WO2022223912A1 - Near-field communication antenna relay - Google Patents

Near-field communication antenna relay Download PDF

Info

Publication number
WO2022223912A1
WO2022223912A1 PCT/FR2022/050708 FR2022050708W WO2022223912A1 WO 2022223912 A1 WO2022223912 A1 WO 2022223912A1 FR 2022050708 W FR2022050708 W FR 2022050708W WO 2022223912 A1 WO2022223912 A1 WO 2022223912A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
primary
circuit
terminal
control
Prior art date
Application number
PCT/FR2022/050708
Other languages
French (fr)
Inventor
Romain Palmade
Loïc HENNINOT
Frédérick BONNIN
Original Assignee
Centiloc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centiloc filed Critical Centiloc
Publication of WO2022223912A1 publication Critical patent/WO2022223912A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F3/00Board games; Raffle games
    • A63F3/00643Electric board games; Electric features of board games
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10158Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves methods and means used by the interrogation device for reliably powering the wireless record carriers using an electromagnetic interrogation field
    • G06K7/10178Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves methods and means used by the interrogation device for reliably powering the wireless record carriers using an electromagnetic interrogation field including auxiliary means for focusing, repeating or boosting the electromagnetic interrogation field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10297Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves arrangements for handling protocols designed for non-contact record carriers such as RFIDs NFCs, e.g. ISO/IEC 14443 and 18092
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2483Other characteristics
    • A63F2009/2485Other characteristics using a general-purpose personal computer
    • A63F2009/2486Other characteristics using a general-purpose personal computer the computer being an accessory to a board game
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2483Other characteristics
    • A63F2009/2488Remotely playable
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2483Other characteristics
    • A63F2009/2488Remotely playable
    • A63F2009/2489Remotely playable by radio transmitters, e.g. using RFID
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation

Definitions

  • the present invention relates to a near-field communication antenna relay. More particularly, the invention relates to a relay which makes it possible to transform the antenna of a reader in the near field into a plurality of communication antennas in the near field.
  • Patent application WO 2021/038167 describes a device for locating objects on a plate which uses near field communication better known by the acronym NFC (Near Field Communication).
  • the principle implemented consists of arranging a plurality of NFC antennas in a tray intended to receive objects provided with an electronic tag.
  • the tray includes one or more NFC readers connected to the antennas in order to communicate with the electronic tags of the objects placed on the tray.
  • a successive selection of each antenna is carried out to interrogate the tags located in the field of the selected antenna.
  • Such a locator tray can be used as a display or store shelf to allow accurate product inventory without moving.
  • the total cost of the board includes a power supply for the electronics comprising one or more NFC readers and one or more interfaces to interact with the players or a player's computer.
  • the invention proposes a near-field communication antenna relay which makes it possible to transform a simple near-field communication reader into a reader having a plurality of antennas at low cost.
  • a near-field communication reader can be transformed into a reader controlling a tracking platform having a plurality of antennas using a suitable program.
  • the antenna relay proposed by the invention makes it possible in particular to provide a game board which can be coupled to a smart phone which has a near-field reader function by downloading an application into the phone and simply placing it ci on the game board.
  • the board is simplified to the maximum and the power supply of the board is supplied by the telephone.
  • the invention is not limited to game boards but can be used to transform any type of near-field reader into a reader with several individually selectable antennas.
  • the invention provides a near-field communication antenna relay comprising a primary antenna, at least one control and energy recovery circuit, at least one first multiplexer and at least two secondary antennas.
  • the primary antenna is intended to be placed in the field of a near-field reader, the primary antenna having a first terminal and a second terminal.
  • the at least one control and energy recovery circuit is connected to the first and second terminals of the primary antenna in order on the one hand to produce a voltage supply and on the other hand to communicate with the reader, the control circuit having at least one control output.
  • the at least one first multiplexer is powered by the supply voltage and has at least one control input of a primary signal input/output and at least two secondary signal inputs/outputs, the input control being connected to the control output of the control circuit and the primary signal input/output being connected to the first terminal of the primary antenna.
  • the at least two secondary antennas each have a first terminal and a second terminal, the first terminal of each secondary antenna being connected to one of the secondary signal inputs/outputs of the first multiplexer and the second terminal of each antenna secondary being connected to the second terminal of the primary antenna.
  • the relay may comprise at least a second multiplexer powered by the supply voltage and having at least one control input for a primary signal input/output and at least two secondary signal inputs/outputs, the control input being connected to the control output of the control circuit and the primary signal input/output being connected to the second terminal of the primary antenna, the second terminal of each secondary antenna being connected to the second terminal of the primary antenna via one of the secondary signal inputs/outputs of the second multiplexer.
  • the primary antenna may comprise at least one turn connected in parallel to a primary tuning capacitor, the terminals of the capacitor corresponding to the first and second terminals of the primary antenna.
  • the primary antenna may comprise a plurality of turns connected in parallel to the primary tuning capacitor.
  • each secondary antenna may comprise a turn in parallel on a secondary tuning capacitor.
  • the relay may include at least a third multiplexer and at least two circuits of secondary antenna neutralization coupled to each of the secondary antennas, the third multiplexer and the neutralization circuits being powered by the supply voltage, a control input of each neutralization circuit being connected to an output of the third multiplexer.
  • each neutralization circuit may include at least one transistor short-circuiting the secondary tuning capacitor of the secondary antenna.
  • the relay may include a coupling indicator circuit which gives visual information depending on the electromagnetic coupling of the primary antenna with the reader circuit.
  • the coupling indicator circuit may be a light-emitting diode thermometric circuit which lights a number of diodes proportional to the supply voltage provided by the control circuit.
  • the invention also proposes a plate incorporating a near-field communication antenna relay, said plate comprising a location zone corresponding to a secondary antenna array making it possible to locate an electronic tag when a near-field reader is positioned on the primary antenna.
  • the invention also proposes a plate integrating a near-field communication antenna relay, said plate comprising a plurality of communication zones each corresponding to a secondary antenna, the secondary antennas being sufficiently spaced so as not to not be able to communicate with an electronic tag located in a neighboring communication zone.
  • FIG. 1 shows an example of a block diagram of the relay according to the invention
  • FIG. 2 shows a model of the resonant circuit equivalent to the diagram in figure 1 according to different operating modes
  • FIG. 4 shows a functional diagram of a reader device coupling assistance circuit
  • FIG. 5 shows a preferred embodiment of a primary antenna
  • FIG. 6 shows a variant of the diagram of figure 1 using an array of antennas
  • FIG. 7 shows another variant of the diagram of figure 1
  • FIG. 1 shows a block diagram of an embodiment of a relay 1 according to the invention.
  • the relay 1 comprises a primary antenna 10 and two secondary antennas 20.
  • the primary antenna 10 has a first terminal 11 and a second terminal 12.
  • Each secondary antenna 20 also has a first terminal 21 and a second terminal 22.
  • the first terminals 21 of the secondary antennas 20 are connected to the first terminal 11 of the primary antenna 10 via a first multiplexer 30.
  • the second terminals 22 of the secondary antennas 20 are connected to the second terminal 12 of the primary antenna 10 via a second multiplexer 40.
  • the first and second multiplexers 30 and 40 also have a control input connected to a control output of a control circuit 50, the first and second multiplexers 30 and 40 receiving the same control signals in order to select the secondary antenna 20 to be brought into contact with the primary antenna 10.
  • the control circuit 50 is an integrated circuit of the microcontroller type, or of the hard-wired logic automaton type, having two terminals to be connected to a near-field communication antenna and which also has configurable inputs/outputs GPIO type (General Purpose Input Output).
  • the control circuit 50 can also self-power on the communication magnetic field and supply a supply voltage VCC to other circuits.
  • the control circuit can be the SIC4310 circuit offered by the company Silicon Craft, or an equivalent circuit offered by the company NXP.
  • the two near-field communication terminals of the control circuit 50 are respectively connected to the first and second terminals 11 and 12 of the primary antenna 10 in order to be able to recover energy from a magnetic field and also to communicate on the magnetic field.
  • the configurable input/output terminals constitute the control output which is connected to the control input of the multiplexers 30 and 40.
  • the number of inputs/outputs used may vary according to whether it is a serial or parallel type control bus.
  • a tank capacitor 51 may be connected in parallel between the VCC supply voltage and ground outputs of the control circuit 50 in order to stabilize the supply voltage supplied to the multiplexers 30 and 40.
  • the general operating principle of relay 1 consists of placing a reader circuit in the field of primary antenna 10 in order to receive a modulated magnetic field.
  • the primary antenna 10 transforms the magnetic field into electrical signals supplied to the control circuit 50.
  • the control circuit 50 transforms the electrical signals into supply energy stored in the reservoir capacitor 51 and identifies itself to the reader circuit.
  • the reader circuit can then send a selection command to the control circuit 50.
  • the selection command is then transformed by the control circuit 50 into a command for the multiplexers 30 and 40.
  • the command received by the multiplexers 30 and 40 makes it possible to bring a selected secondary antenna 20 into contact with the primary antenna 10. All the commands subsequent readings of the reader circuit received by the primary antenna 10 are then retransmitted by the secondary antenna 20 selected.
  • the primary antenna 10 and the secondary antenna 20 are permanently tuned on the field of the reader circuit in order to enter into resonance to amplify the field received from the reader and restore an amplified field at the level of the secondary antenna 20.
  • the primary antenna 10 comprises a turn 13 and a tuning capacitor 14 and the secondary antennas 20 each comprise a turn 23 and a tuning capacitor 24.
  • the size and the number of turns 14 and 24 of the antennas 10 and 20 can be variable depending on the frequency of the communication magnetic field and also depending on possible values for the tuning capacitors 14 and 24.
