WO2022227351A1 - 一种双功能电极的制备方法 - Google Patents

一种双功能电极的制备方法 Download PDF

Info

Publication number
WO2022227351A1
WO2022227351A1 PCT/CN2021/114222 CN2021114222W WO2022227351A1 WO 2022227351 A1 WO2022227351 A1 WO 2022227351A1 CN 2021114222 W CN2021114222 W CN 2021114222W WO 2022227351 A1 WO2022227351 A1 WO 2022227351A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
solution
bifunctional electrode
preparing
roasting
Prior art date
Application number
PCT/CN2021/114222
Other languages
English (en)
French (fr)
Inventor
王鹏杰
王金意
张畅
任志博
徐显明
张欢
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能集团技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能集团技术创新中心有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022227351A1 publication Critical patent/WO2022227351A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/067Inorganic compound e.g. ITO, silica or titania
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide

Definitions

  • the invention belongs to the technical field of high-temperature electrolysis hydrogen production, and relates to a preparation method of a bifunctional electrode.
  • water electrolysis hydrogen production technology is mainly divided into three types, alkaline water electrolysis hydrogen production technology, proton exchange membrane water electrolysis hydrogen production technology and high temperature water electrolysis hydrogen production technology.
  • the first two electrolysis water hydrogen production technologies belong to the category of low temperature electrolysis water technology. Liquid water is used as the raw material for electrolysis, and the electrolysis efficiency is lower than that of high temperature electrolysis water hydrogen production. , chemical plants and other by-product steam for electrolysis.
  • the high-temperature water electrolysis hydrogen production technology also includes the high temperature molten carbonate electrolysis water hydrogen production technology and the high temperature solid oxide water electrolysis hydrogen production technology. If these two technologies use water vapor as the raw material, the electrolysis products are hydrogen and oxygen. Water vapor and carbon dioxide are used as raw materials, and syngas and oxygen can also be produced. Syngas, as an important chemical raw material, can further produce chemical products such as methane and methanol.
  • the cathode materials currently used in these two technologies are single-function electrodes, which cannot directly produce chemical products such as methane.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a preparation method of a bifunctional electrode, and the electrode prepared by the method can directly produce methane.
  • the preparation method of the bifunctional electrode of the present invention comprises the following steps:
  • the material of the base material is titanium oxide, aluminum oxide, iron oxide or lithium metaaluminate.
  • the soluble salt is a nickel soluble salt, a platinum soluble salt or an iridium soluble salt.
  • the material of the furnace in the high temperature atmosphere roasting furnace is a high temperature resistant alloy material, and the heating rod is a silicon carbon rod.
  • the hydrothermal autoclave can withstand a high pressure of 30MPa.
  • the transition metal salt solution is the salt solution of the soluble non-radioactive subgroup elements IB-VIIIB in the periodic table of elements
  • the porosity of the base material is 30% to 80%.
  • the immersion time in step 2) is 24h, wherein the ratio of the solution volume of the soluble salt to the pore volume of the matrix material is 1:1.
  • the atmosphere in the roasting process is a reducing atmosphere, the roasting temperature ranges from 300°C to 1300°C, and the roasting time is 0.5h to 12h;
  • step 5 bake at 80-120°C for 5h-24h.
  • step 4 the volume ratio of the hydrazine hydrate aqueous solution and the transition metal salt solution is 1:(1-3), and the total volume of the hydrazine hydrate aqueous solution and the transition metal salt solution is 5-20 times the volume of the base material.
  • the bifunctional electrode prepared by the preparation method of the bifunctional electrode of the present invention is used as a cathode material of a high-temperature electrolytic cell, and can directly produce chemical products such as methane by using water vapor and carbon dioxide as raw materials, and is easy to operate. Easy to promote and apply.
  • the preparation method of the bifunctional electrode of the present invention comprises the following steps:
  • the calcined base material is placed in a hydrothermal autoclave, and an aqueous hydrazine hydrate solution and a transition metal salt solution are added.
  • the material of the base material is titanium oxide.
  • the soluble salt is a nickel soluble salt.
  • the material of the furnace in the high temperature atmosphere roasting furnace is a high temperature resistant alloy material, and the heating rod is a silicon carbon rod.
  • the hydrothermal autoclave can withstand a high pressure of 30MPa.
  • the transition metal salt solution is the salt solution of the soluble non-radioactive subgroup elements IB-VIIIB in the periodic table of elements
  • the porosity of the base material was 30%.
