WO2022227070A1 - 一种电源装置及图腾柱pfc电路控制方法 - Google Patents

一种电源装置及图腾柱pfc电路控制方法 Download PDF

Info

Publication number
WO2022227070A1
WO2022227070A1 PCT/CN2021/091692 CN2021091692W WO2022227070A1 WO 2022227070 A1 WO2022227070 A1 WO 2022227070A1 CN 2021091692 W CN2021091692 W CN 2021091692W WO 2022227070 A1 WO2022227070 A1 WO 2022227070A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
input
dead zone
switch
signal
Prior art date
Application number
PCT/CN2021/091692
Other languages
English (en)
French (fr)
Inventor
陈建
刘源俊
莫尚林
康良云
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2021/091692 priority Critical patent/WO2022227070A1/zh
Priority to CN202180002901.2A priority patent/CN115606083A/zh
Priority to EP21938544.0A priority patent/EP4325707A4/en
Publication of WO2022227070A1 publication Critical patent/WO2022227070A1/zh
Priority to US18/497,110 priority patent/US20240072647A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of electronic power converters, and in particular, to a power supply device and a totem pole PFC circuit control method.
  • the traditional PFC circuit consists of a rectifier bridge and a boost Boost PFC circuit.
  • the efficiency of the PFC circuit is reduced because there are many conduction devices in the conventional PFC circuit.
  • the totem-pole PFC circuit can realize the functions of rectification and PFC only through one-stage conduction devices, thereby reducing the number of conduction devices and improving the efficiency.
  • FIG. 1A is a schematic structural diagram of a totem-pole PFC circuit.
  • the totem-pole PFC circuit is composed of an AC input source, an inductor L, four switching devices S1-S4, an output filter capacitor C OUT , and a load.
  • S1 and S2 may be metals made of materials such as silicon semiconductor material (silicon, Si), silicon carbide (SiC) or gallium nitride (gallium nitride, GaN) of the third generation wide bandgap semiconductor material.
  • Metal-oxide-semiconductor field-effect transistor (MOSFET) or insulated gate bipolar transistor (IGBT) and S3 and S4 can be made of materials such as Si, SiC, or GaN. into a MOSFET, IGBT or diode.
  • FIG. 1B shows the working states of the totem-pole PFC circuit under different switching states.
  • a) and b) in FIG. 1B are the working schematic diagrams when the AC input source V AC is positive.
  • S3 is turned off
  • S4 is turned on
  • S2 is turned on as the main switching device to charge the inductor L
  • S1 is used as the secondary switching device.
  • the switch tube is turned on to discharge the inductor.
  • c) and d) in Fig. 1B are the working schematic diagrams when the AC input source V AC is negative.
  • S3 is turned on
  • S4 is turned off
  • S1 is turned on as the main switching device to charge the inductor
  • S2 is turned on as the secondary switching device. Pass for inductor discharge.
  • the dead time must be set to an appropriate value so that the totem pole PFC circuit can obtain the optimal control effect.
  • the AC input source V AC of the totem pole PFC circuit is a sinusoidal AC voltage
  • the speed and time of the voltage change at the SW1 point are different in the dead time at different times.
  • Optimal control of the totem-pole PFC circuit cannot be performed under the prior art. In view of this, how to optimally control the totem-pole PFC circuit is an urgent need for those skilled in the art.
  • the present application provides a power supply device and a control method for a totem-pole PFC circuit, which are used for optimal control of the totem-pole PFC circuit.
  • the present application provides a power supply device comprising: a totem-pole power factor correction PFC circuit and a control device, the totem-pole PFC circuit includes a first switch tube and a second switch tube, and a source of the first switch tube The pole and the drain of the second switch tube are commonly connected to the first reference point, and the first input end of the AC input source is connected to the first reference point through an inductance;
  • the control device includes a controller and a dead zone detection circuit, and the dead zone detection circuit includes A detection capacitor and a detection resistor, the first end of the detection capacitor is connected to the first reference point, the second end of the detection capacitor is connected to the first end of the detection resistor, and the second end of the detection resistor is grounded;
  • the voltage and the positive and negative polarities of the voltage input by the AC input source generate the first dead zone control signal and the second dead zone control signal, and control the switching state of the first switch tube according to the first dead zone control signal, according to the second dead zone control signal.
  • the zone control signal controls the
  • the control device further includes: an AC input source polarity detection circuit; the AC input source polarity detection circuit is used to detect the positive and negative polarities of the voltage input by the AC input source.
  • the AC input source polarity detection circuit Through the AC input source polarity detection circuit, the positive and negative polarity of the voltage input by the AC input source can be detected, so that the first dead zone control signal and the second dead zone control signal can be determined according to the positive and negative polarity of the voltage input by the AC input source.
  • zone control signal and then the switching states of the first switch tube and the second switch tube are controlled by the first dead zone control signal and the second dead zone control signal.
  • the AC input source polarity detection circuit is specifically configured to: measure the first voltage of the first input terminal of the AC input source and the second voltage of the second input terminal of the AC input source, and calculate the first voltage The voltage difference between the second voltage and the second voltage; when the voltage difference is greater than the first preset voltage, it is determined that the voltage input by the AC input source is positive, and the first preset voltage is not less than 0; when the voltage difference is less than the second When the voltage is preset, it is determined that the voltage input by the AC input source is negative, and the second preset voltage is not greater than 0.
  • the voltage input by the AC input source can be determined according to the voltage difference between the first voltage and the second voltage positive and negative polarity.
  • the control device further includes: a voltage measurement module; the voltage measurement module is used to measure the voltage of the detection resistor. Through the voltage measurement module, the voltage of the resistor can be detected, and the voltage change slope of the first reference point can be indirectly determined by using the voltage of the detection resistor, so that it can be detected whether the inductance on the totem pole PFC circuit crosses zero, and whether the inductance of the first reference point crosses zero. Voltage peak signal and voltage valley signal and so on. Further, according to the above parameters, the first dead zone control signal and the second dead zone control signal are determined, and the switching states of the first switch tube and the second switch tube are controlled by the first dead zone control signal and the second dead zone control signal.
  • the controller is specifically configured to: generate an indication signal according to the voltage of the detection resistor and the positive and negative polarity of the voltage input by the AC input source; according to the indication signal and the positive and negative polarity of the voltage input by the AC input source to generate a first dead zone control signal and a second dead zone control signal, the indicator signal is used to indicate the dead zone state of the first switch tube and the second switch tube, and the indicator signal includes the first indicator signal and the second indicator signal.
  • the controller is specifically configured to: generate an indication signal according to the voltage of the detection resistor and the positive and negative polarity of the voltage input by the AC input source; according to the indication signal and the positive and negative polarity of the voltage input by the AC input source to generate a first dead zone control signal and a second dead zone control signal, the indicator signal is used to indicate the dead zone state of the first switch tube and the second switch tube, and the indicator signal includes the first indicator signal and the second indicator signal.
  • the indication signal may include a first indication signal indicating that the first switch is in a dead zone state;
  • the indication signal may include a second indication signal indicating that the second switch tube is in a dead zone state.
  • the second indication signal when it is determined that the voltage input by the AC input source is positive and the voltage of the detection resistor is less than the first threshold, the second indication signal is used to indicate that the first switch is in a dead zone state; When the voltage of the source input is positive and the voltage of the detection resistor is greater than the second threshold, the first indication signal is used to indicate that the second switch is in a dead zone state; when it is determined that the voltage input by the AC input source is negative and the voltage of the detection resistor is When it is less than the third threshold, the first indication signal is used to indicate that the first switch is in a dead zone state; when it is determined that the voltage input by the AC input source is negative and the voltage of the detection resistor is greater than the fourth threshold, the second indication signal is used to Indicates that the second switch tube is in a dead zone state; wherein, the first threshold is smaller than the second threshold, and the third threshold is smaller than the fourth threshold.
  • the controller specifically includes: a first multiplexing switch, a second multiplexing switch, a first comparator, a second comparator and an inverter; an output end of the first multiplexing switch It is connected to the negative terminal of the first comparator, the output terminal of the second multiplexing switch is connected to the negative terminal of the second comparator; the output terminal of the second comparator is connected to the inverter, and the first multiplexing switch
  • the input terminal is used to input the voltage of the fourth threshold, the second input terminal of the first multiplexer switch is used to input the voltage of the first threshold value;
  • the first input terminal of the second multiplexer switch is used to input the voltage of the third threshold value , the first input terminal of the second multiplexing switch is used to input the voltage of the second threshold value;
  • the positive terminal of the first comparator is used to receive the voltage of the detection resistor, and the positive terminal of the second comparator is used to receive the voltage of the detection resistor
  • connection of the output terminal when it is determined that the input voltage of the AC input source is negative, the controller controls the first multiplexer switch to conduct the connection between the second input terminal and the output terminal, and the controller controls the second multiplexer switch to conduct the second multiplexer switch.
  • the connection between the input end and the output end; the first comparator is used for outputting the first indication signal; the inverter is used for outputting the second indication signal.
  • the controller is specifically configured to: when it is determined that the voltage input by the AC input source is positive polarity, generate a first dead zone control signal according to the first indication signal, and generate a second dead zone according to the second indication signal Control signal; when it is determined that the voltage input by the AC input source is negative, the first dead zone control signal is generated according to the second indication signal, and the second dead zone control signal is generated according to the first indication signal.
  • the control device further includes: a first pulse generation circuit, where the first pulse generation circuit is used to generate a first pulse signal and a second pulse signal; the first pulse signal is used to generate a first dead zone control signal , the second pulse signal is used to generate the second dead zone control signal; the controller is also used to: when it is determined that the voltage input by the AC input source is positive, generate the first dead zone according to the first indication signal and the first pulse signal the control signal, and the second dead zone control signal is generated according to the second indication signal and the second pulse signal; when it is determined that the voltage input by the AC input source is negative, the first indication signal and the first pulse signal are generated according to the second indication signal The dead zone control signal, and the second dead zone control signal is generated according to the first indication signal and the second pulse signal.
  • the first pulse generation circuit is used to generate a first pulse signal and a second pulse signal
  • the first pulse signal is used to generate a first dead zone control signal
  • the second pulse signal is used to generate the second dead zone control signal
  • the controller is also used to
  • control device may further include sampling modules such as an output voltage sampling module, an inductor current sampling module and the like.
  • the output voltage sampling module is used for sending the output voltage value output to the load to the first pulse generating circuit
  • the inductor current sampling module is used for sending the current value of the inductor on the totem pole PFC circuit to the first pulse generating circuit
  • a pulse generating circuit can generate the first pulse signal and the second pulse signal according to the output voltage value and the current value of the inductor.
  • the first pulse generation circuit may increase the duty cycle of the first pulse signal and the second pulse signal when detecting that the output voltage value output to the load is lower than the voltage threshold, so that the totem pole PFC circuit outputs a stable voltage. .
  • control device further includes: a frequency detection module and a switch module; a frequency detection module for detecting the first signal frequency and the second signal frequency, where the first signal frequency is the frequency of the first pulse signal, and the first signal frequency is the frequency of the first pulse signal.
  • the second signal frequency is the frequency of the second pulse signal;
  • the switch module is used to control the switching state of the first switch tube according to the first signal frequency, and control the switching state of the second switch tube according to the second signal frequency.
  • the totem-pole PFC circuit further includes: a first diode and a second diode, the anode of the first diode and the cathode of the second diode both pass through the second reference point and communicate with the alternating current
  • the second input terminal of the input source is connected; the anode of the second diode is grounded.
  • the totem-pole PFC circuit further includes: a third switch tube and a fourth switch tube, the source of the third switch tube and the drain of the fourth switch tube both pass through the second reference point and the AC input source
  • the drain of the third switch is connected to the drain of the first switch, the drain of the third switch is connected to the drain of the first switch, and the source of the fourth switch is grounded;
  • the control device further includes: a second pulse generation circuit, which is used for generating a third pulse signal and a fourth pulse signal; the controller is further used for: controlling the switching state of the third switch tube according to the third pulse signal, The switch state of the fourth switch tube is controlled according to the fourth pulse signal.
  • the control device further includes: a protection circuit, the protection circuit includes: a first Zener tube and a second Zener tube, the protection circuit is connected in parallel with the detection resistor; the positive pole of the first Zener tube It is connected with the positive pole of the second Zener tube, and the negative pole of the second Zener tube is grounded.
  • the protection circuit includes: a first Zener tube and a second Zener tube, the protection circuit is connected in parallel with the detection resistor; the positive pole of the first Zener tube It is connected with the positive pole of the second Zener tube, and the negative pole of the second Zener tube is grounded.
  • the present application provides a control method for a totem-pole PFC circuit.
  • the control device is used to control the totem-pole PFC circuit.
