WO2022224940A1 - Corrosion-resistant copper alloy, copper alloy pipe and heat exchanger - Google Patents

Corrosion-resistant copper alloy, copper alloy pipe and heat exchanger Download PDF

Info

Publication number
WO2022224940A1
WO2022224940A1 PCT/JP2022/018078 JP2022018078W WO2022224940A1 WO 2022224940 A1 WO2022224940 A1 WO 2022224940A1 JP 2022018078 W JP2022018078 W JP 2022018078W WO 2022224940 A1 WO2022224940 A1 WO 2022224940A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
copper alloy
mass
resistance
content
Prior art date
Application number
PCT/JP2022/018078
Other languages
French (fr)
Japanese (ja)
Inventor
真一 伊藤
哲郎 細木
Original Assignee
株式会社 Kmct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022038301A external-priority patent/JP7491960B2/en
Application filed by 株式会社 Kmct filed Critical 株式会社 Kmct
Priority to CN202280029143.8A priority Critical patent/CN117242197A/en
Publication of WO2022224940A1 publication Critical patent/WO2022224940A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present invention relates to a corrosion-resistant copper alloy, a copper alloy pipe and a heat exchanger using the same, and more particularly to a corrosion-resistant copper alloy with improved corrosion resistance against ant nest corrosion.
  • Phosphorus-deoxidized copper pipes (JIS H3300 C1220), which are excellent in thermal conductivity, bending workability, and brazing properties, have been widely used for refrigerant pipes or heat exchanger pipes. Copper tubing also generally exhibits very good corrosion resistance. Corrosion reactions of metals are explained by the transfer of electrons in electrochemical reactions. An anode from which electrons are emitted and a cathode from which electrons are received always occur in symmetrical relation and are also called anode and cathode respectively. For example, in a galvanic cell, the reaction at the anode corresponds to the metal elution reaction, and the reaction at the cathode corresponds to the metal deposition reaction.
  • Cu has a nobler potential than H, so H ions cannot cause a cathodic reaction with Cu. Without the presence of an oxidizing agent such as O, there can be no cathodic reaction in non-oxidizing acids, so there can be no anodic reaction, and thus copper exhibits excellent corrosion resistance in non-oxidizing environments. .
  • ant nest corrosion may occur in refrigerant pipes or heat exchanger pipes.
  • Cu has a nobler potential than H, so the reaction with acid does not consume H, and once corrosion progresses in an acidic environment, it is difficult to suppress the corrosion rate with Cu alone.
  • the ant nest-like corrosion progresses at a high speed, progresses in the thickness direction in a short period of time, and penetrates the copper pipe.
  • Patent Documents 1 to 3 there is a strong demand from the market for copper pipes with excellent resistance to ant's nest corrosion, and technologies such as Patent Documents 1 to 3 have been proposed and commercialized.
  • Patent Document 1 discloses a copper alloy containing any one of Zn, Mn and Mg as a copper alloy with excellent corrosion resistance to ant nest corrosion.
  • the evaluation conditions for resistance to ant nest corrosion are cooling operation and air blowing operation with an actual heat exchanger, whether it is effective against ant nest corrosion under severe conditions such as the coexistence of formic acid. Further investigation is required.
  • Patent Document 2 discloses a copper alloy with a high P content as a copper alloy with excellent resistance to ant's nest corrosion.
  • the evaluation period for the resistance to ant nest corrosion is as short as 20 days, further investigation is required as to whether or not it is effective when exposed to a corrosive environment over a longer period of time.
  • P is contained in a large amount, there is a concern that the pH of the eluted portion is lowered and the amount of wall thickness reduction in an acidic environment is increased.
  • Patent Document 3 discloses a copper alloy with a low P content as a copper alloy with excellent resistance to ant's nest corrosion.
  • Cu has a higher potential than H, as described above, it is difficult to control the pH in the corrosion pits with Cu alone. Therefore, it is necessary to further investigate whether it is effective against ant nest-like corrosion under more severe conditions.
  • the addition or mixing of P may be unavoidable. value, the desired resistance to ant's nest corrosion may not be obtained.
  • the content of alloying components is high, the copper alloy may deteriorate in workability.
  • the present invention has been made in view of this situation, and is a corrosion-resistant copper alloy that has excellent workability and excellent long-term corrosion resistance against ant nest-like corrosion in the presence of a lower carboxylic acid.
  • an object of the present invention is to provide a copper alloy tube and a heat exchanger using the corrosion-resistant copper alloy.
  • the present inventors have found that in Cu, as an additive element that is easily eluted in an acidic solution and that can raise the pH by elution, a (base) metal having a potential lower than that of Al at the standard electrode potential, especially a long-period periodicity
  • a (base) metal having a potential lower than that of Al at the standard electrode potential, especially a long-period periodicity
  • the present invention has been completed based on such knowledge. That is, the present invention has the following configurations.
  • the corrosion-resistant copper alloy of the present invention contains at least one alloy component selected from metals having a standard electrode potential lower than that of Al, the balance being Cu and unavoidable impurities, and the content of the alloy component is 0.01% by mass or more and less than 0.5% by mass.
  • the alloy components are easily eluted into an acidic solution, and the elution raises the pH, neutralizing the carboxylic acid inside the pores and rendering it harmless.
  • the metal having a standard electrode potential lower than that of Al is preferably at least one selected from Li, K, Ca, Na, and Mg.
  • the metal having a standard electrode potential lower than that of Al is preferably at least one selected from Ca and Mg.
  • the corrosion-resistant copper alloy of the present invention when the corrosion-resistant copper alloy contains P, the P content is 0.015 mass% or less, and the content of the alloy component is X mass%. , [X/p], which is the value obtained by dividing X by p, where the content of P is p% by mass, is 9.10 or more. (5) Further, the corrosion-resistant copper alloy of the present invention preferably has the above [X/p] of 16.60 or more.
  • a copper alloy tube of the present invention uses the corrosion-resistant copper alloy described in any one of (1) to (5) above.
  • the copper alloy tube of the present invention can also be an internally grooved copper alloy tube.
  • a heat exchanger of the present invention uses the copper alloy tube described in (6) or (7) above.
  • the corrosion-resistant copper alloy of the present invention has excellent workability and excellent long-term corrosion resistance against ant nest-like corrosion in the presence of a lower carboxylic acid. The same applies to copper alloy pipes and heat exchangers using the corrosion-resistant copper alloy of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a test container used for evaluation of ant nest corrosion resistance.
  • FIG. 2 is a diagram showing the dimensions of the test material made of a copper alloy used for evaluating the resistance to ant nest corrosion, (a) is a plan view of the test material, and (b) is the test material. It is a perspective view of material.
  • (a), (b), and (c) of FIG. 3 are schematic diagrams showing the operation procedure of the brazing material wettability evaluation test.
  • FIG. 4 is a graph showing the relationship between the value of [X/p] and corrosion depth.
  • Carboxylic acid exists as a copper complex in the pits of ant nest-like corrosion (formula (3) below), or remains in the corrosive environment as an aldehyde and is oxidized inside the corrosion pits to produce carboxylic acid again ( Formulas (4) and (5)) are considered to play a role in the formation of specific corrosion pits.
  • Ant nest-like corrosion occurs when all three elements of carboxylic acid, oxygen, and water are present, and the progress of corrosion continues by maintaining an environment in which they coexist inside the corrosion pit. If even one of these elements can be removed from inside the corrosion pit, the progress of corrosion can be suppressed.
  • Mg manganesium metal
  • an oxide of Mg is dispersed in the alloy, and the effect of raising the pH when eluting into an acidic solution.
  • Mg as an example of a metal with a lower standard electrode potential than Al
  • the present inventors considered adding a small amount of Mg to a Cu base material.
  • the Mg eluted together with Cu into the corrosion pit or its oxide increases the pH inside the ant nest-like corrosion pit, and the ants contained in the pit are trapped.
  • carboxylic acid which is a corrosion accelerator of focal corrosion, can be rendered harmless.
  • the corrosion-resistant copper alloy of the present invention contains at least one alloy component selected from metals having a lower standard electrode potential than Al.
  • At least one (base) metal with a potential lower than that of Al By adding at least one (base) metal with a potential lower than that of Al to Cu in the standard electrode potential, the effect of increasing pH can be imparted.
  • the element belongs to Group 1 or Group 2 in the long-period periodic table, it is easy to obtain the effect of increasing the pH.
  • At least one of Li, K, Ca, Na, and Mg is preferable as a metal having a lower standard electrode potential than Al and belonging to Group 1 or Group 2.
  • Table 1 shows the standard electrode potential values of metals having a lower standard electrode potential than Al.
  • the remainder other than the above additive elements is only Cu and unavoidable impurities.
  • the unavoidable impurities referred to here are impurities that must be added in manufacturing the alloy or alloy pipe of the present invention, or that are difficult to remove completely, and that are unavoidable to be mixed in the mass production process at the current technical level. show. Specifically, based on JIS H3300 C1220, it is an element that satisfies the characteristics defined in the present invention and excludes Cu and additive elements based on the present invention. Examples of unavoidable impurities include Zn, Pb, Fe, Sn, Ni, Si, Sb, and Bi. Inevitable impurities do not inhibit the effects of the present invention as long as the total content is 0.1% by mass or less.
  • Ca and Mg are more preferable as metals that have a lower standard electrode potential than Al and are added to Cu.
  • Ca or Mg By adding Ca or Mg, it is possible to provide an effect of suppressing corrosion due to pH increase, and at the same time, it is possible to maintain good workability and brazability as an alloy material.
  • Mg is particularly preferable as a metal to be added to Cu from the viewpoint of the effect of pH increase due to elution, the difficulty of casting and handling of the additive element itself, and the workability and brazeability as an alloy material.
  • the effect of suppressing ants nest-like corrosion due to the ability to adjust pH depends on the content of additive elements in Cu.
  • the total content of at least one alloy component (hereinafter sometimes simply referred to as "alloy component") selected from metals having a lower standard electrode potential than Al is It is 0.01% by mass or more and less than 0.5% by mass. If the total content of the alloy components is 0.01% by mass or more, it is possible to exhibit sufficient corrosion resistance against ant nest corrosion.
  • the method for evaluating the resistance to ant nest corrosion can be evaluated by the depth of corrosion after a test of exposure to a 0.5 vol % formic acid aqueous solution atmosphere for 60 days. When the corrosion depth is 0.25 mm or less, it is determined that the resistance to ant nest corrosion is good. The details of the evaluation method for resistance to ant nest corrosion will be described later.
  • Cu has a better elongation property as the amount of additive elements is smaller, and shows very excellent workability in working such as bending. It has been found that a tensile strength of 280 N/mm 2 or less after annealing is sufficient to maintain this property.
  • the Cu alloy can satisfy the condition that the tensile strength after annealing is 280 N/mm 2 or less if the total content of the alloy components is less than 0.5% by mass.
  • Cu may cause stress corrosion cracking when exposed to an environment containing ammonia if it contains more than a certain amount of the composition.
  • the Cu alloy can further suppress stress corrosion cracking due to ammonia if the total content of the alloy components is 0.35% by mass or less. Therefore, it is preferable that the total content of the Cu alloy when the alloy components are added is 0.35% by mass or less.
  • Cu has very good wettability of the brazing filler metal in brazing using phosphorous copper brazing, which is remarkable as the amount of additive elements is small.
  • the wettability of the brazing filler metal will be better if the total content of the Cu alloy is 0.25% by mass or less when the alloy components are added. Therefore, it is preferable that the total content of the Cu alloy is 0.25% by mass or less when the alloy components are added.
  • the thermal conductivity is strongly correlated with electrical conductivity.
  • the electrical conductivity should be 85% IACS or more.
  • the total content of the Cu alloy when the alloy components are added is 0.15% by mass or less.
  • P is sometimes added to Cu for the purpose of deoxidizing.
  • P in Cu is eluted, phosphoric acid is generated, which lowers the pH of the surroundings and can inhibit the effects of the present invention.
  • the P content in Cu is preferably 0.015% by mass or less.
  • the addition or contamination of P may be unavoidable depending on the casting method and the raw materials used. If the ratio of the P content (p% by mass) to the P content (p% by mass) exceeds a certain value, the pH-raising effect of the alloy components, that is, the effect of detoxifying the carboxylic acid cannot be obtained sufficiently, resulting in the desired resistance to corrosion. In some cases, ant nest corrosiveness could not be obtained. Therefore, the ratio of the P content (p mass %) to the alloy component content (X mass %) is set to a predetermined value.
  • Corrosion-resistant copper alloy when the content of the alloy component is X mass% and the content of P is p mass%, [X/p], which is the value obtained by dividing X by p, is 9 .10 or more. By maintaining this, it is possible to offset the corrosion resistance nullifying action caused by P and to provide the required ant-comb-like corrosion resistance.
  • Corrosion-resistant copper alloys should have an [X/p] of 16.60 or higher for applications that are used in somewhat severe corrosive environment conditions even in Japan, or applications that place importance on the durability of equipment such as room air conditioners. Preferably.
  • the copper alloy pipe of the present invention uses the corrosion-resistant copper alloy of the present invention.
  • a heat exchanger of the present invention uses the copper alloy tube of the present invention.
  • the corrosion-resistant copper alloy of the present invention can be produced using known melting and casting processes.
  • the copper alloy pipe of the present invention can be manufactured through known melting/casting processes, soaking processes, hot extrusion processes, rolling/drawing processes, and annealing processes.
  • the copper alloy tube of the present invention is preferably an internally grooved tube.
  • An internally grooved tube is a copper alloy tube in which grooves of a predetermined shape are formed on the inner surface of the tube. Groove shapes such as the number of grooves, the height of fins formed between grooves, the groove bottom thickness, and the groove lead angle can be those of conventionally known grooved tubes.
  • the grooved tube improves the heat transfer coefficient and improves the performance of the heat exchanger.
  • a copper alloy tube and an internally grooved tube using the corrosion-resistant copper alloy of the present invention are useful as materials for heat exchangers.
  • the criterion for ant-combust corrosion resistance is 0.25 mm or less. This level can be said to be tolerable.
  • the oxidizing gas enters the room and comes into contact with the alcohol component present in the room.
  • the level is assumed to withstand this. It is also suitable for thinning to reduce material costs.
  • the samples in Table 7 assume levels that can be used in corrosive, relatively mild environmental conditions.
  • Copper alloys were prepared by adding Mg and P as additive elements to Cu in various additive amounts shown in Tables 3 to 8 and subjected to tests. A copper plate was produced through each process of melting and casting, hot rolling, cold rolling, and annealing.
  • Test material dimensions width 30 mm ⁇ length 180 mm ⁇ thickness 0.2 mm, JIS Z2241: 2011 Metal material tensile test method No. 5 test piece compliant ⁇ Test method: JIS Z2241: 2011 Metal material tensile test method compliant, Tensile strength was measured with a tensile tester.
  • ⁇ Criteria for tensile strength ⁇ : Tensile strength of 280 N / mm 2 or less, workability such as bending maintained
  • Tensile strength exceeding 280 N / mm 2 , workability such as bending decreased
  • FIG. 1 shows a schematic cross-sectional view of a test container used for evaluation of ant nest corrosion resistance.
  • the test container 10 is a closed container 11 that can be sealed with a silicone stopper 14 .
  • a corrosion-promoting substance 12 is injected into the bottom of a sealed container 11, and a test material 13 is held in the air.
  • FIG. 2 is a diagram showing the dimensions of a test material made of a copper alloy used for evaluating the resistance to ant's nest corrosion.
  • FIG. 2(a) is a plan view of the test material.
  • b) is a perspective view of the test material.
  • the test material is a copper alloy plate of width 12 mm ⁇ length 200 mm ⁇ thickness 1.0 mm. The portion other than the range of 10 mm wide by 200 mm long on one side is covered with a rubber material to protect it from being exposed to corrosive environments.
  • ⁇ Test material dimensions width 12 mm x length 200 mm x thickness 1.0 mm
  • Corrosion promoting substance 500 mL of 0.5 vol% formic acid aqueous solution
  • ⁇ Temperature conditions Repeat the heat cycle of storing the plastic container in a constant temperature bath and holding it at 20°C for 2 hours and then holding it at 40°C for 22 hours. In this method, keeping the temperature at 20°C promotes the formation of condensation, and the formic acid volatilized inside the container is taken into the condensed water. By keeping the temperature at 40°C, the condensed water is dried and the formic acid is concentrated, further promoting the progress of corrosion.
  • ⁇ Test container The test material is held hollow in a 2 L plastic container ⁇ Atmosphere in the container: Oxygen replacement ⁇ Test period: 60 days ⁇ Determination criteria for resistance to ant nest corrosion ⁇ : Effective, maximum corrosion depth 0.25 mm or less ⁇ : No effect, maximum corrosion depth exceeds 0.25 mm
  • Table 3 shows evaluation results of ant nest corrosion resistance and tensile strength.
  • No. 1 No. 2 has a Mg content of 0.01% by mass and 0.495% by mass, respectively. All of them satisfied the judgment criteria in terms of resistance to ant's nest corrosion and tensile strength, and exhibited excellent performance.
  • No. 3 the content of Mg was as low as 0.005% by mass, and the criteria for resistance to ant nest corrosion could not be satisfied.
  • No. No. 4 had an excessive Mg content of 0.98% by mass and could not satisfy the criteria for tensile strength.
  • No. In No. 5 Mg was not added and the P content was 0.020% by mass, but the evaluation criteria could not be satisfied in terms of resistance to ant's nest corrosion.
  • Ant's nest corrosion resistance, tensile strength, stress corrosion cracking resistance Test methods and evaluation methods for ant's nest corrosion resistance and tensile strength were as follows. Same as 1-5.
  • Stress corrosion cracking resistance A stress corrosion cracking test was performed with reference to the technical standard JBMA T-301 of the Japan Copper and Brass Association for the configuration of the test equipment. Further, in order to examine more detailed characteristics, the detailed test conditions were as follows. ⁇ Test material dimensions: width 12 mm x length 20 mm x thickness 1.0 mm ⁇ Corrosion promoting substance: 14 vol% ammonia aqueous solution, 100 mL - Test container: desiccator - Exposure condition: In a desiccator containing an aqueous ammonia solution at the bottom, an intermediate plate is placed horizontally at a distance of about 100 mm from the liquid surface. Furthermore, the test material is placed on the intermediate plate and sealed.
  • test material was installed horizontally with the front and back facing up and down.
  • resin-coated copper wires of ⁇ 2.5 mm were placed between both ends of the test material and the intermediate plate so as not to be placed directly on the intermediate plate.
  • ⁇ Exposure time 72 hours
  • ⁇ Evaluation method After completion of the test, pickle (sulfuric acid), then bend 180° so that the upper surface side at the time of test installation is facing outward. Observe the bent cross section and evaluate the presence or absence of cracks.
  • Criteria for stress corrosion cracking resistance ⁇ : crack depth less than 0.10 mm
  • crack depth 0.10 mm or more
  • Table 4 shows the evaluation results of ant nest corrosion resistance, tensile strength and stress corrosion cracking resistance.
  • the Mg content affects the susceptibility to stress corrosion cracking.
  • No. 6 and no. 7 has a Mg content of 0.01% by mass and 0.35% by mass, respectively, but satisfies the criteria in terms of resistance to ant nest corrosion, tensile strength, and resistance to stress corrosion cracking. and had excellent performance.
  • FIG. 3 shows the operating procedure of the brazing material wettability evaluation test.
  • the test material 21 is bent 90° in the longitudinal direction, and the brazing filler metal 20 is placed in the center of the valley fold of the test material 21 .
  • the brazing material 20 has a length A before heating. The brazing material 20 was heated in the above state, and the overall length (longitudinal direction) B of the wet and spread brazing material 20 after heating was measured (Fig. 3(c)).
  • Table 5 shows evaluation results of resistance to ant's nest corrosion, tensile strength, resistance to stress corrosion cracking, and brazing filler metal wettability.
  • No. 9 and no. No. 10 has a Mg content of 0.01% by mass and 0.25% by mass, respectively. also satisfied the criteria and had excellent performance.
  • Ant's nest corrosion resistance, tensile strength, stress corrosion cracking resistance, brazing filler metal wettability, electrical conductivity Ant's nest corrosion resistance, tensile strength, stress corrosion cracking resistance, brazing filler metal wettability The test method and evaluation method for the sex are No. Same as 1-11.
  • Table 6 shows evaluation results of resistance to ant's nest corrosion, tensile strength, resistance to stress corrosion cracking, brazing filler metal wettability, and electrical conductivity.
  • No. In No. 14 the Mg content was 0.18% by mass, but the criteria for electrical conductivity could not be satisfied.
  • Table 7 shows the evaluation results of ant nest corrosion resistance.
  • the Mg content X is 0.0440 mass%, 0.0830 mass%, 0.0470 mass%, and 0.0800 mass%, respectively, and the P content p is 0. 0.00310% by mass, 0.00680% by mass, 0.00510% by mass, and 0.00850% by mass, but X/p, which is the content ratio of each element in each sample, is 9.10 or more of the standard. , satisfies the criteria for ant nest corrosion resistance. No. 19 and no.
  • X which is the content of Mg
  • p which is the content of P
  • X/p was below the standard of 9.10, and the evaluation standard was not satisfied in terms of resistance to ant nest corrosion. Since the content of Mg in each sample is less than 0.5% by mass, the tensile strength is estimated to be 280 N/mm 2 or less, so the evaluation of the tensile strength is omitted.
  • this judgment standard in this test method is also a necessary and sufficient judgment criterion for applications that are used in corrosive environmental conditions that are somewhat severe in Japan, and applications that emphasize the durability of equipment such as room air conditioners. . ⁇ : effective, maximum corrosion depth 0.250 mm or less ⁇ : no effect, maximum corrosion depth exceeds 0.250 mm
  • Table 8 shows the evaluation results of ant nest corrosion resistance.
  • the Mg content X is 0.0468% by mass and 0.0833% by mass, respectively, and the P content p is 0.00270% by mass and 0.00480% by mass.
  • X/p which is the content ratio of each element in the sample, was 16.60 or more, which is the standard, and satisfied the criterion for resistance to ant's nest corrosion.
  • X/p was below the standard of 16.60, respectively, and the judgment standard was not satisfied in terms of resistance to ant nest corrosion.
  • No. 23 and no. 24 samples no. Similar to Nos. 15 to 18, there is no practical problem under relatively mild corrosive environmental conditions.
  • the tensile strength is estimated to be 280 N/mm 2 or less, and thus the evaluation of the tensile strength is omitted.
  • Tables 7 and 8 are shown in Figure 4.
  • corresponds to Table 7
  • corresponds to Table 8.
  • the circle spots are those where the Mg content X is 0.08
  • the triangular spots are those where the Mg content X is 0.04.
  • [1] containing at least one alloy component selected from metals having a standard electrode potential lower than that of Al, and the balance consisting of Cu and unavoidable impurities, A corrosion-resistant copper alloy, wherein the total content of the alloy components is 0.01% by mass or more and less than 0.5% by mass.
  • [2] The corrosion-resistant copper alloy according to [1], wherein the metal having a standard electrode potential lower than that of Al is Li, K, Ca, Na, or Mg.
  • [3] The corrosion-resistant copper alloy according to [1] or [2], wherein the metals having a standard electrode potential lower than that of Al are Ca and Mg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

