的厚度,使得所述透明导电层的透过率不大于60%,优选为40%-60%,这样透明导电层可以起到降低显示功能层表面的反射率的作用,无需再在显示功能层的出光侧贴附圆偏光片,可以降低显示面板的整体厚度,有利于提升显示面板的反复折叠能力。
金属层082的两侧设置透明金属氧化物导电层083和透明金属氧化物导电层081后形成的堆叠结构可以实现降反射作用,这样可以降低显示面板的反射率。另外,还可以通过调整钝化层09的厚度使得钝化层09与透明导电层08形成干涉降反增透结构,起到降低OLED显示功能层表面的反射率的作用,另外,钝化层09还可以防止水氧对显示面板中功能膜层的侵蚀,钝化层09可以采用无机绝缘材料,比如选择氮化硅或者氧化硅或者两者的组合,厚度可以为800埃左右,比如600-2000埃。
其中,保护层11的厚度可以为2微米左右,采用折射率比较低的材料制备,折射率可以为1.4-1.6,这是因为显示基板表面反射率n=[(n1-n2)/(n1+n2)]^2,其中,n1为表层折射率,n2为空气折射率,透明导电层表面折射率为2.0左右,需要在透明导电层表面形成低折射率材料,以降低与空气界面的反射。
一些实施例中,当透明导电层08采用ITO/Ti/ITO的叠层结构,ITO的厚度为700埃,Ti的厚度为100埃时,透明导电层08构成的半透光结构的透过 率曲线如图4所示。
本实施例中,透明导电层08组成的半透光结构的透过率约40-60%,黑矩阵表面反射率约3%,常规OLED显示功能层本身反射率约46%,但采用本实施例的结构后,显示面板的反射率可以降到5%,且同时具备触控功能。
一些实施例中,功能电极层可以包括多个相互独立的指纹识别电极,指纹识别电极通过贯穿绝缘层的过孔与金属走线连接,通过指纹识别电极可以实现指纹识别功能。为了不影响显示功能层的显示,指纹识别电极可以采用金属网格,即,功能电极层包括多个相互独立的金属网格电极块,每一金属网格电极块即为一指纹识别电极,透明导电层包括多个相互独立的透明电极块,所述透明电极块与所述金属网格电极块一一对应,所述透明电极块与对应的金属网格电极块电连接,所述指纹识别电极在所述显示功能层上的正投影位于对应的透明电极块在所述显示功能层的正投影内。在实现指纹识别功能时,由于指纹识别电极位于显示功能层外,指纹识别电极与使用者手指的距离近,能够提高指纹识别感应信号的信噪比,并且,指纹识别感应不易受到显示屏幕信号的影响,不会被干扰;再者,由于指纹识别电极电连接有透明导电层,能够间接增大指纹识别电极的面积,进而增加指纹识别感应信号的信号量,使得指纹信号更容易被识别,能够提高指纹识别精度。
一具体示例中,如图5所示,显示面板包括显示功能层03,位于显示功能层03上的缓冲层04,在缓冲层04上设置有金属走线层06,金属走线层06包括多个金属走线,金属走线为触控电极引出走线;覆盖金属走线层06的绝缘层05,位于绝缘层05上的功能电极层07,功能电极层07呈金属网格状,周期性断开形成多个相互独立的金属网格状的指纹识别电极,指纹识别电极通过贯穿绝缘层05的过孔与金属走线连接;与功能电极层07电连接的透明导电层08;位于透明导电层08上的钝化层09;保护层12,可以对显示面板进行保护。
其中,金属走线可以采用单层结构也可以采用多层结构,一些实施例中,金属走线可以采用Ti/Al/Ti的叠层结构,这样金属走线具有良好的导电性;绝缘层05可以采用无机绝缘材料也可以采用有机绝缘材料,比如采用氮化硅 制作绝缘层05;功能电极层07可以采用单层结构也可以采用多层结构,一些实施例中,功能电极层07可以采用Ti/Al/Ti的叠层结构,这样功能电极层具有良好的导电性。
由于透明导电层08具有透光特性,不会影响显示功能层的显示,因此,可以将透明导电层的面积设计的比较大,这样通过透明导电层与指纹识别电极电连接,可以间接增大指纹识别电极的面积,进一步增加指纹识别感应信号的信号量。当然,为了避免不同的指纹识别电极通过透明导电层08连接在一起,透明导电层08也需要分割为多个相互独立的透明电极块,如图6所示,每一透明电极块084与对应的指纹识别电极072电连接在一起。
如图6所示,所述显示功能层包括多个子像素13,一个所述指纹识别电极072在所述显示功能层上的正投影可以覆盖一个子像素13或一个子像素13的一部分,指纹识别电极072采用金属网格时,金属网格在所述显示功能层上的正投影位于相邻子像素之间。