  • the totem-pole PFC circuit includes a first switch tube and a second switch tube, and the source of the first switch tube and the The drains of the second switch tubes are commonly connected to the first reference point, and the first input end of the AC input source is connected to the first reference point through an inductor;
  • the control device includes a controller and a dead zone detection circuit, and the dead zone detection circuit includes a detection capacitor and a detection resistor, the first end of the detection capacitor is connected to the first reference point, the second end of the detection capacitor is connected to the first end of the detection resistor, and the second end of the detection resistor is grounded;
  • the totem pole PFC circuit control method is applied to the controller, The method includes: generating a first dead zone control signal and a second dead zone control signal according to the voltage of the detection resistor and the positive and negative polarities of the voltage input by the AC input
  • 1A is a schematic diagram of a totem pole PFC circuit structure
  • 1B is a schematic diagram of the working state of the totem-pole PFC circuit under different switching states
  • 1C is a schematic waveform diagram of a totem pole PFC circuit
  • FIG. 2 is a schematic structural diagram of a control totem pole PFC circuit
  • FIG. 3 is a schematic structural diagram of another control totem pole PFC circuit
  • FIG. 4 is a schematic structural diagram of a power supply device
  • Fig. 5 is the waveform schematic diagram of the dead zone detection circuit
  • 6A is a schematic diagram of a control device including an AC input source polarity detection circuit
  • 6B is a schematic structural diagram of an AC input source polarity detection circuit
  • 6C is a schematic waveform diagram of an AC input source polarity detection circuit
  • FIG. 7 is a schematic diagram of a control device including a voltage measurement module
  • 8A is a schematic structural diagram of a controller
  • 8B is a schematic waveform diagram of the controller
  • FIG. 9 is a schematic diagram of a control device comprising a first pulse generating circuit
  • 10A is a schematic structural diagram of a totem-pole PFC circuit for synchronous rectification
  • 10B is a schematic diagram of a control device including a second pulse generating circuit
  • FIG. 11 is a schematic structural diagram of another control device
  • FIG. 12 is a schematic structural diagram of a control device including a protection circuit
  • 13 to 16 are schematic diagrams of working waveforms of the totem-pole PFC circuit.
  • PFC circuit It is a circuit for power factor correction.
  • the rectifier bridge of the conventional rectifier filter circuit will be turned on only when the input sine wave voltage is close to the peak value, and the input current will be seriously non-sinusoidal, resulting in the generation of a large number of harmonic current components, and the harmonic current components also have interference. other electrical equipment possible.
  • the PFC circuit shapes the input current into a sine wave that is similar to the input voltage and in the same phase, so that the input power is as close to 1 as possible.
  • Boost boost topology The commonly used PFC circuits are mostly Boost boost topology. According to the different characteristics of Boost topology in different operating modes (discontinuous conduction mode/critical conduction mode/continuous conduction mode), corresponding control methods for different characteristics can be divided into multiple types. kind.
  • Totem pole PFC circuit The traditional PFC circuit is composed of a rectifier bridge and a Boost PFC circuit, which is composed of two stages, so it is also called a bridge PFC circuit; in order to further improve the efficiency, the bridgeless PFC combines the rectifier bridge and the PFC circuit.
  • the single-stage circuit is synthesized, without the loss of the rectifier bridge part, and the functions of rectification and power factor correction are realized at the same time, so it is called a bridgeless PFC circuit.
  • the totem-pole PFC circuit is the most efficient topology in the bridgeless PFC circuit, and it is also simpler than other bridgeless PFC circuits, and can also be called the totem-pole bridgeless PFC circuit.
  • Dead zone After the upper half bridge of the PFC circuit is turned off, the lower half bridge is turned on after a delay of a period of time, or after the lower half bridge is turned off, the upper half bridge is turned on after a delay of time, so as to prevent the bridge arm Through, the above delay time is the dead time. During this time period, the switches of the upper and lower bridges are closed.
  • the dead time in the totem-pole PFC circuit is set too small, it will cause the problem of hard turn-on, and if the dead time is set too large, it will lead to increased power loss, reduced power utilization, and There will also be a problem of hard opening. Therefore, it is necessary to set an appropriate dead time for the switches in the totem-pole PFC circuit, so that the totem-pole PFC circuit can obtain the optimal control effect.
  • current transformers CT1 and CT2 may be connected in series on S1 and S2 of the totem pole PFC circuit, so as to detect the current flowing through the switches S1 and S2 .
  • the switch control module uses the PWM signal to control the next The switch tubes are turned on, so as to realize zero-voltage turn-on or valley-voltage turn-on of the switch tubes (S1 and S2).
  • the cost of the current transformer is high and the volume is large, and after the current transformer detects the change of the current polarity transmission, the next switch tube can only be turned on after a fixed dead time. Therefore, the fixed dead time cannot be adapted to all operating points, so that the optimal control effect of the totem-pole PFC circuit cannot be obtained.
  • an auxiliary winding or resistance is added to the inductor L to detect the voltage across the inductor L.
  • the inductor L When the inductor L is charged and the current rises, the voltage of the inductor L is positive; When the inductor L discharges and the current drops, the voltage of the inductor L becomes negative. Therefore, at the two current points where the inductor L current is the largest and the smallest, the positive and negative inversion of the inductor L voltage can be detected.
  • the switch control module passes through a fixed dead zone.
  • An embodiment of the present application provides a power supply device, which includes a control device and a totem-pole PFC circuit.
  • the control device can detect the voltage polarity of an AC input source input to the totem-pole PFC circuit, and can also detect the totem-pole PFC circuit.
  • the voltage of the first reference point in and the control device can generate a dead-time control signal according to the voltage of the first reference point and the voltage polarity of the input voltage of the AC input source, and the first reference point is
  • the control device in the power supply device can control the totem pole PFC circuit according to the dead zone control signal.
  • the switching state of the upper bridge arm switch tube and the lower bridge arm switch tube enables the power supply device to optimally control the totem pole PFC circuit.
  • FIG. 4 is a power supply device 400 provided by an embodiment of the present application.
  • the power supply device 400 includes: a totem-pole power factor correction PFC circuit and a control device 401 , and the totem-pole PFC circuit includes a first switch tube 402 and a second switch tube 402 Switch tube 403, the source of the first switch tube 402 and the drain of the second switch tube 403 are connected together at the first reference point, and the first input end of the AC input source is connected to the first reference point through an inductor a reference point.
  • the control device 401 includes a controller 404 and a dead zone detection circuit 405, the dead zone detection circuit 405 includes a detection capacitor 4051 and a detection resistor 4052, the first end of the detection capacitor 4051 is connected to the first reference point, The second end of the detection capacitor 4051 is connected to the first end of the detection resistor 4052, and the second end of the detection resistor 4052 is grounded.
  • the controller 404 is configured to generate a first dead zone control signal and a second dead zone control signal according to the voltage of the detection resistor 4052 and the positive and negative polarities of the voltage input by the AC input source, and according to the The first dead zone control signal controls the switching state of the first switch tube 402 , and the second dead zone control signal controls the switching state of the second switch tube 403 .
  • the power supply device 400 may be an AC-DC converter (alternating current to direct current, AC-DC).
  • the power supply device 400 can control the switching states of the first switch transistor 402 and the second switch transistor 403 in the totem-pole PFC circuit according to the dead zone control signal, so that the power supply device 400 can have the best possible effect on the totem-pole PFC circuit. Excellent control.
  • the controller 404 can detect the positive and negative polarity of the voltage input by the AC input source.
  • the positive and negative polarities of the current input voltage of the AC input source can be determined by acquiring the voltage difference between the voltage of the first input terminal and the voltage of the second input terminal of the AC input source.
  • the positive and negative polarities of the input voltage of the AC input source may also be determined by directly measuring the input voltage of the AC input source.
  • a resistor-capacitor circuit (RC) circuit can be formed by the detection capacitor 4051 and the detection resistor 4052 .
  • the size of the detection resistor 4052 can be determined by the sampling accuracy, so that the voltage on the detection resistor 4052 will not be too high to damage the subsequent circuit.
  • the voltage of the first reference point will increase or decrease, and after the voltage on the first reference point changes, it will be detected during the detection.
  • the capacitor 4051 generates a current id , and after the current id flows through the detection resistor 4052 , a voltage V DT is generated on the detection resistor 4052 , and the voltage V DT on the detection resistor 4052 is measured.
  • the voltage change slope of the first reference point can be determined through V DT , so that it can be detected whether the inductance on the totem pole PFC circuit crosses zero, the voltage peak signal and the voltage valley signal of the first reference point and so on.
  • FIG. 5 is a schematic waveform diagram of the dead zone detection circuit.
  • the detection capacitor 4051 is C d
  • the detection resistor 4052 is R d .
  • the voltage change slope of the first reference point can be indirectly determined by acquiring the voltage of the detection resistor 4052 , and the magnitude of the voltage on the detection resistor 4052 is determined by the detection capacitor 4051 in the dead zone detection circuit 405 The capacitance value of the detection resistor 4052 and the resistance value of the detection resistor 4052 are determined. Because the dead zone detection circuit 405 is connected in parallel with the first reference point, the dead zone detection circuit 405 does not affect the normal operation of the totem pole PFC circuit. Therefore, it will not cause the efficiency loss of the totem pole PFC circuit.
  • a first dead zone control signal and a second dead zone control signal can be generated according to the voltage polarity of the AC input source and the voltage on the detection resistor 4052, so as to control the The switching states of the first switch tube 402 and the second switch tube 403 .
  • the controller 404 may also be a processor, a central processing unit (CPU), a system on chip (SoC), an electronic control unit (ECU), a digital signal processing unit (digital signal processing unit), signal processing, DSP), application specific integrated circuits (ASIC), programmable logic device (PLD), field programmable gate array (FPGA) or other transistor logic devices, hardware components or any combination thereof.
  • the above-mentioned processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like, which are not listed one by one in this embodiment of the present application.
  • control device 401 provided by the present application.
  • the control device 401 further includes: an AC input source polarity detection circuit 406 ; the AC input source polarity detection circuit 406 is configured to detect the AC input source Positive and negative polarity of the input voltage.
  • the AC input source polarity detection circuit 406 detects the positive and negative polarity of the voltage input by the AC input source.
  • the AC input source polarity detection circuit 406 can be connected to both ends of the AC input source, so that the positive and negative voltages of the AC input source can be determined according to the voltage of the first input terminal and the voltage of the second input terminal input by the AC input source. sex.
  • the positive and negative polarities of the current input voltage of the AC input source can be determined by acquiring the voltage difference between the voltage of the first input terminal and the voltage of the second input terminal of the AC input source.
  • the AC input source polarity detection circuit 406 is specifically configured to: measure the first voltage of the first input terminal of the AC input source and the second voltage of the second input terminal of the AC input source voltage, and calculate the voltage difference between the first voltage and the second voltage; when the voltage difference is greater than the first preset voltage, determine that the voltage input by the AC input source is positive, so The first preset voltage is not less than 0; when the voltage difference is less than the second preset voltage, it is determined that the voltage input by the AC input source is negative, and the second preset voltage is not greater than 0.
  • the controller 404 can be made to determine the polarity signal by the polarity signal.
  • the polarity of the voltage input by the AC input source is positive or negative.
  • the AC input source polarity detection circuit 406 may specifically include: an AC voltage sampling circuit and an AC polarity determination circuit.
  • the AC voltage sampling circuit may be a subtractor for calculating the difference between the first voltage of the first input terminal of the AC input source and the second voltage of the second input terminal of the AC input source, so as to calculate the difference between the first voltage of the first input terminal of the AC input source and the second voltage of the second input terminal of the AC input source.
  • the AC polarity determination circuit may be a comparator, so as to determine whether the polarity of the AC input source is positive or negative.
  • Figure 6C is a waveform diagram of the input voltage, voltage difference and polarity signals of the AC input source. As shown in Figure 6C, when the input voltage of the AC input source is positive and the voltage difference is greater than 0, the output will use for high-level signals indicating positive polarity. When the input voltage of the AC input source is negative, and the voltage difference is less than 0, a low-level signal indicating negative polarity is output.
  • the control device 401 further includes: a voltage measurement module 407 , the voltage measurement module 407 is configured to measure the voltage of the detection resistor.
  • the controller 404 is specifically configured to: generate an indication signal according to the voltage of the detection resistor 4052 and the positive and negative polarity of the voltage input by the AC input source; according to the indication signal and The positive and negative polarities of the voltage input by the AC input source generate the first dead zone control signal and the second dead zone control signal, and the indication signal is used to instruct the first switch tube 402 and the In the dead zone state of the second switch tube 403, the indication signal includes a first indication signal and a second indication signal.
  • the second indication signal when it is determined that the voltage input by the AC input source is positive and the voltage of the detection resistor 4052 is less than a first threshold, the second indication signal is used to indicate the first switch tube 402 is in a dead zone state; when it is determined that the input voltage of the AC input source is positive and the voltage of the detection resistor 4052 is greater than the second threshold, the first indication signal is used to indicate that the second switch tube 403 is in Dead zone state; when it is determined that the voltage input by the AC input source is negative and the voltage of the detection resistor 4052 is less than the third threshold, the first indication signal is used to indicate that the first switch tube 402 is in the dead zone state; when it is determined that the voltage input by the AC input source is negative and the voltage of the detection resistor 4052 is greater than the fourth threshold, the second indication signal is used to indicate that the second switch tube 403 is in a dead zone state; Wherein, the first threshold is smaller than the second threshold, and the third threshold is smaller than the fourth threshold.