The present invention provides: a corrosion-resistant copper alloy which exhibits excellent processability, while having excellent corrosion resistance to ant nest corrosion in the presence of a lower carboxylic acid for a long period of time; a copper alloy pipe which uses this corrosion-resistant copper alloy; and a heat exchanger. A corrosion-resistant copper alloy which is characterized by containing at least one alloy component that is selected from among metals having a lower standard electrode potential than Al, with the balance being made up of Cu and unavoidable impurities, while being also characterized in that the total content of the alloy components is not less than 0.01% by mass but less than 0.5% by mass. The present invention also provides a copper alloy pipe which uses this corrosion-resistant copper alloy. The present invention also provides a heat exchanger which uses this copper alloy pipe.

Description

耐食性銅合金、銅合金管および熱交換器Corrosion-resistant copper alloys, copper alloy tubes and heat exchangers
 本発明は、耐食性銅合金、それを用いた銅合金管および熱交換器に係り、特に、蟻の巣状腐食に対する耐食性を向上させた耐食性銅合金に関するものである。 The present invention relates to a corrosion-resistant copper alloy, a copper alloy pipe and a heat exchanger using the same, and more particularly to a corrosion-resistant copper alloy with improved corrosion resistance against ant nest corrosion.
 従来、冷媒用配管又は熱交換器用配管等には、熱伝導性、曲げ加工性及びろう付け性に優れるりん脱酸銅管(JIS H3300 C1220)が広く用いられてきた。また、銅管は一般に、非常に優れた耐食性を示す。金属の腐食反応は、電気化学反応における電子の受け渡しで説明される。電子が放出される陽極と電子を受け取る陰極が常に対称の関係で生じ、それぞれアノードとカソードとも呼ばれる。例えばガルバニ電池においては、アノードにおける反応は金属の溶出反応が該当し、カソードにおける反応は金属の析出反応が該当する。 Phosphorus-deoxidized copper pipes (JIS H3300 C1220), which are excellent in thermal conductivity, bending workability, and brazing properties, have been widely used for refrigerant pipes or heat exchanger pipes. Copper tubing also generally exhibits very good corrosion resistance. Corrosion reactions of metals are explained by the transfer of electrons in electrochemical reactions. An anode from which electrons are emitted and a cathode from which electrons are received always occur in symmetrical relation and are also called anode and cathode respectively. For example, in a galvanic cell, the reaction at the anode corresponds to the metal elution reaction, and the reaction at the cathode corresponds to the metal deposition reaction.
 標準電極電位に示される通り、CuはHよりも貴な電位を持つため、HイオンではCuに対してカソードの反応を起こすことが出来ない。Oなどの酸化剤が存在しなければ、酸化性を持たない酸中ではカソード反応が存在しないため、アノード反応も存在し得ず、このため銅は非酸化性の環境において極めて優れた耐食性を示す。 As shown in the standard electrode potential, Cu has a nobler potential than H, so H ions cannot cause a cathodic reaction with Cu. Without the presence of an oxidizing agent such as O, there can be no cathodic reaction in non-oxidizing acids, so there can be no anodic reaction, and thus copper exhibits excellent corrosion resistance in non-oxidizing environments. .
 しかし、冷媒用配管又は熱交換器用配管等において蟻の巣状腐食と呼ばれる特異な形態の腐食が発生することがある。前述の通りCuはHより貴な電位を持つため、酸との反応はHを消費せず、一旦酸性環境での腐食が進行するとCuだけでは腐食速度を抑制する事が困難である。その結果、蟻の巣状腐食は腐食の進行速度が速く、短期間のうちに肉厚方向へ進展し、銅管を貫通してしまう。 However, a unique form of corrosion called ant nest corrosion may occur in refrigerant pipes or heat exchanger pipes. As described above, Cu has a nobler potential than H, so the reaction with acid does not consume H, and once corrosion progresses in an acidic environment, it is difficult to suppress the corrosion rate with Cu alone. As a result, the ant nest-like corrosion progresses at a high speed, progresses in the thickness direction in a short period of time, and penetrates the copper pipe.
 空調機などの熱交換器に用いられる銅管において、貫通に至った腐食孔は管内に流れる冷媒を漏洩せしめ、機器としての機能を維持できなくなるため、深刻な問題となる。加えて近年、地球温暖化係数の高いフロン系冷媒の漏洩に関する法規制も厳格化されつつあり、銅管で発生する蟻の巣状腐食の対策はより重要となっている。 In copper pipes used in heat exchangers such as air conditioners, corroded holes that penetrate through the pipes leak the refrigerant flowing inside the pipes, making it impossible to maintain the function of the equipment, which is a serious problem. In addition, in recent years, laws and regulations regarding the leakage of chlorofluorocarbon refrigerants, which have a high global warming potential, are becoming stricter, and countermeasures against ant nest-like corrosion occurring in copper pipes are becoming more important.
 この問題に関しては、市場から耐蟻の巣状腐食性に優れた銅管が強く求められており、特許文献1~3のような技術の提案がなされ、製品化されている。 Regarding this problem, there is a strong demand from the market for copper pipes with excellent resistance to ant's nest corrosion, and technologies such as Patent Documents 1 to 3 have been proposed and commercialized.
日本国特開平7-19788号公報Japanese Patent Laid-Open No. 7-19788 国際公開第2014/148127号WO2014/148127 日本国特開平6-122932号公報Japanese Patent Laid-Open No. 6-122932
 特許文献1には、蟻の巣状腐食への耐食性に優れた銅合金として、Zn、MnおよびMgのいずれかを含有する銅合金が開示されている。しかし、耐蟻の巣状腐食性の評価条件が、熱交換器実機による冷房運転と送風運転であるため、ギ酸が共存するような厳しい条件下における蟻の巣状腐食に対して有効かどうか、さらなる検討を要するものである。 Patent Document 1 discloses a copper alloy containing any one of Zn, Mn and Mg as a copper alloy with excellent corrosion resistance to ant nest corrosion. However, since the evaluation conditions for resistance to ant nest corrosion are cooling operation and air blowing operation with an actual heat exchanger, whether it is effective against ant nest corrosion under severe conditions such as the coexistence of formic acid. Further investigation is required.
 特許文献2には、耐蟻の巣状腐食性に優れた銅合金として、P含有量が高い銅合金が開示されている。しかし、耐蟻の巣状腐食性の評価期間が20日間と短いため、より長期に渡る腐食環境に曝露した場合において有効かどうか、さらなる検討を要するものである。また、Pを多く含有すると、溶出部のpHが低下して、酸性環境下における減肉量が大きくなる懸念がある。 Patent Document 2 discloses a copper alloy with a high P content as a copper alloy with excellent resistance to ant's nest corrosion. However, since the evaluation period for the resistance to ant nest corrosion is as short as 20 days, further investigation is required as to whether or not it is effective when exposed to a corrosive environment over a longer period of time. Moreover, when P is contained in a large amount, there is a concern that the pH of the eluted portion is lowered and the amount of wall thickness reduction in an acidic environment is increased.
 特許文献3には、耐蟻の巣状腐食性に優れた銅合金として、P含有量が低い銅合金が開示されている。しかし、前述の通りCuはHよりも高い電位を有するため、Cuのみでは腐食孔内のpH制御が困難である。そのため、より厳しい条件下における蟻の巣状腐食に対して有効かどうか、さらなる検討を要するものである。 Patent Document 3 discloses a copper alloy with a low P content as a copper alloy with excellent resistance to ant's nest corrosion. However, since Cu has a higher potential than H, as described above, it is difficult to control the pH in the corrosion pits with Cu alone. Therefore, it is necessary to further investigate whether it is effective against ant nest-like corrosion under more severe conditions.
 また、鋳造方式や使用する原料によっては、Pの添加あるいは混入を避けられないことがあり、Pの含有量が所定以下であっても、合金成分の含有量に対するPの含有量の割合が一定の値以上になると、所望の耐蟻の巣状腐食性を得られないことがある。また、銅合金は、合金成分の含有量が多いと加工性が低下する場合がある。 In addition, depending on the casting method and the raw material used, the addition or mixing of P may be unavoidable. value, the desired resistance to ant's nest corrosion may not be obtained. In addition, when the content of alloying components is high, the copper alloy may deteriorate in workability.
 本発明は、かかる状況に鑑みてなされたものであり、加工性に優れると共に、低級カルボン酸の存在下における蟻の巣状腐食に対して、長期間に渡って優れた耐食性を有する耐食性銅合金、当該耐食性銅合金を用いた銅合金管および熱交換器を提供することを目的とする。 The present invention has been made in view of this situation, and is a corrosion-resistant copper alloy that has excellent workability and excellent long-term corrosion resistance against ant nest-like corrosion in the presence of a lower carboxylic acid. , an object of the present invention is to provide a copper alloy tube and a heat exchanger using the corrosion-resistant copper alloy.
 蟻の巣状腐食の腐食孔内部のような酸性環境での銅の溶出においては、CuはHイオンよりも電位が高いため、非酸化性の酸ではカソード反応として作用せず、Cuの溶出はHイオンを直接消費するものではない。そのため酸性環境において腐食の進行が一旦開始すると、Cuだけでは進行速度を抑制することが難しい。 In the elution of copper in an acidic environment such as inside the pits of ant nest corrosion, since Cu has a higher potential than H ions, it does not act as a cathodic reaction in a non-oxidizing acid, and the elution of Cu does not occur. It does not consume H ions directly. Therefore, once the progress of corrosion starts in an acidic environment, it is difficult to suppress the progress rate only with Cu.
 本発明者らは、Cu中に、酸性の溶液に溶出しやすく、溶出によってpHを上昇させ得る添加元素として、標準電極電位においてAlよりも電位の低い(卑)金属、特に長周期の周期律表で第一族若しくは第二族に属する元素、例えばMgを添加することによって、細孔内でCuと共にMgを溶出させ、Mgの溶出によるpHの上昇によって、細孔内部のカルボン酸を中和し、無害化できることを発見した。 The present inventors have found that in Cu, as an additive element that is easily eluted in an acidic solution and that can raise the pH by elution, a (base) metal having a potential lower than that of Al at the standard electrode potential, especially a long-period periodicity By adding an element belonging to the first group or second group in the table, such as Mg, Mg is eluted together with Cu in the pores, and the carboxylic acid inside the pores is neutralized by increasing the pH due to the elution of Mg. and found that it can be rendered harmless.
 さらに、本発明者らは、所望の耐蟻の巣状腐食性を備えるためは、当該銅合金に含有させた合金成分の含有量であるX質量%に対し、合金成分によるカルボン酸無害化作用がPによって無効化されることのない、合金成分の含有量であるX質量%と、Pの含有量であるp質量%との割合に適正な範囲が存在することを見出した。
 具体的には、図4のグラフに示すように、横軸にX/p(=x)、縦軸に腐食深さ(y)を取ると、下式の関係が高い精度で成り立つことを見出した。
 y=-0.0218×ln(x-8.87)+0.295
Furthermore, in order to provide the desired ant-comb corrosion resistance, the present inventors have determined that the content of the alloy component contained in the copper alloy, X mass%, is detoxified by the carboxylic acid component. It has been found that there is an appropriate range for the ratio of X mass %, which is the content of the alloying component, and p mass %, which is the content of P, in which the is not invalidated by P.
Specifically, as shown in the graph of FIG. 4, when the horizontal axis is X/p (=x) and the vertical axis is the corrosion depth (y), it was found that the relationship of the following formula holds with high accuracy. rice field.
y=−0.0218×ln(x−8.87)+0.295
 本発明はこのような知見に基づいて完成するに至ったものである。すなわち、本発明は以下のような構成を有するものである。 The present invention has been completed based on such knowledge. That is, the present invention has the following configurations.
(1)本発明の耐食性銅合金は、Alよりも標準電極電位が低い金属から選択される少なくとも一種類の合金成分を含有し、残部がCuと不可避的不純物からなり、前記合金成分の含有量の合計が0.01質量%以上、0.5質量%未満であることを特徴としている。 (1) The corrosion-resistant copper alloy of the present invention contains at least one alloy component selected from metals having a standard electrode potential lower than that of Al, the balance being Cu and unavoidable impurities, and the content of the alloy component is 0.01% by mass or more and less than 0.5% by mass.
 このような耐食性銅合金であれば、合金成分が酸性の溶液に溶出しやすく、溶出によってpHを上昇させて、細孔内部のカルボン酸を中和し、無害化することができる。 With such a corrosion-resistant copper alloy, the alloy components are easily eluted into an acidic solution, and the elution raises the pH, neutralizing the carboxylic acid inside the pores and rendering it harmless.
(2)本発明の耐食性銅合金は、前記Alよりも標準電極電位が低い金属が、Li、K、Ca、Na、Mgから選択される少なくとも一種類であることが好ましい。 (2) In the corrosion-resistant copper alloy of the present invention, the metal having a standard electrode potential lower than that of Al is preferably at least one selected from Li, K, Ca, Na, and Mg.
(3)また、本発明の耐食性銅合金は、前記Alよりも標準電極電位が低い金属が、CaおよびMgから選択される少なくとも一種類であることが好ましい。 (3) Further, in the corrosion-resistant copper alloy of the present invention, the metal having a standard electrode potential lower than that of Al is preferably at least one selected from Ca and Mg.
(4)また、本発明の耐食性銅合金は、前記耐食性銅合金がPを含有する場合において、Pの含有量が0.015質量%以下であり、前記合金成分の含有量をX質量%とし、前記Pの含有量をp質量%としたときに、Xをpで割った値である[X/p]が9.10以上であるものとする。
(5)また、本発明の耐食性銅合金は、前記[X/p]が16.60以上であることが好ましい。
(4) Further, in the corrosion-resistant copper alloy of the present invention, when the corrosion-resistant copper alloy contains P, the P content is 0.015 mass% or less, and the content of the alloy component is X mass%. , [X/p], which is the value obtained by dividing X by p, where the content of P is p% by mass, is 9.10 or more.
(5) Further, the corrosion-resistant copper alloy of the present invention preferably has the above [X/p] of 16.60 or more.
(6)本発明の銅合金管は、前記(1)~(5)のいずれか1つに記載の耐食性銅合金を用いたものである。 (6) A copper alloy tube of the present invention uses the corrosion-resistant copper alloy described in any one of (1) to (5) above.