  • a first mode of operation relates to the approach of a reader to the primary antenna 10. During this first mode of operation the first and second multiplexers 30 and 40 are not powered.
  • a second mode of operation corresponds to a communication established between the reader and the control circuit 50 in which the first and second multiplexers 30 and 40 are powered but do not establish any connection with a secondary antenna 20.
  • a third mode of operation corresponds to a communication established between the reader and the control circuit 50 in which the first and second multiplexers 30 and 40 are powered and establish a connection with a secondary antenna 20.
  • FIG. 2 corresponds to a model of the resonant circuit equivalent to the diagram of FIG. 1 in the first and second modes of operation
  • FIG. 3 corresponds to a modeling of the resonant circuit equivalent to the diagram of FIG. 1 in the third mode of operation.
  • the primary antenna 10 is modeled by an inductor L13 and a capacitor C14 corresponding respectively to the turn 13 and to the tuning capacitor 14 in parallel.
  • a capacitor C50 corresponds to the capacitor of the inputs of the control circuit 50 which comes in parallel on the capacitor C14.
  • the first and second multiplexers 30 and 40 are respectively modeled by capacitors C30 and C40 placed between one of the terminals of capacitor C14 and the ground line.
  • the modeling of the connected secondary antenna 20 consists in adding in parallel to the capacitor C14 a capacitor C24 and an inductor L23 corresponding respectively to the tuning capacitor 24 and to the turn 23.
  • the first and second multiplexers 30 and 40 being identical and receiving the same supply voltages and the same control signals, the capacitors C30 and C40 are identical.
  • the resonance frequency F of the circuit of Figure 2 corresponds to the following formula:
  • the capacities C30 and C40 vary according to the supply state of the first and second multiplexers 30 and 40. variation of the capacitances C30 and C40, it is necessary to size the tuning capacitor 14 so that its capacitance C14 is large enough to make the variation of the capacitances C30 and C40 negligible.
  • the variation of the capacitors C30 and C40 being of a few picofarads, it is possible to choose a capacitor C14 greater than 500 picofarads so that the variation in resonance frequency is less than one percent.
  • inductance L13 should be determined according to the desired resonance frequency and the value of capacitors C14, C30, C40 and C50.
  • the inductance L13 being determined, the person skilled in the art can dimension the turn 13.
  • the resonance frequency F of the circuit of Figure 3 corresponds to the following formula:
  • the turns 23 can be drawn according to the surface that they must occupy on a plate and the resulting inductance L23 will be calculated according to the drawing of said turns 23.
  • the capacitance C24 is determined to bring the frequency F back to the value of the frequency of the field produced by the reader. It should be noted that, if the turns 24 have a relatively small surface with significant conductor lengths to connect them to the first and second multiplexers 30 and 40, the conductors will also have to be taken into account for the calculation of the inductance L23 of each secondary antenna 20.
  • the capacitances C24 of the tuning capacitors 24 may be different for each secondary antenna 20.
  • the dimensioning of the turn 13 of the primary antenna 10 is constrained by the dimensioning of the tuning capacitor 14.
  • the value of the inductance is given by the following formula:
  • the ISO/IEC 14443 standard defines a frequency of the communication field at a frequency of 13.56 MHz. Having defined a tuning capacitor having a capacitance greater than 500pF, the sum of the capacitances C14, C30, C40 and C50 will also be greater than 500pF. Thus, the inductance L13 must be less than 275 nanohenrys.
  • a simplified calculation of the inductance L of a rectangular turn of sides A and B printed on a printed circuit with conductors having a width E can be done using the following formula:
  • the turn 13 determined is relatively small. Considering a reader circuit of the mobile telephone type which also comprises an antenna whose surface is of the same order of magnitude, it is advisable to best position the mobile telephone on the primary antenna in order to ensure optimum coupling. Considering that the position of a near-field communication antenna can be placed in different places inside a mobile phone depending on the model, registration marks may not be enough to correctly position a phone on the antenna. primary 10.
  • the coupling aid circuit can be a circuit of the thermometric type with light-emitting diodes (hereinafter LEDs) which will make it possible to indicate by illuminating a number of LEDs proportional to the coupling between the reader and the primary antenna 10. Thanks to such a circuit, a user can move the reader at the level of the primary antenna until all the LEDs are lit.
  • LEDs light-emitting diodes
  • FIG. 4 shows a block diagram of an example of a coupling aid circuit 400.
  • the coupling aid circuit 400 is connected to the supply voltage VCC and ground outputs of the circuit control 50 which provides a supply voltage which is proportional to the actual coupling between the primary antenna 10 and the reader.
  • VCC supply voltage
  • VCC supply voltage
  • ground outputs of the circuit control 50 which provides a supply voltage which is proportional to the actual coupling between the primary antenna 10 and the reader.
  • the coupling aid circuit of Figure 4 is given by way of example and can be replaced by other types of thermometric circuits.
  • the coupling aid circuit 400 comprises a voltage regulator 410 which makes it possible to supply LEDs 420, for example three in number.
  • each LED 420 is connected in series with a resistor 430 and the channel of a transistor 440.
  • the branch thus formed is connected between a regulated voltage output of the voltage regulator 410 and ground.
  • Each resistor 430 is sized to limit the current in LED 420 when the channel of transistor 440 is saturated.
  • Each transistor 440 for example of the MOSFET (Metal Oxide Semiconductor Field Effect Transistor) type, has its source connected to ground and its gate connected to the midpoint of a voltage divider bridge 450 which is connected between the voltage VCC power supply and ground.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • Each voltage divider bridge 450 comprises two resistors R1 and R2 in series whose values are adjusted so that the midpoint corresponds to the threshold voltage of the transistor 440 to which it is connected when the supply voltage corresponds to an ignition threshold. of the associated diode 420.
  • the ignition thresholds are different for each 450 voltage divider bridge in order to light one, two or three 420 LEDs depending on the VCC supply voltage.
  • Another possibility of improving the coupling may consist in adapting the primary antenna so that it occupies a larger surface without however changing the inductance of said antenna.
  • Such an enhancement can be used instead of or in combination with a coupling aid circuit.
  • FIG. 5 shows a primary antenna 10 comprising four turns 13′ connected in parallel to the tuning capacitor 14.
  • the four turns 13′ are juxtaposed so as to cover a larger surface. only one whorl.
  • the parallel mounting of the turns 13' has the effect of presenting an inductance equivalent to a quarter of the inductance of a single turn 13', which makes it possible to use larger turns.
  • Many other antenna configurations using juxtaposed turns can be used by coupling the turns in parallel or by connecting branches of turns connected in series in parallel.
  • the circuit of Figure 1 showed an embodiment using two secondary antennas. However, to produce a location plate, it is necessary to use a matrix of secondary antennas 20, like what is implemented in patent application WO 2021/038167.
  • FIG. 6 shows an embodiment of a relay 1 according to the invention having a plurality of secondary antennas 20 arranged in rows and columns of a matrix making it possible to identify an electronic tag on a plane.
  • the secondary antennas 20 are produced on two faces of a printed circuit or on two layers of printed circuit in order to insulate them electrically.
  • the printed circuit or printed circuit layers can be made using one of many known technologies, using an epoxy resin, polyimide, paper, cardboard substrate covered with an etched copper conductive layer, in screen-printed conductive ink, in cut aluminum foil, the person skilled in the art, being able to choose what is most suitable according to the desired application.
  • the relay 1 comprises a third multiplexer 60, which can be of the same nature as the first and second multiplexers 30 and 40 or which can be simply mono directional, the important thing being that the third Multiplexer 60 has one signal input and a plurality of signal outputs.
  • the third multiplexer has a control input connected to a control output of a control circuit 50 and receives the same control signals as the first and second multiplexers 30 and 40 to select a signal output corresponding to the secondary antenna 20 selected.
  • the signal input of the third multiplexer is connected to a logic control level, for example a low level corresponding to ground.
  • Each signal output of the third multiplexer 60 is connected to a control input of a neutralization circuit 70 associated with a secondary antenna 20.
  • the control input of the neutralization circuit 70 does not receive a logic level of control which deactivates said neutralization circuit 70, the latter is activated and neutralizes the secondary antenna which is associated with it.
  • a neutralization circuit 70 which comprises two transistors 71 and 72 having their channel respectively connected between one of the terminals of the capacitor d chord 24 and mass. The gates of the two transistors 71 and 72 are connected together to an output of the third multiplexer 60 and to a first terminal of a pull-up resistor 73.
  • a second terminal of the pull-up resistor 73 is connected to the supply voltage VCC.
  • the transistors 71 and 72 are preferably of the MOSFET type and the pull-up resistor 73 has a very high resistance.
  • the corresponding signal output of the third multiplexer 60 is not connected to ground, the gates of transistors 71 and 72 then receive the supply voltage VCC by the intermediary of the pull-up resistor 73 and become on. Transistors 71 and 73 being on, the terminals of tuning capacitor 24 are then connected to ground, which puts tuning capacitor 24 in short circuit, thus neutralizing the secondary antenna 20 which is not selected.
  • the corresponding signal output of multiplexer 60 is connected to ground as well as the gates of transistors 71 and 72, which blocks the transistors.
  • the transistors being blocked, the secondary antenna 20 selected can resonate freely.
  • the number of secondary antennas 20 can be limited by the capacities of the multiplexers 30, 40 and 60 and by the number of control outputs of the control circuit 50. Indeed , the control circuit 50 only transcodes commands received from the reader circuit into signals on its inputs/outputs. Addressing a serial bus requires that the reader circuit send to the control circuit 50 one command per bit sent on the serial bus, which requires a relatively large number of commands to address the multiplexers 30, 40 and 60. Use of a parallel bus to control the multiplexers 30, 40 and 60 is however limited by the number of inputs/outputs available on the control circuit 50. If the control circuit 50 has only four inputs/outputs of type GPIO multiplexers can address at most eight secondary antennas 20.