为了提高指纹识别的分辨率,需要有足够多的指纹识别电极072,这样也会导致单个指纹识别电极072的面积变小,如图6所示,单个指纹识别电极072的面积仅相当于一个或半个子像素13的面积,这样会导致指纹识别信号的信号量很小;而本实施例中,在指纹识别电极072上电连接了透明电极块084,间接增大指纹识别电极072的面积,这样即使单个指纹识别电极072的面积很小,也能够保证指纹识别信号的信号量和指纹识别精度。
如图6所示,指纹识别电极072通过过孔14与金属走线层连接,所述功能电极层可以包括M列所述指纹识别电极,每列包括多个指纹识别电极,所述金属走线层包括2M个沿列方向延伸的金属走线,第i列的偶数个指纹识别电极与第2i个金属走线连接,第i列的奇数个指纹识别电极与第2i-1个金属走线连接,或,第i列的偶数个指纹识别电极与第2i-1个金属走线连接,第i列的奇数个指纹识别电极与第2i个金属走线连接,i为大于等于1小于等于M的整数;
如图7所示,所述功能电极层可以包括N行所述指纹识别电极,每行包 括多个指纹识别电极,所述金属走线层包括2N个沿行方向延伸的金属走线,第j行的偶数个指纹识别电极与第2j个金属走线连接,第j行的奇数个指纹识别电极与第2j-1个金属走线连接,或,第j行的偶数个指纹识别电极与第2j-1个金属走线连接,第j行的奇数个指纹识别电极与第2j个金属走线连接,j为大于等于1小于等于N的整数。
本实施例中,透明导电层08可以包括依次层叠的透明金属氧化物导电层081、金属层082和透明金属氧化物导电层083,为了保证透明导电层08的透光性,所述金属层082的厚度可以为10-250埃。
一些实施例中,所述透明金属氧化物导电层与所述金属层与的厚度之比可以为5-7。
一些实施例中,透明金属氧化物导电层可以采用ITO或IZO,厚度可以为700埃左右,比如500-700埃,金属层082可以采用导电性能较好的金属,比如Ag、Ti等,厚度可以为10-250埃左右。一具体示例中,透明导电层08可以采用ITO/Ti/ITO的叠层结构。
为了降低OLED显示功能层表面的反射率,相关技术常在OLED显示功能层的出光侧贴附圆偏光片,圆偏光片可以起到降低OLED显示功能层表面的反射率的作用,但这样会使得显示面板的整体厚度偏大,在应用于柔性显示领域中时,会影响显示面板的反复折叠能力。本实施例中,可以通过调整透明金属氧化物导电层081、金属层082和透明金属氧化物导电层083的厚度,使得所述透明导电层的透过率不大于60%,优选为40%-60%,这样透明导电层可以起到降低显示功能层表面的反射率的作用,无需再在显示功能层的出光侧贴附圆偏光片,可以降低显示面板的整体厚度,有利于提升显示面板的反复折叠能力。
金属层082的两侧设置透明金属氧化物导电层083和透明金属氧化物导电层081后形成的堆叠结构可以实现降反射作用,这样可以降低显示面板的反射率。
另外,还可以通过调整钝化层09的厚度使得钝化层09与透明导电层08形成干涉降反增透结构,起到降低OLED显示功能层表面的反射率的作用, 另外,钝化层09还可以防止水氧对显示面板中功能膜层的侵蚀,钝化层09可以采用无机绝缘材料,比如选择氮化硅或者氧化硅或者两者的组合,厚度可以为800埃左右,比如600-2000埃。
其中,保护层12的厚度可以为2微米左右,采用折射率比较低的材料制备,折射率可以为1.4-1.6,这是因为显示基板表面反射率n=[(n1-n2)/(n1+n2)]^2,其中,n1为表层折射率,n2为空气折射率,,透明导电层表面折射率为2.0左右,需要在透明导电层表面形成低折射率材料,以降低与空气界面的反射。
一些实施例中,当透明导电层08采用ITO/Ti/ITO的叠层结构,ITO的厚度为700埃,Ti的厚度为100埃时,透明导电层08构成的半透光结构的透过率曲线如图4所示。本实施例中,透明导电层08组成的半透光结构的透过率约40-60%,黑矩阵表面反射率约3%,常规OLED显示功能层本身反射率约46%,但采用本实施例的结构后,显示面板的反射率可以降到5%,且同时具备指纹识别功能。
本公开实施例还提供了一种显示装置,包括如上所述的显示面板和驱动芯片,所述驱动芯片通过金属走线与所述功能电极层连接。
该显示装置包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。本领域技术人员可以理解,上述显示装置的结构并不构成对显示装置的限定,显示装置可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,显示装置包括但不限于显示器、手机、平板电脑、电视机、可穿戴电子设备、导航显示设备等。