(7)また、本発明の銅合金管は、内面溝付銅合金管とすることもできる。 (7) The copper alloy tube of the present invention can also be an internally grooved copper alloy tube.
(8)本発明の熱交換器は、前記(6)または前記(7)に記載の銅合金管を用いたものである。 (8) A heat exchanger of the present invention uses the copper alloy tube described in (6) or (7) above.
 本発明の耐食性銅合金は、加工性に優れると共に、低級カルボン酸存在下における蟻の巣状腐食に対して、長期間に渡って優れた耐食性を有している。本発明の耐食性銅合金を用いた銅合金管および熱交換器も同様である。 The corrosion-resistant copper alloy of the present invention has excellent workability and excellent long-term corrosion resistance against ant nest-like corrosion in the presence of a lower carboxylic acid. The same applies to copper alloy pipes and heat exchangers using the corrosion-resistant copper alloy of the present invention.
図1は、耐蟻の巣状腐食性の評価に用いる試験容器の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a test container used for evaluation of ant nest corrosion resistance. 図2は、耐蟻の巣状腐食性の評価に用いる銅合金からなる供試材の寸法を記した図であり、(a)は、供試材の平面図、(b)は、供試材の斜視図である。FIG. 2 is a diagram showing the dimensions of the test material made of a copper alloy used for evaluating the resistance to ant nest corrosion, (a) is a plan view of the test material, and (b) is the test material. It is a perspective view of material. 図3の(a)、(b)、(c)は、ろう材濡れ性評価試験の操作手順を示す模式図である。(a), (b), and (c) of FIG. 3 are schematic diagrams showing the operation procedure of the brazing material wettability evaluation test. 図4は、[X/p]の値と、腐食深さとの関係を示すグラフである。FIG. 4 is a graph showing the relationship between the value of [X/p] and corrosion depth.
 本発明に係る耐食性銅合金の実施形態について、以下詳細に説明する。
 蟻の巣状腐食は、アノードにおける銅の溶出(下記(1)式)に対し、酸素が存在する湿潤環境下で溶存酸素の還元反応(下記(2)式)が起こる銅の表面がカソードになり、蟻酸、酢酸等の低級カルボン酸が腐食促進物質として作用することによって発生する。これらの腐食促進物質は、製管工程及び熱交換器組立工程等で使用される潤滑油、加工油、有機溶剤、または空調機器の使用環境中に含まれる物質より生成し得ることが知られている。
An embodiment of the corrosion-resistant copper alloy according to the present invention will be described in detail below.
For ant nest corrosion, copper elution at the anode (formula (1) below), whereas the reduction reaction of dissolved oxygen (formula (2) below) occurs in a moist environment where oxygen is present. It is generated when lower carboxylic acids such as formic acid and acetic acid act as corrosion promoting substances. It is known that these corrosion-promoting substances can be generated from lubricating oils, processing oils, organic solvents used in the pipe manufacturing process, heat exchanger assembly process, etc., or substances contained in the environment in which air conditioners are used. there is
 蟻の巣状腐食が発生すると、銅中に細孔状の腐食孔を形成し、かつ細孔の先端部にアノードが集中するため、腐食の進行速度が速く、短期間のうちに肉厚方向へ進展し、銅管を貫通してしまう。 When ant nest-like corrosion occurs, pore-like corrosion holes are formed in the copper, and the anode concentrates at the tip of the pore. and penetrate the copper pipe.
 電位やpH毎の安定状態を示す図として知られているpourbaix-diagram(プルべダイアグラム)を参考に、以下に水溶液中におけるCuの溶出に関連する反応の例を記す。
 Cu→Cu2++2e (1) (アノード反応)
 O+2HO+4e→4OH (2) (カソード反応)
With reference to the pourbaix-diagram, which is known as a diagram showing the stable state for each potential and pH, examples of reactions related to the elution of Cu in an aqueous solution are described below.
Cu→Cu 2+ +2e (1) (anodic reaction)
O 2 +2H 2 O+4e →4OH (2) (cathode reaction)
 上記の通り、銅の溶出において、カルボン酸などの非酸化性の酸だけではカソード反応が起こらないため、蟻の巣状腐食における銅の溶出は腐食促進物質であるカルボン酸ではなく酸素に依存する(上記(2)式)。酸素は一般の環境中に豊富に存在し、腐食孔の開口部は酸素が豊富な環境にあると考えられる。 As mentioned above, in the elution of copper, a cathodic reaction does not occur with a non-oxidizing acid such as carboxylic acid alone, so the elution of copper in ant nest corrosion depends not on carboxylic acid, which is a corrosion promoting substance, but on oxygen. (Formula (2) above). Oxygen is abundant in the general environment, and the opening of the corrosion pit is considered to be in an oxygen-rich environment.
 蟻の巣状腐食の進行メカニズムにおいて、カルボン酸がどの様な効果を示すかその全容は未だ明らかになっていないが、少なくとも塩酸や硫酸、若しくは酸化力を持つ硝酸のような無機酸と異なり、蟻の巣状腐食と言う特異な形態の腐食を発生させることは明らかである。 Although the full picture of the effect of carboxylic acid on the progression mechanism of ant nest-like corrosion has not yet been clarified, at least unlike inorganic acids such as hydrochloric acid, sulfuric acid, or nitric acid with oxidizing power, It is clear that a peculiar form of corrosion called ant nest corrosion occurs.
 蟻の巣状腐食の孔内においてカルボン酸は銅錯体として存在するか(下記(3)式)、もしくはアルデヒドとして腐食環境中に残存し、腐食孔内部において酸化され、再びカルボン酸を生じる(下記(4)式、(5)式)ことで、特異的な腐食孔の形成を担っていると考えられる。
 Cu2++2(HCOO)→Cu(HCOO) (3)
 HCOOH+2H→HCHO+HO (4)
 HCHO+2OH→HCOOH+HO+2e (5)
Carboxylic acid exists as a copper complex in the pits of ant nest-like corrosion (formula (3) below), or remains in the corrosive environment as an aldehyde and is oxidized inside the corrosion pits to produce carboxylic acid again ( Formulas (4) and (5)) are considered to play a role in the formation of specific corrosion pits.
Cu 2+ +2(HCOO) →Cu(HCOO) 2 (3)
HCOOH+2H + →HCHO+ H2O (4)
HCHO+2OH →HCOOH+H 2 O+2e (5)
 蟻の巣状腐食は、カルボン酸及び、酸素、水の三要素が全て揃ったときに発生し、腐食孔内部でそれらが共存した環境が維持されることで腐食の進行が継続される。これらの要素の一つでも腐食孔内から除去する事が出来れば腐食の進行を抑制することが出来る。 Ant nest-like corrosion occurs when all three elements of carboxylic acid, oxygen, and water are present, and the progress of corrosion continues by maintaining an environment in which they coexist inside the corrosion pit. If even one of these elements can be removed from inside the corrosion pit, the progress of corrosion can be suppressed.
 加えて、腐食孔内のpHを低下させる要因が同時に存在すると、腐食反応が助長される。例えば、りん脱酸銅(JIS H3300 C1220)中に含まれるPは、溶出に伴いりん酸を生じ、蟻の巣状腐食の進行を助長する要因として知られている。 In addition, if factors that lower the pH in the corrosion pits are present at the same time, the corrosion reaction is promoted. For example, P contained in phosphorus-deoxidized copper (JIS H3300 C1220) is known to be a factor that produces phosphoric acid upon elution and accelerates the progress of ant nest corrosion.
 一方で、標準電極電位において、H(水素)よりも電位の低い(卑)金属は、原則としてより電位の高い水素イオンの還元がカソード反応となることで、水素イオンを消費して酸性の溶液中に溶出する。この反応は標準電極電位が低い金属程顕著である。また、異なる金属が導電性の液中で接触すると、電位差が生じ電位の低い(卑な)金属が優先的に溶出する異種金属接触腐食が生じやすいとされており、金属間の電位差が大きいほど顕著である。 On the other hand, at the standard electrode potential, (base) metals with a lower potential than H (hydrogen), in principle, the cathodic reaction is the reduction of hydrogen ions with a higher potential, consuming the hydrogen ions and forming an acidic solution. elute inside. This reaction is more pronounced for metals with lower standard electrode potentials. In addition, when different metals come into contact with each other in a conductive liquid, a potential difference occurs and the metal with a lower potential (base) is preferentially eluted, causing galvanic corrosion of dissimilar metals. Remarkable.
 この様な特性を持つ元素は長周期の周期律表で第一族若しくは第二族に属する元素が多く、特に第一族及び第二族の元素は酸性の溶液に溶出しやすく、溶出に伴って溶液のpHを上昇させることが知られている。 Many of the elements with such characteristics belong to Group 1 or Group 2 of the long-period periodic table. is known to raise the pH of a solution.
 Cu中にAlよりも標準電極電位が低い金属、例えばMgを添加すると、合金中にMg(金属マグネシウム)またはMgの酸化物等が分散し、酸性の溶液に溶出する際にpHを上昇させる効果がある。 When a metal having a lower standard electrode potential than Al, such as Mg, is added to Cu, Mg (magnesium metal) or an oxide of Mg is dispersed in the alloy, and the effect of raising the pH when eluting into an acidic solution. There is
 Alよりも標準電極電位が低い金属として、Mgを例にとって、説明すると、本発明者らは、Cu母材に微量のMgを添加することを検討した。その結果、Mgの添加量が微量であっても、腐食孔内部にCuと共に溶出するMg若しくはその酸化物等が蟻の巣状腐食孔内部のpHを上昇させ、腐食孔内部に含まれる蟻の巣状腐食の腐食促進物質であるカルボン酸を無害化出来ることを見出した。 Taking Mg as an example of a metal with a lower standard electrode potential than Al, the present inventors considered adding a small amount of Mg to a Cu base material. As a result, even if the amount of Mg added is very small, the Mg eluted together with Cu into the corrosion pit or its oxide increases the pH inside the ant nest-like corrosion pit, and the ants contained in the pit are trapped. It was found that carboxylic acid, which is a corrosion accelerator of focal corrosion, can be rendered harmless.
 本発明の耐食性銅合金は、Alよりも標準電極電位が低い金属から選択される少なくとも一種類の合金成分を含有する。 The corrosion-resistant copper alloy of the present invention contains at least one alloy component selected from metals having a lower standard electrode potential than Al.
 Cu中に、標準電極電位において、Alよりも電位の低い(卑)金属から少なくとも一種類添加する事で、pH上昇の効果を付与できる。特に、長周期の周期律表で第一族若しくは第二族に属する元素であれば、pH上昇の効果を得やすい。Alよりも標準電極電位が低い金属で、第一族若しくは第二族に属する元素として、Li、K、Ca、Na、Mgの少なくとも一種類が好ましい。表1に、Alよりも標準電極電位が低い金属の標準電極電位の数値を示した。 By adding at least one (base) metal with a potential lower than that of Al to Cu in the standard electrode potential, the effect of increasing pH can be imparted. In particular, if the element belongs to Group 1 or Group 2 in the long-period periodic table, it is easy to obtain the effect of increasing the pH. At least one of Li, K, Ca, Na, and Mg is preferable as a metal having a lower standard electrode potential than Al and belonging to Group 1 or Group 2. Table 1 shows the standard electrode potential values of metals having a lower standard electrode potential than Al.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の耐食性銅合金は、上記添加元素以外の残部は、Cuと不可避的不純物のみである。ここでいう不可避的不純物とは、本発明の合金又は合金管を製造する上で添加が必要、若しくは完全な除去が困難等、現在の技術水準において量産工程上混入することが避けられない不純物を示す。具体的にはJIS H3300 C1220に基づき、本発明で定めた特性を満足すると同時に、Cu及び本発明に基づく添加元素を除く、その他の元素である。不可避的不純物としては、例えば、Zn,Pb,Fe,Sn,Ni,Si,Sb,Bi等が挙げられる。不可避的不純物は、合計の含有量が0.1質量%以下であれば本発明の効果を阻害しない。 In the corrosion-resistant copper alloy of the present invention, the remainder other than the above additive elements is only Cu and unavoidable impurities. The unavoidable impurities referred to here are impurities that must be added in manufacturing the alloy or alloy pipe of the present invention, or that are difficult to remove completely, and that are unavoidable to be mixed in the mass production process at the current technical level. show. Specifically, based on JIS H3300 C1220, it is an element that satisfies the characteristics defined in the present invention and excludes Cu and additive elements based on the present invention. Examples of unavoidable impurities include Zn, Pb, Fe, Sn, Ni, Si, Sb, and Bi. Inevitable impurities do not inhibit the effects of the present invention as long as the total content is 0.1% by mass or less.
 Alよりも標準電極電位が低い金属で、Cuに添加する金属として、CaおよびMgがさらに好ましい。Ca又はMgを添加する事で、pH上昇による腐食の抑制効果を付与できると同時に、合金材としての加工性、ろう付け性を良好に保つ事が出来る。また、溶出に伴うpH上昇の効果、鋳造や添加元素そのものの取り扱いの難度、合金材としての加工性やろう付け性の観点から、Cuに添加する金属として、Mgが特に好ましい。 Ca and Mg are more preferable as metals that have a lower standard electrode potential than Al and are added to Cu. By adding Ca or Mg, it is possible to provide an effect of suppressing corrosion due to pH increase, and at the same time, it is possible to maintain good workability and brazability as an alloy material. In addition, Mg is particularly preferable as a metal to be added to Cu from the viewpoint of the effect of pH increase due to elution, the difficulty of casting and handling of the additive element itself, and the workability and brazeability as an alloy material.
 本発明者らが見出したpH調整能力による蟻の巣状腐食の抑制作用は、Cu中の添加元素の含有量に依存している。
 本発明の耐食性銅合金は、Alよりも標準電極電位が低い金属から選択される少なくとも一種類の合金成分(以下、単に「合金成分」と記載することがある。)の含有量の合計が、0.01質量%以上、0.5質量%未満である。合金成分の含有量の合計が、0.01質量%以上であれば、蟻の巣状腐食において十分な耐食性を発現させることができる。耐蟻の巣状腐食性の評価方法は、0.5vol%ギ酸水溶液雰囲気に60日曝露する試験を行った後の腐食深さで評価することができる。腐食深さが0.25mm以下であると、耐蟻の巣状腐食性が良好であると判定される。耐蟻の巣状腐食性の評価方法の詳細は後記する。
The effect of suppressing ants nest-like corrosion due to the ability to adjust pH, which the inventors have discovered, depends on the content of additive elements in Cu.
In the corrosion-resistant copper alloy of the present invention, the total content of at least one alloy component (hereinafter sometimes simply referred to as "alloy component") selected from metals having a lower standard electrode potential than Al is It is 0.01% by mass or more and less than 0.5% by mass. If the total content of the alloy components is 0.01% by mass or more, it is possible to exhibit sufficient corrosion resistance against ant nest corrosion. The method for evaluating the resistance to ant nest corrosion can be evaluated by the depth of corrosion after a test of exposure to a 0.5 vol % formic acid aqueous solution atmosphere for 60 days. When the corrosion depth is 0.25 mm or less, it is determined that the resistance to ant nest corrosion is good. The details of the evaluation method for resistance to ant nest corrosion will be described later.