  • FIG. 7 shows another variant of the diagrams of FIGS. 1 and 6.
  • the second control circuit 50' is identical to the control circuit 50.
  • the two near-field communication terminals of the second control circuit 50' are connected in parallel to the two near-field communication terminals of the control circuit 50.
  • the reader circuit can address either of the control circuits 50 and 50'.
  • the second control circuit 50' also has supply voltage VCC and ground outputs also connected in parallel to the supply voltage VCC and ground outputs of the control circuit 50.
  • the control circuits 50 and 50' both contribute to the supply of the multiplexers 30, 40 and 60.
  • the configurable inputs/outputs of the second control circuit 50' can be juxtaposed with the inputs/outputs of the control circuit 50 which makes it possible to doubling the size of a parallel control bus, increasing the maximum bus size from four to eight control signals, which can address up to 128 secondary antennas. For this purpose it is possible to use multiplexers having a greater number of inputs/outputs or even to add additional multiplexers 30', 40' and 60' increasing the addressing capacity of secondary antennas 20 .
  • the first, second and third multiplexers 30, 40 and 60 are doubled.
  • the control inputs of the 30, 30', 40, 40', 60 and 60' multiplexers only receive part of the control bus. However, it is possible to add a larger number of multiplexers provided that you remain within the supply capacity limit that can be obtained from the communication field provided by the reader.
  • FIG. 8 shows a game board 800 intended to cooperate with a smart mobile phone 810, commonly called a smartphone.
  • the game board 800 incorporates in its thickness a printed circuit on which the various components constituting the relay 1 object of the invention have been drawn or welded depending on the type of component.
  • the game board includes a game zone 820 itself printed according to the game. of a piece provided with an electronic identification tag placed on said game area 820.
  • Turns 13' of a primary antenna 10 are placed under a deposit area 830 located on a side part of the game board 800.
  • the other components of relay 1 are grouped together in a neutral zone 840 of game board 800, preferably as far as possible from turns 13' and 23 in order to reduce the risk of interference.
  • An 850 indication zone can group 420 LEDs inside the 840 neutral zone.
  • the smartphone 820 Prior to the implementation of the game, it is necessary to download an application in the smartphone 820 which includes a method for locating electronic tags such as for example described in patent application WO 2021/038167 and modified to take into account relay 1.
  • the smartphone 820 is placed by a user on the zone of deposit 830. The smartphone 820 is then moved over this deposit zone until the three LEDs 420 are lit.
  • the smartphone 820 establishes a first communication with the control circuit 50 during an initialization of the game. Thereafter, each time a secondary antenna 20 must be selected the smartphone 820 will send a command to the control circuit 50 indicating to it the value of the output signals which must be positioned on the control outputs.
  • the rest of the location process can then be implemented by the smartphone 820 identical to what is described in application WO 2021/038167.
  • Those skilled in the art will be able to appreciate that the use of such a method makes it possible to have a location precision which is approximately four times less than the width of a turn 23 of secondary antennas, which makes it possible to avoid use a greater number of secondary antennas 20.
  • FIG. 9 shows a payment tray 900 intended to cooperate with a payment terminal 910 to make a contactless payment distributed on several bank cards.
  • the payment plate 900 incorporates in its thickness a printed circuit equipped with the various components constituting the relay 1 which is the subject of the invention.
  • the payment tray 900 comprises a plurality of payment areas 920, for example eight, identified by rectangles of a size slightly larger than the size of a bank card. Eight turns 23 of secondary antennas 20 are each arranged under each payment zone 920. In order to be able to communicate only with the bank card located in the payment zone 920, each turn 23 is of small size and is placed in the center of each payment zone 920.
  • Turns 13' of a primary antenna 10 are placed under a deposit zone 930 located on a side part of the payment platform 900.
  • the other components of the relay 1 are grouped together in a neutral zone 940 of the payment platform 900.
  • a zone indication 850 can group the LEDs 420 inside the neutral zone 940.
  • the payment terminal 910 has a distributed payment mode intended to cooperate with the payment platform.
  • the merchant wants to make a distributed payment, he will place the bank cards on which the payment must be distributed on the payment zones 920, at the rate of one card per payment zone 920. Then, the merchant will enter the payment terminal 910 the total to be paid. The payment terminal 910 is then placed on the deposit area 930 by adjusting the position of said terminal 910 until the three LEDs 420 are lit. The merchant can then launch the distributed payment application.
  • a first phase consists of determining how many bank cards are present. To this end, the payment terminal will send secondary antenna selection commands 20 to the control circuit 50 and then detect whether a bank card is present for each antenna. After having selected and interrogated all the secondary antennas 20, the payment terminal 910 knows the number of bank cards to be debited as well as the location corresponding to a secondary antenna 20. At the end of this first phase, the payment terminal displays the number of cards detected, calculates the amount to be paid for each bank card and requests confirmation of the debit. After confirmation of the debit, the payment terminal 910 will go into a second debit phase by performing debit operations for each bank card.
  • An antenna selection command is sent to the control circuit 50 then a deselection command is sent to the control circuit so that the latter no longer responds to the commands sent by the payment terminal.
  • the payment according to the EMV protocol is then launched to make the payment with the card positioned on the selected secondary antenna 20 which happens to be the only one to respond to the commands sent by the payment terminal 910.
  • the payment terminal 910 sends a selection command to the control circuit 50 so that the latter can again interact with the payment terminal 910.
  • Another secondary antenna 20 is selected to proceed with the next payment after having again deselected the control circuit 50. The operation is thus repeated until all the payments have been made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

The invention relates to a near-field communication antenna relay (1) comprising a primary antenna (10) for communicating with a near-field reader, at least one control circuit (50) connected to the primary antenna (10), and at least two secondary antennas (20) connected to the primary antenna (10) via multiplexers (30, 40). The control circuit (50) generates a supply voltage (VCC) and communicates with the reader so as to order the multiplexers (30, 40) to select the secondary antenna (20) to be linked to the primary antenna (10). Figure for the abstract: Fig. 1

Description

Description Description
Titre de l'invention : Relais d’antenne de communication en champ proche Title of Invention: Near Field Communication Antenna Relay
[0001] Domaine Technique [0001] Technical Area
[0002] La présente invention se rapporte à un relais d’antenne de communication en champ proche. Plus particulièrement, l’invention concerne un relais qui permet de transformer l’antenne d’un lecteur en champ proche en une pluralité d’antennes de communication en champ proche. The present invention relates to a near-field communication antenna relay. More particularly, the invention relates to a relay which makes it possible to transform the antenna of a reader in the near field into a plurality of communication antennas in the near field.
[0003] Arrière-Plan Technologique [0003] Technological Background
[0004] La demande de brevet WO 2021/038167 décrit un dispositif de localisation d’objets sur un plateau qui utilise une communication en champ proche plus connue sous l’acronyme NFC (de l’anglais Near Field Communication). Le principe mis en œuvre consiste à disposer une pluralité d’antennes NFC dans un plateau destiné à recevoir des objets munis d’une étiquette électronique. Le plateau comporte un ou plusieurs lecteurs NFC connectés aux antennes afin de communiquer avec les étiquettes électroniques des objets posés sur le plateau. Une sélection successive de chaque antenne est réalisée pour interroger les étiquettes se trouvant dans le champ de l’antenne sélectionnée. En fonction des réponses des étiquettes obtenues pour chaque antenne il est possible de déterminer la position de chaque étiquette sur le plateau. Un tel plateau de localisation peut être utilisé comme présentoir ou étagère de magasin afin de permettre un inventaire précis des produits sans se déplacer. Également, il est possible d’utiliser de tels plateaux comme plateau de jeu pour repérer des figurines. Cependant l’utilisation comme plateau de jeu est actuellement freinée par le coût d’un tel plateau. En effet, le coût total du plateau intègre une alimentation pour l’électronique comportant un ou plusieurs lecteurs NFC et une ou plusieurs interfaces pour interagir avec les joueurs ou un ordinateur des joueurs. [0004] Patent application WO 2021/038167 describes a device for locating objects on a plate which uses near field communication better known by the acronym NFC (Near Field Communication). The principle implemented consists of arranging a plurality of NFC antennas in a tray intended to receive objects provided with an electronic tag. The tray includes one or more NFC readers connected to the antennas in order to communicate with the electronic tags of the objects placed on the tray. A successive selection of each antenna is carried out to interrogate the tags located in the field of the selected antenna. Depending on the responses of the tags obtained for each antenna, it is possible to determine the position of each tag on the plate. Such a locator tray can be used as a display or store shelf to allow accurate product inventory without moving. Also, it is possible to use such boards as a game board to locate figurines. However, the use as a game board is currently hampered by the cost of such a board. Indeed, the total cost of the board includes a power supply for the electronics comprising one or more NFC readers and one or more interfaces to interact with the players or a player's computer.
[0005] Par ailleurs, en matière de jeux, il est en outre connu d’utiliser un téléphone intelligent de type smartphone pour interagir avec un jeu de plateau. La demande de brevet US 2019/0370621 décrit un plateau de jeu dans lequel l’intelligence est déportée. Un tel plateau de jeu correspond à un relai d’antenne qui comporte un réseau d’antennes secondaires sélectionnable et une antenne primaire destinée à communiquer avec un lecteur NFC, par exemple le lecteur NFC d’un smartphone. Ainsi, il est possible de télécharger une application sur le téléphone pour utiliser celui-ci conjointement au plateau de jeu avec l’intelligence du plateau déportée dans le smartphone. Néanmoins, le coût plateau de jeu décrit dans cette demande reste encore assez élevé car le plateau intègre toujours une alimentation pour l’électronique de sélection des antennes et plusieurs interfaces pour interagir avec le smartphone. [0005] Furthermore, in terms of games, it is also known to use a smart phone of the smartphone type to interact with a board game. US patent application 2019/0370621 describes a game board in which intelligence is deported. Such a game board corresponds to an antenna relay which comprises an array of selectable secondary antennas and a primary antenna intended to communicate with an NFC reader, for example the NFC reader of a smartphone. Thus, it is possible to download an application to the telephone to use it together with the game board with the intelligence of the board remote in the smartphone. Nevertheless, the game board cost described in this application is still quite high because the board still includes a power supply for the antenna selection electronics and several interfaces for interacting with the smartphone.