所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板。
本公开实施例还提供了一种显示面板的制作方法,包括:
提供显示功能层,其中,显示功能层包括驱动电路和发光单元,驱动电路可以包括栅绝缘层、栅金属层、源漏金属层、层间绝缘层等膜层,发光单 元可以包括阳极、阴极以及位于阳极和阴极之间的发光层;
在所述显示功能层的一侧形成功能电极层;
在所述功能电极层远离所述显示功能层的一侧形成与所述功能电极层电连接的透明导电层,所述透明导电层至少包括一层金属层和一层透明金属氧化物导电层,所述透明金属氧化物导电层的厚度大于所述金属层的厚度。
本实施例中,功能电极层位于显示功能层外,这样在利用功能电极层实现触控功能或指纹识别功能时,功能电极层与使用者手指的距离近,能够提高感应信号的信噪比;并且在功能电极层远离显示功能层一侧设置有与功能电极层直接电连接的透明导电层,由于透明导电层具有透光特性,不会影响显示功能层的显示,因此,可以将透明导电层的面积设计的比较大,这样通过透明导电层与功能电极层电连接,可以间接增大功能电极层的面积,进一步增加感应信号的信号量。
其中,功能电极层可以采用金属,也可以采用其他导电材料,比如透明导电金属氧化物、石墨烯等。
一些实施例中,所述方法还包括:
在所述显示功能层的出光侧形成金属走线层,所述金属走线层包括多个金属走线;
在所述金属走线层远离所述显示功能层的一侧形成绝缘层;
形成所述功能电极层包括:
在所述绝缘层远离所述显示功能层的一侧形成所述功能电极层,所述功能电极层通过贯穿所述绝缘层的过孔与所述金属走线电连接。
一些实施例中,如图1所示,功能电极层可以包括多个相互独立的触控电极01,触控电极01通过贯穿绝缘层的过孔与金属走线连接,金属走线与驱动芯片02连接,通过功能电极层可以实现触控功能。为了不影响显示功能层的显示,触控电极可以采用金属网格,即,功能电极层包括多个相互独立的金属网格电极块,每一金属网格电极块即为一触控电极,透明导电层包括多个相互独立的透明电极块,所述透明电极块与所述金属网格电极块一一对应,所述透明电极块与对应的金属网格电极块电连接。在实现触控功能时, 由于触控电极位于显示功能层外,触控电极与使用者手指的距离近,能够提高触控感应信号的信噪比,并且,触控感应不易受到显示屏幕信号的影响;再者,由于触控电极电连接有透明导电层,能够间接增大触控电极的面积,进而增加触控感应信号的信号量,提高触控精度。
在功能电极层包括多个相互独立的触控电极时,本实施例的制作方法包括以下步骤:
步骤1、提供一显示功能层,该显示功能层可以为OLED显示功能层;
步骤2、如图2所示,在显示功能层上形成缓冲层04;
缓冲层04可以采用无机绝缘材料,比如氮化硅、氧化硅等。
步骤3、在缓冲层04上沉积金属层,并对金属层进行构图形成金属走线层06,金属走线层06包括多个金属走线,金属走线为触控电极引出走线;
其中,金属走线可以采用单层结构也可以采用多层结构,一些实施例中,金属走线可以采用Ti/Al/Ti的叠层结构。
步骤4、形成覆盖金属走线层06的绝缘层05;
绝缘层05可以采用无机绝缘材料也可以采用有机绝缘材料,比如采用氮化硅作为绝缘层05。
步骤5、在绝缘层05上沉积金属层,并对金属层进行构图形成功能电极层06;
功能电极层07呈金属网格状,周期性断开形成多个相互独立的金属网格状的触控电极,触控电极通过贯穿绝缘层05的过孔与金属走线连接。功能电极层07可以采用单层结构也可以采用多层结构,一些实施例中,功能电极层07可以采用Ti/Al/Ti的叠层结构。
步骤6、形成与功能电极层06电连接的透明导电层08;
透明导电层08可以包括依次层叠的透明金属氧化物导电层081、金属层082和透明金属氧化物导电层083,为了保证透明导电层08的透光性,所述金属层082的厚度可以为10-250埃。
一些实施例中,透明金属氧化物导电层可以采用ITO或IZO,厚度可以为700埃,金属层082可以采用导电性能较好的金属,比如Ag、Ti等,厚度 可以为100埃。一具体示例中,透明导电层08可以采用ITO/Ti/ITO的叠层结构。
步骤7、形成覆盖透明导电层08的钝化层09;
步骤8、在钝化层09上形成黑矩阵10;