  • the immersion time in step 2) is 24h, wherein the ratio of the solution volume of the soluble salt to the pore volume of the matrix material is 1:1.
  • the atmosphere in the roasting process is a reducing atmosphere, the roasting temperature range is 300°C, and the roasting time is 0.5h;
  • step 5 bake at 80 for 5h.
  • step 4 the volume ratio of the hydrazine hydrate aqueous solution and the transition metal salt solution is 1:1, and the total volume of the hydrazine hydrate aqueous solution and the transition metal salt solution is 5 times the volume of the base material.
  • the preparation method of the bifunctional electrode of the present invention comprises the following steps:
  • the calcined base material is placed in a hydrothermal autoclave, and an aqueous hydrazine hydrate solution and a transition metal salt solution are added.
  • the material of the base material is aluminum oxide.
  • the soluble salt is a platinum soluble salt.
  • the material of the furnace in the high temperature atmosphere roasting furnace is a high temperature resistant alloy material, and the heating rod is a silicon carbon rod.
  • the hydrothermal autoclave can withstand a high pressure of 30MPa.
  • the transition metal salt solution is the salt solution of the soluble non-radioactive subgroup elements IB-VIIIB in the periodic table of elements
  • the porosity of the base material was 80%.
  • the immersion time in step 2) is 24h, wherein the ratio of the solution volume of the soluble salt to the pore volume of the matrix material is 1:1.
  • the atmosphere in the roasting process is a reducing atmosphere, the roasting temperature range is 1300°C, and the roasting time is 12h;
  • step 5 bake at 120° C. for 24 hours.
  • step 4 the volume ratio of the hydrazine hydrate aqueous solution and the transition metal salt solution is 1:3, and the total volume of the hydrazine hydrate aqueous solution and the transition metal salt solution is 20 times the volume of the base material.
  • the preparation method of the bifunctional electrode of the present invention comprises the following steps:
  • the calcined base material is placed in a hydrothermal autoclave, and an aqueous hydrazine hydrate solution and a transition metal salt solution are added.
  • the material of the base material is iron oxide.
  • Soluble salts are iridium soluble salts.
  • the material of the furnace in the high temperature atmosphere roasting furnace is a high temperature resistant alloy material, and the heating rod is a silicon carbon rod.
  • the hydrothermal autoclave can withstand a high pressure of 30MPa.
  • the transition metal salt solution is the salt solution of the soluble non-radioactive subgroup elements IB-VIIIB in the periodic table of elements
  • the porosity of the base material was 60%.
  • the immersion time in step 2) is 24h, wherein the ratio of the solution volume of the soluble salt to the pore volume of the matrix material is 1:1.
  • the atmosphere in the roasting process is a reducing atmosphere, the roasting temperature range is 800°C, and the roasting time is 8h;
  • step 5 bake at 100°C for 10h.
  • step 4 the volume ratio of the hydrazine hydrate aqueous solution and the transition metal salt solution is 1:2, and the total volume of the hydrazine hydrate aqueous solution and the transition metal salt solution is 15 times the volume of the base material.
  • the preparation method of the bifunctional electrode of the present invention comprises the following steps:
  • the calcined base material is placed in a hydrothermal autoclave, and an aqueous hydrazine hydrate solution and a transition metal salt solution are added.
  • the material of the base material is lithium metaaluminate.
  • Soluble salts are iridium soluble salts.
  • the material of the furnace in the high temperature atmosphere roasting furnace is a high temperature resistant alloy material, and the heating rod is a silicon carbon rod.
  • the hydrothermal autoclave can withstand a high pressure of 30MPa.
  • the transition metal salt solution is the salt solution of the soluble non-radioactive subgroup elements IB-VIIIB in the periodic table of elements
  • the porosity of the base material was 40%.
  • the immersion time in step 2) is 24h, wherein the ratio of the solution volume of the soluble salt to the pore volume of the matrix material is 1:1.
  • the atmosphere in the roasting process is a reducing atmosphere, the roasting temperature range is 500°C, and the roasting time is 2h;
  • step 5 bake at 90°C for 6h.
  • step 4 the volume ratio of the hydrazine hydrate aqueous solution and the transition metal salt solution is 1:1.5, and the total volume of the hydrazine hydrate aqueous solution and the transition metal salt solution is 6 times the volume of the base material.
  • the preparation method of the bifunctional electrode of the present invention comprises the following steps:
  • the calcined base material is placed in a hydrothermal autoclave, and an aqueous hydrazine hydrate solution and a transition metal salt solution are added.
  • the material of the base material is titanium oxide, aluminum oxide, iron oxide or lithium metaaluminate.
  • the soluble salt is a nickel soluble salt, a platinum soluble salt or an iridium soluble salt.