[0006] Résumé de l’Invention [0006] Summary of the Invention
[0007] L’invention propose un relais d’antenne de communication en champ proche qui permet de transformer un simple lecteur de communication en champ proche en lecteur disposant d’une pluralité d’antennes à bas coût. Ainsi, un lecteur de communication en champ proche peut être transformé en lecteur pilotant un plateau de repérage disposant d’une pluralité d’antennes à l’aide d’un programme adapté. Le relais d’antenne proposé par l’invention permet notamment de fournir un plateau de jeu qui peut être couplé à un téléphone intelligent qui dispose d’une fonction de lecteur en champ proche en téléchargeant une application dans le téléphone et en posant simplement celui-ci sur le plateau de jeu. Le plateau est simplifié au maximum et l’alimentation du plateau est fournie par le téléphone. Cependant l’invention n’est pas limitée aux plateaux de jeu mais peut être utilisée pour transformer tout type de lecteur en champ proche en lecteur disposant de plusieurs antennes sélectionnâmes individuellement. The invention proposes a near-field communication antenna relay which makes it possible to transform a simple near-field communication reader into a reader having a plurality of antennas at low cost. Thus, a near-field communication reader can be transformed into a reader controlling a tracking platform having a plurality of antennas using a suitable program. The antenna relay proposed by the invention makes it possible in particular to provide a game board which can be coupled to a smart phone which has a near-field reader function by downloading an application into the phone and simply placing it ci on the game board. The board is simplified to the maximum and the power supply of the board is supplied by the telephone. However, the invention is not limited to game boards but can be used to transform any type of near-field reader into a reader with several individually selectable antennas.
[0008] Plus particulièrement, l’invention propose un relais d’antenne de communication en champ proche comprenant une antenne primaire, au moins un circuit de contrôle et de récupération d’énergie, au moins un premier multiplexeur et au moins deux antennes secondaires. L’antenne primaire est destinée à être placée dans le champ d’un lecteur en champ proche, l’antenne primaire disposant d’une première borne et d’une deuxième borne. L’au moins un circuit de contrôle et de récupération d’énergie est connecté aux première et deuxième bornes de l’antenne primaire afin d’une part de produire une tension d’alimentation et d’autre part de communiquer avec le lecteur, le circuit de contrôle disposant d’au moins une sortie de commande. L’au moins un premier multiplexeur est alimenté par la tension d’alimentation et dispose d’au moins une entrée de commande d’une entrée/sortie de signal primaire et d’au moins deux entrées/sorties de signal secondaire, l’entrée de commande étant reliée à la sortie de commande du circuit de contrôle et l’entrée/sortie de signal primaire étant reliée à la première borne de l’antenne primaire. Les au moins deux antennes secondaires disposent chacune d’une première borne et d’une deuxième borne, la première borne de chaque antenne secondaire étant reliée à l’une des entrées/sorties de signal secondaire du premier multiplexeur et la deuxième borne de chaque antenne secondaire étant reliée à la deuxième borne de l’antenne primaire. More particularly, the invention provides a near-field communication antenna relay comprising a primary antenna, at least one control and energy recovery circuit, at least one first multiplexer and at least two secondary antennas. The primary antenna is intended to be placed in the field of a near-field reader, the primary antenna having a first terminal and a second terminal. The at least one control and energy recovery circuit is connected to the first and second terminals of the primary antenna in order on the one hand to produce a voltage supply and on the other hand to communicate with the reader, the control circuit having at least one control output. The at least one first multiplexer is powered by the supply voltage and has at least one control input of a primary signal input/output and at least two secondary signal inputs/outputs, the input control being connected to the control output of the control circuit and the primary signal input/output being connected to the first terminal of the primary antenna. The at least two secondary antennas each have a first terminal and a second terminal, the first terminal of each secondary antenna being connected to one of the secondary signal inputs/outputs of the first multiplexer and the second terminal of each antenna secondary being connected to the second terminal of the primary antenna.
[0009] Dans un mode de réalisation particulier, le relais peut comporter au moins un deuxième multiplexeur alimenté par la tension d’alimentation et disposant d’au moins une entrée de commande d’une entrée/sortie de signal primaire et d’au moins deux entrées/sorties de signal secondaire, l’entrée de commande étant reliée à la sortie de commande du circuit de contrôle et l’entrée/sortie de signal primaire étant reliée à la deuxième borne de l’antenne primaire, la deuxième borne de chaque antenne secondaire étant reliée à la deuxième borne de l’antenne primaire par l’intermédiaire de l’une des entrées/sorties de signal secondaire du deuxième multiplexeur. In a particular embodiment, the relay may comprise at least a second multiplexer powered by the supply voltage and having at least one control input for a primary signal input/output and at least two secondary signal inputs/outputs, the control input being connected to the control output of the control circuit and the primary signal input/output being connected to the second terminal of the primary antenna, the second terminal of each secondary antenna being connected to the second terminal of the primary antenna via one of the secondary signal inputs/outputs of the second multiplexer.
[0010] Selon un mode de réalisation, l’antenne primaire peut comporter au moins une spire connectée en parallèle sur un condensateur d’accord primaire, les bornes du condensateur correspondant aux première et deuxième bornes de l’antenne primaire. According to one embodiment, the primary antenna may comprise at least one turn connected in parallel to a primary tuning capacitor, the terminals of the capacitor corresponding to the first and second terminals of the primary antenna.
[0011] Selon un autre mode de réalisation, l’antenne primaire peut comporter une pluralité de spires connectée en parallèle sur le condensateur d’accord primaire. According to another embodiment, the primary antenna may comprise a plurality of turns connected in parallel to the primary tuning capacitor.
[0012] Dans un mode de réalisation préféré, chaque antenne secondaire peut comporter une spire en parallèle sur un condensateur d’accord secondaire. [0012] In a preferred embodiment, each secondary antenna may comprise a turn in parallel on a secondary tuning capacitor.
[0013] Pour éviter des interférences entre antennes secondaires, le relais peut comporter au moins un troisième multiplexeur et au moins deux circuits de neutralisation d’antenne secondaire couplées à chacune des antennes secondaires, le troisième multiplexeur et les circuits de neutralisation étant alimenté par la tension d’alimentation une entrée de commande de chaque circuit de neutralisation étant connectée à une sortie du troisième multiplexeur. To avoid interference between secondary antennas, the relay may include at least a third multiplexer and at least two circuits of secondary antenna neutralization coupled to each of the secondary antennas, the third multiplexer and the neutralization circuits being powered by the supply voltage, a control input of each neutralization circuit being connected to an output of the third multiplexer.
[0014] Préférentiellement, chaque circuit de neutralisation peut comporter au moins un transistor mettant en court-circuit le condensateur d’accord secondaire de l’antenne secondaire. Preferably, each neutralization circuit may include at least one transistor short-circuiting the secondary tuning capacitor of the secondary antenna.
[0015] Pour faciliter le positionnement du circuit lecteur par rapport à l’antenne primaire, le relais peut comporter un circuit indicateur de couplage qui donne une information visuelle en fonction du couplage électromagnétique de l’antenne primaire avec le circuit lecteur. To facilitate the positioning of the reader circuit relative to the primary antenna, the relay may include a coupling indicator circuit which gives visual information depending on the electromagnetic coupling of the primary antenna with the reader circuit.
[0016] Selon un mode de réalisation, le circuit indicateur de couplage peut être un circuit thermométrique à diode électroluminescente qui allume un nombre de diodes proportionnel à la tension d’alimentation fournie par le circuit de contrôle. [0016] According to one embodiment, the coupling indicator circuit may be a light-emitting diode thermometric circuit which lights a number of diodes proportional to the supply voltage provided by the control circuit.
[0017] L’invention propose également un plateau intégrant un relais d’antenne de communication en champ proche, ledit plateau comportant une zone de localisation correspondant à une matrice d’antennes secondaire permettant de localiser une étiquette électronique lorsqu’un lecteur en champ proche est positionnée sur l’antenne primaire. [0017] The invention also proposes a plate incorporating a near-field communication antenna relay, said plate comprising a location zone corresponding to a secondary antenna array making it possible to locate an electronic tag when a near-field reader is positioned on the primary antenna.
[0018] En variante, l’invention propose aussi un plateau intégrant un relais d’antenne de communication en champ proche, ledit plateau comportant une pluralité de zones de communication correspondant chacune à une antenne secondaire, les antennes secondaires étant suffisamment espacées afin de ne pas pouvoir communiquer avec une étiquette électronique se trouvant dans une zone de communication voisine. As a variant, the invention also proposes a plate integrating a near-field communication antenna relay, said plate comprising a plurality of communication zones each corresponding to a secondary antenna, the secondary antennas being sufficiently spaced so as not to not be able to communicate with an electronic tag located in a neighboring communication zone.