 Cuは、添加元素が少ない程伸びの特性が良く、曲げ等の加工において非常に優れた加工性を示す。この特性を維持するには焼鈍後の引張強さが280N/mm以下であればよいことが分かっている。Cu合金は、合金成分の含有量の合計が、0.5質量%未満であれば、焼鈍後の引張強さが280N/mm以下という条件を満足することができる。 Cu has a better elongation property as the amount of additive elements is smaller, and shows very excellent workability in working such as bending. It has been found that a tensile strength of 280 N/mm 2 or less after annealing is sufficient to maintain this property. The Cu alloy can satisfy the condition that the tensile strength after annealing is 280 N/mm 2 or less if the total content of the alloy components is less than 0.5% by mass.
 Cuは、合金成分によっては、その成分を一定以上含むと、アンモニアを含む環境に曝露したときに、応力腐食割れを生じる恐れがある。Cu合金は、合金成分を添加する場合の含有量の合計が0.35質量%以下であれば、アンモニアによる応力腐食割れをより抑制することができる。したがって、Cu合金は、合金成分を添加する場合の含有量の合計が0.35質量%以下であることが好ましい。 Depending on the alloy composition, Cu may cause stress corrosion cracking when exposed to an environment containing ammonia if it contains more than a certain amount of the composition. The Cu alloy can further suppress stress corrosion cracking due to ammonia if the total content of the alloy components is 0.35% by mass or less. Therefore, it is preferable that the total content of the Cu alloy when the alloy components are added is 0.35% by mass or less.
 Cuは、りん銅ろうを用いたろう付けにおけるろう材の濡れ性が非常に良く、添加元素が少ない程顕著である。Cu合金は、合金成分を添加する場合の含有量の合計が0.25質量%以下であれば、ろう材の濡れ性がより良好となる。したがって、Cu合金は、合金成分を添加する場合の含有量の合計が0.25質量%以下であることが好ましい。 Cu has very good wettability of the brazing filler metal in brazing using phosphorous copper brazing, which is remarkable as the amount of additive elements is small. The wettability of the brazing filler metal will be better if the total content of the Cu alloy is 0.25% by mass or less when the alloy components are added. Therefore, it is preferable that the total content of the Cu alloy is 0.25% by mass or less when the alloy components are added.
 Cu合金は、熱伝導性が高いと、ろう付け時に加熱部の熱が分散し易くなり、局所的に加熱され難くなることで、ろう付け性が向上する。また、熱伝導性が高いと、熱移動し易くなり、熱交換器性能が向上する。熱伝導性は導電率と強い相関がある。Cu合金がろう付け性を従来のC1220と同等に維持するには、導電率が85%IACS以上あればよい。そのためには、Cu合金は、合金成分を添加する場合の含有量の合計が0.15質量%以下であることがより好ましい。 When the Cu alloy has high thermal conductivity, the heat of the heating part is easily dispersed during brazing, and local heating is difficult, which improves the brazeability. Moreover, when the thermal conductivity is high, heat is easily transferred, and the performance of the heat exchanger is improved. Thermal conductivity is strongly correlated with electrical conductivity. In order for the Cu alloy to maintain brazeability equivalent to that of the conventional C1220, the electrical conductivity should be 85% IACS or more. For that purpose, it is more preferable that the total content of the Cu alloy when the alloy components are added is 0.15% by mass or less.
 Cuに脱酸の目的でPが添加されることがある。しかし、Cu中のPは溶出する事でりん酸を生じ、周囲のpHを低下させ、本発明の効果を阻害し得る。Pによる悪影響を回避するためには、Cu中のPの含有量が0.015質量%以下であることが好ましい。 P is sometimes added to Cu for the purpose of deoxidizing. However, when P in Cu is eluted, phosphoric acid is generated, which lowers the pH of the surroundings and can inhibit the effects of the present invention. In order to avoid adverse effects of P, the P content in Cu is preferably 0.015% by mass or less.
 耐食性銅合金は、鋳造方式や使用する原料によっては、Pの添加あるいは混入を避けられないことがあり、Pの含有量が0.015質量%以下であっても、合金成分の含有量(X質量%)に対するPの含有量(p質量%)の割合が一定の値以上になると、合金成分によるpH上昇効果、すなわち、カルボン酸の無害化の作用を十分得られず、結果、所望の耐蟻の巣状腐食性を得られないことがあった。そのため、合金成分の含有量(X質量%)に対するPの含有量(p質量%)の割合を所定とする。 In corrosion-resistant copper alloys, the addition or contamination of P may be unavoidable depending on the casting method and the raw materials used. If the ratio of the P content (p% by mass) to the P content (p% by mass) exceeds a certain value, the pH-raising effect of the alloy components, that is, the effect of detoxifying the carboxylic acid cannot be obtained sufficiently, resulting in the desired resistance to corrosion. In some cases, ant nest corrosiveness could not be obtained. Therefore, the ratio of the P content (p mass %) to the alloy component content (X mass %) is set to a predetermined value.
 具体的には、耐食性銅合金は、合金成分の含有量をX質量%とし、Pの含有量をp質量%としたときに、Xをpで割った値である[X/p]が9.10以上であるものとする。これを維持することにより、Pが引き起こす耐食性無効化作用を相殺せしめ、且つ求められる耐蟻の巣状腐食性を付与することができる。
 また、耐食性銅合金は、日本国内でもやや厳しい腐食環境条件で使用する用途や、ルームエアコン等の機器耐久性を重要視する用途などに対しては、[X/p]が16.60以上であることが好ましい。
Specifically, in the corrosion-resistant copper alloy, when the content of the alloy component is X mass% and the content of P is p mass%, [X/p], which is the value obtained by dividing X by p, is 9 .10 or more. By maintaining this, it is possible to offset the corrosion resistance nullifying action caused by P and to provide the required ant-comb-like corrosion resistance.
Corrosion-resistant copper alloys should have an [X/p] of 16.60 or higher for applications that are used in somewhat severe corrosive environment conditions even in Japan, or applications that place importance on the durability of equipment such as room air conditioners. Preferably.
 なお、Mgの含有量が上限の0.5質量%近傍の値(例えば、0.499質量%)であっても、Pを0.01質量%以上含有すると、耐食性無効化作用が低下する。また、Mgの含有量が上限の0.5質量%近傍の値(例えば、0.499質量%)である場合、Pの含有量が0.001質量%未満であると、[X/p]の関係性に関係なく、耐蟻の巣状腐食性の評価結果がPを含有していない場合と変わらない。そのため、[X/p]の上限値については特に規定されないが、例えば50以下である。 Even if the Mg content is close to the upper limit of 0.5% by mass (for example, 0.499% by mass), if the P content is 0.01% by mass or more, the effect of nullifying the corrosion resistance is reduced. Further, when the Mg content is a value near the upper limit of 0.5% by mass (for example, 0.499% by mass), the P content is less than 0.001% by mass, [X/p] Regardless of the relationship, the evaluation result of resistance to ant nest corrosion is the same as when P is not contained. Therefore, although the upper limit of [X/p] is not particularly defined, it is 50 or less, for example.
 本発明の銅合金管は、本発明の耐食性銅合金を用いたものである。本発明の熱交換器は、本発明の銅合金管を用いたものである。
 本発明の耐食性銅合金は、公知の溶解・鋳造工程を用いて製造することができる。
 また、本発明の銅合金管は、公知の溶解・鋳造工程、ソーキング工程、熱間押出工程、圧延・抽伸工程、焼鈍工程を経て製造することができる。
The copper alloy pipe of the present invention uses the corrosion-resistant copper alloy of the present invention. A heat exchanger of the present invention uses the copper alloy tube of the present invention.
The corrosion-resistant copper alloy of the present invention can be produced using known melting and casting processes.
Moreover, the copper alloy pipe of the present invention can be manufactured through known melting/casting processes, soaking processes, hot extrusion processes, rolling/drawing processes, and annealing processes.
 本発明の銅合金管は、内面溝付管であることが好ましい。内面溝付管とは、管内面に所定形状の溝が形成された銅合金管である。溝数、溝間に形成されたフィンの高さ、溝底肉厚、溝リード角等の溝形状は、従来公知の溝付管の溝形状を用いることができる。溝付管とすることで熱伝達率が向上し、熱交換器の性能が向上する。 The copper alloy tube of the present invention is preferably an internally grooved tube. An internally grooved tube is a copper alloy tube in which grooves of a predetermined shape are formed on the inner surface of the tube. Groove shapes such as the number of grooves, the height of fins formed between grooves, the groove bottom thickness, and the groove lead angle can be those of conventionally known grooved tubes. The grooved tube improves the heat transfer coefficient and improves the performance of the heat exchanger.
 本発明の耐食性銅合金を用いた銅合金管および内面溝付管は、熱交換器に用いる資材として有用である。 A copper alloy tube and an internally grooved tube using the corrosion-resistant copper alloy of the present invention are useful as materials for heat exchangers.
 以下、本発明の要件を満たす実施例と本発明の要件を満たさない比較例によって、本発明をより具体的に説明する。
 以下のサンプルにおいて、表3~表6については、引張強さ及び耐蟻の巣状腐食性に優れるものを実施例とした。表7、表8については、耐蟻の巣状腐食性に優れるものを実施例とした。
 なお、一部のサンプルについては、参考として耐応力腐食割れ性、ろう材濡れ性、導電率を測定した。そして、表3~表6について、引張強さ及び耐蟻の巣状腐食性に優れるものを総合判定が(○)とし、引張強さ及び耐蟻の巣状腐食性に優れていても、耐応力腐食割れ性、ろう材濡れ性、導電率のいずれかに劣るものを総合判定が(△)とした。総合判定が(△)であっても、使用環境や、使用用途等によっては問題がなく、本発明の課題を解決できるものである。
Hereinafter, the present invention will be described more specifically with reference to examples satisfying the requirements of the present invention and comparative examples not meeting the requirements of the present invention.
In Tables 3 to 6 of the following samples, those excellent in tensile strength and resistance to ant's nest corrosion were taken as examples. In Tables 7 and 8, examples are those which are excellent in resistance to ant's nest corrosion.
For some samples, stress corrosion cracking resistance, brazing filler metal wettability, and electrical conductivity were measured for reference. In Tables 3 to 6, those with excellent tensile strength and resistance to ant's nest corrosion were given a comprehensive judgment of (○). Poor in either stress corrosion cracking resistance, brazing filler metal wettability, or electrical conductivity, the overall judgment was (Δ). Even if the overall judgment is (Δ), there is no problem depending on the usage environment, usage, etc., and the problem of the present invention can be solved.
 また、表3~6では、耐蟻の巣状腐食性の判定基準は0.25mm以下であるが、実施例においてPを含んでいないため、評価結果は0.20mm以下で、最も厳しい環境に耐えるレベルと言える。例えば、SOx、NOxなどの酸化性を有する大気汚染物質を多く含む大気汚染の進んだ地域で使用されるエアコンにおいて、上記酸化性ガスが室内に侵入し、室内に存在するアルコール成分との接触により、アルコール成分が酸化劣化して生成する低級カルボン酸の増加が著しい場合に、これに耐えるレベルを想定している。また、材料費削減のための薄肉化にも好適である。
 表7のサンプルは、腐食性の比較的マイルドな環境条件で使用できるレベルを想定している。例えば、日本国内における気密性の高い新築家屋において、建築資材などから発生する揮発性化学物質(VOC)の影響で蟻の巣状腐食の発生することがあった一般家庭において使用できるレベルを想定している。
 表8のサンプルは、日本国内でもやや厳しい腐食環境条件で使用できるレベルを想定している。例えば、気密性の高い新築家屋において、ペットを飼っている、消臭剤をよく使用する、消毒液をよく使用するなど、生活習慣的な揮発性化学物質要因の影響により蟻の巣状腐食の発生が認められた一般家庭において使用できるレベルを想定している。また、ルームエアコン等の機器耐久性を重要視する用途などの使用も想定している。
In Tables 3 to 6, the criterion for ant-combust corrosion resistance is 0.25 mm or less. This level can be said to be tolerable. For example, in air conditioners used in highly polluted areas containing many oxidizing air pollutants such as SOx and NOx, the oxidizing gas enters the room and comes into contact with the alcohol component present in the room. , when there is a significant increase in lower carboxylic acid produced by oxidative deterioration of the alcohol component, the level is assumed to withstand this. It is also suitable for thinning to reduce material costs.
The samples in Table 7 assume levels that can be used in corrosive, relatively mild environmental conditions. For example, we assume a level that can be used in general households where ant nest-like corrosion has occurred due to the influence of volatile chemical substances (VOC) generated from building materials in newly built houses with high airtightness in Japan. ing.
The samples in Table 8 assume a level that can be used under relatively severe corrosive environmental conditions even in Japan. For example, in a newly built house with high airtightness, volatile chemical factors such as pets, frequent use of deodorant, frequent use of disinfectant, etc. can cause ant nest-like corrosion. It assumes a level that can be used in general households where the outbreak is recognized. It is also expected to be used in applications such as room air conditioners where equipment durability is important.
1.サンプルの製作方法
 Cuに、添加元素としてMg、Pを使用し、表3~表8に記載の種々の添加量で添加した銅合金を作成して試験に供した。
 銅板は、溶解鋳造、熱間圧延、冷間圧延、焼鈍の各工程を経て作製した。
1. Sample Manufacturing Method Copper alloys were prepared by adding Mg and P as additive elements to Cu in various additive amounts shown in Tables 3 to 8 and subjected to tests.
A copper plate was produced through each process of melting and casting, hot rolling, cold rolling, and annealing.
2.サンプルの化学成分分析方法
 JIS K 0116:2014 発光分光分析通則、5項、スパーク放電発光分光分析により行った。
 分析条件の詳細は下記の通りである。
使用機器:島津製作所製PDA-7000
雰囲気ガス:99.9995%高純度アルゴンガス
電極間隔(放電ギャップ):7mm
予備放電:1500パルス
定量方法:強度比法における定時積分
積分時間:1200パルス
 各元素の定量分析における分析線(元素毎の測定波長)の例を表2に示す。
2. Chemical component analysis method of sample JIS K 0116: 2014 General Rules for Emission Spectroscopy, Item 5, spark discharge emission spectroscopy.
The details of the analysis conditions are as follows.
Equipment used: PDA-7000 manufactured by Shimadzu Corporation
Atmospheric gas: 99.9995% high-purity argon gas Electrode gap (discharge gap): 7 mm
Preliminary discharge: 1500 pulses Quantitative method: Timed integration integration time in intensity ratio method: 1200 pulses Table 2 shows examples of analytical lines (measurement wavelengths for each element) in quantitative analysis of each element.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
