WO2022227268A1 - 一种微流控芯片 - Google Patents

一种微流控芯片 Download PDF

Info

Publication number
WO2022227268A1
WO2022227268A1 PCT/CN2021/103593 CN2021103593W WO2022227268A1 WO 2022227268 A1 WO2022227268 A1 WO 2022227268A1 CN 2021103593 W CN2021103593 W CN 2021103593W WO 2022227268 A1 WO2022227268 A1 WO 2022227268A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
sensing
driving
substrate
Prior art date
Application number
PCT/CN2021/103593
Other languages
English (en)
French (fr)
Inventor
林柏全
席克瑞
白云飞
李伟
雷登明
刘桢
贾振宇
欧阳珺婷
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to US17/758,359 priority Critical patent/US20240165616A1/en
Publication of WO2022227268A1 publication Critical patent/WO2022227268A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting

Definitions

  • the embodiments of the present application relate to the field of micro-control technology, for example, to a micro-fluidic chip.
  • Microfluidics technology refers to a technology that uses micro-channels (tens to hundreds of microns in size) to process or manipulate tiny fluids (volumes ranging from nanoliters to liters).
  • Microfluidic chip is the main platform for the realization of microfluidic technology.
  • Microfluidic chips have the characteristics of parallel collection and processing of samples, high integration, high throughput, fast analysis speed, low power consumption, low material consumption, and low pollution.
  • Microfluidic chip technology can be used in biological genetic engineering, disease diagnosis and drug research, cell analysis, environmental monitoring and protection, health quarantine, forensic identification and other fields.
  • the embodiments of the present application provide a microfluidic chip, which can acquire the position of the droplet while driving the movement of the droplet, so as to solve the problem of low reliability of the device due to the inability to detect the position of the droplet in the related art.
  • an embodiment of the present application provides a microfluidic chip, comprising a first substrate and a second substrate disposed opposite to each other, a microfluidic channel is formed between the first substrate and the second substrate, and the microfluidic chip is formed between the first substrate and the second substrate.
  • the fluidic channel is configured to accommodate at least one droplet;
  • the direction is parallel
  • the second direction is parallel to the column direction of the array formed by the plurality of driving electrodes
  • the projection of each first sensing electrode in the plurality of first sensing electrodes on the plane where the first substrate is located is the same as
  • the projections of the gaps of the driving electrodes in two adjacent rows on the plane where the first substrate is located at least partially overlap
  • each second sensing electrode in the plurality of second sensing electrodes is located on the plane where the first substrate is located.
  • the projections at least partially overlap with the projections of the gaps of the
  • the adjacent driving electrodes among the plurality of driving electrodes are loaded with different driving voltage signals to drive the droplets to move;
  • the plurality of first sensing electrodes and the plurality of second sensing electrodes are loaded with detection signals, according to a change in capacitance formed by an electrode corresponding to the first sensing electrodes and the first sensing electrodes when the droplet flows, and The position of the droplet is determined by the capacitance change formed by the second sensing electrode and an electrode corresponding to the second sensing electrode.
  • an embodiment of the present application further provides a microfluidic chip, comprising a first substrate and a second substrate disposed opposite to each other, a microfluidic channel is formed between the first substrate and the second substrate, and the microfluidic channel is configured to accommodate at least one droplet;
  • At least one edge of each of the plurality of driving electrodes extends in a curved shape.
  • an embodiment of the present application further provides a microfluidic chip, comprising a first substrate and a second substrate disposed opposite to each other, a microfluidic channel is formed between the first substrate and the second substrate, and the microfluidic channel is configured to accommodate at least one droplet;
  • It also includes a plurality of scan signal lines extending along the first direction, a plurality of data signal lines extending along the second direction, and a plurality of transistors corresponding to the plurality of driving electrodes one-to-one, and the gate of each transistor is connected to the One of the scanning signal lines is connected, the first pole of each transistor is connected to one of the data signal lines, and the second pole of each of the transistors is connected to the corresponding driving electrode;
  • the plurality of scan signal lines, the plurality of data signal lines and the plurality of transistors are all located on the side of the plurality of driving electrodes away from the second substrate;
  • At least one of the scan signal line, the data signal line, and the transistor overlaps the driving electrode.
  • the microfluidic chip provided by the embodiment of the present application includes a first substrate and a second substrate disposed opposite to each other.
  • the microfluidic channel is configured to accommodate at least one liquid droplet; by arranging a plurality of driving electrodes arranged in an array on one side of the first substrate, adjacent driving electrodes are loaded with different driving voltage signals to drive the droplet to move; by arranging a plurality of first induction electrodes on one side of the first substrate Electrodes and a plurality of second sensing electrodes, a plurality of first sensing electrodes and a plurality of second sensing electrodes are loaded with detection signals, and the capacitance changes formed by the first sensing electrodes and an electrode corresponding to the first sensing electrodes when the droplets flow through And the capacitance change formed by the second sensing electrode and an electrode corresponding to the second sensing electrode determines the position of the droplet, wherein a plurality of first sensing electrodes extend along the first direction, are
  • FIG. 1 is a schematic structural diagram of a microfluidic chip in the related art
  • FIG. 2 is a schematic structural diagram of another microfluidic chip in the related art
  • FIG. 3 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application.
  • Fig. 4 is a kind of sectional structure schematic diagram along section line AA' in Fig. 3;
  • FIG. 5 is a schematic diagram of the circuit structure of a microfluidic chip provided by an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional structure diagram of a microfluidic chip provided by an embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another microfluidic chip provided by an embodiment of the present application.
  • Fig. 12 is a kind of sectional structure schematic diagram along section line BB' in Fig. 11;
  • FIG. 13 is a schematic diagram of a partial structure of a microfluidic chip provided by an embodiment of the present application.
  • FIG. 14 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • 15 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • 16 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • 17 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • FIG. 18 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • FIG. 19 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • 20 is a schematic top view of a common electrode in a microfluidic chip provided by an embodiment of the present application.
  • 21 is a schematic cross-sectional structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • FIG. 22 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • Fig. 23 is a kind of sectional structure schematic diagram along section line CC' in Fig. 22;
  • FIG. 24 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • FIG. 25 is a schematic cross-sectional structure diagram of FIG. 24 .
  • microfluidic chip technology Due to its great potential in integration, automation, portability, and high efficiency, microfluidic chip technology has become a current research hotspot and one of the world's cutting-edge technologies.
  • microfluidic chips have shown a booming trend in laboratory research and industrial applications, especially digital microfluidic chips based on microdroplet manipulation have made great progress.
  • the volume of the manipulated droplets can reach the microliter or even nanoliter level, so that at the microscale, the microliter and nanoliter level droplets can be mixed more accurately, and the chemical reaction inside the droplet is more abundant.
  • different biochemical reaction processes inside the droplets can be monitored, and the microdroplets can contain cells and biomolecules, such as proteins and DNA, thus enabling higher throughput monitoring.
  • the traditional method is to realize the generation and control of micro-droplets in micro-channels, but the fabrication process of micro-channels is very complicated, and the micro-channels are easily blocked and the reusability is not high. Requires complex peripherals to drive.
  • FIG. 1 is a schematic structural diagram of a microfluidic chip in the related art. Referring to FIG.
  • the microfluidic chip includes a control circuit 01 and a plurality of driving units 02 , and each driving unit 02 is connected to the control circuit 01 .
  • the electrical connection is set to drive the droplet 03 to flow according to the preset motion path.
  • This microfluidic chip has the characteristics of simple structure and low cost, but cannot feedback the position of the droplet in real time, and its application scenarios are limited.
  • FIG. 2 is a schematic structural diagram of another microfluidic chip in the related art. Referring to FIG. 2, the microfluidic chip includes a control circuit 01, a plurality of driving units 02 and a laser head 04.
  • the driving unit 02 and the laser head 04 are both connected with The control circuit 01 is electrically connected, the drive unit 02 is set to drive the droplet to move, the laser head 04 emits a laser beam for detecting the position of the droplet, and the droplet positioning is realized by the method of optical detection.
  • This kind of microfluidic chip has a complicated structure and is not easy to On-site instant diagnosis, and the cost is high.
  • An embodiment of the present application provides a microfluidic chip, comprising a first substrate and a second substrate disposed opposite to each other, a microfluidic channel is formed between the first substrate and the second substrate, and the microfluidic channel is configured to accommodate at least one droplet ;
  • a plurality of driving electrodes, a plurality of first sensing electrodes and a plurality of second sensing electrodes located on one side of the first substrate, the plurality of driving electrodes are arranged in an array, and the plurality of first sensing electrodes extend along the first direction, along the Arranged in two directions, the plurality of second sensing electrodes extend along the second direction, and are arranged along the first direction, the first direction is parallel to the row direction of the array formed by the plurality of driving electrodes, and the second direction is parallel to the row direction of the array formed by the plurality of driving electrodes.
  • the column directions are parallel, the projection of each first sensing electrode in the plurality of first sensing electrodes on the plane where the first substrate is located and the projection of the gap between the adjacent two rows of driving electrodes on the plane where the first substrate is located at least partially overlap.
  • the projection of each of the second sensing electrodes on the plane where the first substrate is located is at least partially overlapped with the projection of the gap between the adjacent two columns of driving electrodes on the plane where the first substrate is located; the adjacent driving electrodes are loaded with different
  • a driving voltage signal is used to drive the droplet to move; a plurality of first sensing electrodes and a plurality of second sensing electrodes are loaded with detection signals, according to the change of capacitance formed by an electrode corresponding to the first sensing electrode and the first sensing electrode when the droplet flows, and The position of the droplet is determined by the capacitance change formed by the second sensing electrode and an electrode corresponding to the second sensing electrode.