[0019] Brève Description des figures [0019] Brief Description of Figures
[0020] L’invention sera mieux comprise et d’autres caractéristiques et avantages de celle-ci apparaîtront à la lecture de la description suivante de modes de réalisation particuliers de l’invention, donnés à titre d’exemples illustratifs et non limitatifs, et faisant référence aux dessins annexés, parmi lesquels : The invention will be better understood and other characteristics and advantages thereof will appear on reading the following description of particular embodiments of the invention, given by way of illustrative and non-limiting examples, and referring to the attached drawings, among which:
[0021] [Fig. 1] montre un exemple de schéma fonctionnel du relais selon l’invention, [0022] [Fig. 2] et [Fig. 3] montrent une modélisation du circuit résonnant équivalent au schéma de la figure 1 selon différents modes de fonctionnement, [0021] [Fig. 1] shows an example of a block diagram of the relay according to the invention, [0022] [Fig. 2] and [Fig. 3] show a model of the resonant circuit equivalent to the diagram in figure 1 according to different operating modes,
[0023] [Fig. 4] montre un schéma fonctionnel d’un circuit d’aide au couplage du dispositif lecteur, [0023] [Fig. 4] shows a functional diagram of a reader device coupling assistance circuit,
[0024] [Fig. 5] montre un exemple préféré de réalisation d’une antenne primaire,[0024] [Fig. 5] shows a preferred embodiment of a primary antenna,
[0025] [Fig. 6] montre une variante du schéma de la figure 1 utilisant une matrice d’antennes, [0025] [Fig. 6] shows a variant of the diagram of figure 1 using an array of antennas,
[0026] [Fig. 7] montre une autre variante du schéma de la figure 1, [0026] [Fig. 7] shows another variant of the diagram of figure 1,
[0027] [Fig. 8] et [Fig. 9] illustrent des exemples d’utilisation du relais selon l’invention. [0027] [Fig. 8] and [Fig. 9] illustrate examples of use of the relay according to the invention.
[0028] Description détaillée [0028] Detailed Description
[0029] La description qui va suivre va décrire un exemple principal de réalisation ainsi que des variantes et améliorations possibles à partir de l’exemple principal. Afin de simplifier la description qui va suivre, une même référence sera utilisée sur différentes figures dès lors que l’objet référencé sera le même ou de même nature. De plus, certains éléments seront omis sur certaines figures afin d’éviter de les surcharger inutilement. The following description will describe a main embodiment as well as possible variants and improvements based on the main example. In order to simplify the following description, the same reference will be used in different figures when the referenced object is the same or of the same nature. In addition, certain elements will be omitted from certain figures in order to avoid overloading them unnecessarily.
[0030] La figure 1 représente un schéma fonctionnel d’un mode de réalisation d’un relais 1 selon l’invention. Le relais 1 comporte une antenne primaire 10 et deux antennes secondaires 20. L’antenne primaire 10 dispose d’une première borne 11 et d’une deuxième borne 12. Chaque antenne secondaire 20 dispose également d’une première borne 21 et d’une deuxième borne 22. Les premières bornes 21 des antennes secondaires 20 sont reliées à la première borne 11 de l’antenne primaire 10 par l’intermédiaire d’un premier multiplexeur 30. Les deuxièmes bornes 22 des antennes secondaires 20 sont reliées à la deuxième borne 12 de l’antenne primaire 10 par l’intermédiaire d’un deuxième multiplexeur 40. Les premier et deuxième multiplexeurs 30 et 40 disposent en outre d’une entrée de commande reliée à une sortie de commande d’un circuit de contrôle 50, les premier et deuxième multiplexeurs 30 et 40 recevant les mêmes signaux de commande afin de sélectionner l’antenne secondaire 20 à mettre en contact avec l’antenne primaire 10. [0031] En variante, il est possible de supprimer l’un des premier ou deuxième multiplexeurs 30 ou 40. Dans ce cas, toute les première bornes 11 et 21 ou deuxième bornes 12 et 22 des première et deuxième antennes 10 et 20 sont reliées ensemble, la sélection d’antennes secondaire ne se faisant respectivement que par le deuxième ou le premier multiplexeur. Figure 1 shows a block diagram of an embodiment of a relay 1 according to the invention. The relay 1 comprises a primary antenna 10 and two secondary antennas 20. The primary antenna 10 has a first terminal 11 and a second terminal 12. Each secondary antenna 20 also has a first terminal 21 and a second terminal 22. The first terminals 21 of the secondary antennas 20 are connected to the first terminal 11 of the primary antenna 10 via a first multiplexer 30. The second terminals 22 of the secondary antennas 20 are connected to the second terminal 12 of the primary antenna 10 via a second multiplexer 40. The first and second multiplexers 30 and 40 also have a control input connected to a control output of a control circuit 50, the first and second multiplexers 30 and 40 receiving the same control signals in order to select the secondary antenna 20 to be brought into contact with the primary antenna 10. Alternatively, it is possible to remove one of the first or second multiplexers 30 or 40. In this case, all the first terminals 11 and 21 or second terminals 12 and 22 of the first and second antennas 10 and 20 are connected together, the selection of secondary antennas being done respectively only by the second or the first multiplexer.
[0032] Le circuit de contrôle 50 est un circuit intégré de type microcontrôleur, ou de type automate en logique câblée, disposant de deux bornes pour être connecté à une antenne de communication en champ proche et qui dispose en outre d’entrées/sorties configurables de type GPIO (de l’anglais General Purpose Input Output). Le circuit de contrôle 50 peut en outre s’autoalimenter sur le champ magnétique de communication et fournir une tension d’alimentation VCC à d’autres circuits. A titre d’exemple, le circuit de contrôle peut être le circuit SIC4310 proposé par la société Silicon Craft, ou un circuit équivalent proposé par la société NXP. Les deux bornes de communication en champ proche du circuit de contrôle 50 sont respectivement connectées aux première et deuxième bornes 11 et 12 de l’antenne primaire 10 afin de pouvoir récupérer de l’énergie provenant d’un champ magnétique et également pour communiquer sur le champ magnétique. Les bornes d’entrées/sorties configurables constituent la sortie de commande qui est connectée à l’entrée de commande des multiplexeurs 30 et 40. Suivant le type de multiplexeur 30 et 40 utilisé, le nombre d’entrées/sorties utilisé peut être variable suivant qu’il s’agisse d’un bus de commande de type série ou de type parallèle. Un condensateur réservoir 51 peut être connecté en parallèle entre les sorties de tension d’alimentation VCC et de masse du circuit de contrôle 50 afin de stabiliser la tension d’alimentation fournie aux multiplexeurs 30 et 40. The control circuit 50 is an integrated circuit of the microcontroller type, or of the hard-wired logic automaton type, having two terminals to be connected to a near-field communication antenna and which also has configurable inputs/outputs GPIO type (General Purpose Input Output). The control circuit 50 can also self-power on the communication magnetic field and supply a supply voltage VCC to other circuits. By way of example, the control circuit can be the SIC4310 circuit offered by the company Silicon Craft, or an equivalent circuit offered by the company NXP. The two near-field communication terminals of the control circuit 50 are respectively connected to the first and second terminals 11 and 12 of the primary antenna 10 in order to be able to recover energy from a magnetic field and also to communicate on the magnetic field. The configurable input/output terminals constitute the control output which is connected to the control input of the multiplexers 30 and 40. Depending on the type of multiplexer 30 and 40 used, the number of inputs/outputs used may vary according to whether it is a serial or parallel type control bus. A tank capacitor 51 may be connected in parallel between the VCC supply voltage and ground outputs of the control circuit 50 in order to stabilize the supply voltage supplied to the multiplexers 30 and 40.
[0033] Le principe général de fonctionnement du relais 1 consiste à placer un circuit lecteur dans le champ de l’antenne primaire 10 afin de recevoir un champ magnétique modulé. L’antenne primaire 10 transforme le champ magnétique en signaux électriques fournis au circuit de contrôle 50. Le circuit de contrôle 50 transforme les signaux électriques en énergie d’alimentation stockée dans le condensateur réservoir 51 et s’identifie auprès du circuit lecteur. Le circuit lecteur peut alors envoyer une commande de sélection au circuit de contrôle 50. La commande de sélection est ensuite transformée par le circuit de contrôle 50 en commande pour les multiplexeurs 30 et 40. La commande reçue par les multiplexeurs 30 et 40 permet de mettre en contact une antenne secondaire sélectionnée 20 avec l’antenne primaire 10. Toutes les commandes subséquentes du circuit lecteur reçues par l’antenne primaire 10 sont alors réémises par l’antenne secondaire 20 sélectionnée. The general operating principle of relay 1 consists of placing a reader circuit in the field of primary antenna 10 in order to receive a modulated magnetic field. The primary antenna 10 transforms the magnetic field into electrical signals supplied to the control circuit 50. The control circuit 50 transforms the electrical signals into supply energy stored in the reservoir capacitor 51 and identifies itself to the reader circuit. The reader circuit can then send a selection command to the control circuit 50. The selection command is then transformed by the control circuit 50 into a command for the multiplexers 30 and 40. The command received by the multiplexers 30 and 40 makes it possible to bring a selected secondary antenna 20 into contact with the primary antenna 10. All the commands subsequent readings of the reader circuit received by the primary antenna 10 are then retransmitted by the secondary antenna 20 selected.
[0034] Afin d’assurer l’alimentation du relais 1 et une bonne transmission de signal au niveau d’une antenne secondaire 20, il convient de s’assurer que l’antenne primaire 10 et l’antenne secondaire 20 soient en permanence accordées sur le champ du circuit lecteur afin d’entrer en résonnance pour amplifier le champ reçu du lecteur et restituer un champ amplifié au niveau de l’antenne secondaire 20. Dans l’exemple de réalisation de la figure 1, l’antenne primaire 10 comporte une spire 13 et un condensateur d’accord 14 et les antennes secondaires 20 comportent chacune une spire 23 et un condensateur d’accord 24. L’homme du métier comprendra que la taille et le nombre de spires 14 et 24 des antennes 10 et 20 peut être variable en fonction de la fréquence du champ magnétique de communication et également en fonction de valeurs envisageables pour les condensateurs d’accord 14 et 24. In order to ensure the supply of relay 1 and good signal transmission at the level of a secondary antenna 20, it should be ensured that the primary antenna 10 and the secondary antenna 20 are permanently tuned on the field of the reader circuit in order to enter into resonance to amplify the field received from the reader and restore an amplified field at the level of the secondary antenna 20. In the embodiment of FIG. 1, the primary antenna 10 comprises a turn 13 and a tuning capacitor 14 and the secondary antennas 20 each comprise a turn 23 and a tuning capacitor 24. Those skilled in the art will understand that the size and the number of turns 14 and 24 of the antennas 10 and 20 can be variable depending on the frequency of the communication magnetic field and also depending on possible values for the tuning capacitors 14 and 24.