其中,金属走线在显示功能层上的正投影位于黑矩阵在显示功能层上的正投影内,这样黑矩阵可以对金属走线进行遮挡,避免金属走线反光影响显示功能层的显示;
步骤9、形成保护层11。
保护层11可以起到保护显示面板的作用。
由于透明导电层08具有透光特性,不会影响显示功能层的显示,因此,可以将透明导电层的面积设计的比较大,这样通过透明导电层与触控电极电连接,可以间接增大触控电极的面积,进一步增加触控感应信号的信号量。当然,为了避免不同的触控电极通过透明导电层08连接在一起,透明导电层08也需要分割为多个相互独立的透明电极块,如图3所示,每一透明电极块084与对应的触控电极071电连接在一起。
为了降低OLED显示功能层表面的反射率,相关技术常在OLED显示功能层的出光侧贴附圆偏光片,圆偏光片可以起到降低OLED显示功能层表面的反射率的作用,但这样会使得显示面板的整体厚度偏大,在应用在柔性显示领域中时,会影响显示面板的反复折叠能力。本实施例中,可以通过调整透明金属氧化物导电层081、金属层082和透明金属氧化物导电层083的厚度,使得所述透明导电层的透过率不大于60%,优选为40%-60%,这样透明导电层可以起到降低显示功能层表面的反射率的作用,无需再在显示功能层的出光侧贴附圆偏光片,可以降低显示面板的整体厚度,有利于提升显示面板的反复折叠能力。
一些实施例中,功能电极层可以包括多个相互独立的指纹识别电极,指纹识别电极通过贯穿绝缘层的过孔与金属走线连接,通过指纹识别电极可以实现指纹识别功能。为了不影响显示功能层的显示,指纹识别电极可以采用金属网格,即,功能电极层包括多个相互独立的金属网格电极块,每一金属 网格电极块即为一指纹识别电极,透明导电层包括多个相互独立的透明电极块,所述透明电极块与所述金属网格电极块一一对应,所述透明电极块与对应的金属网格电极块电连接。在实现指纹识别功能时,由于指纹识别电极位于显示功能层外,指纹识别电极与使用者手指的距离近,能够提高指纹识别感应信号的信噪比,并且,指纹识别感应不易受到显示屏幕信号的影响,不会被干扰;再者,由于指纹识别电极电连接有透明导电层,能够间接增大指纹识别电极的面积,进而增加指纹识别感应信号的信号量,使得指纹信号更容易被识别,能够提高指纹识别精度。
在功能电极层包括多个相互独立的指纹识别电极时,本实施例的制作方法包括以下步骤:
步骤1、提供一显示功能层,该显示功能层可以为OLED显示功能层;
步骤2、如图5所示,在显示功能层上形成缓冲层04;
缓冲层04可以采用无机绝缘材料,比如氮化硅、氧化硅等。
步骤3、在缓冲层04上沉积金属层,并对金属层进行构图形成金属走线层06,金属走线层06包括多个金属走线,金属走线为指纹识别电极引出走线;
其中,金属走线可以采用单层结构也可以采用多层结构,一些实施例中,金属走线可以采用Ti/Al/Ti的叠层结构。
步骤4、形成覆盖金属走线层06的绝缘层05;
绝缘层05可以采用无机绝缘材料也可以采用有机绝缘材料,比如采用氮化硅作为绝缘层05。
步骤5、在绝缘层05上沉积金属层,并对金属层进行构图形成功能电极层06;
功能电极层07呈金属网格状,周期性断开形成多个相互独立的金属网格状的指纹识别电极,指纹识别电极通过贯穿绝缘层05的过孔与金属走线连接。功能电极层07可以采用单层结构也可以采用多层结构,一些实施例中,功能电极层07可以采用Ti/Al/Ti的叠层结构。
步骤6、形成与功能电极层06电连接的透明导电层08;
透明导电层08可以包括依次层叠的透明金属氧化物导电层081、金属层082和透明金属氧化物导电层083,为了保证透明导电层08的透光性,所述金属层082的厚度可以为10-250埃。
一些实施例中,透明金属氧化物导电层可以采用ITO或IZO,厚度可以为700埃,金属层082可以采用导电性能较好的金属,比如Ag、Ti等,厚度可以为100埃。一具体示例中,透明导电层08可以采用ITO/Ti/ITO的叠层结构。
步骤7、形成覆盖透明导电层08的钝化层09;
步骤8、涂覆一层有机绝缘材料,固化后形成保护层12。
保护层12可以起到保护显示面板的作用。
由于透明导电层08具有透光特性,不会影响显示功能层的显示,因此,可以将透明导电层的面积设计的比较大,这样通过透明导电层与指纹识别电极电连接,可以间接增大指纹识别电极的面积,进一步增加指纹识别感应信号的信号量。当然,为了避免不同的指纹识别电极通过透明导电层08连接在一起,透明导电层08也需要分割为多个相互独立的透明电极块,如图6所示,每一透明电极块084与对应的指纹识别电极072电连接在一起。