  • the material of the furnace in the high temperature atmosphere roasting furnace is a high temperature resistant alloy material, and the heating rod is a silicon carbon rod.
  • the hydrothermal autoclave can withstand a high pressure of 30MPa.
  • the transition metal salt solution is the salt solution of the soluble non-radioactive subgroup elements IB-VIIIB in the periodic table of elements
  • the porosity of the base material was 80%.
  • the immersion time in step 2) is 24h, wherein the ratio of the solution volume of the soluble salt to the pore volume of the matrix material is 1:1.
  • the atmosphere in the roasting process is a reducing atmosphere, the roasting temperature range is 300°C, and the roasting time is 12h;
  • step 5 bake at 80 for 24h.
  • step 4 the volume ratio of the hydrazine hydrate aqueous solution and the transition metal salt solution is 1:1, and the total volume of the hydrazine hydrate aqueous solution and the transition metal salt solution is 20 times the volume of the base material.
  • the preparation method of the bifunctional electrode of the present invention comprises the following steps:
  • the calcined base material is placed in a hydrothermal autoclave, and an aqueous hydrazine hydrate solution and a transition metal salt solution are added.
  • the material of the base material is titanium oxide, aluminum oxide, iron oxide or lithium metaaluminate.
  • the soluble salt is a nickel soluble salt, a platinum soluble salt or an iridium soluble salt.
  • the material of the furnace in the high temperature atmosphere roasting furnace is a high temperature resistant alloy material, and the heating rod is a silicon carbon rod.
  • the hydrothermal autoclave can withstand a high pressure of 30MPa.
  • the transition metal salt solution is the salt solution of the soluble non-radioactive subgroup elements IB-VIIIB in the periodic table of elements
  • the porosity of the base material was 70%.
  • the immersion time in step 2) is 24h, wherein the ratio of the solution volume of the soluble salt to the pore volume of the matrix material is 1:1.
  • step 3 the atmosphere in the roasting process is a reducing atmosphere, the roasting temperature range is 1100°C, and the roasting time is 11h;
  • step 5 bake at 110°C for 20h.
  • step 4 the volume ratio of the hydrazine hydrate aqueous solution and the transition metal salt solution is 1:2.5, and the total volume of the hydrazine hydrate aqueous solution and the transition metal salt solution is 18 times the volume of the base material.
  • the preparation method of the bifunctional electrode of the present invention comprises the following steps:
  • the calcined base material is placed in a hydrothermal autoclave, and a hydrazine hydrate aqueous solution and a transition metal nickel salt solution are added.
  • the material of the furnace in the high temperature atmosphere roasting furnace is a high temperature resistant alloy material, and the heating rod is a silicon carbon rod.
  • the hydrothermal autoclave can withstand a high pressure of 30MPa.
  • the transition metal salt solution is the salt solution of the soluble non-radioactive subgroup elements IB-VIIIB in the periodic table of elements
  • the immersion time in step 2) is 24h, wherein the ratio of the solution volume of the soluble salt to the pore volume of the matrix material is 1:1.
  • step 3 the atmosphere in the roasting process is a reducing atmosphere, the roasting temperature is 800°C, and the roasting time is 12h;
  • step 5 bake at 110°C for 20h.
  • step 4 the volume ratio of the hydrazine hydrate aqueous solution and the transition metal nickel salt solution is 1:2.5, and the total volume of the hydrazine hydrate aqueous solution and the transition metal nickel salt solution is 18 times the volume of the base material.
  • the prepared bifunctional electrode is divided into two layers, the base material is a porous layer, and the one prepared in step (4) is a deposition layer.
  • the obtained bifunctional electrode is assembled into a high-temperature molten carbonate electrolytic cell, and a mixture of 38% potassium carbonate and 62% lithium carbonate (the ratio is a molar ratio) is used as the electrolyte, lithium metaaluminate is used as the diaphragm, and nickel oxide is used as the positive electrode material.
  • the prepared bifunctional electrode is used as a negative electrode material, and the deposition layer of the negative electrode material is assembled close to the lithium metaaluminate separator.
  • the operating temperature of the electrolytic cell is 650 ° C, and the positive and negative electrodes are applied with a DC voltage of 1.5V.
  • the negative electrode is fed with a mixture of carbon dioxide and water vapor with a molar ratio of 5:4.
  • the reaction that occurs in the positive electrode deposition layer is (1-1), and the reaction that occurs in the porous layer is (1-2):
  • the reaction at the positive electrode is (1-3):
  • the conversion efficiency is 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种双功能电极的制备方法,包括以下步骤:1)取多孔物质作为基底材料;2)将基底材料放置于可溶性盐的溶液中进行浸渍;3)将浸渍后的基底材料放置于高温气氛炉中焙烧;4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过渡金属盐溶液;5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极,该方法制备得到的电极能够直接产出甲烷。