  • both the first substrate and the second substrate can be glass substrates, a sealant is arranged between the first substrate and the second substrate to form at least one microfluidic channel for accommodating the movement of droplets, and the driving electrodes can be arranged on the first substrate
  • the bulk electrodes arranged in the upper array can be formed by using metal oxides (for example, indium tin oxide (ITO)), and the area of one driving electrode is smaller than the projected area of the droplet on the first substrate.
  • ITO indium tin oxide
  • the driving electrodes are arranged in an array and discretely, electrodes can be arranged between the driving electrodes to form a capacitor.
  • the capacitance value of the capacitor will change, so as to obtain the position of the droplet.
  • the first sensing electrodes and the second sensing electrodes extending along the first direction (row direction of the driving electrode array) and the second direction (the column direction of the driving electrode array) respectively are arranged on the first substrate.
  • both the first sensing electrode and the second sensing electrode are loaded with corresponding voltages, the first sensing electrode and an electrode in the microfluidic chip form a first capacitor, and the second sensing electrode and the microfluidic chip form a first capacitor.
  • a certain electrode in the chip forms a second capacitor, wherein a certain electrode can be a common electrode disposed on the second substrate, a certain wire in the first substrate or a certain pole of other capacitors, or the first sensing electrode and
  • the second sensing electrodes may be the other poles of the mutual capacitance, and only need to form a capacitance with the corresponding sensing electrodes.
  • a microfluidic channel is formed between the first substrate and the second substrate, and the microfluidic channel is configured to accommodate at least one droplet; and a plurality of arrays are arranged on one side of the first substrate.
  • the adjacent driving electrodes are loaded with different driving voltage signals to drive the droplets to move; by arranging multiple first sensing electrodes and multiple second sensing electrodes on one side of the first substrate, multiple first sensing electrodes Loading detection signals with a plurality of second sensing electrodes, according to the capacitance change formed by the first sensing electrode and an electrode corresponding to the first sensing electrode and the capacitance formed by the second sensing electrode and an electrode corresponding to the second sensing electrode when the droplet flows
  • the position of the droplet is determined by the change, so that the position of the droplet can be obtained while driving the movement of the droplet, and the problem of low reliability of the device caused by the inability to detect the position of the droplet in the related art is solved.
  • FIG. 3 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present application
  • FIG. 4 is a schematic cross-sectional structural diagram of a microfluidic chip along the line AA' in FIG. 3
  • FIG. 3 shows a microfluidic chip.
  • the schematic top view structure of the microfluidic chip includes a plurality of driving electrodes 11, a plurality of first sensing electrodes 12 and a plurality of second sensing electrodes 13, wherein the plurality of driving electrodes 11 are arranged in an array, and the adjacent driving electrodes 11 Different driving voltages are loaded, the droplets are driven by the differential voltage between the adjacent driving electrodes 11, and the droplets are controlled to move according to a preset path.
  • the first sensing electrodes 12 extend along the first direction x and are arranged along the second direction y
  • the second sensing electrodes 13 extend along the second direction y and are arranged along the first direction x
  • the first direction x and the driving electrodes 11 form an array
  • the row direction of y is parallel to the row direction
  • the second direction y is parallel to the column direction of the array formed by the driving electrodes 11 .
  • the shapes of the driving electrodes 11 , the first sensing electrodes 12 , and the second sensing electrodes 13 shown in FIG. 3 are all rectangular, which are only schematic, and may be set according to actual conditions during specific implementation. Referring to FIG.
  • the microfluidic chip includes a first substrate 10 and a second substrate 20 disposed opposite to each other, a microfluidic channel 30 is formed between the first substrate 10 and the second substrate 20 , and the microfluidic channel 30 is configured to accommodate at least A droplet 31; exemplarily, in this embodiment, the driving electrode 11, the first sensing electrode 12 and the second sensing electrode 13 are all located on the side of the first substrate 10 close to the second substrate 20, between different electrode layers
  • the insulating layer 14 is provided, and along the direction z from the first substrate 10 to the second substrate 20 , the first sensing electrodes 12 cover the gaps between the two adjacent rows of the driving electrodes 11 , and the second sensing electrodes 13 cover the gaps between the two adjacent columns of the driving electrodes 11 .
  • the slit that is, in the embodiment shown in FIG. 4 , the width d 1 of the first sensing electrode 12 is greater than the width d 2 of the slit between the two adjacent rows of the driving electrodes 11 , and the width d 3 of the second sensing electrode 13 is greater than the width d 3 of the two adjacent columns.
  • the width d 4 of the gap between the driving electrodes 11, by setting the width of the first sensing electrode 12 and the second sensing electrode 13 to be wider, is beneficial to reduce the resistance of the first sensing electrode 12 and the second sensing electrode 13, and reduce the load detection signal
  • the width of the first sensing electrode 12 can also be set to be less than or equal to the gap between two adjacent rows of drive electrodes 11, and the width of the second sensing electrode 13 is less than or equal to the width of the adjacent two rows of drive electrodes 11.
  • the gaps between the column driving electrodes 11 can be designed according to the actual situation during the specific implementation. The embodiments of the present application do not limit the width of the sensing electrodes and the widths of the gaps between the driving electrodes.
  • a common electrode 21 is further provided on one side of the second substrate 20 , and the common electrode 21 can be formed by using ITO.
  • the first sensing electrode 12 and the common electrode 21 form a first capacitance C 1
  • the second sensing electrode 13 and the common electrode 21 form a second capacitance C 2
  • the first The capacitance between the sensing electrode 12 and the common electrode 21 becomes C 1 '
  • the capacitance between the second sensing electrode 13 and the common electrode 21 becomes C 2 ', thereby determining the position of the droplet.
  • another electrode that forms a capacitor with the sensing electrode may also be a certain wire in the microfluidic chip or a certain pole of other capacitors, etc., which can be designed according to actual conditions during specific implementation.
  • the microfluidic chip provided by this embodiment further includes a plurality of scanning signals extending along the first direction x line 15, a plurality of data signal lines 16 extending along the second direction y, and a plurality of transistors 17 corresponding to the plurality of driving electrodes 11 one-to-one, the gate of each transistor 17 is connected to a scanning signal line 15, and each transistor The first pole of each transistor 17 is connected to a data signal line 16 , and the second pole of each transistor 17 is connected to the corresponding driving electrode 11 .
  • an active driving method including the scanning signal line 15, the data signal line 16 and the transistor 17 can be provided. Similar to the display panel, each The driving electrode 11 is similar to a sub-pixel in the display panel.
  • the scanning signal line 15 and the data signal line 16 are used to realize scanning, and the on-off of the transistor 17 is used to realize the active driving of the driving electrode 11, wherein the first electrode of the transistor 17 can be It is a source electrode, the second electrode can be a drain electrode, and the transistor 17 can be a thin film transistor, for example, a thin film transistor formed by using amorphous silicon material, polysilicon material or metal oxide material as the active layer.
  • the scanning signal lines, the data signal lines and the transistors are all located on the side of the driving electrodes away from the second substrate; at least one of the scanning signal lines, the data signal lines and the transistors overlaps with the driving electrodes.
  • FIG. 6 is a schematic cross-sectional structure diagram of a microfluidic chip provided by an embodiment of the present application.
  • the transistor 17 includes a gate electrode 171 , an active layer 172 , a source electrode 173 (first electrode) and a drain electrode.
  • pole 174 second pole
  • the scanning signal line 15, the data signal line 16 and the transistor 17 are all located on the side of the driving electrode 11 away from the second substrate 20; in this embodiment, since the first sensing electrode 12 and the second sensing electrode 13 It needs to be at least partially located in the gap of the driving electrode 11.
  • At least one of the scanning signal line 15 and the data signal line 16 should not be routed between the gap of the driving electrode 11 as much as possible, and both are located in the driving electrode.
  • the transistor 17 is also arranged under the driving electrode 11, not in the gap, so that the driving electrode 11 can shield the parasitic capacitance caused by the scanning signal line 15, the data signal line 16 or the transistor 17, and improve the droplet positioning precision.
  • the shape of the section line is similar to the broken line AA' in FIG. 3 , wherein the section line on the left side of the dotted line extends along the first direction x (direction of the driving electrode array row), The section line on the right side of the dashed line extends along the second direction y (direction of the driving electrode array column), wherein the scanning signal line 15 is connected to the gate 171 of the transistor 17, since the scanning signal line 15 and the gate 171 are not shown in FIG. 6
  • the structure at the connection position, so the scanning signal line 15 and the gate electrode 171 in FIG. 6 are separate structures, the data signal line 16 and the source electrode 173 of the transistor 17 are connected, and the data signal line 16 and the source electrode are shown in FIG. 6 173 connected as one structure.
  • a common electrode 21 is provided on one side of the second substrate 20 .
  • the first sensing electrode 12 and the common electrode 21 form the first sensing electrode 12 and the common electrode 21 .
  • a capacitor C 1 , the second sensing electrode 13 and the common electrode 21 form a second capacitor C 2 , when the droplet flows, the dielectric constant between the sensing electrode and the common electrode changes, the first sensing electrode 12 and the common electrode 21 The capacitance between them becomes C 1 ', and the capacitance between the second sensing electrode 13 and the common electrode 21 becomes C 2 ', thereby determining the position of the droplet.
  • FIG. 7 is another microfluidic control device provided in this embodiment of the present application.
  • a schematic diagram of the cross-sectional structure of the chip it can be understood that driving the droplet to move and detecting the position of the droplet are generally performed in a time-sharing manner.
  • the sensing electrode 12 may form a third capacitor C 3 with the scanning signal line 15 (in other embodiments, other signal traces or electrodes, which are not limited in the embodiment of this application), the second sensing electrode 13 and the data signal line 16 (In other embodiments, it can also be other signal traces or electrodes, which is not limited in the embodiment of the present application)
  • a fourth capacitor C 4 is formed.
  • FIG. 8 is a schematic cross-sectional structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • the first sensing electrodes 12 and the scanning signal lines 15 are arranged in the same layer, and the second sensing electrodes 13 and data The signal lines 16 are arranged on the same layer.
  • the first sensing electrode 12 is set 12 is on the same layer as the scanning signal line 15, and the second sensing electrode 13 is on the same layer as the data signal line 16.