为了提高指纹识别的分辨率,需要有足够多的指纹识别电极072,这样也会导致单个指纹识别电极072的面积变小,如图7所示,单个指纹识别电极072的面积仅相当于一个或两个子像素13的面积,这样会导致指纹识别信号的信号量很小;而本实施例中,在指纹识别电极072上电连接了透明电极块084,间接增大指纹识别电极072的面积,这样即使单个指纹识别电极072的面积很小,也能够保证指纹识别信号的信号量和指纹识别精度。
为了降低OLED显示功能层表面的反射率,相关技术常在OLED显示功能层的出光侧贴附圆偏光片,圆偏光片可以起到降低OLED显示功能层表面的反射率的作用,但这样会使得显示面板的整体厚度偏大,在应用在柔性显示领域中时,会影响显示面板的反复折叠能力。本实施例中,可以通过调整透明金属氧化物导电层081、金属层082和透明金属氧化物导电层083的厚度,使得所述透明导电层的透过率不大于60%,优选为40%-60%,这样透明 导电层可以起到降低显示功能层表面的反射率的作用,无需再在显示功能层的出光侧贴附圆偏光片,可以降低显示面板的整体厚度,有利于提升显示面板的反复折叠能力。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种显示面板,其特征在于,包括:
    显示功能层;
    位于所述显示功能层一侧的功能电极层;
    位于所述功能电极层远离所述显示功能层一侧、与所述功能电极层电连接的透明导电层,所述透明导电层至少包括一层金属层和一层透明金属氧化物导电层,所述透明金属氧化物导电层的厚度大于所述金属层的厚度。
  2. 根据权利要求1所述的显示面板,其特征在于,所述透明导电层包括依次层叠的透明金属氧化物导电层、金属层和透明金属氧化物导电层;或
    所述透明导电层包括依次层叠的透明金属氧化物导电层和金属层,所述金属层位于所述透明金属氧化物导电层靠近所述显示功能层的一侧。
  3. 根据权利要求1-2中任一项所述的显示面板,其特征在于,所述透明金属氧化物导电层与所述金属层与的厚度之比为5-7。
  4. 根据权利要求1-3中任一项所述的显示面板,其特征在于,所述金属层的厚度为10-250埃。
  5. 根据权利要求1-4中任一项所述的显示面板,其特征在于,还包括:
    位于所述显示功能层出光侧的金属走线层,所述金属走线层包括多个金属走线;
    位于所述金属走线层远离所述显示功能层一侧的绝缘层;
    所述功能电极层位于所述绝缘层远离所述显示功能层的一侧,所述功能电极层通过贯穿所述绝缘层的过孔与所述金属走线电连接。
  6. 根据权利要求1-5中任一项所述的显示面板,其特征在于,所述功能电极层包括多个触控电极和/或多个指纹识别电极。
  7. 根据权利要求6所述的显示面板,其特征在于,所述透明导电层包括多个相互独立的透明电极块,所述触控电极与所述透明电极块一一对应,所述触控电极在所述显示功能层上的正投影位于对应的透明电极块在所述显示功能层的正投影内。
  8. 根据权利要求7所述的显示面板,其特征在于,所述触控电极采用金属网格。
  9. 根据权利要求8所述的显示面板,其特征在于,所述显示功能层包括多个子像素,所述触控电极在所述显示功能层上的正投影覆盖至少一个子像素,所述金属网格在所述显示功能层上的正投影位于相邻子像素之间。
  10. 根据权利要求7所述的显示面板,其特征在于,所述功能电极层包括阵列排布的P个触控电极,所述金属走线层包括P个金属走线,所述触控电极与所述金属走线一一对应连接,P为大于1的整数。
  11. 根据权利要求6所述的显示面板,其特征在于,所述透明导电层包括多个相互独立的透明电极块,所述指纹识别电极与所述透明电极块一一对应,所述指纹识别电极在所述显示功能层上的正投影位于对应的透明电极块在所述显示功能层的正投影内。
  12. 根据权利要求11所述的显示面板,其特征在于,
    所述显示功能层包括多个子像素,一个所述指纹识别电极在所述显示功能层上的正投影覆盖一个子像素或一个子像素的一部分。
  13. 根据权利要求11所述的显示面板,其特征在于,