Description

一种双功能电极的制备方法
本申请要求于2021年04月25日提交中国专利局、申请号为202110449660.8、发明名称为“一种双功能电极的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于高温电解制氢技术领域,涉及一种双功能电极的制备方法。
背景技术
目前,电解水制氢技术主要分为三种,碱性电解水制氢技术、质子交换膜电解水制氢技术和高温电解水制氢技术。前两种电解水制氢技术,属于低温电解水技术范畴,以液态水为电解原料,电解效率相对于高温电解水制氢效率较低,高温电解水可以以水蒸气为原料,可以利用发电厂、化工厂等副产的蒸汽进行电解。
高温电解水制氢技术又包括高温熔融碳酸盐电解水制氢技术和高温固体氧化物电解水制氢技术,这两种技术如果以水蒸气为原料,其电解产物为氢气和氧气,如果以水蒸气加二氧化碳为原料,还可产生合成气和氧气。合成气作为重要的化工原料,可以进一步生产甲烷、甲醇等化工产品。
但是目前这两种技术所用的阴极材料均为单一功能电极,不能直接产出甲烷等化工产品。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种双功能电极的制备方法,该方法制备得到的电极能能够直接产出甲烷。
为达到上述目的,本发明所述的双功能电极的制备方法包括以下步骤:
1)取多孔物质作为基底材料;
2)将基底材料放置于可溶性盐的溶液中进行浸渍;
3)将浸渍后的基底材料放置于高温气氛炉中焙烧;
4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过度金属盐溶液;
5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极。
基底材料的材质为氧化钛、氧化铝、氧化铁或偏铝酸锂。
可溶性盐为镍可溶性盐、铂可溶性盐或铱可溶性盐。
高温气氛焙烧炉中炉膛的材质为耐高温合金材料,加热棒为硅碳棒。
水热高压反应釜能够承受30MPa高压。
过渡金属盐溶液为元素周期表中IB-VIIIB可溶性非放射副族元素的盐溶液
基底材料的孔隙率为30%~80%。
步骤2)中的浸渍时间为24h,其中,可溶性盐的溶液体积与基体材料孔隙体积的比为1:1。
步骤3)中,焙烧过程中的气氛为还原性气氛,焙烧温度范围为300℃~1300℃,焙烧时间为0.5h~12h;
步骤5)中,在80~120℃下烘烤5h~24h。
步骤4)中,水合肼水溶液与过度金属盐溶液的体积比为1:(1~3),水合肼水溶液和过渡金属盐溶液的总体积为基体材料体积的5~20倍。
本发明具有以下有益效果:
本发明所述的双功能电极的制备方法制备得到的双功能电极在具体使用时,作为高温电解池的阴极材料使用,以水蒸气和二氧化碳为原料,可以直接产生甲烷等化工产品,操作方便,便于推广及应用。
具体实施方式
下面结合实施例对本发明做进一步详细描述:
实施例一
本发明所述的双功能电极的制备方法包括以下步骤:
1)取多孔物质作为基底材料;
2)将基底材料放置于可溶性盐的溶液中进行浸渍;
3)将浸渍后的基底材料放置于高温气氛炉中焙烧;
4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过度金属盐溶液。
5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极。
基底材料的材质为氧化钛。
可溶性盐为镍可溶性盐。
高温气氛焙烧炉中炉膛的材质为耐高温合金材料,加热棒为硅碳棒。
水热高压反应釜能够承受30MPa高压。
过渡金属盐溶液为元素周期表中IB-VIIIB可溶性非放射副族元素的盐溶液
基底材料的孔隙率为30%。
步骤2)中的浸渍时间为24h,其中,可溶性盐的溶液体积与基体材料孔隙体积的比为1:1。
步骤3)中,焙烧过程中的气氛为还原性气氛,焙烧温度范围为300℃,焙烧时间为0.5h;
步骤5)中,在80下烘烤5h。
步骤4)中,水合肼水溶液与过度金属盐溶液的体积比为1:1,水合肼水溶液和过渡金属盐溶液的总体积为基体材料体积的5倍。
实施例二