[0035] Afin de permettre à un homme du métier de dimensionner au mieux les antennes 10 et 20, il convient de considérer trois modes de fonctionnement. Un premier mode de fonctionnement est relatif à l’approche d’un lecteur de l’antenne primaire 10. Durant ce premier mode de fonctionnement les premier et deuxième multiplexeurs 30 et 40 ne sont pas alimentés. Un deuxième mode de fonctionnement correspond à une communication établie entre le lecteur et le circuit de contrôle 50 dans lequel les premier et deuxième multiplexeurs 30 et 40 sont alimentés mais n’établissent aucune connexion avec une antenne secondaire 20. Un troisième mode de fonctionnement correspond à une communication établie entre le lecteur et le circuit de contrôle 50 dans lequel les premier et deuxième multiplexeurs 30 et 40 sont alimentés et établissent une connexion avec une antenne secondaire 20. La figure 2 correspond à une modélisation du circuit résonnant équivalent au schéma de la figure 1 dans les premier et deuxième modes de fonctionnement et la figure 3 correspond à une modélisation du circuit résonnant équivalent au schéma de la figure 1 dans le troisième mode de fonctionnement. [0035] In order to enable a person skilled in the art to size the antennas 10 and 20 as well as possible, three modes of operation should be considered. A first mode of operation relates to the approach of a reader to the primary antenna 10. During this first mode of operation the first and second multiplexers 30 and 40 are not powered. A second mode of operation corresponds to a communication established between the reader and the control circuit 50 in which the first and second multiplexers 30 and 40 are powered but do not establish any connection with a secondary antenna 20. A third mode of operation corresponds to a communication established between the reader and the control circuit 50 in which the first and second multiplexers 30 and 40 are powered and establish a connection with a secondary antenna 20. FIG. 2 corresponds to a model of the resonant circuit equivalent to the diagram of FIG. 1 in the first and second modes of operation and FIG. 3 corresponds to a modeling of the resonant circuit equivalent to the diagram of FIG. 1 in the third mode of operation.
[0036] Pour ces deux figures 2 et 3, l’antenne primaire 10 est modélisée par une inductance L13 et une capacité C14 correspondant respectivement à la spire 13 et au condensateur d’accord 14 en parallèle. Une capacité C50 correspond à la capacité des entrées du circuit de contrôle 50 qui vient en parallèle sur la capacité C14. Les premiers et deuxième multiplexeurs 30 et 40 sont modélisés respectivement par des capacités C30 et C40 placées entre l’une des bornes de la capacité C14 et la ligne de masse. Sur la figure 3, la modélisation de l’antenne secondaire 20 connectée consiste à rajouter en parallèle sur la capacité C14 une capacité C24 et une inductance L23 correspondant respectivement au condensateur d’accord 24 et à la spire 23. Les premier et deuxième multiplexeurs 30 et 40 étant identique et recevant les mêmes tensions d’alimentation et les mêmes signaux de commandes, les capacités C30 et C40 sont identiques. For these two figures 2 and 3, the primary antenna 10 is modeled by an inductor L13 and a capacitor C14 corresponding respectively to the turn 13 and to the tuning capacitor 14 in parallel. A capacitor C50 corresponds to the capacitor of the inputs of the control circuit 50 which comes in parallel on the capacitor C14. The first and second multiplexers 30 and 40 are respectively modeled by capacitors C30 and C40 placed between one of the terminals of capacitor C14 and the ground line. In FIG. 3, the modeling of the connected secondary antenna 20 consists in adding in parallel to the capacitor C14 a capacitor C24 and an inductor L23 corresponding respectively to the tuning capacitor 24 and to the turn 23. The first and second multiplexers 30 and 40 being identical and receiving the same supply voltages and the same control signals, the capacitors C30 and C40 are identical.
[0037] La fréquence de résonnance F du circuit de la figure 2 correspond à la formule suivante : The resonance frequency F of the circuit of Figure 2 corresponds to the following formula:
[0038] [math 1]
Figure imgf000010_0001
[0038] [math 1]
Figure imgf000010_0001
[0040] Bien que la formule de détermination de la fréquence de résonnance soit la même, il convient de noter que les capacité C30 et C40 varient suivant l’état d’alimentation des premier et deuxième multiplexeurs 30 et 40. Pour s’affranchir de la variation des capacités C30 et C40, il convient de dimensionner le condensateur d’accord 14 de sorte que sa capacité C14 soit suffisamment importante pour rendre la variation des capacités C30 et C40 négligeable. A titre d’exemple, la variation des capacités C30 et C40 étant de quelques picofarads, on peut choisir une capacité C14 supérieure à 500 picofarads de sorte que la variation de fréquence de résonnance soit inférieure à un pour cent. Une fois que la valeur de la capacité C14 est choisie, il convient de déterminer l’inductance L13 en fonction de la fréquence de résonnance souhaitée et de la valeur des capacité C14, C30, C40 et C50. L’inductance L13 étant déterminée, l’homme du métier peut dimensionner la spire 13. [0041] La fréquence de résonnance F du circuit de la figure 3 correspond à la formule suivante : [0040] Although the formula for determining the resonance frequency is the same, it should be noted that the capacities C30 and C40 vary according to the supply state of the first and second multiplexers 30 and 40. variation of the capacitances C30 and C40, it is necessary to size the tuning capacitor 14 so that its capacitance C14 is large enough to make the variation of the capacitances C30 and C40 negligible. By way of example, the variation of the capacitors C30 and C40 being of a few picofarads, it is possible to choose a capacitor C14 greater than 500 picofarads so that the variation in resonance frequency is less than one percent. Once the value of capacitor C14 has been chosen, inductance L13 should be determined according to the desired resonance frequency and the value of capacitors C14, C30, C40 and C50. The inductance L13 being determined, the person skilled in the art can dimension the turn 13. The resonance frequency F of the circuit of Figure 3 corresponds to the following formula:
[0042] [math 2]
Figure imgf000011_0001
[0042] [math 2]
Figure imgf000011_0001
[0044] Dans le cas de la figure 3, il convient de noter que les spires 23 peuvent être dessinées en fonction de la surface que celles-ci doivent occuper sur un plateau et l’inductance résultante L23 sera calculée en fonction du dessin desdites spires 23. Une fois l’inductance L23 calculée, la capacité C24 est déterminée pour ramener la fréquence F à la valeur de la fréquence du champ produit par le lecteur. Il est à noter que, si les spires 24 ont une surface relativement faible avec des longueurs de conducteur importantes pour les relier aux premier et deuxième multiplexeurs 30 et 40, les conducteurs devront également être pris en compte pour le calcul de l’inductance L23 de chaque antenne secondaire 20. Ainsi, les capacités C24 des condensateurs d’accord 24 pourront être différents pour chaque antenne secondaire 20. In the case of Figure 3, it should be noted that the turns 23 can be drawn according to the surface that they must occupy on a plate and the resulting inductance L23 will be calculated according to the drawing of said turns 23. Once the inductance L23 has been calculated, the capacitance C24 is determined to bring the frequency F back to the value of the frequency of the field produced by the reader. It should be noted that, if the turns 24 have a relatively small surface with significant conductor lengths to connect them to the first and second multiplexers 30 and 40, the conductors will also have to be taken into account for the calculation of the inductance L23 of each secondary antenna 20. Thus, the capacitances C24 of the tuning capacitors 24 may be different for each secondary antenna 20.
[0045] Comme indiqué précédemment, le dimensionnement de la spire 13 de l’antenne primaire 10 est contraint par le dimensionnement du condensateur d’accord 14. Typiquement la valeur de l’inductance est donnée par la formule suivante : As indicated above, the dimensioning of the turn 13 of the primary antenna 10 is constrained by the dimensioning of the tuning capacitor 14. Typically the value of the inductance is given by the following formula:
[0046] [math 3] [0046] [math 3]
1 1
[0047] L13 = [0047] L13 =
(27TF)2X(C14+C50+— ) (27TF) 2X (C14+C50+— )
[0048] A titre d’exemple, la norme ISO/IEC 14443 définit une fréquence du champ de communication à une fréquence de 13,56 MHz. Ayant défini un condensateur d’accord ayant une capacité supérieure à 500pF, la somme des capacités C14, C30, C40 et C50 sera également supérieure à 500pF. Ainsi, l’inductance L13 doit être inférieure à 275 nanohenrys. Un calcul simplifié de l’inductance L d’une spire rectangulaire de cotés A et B imprimée sur un circuit imprimé avec des conducteurs ayant une largeur E peut se faire à l’aide de la formule suivante : By way of example, the ISO/IEC 14443 standard defines a frequency of the communication field at a frequency of 13.56 MHz. Having defined a tuning capacitor having a capacitance greater than 500pF, the sum of the capacitances C14, C30, C40 and C50 will also be greater than 500pF. Thus, the inductance L13 must be less than 275 nanohenrys. A simplified calculation of the inductance L of a rectangular turn of sides A and B printed on a printed circuit with conductors having a width E can be done using the following formula:
[0049] [math 4]
Figure imgf000012_0001
[0049] [math 4]
Figure imgf000012_0001
[0051] avec mq qui correspond à la constante magnétique. L’homme du métier peut calculer qu’une spire rectangulaire réalisée avec des conducteurs de 2 mm de large doit être inférieure à un rectangle de 6 cm par 8 cm. L’homme du métier prendra soin d’ajuster la taille de la spire 13 afin d’obtenir la valeur d’inductance qui lui conviendra au mieux. Il est à noter que pour une si petite inductance, il convient également de prendre en considération l’inductance correspondant aux conducteurs reliés à la spire 13. Un ajustement de la capacité C14 peut également être réalisé après avoir réalisé le dessin définitif de la spire 13 et des conducteurs la reliant au condensateur d’accord 14. [0051] with mq which corresponds to the magnetic constant. A person skilled in the art can calculate that a rectangular turn made with conductors 2 mm wide must be smaller than a rectangle of 6 cm by 8 cm. The person skilled in the art will take care to adjust the size of the turn 13 in order to obtain the inductance value which suits him best. It should be noted that for such a small inductance, it is also necessary to take into consideration the inductance corresponding to the conductors connected to the turn 13. An adjustment of the capacitance C14 can also be carried out after having produced the final design of the turn 13 and conductors connecting it to the tuning capacitor 14.