  • the first sensing electrode 12 and the scanning signal line 15 can be formed at one time using the same process, and the second sensing electrode 13 and the data signal line 15 can be formed at one time.
  • the signal lines 16 are formed at one time using the same process, thereby reducing the thickness and fabrication cost of the microfluidic chip.
  • FIG. 9 is a schematic cross-sectional structure diagram of another microfluidic chip provided by an embodiment of the present application, and its cross-section line is parallel to the column direction of the driving electrode array.
  • the first sensing electrode 12 and the driving electrode 11 are The same layer, that is, the first sensing electrodes 12 are disposed in the gaps between two adjacent rows of the driving electrodes 11;
  • FIG. 10 is a schematic cross-sectional structure diagram of another microfluidic chip provided by the embodiment of the application, and its cross-section is parallel to the driving electrodes 11. The row direction of the electrode array, referring to FIG.
  • the second sensing electrodes 13 are in the same layer as the driving electrodes 11 , that is, the second sensing electrodes 13 are arranged in the gaps between the two adjacent columns of the driving electrodes 11 .
  • the sensing electrodes arranged on the same layer as the driving electrodes are formed of the same material as the driving electrodes, that is, in the embodiment shown in FIG. 9 , the first sensing electrodes 12 and the driving electrodes 11 are made of the same material.
  • the second sensing electrode 13 and the driving electrode 11 are made of the same material, for example, the material of the driving electrode 11 may be ITO, which may be selected according to actual conditions during specific implementation.
  • both the first sensing electrode and the second sensing electrode can be set on the same layer as the driving electrode, and a bridge is set at the intersection of the first sensing electrode and the second sensing electrode to avoid the first sensing electrode and the second sensing electrode.
  • the electrodes are short-circuited, similar to the structure of touch electrodes in a display panel.
  • the microfluidic chip provided in this embodiment further includes a plurality of data signal lines extending along the first direction or the second direction, and each data signal line is connected to a corresponding driving electrode.
  • FIG. 11 is a schematic structural diagram of another microfluidic chip provided by an embodiment of the present application.
  • the microfluidic chip further includes a plurality of lines along the first direction.
  • the data signal lines 16 extending in one direction x, the plurality of data signal lines 16 are connected to the plurality of driving electrodes 11 in a one-to-one correspondence, that is, each data signal line 16 is connected to the corresponding driving electrode 11.
  • a via hole is provided in the film layer between the signal line 16 and the driving electrode 11 to realize electrical connection.
  • the data signal lines may also extend in the second direction, and the structure is similar to that in FIG. 11 , except that the data signal lines extend in the column direction of the driving electrode array when the data signal lines extend in the second direction.
  • FIG. 12 is a schematic diagram of a cross-sectional structure along the section line BB' in FIG. 11.
  • the data signal lines 16 are located on the side of the driving electrodes 11 away from the second substrate 20; the data signal lines 16 and the driving electrodes 11 'Insulation overlap.
  • the data signal lines 16 are electrically connected to the corresponding driving electrodes 11 , and other driving electrodes 11 ′ located in the same row as the driving electrodes 11 are insulated and overlapped with the data signal lines 16 , so that the data signal lines 16 can be avoided. Occupying the gap of the driving electrode 11 reduces the influence of the parasitic capacitance generated by the data signal line 16 on the signal of the first sensing electrode 12 or the second sensing electrode 13 .
  • the data signal lines 16 extend along the first direction x, the first sensing electrodes 12 and the data signal lines 16 are arranged on the same layer, and the second sensing electrodes 13 and the driving electrodes 11 are arranged on the same layer.
  • the sensing electrode and the driving electrode which are provided on the same layer, are formed of the same material.
  • the first sensing electrodes 12 and the data signal lines 16 may be formed at one time using the same process and material, and the second sensing electrodes 13 and the driving electrodes 11 may be formed at one time using the same process and material; or in another embodiment , the data signal line extends along the second direction, the second sensing electrode and the data signal line are arranged on the same layer, the first sensing electrode and the driving electrode are arranged on the same layer, the second sensing electrode and the data signal line are formed at one time using the same process and material, Its implementation is similar to that in FIG. 11 and FIG. 12 , and will not be described in detail here.
  • the microfluidic chip satisfies at least one of the following: each first sensing electrode in the plurality of first sensing electrodes extends in a curved shape along the first direction; each second sensing electrode in the plurality of second sensing electrodes The electrodes extend in a curved shape along the second direction.
  • FIG. 13 is a schematic partial structure diagram of a microfluidic chip provided by an embodiment of the present application.
  • the first sensing electrode 12 extends in a curved shape along the first direction x
  • the second sensing electrode 12 extends in a curved shape along the first direction x
  • the sensing electrodes 13 extend in a curved shape along the second direction y, which is beneficial to increase the area of the sensing capacitors formed by the first sensing electrodes 12 and the second sensing electrodes 13 and increase the signal strength.
  • the edge of the driving electrode 11 needs to match the shape of the sensing electrode. It can be understood that, in the embodiment of FIG.
  • the width of the first sensing electrode 12 and the second sensing electrode 13 is the same as the width of the slit of the driving electrode 11 , so their boundaries overlap.
  • the width of the first sensing electrode 12 and the second sensing electrode 13 may be smaller than the gap of the driving electrode 11, or may be larger than the gap of the driving electrode 11.
  • the curved shape includes a sawtooth shape or a wavy shape.
  • both the first sensing electrode 12 and the second sensing electrode 13 extend in a wavy shape.
  • the shape of the sensing electrode may also be in a zigzag shape.
  • FIG. 14 provides an embodiment of the present application.
  • a schematic diagram of a partial structure of another microfluidic chip, referring to FIG. 14 the first sensing electrodes 12 and the second sensing electrodes 13 both extend in a zigzag shape.
  • the first sensing electrodes 12 and the second sensing electrodes 13 Other curved shapes may also be designed, which are not limited in this embodiment of the present application.
  • first sensing electrode 12 and the second sensing electrode 13 shown in FIG. 13 and FIG. 14 are only exemplary. In other embodiments, only the first sensing electrode or the second sensing electrode may be provided.
  • the two sensing electrodes are bent, and the corresponding edge shapes of the driving electrodes correspond to the edges of the sensing electrodes, which can be designed according to actual conditions during specific implementation.
  • the edge shape of the drive electrode 11 is the same as the edge shape of the adjacent first sensing electrode 12 or the second sensing electrode 13 on the side close to the drive electrode, that is, the edge shape and phase of the drive electrode 11 .
  • the adjacent first sensing electrodes 12 or the second sensing electrodes 13 are engaged with each other.
  • the projection of the first sensing electrode 12 on the plane where the first substrate is located is located between the projections of the two rows of driving electrodes 11 adjacent to the first sensing electrode 12 on the plane where the first substrate is located, that is, the first sensing electrode 12 is located adjacent to In the gap between the two rows of driving electrodes 11, the two can be the same layer or different layers.
  • the projection of the second sensing electrode 13 on the plane where the first substrate is located is located in the two columns of the driving electrode 11 adjacent to the second sensing electrode 13. Between the projections of the plane where the first substrate is located, that is, the second sensing electrode 13 is located in the gap between two adjacent columns of the driving electrodes 11 , and the two can be the same layer or different layers.
  • 13 and 14 are schematic top views of the microfluidic chip, and the structure of the first substrate is not shown.
  • the edges of the driving electrodes 11 are also designed to be curved to increase the overlapping length between the adjacent driving electrodes 11 , effectively increasing the facing area between the adjacent driving electrodes 11 , thereby increasing the electric field strength between the two driving electrodes 11 , which is more conducive to the movement of the driving droplets.
  • FIG. 15 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application.
  • the microfluidic chip provided by this embodiment further includes a plurality of scanning signal lines 15, a plurality of data The signal lines 16, the plurality of first electrodes 18 corresponding to the plurality of driving electrodes 11 one-to-one, and the plurality of transistors 17 corresponding to the plurality of driving electrodes 11 one-to-one (shown in FIG.
  • the circuit 15 is the circuit schematic diagram of the transistor 17, The structure of the transistor 17 is not shown), the gate of each transistor 17 is connected to a scan signal line 15, the first electrode of each transistor 17 is connected to a data signal line 16, and the second electrode of each transistor 17 is connected to a
  • the holes are connected to the corresponding driving electrodes 11, and each first electrode 18 in the plurality of first electrodes and the driving electrode 11 corresponding to each first electrode form a storage capacitor; the scanning signal line 15, the data signal line 16, the An electrode 18 and the transistor 17 are located in the projection of the driving electrode 11 on the plane of the first substrate, and the edges of the scanning signal line 15 , the data signal line 16 and the driving electrode 11 bypass the edge of the transistor 17 .
  • the first electrode 18 and the driving electrode 11 can be set to form a storage capacitor.
  • 12 and the second sensing electrode 13 are located in the gap of the driving electrode 11, so the scanning signal line 15, the data signal line 16, the first electrode 18 and the transistor 17 are all located under the driving electrode 11.
  • the scanning signal line 15, the data signal line The area of 16 close to the transistor 17, the edges of the first sensing electrode 12 and the second sensing electrode 13 all bypass the area where the transistor 17 is located to leave enough space for the transistor 17, and the wiring method can be designed according to the actual situation.
  • each first electrode 18 is a separate electrode. Since the function of the first electrode 18 is to form a storage capacitor with the driving electrode 11 , in other embodiments, a plurality of first electrodes 18 can be electrically connected, load the same voltage signal. Optionally, at least two adjacent first electrodes are electrically connected, and the connecting portions of the two first electrodes electrically connected to each other include a hollow area, and the hollow area overlaps with the first sensing electrode and/or the second sensing electrode.
  • FIG. 16 is a schematic partial structure diagram of another microfluidic chip provided by the embodiment of the present application.
  • two adjacent first electrodes 18 pass through the connecting wires 191 of the connecting parts 19 between the electrodes.
  • the connection portion 19 includes a hollow area 192 , and the hollow area 192 overlaps with the first sensing electrode 12 or the second sensing electrode 13 .
  • connection wires 192 and the three hollow areas 192 between the two first electrodes 18 shown in FIG. 16 is only schematic, and the number of the connection wires and the hollow areas is not considered in the specific implementation. limited.