本发明所述的双功能电极的制备方法包括以下步骤:
1)取多孔物质作为基底材料;
2)将基底材料放置于可溶性盐的溶液中进行浸渍;
3)将浸渍后的基底材料放置于高温气氛炉中焙烧;
4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过度金属盐溶液。
5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极。
基底材料的材质为氧化铝。
可溶性盐为铂可溶性盐。
高温气氛焙烧炉中炉膛的材质为耐高温合金材料,加热棒为硅碳棒。
水热高压反应釜能够承受30MPa高压。
过渡金属盐溶液为元素周期表中IB-VIIIB可溶性非放射副族元素的盐溶液
基底材料的孔隙率为80%。
步骤2)中的浸渍时间为24h,其中,可溶性盐的溶液体积与基体材料孔隙体积的比为1:1。
步骤3)中,焙烧过程中的气氛为还原性气氛,焙烧温度范围为1300℃,焙烧时间为12h;
步骤5)中,在120℃下烘烤24h。
步骤4)中,水合肼水溶液与过度金属盐溶液的体积比为1:3,水合肼水溶液和过渡金属盐溶液的总体积为基体材料体积的20倍。
实施例三
本发明所述的双功能电极的制备方法包括以下步骤:
1)取多孔物质作为基底材料;
2)将基底材料放置于可溶性盐的溶液中进行浸渍;
3)将浸渍后的基底材料放置于高温气氛炉中焙烧;
4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过度金属盐溶液。
5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极。
基底材料的材质为氧化铁。
可溶性盐为铱可溶性盐。
高温气氛焙烧炉中炉膛的材质为耐高温合金材料,加热棒为硅碳棒。
水热高压反应釜能够承受30MPa高压。
过渡金属盐溶液为元素周期表中IB-VIIIB可溶性非放射副族元素的盐溶液
基底材料的孔隙率为60%。
步骤2)中的浸渍时间为24h,其中,可溶性盐的溶液体积与基体材料孔隙体积的比为1:1。
步骤3)中,焙烧过程中的气氛为还原性气氛,焙烧温度范围为800℃,焙烧时间为8h;
步骤5)中,在100℃下烘烤10h。
步骤4)中,水合肼水溶液与过度金属盐溶液的体积比为1:2,水合肼水溶液和过渡金属盐溶液的总体积为基体材料体积的15倍。
实施例四
本发明所述的双功能电极的制备方法包括以下步骤:
1)取多孔物质作为基底材料;
2)将基底材料放置于可溶性盐的溶液中进行浸渍;
3)将浸渍后的基底材料放置于高温气氛炉中焙烧;
4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过度金属盐溶液。
5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极。
基底材料的材质为偏铝酸锂。
可溶性盐为铱可溶性盐。
高温气氛焙烧炉中炉膛的材质为耐高温合金材料,加热棒为硅碳棒。
水热高压反应釜能够承受30MPa高压。
过渡金属盐溶液为元素周期表中IB-VIIIB可溶性非放射副族元素的盐溶液
基底材料的孔隙率为40%。
步骤2)中的浸渍时间为24h,其中,可溶性盐的溶液体积与基体材料孔隙体积的比为1:1。
步骤3)中,焙烧过程中的气氛为还原性气氛,焙烧温度范围为500℃,焙烧时间为2h;
步骤5)中,在90℃下烘烤6h。
步骤4)中,水合肼水溶液与过度金属盐溶液的体积比为1:1.5,水合肼水溶液和过渡金属盐溶液的总体积为基体材料体积的6倍。
实施例五
本发明所述的双功能电极的制备方法包括以下步骤:
1)取多孔物质作为基底材料;
2)将基底材料放置于可溶性盐的溶液中进行浸渍;
3)将浸渍后的基底材料放置于高温气氛炉中焙烧;
4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过度金属盐溶液。
5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极。
基底材料的材质为氧化钛、氧化铝、氧化铁或偏铝酸锂。
可溶性盐为镍可溶性盐、铂可溶性盐或铱可溶性盐。