3.評価方法
 銅板の焼鈍後に組織観察を行い、機械的性質(引張強さ)、耐蟻の巣状腐食性、耐応力腐食割れ性、ろう材濡れ性、導電率を測定した。
3. Evaluation method After the copper plate was annealed, the structure was observed, and the mechanical properties (tensile strength), ant nest corrosion resistance, stress corrosion cracking resistance, brazing filler metal wettability, and electrical conductivity were measured.
<No.1~5>
[評価項目]引張強さ、耐蟻の巣状腐食性
<No. 1 to 5>
[Evaluation items] Tensile strength, resistance to ant nest corrosion
(引張強さ)
・供試材寸法:幅30mm×長さ180mm×厚さ0.2mm、JIS Z2241:2011 金属材料引張試験方法5号試験片準拠
・試験方法:JIS Z2241:2011 金属材料引張試験方法に準拠し、引張試験機で引張強さを測定した。
・引張強さの判定基準
 ○:引張強さ280N/mm以下、曲げ等の加工性を維持
 ×:引張強さ280N/mmを超える、曲げ等の加工性が低下
(Tensile strength)
・ Test material dimensions: width 30 mm × length 180 mm × thickness 0.2 mm, JIS Z2241: 2011 Metal material tensile test method No. 5 test piece compliant ・ Test method: JIS Z2241: 2011 Metal material tensile test method compliant, Tensile strength was measured with a tensile tester.
・ Criteria for tensile strength ○: Tensile strength of 280 N / mm 2 or less, workability such as bending maintained ×: Tensile strength exceeding 280 N / mm 2 , workability such as bending decreased
(耐蟻の巣状腐食性)
 蟻の巣状腐食の代表的な腐食促進物質である蟻酸を用いた湿潤環境に供試材を暴露し、腐食試験後の最大腐食深さを測定した。試験条件を以下に示す。図1に、耐蟻の巣状腐食性の評価に用いる試験容器の模式的断面図を示した。試験容器10は、シリコン栓14で密閉できる密閉容器11である。密閉容器11内の底部に腐食促進物質12が注入されており、供試材13は中空に保持されている。
(ant nest corrosion resistance)
The maximum corrosion depth after the corrosion test was measured by exposing the test material to a wet environment using formic acid, a typical corrosion promoter for ant nest corrosion. Test conditions are shown below. FIG. 1 shows a schematic cross-sectional view of a test container used for evaluation of ant nest corrosion resistance. The test container 10 is a closed container 11 that can be sealed with a silicone stopper 14 . A corrosion-promoting substance 12 is injected into the bottom of a sealed container 11, and a test material 13 is held in the air.
 図2は、耐蟻の巣状腐食性の評価に用いる銅合金からなる供試材の寸法を記した図であり、図2(a)は、供試材の平面図であり、図2(b)は、供試材の斜視図である。供試材は、幅12mm×長さ200mm×厚さ1.0mmの銅合金板のうち、片面の幅10mm×長さ200mmの範囲のみを容器内の腐食環境に暴露させる。片面の幅10mm×長さ200mmの範囲以外の部分は、ゴム材で被覆されており、腐食環境に暴露されないように保護されている。
・供試材寸法:幅12mm×長さ200mm×厚さ1.0mm
・腐食促進物質:0.5vol%ギ酸水溶液500mL
・温度条件:恒温槽内にポリ容器を保管して、20℃×2時間保持後に40℃×22時間保持するヒートサイクルを繰り返す。この方法では20℃の保持で結露の発生を促し、容器内部に揮発したギ酸を結露水に取り込み、40℃の保持で結露水を乾燥させ、ギ酸を濃縮させる事で、腐食の進行をより助長する加速条件となっている。
・試験容器:2Lのポリ容器にて供試材を中空保持する
・容器内雰囲気:酸素置換
・試験期間:60日
・耐蟻の巣状腐食性の判定基準
 ○:効果あり、最大腐食深さ0.25mm以下
 ×:効果なし、最大腐食深さ0.25mmを超える
FIG. 2 is a diagram showing the dimensions of a test material made of a copper alloy used for evaluating the resistance to ant's nest corrosion. FIG. 2(a) is a plan view of the test material. b) is a perspective view of the test material. The test material is a copper alloy plate of width 12 mm×length 200 mm×thickness 1.0 mm. The portion other than the range of 10 mm wide by 200 mm long on one side is covered with a rubber material to protect it from being exposed to corrosive environments.
・Test material dimensions: width 12 mm x length 200 mm x thickness 1.0 mm
・Corrosion promoting substance: 500 mL of 0.5 vol% formic acid aqueous solution
・Temperature conditions: Repeat the heat cycle of storing the plastic container in a constant temperature bath and holding it at 20°C for 2 hours and then holding it at 40°C for 22 hours. In this method, keeping the temperature at 20°C promotes the formation of condensation, and the formic acid volatilized inside the container is taken into the condensed water. By keeping the temperature at 40°C, the condensed water is dried and the formic acid is concentrated, further promoting the progress of corrosion. It is an acceleration condition for
・Test container: The test material is held hollow in a 2 L plastic container ・Atmosphere in the container: Oxygen replacement ・Test period: 60 days ・Determination criteria for resistance to ant nest corrosion ○: Effective, maximum corrosion depth 0.25 mm or less ×: No effect, maximum corrosion depth exceeds 0.25 mm
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[評価結果]
 表3に、耐蟻の巣状腐食性、引張強さの評価結果を示した。
 No.1、No.2は、Mgの含有量がそれぞれ0.01質量%、0.495質量%である。いずれも耐蟻の巣状腐食性、引張強さの各項目において、判定基準を満足し、優れた性能を有していた。
 No.3は、Mgの含有量が0.005質量%と少なく、耐蟻の巣状腐食性において判定基準を満足できなかった。
 No.4は、Mgの含有量が0.98質量%と過剰であり、引張強さにおいて判定基準を満足できなかった。
 No.5は、Mgを添加せず、Pの含有量が0.020質量%であるが、耐蟻の巣状腐食性において、判定基準を満足できなかった。
[Evaluation results]
Table 3 shows evaluation results of ant nest corrosion resistance and tensile strength.
No. 1, No. 2 has a Mg content of 0.01% by mass and 0.495% by mass, respectively. All of them satisfied the judgment criteria in terms of resistance to ant's nest corrosion and tensile strength, and exhibited excellent performance.
No. In No. 3, the content of Mg was as low as 0.005% by mass, and the criteria for resistance to ant nest corrosion could not be satisfied.
No. No. 4 had an excessive Mg content of 0.98% by mass and could not satisfy the criteria for tensile strength.
No. In No. 5, Mg was not added and the P content was 0.020% by mass, but the evaluation criteria could not be satisfied in terms of resistance to ant's nest corrosion.
<No.6~8>
[評価項目]耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性
 耐蟻の巣状腐食性、引張強さの試験方法及び評価方法は、No.1~5と同じである。
<No. 6-8>
[Evaluation items] Ant's nest corrosion resistance, tensile strength, stress corrosion cracking resistance Test methods and evaluation methods for ant's nest corrosion resistance and tensile strength were as follows. Same as 1-5.
(耐応力腐食割れ性)
 試験装置の構成などについて、一般社団法人 日本伸銅協会 技術標準 JBMA T-301を参考に、応力腐食割れ試験を実施した。また、より詳細な特性を調べるために、詳細な試験条件は下記の通りとした。
・供試材寸法:幅12mm×長さ20mm×厚さ1.0mm
・腐食促進物質:14vol%アンモニア水溶液、100mL
・試験容器:デシケーター
・暴露状態:アンモニア水溶液を底部に入れたデシケーター中に、液面より約100mm離したところに中板を水平に設置する。さらに、中板の上に供試材を設置して、密封する。なお、供試材は、表裏を上下方向に向けて水平に設置した。また、供試材の両端部には、中板との間に樹脂被覆したφ2.5mmの銅ワイヤを置き、中板と直接設置しないようにした。
・暴露時間:72時間
・評価方法:試験終了後、酸洗(硫酸)した後、試験設置時の上面側を外側にして180°に折り曲げる。折り曲げた断面を観察し、き裂の有無を評価する。
・耐応力腐食割れ性の判定基準
 ○:き裂深さ0.10mm未満
 ×:き裂深さ0.10mm以上
(Stress corrosion cracking resistance)
A stress corrosion cracking test was performed with reference to the technical standard JBMA T-301 of the Japan Copper and Brass Association for the configuration of the test equipment. Further, in order to examine more detailed characteristics, the detailed test conditions were as follows.
・Test material dimensions: width 12 mm x length 20 mm x thickness 1.0 mm
・Corrosion promoting substance: 14 vol% ammonia aqueous solution, 100 mL
- Test container: desiccator - Exposure condition: In a desiccator containing an aqueous ammonia solution at the bottom, an intermediate plate is placed horizontally at a distance of about 100 mm from the liquid surface. Furthermore, the test material is placed on the intermediate plate and sealed. In addition, the test material was installed horizontally with the front and back facing up and down. In addition, resin-coated copper wires of φ2.5 mm were placed between both ends of the test material and the intermediate plate so as not to be placed directly on the intermediate plate.
・Exposure time: 72 hours ・Evaluation method: After completion of the test, pickle (sulfuric acid), then bend 180° so that the upper surface side at the time of test installation is facing outward. Observe the bent cross section and evaluate the presence or absence of cracks.
・ Criteria for stress corrosion cracking resistance ○: crack depth less than 0.10 mm ×: crack depth 0.10 mm or more
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[評価結果]
 表4に、耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性の評価結果を示した。
 Mgの含有量は、応力腐食割れの感受性に影響を及ぼす。No.6及びNo.7は、Mgの含有量がそれぞれ0.01質量%、0.35質量%であるが、耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性の各項目において、判定基準を満足し、優れた性能を有していた。
 No.8は、Mgの含有量が0.40質量%であるが、応力腐食割れによるき裂が生じ、耐応力腐食割れ性の判定基準を満足できなかった。
[Evaluation results]
Table 4 shows the evaluation results of ant nest corrosion resistance, tensile strength and stress corrosion cracking resistance.
The Mg content affects the susceptibility to stress corrosion cracking. No. 6 and no. 7 has a Mg content of 0.01% by mass and 0.35% by mass, respectively, but satisfies the criteria in terms of resistance to ant nest corrosion, tensile strength, and resistance to stress corrosion cracking. and had excellent performance.
No. In No. 8, although the Mg content was 0.40% by mass, cracks due to stress corrosion cracking occurred and the criteria for stress corrosion cracking resistance could not be satisfied.
<No.9~11>
[評価項目]耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性、ろう材濡れ性
 耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性の試験方法及び評価方法は、No.1~8と同じである。
<No. 9-11>
[Evaluation items] Ant's nest corrosion resistance, tensile strength, stress corrosion cracking resistance, brazing filler metal wettability , No. Same as 1-8.
(ろう材濡れ性)
 図3に、ろう材濡れ性評価試験の操作手順を示した。図3(a)に示すように、供試材21を長さ方向に90°折り曲げ、供試材21の谷折り部中央にろう材20を配置させる。図3(b)に示すように、加熱前のろう材20の長さはAである。上記の状態で加熱し、加熱後の濡れ広がったろう材20の全体の長さ(長手方向)Bを測定した(図3(c))。
・供試材寸法:幅30mm×長さ100mm×厚さ1.0mm
・ろう材:BCuP-2(φ1.6mm×長さ20mm)
・加熱機器:ULVAC社製ゴールドイメージ炉
・加熱雰囲気:N置換
・加熱条件:(i)昇温条件:室温→850℃/5min(温度制御は供試材を測温)
      (ii)保持条件:850℃、5min保持
      (iii)冷却条件:自然冷却
・ろう材濡れ性の判定基準
 ○:100mm以上
 ×:100mm未満
(Brazing material wettability)
FIG. 3 shows the operating procedure of the brazing material wettability evaluation test. As shown in FIG. 3( a ), the test material 21 is bent 90° in the longitudinal direction, and the brazing filler metal 20 is placed in the center of the valley fold of the test material 21 . As shown in FIG. 3(b), the brazing material 20 has a length A before heating. The brazing material 20 was heated in the above state, and the overall length (longitudinal direction) B of the wet and spread brazing material 20 after heating was measured (Fig. 3(c)).
・Test material dimensions: Width 30 mm x Length 100 mm x Thickness 1.0 mm
Brazing material: BCuP-2 (φ1.6mm x length 20mm)
・Heating equipment: ULVAC Gold Image Furnace ・Heating atmosphere: N 2 replacement ・Heating conditions: (i) Temperature rising conditions: Room temperature → 850 ° C./5 min (temperature control measures the temperature of the test material)
(ii) Holding conditions: 850° C., holding for 5 minutes (iii) Cooling conditions: Criteria for natural cooling/brazing wettability ○: 100 mm or more ×: less than 100 mm
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[評価結果]
 表5に、耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性、ろう材濡れ性の評価結果を示した。
 No.9及びNo.10は、Mgの含有量がそれぞれ0.01質量%、0.25質量%であるが、耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性だけでなく、ろう材濡れ性においても判定基準を満足し、優れた性能を有していた。
 No.11は、Mgの含有量が0.29質量%であるが、ろう材濡れ性の判定基準を満足できなかった。
[Evaluation results]
Table 5 shows evaluation results of resistance to ant's nest corrosion, tensile strength, resistance to stress corrosion cracking, and brazing filler metal wettability.
No. 9 and no. No. 10 has a Mg content of 0.01% by mass and 0.25% by mass, respectively. also satisfied the criteria and had excellent performance.
No. In No. 11, the content of Mg was 0.29% by mass, but the criteria for brazing wettability could not be satisfied.
<No.12~14>
[評価項目]耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性、ろう材濡れ性、導電率
 耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性、ろう材濡れ性の試験方法及び評価方法は、No.1~11と同じである。
<No. 12-14>
[Evaluation items] Ant's nest corrosion resistance, tensile strength, stress corrosion cracking resistance, brazing filler metal wettability, electrical conductivity Ant's nest corrosion resistance, tensile strength, stress corrosion cracking resistance, brazing filler metal wettability The test method and evaluation method for the sex are No. Same as 1-11.
(導電率)
・供試材寸法:幅10mm×長さ300mm×厚さ0.2mm
・試験方法:シグマテスタ(ETherNDE製ポータブル導電率計SigmaCheck2)を用いて導電率
を測定した。なお、測定時の温度は、22℃に保持した。
・導電率の判定基準
 〇:85%IACS以上(C1220と同等)
 ×:85%IACS未満
(conductivity)
・Test material dimensions: width 10 mm x length 300 mm x thickness 0.2 mm
- Test method: Conductivity was measured using a SigmaTester (Portable Conductivity Meter SigmaCheck 2 manufactured by ETherNDE). The temperature during the measurement was kept at 22°C.