  • the first electrode 18 and the first sensing electrode 12 and the second sensing electrode 13 are provided in different layers, for example, corresponding to the structure in FIG. 6 .
  • the first sensing electrode and the scanning signal line are arranged on the same layer, and the second sensing electrode and the data signal line are arranged on the same layer;
  • FIG. 17 is a part of another microfluidic chip provided by the embodiment of the application Schematic diagram of the structure, referring to FIG.
  • the first electrodes 18 and the first sensing electrodes 12 are arranged in the same layer, and the connection traces 191 of the connecting portions 19 of the two first electrodes 18 that are electrically connected to each other extend along the first direction x, as shown in FIG. 18 .
  • the first electrode 18 and the second sensing electrode 13 are arranged on the same layer, and the connecting portions 19 of the two first electrodes 18 are electrically connected to each other.
  • the connection traces 191 of 1 extend along the second direction y. 17 and 18 both show the top view of the microfluidic chip, and the same filling indicates the same layer arrangement.
  • the first electrode 18 and the first sensing electrode 12 in FIG. 17 are filled with the same shape.
  • each first sensing electrode and each second sensing electrode include a first area and a second area, and the first area of each first sensing electrode and the second sensing electrode corresponding to each first sensing electrode.
  • the first area of the electrodes is insulated and overlapped; the first sensing electrode and the second sensing electrode satisfy one of the following: the width of the first area of the first sensing electrode is smaller than the width of the second area of the first sensing electrode; the width of the second sensing electrode The width of the first region is smaller than the width of the second region of the second sensing electrode.
  • FIG. 19 is a schematic partial structure diagram of another microfluidic chip provided by the embodiment of the present application.
  • the first sensing electrode 12 includes a first area 121 and a second area 122
  • the second sensing electrode 13 It includes a first area 131 and a second area 132.
  • the first area 121 of the first sensing electrode 12 and the first area 131 of the second sensing electrode 13 intersect. It should be noted that the intersection here refers to the first sensing electrode.
  • the vertical projection of the first region 121 of 12 on the plane of the first substrate intersects with the vertical projection of the first region 131 of the second sensing electrode 13 on the plane of the first substrate.
  • the width d5 of the first region 121 of the first sensing electrode 12 is smaller than the width d6 of the second region 122, the width d7 of the first region 131 of the second sensing electrode 13 is smaller than the width d8 of the second region 132, The overlapping area of the two sensing electrodes can be reduced, and the parasitic capacitance can be reduced.
  • the width of the intersection area can also be designed to be narrowed, and the specific implementation can be designed according to the actual situation.
  • only the first sensing electrode or the second sensing electrode may be designed with a narrow line width at the intersection, so as to reduce the parasitic capacitance.
  • all the first sensing electrodes and the second sensing electrodes can be loaded with detection signals at the same time,
  • the position of the droplet is determined according to the capacitance change, but when there are at least two droplets, in order to avoid the generation of ghost points, a scanning method can be used to load the sensing electrodes in one direction with a signal.
  • the detection signals are sequentially loaded to the first sensing electrode in the direction, or the detection signals are sequentially loaded to the second sensing electrode along the first direction in a time-sharing manner.
  • the change in capacitance and the change in capacitance formed by the second sensing electrode and an electrode corresponding to the second sensing electrode determine the position of the droplet.
  • the intersection point can form a capacitance, so the position of the droplet can be determined by the change of the capacitance formed between the first sensing electrode and the second sensing electrode.
  • one of the first sensing electrode and the second sensing electrode is a transmitting electrode, and the other is a receiving electrode, and the droplet is determined according to the capacitance change between the first sensing electrode and the second sensing electrode when the droplet flows Location.
  • the position of the droplet can be determined according to the capacitance change formed by the sensing electrode and the common electrode located on the second substrate.
  • the common electrode includes a plurality of branch electrodes extending along the first direction or the second direction. , the number of branch electrodes is the same as the number of multiple first sensing electrodes or multiple second sensing electrodes.
  • FIG. 20 is a schematic top view of a common electrode in a microfluidic chip provided by an embodiment of the application
  • FIG. 21 is a schematic cross-sectional structure diagram of another microfluidic chip provided by an embodiment of the application
  • FIG. 20 and FIG. Fig. 21 takes the common electrode 21 including a plurality of branch electrodes extending along the first direction as an example
  • Fig. 21 shows a schematic cross-sectional structure diagram of a section line parallel to the second direction.
  • the branch electrodes can also be driven independently , and cooperate with the first sensing electrode 12 or the second sensing electrode 13 to form a capacitor to realize the positioning of the droplet.
  • the size of the driving electrodes is generally in the order of millimeters, and the distance between the driving electrodes can be several tens of micrometers.
  • the distance between two adjacent driving electrodes is 10 ⁇ m. ⁇ 40 ⁇ m; along the second direction, the distance between two adjacent driving electrodes is 10 ⁇ m ⁇ 40 ⁇ m, which can ensure that the area of the first sensing electrode and the second sensing electrode is large, and can ensure the strength of the signal when detecting the position of the droplet .
  • an insulating hydrophobic layer is provided on both sides of the first substrate and the second substrate close to the microfluidic channel, so as to perform the functions of insulating and reducing the movement resistance of droplets.
  • An embodiment of the present application further provides a microfluidic chip, comprising a first substrate and a second substrate disposed opposite to each other, a microfluidic channel is formed between the first substrate and the second substrate, and the microfluidic channel is configured to accommodate at least one liquid droplet; a plurality of driving electrodes located on one side of the first substrate, the plurality of driving electrodes are arranged in an array, and the adjacent driving electrodes are loaded with different driving voltage signals to drive the droplet to move; each of the plurality of driving electrodes drives At least one edge of the electrode extends in a curved shape.
  • FIG. 22 is a schematic diagram of a partial structure of another microfluidic chip provided by an embodiment of the application
  • FIG. 23 is a schematic diagram of a cross-sectional structure along the line CC' in FIG. 22
  • the microfluidic chip The control chip includes a plurality of driving electrodes 11 arranged in an array.
  • the adjacent driving electrodes 11 are loaded with different driving voltages, and the droplets are driven by the differential voltage between the adjacent driving electrodes 11, and the droplets are controlled to move according to a preset path.
  • the edge of the driving electrode 11 extends in a curved shape, wherein the wavy shape shown in FIG.
  • the microfluidic chip includes a first substrate 10 and a second substrate 20 disposed opposite to each other, a microfluidic channel 30 is formed between the first substrate 10 and the second substrate 20 , and the microfluidic channel 30 is configured to accommodate at least A droplet 31.
  • a common electrode can also be provided on the second substrate 20, and structures such as scan signal lines, data signal lines, and transistors can also be provided, and a first sensing electrode and a second sensing electrode can also be set in the gaps of the driving electrodes. The electrode is used to obtain the position of the droplet, and the specific implementation can be designed according to actual needs.
  • An embodiment of the present application further provides a microfluidic chip, comprising a first substrate and a second substrate disposed opposite to each other, a microfluidic channel is formed between the first substrate and the second substrate, and the microfluidic channel is configured to accommodate at least one liquid droplet; a plurality of driving electrodes located on one side of the first substrate, the plurality of driving electrodes are arranged in an array, and the adjacent driving electrodes are loaded with different driving voltage signals to drive the droplet to move; it also includes a plurality of strips extending along the first direction The scanning signal line, a plurality of data signal lines extending along the second direction, and a plurality of transistors corresponding to the plurality of driving electrodes one-to-one, the gate of each transistor is connected to a scanning signal line, the first electrode of each transistor is connected with a data signal line, the second pole of each transistor is connected with the corresponding driving electrode; the scanning signal line, the data signal line and the transistor are all located on the side of the driving electrode away from the second substrate; the
  • FIG. 24 is a schematic partial structure diagram of another microfluidic chip provided by an embodiment of the present application
  • FIG. 25 is a schematic cross-sectional structure diagram of FIG. 24
  • the microfluidic chip includes an array of A plurality of driving electrodes 11 of the cloth, the adjacent driving electrodes 11 are loaded with different driving voltages, and the droplets are driven by the differential voltage between the adjacent driving electrodes 11, and the droplets are controlled to move according to a preset path;
  • a scan signal line 15 extending in one direction x, a plurality of data signal lines 16 extending in a second direction y, and a plurality of transistors 17 corresponding to the plurality of driving electrodes 11 one-to-one, the gate of each transistor 17 corresponds to a scanning signal Line 15 is connected, the first pole is connected to a data signal line 16, and the second pole is connected to the corresponding driving electrode 11; with reference to FIG.
  • the transistor 17 includes a gate 171, an active layer 172, and a source 173 (first pole) and the drain 174 (second pole), the scanning signal line 15, the data signal line 16 and the transistor 17 are all located on the side of the driving electrode 11 away from the second substrate 20; the scanning signal line 15 and/or the data signal line 16 are not on the driving electrode as far as possible
  • the wiring between the slits 11 is located below the driving electrode 11.
  • the transistor 17 is also arranged below the driving electrode 11, not in the slit, so that the driving electrode 11 can shield the scanning signal line 15, the data signal line 16 or the
  • the parasitic capacitance caused by the transistor 17 improves the droplet driving precision and speed, and avoids the electric field generated between the scanning signal line 15/data signal line 16 and the driving electrode to form a reaction force on the movement of the droplet.
  • at least one of the scan signal line, the data signal line and the transistor overlaps the driving electrode, and the edge of the driving electrode 11 extends in a curved shape, similar to the wave shape shown in FIG. 22 .
  • a first sensing electrode and a second sensing electrode may also be arranged in the gap of the driving electrode to obtain the position of the droplet, which is combined with the embodiment with the droplet positioning function.
  • the structure of the microfluidic chip is also be arranged below the driving electrode 11, not in the slit, so that the driving electrode 11 can shield the scanning signal line 15, the data signal line 16 or the The parasitic capacitance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micromachines (AREA)