高温气氛焙烧炉中炉膛的材质为耐高温合金材料,加热棒为硅碳棒。
水热高压反应釜能够承受30MPa高压。
过渡金属盐溶液为元素周期表中IB-VIIIB可溶性非放射副族元素的盐溶液
基底材料的孔隙率为80%。
步骤2)中的浸渍时间为24h,其中,可溶性盐的溶液体积与基体材料孔隙体积的比为1:1。
步骤3)中,焙烧过程中的气氛为还原性气氛,焙烧温度范围为300℃,焙烧时间为12h;
步骤5)中,在80下烘烤24h。
步骤4)中,水合肼水溶液与过度金属盐溶液的体积比为1:1,水合肼水溶液和过渡金属盐溶液的总体积为基体材料体积的20倍。
实施例六
本发明所述的双功能电极的制备方法包括以下步骤:
1)取多孔物质作为基底材料;
2)将基底材料放置于可溶性盐的溶液中进行浸渍;
3)将浸渍后的基底材料放置于高温气氛炉中焙烧;
4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过度金属盐溶液。
5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极。
基底材料的材质为氧化钛、氧化铝、氧化铁或偏铝酸锂。
可溶性盐为镍可溶性盐、铂可溶性盐或铱可溶性盐。
高温气氛焙烧炉中炉膛的材质为耐高温合金材料,加热棒为硅碳棒。
水热高压反应釜能够承受30MPa高压。
过渡金属盐溶液为元素周期表中IB-VIIIB可溶性非放射副族元素的盐溶液
基底材料的孔隙率为70%。
步骤2)中的浸渍时间为24h,其中,可溶性盐的溶液体积与基体材料孔隙体积的比为1:1。
步骤3)中,焙烧过程中的气氛为还原性气氛,焙烧温度范围为1100℃,焙烧时间为11h;
步骤5)中,在110℃下烘烤20h。
步骤4)中,水合肼水溶液与过度金属盐溶液的体积比为1:2.5,水合肼水溶液和过渡金属盐溶液的总体积为基体材料体积的18倍。
实施例七
本发明所述的双功能电极的制备方法包括以下步骤:
1)取氧化钛作为基底材料,基底材料孔隙率为65%;
2)将基底材料放置于镍可溶性盐的溶液中进行浸渍;
3)将浸渍后的基底材料放置于高温气氛炉中焙烧;
4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过度金属镍盐溶液。
5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极。
高温气氛焙烧炉中炉膛的材质为耐高温合金材料,加热棒为硅碳棒。
水热高压反应釜能够承受30MPa高压。
过渡金属盐溶液为元素周期表中IB-VIIIB可溶性非放射副族元素的盐溶液
步骤2)中的浸渍时间为24h,其中,可溶性盐的溶液体积与基体材料孔隙体积的比为1:1。
步骤3)中,焙烧过程中的气氛为还原性气氛,焙烧温度为800℃,焙烧 时间为12h;
步骤5)中,在110℃下烘烤20h。
步骤4)中,水合肼水溶液与过度金属镍盐溶液的体积比为1:2.5,水合肼水溶液和过渡金属镍盐溶液的总体积为基体材料体积的18倍。
制得的双功能电极分为两层,基底材料为多孔层,第(4)步制备的为沉积层。将制得的双功能电极组装高温熔融碳酸盐电解池,选用38%碳酸钾和62%碳酸锂混合物(比例为摩尔比)为电解质,偏铝酸锂为隔膜,选用氧化镍作为正极材料,制得的双功能电极作为负极材料,负极材料的沉积层贴近偏铝酸锂隔膜组装。
运行时电解池运行温度为650℃,正负极加1.5V直流电压。负极通入摩尔比为5:4的二氧化碳和水蒸气混合气,此时,在正极沉积层发生的反应为(1-1),多孔层发生的反应为(1-2):
CO 2+H 2O+2e -=H 2+CO 3 2-  (1-1)
CO 2+4H 2=CH 4+2H 2O   (1-2)
正极发生的反应为(1-3):
CO 3 2-2e -=CO 2+1/2O 2  (1-3)
在本实施例中,在电解池运行温度为650℃,正负极加1.5V直流电压时,负极通入1000ml/min的二氧化碳和800ml/min水蒸气混合气时,可以得到140ml/min的甲烷气体,转化效率为70%。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (12)