・Evaluation criteria for conductivity 〇: 85% IACS or more (equivalent to C1220)
×: Less than 85% IACS
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[評価結果]
 表6に、耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性、ろう材濡れ性、導電率の評価結果を示した。
 No.12及びNo.13は、Mgの含有量がそれぞれ0.10質量%、0.14質量%であるが、耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性、ろう材濡れ性、導電率の各性能において判定基準を満足し、優れた性能を有していた。
 No.14は、Mgの含有量が0.18質量%であるが、導電率の判定基準を満足できなかった。
[Evaluation results]
Table 6 shows evaluation results of resistance to ant's nest corrosion, tensile strength, resistance to stress corrosion cracking, brazing filler metal wettability, and electrical conductivity.
No. 12 and no. In No. 13, the Mg content is 0.10% by mass and 0.14% by mass, respectively, but the resistance to ant nest corrosion, tensile strength, stress corrosion cracking resistance, brazing filler metal wettability, and electrical conductivity Each performance satisfied the judgment criteria and had excellent performance.
No. In No. 14, the Mg content was 0.18% by mass, but the criteria for electrical conductivity could not be satisfied.
<No.15~20>
[評価項目]Pが添加された場合の耐蟻の巣状腐食性
 試験方法及び評価方法は、No.1~5と同じである。
 評価方法における評価判定基準について、本試験方法において発生する蟻の巣状腐食深さが、本発明の実使用における用途と部材の肉厚、使用する機器により求められる耐用年数設定によっては実用上問題ないと判断されるレベル、具体的には、腐食性の比較的マイルドな環境条件で使用できるレベルとして、最大腐食深を0.370mm以下とした。
 ○:効果あり、最大腐食深さ0.370mm以下
 ×:効果なし、最大腐食深さ0.370mmを超える
<No. 15-20>
[Evaluation item] Resistance to ant nest corrosion when P is added. Same as 1-5.
Regarding the evaluation criterion in the evaluation method, the depth of ant nest-like corrosion that occurs in this test method is a practical problem depending on the application and thickness of the member in actual use of the present invention, and the setting of the service life required by the equipment used. The maximum corrosion depth was set to 0.370 mm or less as a level at which it is determined that there is no corrosion, specifically, as a level that can be used under relatively mild corrosive environmental conditions.
○: effective, maximum corrosion depth 0.370 mm or less ×: no effect, maximum corrosion depth exceeds 0.370 mm
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[評価結果]
 表7に、耐蟻の巣状腐食性評価結果を示した。
 No.15~18は、Mgの含有量であるXがそれぞれ0.0440質量%、0.0830質量%、0.0470質量%、0.0800質量%であり、Pの含有量であるpは同じく0.00310質量%、0.00680質量%、0.00510質量%、0.00850質量%であるが、各サンプルにおける各元素の含有量の割合であるX/pがそれぞれ基準の9.10以上となり、耐蟻の巣状腐食性において判定基準を満足した。
 No.19及びNo.20はMgの含有量であるXがそれぞれ0.0453質量%、0.0837質量%であり、Pの含有量であるpは同じく0.00510質量%、0.00930質量%であるが、前記X/pがそれぞれ基準の9.10を下回り、耐蟻の巣状腐食性において判定基準を満足的できなかった。
 なお、各サンプルにおいてMgの含有量が0.5質量%未満であるため、引張強さが280N/mm以下になると推定されるため、引張強さの評価は省略した。
[Evaluation results]
Table 7 shows the evaluation results of ant nest corrosion resistance.
No. 15 to 18, the Mg content X is 0.0440 mass%, 0.0830 mass%, 0.0470 mass%, and 0.0800 mass%, respectively, and the P content p is 0. 0.00310% by mass, 0.00680% by mass, 0.00510% by mass, and 0.00850% by mass, but X/p, which is the content ratio of each element in each sample, is 9.10 or more of the standard. , satisfies the criteria for ant nest corrosion resistance.
No. 19 and no. In 20, X, which is the content of Mg, is 0.0453% by mass and 0.0837% by mass, respectively, and p, which is the content of P, is 0.00510% by mass and 0.00930% by mass. Each X/p was below the standard of 9.10, and the evaluation standard was not satisfied in terms of resistance to ant nest corrosion.
Since the content of Mg in each sample is less than 0.5% by mass, the tensile strength is estimated to be 280 N/mm 2 or less, so the evaluation of the tensile strength is omitted.
<No.21~26>
[評価項目]Pが添加された場合の耐蟻の巣状腐食性(ただし、No.25及びNo.26については、Pが添加されないサンプルを参考例として示した。)
 試験方法及び評価方法は、No.1~5と同じである。
 評価方法における評価判定基準について、既に蟻の巣状腐食対策材として採用されている無酸素銅(C1020)を、本試験方法で試験した場合に発生した蟻の巣状腐食の最大腐食深さ0.262mmを下回る0.250mmを判定基準とした。
 本試験方法における本判定基準は同時に、日本国内でもやや厳しい腐食環境条件で使用する用途や、ルームエアコン等の機器耐久性を重要視する用途などに対しても、必要かつ十分な判定基準である。
 ○:効果あり、最大腐食深さ0.250mm以下
 ×:効果なし、最大腐食深さ0.250mmを超える
<No. 21-26>
[Evaluation item] Resistance to ant nest corrosion when P is added (However, for No. 25 and No. 26, samples to which P is not added are shown as reference examples.)
The test method and evaluation method are No. Same as 1-5.
Regarding the evaluation criterion in the evaluation method, the maximum corrosion depth of ant nest corrosion generated when oxygen-free copper (C1020), which has already been adopted as an ant nest corrosion countermeasure material, is tested by this test method is 0. 0.250 mm below 0.262 mm was used as the criterion.
At the same time, this judgment standard in this test method is also a necessary and sufficient judgment criterion for applications that are used in corrosive environmental conditions that are somewhat severe in Japan, and applications that emphasize the durability of equipment such as room air conditioners. .
○: effective, maximum corrosion depth 0.250 mm or less ×: no effect, maximum corrosion depth exceeds 0.250 mm
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[評価結果]
 表8に、耐蟻の巣状腐食性評価結果を示した。
 No.21及びNo.22はMgの含有量であるXがそれぞれ0.0468質量%、0.0833質量%であり、Pの含有量であるpは同じく0.00270質量%、0.00480質量%であるが、各サンプルにおける各元素の含有量の割合であるX/pがそれぞれ基準の16.60以上となり、耐蟻の巣状腐食性において判定基準を満足した。
 No.23及びNo.24はMgの含有量であるXがそれぞれ0.0454質量%、0.0840質量%であり、Pの含有量であるpは同じく0.00280質量%、0.00530質量%であるが、前記X/pがそれぞれ基準の16.60を下回り、耐蟻の巣状腐食性において判定基準を満足的できなかった。
 なお、No.23及びNo.24のサンプルであっても、No.15~18と同様に、腐食性の比較的マイルドな環境条件では実用上問題ないものである。
 また、各サンプルにおいてMgの含有量が0.5質量%未満であるため、引張強さが280N/mm以下になると推定されるため、引張強さの評価は省略した。
[Evaluation results]
Table 8 shows the evaluation results of ant nest corrosion resistance.
No. 21 and no. In 22, the Mg content X is 0.0468% by mass and 0.0833% by mass, respectively, and the P content p is 0.00270% by mass and 0.00480% by mass. X/p, which is the content ratio of each element in the sample, was 16.60 or more, which is the standard, and satisfied the criterion for resistance to ant's nest corrosion.
No. 23 and no. In 24, X, which is the content of Mg, is 0.0454% by mass and 0.0840% by mass, respectively, and p, which is the content of P, is 0.00280% by mass and 0.00530% by mass. X/p was below the standard of 16.60, respectively, and the judgment standard was not satisfied in terms of resistance to ant nest corrosion.
In addition, No. 23 and no. 24 samples, no. Similar to Nos. 15 to 18, there is no practical problem under relatively mild corrosive environmental conditions.
In addition, since the content of Mg in each sample is less than 0.5% by mass, the tensile strength is estimated to be 280 N/mm 2 or less, and thus the evaluation of the tensile strength is omitted.
 表7、表8の結果を図4に示した。図4中、αは表7に対応するものであり、βは表8に対応するものである。また、丸のスポットは、Mgの含有量であるXが0.08代のものであり、三角のスポットは、Mgの含有量であるXが0.04代のものである。 The results of Tables 7 and 8 are shown in Figure 4. In FIG. 4, α corresponds to Table 7 and β corresponds to Table 8. In addition, the circle spots are those where the Mg content X is 0.08, and the triangular spots are those where the Mg content X is 0.04.
 以上の結果から以下のことが判明した。
(1)合金成分の含有量の合計が0.01質量%以上、0.5質量%未満であると、耐蟻の巣状腐食性、加工性(引張強さ)の各性能において優れた耐食性銅合金とすることができた。
(2)合金成分の含有量の合計が0.01質量%以上、0.35質量%以下であると、耐蟻の巣状腐食性、加工性(引張強さ)、耐応力腐食割れ性の各性能において優れた耐食性銅合金とすることができた。
(3)合金成分の含有量の合計が0.01質量%以上、0.25質量%以下であると、耐蟻の巣状腐食性、加工性(引張強さ)、耐応力腐食割れ性、ろう材濡れ性の各性能において優れた耐食性銅合金とすることができた。
(4)合金成分の含有量の合計が0.01質量%以上、0.15質量%以下であると、耐蟻の巣状腐食性、加工性(引張強さ)、耐応力腐食割れ性、ろう材濡れ性、導電率の各性能において優れた耐食性銅合金とすることができた。
(5)耐食性銅合金がPを含有する場合において、Pの含有量が0.015質量%以下であり、合金成分の含有量をX質量%とし、Pの含有量をp質量%としたときに、Xをpで割った値である[X/p]が9.10以上であると、耐蟻の巣状腐食性において、合金成分によりもたらされる耐食性のPによる無効化作用が緩和され、優れた耐食性銅合金とすることができた。
(6)同[X/p]が16.60以上であると、耐蟻の巣状腐食性において、合金成分によりもたらされる耐食性のPによる無効化作用がさらに緩和され、さらに優れた耐食性銅合金とすることができた。
The above results revealed the following.
(1) When the total content of the alloy components is 0.01% by mass or more and less than 0.5% by mass, excellent corrosion resistance in each performance of ant nest corrosion resistance and workability (tensile strength) A copper alloy could be used.
(2) When the total content of the alloy components is 0.01% by mass or more and 0.35% by mass or less, ant nest corrosion resistance, workability (tensile strength), stress corrosion cracking resistance A corrosion-resistant copper alloy with excellent performance was obtained.
(3) When the total content of the alloy components is 0.01% by mass or more and 0.25% by mass or less, ant nest corrosion resistance, workability (tensile strength), stress corrosion cracking resistance, A corrosion-resistant copper alloy with excellent brazing wettability was obtained.
(4) When the total content of the alloy components is 0.01% by mass or more and 0.15% by mass or less, ant nest corrosion resistance, workability (tensile strength), stress corrosion cracking resistance, A corrosion-resistant copper alloy with excellent brazing material wettability and electrical conductivity was obtained.
(5) When the corrosion-resistant copper alloy contains P, the content of P is 0.015% by mass or less, the content of the alloy component is X% by mass, and the content of P is p% by mass. Furthermore, when [X/p], which is the value obtained by dividing X by p, is 9.10 or more, the nullification effect of P on the corrosion resistance brought about by the alloy components is alleviated in terms of ant nest corrosion resistance. An excellent corrosion-resistant copper alloy could be obtained.
(6) When the [X/p] is 16.60 or more, in terms of resistance to ant's nest corrosion, the nullifying effect of P on the corrosion resistance brought about by the alloy components is further alleviated, resulting in a further excellent corrosion-resistant copper alloy. I was able to
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年4月19日出願の日本特許出願(特願2021-070659)及び2022年3月11日出願の日本特許出願(特願2022-038301)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application filed on April 19, 2021 (Japanese patent application 2021-070659) and a Japanese patent application filed on March 11, 2022 (Japanese patent application 2022-038301). The contents are incorporated into this application by reference.
 以上のとおり、本明細書には次の事項が開示されている。
[1] Alよりも標準電極電位が低い金属から選択される少なくとも一種類の合金成分を含有し、残部がCuと不可避的不純物からなり、
 前記合金成分の含有量の合計が0.01質量%以上、0.5質量%未満であることを特徴とする耐食性銅合金。
[2] 前記Alよりも標準電極電位が低い金属が、Li、K、Ca、Na、Mgである[1]に記載の耐食性銅合金。
[3] 前記Alよりも標準電極電位が低い金属が、CaおよびMgであることを特徴とする[1]または[2]に記載の耐食性銅合金。
[4] 前記耐食性銅合金がPを含有する場合において、Pの含有量が0.015質量%以下であり、
 前記合金成分の含有量をX質量%とし、前記Pの含有量をp質量%としたときに、Xをpで割った値である[X/p]が9.10以上であることを特徴とする[1]~[3]のいずれか1つに記載の耐食性銅合金。
[5] 前記[X/p]が16.60以上であることを特徴とする[4]に記載の耐食性銅合金。
[6] [1]~[5]のいずれか1つに記載の耐食性銅合金を用いた銅合金管。
[7] 内面溝付銅合金管である[6]に記載の銅合金管。
[8] [6]または[7]に記載の銅合金管を用いた熱交換器。
As described above, this specification discloses the following matters.
[1] containing at least one alloy component selected from metals having a standard electrode potential lower than that of Al, and the balance consisting of Cu and unavoidable impurities,
A corrosion-resistant copper alloy, wherein the total content of the alloy components is 0.01% by mass or more and less than 0.5% by mass.
[2] The corrosion-resistant copper alloy according to [1], wherein the metal having a standard electrode potential lower than that of Al is Li, K, Ca, Na, or Mg.
[3] The corrosion-resistant copper alloy according to [1] or [2], wherein the metals having a standard electrode potential lower than that of Al are Ca and Mg.
[4] When the corrosion-resistant copper alloy contains P, the P content is 0.015% by mass or less,
When the content of the alloy component is X mass% and the content of P is p mass%, [X/p], which is a value obtained by dividing X by p, is 9.10 or more. The corrosion-resistant copper alloy according to any one of [1] to [3].
[5] The corrosion-resistant copper alloy according to [4], wherein the [X/p] is 16.60 or more.
[6] A copper alloy pipe using the corrosion-resistant copper alloy according to any one of [1] to [5].
[7] The copper alloy tube according to [6], which is an internally grooved copper alloy tube.
[8] A heat exchanger using the copper alloy tube according to [6] or [7].
 10  試験容器
 11  密閉容器
 12  腐食促進物質
 13  供試材
 14  シリコン栓
 20  ろう材
 21  供試材
REFERENCE SIGNS LIST 10 test container 11 sealed container 12 corrosion promoting substance 13 test material 14 silicon plug 20 brazing material 21 test material