Abstract

本申请实施例公开了一种微流控芯片。该微流控芯片包括相对设置的第一基板和第二基板,第一基板和第二基板之间形成微流控通道,微流控通道设置为容纳至少一个液滴;位于第一基板一侧的多个驱动电极、多个第一感应电极和多个第二感应电极,多个驱动电极中相邻的驱动电极加载不同的驱动电压信号,以驱动液滴移动;多个第一感应电极和多个第二感应电极加载探测信号,根据液滴流过时第一感应电极和所述第一感应电极对应的一电极形成的电容变化以及第二感应电极和所述第二感应电极对应的一电极形成的电容变化确定液滴的位置。

Description

一种微流控芯片
本申请要求在2021年4月27日提交中国专利局、申请号为202110462149.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及微控制技术领域,例如涉及一种微流控芯片。
背景技术
微流控(Microfluidics)技术指的是使用微管道(尺寸为数十到数百微米)处理或操纵微小流体(体积为纳升到阿升)的一种技术。微流控芯片是微流控技术实现的主要平台。微流控芯片具有并行采集和处理样品、集成化高、高通量、分析速度快、功耗低、物耗少,污染小等特点。微流控芯片技术可以应用于生物基因工程、疾病诊断和药物研究、细胞分析、环境监测与保护、卫生检疫、司法鉴定等领域。
在原材料、工艺或环境问题导致驱动液滴运动的驱动单元表面不平整或有杂质时,会影响液滴的运动状态。由于驱动时序已事先确定,如无液滴位置反馈机制,将影响后续进程,降低实验效率甚至造成实验失败。尤其在液滴移动路径比较复杂的实验中,液滴位置的实时反馈将更加重要。
相关技术中的微流控技术中,通常难以实时反馈液滴的位置。某些文献中提到可以利用光学检测的方法获取液滴位置,但这种方法通常要搭配外部激光设备,结构繁琐、不易现场即时诊断,且成本较高。
发明内容
本申请实施例提供一种微流控芯片,该微流控芯片在驱动液滴运动的同时可以获取液滴的位置,解决相关技术中由于不能检测液滴位置导致设备的可靠性低的问题。
第一方面,本申请实施例提供一种微流控芯片,包括相对设置的第一基板 和第二基板,所述第一基板和所述第二基板之间形成微流控通道,所述微流控通道设置为容纳至少一个液滴;
位于所述第一基板一侧的多个驱动电极、多个第一感应电极和多个第二感应电极,所述多个驱动电极呈阵列排布,所述多个第一感应电极沿第一方向延伸,沿第二方向排列,所述多个第二感应电极沿所述第二方向延伸,沿所述第一方向排列,所述第一方向与所述多个驱动电极所成阵列的行方向平行,所述第二方向与所述多个驱动电极所成阵列的列方向平行,所述多个第一感应电极中的每个第一感应电极在所述第一基板所在平面的投影与相邻两行所述驱动电极的缝隙在所述第一基板所在平面的投影至少部分交叠,所述多个第二感应电极中的每个第二感应电极在所述第一基板所在平面的投影与相邻两列所述驱动电极的缝隙在所述第一基板所在平面的投影至少部分交叠;
所述多个驱动电极中相邻的所述驱动电极加载不同的驱动电压信号,以驱动所述液滴移动;
所述多个第一感应电极和所述多个第二感应电极加载探测信号,根据所述液滴流过时所述第一感应电极和所述第一感应电极对应的一电极形成的电容变化以及所述第二感应电极和所述第二感应电极对应的一电极形成的电容变化确定所述液滴的位置。
第二方面,本申请实施例还提供一种微流控芯片,包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间形成微流控通道,所述微流控通道设置为容纳至少一个液滴;
位于所述第一基板一侧的多个驱动电极,所述多个驱动电极呈阵列排布,所述多个驱动电极中相邻的所述驱动电极加载不同的驱动电压信号,以驱动所述液滴移动;
所述多个驱动电极中的每个驱动电极的至少一个边缘呈弯曲形状延伸。
第三方面,本申请实施例还提供一种微流控芯片,包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间形成微流控通道,所述微流 控通道设置为容纳至少一个液滴;
位于所述第一基板一侧的多个驱动电极,所述多个驱动电极呈阵列排布,所述多个驱动电极中相邻的所述驱动电极加载不同的驱动电压信号,以驱动所述液滴移动;
还包括多条沿第一方向延伸的扫描信号线、多条沿第二方向延伸的数据信号线和与所述多个驱动电极一一对应的多个晶体管,每个所述晶体管的栅极与一条所述扫描信号线连接,每个所述晶体管的第一极与一条所述数据信号线连接,所述每个所述晶体管的第二极与对应的所述驱动电极连接;
所述多条扫描信号线、所述多条数据信号线和所述多条晶体管均位于所述多个驱动电极远离所述第二基板一侧;
所述扫描信号线、所述数据信号线和所述晶体管的至少一个与所述驱动电极交叠。
本申请实施例提供的微流控芯片,包括相对设置的第一基板和第二基板,通过在第一基板和第二基板之间形成微流控通道,微流控通道设置为容纳至少一个液滴;通过在第一基板一侧设置多个阵列排布的驱动电极,相邻的驱动电极加载不同的驱动电压信号,以驱动液滴移动;通过在第一基板一侧设置多个第一感应电极和多个第二感应电极,多个第一感应电极和多个第二感应电极加载探测信号,根据液滴流过时第一感应电极和所述第一感应电极对应的一电极形成的电容变化以及第二感应电极和所述第二感应电极对应的一电极形成的电容变化确定液滴的位置,其中多个第一感应电极沿第一方向延伸,沿第二方向排列,多个第二感应电极沿第二方向延伸,沿第一方向排列,第一方向与多个驱动电极所成阵列的行方向平行,第二方向与多个驱动电极所成阵列的列方向平行,多个第一感应电极中的每个第一感应电极在第一基板所在平面的投影与相邻两行驱动电极的缝隙在第一基板所在平面的投影至少部分交叠,多个第二感应电极中的每个第二感应电极在第一基板所在平面的投影与相邻两列驱动电极的缝隙在第一基板所在平面的投影至少部分交叠;从而实现在驱动液滴运动 的同时可以获取液滴的位置,解决相关技术中由于不能检测液滴位置导致设备的可靠性低的问题。
附图说明
图1为相关技术中一种微流控芯片的结构示意图;
图2为相关技术中另一种微流控芯片的结构示意图;
图3为本申请实施例提供的一种微流控芯片的结构示意图;
图4为沿图3中剖线AA'的一种剖面结构示意图;
图5为本申请实施例提供的一种微流控芯片的电路结构示意图;
图6为本申请实施例提供的一种微流控芯片的剖面结构示意图;
图7为本申请实施例提供的另一种微流控芯片的剖面结构示意图;
图8为本申请实施例提供的又一种微流控芯片的剖面结构示意图;
图9为本申请实施例提供的又一种微流控芯片的剖面结构示意图;
图10为本申请实施例提供的又一种微流控芯片的剖面结构示意图;
图11为本申请实施例提供的另一种微流控芯片的结构示意图;
图12为沿图11中剖线BB'的一种剖面结构示意图;
图13为本申请实施例提供的一种微流控芯片的局部结构示意图;
图14为本申请实施例提供的另一种微流控芯片的局部结构示意图;
图15为本申请实施例提供的另一种微流控芯片的局部结构示意图;
图16为本申请实施例提供的又一种微流控芯片的局部结构示意图;
图17为本申请实施例提供的又一种微流控芯片的局部结构示意图;
图18为本申请实施例提供的又一种微流控芯片的局部结构示意图;
图19为本申请实施例提供的又一种微流控芯片的局部结构示意图;
图20为本申请实施例提供的一种微流控芯片中公共电极的俯视示意图;
图21为本申请实施例提供的又一种微流控芯片的剖面结构示意图;
图22为本申请实施例提供的又一种微流控芯片的局部结构示意图;
图23为沿图22中剖线CC'的一种剖面结构示意图;
图24为本申请实施例提供的又一种微流控芯片的局部结构示意图;
图25为图24的一种剖面结构示意图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外在上下文中,还需要理解的是,当提到一个元件被形成在另一个元件“上”或“下”时,其不仅能够直接形成在另一个元件“上”或者“下”,也可以通过中间元件间接形成在另一元件“上”或者“下”。术语“第一”、“第二”等仅用于描述目的,并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
微流控芯片的研究始于20世纪90年代初,是实现片上实验室(Lab-on-a-chip)的一种潜在技术,能够把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,由微通道形成网络,以可控流体贯穿整个***,用以取代常规生物或化学实验室的各种功能,自动完成分析的全过程。由于在集成化、自动化、便携化和高效化等方面展现出了巨大潜力,微流控芯片技术已成为当前研究热点和世界前沿科技之一。在过去的二十年,在实验室研究和工业应用中数字微流控芯片呈现出蓬勃发展的趋势,尤其是基于微液滴操控的数字微流控芯片更是取得了很大的进展,目前***控的液滴的体积可以达到微升甚至纳升级别,这样,在微尺度下,就可以对微升和纳升级别的液滴进行更精确的混合,液滴内部的化学反应也更加充分。另外, 可以对液滴内部不同的生化反应过程进行监控,微液滴可以包含细胞和生物分子,比如蛋白质、DNA,这样就实现了更高通量的监控。在许多驱动微液滴的方法中,传统的方法是在微管道中实现微液滴的生成和控制,但微管道的制造工艺非常复杂,并且微管道很容易被堵塞,重复利用性不高,需要复杂的***设备进行驱动。
由于介电湿润效应自身具备诸多优势,越来越多地用来操控数字微流控芯片中的微液滴。因为基于介电湿润的微流控芯片不需要微管道、微泵和微阀等复杂设备,其制作工艺简单、发热量小,响应迅速,功耗低、封装简单等,基于介电湿润效应的微流控芯可以实现对微液滴的分配、分离、运输和合并操作。而基于介质上电润湿的数字微流控芯片是以电极为控制单元对液滴进行操控,因此需要大量的电极单元。示例性的,图1为相关技术中一种微流控芯片的结构示意图,参考图1,该微流控芯片包括控制电路01和多个驱动单元02,每个驱动单元02均与控制电路01电连接,设置为驱动液滴03按照预设运动路径流动,这种微流控芯片具有结构简单、成本低等特点,但无法实时反馈液滴的位置,其应用场景受限。图2为相关技术中另一种微流控芯片的结构示意图,参考图2,该微流控芯片包括控制电路01、多个驱动单元02以及激光头04,驱动单元02和激光头04均与控制电路01电连接,驱动单元02设置为驱动液滴移动,激光头04出射用于探测液滴位置的激光束,利用光学检测的方法实现液滴定位,这种微流控芯片结构繁琐、不易现场即时诊断,且成本较高。
本申请实施例提供一种微流控芯片,包括相对设置的第一基板和第二基板,第一基板和第二基板之间形成微流控通道,微流控通道设置为容纳至少一个液滴;位于第一基板一侧的多个驱动电极、多个第一感应电极和多个第二感应电极,多个驱动电极呈阵列排布,多个第一感应电极沿第一方向延伸,沿第二方向排列,多个第二感应电极沿第二方向延伸,沿第一方向排列,第一方向与多个驱动电极所成阵列的行方向平行,第二方向与多个驱动电极所成阵列的列方向平行,多个第一感应电极中的每个第一感应电极在第一基板所在平面的投影 与相邻两行驱动电极的缝隙在第一基板所在平面的投影至少部分交叠,多个第二感应电极中的每个第二感应电极在第一基板所在平面的投影与相邻两列驱动电极的缝隙在第一基板所在平面的投影至少部分交叠;相邻的驱动电极加载不同的驱动电压信号,以驱动液滴移动;多个第一感应电极和多个第二感应电极加载探测信号,根据液滴流过时第一感应电极和第一感应电极对应的一电极形成的电容变化以及第二感应电极和第二感应电极对应的一电极形成的电容变化确定液滴的位置。
其中,第一基板和第二基板可以均采用玻璃基板,第一基板和第二基板之间设置封胶,以形成至少一条容纳液滴运动的微流通道,驱动电极可以为设置在第一基板上阵列排布的块状电极,可以利用金属氧化物(例如可以为氧化铟锡(Indium tin oxide,ITO))形成,一个驱动电极的面积小于液滴在第一基板上的投影的面积,在驱动液滴移动时,相邻的驱动电极加载不同的驱动电压,通过相邻驱动电极之间的差生电压驱动液滴,控制液滴按照预设路径移动。由于驱动电极是呈阵列且分立设置的,因此可以在驱动电极之间设置电极形成电容,当液滴流过时,电容的容值会发生变化,从而获取液滴的位置。本申请实施例的技术方案中,在第一基板上设置分别沿第一方向(驱动电极阵列的行方向)和第二方向(驱动电极阵列的列方向)延伸的第一感应电极和第二感应电极,其中第一感应电极至少部分区域位于相邻两行驱动电极的缝隙中,第二感应电极的至少部分区域位于相邻两列驱动电极的缝隙中,而不能完全位于驱动电极的下方,从而避免驱动电极屏蔽感应电极的信号。在探测液滴的位置时,第一感应电极和第二感应电极均加载相应的电压,第一感应电极和微流控芯片中的某一电极形成第一电容,第二感应电极和微流控芯片中的某一电极形成第二电容,其中某一电极可以为设置在第二基板上的公共电极、在第一基板中某一走线或其他电容的某一极,或者第一感应电极和第二感应电极可以互为电容的另一极,仅需与对应的感应电极形成电容即可。当液滴流经某一位置时,由于液滴的影响,该位置处的第一电容和第二电容的大小会发生变化,通过探测 电容的变化情况就可以获取液滴的位置。