  1. 一种双功能电极的制备方法,其特征在于,包括以下步骤:
    1)取多孔物质作为基底材料;
    2)将基底材料放置于可溶性盐的溶液中进行浸渍;
    3)将浸渍后的基底材料进行焙烧;
    4)将焙烧后的基体材料、水合肼水溶液及过度金属盐溶液混合进行水热高压反应;
    5)将水热高压反应的反应产物进行超声清洗及干燥,得双功能电极。
  2. 一种双功能电极的制备方法,其特征在于,包括以下步骤:
    1)取多孔物质作为基底材料;
    2)将基底材料放置于可溶性盐的溶液中进行浸渍;
    3)将浸渍后的基底材料放置于高温气氛炉中焙烧;
    4)将焙烧后的基体材料放置于水热高压反应釜中,加入水合肼水溶液及过度金属盐溶液;
    5)将水热高压反应釜放置于烘箱中进行烘烤,然后取出后进行超声清洗及干燥,得双功能电极。
  3. 根据权利要求1或2所述的双功能电极的制备方法,其特征在于,基底材料的材质为氧化钛、氧化铝、氧化铁或偏铝酸锂。
  4. 根据权利要求1或2所述的双功能电极的制备方法,其特征在于,可溶性盐为镍可溶性盐、铂可溶性盐或铱可溶性盐。
  5. 根据权利要求1所述的双功能电极的制备方法,其特征在于,高温气氛焙烧炉中炉膛的材质为耐高温合金材料,加热棒为硅碳棒。
  6. 根据权利要求1所述的双功能电极的制备方法,其特征在于,水热高压反应釜能够承受30MPa高压。
  7. 根据权利要求1或2所述的双功能电极的制备方法,其特征在于,过渡金属盐溶液为元素周期表中IB-VIIIB可溶性非放射副族元素的盐溶液。
  8. 根据权利要求1或2所述的双功能电极的制备方法,其特征在于,基底材料的孔隙率为30%~80%。
  9. 根据权利要求1或2所述的双功能电极的制备方法,其特征在于,步骤2)中的浸渍时间为24h,其中,可溶性盐的溶液体积与基体材料孔隙体积的比为1:1。
  10. 根据权利要求1所述的双功能电极的制备方法,其特征在于,步骤3)中,焙烧过程中的气氛为还原性气氛,焙烧温度范围为300℃~1300℃,焙烧时间为0.5h~12h;
    步骤5)中,在80~120℃下烘烤5h~24h。
  11. 根据权利要求1所述的双功能电极的制备方法,其特征在于,步骤4)中,水合肼水溶液与过度金属盐溶液的体积比为1:(1~3),水合肼水溶液和过渡金属盐溶液的总体积为基体材料体积的5~20倍。
  12. 一种高温电解池,其特征在于,包括如权利要求1~11任意一项所述的制备方法制备得到的双功能电极;
    所述高温电解池以水蒸气和二氧化碳为原料直接制备甲烷。
PCT/CN2021/114222 2021-04-25 2021-08-24 一种双功能电极的制备方法 WO2022227351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110449660.8A CN113215608A (zh) 2021-04-25 2021-04-25 一种双功能电极的制备方法
CN202110449660.8 2021-04-25