    所述功能电极层包括M列所述指纹识别电极,所述金属走线层包括2M个沿列方向延伸的金属走线,第i列的偶数个指纹识别电极与第2i个金属走线连接,第i列的奇数个指纹识别电极与第2i-1个金属走线连接,或,第i列的偶数个指纹识别电极与第2i-1个金属走线连接,第i列的奇数个指纹识别电极与第2i个金属走线连接,i为大于等于1小于等于M的整数;
    所述功能电极层包括N行所述指纹识别电极,所述金属走线层包括2N个沿行方向延伸的金属走线,第j行的偶数个指纹识别电极与第2j个金属走线连接,第j行的奇数个指纹识别电极与第2j-1个金属走线连接,或,第j行的偶数个指纹识别电极与第2j-1个金属走线连接,第j行的奇数个指纹识别电极与第2j个金属走线连接,j为大于等于1小于等于N的整数。
  14. 根据权利要求1-13中任一项所述的显示面板,其特征在于,所述透 明导电层的透过率不大于60%。
  15. 根据权利要求14所述的显示面板,其特征在于,所述透明导电层的透过率为40%-60%。
  16. 根据权利要求1-13中任一项所述的显示面板,其特征在于,还包括:
    位于所述透明导电层远离所述显示功能层一侧的钝化层。
  17. 根据权利要求1-13中任一项所述的显示面板,其特征在于,还包括:
    位于所述透明导电层远离所述显示功能层一侧的平坦层,所述平坦层的折射率为1.4-1.6。
  18. 根据权利要求1-13中任一项所述的显示面板,其特征在于,还包括:
    位于所述透明导电层远离所述显示功能层一侧的黑矩阵,所述金属走线在所述显示功能层上的正投影位于所述黑矩阵在所述显示功能层的正投影内。
  19. 根据权利要求1-13中任一项所述的显示面板,其特征在于,还包括:
    位于所述透明导电层远离所述显示功能层一侧的保护层。
  20. 一种显示装置,其特征在于,包括如权利要求1-19中任一项所述的显示面板和驱动芯片,所述驱动芯片通过金属走线与所述功能电极层连接。
PCT/CN2021/130286 2021-04-30 2021-11-12 显示面板及其制作方法、显示装置 WO2022227495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110482195.8 2021-04-30
CN202110482195.8A CN113224122A (zh) 2021-04-30 2021-04-30 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2022227495A1 true WO2022227495A1 (zh) 2022-11-03

Family

ID=77090704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130286 WO2022227495A1 (zh) 2021-04-30 2021-11-12 显示面板及其制作方法、显示装置

Country Status (2)

Country Link
CN (1) CN113224122A (zh)
WO (1) WO2022227495A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224122A (zh) * 2021-04-30 2021-08-06 京东方科技集团股份有限公司 显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160306470A1 (en) * 2015-04-15 2016-10-20 Samsung Display Co., Ltd. Touch screen panel and method of manufacturing the same
CN107512050A (zh) * 2017-09-15 2017-12-26 京东方科技集团股份有限公司 触控面板及其制作方法、触控显示装置
CN111722757A (zh) * 2020-07-24 2020-09-29 京东方科技集团股份有限公司 一种显示装置及其制作方法
CN113224122A (zh) * 2021-04-30 2021-08-06 京东方科技集团股份有限公司 显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160306470A1 (en) * 2015-04-15 2016-10-20 Samsung Display Co., Ltd. Touch screen panel and method of manufacturing the same