本申请实施例的技术方案,通过在第一基板和第二基板之间形成微流控通道,微流控通道设置为容纳至少一个液滴;通过在第一基板一侧设置多个阵列排布的驱动电极,相邻的驱动电极加载不同的驱动电压信号,以驱动液滴移动;通过在第一基板一侧设置多个第一感应电极和多个第二感应电极,多个第一感应电极和多个第二感应电极加载探测信号,根据液滴流过时第一感应电极和第一感应电极对应的一电极形成的电容变化以及第二感应电极和第二感应电极对应的一电极形成的电容变化确定液滴的位置,从而实现在驱动液滴运动的同时可以获取液滴的位置,解决相关技术中由于不能检测液滴位置导致设备的可靠性低的问题。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
示例性的,图3为本申请实施例提供的一种微流控芯片的结构示意图,图4为沿图3中剖线AA'的一种剖面结构示意图,图3示出了微流控芯片的俯视结构示意图,该微流控芯片包括多个驱动电极11、多个第一感应电极12和多个第二感应电极13,其中多个驱动电极11呈阵列排布,相邻的驱动电极11加载不同的驱动电压,通过相邻驱动电极11之间的差生电压驱动液滴,控制液滴按照预设路径移动。其中第一感应电极12沿第一方向x延伸,沿第二方向y排列,第二感应电极13沿第二方向y延伸,沿第一方向x排列,第一方向x与驱动电极11所成阵列的行方向平行,第二方向y与驱动电极11所成阵列的列方向平行。图3示出的驱动电极11、第一感应电极12和第二感应电极13的形状均为矩形只是示意性的,具体实施时可以根据实际情况设置。参考图4,该微流控芯片包括相对设置的第一基板10和第二基板20,第一基板10和第二基板20之间形成微流控通道30,微流控通道30设置为容纳至少一个液滴31;示例性的,本实施例中,驱动电极11、第一感应电极12和第二感应电极13均位于第一基板10靠近第二基板20的一侧,不同的电极层之间设置有绝缘层14,沿 第一基板10指向第二基板20的方向z,第一感应电极12覆盖相邻两行驱动电极11的缝隙,第二感应电极13覆盖相邻两列驱动电极11的缝隙,即图4中的实施例中,第一感应电极12的宽度d 1大于相邻两行驱动电极11之间缝隙的宽度d 2,第二感应电极13的宽度d 3大于相邻两列驱动电极11之间缝隙的宽度d 4,通过设置第一感应电极12和第二感应电极13的宽度较宽,有利于降低第一感应电极12和第二感应电极13的电阻,减少加载探测信号时的电压压降;在其他实施例中,也可以设置第一感应电极12的宽度小于或等于相邻两行驱动电极11之间的缝隙,第二感应电极13的宽度小于或等于相邻两列驱动电极11之间的缝隙,具体实施时可以根据实际情况设计,本申请实施例对感应电极的宽度和驱动电极之间缝隙的宽度不作限定。图4中示例性示出第二基板20一侧还设置有公共电极21,公共电极21可以利用ITO形成,在向第一感应电极12和第二感应电极13加载探测信号时,第一感应电极12和公共电极21形成第一电容C 1,第二感应电极13和公共电极21形成第二电容C 2,当液滴流过时,引起感应电极和公共电极之间的介电常数变化,第一感应电极12和公共电极21之间的电容变为C 1',第二感应电极13和公共电极21之间的电容变为C 2',从而确定液滴的位置。在其他实施例中,与感应电极形成电容的另一电极还可以为微流控芯片中某一走线或其他电容的某一极等,具体实施时可以根据实际情况设计。
图5为本申请实施例提供的一种微流控芯片的电路结构示意图,参考图5,可选的,本实施例提供的微流控芯片还包括多条沿第一方向x延伸的扫描信号线15、多条沿第二方向y延伸的数据信号线16和与多个驱动电极11一一对应的多个晶体管17,每个晶体管17的栅极与一条扫描信号线15连接,每个晶体管17的第一极与一条数据信号线16连接,每个晶体管17的第二极与对应的驱动电极11连接。
可以理解的是,对于驱动电极数量较多、结构比较复杂的微流控芯片,可以通过设置包括扫描信号线15、数据信号线16和晶体管17的有源驱动方式, 与显示面板类似,每个驱动电极11类似于显示面板中的一个子像素,利用扫描信号线15和数据信号线16实现扫描,利用晶体管17的通断实现驱动电极11的有源驱动,其中,晶体管17的第一极可以为源极,第二极可以为漏极,晶体管17可以采用薄膜晶体管,例如可以采用非晶硅材料、多晶硅材料或金属氧化物材料等作为有源层形成的薄膜晶体管。
可选的,扫描信号线、数据信号线和晶体管均位于驱动电极远离第二基板一侧;扫描信号线、数据信号线和晶体管的至少一个与驱动电极交叠。
示例性的,图6为本申请实施例提供的一种微流控芯片的剖面结构示意图,参考图6,晶体管17包括栅极171、有源层172、源极173(第一极)和漏极174(第二极),扫描信号线15、数据信号线16和晶体管17均位于驱动电极11远离第二基板20一侧;本实施例中,由于第一感应电极12和第二感应电极13需要至少部分位于驱动电极11的缝隙中,为了定位信号的强度以及减少信号干扰,扫描信号线15和数据信号线16中的至少之一尽量不在驱动电极11的缝隙间走线,均位于驱动电极11的下方,相应的,晶体管17也设置在驱动电极11下方,不设置在缝隙里,这样驱动电极11可以屏蔽扫描信号线15、数据信号线16或晶体管17引起的寄生电容,提升液滴定位精度。
可以理解的是,图6示出的剖面结构中,剖线的形状类似于图3中的折线AA',其中虚线左侧部分的剖线沿第一方向x(驱动电极阵列行方向)延伸,虚线右侧部分的剖线沿第二方向y(驱动电极阵列列方向)延伸,其中扫描信号线15和晶体管17的栅极171连接,由于图6中未示出扫描信号线15与栅极171连接位置处的结构,因此图6中扫描信号线15和栅极171为分开的结构,数据信号线16和晶体管17的源极173连接,图6中示出的是数据信号线16和源极173连接为一体的结构。
图6所示的实施例中,第二基板20一侧设置有公共电极21,在向第一感应电极12和第二感应电极13加载探测信号时,第一感应电极12和公共电极21形成第一电容C 1,第二感应电极13和公共电极21形成第二电容C 2,当液 滴流过时,引起感应电极和公共电极之间的介电常数变化,第一感应电极12和公共电极21之间的电容变为C 1',第二感应电极13和公共电极21之间的电容变为C 2',从而确定液滴的位置。在其他实施例中,也可以不设置公共电极,感应电极与微流控芯片中某一走线或其他电极形成电容,示例性的,图7为本申请实施例提供的另一种微流控芯片的剖面结构示意图,可以理解的是,驱动液滴移动和探测液滴位置一般分时进行,本实施例中,在向第一感应电极12和第二感应电极13加载探测信号时,第一感应电极12可以和扫描信号线15(在其他实施例中,也可以为其他信号走线或电极,本申请实施例不作限定)形成第三电容C 3,第二感应电极13和数据信号线16(在其他实施例中,也可以为其他信号走线或电极,本申请实施例不作限定)形成第四电容C 4,当液滴流过时,液滴内的感应电荷分布受感应电极的影响而发生变化,进而使第一感应电极12和扫描信号线15之间的电容变为C 3',第二感应电极13和数据信号线16之间的电容变为C 4',从而根据电容的变化确定液滴的位置,以下未示出公共电极的实施例的原理与图7类似。
图8为本申请实施例提供的又一种微流控芯片的剖面结构示意图,参考图8,可选的,第一感应电极12与扫描信号线15同层设置,第二感应电极13与数据信号线16同层设置。
由于第一感应电极12的延伸方向和扫描信号线15的延伸方向相同,第二感应电极13和数据信号线16的延伸方向相同,为了减少微流控芯片的膜层,可以设置第一感应电极12与扫描信号线15同层,第二感应电极13与数据信号线16同层,在制备时可以使第一感应电极12与扫描信号线15利用同一工艺一次形成,第二感应电极13与数据信号线16利用同一工艺一次形成,从而降低微流控芯片的厚度和制备成本。
可选的,第一感应电极或第二感应电极与驱动电极同层设置。示例性的,图9为本申请实施例提供的又一种微流控芯片的剖面结构示意图,其剖线平行与驱动电极阵列的列方向,参考图9,第一感应电极12与驱动电极11同层, 即第一感应电极12设置于相邻两行驱动电极11之间的缝隙中;图10为本申请实施例提供的又一种微流控芯片的剖面结构示意图,其剖面平行于驱动电极阵列的行方向,参考图10,第二感应电极13与驱动电极11同层,即第二感应电极13设置于相邻两列驱动电极11之间的缝隙中,具体实施时,可选的,与驱动电极同层设置的感应电极,和驱动电极采用相同的材料形成,即图9所示的实施例中,第一感应电极12与驱动电极11采用相同的材料,图10所示的实施例中,第二感应电极13与驱动电极11采用相同的材料,例如驱动电极11的材料可以是ITO,具体实施时可以根据实际情况选择。在其他实施例中,还可以设置第一感应电极和第二感应电极均与驱动电极同层,在第一感应电极和第二感应电极交叉位置处设置跨桥避免第一感应电极和第二感应电极发生短路,类似于显示面板中触控电极的结构。
在另一实施例中,例如微流控芯片的驱动电极数量较少,结构比较简单时,可以采用无源驱动方式,即不设置晶体管。可选的,本实施例提供的微流控芯片还包括多条沿第一方向或第二方向延伸的数据信号线,每条数据信号线与对应的驱动电极连接。
示例性的,以数据信号线沿第一方向延伸为例,图11为本申请实施例提供的另一种微流控芯片的结构示意图,参考图11,微流控芯片还包括多条沿第一方向x延伸的数据信号线16,多条数据信号线16与多个驱动电极11一一对应连接,即每条数据信号线16与对应的驱动电极11连接,具体实施时,可以通过在数据信号线16和驱动电极11之间膜层设置过孔实现电连接。在其他实施例中,数据信号线还可以沿第二方向延伸,其结构与图11类似,区别为数据信号线沿第二方向延伸时数据信号线沿驱动电极阵列的列方向延伸。
图12为沿图11中剖线BB'的一种剖面结构示意图,参考图12,可选的,数据信号线16位于驱动电极11远离第二基板20一侧;数据信号线16与驱动电极11'绝缘交叠。
可以理解的是,数据信号线16与对应的驱动电极11电连接,与驱动电极 11位于同一行的其他驱动电极11'与所述数据信号线16绝缘交叠,这样设置可以避免数据信号线16占据驱动电极11的缝隙,减少数据信号线16产生的寄生电容对第一感应电极12或第二感应电极13信号的影响。
参考图11和图12,可选的,数据信号线16沿第一方向x延伸,第一感应电极12与数据信号线16同层设置,第二感应电极13与驱动电极11同层设置,可选的,与驱动电极同层设置的感应电极,和驱动电极采用相同的材料形成。具体实施时,可以设置第一感应电极12和数据信号线16采用同种工艺和材料一次形成,第二感应电极13和驱动电极11采用同种工艺和材料一次形成;或者在另一实施例中,数据信号线沿第二方向延伸,第二感应电极与数据信号线同层设置,第一感应电极与驱动电极同层设置,第二感应电极和数据信号线采用同种工艺和材料一次形成,其实现方式与图11和图12类似,此处不再详述。
可选的,微流控芯片满足以下至少之一:多个第一感应电极中的每个第一感应电极沿第一方向呈弯曲形状延伸;多个第二感应电极中的每个第二感应电极沿第二方向呈弯曲形状延伸。
示例性的,图13为本申请实施例提供的一种微流控芯片的局部结构示意图,参考图13,本实施例中,第一感应电极12沿第一方向x呈弯曲形状延伸,第二感应电极13沿第二方向y呈弯曲形状延伸,这样设置有利于增大第一感应电极12和第二感应电极13的所形成的感应电容的面积,增大信号强度。相应的,驱动电极11的边缘需要与感应电极的形状相匹配,可以理解的是,图13的实施例中,第一感应电极12和第二感应电极13的宽度与驱动电极11的缝隙宽度相同,因此它们的边界重合,在其他实施例中,第一感应电极12和第二感应电极13的宽度可以小于驱动电极11的缝隙,也可以大于驱动电极11的缝隙,在具体实施时,需要使第一感应电极12和第二感应电极13的部分区域位于驱动电极11的缝隙中,以保证探测液滴位置时的信号强度。