  • the controller 404 specifically includes: a first multiplexing switch 4081 , a second multiplexing switch 4082 , a first comparator 4083 , a second comparator 4084 and Inverter 4085; the output terminal of the first multiplexing switch 4081 is connected to the negative terminal of the first comparator 4083, and the output terminal of the second multiplexing switch 4082 is connected to the second comparator 4084 negative terminal connection.
  • the output end of the second comparator 4084 is connected to the inverter 4085, the first input end of the first multiplexer switch 4081 is used to input the voltage of the fourth threshold, and the first multiplexer The second input terminal of the switch 4081 is used to input the voltage of the first threshold value.
  • the first input terminal of the second multiplexing switch 4082 is used for inputting the voltage of the third threshold value, and the first input terminal of the second multiplexing switch 4082 is used for inputting the voltage of the second threshold value.
  • the positive terminal of the first comparator 4083 is used to receive the voltage of the detection resistor 4052
  • the positive terminal of the second comparator 4084 is used to receive the voltage of the detection resistor 4052 .
  • the controller 404 controls the first multiplexer switch 4081 to connect the first input end and the output end, and the controller 404 controls the first multiplexer switch 4081 to connect the first input end and the output end.
  • Two multiplexing switches 4082 conduct the connection between the first input terminal and the output terminal; when it is determined that the voltage input by the AC input source is negative, the controller 404 controls the first multiplexing switch to conduct the second multiplexing switch.
  • the controller 404 controls the second multiplexing switch 4082 to conduct the connection between the second input terminal and the output terminal;
  • the first comparator 4083 is used to output the first indication signal ;
  • the inverter 4085 is used to output the second indication signal.
  • FIG. 8B is a waveform diagram of the controller.
  • the first threshold is smaller than the second threshold
  • the third threshold is smaller than the fourth threshold
  • the polarity signal is a positive polarity signal (high level)
  • the first indication The signal and the second indication signal are low-level signals.
  • the first indication signal is converted into a high-level signal.
  • the voltage on the detection resistor 4052 When less than the first threshold, the second indication signal is converted to a high level signal.
  • the first indication signal and the second indication signal are high level signals, and when the voltage on the detection resistor 4052 is less than the third threshold , the first indication signal is converted into a low level signal, and when the voltage on the detection resistor 4052 is greater than the fourth threshold, the second indication signal is converted into a high level signal.
  • the controller 404 may be specifically configured to: when it is determined that the voltage input by the AC input source is positive, generate the first dead zone control signal according to the first indication signal, The second dead zone control signal is generated according to the second indication signal; when it is determined that the voltage input by the AC input source is negative, the first dead zone control signal is generated according to the second indication signal, and the first dead zone control signal is generated according to the second indication signal.
  • the first indication signal generates the second dead zone control signal.
  • the control device 401 may further include: a first pulse generation circuit 409 , where the first pulse generation circuit 409 is configured to generate a first pulse signal and a second pulse signal ; the first pulse signal is used to generate the first dead zone control signal, and the second pulse signal is used to generate the second dead zone control signal; the controller 404 is further configured to: after determining the When the voltage input by the AC input source is positive, the first dead zone control signal is generated according to the first indication signal and the first pulse signal, and the second indication signal and the second pulse are generated.
  • the first pulse signal and the second pulse signal may be PWM pulse modulation signals.
  • control device 401 may further include sampling modules such as an output voltage sampling module, an inductor current sampling module and the like.
  • the output voltage sampling module is used to send the output voltage value output to the load to the first pulse generation circuit 409
  • the inductor current sampling module is used to send the current value of the inductor on the totem pole PFC circuit
  • the first pulse generation circuit 409 can generate the first pulse signal and the second pulse signal according to the output voltage value and the current value of the inductor.
  • the totem-pole PFC circuit may further include: a first diode and a second diode, the anode of the first diode and the cathode of the second diode are both It is connected to the second input terminal of the AC input source through a second reference point. The anode of the second diode is grounded.
  • the totem-pole PFC circuit further includes: a third switch transistor 4101 and a fourth switch transistor 4102 .
  • the source of the third switch 4101 and the drain of the fourth switch 4102 are both connected to the second input terminal of the AC input source through a second reference point, and the drain of the third switch 4101 It is connected to the drain of the first switch tube 402, and the source of the fourth switch tube 4102 is grounded.
  • the control device 401 may further include: a second pulse generating circuit 4103 .
  • the second pulse generating circuit 4103 is used to generate a third pulse signal and a fourth pulse signal. And control the switch state of the third switch tube 4101 according to the third pulse signal, and control the switch state of the fourth switch tube 4102 according to the fourth pulse signal, so as to realize the synchronous rectification of the totem pole PFC circuit .
  • the control device 401 further includes: a frequency detection module 4111 and a switch module 4112 ; the frequency detection module 4111 is used to detect the first signal frequency and the second signal frequency , the frequency of the first signal is the frequency of the first pulse signal, and the frequency of the second signal is the frequency of the second pulse signal; the switch module 4112 is used to control the frequency of the first signal
  • the switch state of the first switch tube is controlled according to the second signal frequency to control the switch state of the second switch tube.
  • the frequency detection module 4111 is used to detect the first signal frequency and the second signal frequency, the first signal frequency is the frequency of the first pulse signal, and the second signal frequency is the second pulse frequency the frequency of the signal.
  • the switch module 4112 is used to control the switch state of the first switch tube 402 according to the first signal frequency; and control the switch state of the second switch tube 403 according to the second signal frequency.
  • the first signal frequency is greater than When the frequency threshold is higher than the frequency threshold, the next cycle will not be entered, and the start of the next cycle will not be allowed until the detected frequency is less than the frequency threshold; or when the frequency of the second signal is greater than the frequency threshold, the next cycle will not be entered until detected The frequency is less than the frequency threshold before the start of the next cycle is allowed.
  • the control device 401 may further include: a protection circuit 412 .
  • the protection circuit 412 is connected in parallel with the detection resistor 4052 .
  • the anode of the first Zener tube 4121 in the protection circuit 412 is connected to the anode of the second Zener tube 4122, and the cathode of the second Zener tube 4122 is grounded.
  • the embodiment of the present application provides a control mode of the totem pole PFC circuit by the control device 401, which may specifically include: mode 1 to mode 4.
  • Mode 1 The AC input source inputs a positive voltage.
  • the polarity signal When it is determined that the voltage input by the AC input source is positive, the polarity signal is a positive signal, the first indication signal controls the dead time from the second switch 403 to the first switch 402, the second The indication signal controls the dead time from the first switch 402 to the second switch 403 .
  • the second switch tube 403 is turned off, and the inductor current charges the parasitic capacitance of the second switch tube 403 and discharges the parasitic capacitance of the first switch tube 402. Therefore, the The voltage at the first reference point rises.
  • the first indication signal changes from 1 to 0, which corresponds to the time when the voltage at the first reference point rises to be equal to V out .
  • the first switch tube 402 is controlled to be turned on, and the first switch tube When the 402 is turned on, the voltage between the drain and the source is 0, which realizes zero-voltage conduction.
  • the first switch 402 is turned off, the parasitic capacitance of the second switch 403 is discharged, and the first switch 403 is discharged.
  • the parasitic capacitance of 402 is charged, so the voltage at the first reference point drops.
  • the first indication signal changes from 1 to 0, which corresponds to the time when the voltage of the first reference point drops to 0.
  • the second switch tube 403 can be controlled to be turned on in S2, and the second switch tube 403 is turned on. When the voltage between the drain and source is 0, zero voltage conduction can be achieved.
  • Mode 2 AC input source input negative voltage.
  • the polarity signal When it is determined that the voltage input by the AC input source is negative, the polarity signal is a negative signal, the first indication signal controls the dead time from the first switch tube 402 to the second switch tube 403, the second The indication signal controls the dead time from the second switch 403 to the first switch 402 .
  • the first switch tube 402 is turned off, and the inductor current charges the parasitic capacitance of the first switch tube 402 and discharges the parasitic capacitance of the second switch tube 403, so the first switch tube 403 is discharged. Voltage drop at the reference point.
  • the first indication signal changes from 0 to 1, which corresponds to the time when the voltage at the first reference point drops to 0.
  • the second switch tube 403 is controlled to be turned on, and the second switch tube 403 is turned on When the voltage between drain and source is 0, zero voltage conduction is realized.
  • the second switch 403 is turned off, the parasitic capacitance of the first switch 402 is discharged, and the parasitic capacitance of the second switch 403 is charged, so the voltage at the first reference point increases.
  • the second indication signal changes from 0 to 1, which corresponds to the time when the voltage of the first reference point rises to be equal to V out .
  • the first switch tube 402 is controlled to be turned on, and the first switch tube 402 When turned on, the voltage between the drain and source is 0, so that zero-voltage turn-on can be achieved.
  • Mode 3 The AC input source inputs a positive voltage, and the frequency of the pulse signal is limited.
  • the control of the dead time from when the second switch tube 403 is turned off to when the first switch tube 402 is turned on is the same as that of mode 1 .
  • the time from when the first switch tube 402 is turned off to when the second switch tube 403 is turned on is different due to the frequency limit of the pulse signal.
  • the first switch tube 402 is turned off, and then at time t3, the second indication signal changes from 1 to 0, but at this time the first pulse signal and/or the second pulse signal is greater than the frequency threshold, Therefore, the frequency is limited at this time.
  • the second switch tube 403 cannot be turned on at time t3, and similarly, it cannot be turned on at time t4.
  • the second indication signal changes from 1 to 0 again, and at the same time, the first pulse signal and/or the second pulse signal is not greater than the frequency threshold, and the second switch tube 403 is turned on. , when the second switch tube 403 is turned on, the voltage between the drain and the source is 0, so that zero-voltage conduction can be achieved.
  • Mode 4 The AC input source inputs negative voltage, and the frequency of the pulse signal is limited.
  • the control of the dead time from when the first switch tube 402 is turned off to when the second switch tube 403 is turned on is the same as in Mode 2 .
  • the control of the dead time from when the second switch tube 403 is turned off to when the first switch tube 402 is turned on is different due to the frequency limit of the pulse signal.
  • the second switch tube 403 is turned off, and then at time t3, the second indication signal changes from 0 to 1, but at this time the first pulse signal and/or the second pulse signal is greater than the frequency threshold, Therefore, it is limited by the frequency at this time.
  • the first switch tube 402 cannot be turned on at time t3, and similarly cannot be turned on at time t4.
  • the second indication signal changes from 0 to 1 again, and at the same time it satisfies that the first pulse signal and/or the second pulse signal is not greater than the frequency threshold at this time, and the first switch tube 402 is turned on at this time , when the first switch tube 402 is turned on, the voltage between the drain and the source is 0, so that zero-voltage conduction can be achieved.
  • control device 401 may further include: a power module, the power module is used to obtain power from a totem pole PFC circuit or an AC input source, and supply power to all the control devices 401
  • the controller 404 and the dead zone detection circuit 405 supply power. This embodiment of the present application will not list them one by one.
  • the dead zone detection circuit can detect the voltage of the first reference point in the totem pole PFC circuit, and the control device can input the voltage of the first reference point and the AC input source according to the voltage of the first reference point and the AC input source.
  • the voltage polarity of the voltage is used to generate a dead zone control signal.
  • the first reference point is the connection point between the source of the upper arm switch tube and the drain of the lower arm switch tube of the totem pole PFC circuit.
  • the control device can control the switching states of the upper bridge arm switch tube and the lower bridge arm switch tube in the totem pole PFC circuit according to the dead zone control signal, so that the power supply device optimizes the totem pole PFC circuit. control.
  • An embodiment of the present application further provides a method for controlling a totem-pole PFC circuit.
  • the control device is used to control a totem-pole PFC circuit, wherein the totem-pole PFC circuit includes a first switch tube and a second switch tube, and the first switch tube
  • the source of the switch tube and the drain of the second switch tube are commonly connected to a first reference point, and the first input end of the AC input source is connected to the first reference point through an inductor
  • the control device includes a controller and a dead zone detection circuit, the dead zone detection circuit includes a detection capacitor and a detection resistor, the first end of the detection capacitor is connected to the first reference point, and the second end of the detection capacitor is connected to the first end of the detection resistor The second end of the detection resistor is connected to the ground; applied to the controller, the method includes: according to the voltage of the detection resistor and the positive and negative polarities of the voltage input by the AC input source dead zone control signal and second dead zone control signal; control the switching state of the first switch
  • the totem pole PFC circuit can be optimally controlled.
  • the technical effects obtained by the above-mentioned embodiments, and the repeated points will not be described in detail.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本申请公开了一种电源装置及图腾柱PFC电路控制方法,电源装置包括:图腾柱功率因数校正PFC电路和控制装置,图腾柱PFC电路包含第一开关管和第二开关管;控制装置包括控制器和死区检测电路,死区检测电路包括检测电容及检测电阻,检测电容第一端与第一参考点连接,检测电容第二端与检测电阻第一端连接,检测电阻第二端接地;控制器,根据检测电阻的电压、交流输入源输入的电压的正负极性,生成第一死区控制信号和第二死区控制信号,根据第一死区控制信号及第二死区控制信号控制第一开关管的开关状态及控制第二开关管的开关状态。基于上述结构,能够使得图腾柱电路中的开关管能设置合适的死区时间,从而使得图腾柱电路获得最优控制效果。