Claims (8)

  1.  Alよりも標準電極電位が低い金属から選択される少なくとも一種類の合金成分を含有し、残部がCuと不可避的不純物からなり、
     前記合金成分の含有量の合計が0.01質量%以上、0.5質量%未満であることを特徴とする耐食性銅合金。
    containing at least one alloy component selected from metals having a standard electrode potential lower than that of Al, and the remainder consisting of Cu and unavoidable impurities,
    A corrosion-resistant copper alloy, wherein the total content of the alloy components is 0.01% by mass or more and less than 0.5% by mass.
  2.  前記Alよりも標準電極電位が低い金属が、Li、K、Ca、Na、Mgである請求項1に記載の耐食性銅合金。 The corrosion-resistant copper alloy according to claim 1, wherein the metals having a lower standard electrode potential than Al are Li, K, Ca, Na, and Mg.
  3.  前記Alよりも標準電極電位が低い金属が、CaおよびMgであることを特徴とする請求項1または請求項2に記載の耐食性銅合金。 The corrosion-resistant copper alloy according to claim 1 or claim 2, wherein the metals having a standard electrode potential lower than that of Al are Ca and Mg.
  4.  前記耐食性銅合金がPを含有する場合において、Pの含有量が0.015質量%以下であり、
     前記合金成分の含有量をX質量%とし、前記Pの含有量をp質量%としたときに、Xをpで割った値である[X/p]が9.10以上であることを特徴とする請求項1~3のいずれか1項に記載の耐食性銅合金。
    When the corrosion-resistant copper alloy contains P, the P content is 0.015% by mass or less,
    When the content of the alloy component is X mass% and the content of P is p mass%, [X/p], which is a value obtained by dividing X by p, is 9.10 or more. The corrosion-resistant copper alloy according to any one of claims 1 to 3.
  5.  前記[X/p]が16.60以上であることを特徴とする請求項4に記載の耐食性銅合金。 The corrosion-resistant copper alloy according to claim 4, wherein the [X/p] is 16.60 or more.
  6.  請求項1~5のいずれか1項に記載の耐食性銅合金を用いた銅合金管。 A copper alloy pipe using the corrosion-resistant copper alloy according to any one of claims 1 to 5.
  7.  内面溝付銅合金管である請求項6に記載の銅合金管。 The copper alloy tube according to claim 6, which is an internally grooved copper alloy tube.
  8.  請求項6または請求項7に記載の銅合金管を用いた熱交換器。 A heat exchanger using the copper alloy tube according to claim 6 or claim 7.
PCT/JP2022/018078 2021-04-19 2022-04-18 Corrosion-resistant copper alloy, copper alloy pipe and heat exchanger WO2022224940A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280029143.8A CN117242197A (en) 2021-04-19 2022-04-18 Corrosion-resistant copper alloy, copper alloy tube and heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-070659 2021-04-19
JP2021070659 2021-04-19
JP2022038301A JP7491960B2 (en) 2021-04-19 2022-03-11 Corrosion-resistant copper alloys, copper alloy tubes and heat exchangers
JP2022-038301 2022-03-11