[0052] La spire 13 déterminée est relativement petite. Considérant un circuit lecteur de type téléphone portable qui comporte également une antenne dont la surface est du même ordre de grandeur, il convient de positionner au mieux le téléphone portable sur l’antenne primaire afin d’assurer un couplage optimum. Considérant que la position d’une antenne de communication en champ proche peut être placée à différents endroit à l’intérieur d’un téléphone portable en fonction du modèle, des marques de repérage peuvent ne pas suffire pour positionner correctement un téléphone sur l’antenne primaire 10. The turn 13 determined is relatively small. Considering a reader circuit of the mobile telephone type which also comprises an antenna whose surface is of the same order of magnitude, it is advisable to best position the mobile telephone on the primary antenna in order to ensure optimum coupling. Considering that the position of a near-field communication antenna can be placed in different places inside a mobile phone depending on the model, registration marks may not be enough to correctly position a phone on the antenna. primary 10.
[0053] Une amélioration permettant d’assurer un couplage optimum peut être l’ajout d’un circuit d’aide au couplage. Le circuit d’aide au couplage peut être un circuit de type thermométrique à diodes électroluminescentes (ci-après LED) qui va permettre d’indiquer en éclairant un nombre de LEDs proportionnel au couplage entre le lecteur et l’antenne primaire 10. Grâce à un tel circuit, un utilisateur peut déplacer le lecteur au niveau de l’antenne primaire jusqu’à l’éclairage de la totalité des LEDs. An improvement making it possible to ensure optimum coupling can be the addition of a coupling aid circuit. The coupling aid circuit can be a circuit of the thermometric type with light-emitting diodes (hereinafter LEDs) which will make it possible to indicate by illuminating a number of LEDs proportional to the coupling between the reader and the primary antenna 10. Thanks to such a circuit, a user can move the reader at the level of the primary antenna until all the LEDs are lit.
[0054] La figure 4 montre un schéma fonctionnel d’un exemple de circuit d’aide au couplage 400. Typiquement, le circuit d’aide au couplage 400 vient se connecter sur les sorties de tension d’alimentation VCC et de masse du circuit de contrôle 50 qui fournit une tension d’alimentation qui est proportionnelle au couplage réel entre l’antenne primaire 10 et le lecteur. L’homme du métier comprendra que le circuit d’aide au couplage de la figure 4 est donné à titre d’exemple et peut être remplacé par d’autres types de circuits thermométriques. [0054] Figure 4 shows a block diagram of an example of a coupling aid circuit 400. Typically, the coupling aid circuit 400 is connected to the supply voltage VCC and ground outputs of the circuit control 50 which provides a supply voltage which is proportional to the actual coupling between the primary antenna 10 and the reader. Those skilled in the art will understand that the coupling aid circuit of Figure 4 is given by way of example and can be replaced by other types of thermometric circuits.
[0055] Le circuit d’aide au couplage 400 comporte un régulateur de tension 410 qui permet d’alimenter des LEDs 420, par exemple au nombre de trois. A cet effet, chaque LED 420 est montée en série avec une résistance 430 et le canal d’un transistor 440. La branche ainsi constituée est connectée entre une sortie de tension régulée du régulateur de tension 410 et la masse. Chaque résistance 430 est dimensionnée pour limiter le courant dans la LED 420 lorsque le canal du transistor 440 est saturé. Chaque transistor 440, par exemple de type MOSFET (de l’anglais Métal Oxide Semiconductor Field Effect Transistor), a sa source connectée à la masse et sa grille connectée au point milieu d’un pont diviseur de tension 450 qui est connecté entre la tension d’alimentation VCC et la masse. Chaque pont diviseur de tension 450 comporte deux résistances R1 et R2 en série dont les valeurs sont ajustées pour que le point milieu corresponde à la tension de seuil du transistor 440 auquel il est connecté lorsque la tension d’alimentation correspond à un seuil d’allumage de la diode 420 associée. Les seuils d’allumage sont différents pour chaque pont diviseur de tension 450 afin d’allumer une, deux ou trois LED 420 en fonction de la tension d’alimentation VCC. The coupling aid circuit 400 comprises a voltage regulator 410 which makes it possible to supply LEDs 420, for example three in number. To this end, each LED 420 is connected in series with a resistor 430 and the channel of a transistor 440. The branch thus formed is connected between a regulated voltage output of the voltage regulator 410 and ground. Each resistor 430 is sized to limit the current in LED 420 when the channel of transistor 440 is saturated. Each transistor 440, for example of the MOSFET (Metal Oxide Semiconductor Field Effect Transistor) type, has its source connected to ground and its gate connected to the midpoint of a voltage divider bridge 450 which is connected between the voltage VCC power supply and ground. Each voltage divider bridge 450 comprises two resistors R1 and R2 in series whose values are adjusted so that the midpoint corresponds to the threshold voltage of the transistor 440 to which it is connected when the supply voltage corresponds to an ignition threshold. of the associated diode 420. The ignition thresholds are different for each 450 voltage divider bridge in order to light one, two or three 420 LEDs depending on the VCC supply voltage.
[0056] Une autre possibilité d’amélioration du couplage peut consister à adapter l’antenne primaire pour que celle-ci occupe une surface plus importante sans toutefois changer l’inductance de ladite antenne. Une telle amélioration peut être utilisée à la place ou en combinaison avec un circuit d’aide au couplage. Another possibility of improving the coupling may consist in adapting the primary antenna so that it occupies a larger surface without however changing the inductance of said antenna. Such an enhancement can be used instead of or in combination with a coupling aid circuit.
[0057] A titre d’exemple non limitatif, la figure 5 montre une antenne primaire 10 comportant quatre spires 13’ connectées en parallèle sur le condensateur d’accord 14. Les quatre spires 13’ sont juxtaposées de sorte à couvrir une surface plus importante qu’une unique spire. En outre le montage en parallèle des spires 13’ a pour effet de présenter une inductance équivalente au quart de l’inductance d’une seule spire 13’, ce qui permet d’utiliser des spires de taille plus importante. De nombreuses autres configurations d’antenne utilisant des spires juxtaposées peuvent être utilisées en couplant les spires en parallèle ou en connectant en parallèle des branches de spires montées en série. [0058] Le circuit de la figure 1 montrait un exemple de réalisation utilisant deux antennes secondaires. Cependant pour réaliser un plateau de localisation, il convient d’utiliser une matrice d’antennes secondaires 20, à l’image de ce qui est mis en œuvre dans la demande de brevet WO 2021/038167. La figure 6 montre un exemple de réalisation d’un relais 1 selon l’invention disposant d’une pluralité d’antennes secondaires 20 disposées en lignes et colonnes d’une matrice permettant de repérer une étiquette électronique sur un plan. Les antennes secondaires 20 sont réalisées sur deux faces d’un circuit imprimé ou sur deux couches de circuit imprimé afin de les isoler électriquement. Le circuit imprimé ou les couches de circuit imprimé peuvent être réalisé à l’aide de l’une des nombreuses technologies connues, utilisant un substrat en résine époxy, en polyimide, en papier, en carton recouverte d’une couche conductrice en cuivre gravé, en encre conductrice sérigraphiée, en feuille d’aluminium découpée, L’homme du métier, pouvant choisir ce qui est le plus adapté en fonction de l’application souhaitée. Cependant, lorsqu’une antenne secondaire 20 est activée le champ magnétique va avoir pour effet d’exciter les antennes secondaires 20 qui lui sont superposées et de faire entrer celles-ci en résonnance. Pour éviter un tel couplage entre les antennes secondaires 20, il convient de neutraliser les antennes qui ne sont pas sélectionnées. Le même phénomène de couplage peut également se produire avec des antennes juxtaposées lorsque celles-ci sont trop proches les unes des autres. Si la configuration des antennes secondaires présente un risque important de couplage il convient alors de rajouter des circuits de neutralisation. Afin de ne pas surcharger la figure 6, un exemple de réalisation de circuits de neutralisation est représenté sur la figure 1 bien qu’il ne soit pas nécessaire de neutraliser les antennes secondaires 20 si celles-ci sont au nombre de deux et si elles sont suffisamment éloignées l’une de l’autre. L’homme du métier pourra aisément les transposer sur le schéma de la figure 6. By way of non-limiting example, FIG. 5 shows a primary antenna 10 comprising four turns 13′ connected in parallel to the tuning capacitor 14. The four turns 13′ are juxtaposed so as to cover a larger surface. only one whorl. In addition, the parallel mounting of the turns 13' has the effect of presenting an inductance equivalent to a quarter of the inductance of a single turn 13', which makes it possible to use larger turns. Many other antenna configurations using juxtaposed turns can be used by coupling the turns in parallel or by connecting branches of turns connected in series in parallel. The circuit of Figure 1 showed an embodiment using two secondary antennas. However, to produce a location plate, it is necessary to use a matrix of secondary antennas 20, like what is implemented in patent application WO 2021/038167. FIG. 6 shows an embodiment of a relay 1 according to the invention having a plurality of secondary antennas 20 arranged in rows and columns of a matrix making it possible to identify an electronic tag on a plane. The secondary antennas 20 are produced on two faces of a printed circuit or on two layers of printed circuit in order to insulate them electrically. The printed circuit or printed circuit layers can be made using one of many known technologies, using an epoxy resin, polyimide, paper, cardboard substrate covered with an etched copper conductive layer, in screen-printed conductive ink, in cut aluminum foil, the person skilled in the art, being able to choose what is most suitable according to the desired application. However, when a secondary antenna 20 is activated, the magnetic field will have the effect of exciting the secondary antennas 20 which are superimposed on it and causing them to resonate. To avoid such a coupling between the secondary antennas 20, it is necessary to neutralize the antennas which are not selected. The same coupling phenomenon can also occur with juxtaposed antennas when the latter are too close to each other. If the configuration of the secondary antennas presents a significant risk of coupling, it is then advisable to add neutralization circuits. In order not to overload FIG. 6, an example embodiment of neutralization circuits is shown in FIG. 1 although it is not necessary to neutralize the secondary antennas 20 if these are two in number and if they are far enough away from each other. A person skilled in the art can easily transpose them to the diagram in Figure 6.