Description

一种电源装置及图腾柱PFC电路控制方法 技术领域
本申请涉及电子电力变换器领域,特别涉及一种电源装置及图腾柱PFC电路控制方法。
背景技术
传统PFC电路由整流桥以及升压Boost PFC电路两级组成。由于传统PFC电路中的导通器件较多,导致PFC电路的效率降低。而图腾柱PFC电路仅通过一级导通器件即可实现整流与PFC的功能,从而可以减少导通器件,提高效率。
图1A为图腾柱PFC电路结构示意图,如图1A所示,图腾柱PFC电路由交流输入源、电感L、四个开关器件S1~S4、输出滤波电容C OUT、负载组成。其中,S1与S2可以为采用硅半导体材料(silicon,Si)、第三代宽禁带半导体材料的碳化硅(silicon carbide,SiC)或者氮化镓(gallium nitride,GaN)等材料制成的金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)或绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT),而S3与S4可以是采用Si或者SiC或者GaN等材料制成的MOSFET、IGBT或二极管。
通过控制图腾柱PFC电路中的S1和S2的开关状态控制电感电流,以实现对整个图腾柱PFC电路的控制,图1B示出了在不同开关状态下的图腾柱PFC电路的工作状态。其中,图1B中的a)、b)为当交流输入源V AC为正时的工作示意图,此时S3断开,S4导通,S2作为主开关器件导通为电感L充电,S1作为副开关管导通为电感放电。图1B中的c)、d)为当交流输入源V AC为负时的工作示意图,此时S3导通,S4断开,S1作为主开关器件导通为电感充电,S2作为副开关器件导通为电感放电。
在S1和S2的交替导通过程中,若S1和S2出现同时导通(桥臂直通),会产生很大的短路电流,从而导致器件损坏。因此,为了防止直通的出现,同时满足软开关实现的要求,需要在S1和S2的交替导通间设置间隔时间(又称死区时间),从而避免直通的出现。而对于软开关的实现,如S1关断后,待S1和S2的串联连接点SW1处的电压理论下降到0V,然后再导通S2,即可实现S2开关的零电压开通。参阅图1C中的(a)所示,在死区时间设置过小的情况下,会导致S1与S2存在硬开通的问题。参阅图1C中的(b)所示,在死区时间设置过大的情况下,会导致电能损耗增加、电力利用率降低,并且同样也会产生硬开通的问题。
因此,死区时间必须要设置一个合适的取值,才能使图腾柱PFC电路获得最优的控制效果。但由于图腾柱PFC电路的交流输入源V AC为正弦交流电压,因此在不同时刻的死区时间里,SW1点电压变化的速度和时间不一样。现有技术下无法对图腾柱PFC电路进行最优控制。有鉴于此,如何使得对图腾柱PFC电路进行最优控制,是本领域人员亟待解决的。
发明内容
本申请提供一种电源装置及图腾柱PFC电路控制方法,用于对图腾柱PFC电路进行最优控制。
第一方面,本申请提供一种电源装置,该电源装置包括:图腾柱功率因数校正PFC电路和控制装置,图腾柱PFC电路中包含第一开关管和第二开关管,第一开关管的源极和第二开关管的漏极共同连接在第一参考点,交流输入源的第一输入端通过电感连接到第一参考点;控制装置包括控制器和死区检测电路,死区检测电路包括检测电容以及检测电阻,检测电容的第一端与第一参考点连接,检测电容的第二端与检测电阻第一端连接,检测电阻的第二端接地;控制器,用于根据检测电阻的电压以及交流输入源输入的电压的正负极性,生成第一死区控制信号和第二死区控制信号,并根据第一死区控制信号控制第一开关管的开关状态,根据第二死区控制信号控制第二开关管的开关状态。基于上述结构,电源装置能为图腾柱PFC电路中的开关管设置合适的死区时间,从而使得图腾柱PFC电路获得最优的控制效果。
在一些可能的实施方式,控制装置还包括:交流输入源极性检测电路;该交流输入源极性检测电路,用于检测交流输入源输入的电压的正负极性。通过交流输入源极性检测电路,可以检测到交流输入源输入的电压的正负极性,从而能够根据交流输入源输入的电压的正负极性,确定第一死区控制信号以及第二死区控制信号,进而通过第一死区控制信号以及第二死区控制信号来控制第一开关管和第二开关管的开关状态。
在一些可能的实施方式中,交流输入源极性检测电路,具体用于:测量交流输入源的第一输入端的第一电压以及交流输入源的第二输入端的第二电压,并计算第一电压与第二电压之间的电压差值;在电压差值大于第一预设电压时,确定交流输入源输入的电压为正极性,第一预设电压不小于0;在电压差值小于第二预设电压时,确定交流输入源输入的电压为负极性,第二预设电压不大于0。通过检测交流输入源的第一输入端的第一电压以及交流输入源的第二输入端的第二电压,即可以根据第一电压以及第二电压之间的电压差值来确定交流输入源输入的电压的极性正负。
在一些可能的实施方式中,控制装置还包括:电压测量模块;该电压测量模块,用于测量检测电阻的电压。通过电压测量模块,可以检测电阻的电压,利用检测电阻的电压可以间接的确定第一参考点的电压变化斜率,从而可以检测到图腾柱PFC电路上的电感是否过零、以及第一参考点的电压峰值信号以及电压谷值信号等等。进而根据上述参数,确定第一死区控制信号以及第二死区控制信号,进而通过第一死区控制信号以及第二死区控制信号来控制第一开关管和第二开关管的开关状态。
在一些可能的实施方式中,控制器具体用于:根据检测电阻的电压以及交流输入源输入的电压的正负极性,生成指示信号;根据指示信号以及交流输入源输入的电压的正负极性,生成第一死区控制信号和第二死区控制信号,指示信号用于指示第一开关管和第二开关管的死区状态,指示信号中包含第一指示信号和第二指示信号。通过获取检测电阻的电压,可以确定检测电阻上的电压是否处于峰值或谷值,进而生成指示信号。示例性的,在极性信号指示交流输入源输入的电压为正,且检测电阻上的电压处于谷值时,指示信号可以包含指示第一开关管处于死区状态的第一指示信号;而在检测电阻上的电压处于峰值时,指示信号可以包含指示第二开关管处于死区状态的第二指示信号。
在一些可能的实施方式中,在确定交流输入源输入的电压为正极性且检测电阻的电压小于第一阈值时,第二指示信号用于指示第一开关管处于死区状态;在确定交流输入源输入的电压为正极性且检测电阻的电压大于第二阈值时,第一指示信号用于指示第二开关管处于死区状态;在确定交流输入源输入的电压为负极性且检测电阻的电压小于第三阈值时, 第一指示信号用于指示第一开关管处于死区状态;在确定交流输入源输入的电压为负极性且检测电阻的电压大于第四阈值时,第二指示信号用于指示第二开关管处于死区状态;其中,第一阈值小于第二阈值,第三阈值小于第四阈值。利用不同的指示信号,可以指示第一开关管以及第二开关管是否处于死区状态。
在一些可能的实施方式中,控制器具体包括:第一多路选择开关、第二多路选择开关、第一比较器、第二比较器以及反相器;第一多路选择开关的输出端与第一比较器的负端连接,第二多路选择开关的输出端与第二比较器的负端连接;第二比较器的输出端连接反相器,第一多路选择开关的第一输入端用于输入第四阈值的电压,第一多路选择开关的第二输入端用于输入第一阈值的电压;第二多路选择开关的第一输入端用于输入第三阈值的电压,第二多路选择开关的第一输入端用于输入第二阈值的电压;第一比较器的正端用于接收检测电阻的电压,第二比较器的正端用于接收检测电阻的电压;在确定交流输入源输入的电压为负极性时,控制器控制第一多路选择开关导通第一输入端与输出端的连接,控制器控制第二多路选择开关导通第一输入端与输出端的连接;在确定交流输入源输入的电压为负极性时,控制器控制第一多路选择开关导通第二输入端与输出端的连接,控制器控制第二多路选择开关导通第二输入端与输出端的连接;第一比较器,用于输出第一指示信号;反相器,用于输出第二指示信号。
在一些可能的实施方式中,控制器具体用于:在确定交流输入源输入的电压为正极性时,根据第一指示信号生成第一死区控制信号,根据第二指示信号生成第二死区控制信号;在确定交流输入源输入的电压为负极性时,根据第二指示信号生成第一死区控制信号,根据第一指示信号生成第二死区控制信号。
在一些可能的实施方式中,控制装置还包括:第一脉冲生成电路,第一脉冲生成电路用于生成第一脉冲信号以及第二脉冲信号;第一脉冲信号用于生成第一死区控制信号,第二脉冲信号用于生成第二死区控制信号;控制器还用于:在确定交流输入源输入的电压为正极性时,根据第一指示信号以及第一脉冲信号,生成第一死区控制信号,以及根据第二指示信号以及第二脉冲信号,生成第二死区控制信号;在确定交流输入源输入的电压为负极性时,根据第二指示信号以及第一脉冲信号,生成第一死区控制信号,以及根据第一指示信号以及第二脉冲信号,生成第二死区控制信号。其中,控制装置中还可以包括有输出电压采样模块、电感电流采样模块等等采样模块。输出电压采样模块,用于将输出到负载的输出电压值发送到第一脉冲生成电路,电感电流采样模块,用于将图腾柱PFC电路上电感的电流值发送到第一脉冲生成电路中,第一脉冲生成电路可以根据输出电压值以及电感的电流值生成第一脉冲信号以及第二脉冲信号。示例性的,第一脉冲生成电路可以在检测到输出到负载的输出电压值低于电压阈值时,增加第一脉冲信号以及第二脉冲信号的占空比,以使图腾柱PFC电路输出稳定电压。
在一些可能的实施方式中,控制装置还包括:频率检测模块以及开关模块;频率检测模块,用于检测第一信号频率以及第二信号频率,第一信号频率为第一脉冲信号的频率,第二信号频率为第二脉冲信号的频率;开关模块,用于根据第一信号频率,控制第一开关管的开关状态,根据第二信号频率,控制第二开关管的开关状态。利用上述结构,可以降低开关管的开关耗损。
在一些可能的实施方式中,图腾柱PFC电路还包括:第一二极管以及第二二极管,第一二级管的正极与第二二级管的负极均通过第二参考点与交流输入源的第二输入端连接; 第二二级管的正极接地。在一些可能的实施方式中,图腾柱PFC电路还包括:第三开关管以及第四开关管,第三开关管的源极与第四开关管的漏极均通过第二参考点与交流输入源的第二输入端连接,第三开关管的漏极与第一开关管的漏极连接,第三开关管的漏极与第一开关管的漏极连接,第四开关管的源极接地;控制装置还包括:第二脉冲生成电路,第二脉冲生成电路,用于生成第三脉冲信号以及第四脉冲信号;控制器还用于:根据第三脉冲信号控制第三开关管的开关状态,根据第四脉冲信号控制第四开关管的开关状态。从而能实现对于图腾柱PFC电路的同步整流。
在硬开通发生或图腾柱PFC电路中的电感电流较大时,第一参考点处电压变化速度很快,从而导致在检测电容上产生的电流很大,从而在检测电阻上的电压也很大,甚至有可能超过后级电路的耐压阈值从而损坏后级电路。有鉴于此,在一些可能的实施方式中,控制装置还包括:保护电路,保护电路包括:第一稳压管和第二稳压管,保护电路与检测电阻并联;第一稳压管的正极与第二稳压管的正极连接,第二稳压管的负极接地。利用第一稳压管以及第二稳压管,可以有效限制检测电阻上的电压最大值,从而有效的保护后级电路。此外,检测电阻上的电压最大值并不会影响对死区时间的控制。
第二方面,本申请提供一种图腾柱PFC电路控制方法,控制装置用于控制图腾柱PFC电路,图腾柱PFC电路中包含第一开关管和第二开关管,第一开关管的源极和第二开关管的漏极共同连接在第一参考点,交流输入源的第一输入端通过电感连接到第一参考点;控制装置包括控制器和死区检测电路,死区检测电路包括检测电容以及检测电阻,检测电容的第一端与第一参考点连接,检测电容的第二端与检测电阻第一端连接,检测电阻的第二端接地;图腾柱PFC电路控制方法应用于控制器,该方法包括:根据检测电阻的电压以及交流输入源输入的电压的正负极性,生成第一死区控制信号和第二死区控制信号;根据第一死区控制信号控制第一开关管的开关状态,根据第二死区控制信号控制第二开关管的开关状态。第二方面中相应方案的技术效果可以参照第一方面中对应方案可以得到的技术效果,重复之处不予详述。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1A为图腾柱PFC电路结构示意图;