Publications (1)

Publication Number Publication Date
WO2022224940A1 true WO2022224940A1 (en) 2022-10-27

Family

ID=83723298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018078 WO2022224940A1 (en) 2021-04-19 2022-04-18 Corrosion-resistant copper alloy, copper alloy pipe and heat exchanger

Country Status (1)

Country Link
WO (1) WO2022224940A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172920A (en) * 1974-12-23 1976-06-24 Sumitomo Light Metal Ind
JPS5852453A (en) * 1981-09-21 1983-03-28 Furukawa Electric Co Ltd:The Copper alloy for fin of radiator for car
JPH06330210A (en) * 1993-05-25 1994-11-29 Hitachi Cable Ltd Copper alloy wire
JPH07166272A (en) * 1993-12-13 1995-06-27 Mitsubishi Materials Corp Copper alloy excellent in resistance to ant-lair-like corrosion
JP2014118580A (en) * 2012-12-13 2014-06-30 Kobelco & Materials Copper Tube Inc Corrosion resistant copper alloy tube
JP2016089217A (en) * 2014-11-05 2016-05-23 株式会社Uacj Tube with internal groove for heat exchanger and manufacturing method therefor
JP2018162518A (en) * 2018-04-20 2018-10-18 株式会社神戸製鋼所 Copper alloy sheet for vapor chamber and vapor chamber
WO2020203071A1 (en) * 2019-03-29 2020-10-08 三菱マテリアル株式会社 Copper material and heat-dissipating member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172920A (en) * 1974-12-23 1976-06-24 Sumitomo Light Metal Ind
JPS5852453A (en) * 1981-09-21 1983-03-28 Furukawa Electric Co Ltd:The Copper alloy for fin of radiator for car
JPH06330210A (en) * 1993-05-25 1994-11-29 Hitachi Cable Ltd Copper alloy wire
JPH07166272A (en) * 1993-12-13 1995-06-27 Mitsubishi Materials Corp Copper alloy excellent in resistance to ant-lair-like corrosion
JP2014118580A (en) * 2012-12-13 2014-06-30 Kobelco & Materials Copper Tube Inc Corrosion resistant copper alloy tube
JP2016089217A (en) * 2014-11-05 2016-05-23 株式会社Uacj Tube with internal groove for heat exchanger and manufacturing method therefor
JP2018162518A (en) * 2018-04-20 2018-10-18 株式会社神戸製鋼所 Copper alloy sheet for vapor chamber and vapor chamber
WO2020203071A1 (en) * 2019-03-29 2020-10-08 三菱マテリアル株式会社 Copper material and heat-dissipating member

Similar Documents

Publication Publication Date Title
JP5775238B2 (en) High corrosion resistance copper tube
JP2014118580A (en) Corrosion resistant copper alloy tube
WO2022224940A1 (en) Corrosion-resistant copper alloy, copper alloy pipe and heat exchanger
JP2009235428A (en) Copper alloy member and heat-exchanger
JP2022165385A (en) Corrosion resistant copper alloy, copper alloy pipe, and heat exchanger
JP2001247923A (en) Pitting corrosion resistant copper base alloy pipe material
JP2010156002A (en) Copper alloy tube, method for manufacturing the same, and heat pump water heater
JP4963078B2 (en) Corrosion resistant copper alloy tube
CN117242197A (en) Corrosion-resistant copper alloy, copper alloy tube and heat exchanger
JP5068981B2 (en) Aluminum alloy clad material
WO2011115133A1 (en) Expanded tube-to-tubesheet joint type heat exchanger, and tube material and fin material for heat exchanger
CN115418533A (en) High strength and corrosion resistant alloy for HVAC &amp; R systems
JP2008261024A (en) Hot dip galvannealed steel sheet having excellent corrosion resistance and plating adhesion
JPWO2018025451A1 (en) High corrosion resistance copper tube
WO2018061271A1 (en) Copper pipe having excellent resistance to ant-nest corrosion
WO2024075797A1 (en) Corrosion-resistant copper alloy, copper alloy pipe, and heat exchanger
CN102051500A (en) Corrosion resistant copper alloy pipe for air conditioning and refrigeration
JPH06192773A (en) Corrosion resistant copper alloy pipe
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
Hagiwara et al. Development of corrosion resistant aluminum heat exchanger, Part 1: Development of new aluminum alloy sheets for sacrificial anode
Kawano et al. Influence of P concentration on Ant’s Nest Corrosion in Copper Tubes
JPH0649620A (en) Copper or copper alloy tube excellent in pitting corrosion resistance and production therefor
JPH06337197A (en) Corrosion resistant copper alloy tube for heat exchanger
JPS593530B2 (en) Corrosion-resistant brass material for radiator tube
JP2001162394A (en) Brazing sheet made of high corrosion resistance aluminum alloy, producing method therefor and brazing method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280029143.8

Country of ref document: CN

Ref document number: 2301006775

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791711

Country of ref document: EP

Kind code of ref document: A1