Publications (1)

Publication Number Publication Date
WO2022227351A1 true WO2022227351A1 (zh) 2022-11-03

Family

ID=77088903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114222 WO2022227351A1 (zh) 2021-04-25 2021-08-24 一种双功能电极的制备方法

Country Status (2)

Country Link
CN (1) CN113215608A (zh)
WO (1) WO2022227351A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215608A (zh) * 2021-04-25 2021-08-06 中国华能集团清洁能源技术研究院有限公司 一种双功能电极的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280044A (zh) * 1999-07-08 2001-01-17 中国科学技术大学 一种纳米金属铁粉的化学制备方法
CN1644282A (zh) * 2005-01-13 2005-07-27 南京大学 一种纳米金属镍粉的制备方法
CN104148065A (zh) * 2013-05-14 2014-11-19 中国科学院大连化学物理研究所 一种用于二氧化碳甲烷化催化剂及制备方法和应用
CN105220172A (zh) * 2015-10-27 2016-01-06 中国科学技术大学 一种将二氧化碳及水蒸气混合气直接转化为富含甲烷的气体的管式结构及其制备方法和应用
US20160030927A1 (en) * 2013-05-08 2016-02-04 Korea Research Institute Of Chemical Technology Monolith catalyst for carbon dioxide reforming reaction, preparation method for same, and preparation method for synthesis gas using same
CN109833883A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种高活性双金属负载燃烧催化剂及其制备方法
WO2019134423A1 (zh) * 2018-01-04 2019-07-11 四川天一科技股份有限公司 用于燃料电池中甲烷蒸汽重整的催化剂的制备方法
CN113106485A (zh) * 2021-04-25 2021-07-13 中国华能集团清洁能源技术研究院有限公司 一种电解水双功能电极结构
CN113215608A (zh) * 2021-04-25 2021-08-06 中国华能集团清洁能源技术研究院有限公司 一种双功能电极的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280044A (zh) * 1999-07-08 2001-01-17 中国科学技术大学 一种纳米金属铁粉的化学制备方法
CN1644282A (zh) * 2005-01-13 2005-07-27 南京大学 一种纳米金属镍粉的制备方法
US20160030927A1 (en) * 2013-05-08 2016-02-04 Korea Research Institute Of Chemical Technology Monolith catalyst for carbon dioxide reforming reaction, preparation method for same, and preparation method for synthesis gas using same
CN104148065A (zh) * 2013-05-14 2014-11-19 中国科学院大连化学物理研究所 一种用于二氧化碳甲烷化催化剂及制备方法和应用
CN105220172A (zh) * 2015-10-27 2016-01-06 中国科学技术大学 一种将二氧化碳及水蒸气混合气直接转化为富含甲烷的气体的管式结构及其制备方法和应用
CN109833883A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种高活性双金属负载燃烧催化剂及其制备方法
WO2019134423A1 (zh) * 2018-01-04 2019-07-11 四川天一科技股份有限公司 用于燃料电池中甲烷蒸汽重整的催化剂的制备方法
CN113106485A (zh) * 2021-04-25 2021-07-13 中国华能集团清洁能源技术研究院有限公司 一种电解水双功能电极结构
CN113215608A (zh) * 2021-04-25 2021-08-06 中国华能集团清洁能源技术研究院有限公司 一种双功能电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE SANG MOON; HWANG IN HYUCK; KIM SUNG SU: "Enhancement of catalytic performance of porous membrane reactor with Ni catalyst for combined steam and carbon dioxide reforming of methane reaction", FUEL PROCESSING TECHNOLOGY, ELSEVIER BV, NL, vol. 188, 1 January 1900 (1900-01-01), NL , pages 197 - 202, XP085626492, ISSN: 0378-3820, DOI: 10.1016/j.fuproc.2019.02.023 *

Also Published As

Publication number Publication date
CN113215608A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
JP6539285B2 (ja) 酸素発生用アノード
CN109012749A (zh) 基于zif-8磷硫双掺杂的非金属双功能氧催化剂及其制备方法和应用
Doan et al. Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis
CN105655610B (zh) 一种阴离子交换膜上附着的超薄催化层及其制备和应用
CN110052277A (zh) 一种过渡金属族金属硫化物析氧催化剂的制备方法
CN105244523B (zh) 一种具有抗积碳功能的固体氧化物燃料电池
WO2022227351A1 (zh) 一种双功能电极的制备方法
CN109759066A (zh) 一种硼掺杂石墨烯负载的钴镍双金属氧化物析氧催化剂的制备方法
CN110102325B (zh) 多孔纳米片结构铜镍氮化物材料及其制备方法和应用
CN109652823B (zh) 一种高性能质子导体陶瓷膜反应器电解池阳极材料
JP6362007B2 (ja) 電気化学セルおよびその製造方法
CN115044939A (zh) 一种自支撑镍基双金属氢氧化物析氧电极的制备方法及其应用
CN107803212A (zh) 一种富缺陷Fe2O3‑FeF2纳米多孔薄膜、制备方法及其应用
CN113652708B (zh) 一种Pt/Ni3N@Mo2C氢氧化氢析出电催化剂制备方法
CN113061926A (zh) 一种用于pem水电解池的亚氧化钛阳极扩散层及其制备方法与应用
CN115821284A (zh) 一种增强水解离促进碱性电解水制氢的复合催化电极材料
CN115418672A (zh) 一种复合碱性电催化析氧催化剂的制备方法
CN112779553B (zh) 复合材料及其制备方法、应用
JP2016033257A (ja) 水蒸気電解用セル
CN103682388A (zh) 平板固体氧化物燃料电池电解质真空浸渍镀膜方法及装置
CN109309239A (zh) 一种平板固体氧化物燃料对称电池及其制备方法
CN108123156B (zh) 一种燃料电池的复合膜电极的制备方法
CN112295581A (zh) 一种电催化剂材料及其应用
CN108075159B (zh) 一种掺杂金红石相TiO2燃料电池膜电极及制备方法
CN117039076B (zh) 一种适于碳氢燃料的骨架支撑型sofc及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938815

Country of ref document: EP

Kind code of ref document: A1