图1B为不同开关状态下的图腾柱PFC电路的工作状态示意图;
图1C为图腾柱PFC电路的波形示意图;
图2为一种控制图腾柱PFC电路的结构示意图;
图3为另一种控制图腾柱PFC电路的结构示意图;
图4为一种电源装置的结构示意图;
图5为死区检测电路的波形示意图;
图6A为一种包含交流输入源极性检测电路的控制装置示意图;
图6B为一种交流输入源极性检测电路的结构示意图;
图6C为交流输入源极性检测电路的波形示意图;
图7为一种包含电压测量模块的控制装置示意图;
图8A为一种控制器的结构示意图;
图8B为控制器的波形示意图;
图9为一种包含第一脉冲生成电路的控制装置示意图;
图10A为一种同步整流的图腾柱PFC电路的结构示意图;
图10B为一种包含第二脉冲生成电路的控制装置示意图;
图11为另一种控制装置的结构示意图;
图12为一种包含保护电路的控制装置的结构示意图;
图13~图16为图腾柱PFC电路的工作波形示意图。
具体实施方式
以下,先对本申请实施例中涉及的部分用语进行解释说明,以便于本领域技术人员容易理解。
(1)PFC电路:是一种用于功率因数校正的电路。常规整流滤波电路的整流桥,只有在输入正弦波电压接近峰值时才会导通,输入的电流会有严重的非正弦性,导致产生了大量谐波电流成分,同时谐波电流成分还存在干扰其他电力设备的可能。PFC电路通过对输入的交流电流进行整形,使输入的电流整形为与输入电压近似且同相位的正弦波,以使输入功率尽可能的接近于1。
常用的PFC电路多为Boost升压拓扑结构,根据Boost拓扑在不同工作模式(断续导通模式/临界导通模式/连续导通模式)下的特性不同,对应不同特性控制方法可以分为多种。
(2)图腾柱PFC电路:传统的PFC电路由整流桥加上Boost PFC电路组成,由两级构成,也因此称为有桥PFC电路;为了进一步提高效率,无桥PFC将整流桥和PFC电路合成单级电路,没有了整流桥部分的损耗,同时实现整流与功率因数校正的作用,故称为无桥PFC电路。图腾柱PFC电路是无桥PFC电路中一种效率最优的拓扑,相对其他无桥PFC电路也更为简单,也可称为图腾柱无桥PFC电路。
(3)死区:是在PFC电路的上半桥关断后,延迟一段时间再打开下半桥,或在下半桥关断后,延迟一段时间后再打开上半桥,从而能防止桥臂直通,上面延迟的时间就是死区时间(dead time),在这个时间段内,上下桥的开关管都关闭。
需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
由于图腾柱PFC电路中的死区时间设置过小的情况下,会导致在硬开通的问题,而在死区时间设置过大的情况下,则会导致电能损耗增加、电力利用率降低,并且同样也会产生硬开通的问题。因此,必须对图腾柱PFC电路中的开关管设置合适的死区时间,才能使图腾柱PFC电路获得最优的控制效果。
在一些可能的实施方式中,参阅图2所示,在图腾柱PFC电路的S1和S2上,可以串联有电流互感器CT1和CT2,从而能检测S1与S2开关管上流经的电流。在电流互感器检 测到与其对应的开关管上的电流极性发生变化时,将极性变化产生的消息发送开关控制模块,开关控制模块经过一段固定的死区时间,通过PWM信号来控制下一个开关管进行导通,以此实现开关管(S1以及S2)的零电压导通或谷底电压开通。但电流互感器的成本较高,且体积较大,并且在电流互感器检测到电流极性发送变化后,会经过一段固定的死区时间,才能开通下一个开关管。因此,固定的死区时间无法适应所有的工作点,从而无法使图腾柱PFC电路获得最优的控制效果。
在另一些可能的实施方式中,参阅图3所示,在电感L上增加辅助绕组或者电阻,来检测电感L两端的电压,在电感L充电,电流上升时,电感L的电压为正;在电感L放电,电流下降时,电感L的电压为负。因此,在电感L电流最大和最小的两个电流点上,可以检测到电感L电压的正负的翻转,当电流过零检测电路检测到电压翻转信号后,开关控制模块经过一段固定的死区时间,通过PWM信号来控制下一个开关管进行导通,以此实现开关管(S1以及S2)的零电压导通或谷底电压开通。同样的,在电流过零检测电路检测到电压翻转信号后,总会经过一段固定的死区时间后,才能开通下一个开关管,因此,采用固定的死区时间仍然无法适应所有的工作点,从而无法使图腾柱PFC电路获得最优的控制效果。
继续参阅图1A所示,由于图腾柱PFC电路的交流输入源V AC为正弦交流电压,所以在不同时刻的死区时间里,SW1点电压变化的速度和时间都不一样。因此,若控制装置采用固定的死区时间,则无法获得最优的控制效果。有鉴于此,如何对图腾柱PFC电路进行最优控制,是本领域人员亟待解决的。
本申请实施例提供了一种电源装置,在电源装置中包括控制装置以及图腾柱PFC电路,该控制装置可以检测输入图腾柱PFC电路的交流输入源的电压极性,还可以检测图腾柱PFC电路中的第一参考点的电压,并且所述控制装置可以根据所述第一参考点的电压以及所述交流输入源输入电压的电压极性,生成死区控制信号,所述第一参考点为所述图腾柱PFC电路的上桥臂开关管源极与下桥臂开关管漏极之间的连接点,电源装置中的控制装置可以根据所述死区控制信号控制所述图腾柱PFC电路中的所述上桥臂开关管与所述下桥臂开关管的开关状态,使得电源装置对图腾柱PFC电路进行最优控制。
图4为本申请实施例提供的一种电源装置400,该电源装置400中包括:图腾柱功率因数校正PFC电路和控制装置401,所述图腾柱PFC电路中包含第一开关管402和第二开关管403,所述第一开关管402的源极和所述第二开关管403的漏极共同连接在第一参考点,所述交流输入源的第一输入端通过电感连接到所述第一参考点。
所述控制装置401包括控制器404和死区检测电路405,所述死区检测电路405包括检测电容4051以及检测电阻4052,所述检测电容4051的第一端与所述第一参考点连接,所述检测电容4051的第二端与所述检测电阻4052第一端连接,所述检测电阻4052的第二端接地。
所述控制器404,用于根据所述检测电阻4052的电压以及所述交流输入源输入的电压的正负极性,生成第一死区控制信号和第二死区控制信号,并根据所述第一死区控制信号控制所述第一开关管402的开关状态,根据所述第二死区控制信号控制所述第二开关管403的开关状态。
可选的,所述电源装置400可以为交流-直流转换器(alternating current to direct current,AC-DC)。所述电源装置400可以根据所述死区控制信号控制所述图腾柱PFC电路中的第 一开关管402与第二开关管403的开关状态,从而使得电源装置400对图腾柱PFC电路能有着最优控制。
控制器404可以来检测交流输入源输入的电压正负极性。示例性的:可以通过获取交流输入源的第一输入端电压以及第二输入端电压之间的电压差值,来确定当前交流输入源输入电压的正负极性。可选的,还可以通过直接测量交流输入源的输入电压来确定交流输入源输入电压的正负极性。
通过所述检测电容4051以及所述检测电阻4052可以构成电阻-电容电路(RC)电路。一般来说,所述检测电阻4052的大小可以由采样精度确定,从而使得所述检测电阻4052上的电压,不会过高从而损坏后级电路。
可选的,在第一开关管402与第二开关管403进行开关转换期间内,第一参考点的电压将会提升或下降,而第一参考点上的电压变化后,会在所述检测电容4051上产生电流i d,而电流i d在流经所述检测电阻4052后,在所述检测电阻4052上产生电压V DT,并测量所述检测电阻4052上的电压V DT。通过V DT可以确定所述第一参考点的电压变化斜率,从而可以检测到图腾柱PFC电路上的电感是否过零、以及所述第一参考点的电压峰值信号以及电压谷值信号等等。
参阅图5所示,图5为死区检测电路的波形示意图。在第一开关管402断开切换到第二开关管403导通的死区时间内,第一参考点的电压V 第一参考点将会降低,在第二开关管403断开切换到第一开关管402导通的死区时间内,V 第一参考点将会提升。其中,所述检测电容4051为C d,所述检测电阻4052为R d,由于第一参考点上产生了电压变化,因此会在C d上产生电流i d
Figure PCTCN2021091692-appb-000001
继续参阅图5所示,i d在流经R d后产生的检测电阻4052上的电压为V DT,则
Figure PCTCN2021091692-appb-000002
通过V DT的值可以确定V 第一参考点的电压变化斜率。
通过获取所述检测电阻4052的电压可以间接确定所述第一参考点的电压变化斜率,而所述检测电阻4052上的电压大小,是由所述死区检测电路405中的所述检测电容4051的电容值以及所述检测电阻4052的电阻值进行决定的,因所述死区检测电路405并联在第一参考点上,所述死区检测电路405并不影响图腾柱PFC电路的正常工作,所以也不会造成图腾柱PFC电路效率损耗。
在确定所述检测电阻4052上的电压后,可以根据交流输入源的电压极性以及所述检测电阻4052上的电压,生成第一死区控制信号以及第二死区控制信号,从而控制所述第一开关管402以及第二开关管403的开关状态。此外,所述控制器404还可以是处理器、中央处理单元(central processing unit,CPU)、片上***(system on chip,SoC)、电子控制单元(electronic control unit,ECU)、数字信号处理(digital signal processing,DSP)、专用集成电路(application specific integrated circuits,ASIC)、可编程逻辑器件(programmable logic device,PLD)、现场可编程门阵列(field programmable gate array,FPGA)或者其他晶体管逻辑器件、硬件部件或者其任意组合。上述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等,本申请实施例对此不再一一列举。
以下,对本申请所提供的所述控制装置401的一些具体结构作进一步的示例性说明。
在一些可能的实施方式中,参阅图6A所示,所述控制装置401还包括:交流输入源 极性检测电路406;所述交流输入源极性检测电路406,用于检测所述交流输入源输入的电压的正负极性。交流输入源极性检测电路406,来检测交流输入源输入的电压正负极性。所述交流输入源极性检测电路406可以与交流输入源的两端连接,从而可以根据交流输入源输入的第一输入端的电压以及第二输入端的电压,确定交流输入源输入的电压正负极性。示例性的:可以通过获取交流输入源的第一输入端电压以及第二输入端电压之间的电压差值,来确定当前交流输入源输入电压的正负极性。
在一些可能的实施方式中,所述交流输入源极性检测电路406,具体用于:测量所述交流输入源的第一输入端的第一电压以及所述交流输入源的第二输入端的第二电压,并计算所述第一电压与所述第二电压之间的电压差值;在所述电压差值大于第一预设电压时,确定所述交流输入源输入的电压为正极性,所述第一预设电压不小于0;在所述电压差值小于第二预设电压时,确定所述交流输入源输入的电压为负极性,所述第二预设电压不大于0。其中,通过检测所述交流输入源的第一输入端的第一电压以及所述交流输入源的第二输入端的第二电压,通过输出极性信号的方式,可以使控制器404极性信号来确定交流输入源输入的电压的极性正负。
例如图6B所示,所述交流输入源极性检测电路406具体可以包括:交流电压采样电路以及交流极性判断电路。其中,所述交流电压采样电路可以为减法器,用于计算所述交流输入源的第一输入端的第一电压与所述交流输入源的第二输入端的第二电压的差值,从而向所述交流极性判断电路输入电压差值。示例性的,所述交流极性判断电路可以为比较器,从而确定所述交流输入源的极性正负。图6C为交流输入源的输入电压、电压差值以及极性信号之间的波形图,如图6C所示,在交流输入源的输入电压为正极性时,电压差值大于0,则输出用于指示正极性的高电平信号。而在交流输入源的输入电压为负极性时,电压差值小于0,则输出用于指示负极性的低电平信号。