可选的,弯曲形状包括锯齿形状或波浪形状。
参考图13,第一感应电极12和第二感应电极13均呈波浪形状延伸,在其 他实施例中,感应电极的形状还可以呈锯齿状,示例性的,图14为本申请实施例提供的另一种微流控芯片的局部结构示意图,参考图14,第一感应电极12和第二感应电极13均呈锯齿形状延伸,在其他实施例中,第一感应电极12和第二感应电极13还可以设计为其他弯曲形状,本申请实施例对此不作限定。
需要说明的是,图13和图14中示出的第一感应电极12和第二感应电极13均为弯曲形状仅是示例性的,在其他实施例中,可以只设置第一感应电极或第二感应电极弯曲,对应的驱动电极的边缘形状与感应电极的边缘对应,具体实施时可以根据实际情况设计。
可选的,参考图13或图14,驱动电极11的边缘与相邻的第一感应电极12或第二感应电极13靠近驱动电极一侧的边缘形状相同,即驱动电极11的边缘形状和相邻的第一感应电极12或第二感应电极13相互啮合。第一感应电极12在第一基板所在平面的投影位于与所述第一感应电极12相邻的两行驱动电极11在第一基板所在平面的投影之间,即第一感应电极12位于相邻两行驱动电极11的缝隙中,二者可以同层也可以不同层,第二感应电极13在第一基板所在平面的投影位于与所述第二感应电极13相邻的两列驱动电极11在第一基板所在平面的投影之间,即第二感应电极13位于相邻两列驱动电极11的缝隙中,二者可以同层或不同层。其中图13和图14示出的均是微流控芯片的俯视示意图,未示出第一基板的结构。
由于本实施例的相邻驱动电极11之间需要形成电场,以驱动液滴进行移动,因此,将驱动电极11的边缘也设计为弯曲形状,可以使相邻驱动电极11间的交叠长度增加,有效的增大相邻驱动电极11之间的正对面积,从而使两驱动电极11之间形成电场强度的增加,更加有利于驱动液滴的移动。
图15为本申请实施例提供的另一种微流控芯片的局部结构示意图,可选的,参考图15,本实施例提供的微流控芯片还包括多条扫描信号线15、多条数据信号线16、与多个驱动电极11一一对应的多个第一电极18和与多个驱动电极11一一对应的多个晶体管17(图15中示出的是晶体管17的电路原理图, 未示出晶体管17的结构),每个晶体管17的栅极与一条扫描信号线15连接,每个晶体管17的第一极与一条数据信号线16连接,每个晶体管17的第二极通过通孔与对应的驱动电极11连接,多个第一电极中的每个第一电极18和所述每个第一电极对应的驱动电极11形成存储电容;扫描信号线15、数据信号线16、第一电极18和晶体管17位于驱动电极11在第一基板所在平面的投影内,扫描信号线15、数据信号线16和驱动电极11的边缘绕过晶体管17的边缘。
可以理解的是,在给驱动电极11加载驱动电压时,往往需要维持一定的时间,为了维持驱动电极11的电压稳定,可以设置第一电极18与驱动电极11形成存储电容,由于第一感应电极12和第二感应电极13位于驱动电极11的缝隙中,因此设计扫描信号线15、数据信号线16、第一电极18和晶体管17均位于驱动电极11的下方,扫描信号线15、数据信号线16的靠近晶体管17的区域、第一感应电极12和第二感应电极13的边缘均绕过晶体管17所在区域,以留出足够的空间设置晶体管17,走线方式可以根据实际情况设计。
图15示出的结构中,每个第一电极18为分立的电极,由于第一电极18的作用是与驱动电极11形成存储电容,因此在其他实施例中,多个第一电极18可以电连接,加载同一电压信号。可选的,至少两个相邻的第一电极电连接,相互电连接的两个第一电极的连接部包括镂空区,镂空区与第一感应电极和/或第二感应电极交叠。
示例性的,图16为本申请实施例提供的又一种微流控芯片的局部结构示意图,参考图16,相邻两个第一电极18均通过电极之间连接部19的连接走线191电连接,连接部19包括镂空区192,镂空区192和第一感应电极12或第二感应电极13交叠。
可以理解的是,通过设置至少两个第一电极18电连接,可以同时给多个第一电极18加载信号,降低布线难度和驱动成本,通过在连接部19设置镂空区192,可以减少连接部19对感应电极的信号干扰,提高检测精度。需要说明的是,图16中示出的两个第一电极18之间设置四条连接走线192以及三个镂 空区192仅是示意性的,具体实施时对连接走线和镂空区的数量不作限定。
图16所示的实施例中,第一电极18与第一感应电极12和第二感应电极13均异层设置,例如对应图6中的结构,在其他实施例中,为了减少膜层数量,可选的,第一感应电极与扫描信号线同层设置,第二感应电极与数据信号线同层设置;示例性的,图17为本申请实施例提供的又一种微流控芯片的局部结构示意图,参考图17,第一电极18与第一感应电极12同层设置,相互电连接的两个第一电极18的连接部19的连接走线191沿第一方向x延伸,图18为本申请实施例提供的又一种微流控芯片的局部结构示意图,参考图18,第一电极18与第二感应电极13同层设置,相互电连接的两个第一电极18的连接部19的连接走线191沿第二方向y延伸。其中,图17和图18均示出的是微流控芯片的俯视图,以相同的填充表示同层设置,例如图17中第一电极18和第一感应电极12采用相同形状的填充。
可选的,每个第一感应电极和每个第二感应电极包括第一区域和第二区域,每个第一感应电极的第一区域和所述每个第一感应电极对应的第二感应电极的第一区域绝缘交叠;第一感应电极和第二感应电极满足以下之一:第一感应电极的第一区域的宽度小于第一感应电极的第二区域的宽度;第二感应电极的第一区域的宽度小于第二感应电极的第二区域的宽度。
示例性的,图19为本申请实施例提供的又一种微流控芯片的局部结构示意图,参考图19,第一感应电极12包括第一区域121和第二区域122,第二感应电极13包括第一区域131和第二区域132,第一感应电极12的第一区域121和第二感应电极13的第一区域131交叉,需要说明的是,此处的交叉指的是第一感应电极12的第一区域121在第一基板所在平面的垂直投影与第二感应电极13的第一区域131在第一基板所在平面的垂直投影交叉。通过设置第一感应电极12的第一区域121的宽度d 5小于第二区域122的宽度d 6,第二感应电极13的第一区域131的宽度d 7小于第二区域132的宽度d 8,可以减小两个感应电极的交叠面积,降低寄生电容。
当第一感应电极12和第二感应电极13采用弯曲形状延伸时,也可以设计为交叉区域宽度变窄,具体实施时可以根据实际情况设计。
在其他实施例中,可以仅设计第一感应电极或第二感应电极在交叉处采用窄线宽设计,以起到降低寄生电容的效果。
在某些实施例中,例如驱动电极数量较少、结构简单、只有一个液滴的微流控芯片中,为了简化电路结构,可以同时给所有第一感应电极和第二感应电极加载探测信号,根据电容变化确定液滴的位置,但是当存在至少两个液滴时,为了避免鬼点的产生,可以采用扫描的方式给其中一个方向的感应电极加载信号,可选的,分时沿第二方向依次向第一感应电极加载探测信号,或者分时沿第一方向依次向第二感应电极加载探测信号,根据液滴流过时第一感应电极和所述第一感应电极对应的一电极形成的电容变化以及第二感应电极和所述第二感应电极对应的一电极形成的电容变化确定液滴的位置。
由于第一感应电极和第二感应电极交叉设置,其交叉点可以形成电容,因此可以利用第一感应电极和第二感应电极之间形成的电容变化确定液滴的位置,在某一实施例中,可选的,第一感应电极和第二感应电极中一者为发射电极,一者为接收电极,根据液滴流过时第一感应电极和第二感应电极之间的电容变化确定液滴的位置。
在另一实施例中,可以根据感应电极和位于第二基板的公共电极形成的电容变化确定液滴的位置,可选的,公共电极包括多条沿第一方向或第二方向延伸的支电极,支电极的数量与多个第一感应电极或多个第二感应电极的数量相同。
示例性的,图20为本申请实施例提供的一种微流控芯片中公共电极的俯视示意图,图21为本申请实施例提供的又一种微流控芯片的剖面结构示意图,图20和图21以公共电极21包括多个沿第一方向延伸的支电极为例,图21示出的是平行于第二方向的剖线的剖面结构示意图,本实施例中,支电极也可以单独驱动,与第一感应电极12或第二感应电极13配合形成电容实现液滴的定 位。
在微流控芯片中,驱动电极的尺寸一般在毫米量级,驱动电极之间的间距可以为几十微米,可选的,沿第一方向,相邻两个驱动电极之间的距离为10μm~40μm;沿第二方向,相邻两个驱动电极之间的距离为10μm~40μm,这样可以保证第一感应电极和第二感应电极的面积较大,可以保证探测液滴位置时信号的强度。在其他实施例中,可选的,第一基板和第二基板靠近微流控通道的一侧均设置有绝缘疏水层,以起到绝缘和减小液滴运动阻力的作用。
本申请实施例还提供一种微流控芯片,包括相对设置的第一基板和第二基板,第一基板和第二基板之间形成微流控通道,微流控通道设置为容纳至少一个液滴;位于第一基板一侧的多个驱动电极,多个驱动电极呈阵列排布,相邻的驱动电极加载不同的驱动电压信号,以驱动液滴移动;多个驱动电极中的每个驱动电极的至少一个边缘呈弯曲形状延伸。
示例性的,图22为本申请实施例提供的又一种微流控芯片的局部结构示意图,图23为沿图22中剖线CC'的一种剖面结构示意图,参考图22,该微流控芯片包括呈阵列排布的多个驱动电极11,相邻的驱动电极11加载不同的驱动电压,通过相邻驱动电极11之间的差生电压驱动液滴,控制液滴按照预设路径移动,驱动电极11的边缘呈弯曲形状延伸,其中图22中示出的波浪形状仅是示意性的,具体实施时可以为锯齿形或其他曲线形状。参考图23,该微流控芯片包括相对设置的第一基板10和第二基板20,第一基板10和第二基板20之间形成微流控通道30,微流控通道30设置为容纳至少一个液滴31。在其他实施例中,还可以在第二基板20上设置公共电极,还可以包括扫描信号线、数据信号线和晶体管等结构,还可以在驱动电极的缝隙中设置第一感应电极和第二感应电极以获取液滴的位置,具体实施时可以根据实际需要设计。
本申请实施例还提供一种微流控芯片,包括相对设置的第一基板和第二基 板,第一基板和第二基板之间形成微流控通道,微流控通道设置为容纳至少一个液滴;位于第一基板一侧的多个驱动电极,多个驱动电极呈阵列排布,相邻的驱动电极加载不同的驱动电压信号,以驱动液滴移动;还包括多条沿第一方向延伸的扫描信号线、多条沿第二方向延伸的数据信号线和与多个驱动电极一一对应的多个晶体管,每个晶体管的栅极与一条扫描信号线连接,每个晶体管的第一极与一条数据信号线连接,每个晶体管的第二极与对应的驱动电极连接;扫描信号线、数据信号线和晶体管均位于驱动电极远离第二基板一侧;扫描信号线、数据信号线和晶体管的至少一个与驱动电极交叠。
示例性的,图24为本申请实施例提供的又一种微流控芯片的局部结构示意图,图25为图24的一种剖面结构示意图,参考图24,该微流控芯片包括呈阵列排布的多个驱动电极11,相邻的驱动电极11加载不同的驱动电压,通过相邻驱动电极11之间的差生电压驱动液滴,控制液滴按照预设路径移动;还包括多条沿第一方向x延伸的扫描信号线15、多条沿第二方向y延伸的数据信号线16和与多个驱动电极11一一对应的多个晶体管17,每个晶体管17的栅极与一条扫描信号线15连接,第一极与一条数据信号线16连接,第二极与对应的驱动电极11连接;参考图25,晶体管17包括栅极171、有源层172、源极173(第一极)和漏极174(第二极),扫描信号线15、数据信号线16和晶体管17均位于驱动电极11远离第二基板20一侧;扫描信号线15和/或数据信号线16尽量不在驱动电极11的缝隙间走线,均位于驱动电极11的下方,相应的,晶体管17也设置在驱动电极11下方,不设置在缝隙里,这样驱动电极11可以屏蔽扫描信号线15、数据信号线16或晶体管17引起的寄生电容,提升液滴驱动精度和速度,避免扫描信号线线15/数据信号线16和驱动电极之间产生电场对液滴移动形成反作用力。在其他实施例中,扫描信号线、数据信号线和晶体管的至少一个与驱动电极交叠,驱动电极11的边缘呈弯曲形状延伸,类似于图22中示出的波浪形状。在其他实施例中,还可以在驱动电极的缝隙中设置第一感应电极和第二感应电极以获取液滴的位置,与具有液滴定位功能的实施例结 合,例如可以参考前述实施例提供的微流控芯片的结构。