CN107512050A (zh) * 2017-09-15 2017-12-26 京东方科技集团股份有限公司 触控面板及其制作方法、触控显示装置
CN111722757A (zh) * 2020-07-24 2020-09-29 京东方科技集团股份有限公司 一种显示装置及其制作方法
CN113224122A (zh) * 2021-04-30 2021-08-06 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN113224122A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
TWI463452B (zh) 觸控式顯示裝置及其製造方法
US20190341428A1 (en) Organic light-emitting diode display device
WO2015096764A1 (zh) 一种触控显示装置及其制备方法
CN112667106A (zh) 一种触控显示面板及触控显示装置
US11537253B2 (en) Touch substrate and manufacturing method therefor, touch display substrate, and touch display device
WO2020200168A1 (zh) Amoled显示屏、显示设备及移动终端
CN110400823A (zh) 具有触摸传感器的有机发光显示设备
WO2022017020A1 (zh) 一种显示装置及其制作方法
US11112898B2 (en) Force touch structure, force touch panel and display device
US11581374B2 (en) Display substrate and method of manufacturing the same, display device
US20230134755A1 (en) Display apparatus
WO2021168646A1 (zh) 显示基板及显示装置
US20240012523A1 (en) Self-capacitance touch panel and touch display panel
US11476448B2 (en) Display device and preparation method thereof
CN105702701A (zh) 压电触控式有机发光显示面板及制造方法、有机发光显示器
WO2022227495A1 (zh) 显示面板及其制作方法、显示装置
US11842019B2 (en) Touch substrate and display panel
US20240168598A1 (en) Touch structure and display panel
US20230168757A1 (en) Touch Panel and Preparation Method thereof, and Display Touch Apparatus
CN114335090A (zh) Oled触控显示面板及触控显示装置
US20240188372A1 (en) Display panel, manufacturing method and display device
US20200194506A1 (en) Touch display apparatus and method for manufacturing same
US11985868B2 (en) Display apparatus
CN219288077U (zh) 显示面板和电子装置
CN218388534U (zh) 输入感测面板和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17799394

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938955

Country of ref document: EP

Kind code of ref document: A1