在一些可能的实施方式中,参阅图7所示,所述控制装置401还包括:电压测量模块407,所述电压测量模块407,用于测量所述检测电阻的电压。在一些可能的实施方式中,所述控制器404具体用于:根据所述检测电阻4052的电压以及所述交流输入源输入的电压的正负极性,生成指示信号;根据所述指示信号以及所述交流输入源输入的电压的正负极性,生成所述第一死区控制信号和所述第二死区控制信号,所述指示信号用于指示所述第一开关管402和所述第二开关管403的死区状态,所述指示信号中包含第一指示信号和第二指示信号。
在一些可能的实施方式中,在确定所述交流输入源输入的电压为正极性且所述检测电阻4052的电压小于第一阈值时,所述第二指示信号用于指示所述第一开关管402处于死区状态;在确定所述交流输入源输入的电压为正极性且所述检测电阻4052的电压大于第二阈值时,所述第一指示信号用于指示所述第二开关管403处于死区状态;在确定所述交流输入源输入的电压为负极性且所述检测电阻4052的电压小于第三阈值时,所述第一指示信号用于指示所述第一开关管402处于死区状态;在确定所述交流输入源输入的电压为负极性且所述检测电阻4052的电压大于第四阈值时,所述第二指示信号用于指示所述第二开关管403处于死区状态;其中,所述第一阈值小于所述第二阈值,所述第三阈值小于所述第四阈值。
在一些可能的实施方式中,参阅图8A所示,所述控制器404具体包括:第一多路选 择开关4081、第二多路选择开关4082、第一比较器4083、第二比较器4084以及反相器4085;所述第一多路选择开关4081的输出端与所述第一比较器4083的负端连接,所述第二多路选择开关4082的输出端与所述第二比较器4084的负端连接。所述第二比较器4084的输出端连接所述反相器4085,所述第一多路选择开关4081的第一输入端用于输入所述第四阈值的电压,所述第一多路选择开关4081的第二输入端用于输入所述第一阈值的电压。所述第二多路选择开关4082的第一输入端用于输入所述第三阈值的电压,所述第二多路选择开关4082的第一输入端用于输入所述第二阈值的电压。所述第一比较器4083的正端用于接收所述检测电阻4052的电压,所述第二比较器4084的正端用于接收所述检测电阻4052的电压。
在确定所述交流输入源输入的电压为负极性时,所述控制器404控制所述第一多路选择开关4081导通第一输入端与输出端的连接,所述控制器404控制所述第二多路选择开关4082导通第一输入端与输出端的连接;在确定所述交流输入源输入的电压为负极性时,所述控制器404控制所述第一多路选择开关导通第二输入端与输出端的连接,所述控制器404控制所述第二多路选择开关4082导通第二输入端与输出端的连接;所述第一比较器4083,用于输出所述第一指示信号;所述反相器4085,用于输出所述第二指示信号。
图8B为控制器的波形示意图。如图8B所示,所述第一阈值小于所述第二阈值,所述第三阈值小于所述第四阈值,在极性信号为正极性信号(高电平)时,所述第一指示信号和所述第二指示信号为低电平信号,在所述检测电阻4052上的电压在大于第二阈值时,第一指示信号转换为高电平信号,在所述检测电阻4052上的电压在小于第一阈值时,第二指示信号转换为高电平信号。而在极性信号为负极性信号(低电平)时,所述第一指示信号和所述第二指示信号为高电平信号,在所述检测电阻4052上的电压在小于第三阈值时,第一指示信号转换为低电平信号,在所述检测电阻4052上的电压在大于第四阈值时,第二指示信号转换为高电平信号。
在一些可能的实施方式中,所述控制器404具体可以用于:在确定所述交流输入源输入的电压为正极性时,根据所述第一指示信号生成所述第一死区控制信号,根据所述第二指示信号生成所述第二死区控制信号;在确定所述交流输入源输入的电压为负极性时,根据所述第二指示信号生成所述第一死区控制信号,根据所述第一指示信号生成所述第二死区控制信号。
在一些可能的实施方式中,参阅图9所示,所述控制装置401还可以包括:第一脉冲生成电路409,所述第一脉冲生成电路409用于生成第一脉冲信号以及第二脉冲信号;所述第一脉冲信号用于生成所述第一死区控制信号,所述第二脉冲信号用于生成所述第二死区控制信号;所述控制器404还用于:在确定所述交流输入源输入的电压为正极性时,根据所述第一指示信号以及所述第一脉冲信号,生成所述第一死区控制信号,以及根据所述第二指示信号以及所述第二脉冲信号,生成所述第二死区控制信号;在确定所述交流输入源输入的电压为负极性时,根据所述第二指示信号以及所述第一脉冲信号,生成所述第一死区控制信号,以及根据所述第一指示信号以及所述第二脉冲信号,生成所述第二死区控制信号。示例性的,所述第一脉冲信号以及所述第二脉冲信号可以为PWM脉冲调制信号。
可选的,所述控制装置401中还可以包括有输出电压采样模块、电感电流采样模块等等采样模块。所述输出电压采样模块,用于将输出到负载的输出电压值发送到所述第一脉冲生成电路409,所述电感电流采样模块,用于将所述图腾柱PFC电路上电感的电流值发 送到所述第一脉冲生成电路409中,所述第一脉冲生成电路409可以根据所述输出电压值以及所述电感的电流值所述生成所述第一脉冲信号以及所述第二脉冲信号。
在一些可能的实施方式中,所述图腾柱PFC电路还可以包括:第一二极管以及第二二极管,所述第一二级管的正极与所述第二二级管的负极均通过第二参考点与所述交流输入源的第二输入端连接。所述第二二级管的正极接地。
在另一些可能的实施方式中,为了实现对图腾柱PFC电路的同步整流,参阅图10A所示,所述图腾柱PFC电路还包括:第三开关管4101以及第四开关管4102。所述第三开关管4101的源极与所述第四开关管4102的漏极均通过第二参考点与所述交流输入源的第二输入端连接,所述第三开关管4101的漏极与所述第一开关管402的漏极连接,所述第四开关管4102的源极接地。
参阅图10B所示,所述控制装置401还可以包含:第二脉冲生成电路4103。所述第二脉冲生成电路4103,用于生成第三脉冲信号以及第四脉冲信号。并根据所述第三脉冲信号控制所述第三开关管4101的开关状态,根据所述第四脉冲信号控制所述第四开关管4102的开关状态,从而能实现对于图腾柱PFC电路的同步整流。
此外,根据图腾柱PFC电路的工作原理可知,随着负载的减小,在交流输入源处于低相位的时候,所述第一脉冲生成电路409生成的第一脉冲信号以及第二脉冲信号的频率会不断提高,从而导致开关损耗较大。在一些可能的实施方式中,参阅图11所示,所述控制装置401还包括:频率检测模块4111以及开关模块4112;所述频率检测模块4111,用于检测第一信号频率以及第二信号频率,所述第一信号频率为所述第一脉冲信号的频率,所述第二信号频率为所述第二脉冲信号的频率;所述开关模块4112,用于根据所述第一信号频率,控制所述第一开关管的开关状态,根据所述第二信号频率,控制所述第二开关管的开关状态。
其中,所述频率检测模块4111,用于检测第一信号频率以及第二信号频率,所述第一信号频率为所述第一脉冲信号的频率,所述第二信号频率为所述第二脉冲信号的频率。所述开关模块4112,用于根据第一信号频率,控制第一开关管402的开关状态;根据第二信号频率,控制第二开关管403的开关状态,可选的,如第一信号频率大于频率阈值时候,不会进入下一周期,直到检测到频率小于频率阈值,才允许下一周期的开始;或者在所述第二信号频率大于频率阈值时,不会进入下一周期,直到检测到频率小于频率阈值,才允许下一周期的开始。
在硬开通发生或图腾柱PFC电路中的电感电流较大时,第一参考点处电压变化速度很快,从而导致在所述检测电容4051上产生的电流很大,从而在所述检测电阻4052上的电压也很大,甚至有可能超过后级电路的耐压阈值而损坏后级电路。有鉴于此,在一些可能的实施方式中,参阅图12所示,所述控制装置401还可以包括:保护电路412。所述保护电路412与所述检测电阻4052并联。
所述保护电路412中的所述第一稳压管4121的正极与所述第二稳压管4122的正极连接,所述第二稳压管4122的负极接地。利用所述第一稳压管4121以及所述第二稳压管4122,可以有效限制所述检测电阻4052上的电压最大值,从而有效的保护后级电路。此外,所述检测电阻4052上的电压最大值并不会影响对死区时间的控制。
可选的,本申请实施例提供一种控制装置401对图腾柱PFC电路的控制模式具体可以 包括:模式1~模式4。
模式1:交流输入源输入正电压。
在确定交流输入源输入的电压为正极性时,所述极性信号为正极性信号,第一指示信号控制所述第二开关管403到所述第一开关管402的死区时间,第二指示信号控制所述第一开关管402到所述第二开关管403的死区时间。
参阅图13所示,在t0时刻,所述第二开关管403关断,电感电流给所述第二开关管403的寄生电容充电,给所述第一开关管402的寄生电容放电,因此所述第一参考点处的电压上升。在t1时刻,第一指示信号由1变为0,对应于第一参考点处电压上升到与V out相等的时刻,此时控制所述第一开关管402导通,所述第一开关管402导通时漏源之间电压为0,实现零电压导通,在t2时刻,所述第一开关管402关断,所述第二开关管403的寄生电容放电,所述第一开关管402的寄生电容充电,因此第一参考点处电压下降。在t3时刻,第一指示信号由1变0,对应于第一参考点电压下降到0的时刻,此时可以控制S2所述第二开关管403导通,所述第二开关管403导通时漏源极之间电压为0,从而可以实现零电压导通。
模式2:交流输入源输入负电压。
在确定交流输入源输入的电压为负极性时,所述极性信号为负极性信号,第一指示信号控制所述第一开关管402到所述第二开关管403的死区时间,第二指示信号控制所述第二开关管403到所述第一开关管402的死区时间。
参阅图14所示,t0时刻,所述第一开关管402关断,电感电流给所述第一开关管402的寄生电容充电,给所述第二开关管403的寄生电容放电,因此第一参考点处的电压下降。在t1时刻,第一指示信号由0变1,对应于第一参考点处的电压下降到0的时刻,此时控制所述第二开关管403导通,所述第二开关管403导通时漏源之间电压为0,实现零电压导通。在t2时刻,所述第二开关管403关断,所述第一开关管402的寄生电容放电,所述第二开关管403的寄生电容充电,因此第一参考点处的电压上升。在t3时刻,第二指示信号处由0变1,对应于第一参考点电压上升到与V out相等的时刻,此时控制所述第一开关管402导通,所述第一开关管402导通时漏源极之间电压为0,从而可以实现零电压导通。
模式3:交流输入源输入正电压,且脉冲信号的频率受到限制。
参阅图15所示,所述第二开关管403关断到所述第一开关管402导通的死区时间控制与模式1相同。所述第一开关管402关断到所述第二开关管403导通因脉冲信号的频率限制有所不同。在t2时刻,所述第一开关管402关断,然后在t3时刻,第二指示信号由1变0,但此时所述第一脉冲信号和/或所述第二脉冲信号大于频率阈值,因此此时会受频率限制,为了降低开关损耗,t3时刻所述第二开关管403不能导通,同理,在t4时刻也不能导通。在t5时刻,第二指示信号再次由1变0,且同时满足此时所述第一脉冲信号和/或所述第二脉冲信号不大于频率阈值,此时所述第二开关管403导通,所述第二开关管403导通时其漏源极之间电压为0,从而可以实现零电压导通。
模式4:交流输入源输入负电压,且脉冲信号的频率受到限制。
参阅图16所示,所述第一开关管402关断到所述第二开关管403导通的死区时间控制与模式2相同。所述第二开关管403关断到所述第一开关管402导通的死区时间控制因脉冲信号的频率限制有所不同。在t2时刻,所述第二开关管403关断,然后在t3时刻,第二指示信号由0变1,但此时所述第一脉冲信号和/或所述第二脉冲信号大于频率阈值, 因此此时会受频率限制,为了降低开关损耗,在t3时刻所述第一开关管402不能导通,同理在t4时刻也不能导通。在t5时刻,第二指示信号再次由0变1,且同时满足此时所述第一脉冲信号和/或所述第二脉冲信号不大于频率阈值,此时所述第一开关管402导通,所述第一开关管402导通时其漏源之间电压为0,从而可以实现零电压导通。