Claims (23)

  1. 一种微流控芯片,包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间形成微流控通道,所述微流控通道设置为容纳至少一个液滴;
    位于所述第一基板一侧的多个驱动电极、多个第一感应电极和多个第二感应电极,所述多个驱动电极呈阵列排布,所述多个第一感应电极沿第一方向延伸,沿第二方向排列,所述多个第二感应电极沿所述第二方向延伸,沿所述第一方向排列,所述第一方向与所述多个驱动电极所成阵列的行方向平行,所述第二方向与所述多个驱动电极所成阵列的列方向平行,所述多个第一感应电极中的每个第一感应电极在所述第一基板所在平面的投影与相邻两行所述驱动电极的缝隙在所述第一基板所在平面的投影至少部分交叠,所述多个第二感应电极中的每个第二感应电极在所述第一基板所在平面的投影与相邻两列所述驱动电极的缝隙在所述第一基板所在平面的投影至少部分交叠;
    所述多个驱动电极中相邻的所述驱动电极加载不同的驱动电压信号,以驱动所述液滴移动;
    所述多个第一感应电极和所述多个第二感应电极加载探测信号,根据所述液滴流过时所述第一感应电极和所述第一感应电极对应的一电极形成的电容变化以及所述第二感应电极和所述第二感应电极对应的一电极形成的电容变化确定所述液滴的位置。
  2. 根据权利要求1所述的微流控芯片,还包括多条沿所述第一方向延伸的扫描信号线、多条沿所述第二方向延伸的数据信号线和与所述多个驱动电极一一对应的多个晶体管,每个所述晶体管的栅极与一条所述扫描信号线连接,每个所述晶体管的第一极与一条所述数据信号线连接,所述每个所述晶体管的第二极与对应的所述驱动电极连接。
  3. 根据权利要求2所述的微流控芯片,其中,所述多条扫描信号线、所述多条数据信号线和所述多个晶体管均位于所述多个驱动电极远离所述第二基板一侧;
    所述扫描信号线、所述数据信号线和所述晶体管的至少一个与所述驱动电极交叠。
  4. 根据权利要求2所述的微流控芯片,其中,所述多个第一感应电极与所述多条扫描信号线同层设置,所述多个第二感应电极与所述多条数据信号线同层设置。
  5. 根据权利要求2所述的微流控芯片,其中,所述多个第一感应电极或所述多个第二感应电极与所述多个驱动电极同层设置。
  6. 根据权利要求1所述的微流控芯片,还包括多条沿所述第一方向或所述第二方向延伸的数据信号线,每条所述数据信号线与对应的所述驱动电极连接。
  7. 根据权利要求6所述的微流控芯片,其中,所述多条数据信号线位于所述多个驱动电极远离所述第二基板一侧;
    与所述数据信号线对应的所述驱动电极位于同一行的其他驱动电极与所述数据信号线绝缘交叠。
  8. 根据权利要求6所述的微流控芯片,其中,所述多条数据信号线沿所述第一方向延伸,所述多个第一感应电极与所述多条数据信号线同层设置,所述多个第二感应电极与所述多个驱动电极同层设置;或者
    所述多条数据信号线沿所述第二方向延伸,所述多个第二感应电极与所述多条数据信号线同层设置,所述多个第一感应电极与所述多个驱动电极同层设置。
  9. 根据权利要求5或8所述的微流控芯片,其中,与所述多个驱动电极同层设置的感应电极,和所述多个驱动电极采用相同的材料形成。
  10. 根据权利要求1所述的微流控芯片,其中,所述微流控芯片满足以下至少之一:所述多个第一感应电极中的每个第一感应电极沿所述第一方向呈弯曲形状延伸;所述多个第二感应电极中的每个第二感应电极沿所述第二方向呈弯曲形状延伸。
  11. 根据权利要求10所述的微流控芯片,其中,所述弯曲形状包括锯齿形状或波浪形状。
  12. 根据权利要求10所述的微流控芯片,其中,所述多个驱动电极中的每个驱动电极的边缘与相邻的所述第一感应电极或所述第二感应电极靠近所述每个驱动电极一侧的边缘形状相同,所述第一感应电极在所述第一基板所在平面的投影位于相邻两行所述驱动电极在所述第一基板所在平面的投影之间,所述第二感应电极在所述第一基板所在平面的投影位于相邻两列所述驱动电极在所述第一基板所在平面的投影之间。
  13. 根据权利要求12所述的微流控芯片,还包括多条扫描信号线、多条数据信号线、与所述多个驱动电极一一对应的多个第一电极和与所述多个驱动电极一一对应的多个晶体管,每个所述晶体管的栅极与一条所述扫描信号线连接,每个所述晶体管的第一极与一条所述数据信号线连接,每个所述晶体管的第二极通过通孔与对应的所述驱动电极连接,所述多个第一电极中的每个第一电极和与所述每个第一电极对应的所述驱动电极形成存储电容;
    所述多条扫描信号线、所述多条数据信号线、所述多个第一电极和所述多个晶体管位于所述多个驱动电极在所述第一基板所在平面的投影内,所述多条扫描信号线、所述多条数据信号线和所述多个驱动电极的边缘绕过所述多个晶体管的边缘。
  14. 根据权利要求13所述的微流控芯片,其中,至少两个相邻的所述第一电极电连接,相互电连接的两个所述第一电极的连接部包括镂空区,所述镂空区与所述第一感应电极和所述第二感应电极中的至少之一交叠。
  15. 根据权利要求14所述的微流控芯片,其中,所述多个第一感应电极与所述多条扫描信号线同层设置,所述多个第二感应电极与所述多条数据信号线同层设置;
    所述多个第一电极与所述多个第一感应电极同层设置,相互电连接的两个所述第一电极的连接部的连接走线沿所述第一方向延伸,或者所述多个第一电 极与所述多个第二感应电极同层设置,相互电连接的两个所述第一电极的连接部的连接走线沿所述第二方向延伸。
  16. 根据权利要求1所述的微流控芯片,其中,所述多个第一感应电极中的每个第一感应电极和所述多个第二感应电极中的每个第二感应电极包括第一区域和第二区域,所述每个第一感应电极的第一区域和与所述每个第一感应电极对应的所述第二感应电极的第一区域绝缘交叠;
    所述每个第一感应电极和所述每个第二感应电极满足以下至少之一:所述每个第一感应电极的第一区域的宽度小于所述每个第一感应电极的第二区域的宽度;所述每个第二感应电极的第一区域的宽度小于所述每个第二感应电极的第二区域的宽度。
  17. 根据权利要求1所述的微流控芯片,其中,分时沿所述第二方向依次向所述多个第一感应电极加载探测信号,或者分时沿所述第一方向依次向所述多个第二感应电极加载探测信号,根据所述液滴流过时所述第一感应电极和所述第一感应电极对应的一电极形成的电容变化以及所述第二感应电极和所述第二感应电极对应的一电极形成的电容变化确定所述液滴的位置。
  18. 根据权利要求1所述的微流控芯片,其中,所述第一感应电极和所述第二感应电极中一者为发射电极,一者为接收电极,根据所述液滴流过时所述第一感应电极和所述第二感应电极之间的电容变化确定所述液滴的位置。
  19. 根据权利要求1所述的微流控芯片,还包括位于所述第二基板一侧的公共电极,根据所述液滴流过时所述第一感应电极和所述公共电极形成的电容变化以及所述第二感应电极和所述公共电极形成的电容变化确定所述液滴的位置。
  20. 根据权利要求19所述的微流控芯片,其中,所述公共电极包括多条沿第一方向或第二方向延伸的支电极,所述支电极的数量与所述多个第一感应电极或所述多个第二感应电极的数量相同。
  21. 根据权利要求1所述的微流控芯片,其中,沿所述第一方向,所述多 个驱动电极中的相邻两个所述驱动电极之间的距离为10μm~40μm;
    沿所述第二方向,所述多个驱动电极中的相邻两个所述驱动电极之间的距离为10μm~40μm。
  22. 一种微流控芯片,包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间形成微流控通道,所述微流控通道设置为容纳至少一个液滴;
    位于所述第一基板一侧的多个驱动电极,所述多个驱动电极呈阵列排布,所述多个驱动电极中相邻的所述驱动电极加载不同的驱动电压信号,以驱动所述液滴移动;
    所述多个驱动电极中的每个驱动电极的至少一个边缘呈弯曲形状延伸。
  23. 一种微流控芯片,包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间形成微流控通道,所述微流控通道设置为容纳至少一个液滴;
    位于所述第一基板一侧的多个驱动电极,所述多个驱动电极呈阵列排布,所述多个驱动电极中相邻的所述驱动电极加载不同的驱动电压信号,以驱动所述液滴移动;
    还包括多条沿第一方向延伸的扫描信号线、多条沿第二方向延伸的数据信号线和与所述多个驱动电极一一对应的多个晶体管,每个所述晶体管的栅极与一条所述扫描信号线连接,所述每个所述晶体管的第一极与一条所述数据信号线连接,所述每个所述晶体管的第二极与对应的所述驱动电极连接;
    所述多条扫描信号线、所述多条数据信号线和所述多个晶体管均位于所述多个驱动电极远离所述第二基板一侧;
    所述扫描信号线、所述数据信号线和所述晶体管的至少一个与所述驱动电极交叠。
PCT/CN2021/103593 2021-04-27 2021-06-30 一种微流控芯片 WO2022227268A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/758,359 US20240165616A1 (en) 2021-04-27 2021-06-30 Microfluidic chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110462149.1 2021-04-27
CN202110462149.1A CN115245844A (zh) 2021-04-27 2021-04-27 一种微流控芯片

Publications (1)

Publication Number Publication Date
WO2022227268A1 true WO2022227268A1 (zh) 2022-11-03

Family

ID=83696784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103593 WO2022227268A1 (zh) 2021-04-27 2021-06-30 一种微流控芯片

Country Status (3)

Country Link
US (1) US20240165616A1 (zh)
CN (1) CN115245844A (zh)
WO (1) WO2022227268A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117065817A (zh) * 2023-10-12 2023-11-17 惠科股份有限公司 微流控芯片

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115245845A (zh) * 2021-04-27 2022-10-28 上海天马微电子有限公司 一种微流控芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527595A (zh) * 2017-09-27 2017-12-29 京东方科技集团股份有限公司 一种微流控***及其驱动方法
CN107754962A (zh) * 2017-11-22 2018-03-06 南方科技大学 一种数字微流控液滴驱动装置及驱动方法
CN109420532A (zh) * 2017-09-01 2019-03-05 京东方科技集团股份有限公司 数字微流控基板及其制作方法、数字微流控芯片及方法
CN109876875A (zh) * 2019-03-27 2019-06-14 上海中航光电子有限公司 微流控芯片及其驱动方法、分析装置
US20190291108A1 (en) * 2018-03-23 2019-09-26 National Cheng Kung University Microfluidic chip

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329545B2 (en) * 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
CN102650512B (zh) * 2011-02-25 2014-09-10 上海衡芯生物科技有限公司 液滴测量方法及液滴控制方法
CN104699355B (zh) * 2015-04-01 2017-11-14 上海天马微电子有限公司 一种自容式触摸显示面板及其阵列基板和触控装置
CN107583694B (zh) * 2017-09-06 2020-08-04 京东方科技集团股份有限公司 微流控***及方法
CN107649223B (zh) * 2017-09-27 2019-10-15 京东方科技集团股份有限公司 液滴控制检测器件及其工作方法
CN109799271B (zh) * 2018-04-23 2020-07-10 京东方科技集团股份有限公司 微流控检测电路、***、方法
CN110787843B (zh) * 2018-08-01 2021-03-23 京东方科技集团股份有限公司 微流控基板、微流控结构及其驱动方法
CN109078661B (zh) * 2018-08-09 2020-06-23 京东方科技集团股份有限公司 微流控芯片及其检测和驱动方法、片上实验室***
CN109894169B (zh) * 2019-03-26 2021-09-28 上海天马微电子有限公司 电润湿面板及其工作方法
CN110420673B (zh) * 2019-08-14 2022-06-03 京东方科技集团股份有限公司 一种微流控器件及其驱动方法、微流控***
CN115245845A (zh) * 2021-04-27 2022-10-28 上海天马微电子有限公司 一种微流控芯片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420532A (zh) * 2017-09-01 2019-03-05 京东方科技集团股份有限公司 数字微流控基板及其制作方法、数字微流控芯片及方法
CN107527595A (zh) * 2017-09-27 2017-12-29 京东方科技集团股份有限公司 一种微流控***及其驱动方法
CN107754962A (zh) * 2017-11-22 2018-03-06 南方科技大学 一种数字微流控液滴驱动装置及驱动方法
US20190291108A1 (en) * 2018-03-23 2019-09-26 National Cheng Kung University Microfluidic chip
CN109876875A (zh) * 2019-03-27 2019-06-14 上海中航光电子有限公司 微流控芯片及其驱动方法、分析装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117065817A (zh) * 2023-10-12 2023-11-17 惠科股份有限公司 微流控芯片
CN117065817B (zh) * 2023-10-12 2024-01-23 惠科股份有限公司 微流控芯片

Also Published As

Publication number Publication date
CN115245844A (zh) 2022-10-28
US20240165616A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
US10022719B2 (en) Droplet manipulation device
WO2022227268A1 (zh) 一种微流控芯片
US11344889B2 (en) Microfluidic chip, detecting and driving method thereof, and on-chip laboratory system
US8524506B2 (en) Methods for sampling a liquid flow
US20110220505A1 (en) Droplet manipulations on ewod microelectrode array architecture
TWI510296B (zh) 介質上電潤濕微電極陣列結構上的液滴處理方法
US11318465B2 (en) Electrowetting panel and operation method thereof
CN102671723A (zh) 介质上电润湿微电极阵列结构上的液滴处理方法
JP2005510347A (ja) 化学、生化学、および生物学的アッセイ等のためにエレクトロウェッティングを介してマイクロ流体制御する方法、装置、および物
WO2022227299A1 (zh) 一种微流控芯片
CN110787843A (zh) 微流控基板、微流控结构及其驱动方法
WO2022134064A1 (zh) 用于液滴驱动的基板及其制造方法、微流控装置
CA2500252C (en) Methods and apparatus for manipulating droplets by electrowetting-based techniques
CN115151342B (zh) 基板、微流控装置、驱动方法和制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17758359

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938736

Country of ref document: EP

Kind code of ref document: A1