需要指出的是,所述控制装置401中还可以包括:包括电源模组,所述电源模组用于从图腾柱PFC电路或交流输入源上取电,并向所述控制装置401中的所述控制器404以及所述死区检测电路405进行供电。本申请实施例对此不再一一列举。
利用本申请实施例提供的一种电源装置,死区检测电路可以检测图腾柱PFC电路中的第一参考点的电压,控制装置可以根据所述第一参考点的电压以及所述交流输入源输入电压的电压极性,生成死区控制信号,所述第一参考点为所述图腾柱PFC电路的上桥臂开关管源极与下桥臂开关管漏极之间的连接点,电源装置中的控制装置可以根据所述死区控制信号控制所述图腾柱PFC电路中的所述上桥臂开关管与所述下桥臂开关管的开关状态,使得电源装置对图腾柱PFC电路进行最优控制。
本申请实施例还提供的一种图腾柱PFC电路控制方法,所述控制装置用于控制图腾柱PFC电路,所述图腾柱PFC电路中包含第一开关管和第二开关管,所述第一开关管的源极和所述第二开关管的漏极共同连接在第一参考点,交流输入源的第一输入端通过电感连接到所述第一参考点;所述控制装置包括控制器和死区检测电路,所述死区检测电路包括检测电容以及检测电阻,所述检测电容的第一端与所述第一参考点连接,所述检测电容的第二端与所述检测电阻第一端连接,所述检测电阻的第二端接地;应用于所述控制器,所述方法包括:根据所述检测电阻的电压以及所述交流输入源输入的电压的正负极性,生成第一死区控制信号和第二死区控制信号;根据所述第一死区控制信号控制所述第一开关管的开关状态,根据所述第二死区控制信号控制所述第二开关管的开关状态。利用该方法能够对图腾柱PFC电路能有着最优控制,本申请实施例的实施方式以及相应的技术效果可以参照上述实施例得到的技术效果,重复之处不予详述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种电源装置,其特征在于,所述电源装置包括:图腾柱功率因数校正PFC电路和控制装置,所述图腾柱PFC电路中包含第一开关管和第二开关管,所述第一开关管的源极和所述第二开关管的漏极共同连接在第一参考点,交流输入源的第一输入端通过电感连接到所述第一参考点;
    所述控制装置包括控制器和死区检测电路,所述死区检测电路包括检测电容以及检测电阻,所述检测电容的第一端与所述第一参考点连接,所述检测电容的第二端与所述检测电阻第一端连接,所述检测电阻的第二端接地;
    所述控制器,用于根据所述检测电阻的电压以及所述交流输入源输入的电压的正负极性,生成第一死区控制信号和第二死区控制信号,并根据所述第一死区控制信号控制所述第一开关管的开关状态,根据所述第二死区控制信号控制所述第二开关管的开关状态。
  2. 根据权利要求1所述的电源装置,其特征在于,所述控制装置还包括:交流输入源极性检测电路;所述交流输入源极性检测电路,用于检测所述交流输入源输入的电压的正负极性。
  3. 根据权利要求2所述的电源装置,其特征在于,所述交流输入源极性检测电路,具体用于:
    测量所述交流输入源的第一输入端的第一电压以及所述交流输入源的第二输入端的第二电压,并计算所述第一电压与所述第二电压之间的电压差值;
    在所述电压差值大于第一预设电压时,确定所述交流输入源输入的电压为正极性,所述第一预设电压不小于0;
    在所述电压差值小于第二预设电压时,确定所述交流输入源输入的电压为负极性,所述第二预设电压不大于0。
  4. 根据权利要求1-3任一所述的电源装置,其特征在于,所述控制装置还包括:电压测量模块;所述电压测量模块,用于测量所述检测电阻的电压。
  5. 根据权利要求1-4任一所述的电源装置,其特征在于,所述控制器具体用于:根据所述检测电阻的电压以及所述交流输入源输入的电压的正负极性,生成指示信号;根据所述指示信号以及所述交流输入源输入的电压的正负极性,生成所述第一死区控制信号和所述第二死区控制信号,所述指示信号用于指示所述第一开关管和所述第二开关管的死区状态,所述指示信号中包含第一指示信号和第二指示信号。
  6. 根据权利要求5所述的电源装置,其特征在于,在确定所述交流输入源输入的电压为正极性且所述检测电阻的电压小于第一阈值时,所述第二指示信号用于指示所述第一开关管处于死区状态;
    在确定所述交流输入源输入的电压为正极性且所述检测电阻的电压大于第二阈值时,所述第一指示信号用于指示所述第二开关管处于死区状态;
    在确定所述交流输入源输入的电压为负极性且所述检测电阻的电压小于第三阈值时,所述第一指示信号用于指示所述第一开关管处于死区状态;
    在确定所述交流输入源输入的电压为负极性且所述检测电阻的电压大于第四阈值时,所述第二指示信号用于指示所述第二开关管处于死区状态;其中,所述第一阈值小于所述第二阈值,所述第三阈值小于所述第四阈值。
  7. 根据权利要求5或6所述的电源装置,其特征在于,所述控制器具体包括:第一多路选择开关、第二多路选择开关、第一比较器、第二比较器以及反相器;所述第一多路选择开关的输出端与所述第一比较器的负端连接,所述第二多路选择开关的输出端与所述第二比较器的负端连接;所述第二比较器的输出端连接所述反相器,所述第一多路选择开关的第一输入端用于输入所述第四阈值的电压,所述第一多路选择开关的第二输入端用于输入所述第一阈值的电压;所述第二多路选择开关的第一输入端用于输入所述第三阈值的电压,所述第二多路选择开关的第一输入端用于输入所述第二阈值的电压;所述第一比较器的正端用于接收所述检测电阻的电压,所述第二比较器的正端用于接收所述检测电阻的电压;
    在确定所述交流输入源输入的电压为负极性时,所述控制器控制所述第一多路选择开关导通第一输入端与输出端的连接,所述控制器控制所述第二多路选择开关导通第一输入端与输出端的连接;在确定所述交流输入源输入的电压为负极性时,所述控制器控制所述第一多路选择开关导通第二输入端与输出端的连接,所述控制器控制所述第二多路选择开关导通第二输入端与输出端的连接;
    所述第一比较器,用于输出所述第一指示信号;
    所述反相器,用于输出所述第二指示信号。
  8. 根据权利要求5-7任一所述的电源装置,其特征在于,所述控制器具体用于:
    在确定所述交流输入源输入的电压为正极性时,根据所述第一指示信号生成所述第一死区控制信号,根据所述第二指示信号生成所述第二死区控制信号;
    在确定所述交流输入源输入的电压为负极性时,根据所述第二指示信号生成所述第一死区控制信号,根据所述第一指示信号生成所述第二死区控制信号。
  9. 根据权利要求5-8任一所述的电源装置,其特征在于,所述控制装置还包括:第一脉冲生成电路,所述第一脉冲生成电路用于生成第一脉冲信号以及第二脉冲信号;所述第一脉冲信号用于生成所述第一死区控制信号,所述第二脉冲信号用于生成所述第二死区控制信号;
    所述控制器还用于:在确定所述交流输入源输入的电压为正极性时,根据所述第一指示信号以及所述第一脉冲信号,生成所述第一死区控制信号,以及根据所述第二指示信号以及所述第二脉冲信号,生成所述第二死区控制信号;在确定所述交流输入源输入的电压为负极性时,根据所述第二指示信号以及所述第一脉冲信号,生成所述第一死区控制信号,以及根据所述第一指示信号以及所述第二脉冲信号,生成所述第二死区控制信号。
  10. 根据权利要求9所述的电源装置,其特征在于,所述控制装置还包括:频率检测模 块以及开关模块;
    所述频率检测模块,用于检测第一信号频率以及第二信号频率,所述第一信号频率为所述第一脉冲信号的频率,所述第二信号频率为所述第二脉冲信号的频率;
    所述开关模块,用于根据所述第一信号频率,控制所述第一开关管的开关状态,根据所述第二信号频率,控制所述第二开关管的开关状态。
  11. 根据权利要求1-10任一所述的电源装置,其特征在于,所述图腾柱PFC电路还包括:第一二极管以及第二二极管,所述第一二级管的正极与所述第二二级管的负极均通过第二参考点与所述交流输入源的第二输入端连接;所述第二二级管的正极接地。
  12. 根据权利要求1-10任一所述的电源装置,其特征在于,所述图腾柱PFC电路还包括:第三开关管以及第四开关管,所述第三开关管的源极与所述第四开关管的漏极均通过第二参考点与所述交流输入源的第二输入端连接,所述第三开关管的漏极与所述第一开关管的漏极连接,所述第三开关管的漏极与所述第一开关管的漏极连接,所述第四开关管的源极接地;
    所述控制装置还包括:第二脉冲生成电路,所述第二脉冲生成电路,用于生成第三脉冲信号以及第四脉冲信号;
    所述控制器还用于:根据所述第三脉冲信号控制所述第三开关管的开关状态,根据所述第四脉冲信号控制所述第四开关管的开关状态。
  13. 根据权利要求1-12任一所述的电源装置,其特征在于,所述控制装置还包括:保护电路,所述保护电路包括:第一稳压管和第二稳压管,所述保护电路与所述检测电阻并联;
    所述第一稳压管的正极与所述第二稳压管的正极连接,所述第二稳压管的负极接地。
  14. 一种图腾柱PFC电路控制方法,控制装置用于控制图腾柱PFC电路,所述图腾柱PFC电路中包含第一开关管和第二开关管,所述第一开关管的源极和所述第二开关管的漏极共同连接在第一参考点,交流输入源的第一输入端通过电感连接到所述第一参考点;所述控制装置包括控制器和死区检测电路,所述死区检测电路包括检测电容以及检测电阻,所述检测电容的第一端与所述第一参考点连接,所述检测电容的第二端与所述检测电阻第一端连接,所述检测电阻的第二端接地;应用于所述控制器,其特征在于,所述方法包括:
    根据所述检测电阻的电压以及所述交流输入源输入的电压的正负极性,生成第一死区控制信号和第二死区控制信号;
    根据所述第一死区控制信号控制所述第一开关管的开关状态,根据所述第二死区控制信号控制所述第二开关管的开关状态。
PCT/CN2021/091692 2021-04-30 2021-04-30 一种电源装置及图腾柱pfc电路控制方法 WO2022227070A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/091692 WO2022227070A1 (zh) 2021-04-30 2021-04-30 一种电源装置及图腾柱pfc电路控制方法
CN202180002901.2A CN115606083A (zh) 2021-04-30 2021-04-30 一种电源装置及图腾柱pfc电路控制方法
EP21938544.0A EP4325707A4 (en) 2021-04-30 2021-04-30 POWER SOURCE DEVICE AND TOTEM POLE PFC CIRCUIT CONTROL METHOD
US18/497,110 US20240072647A1 (en) 2021-04-30 2023-10-30 Power supply apparatus and totem-pole pfc circuit control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091692 WO2022227070A1 (zh) 2021-04-30 2021-04-30 一种电源装置及图腾柱pfc电路控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/497,110 Continuation US20240072647A1 (en) 2021-04-30 2023-10-30 Power supply apparatus and totem-pole pfc circuit control method

Publications (1)

Publication Number Publication Date
WO2022227070A1 true WO2022227070A1 (zh) 2022-11-03

Family

ID=83847584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091692 WO2022227070A1 (zh) 2021-04-30 2021-04-30 一种电源装置及图腾柱pfc电路控制方法

Country Status (4)

Country Link
US (1) US20240072647A1 (zh)
EP (1) EP4325707A4 (zh)
CN (1) CN115606083A (zh)
WO (1) WO2022227070A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113726144B (zh) * 2021-07-15 2023-11-03 华为数字能源技术有限公司 驱动控制器、功率因数校正电路的控制***及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150091458A1 (en) * 2013-10-01 2015-04-02 General Electric Company Two-stage ac-dc power converter with selectable dual output current
CN207354049U (zh) * 2017-08-21 2018-05-11 东莞市梦之芯半导体科技有限公司 一种数字控制器以及电子设备
CN109617387A (zh) * 2018-12-10 2019-04-12 福州大学 图腾柱pfc的电压过零点电流畸变控制方法及控制装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431896B2 (en) * 2013-12-19 2016-08-30 Texas Instruments Incorporated Apparatus and method for zero voltage switching in bridgeless totem pole power factor correction converter
CN112003454A (zh) * 2019-05-27 2020-11-27 恩智浦美国有限公司 具有零电流检测电路的无桥功率因数校正转换器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150091458A1 (en) * 2013-10-01 2015-04-02 General Electric Company Two-stage ac-dc power converter with selectable dual output current
CN207354049U (zh) * 2017-08-21 2018-05-11 东莞市梦之芯半导体科技有限公司 一种数字控制器以及电子设备
CN109617387A (zh) * 2018-12-10 2019-04-12 福州大学 图腾柱pfc的电压过零点电流畸变控制方法及控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4325707A4 *

Also Published As

Publication number Publication date
US20240072647A1 (en) 2024-02-29
EP4325707A1 (en) 2024-02-21
CN115606083A (zh) 2023-01-13
EP4325707A4 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
TWI530767B (zh) 用於pfc電路的控制電路、控制方法及電源系統
US9595889B2 (en) System and method for single-phase and three-phase current determination in power converters and inverters
JP6307368B2 (ja) Dc/dcコンバータの制御装置及びその制御方法
WO2022170954A1 (zh) Dc/dc变换器的控制器及其控制***
WO2014067271A1 (zh) 三电平逆变器和供电设备
WO2021237699A1 (zh) 一种无桥功率因数校正pfc电路
US20240072647A1 (en) Power supply apparatus and totem-pole pfc circuit control method
JP2002238257A (ja) 共振型dc−dcコンバータの制御方法
US10673340B2 (en) Isolated boost-buck power converter
CN113659837B (zh) 一种变换器、变换器控制方法以及电源适配器
CN111371327B (zh) 谐振变换器及其控制方法
US11290024B2 (en) Power supply control device, power conversion system, and power supply control method
CN112821748A (zh) 图腾柱无桥功率因数校正装置及电源
US20240014733A1 (en) Method and apparatus for controlling totem-pole pfc circuit, and electronic device
JP2004072806A (ja) 電力変換装置
JP6467524B2 (ja) 電力変換装置および鉄道車両
WO2023020051A1 (zh) 谐振变换器、谐振变换器的控制方法及电源适配器
WO2022179564A1 (zh) 无桥降压功率因素校正电路
CN107565838B (zh) 一种用于反激型逆变器的变开关频率控制方法
CN114915181A (zh) 一种应用于cllc谐振变换器的同步整流控制***及方法
CN109510501A (zh) 一种软开关变换器及无线充电***
Tayebi et al. Effects of circuit nonlinearities on dynamic dead time optimization for a three-phase microinverter
WO2023050103A1 (zh) 一种功率因数校正pfc电路的控制方法和pfc电路
WO2019183880A1 (zh) 一种llc谐振变换器及其控制电路、谐振电流采样电路
WO2022227072A1 (zh) 一种功率变换电路及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021938544

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021938544

Country of ref document: EP

Effective date: 20231113

NENP Non-entry into the national phase

Ref country code: DE