[0059] Afin de neutraliser les antennes secondaires 20, le relais 1 comporte un troisième multiplexeur 60, qui peut être de même nature que les premier et deuxième multiplexeurs 30 et 40 ou qui peut être simplement mono directionnel, l’important étant que le troisième multiplexeur 60 dispose d’une entrée de signal et d’une pluralité de sorties de signal. Le troisième multiplexeur dispose d’une entrée de commande reliée à une sortie de commande d’un circuit de contrôle 50 et reçoit les mêmes signaux de commande que les premier et deuxième multiplexeur 30 et 40 afin de sélectionner une sortie de signal correspondant à l’antenne secondaire 20 sélectionnée. L’entrée de signal du troisième multiplexeur est reliée à un niveau logique de commande, par exemple un niveau bas correspondant à la masse. Chaque sortie de signal du troisième multiplexeur 60 est connectée à une entrée de commande d’un circuit de neutralisation 70 associé à une antenne secondaire 20. Par défaut, si l’entrée de commande du circuit de neutralisation 70 ne reçoit pas un niveau logique de commande qui désactive ledit circuit de neutralisation 70, celui-ci est activé et neutralise l’antenne secondaire qui lui est associée. In order to neutralize the secondary antennas 20, the relay 1 comprises a third multiplexer 60, which can be of the same nature as the first and second multiplexers 30 and 40 or which can be simply mono directional, the important thing being that the third Multiplexer 60 has one signal input and a plurality of signal outputs. The third multiplexer has a control input connected to a control output of a control circuit 50 and receives the same control signals as the first and second multiplexers 30 and 40 to select a signal output corresponding to the secondary antenna 20 selected. The signal input of the third multiplexer is connected to a logic control level, for example a low level corresponding to ground. Each signal output of the third multiplexer 60 is connected to a control input of a neutralization circuit 70 associated with a secondary antenna 20. By default, if the control input of the neutralization circuit 70 does not receive a logic level of control which deactivates said neutralization circuit 70, the latter is activated and neutralizes the secondary antenna which is associated with it.
[0060] Pour neutraliser une antenne résonnante composée d’une spire en parallèle sur un condensateur, de nombreuses possibilités sont offertes, telles que désaccorder le circuit résonnant ou ouvrir le circuit résonnant. Selon un mode de réalisation préféré, il est proposé de désaccorder le circuit en court-circuitant le condensateur d’accord 24. Un tel court-circuit peut être réalisé à l’aide d’un transistor. Cependant, l’antenne secondaire 20 n’étant pas reliée à un potentiel de référence, il est préféré d’utiliser un circuit de neutralisation 70 qui comporte deux transistors 71 et 72 ayant leur canal respectivement connecté entre l’une des bornes du condensateur d’accord 24 et la masse. Les grilles des deux transistors 71 et 72 sont reliées ensemble à une sortie du troisième multiplexeur 60 et à une première borne d’une résistance de tirage 73. Une deuxième borne de la résistance de tirage 73 est reliée à la tension d’alimentation VCC. Afin de réduire au maximum la consommation des circuits de neutralisation, les transistors 71 et 72 sont préférentiellement de type MOSFET et la résistance de tirage 73 dispose d’une résistance très élevée. To neutralize a resonant antenna composed of a turn in parallel on a capacitor, many possibilities are offered, such as detuning the resonant circuit or opening the resonant circuit. According to a preferred embodiment, it is proposed to detune the circuit by shorting the tuning capacitor 24. Such a shorting can be achieved using a transistor. However, the secondary antenna 20 not being connected to a reference potential, it is preferred to use a neutralization circuit 70 which comprises two transistors 71 and 72 having their channel respectively connected between one of the terminals of the capacitor d chord 24 and mass. The gates of the two transistors 71 and 72 are connected together to an output of the third multiplexer 60 and to a first terminal of a pull-up resistor 73. A second terminal of the pull-up resistor 73 is connected to the supply voltage VCC. In order to reduce the consumption of the neutralization circuits as much as possible, the transistors 71 and 72 are preferably of the MOSFET type and the pull-up resistor 73 has a very high resistance.
[0061] Lorsqu’une antenne secondaire 20 n’est pas sélectionnée, la sortie de signal correspondante du troisième multiplexeur 60 n’est pas reliée à la masse, les grilles des transistors 71 et 72 reçoivent alors la tension d’alimentation VCC par l’intermédiaire de la résistance de tirage 73 et deviennent passant. Les transistors 71 et 73 étant passant, les bornes du condensateur d’accord 24 se trouvent alors connectées à la masse, ce qui met le condensateur d’accord 24 en court-circuit, neutralisant ainsi l’antenne secondaire 20 qui n’est pas sélectionnée. When a secondary antenna 20 is not selected, the corresponding signal output of the third multiplexer 60 is not connected to ground, the gates of transistors 71 and 72 then receive the supply voltage VCC by the intermediary of the pull-up resistor 73 and become on. Transistors 71 and 73 being on, the terminals of tuning capacitor 24 are then connected to ground, which puts tuning capacitor 24 in short circuit, thus neutralizing the secondary antenna 20 which is not selected.
[0062] Lorsqu’une antenne secondaire est sélectionnée, la sortie de signal correspondante du multiplexeur 60 est reliée à la masse ainsi que les grilles des transistors 71 et 72, ce qui bloque les transistors. Les transistors étant bloqués, l’antenne secondaire 20 sélectionnée peut résonner librement. When a secondary antenna is selected, the corresponding signal output of multiplexer 60 is connected to ground as well as the gates of transistors 71 and 72, which blocks the transistors. The transistors being blocked, the secondary antenna 20 selected can resonate freely.
[0063] Selon le mode de réalisation des figures 1 et 6, le nombre d’antennes secondaires 20 peut être limité par les capacités des multiplexeurs 30, 40 et 60 et par le nombre de sorties de commande du circuit de contrôle 50. En effet, le circuit de contrôle 50 ne fait que transcoder des commandes reçues du circuit lecteur en signaux sur ses entrées/sorties. L’adressage d’un bus série nécessite que le circuit lecteur envoie au circuit de contrôle 50 une commande par bit envoyé sur le bus série, ce qui nécessite un nombre de commandes relativement important pour adresser les multiplexeurs 30, 40 et 60. L’utilisation d’un bus parallèle pour commander les multiplexeurs 30, 40 et 60 est toutefois limité par le nombre d’entrées/sorties disponible sur le circuit de contrôle 50. Si le circuit de commande 50 ne dispose que de quatre entrées/sorties de type GPIO, les multiplexeurs ne peuvent adresser au plus que huit antennes secondaires 20. According to the embodiment of Figures 1 and 6, the number of secondary antennas 20 can be limited by the capacities of the multiplexers 30, 40 and 60 and by the number of control outputs of the control circuit 50. Indeed , the control circuit 50 only transcodes commands received from the reader circuit into signals on its inputs/outputs. Addressing a serial bus requires that the reader circuit send to the control circuit 50 one command per bit sent on the serial bus, which requires a relatively large number of commands to address the multiplexers 30, 40 and 60. use of a parallel bus to control the multiplexers 30, 40 and 60 is however limited by the number of inputs/outputs available on the control circuit 50. If the control circuit 50 has only four inputs/outputs of type GPIO multiplexers can address at most eight secondary antennas 20.
[0064] Si l’on souhaite adresser un nombre d’antennes supérieur à huit, il est possible d’ajouter un deuxième circuit de contrôle 50’ comme représenté sur la figure 7 qui montre une autre variante des schémas des figures 1 et 6. Le deuxième circuit de contrôle 50’ est identique au circuit de contrôle 50. Les deux bornes de communication en champ proche du deuxième circuit de contrôle 50’ sont connectées en parallèle sur les deux bornes de communication en champ proche du circuit de contrôle 50. Ainsi le circuit lecteur peut adresser l’un ou l’autre des circuits de contrôle 50 et 50’. En outre, le deuxième circuit de contrôle 50’ dispose également de sorties de tension d’alimentation VCC et de masse connectées également en parallèle sur les sorties de tension d’alimentation VCC et de masse du circuit de contrôle 50. Ainsi les circuits de contrôle 50 et 50’ contribuent tous les deux à l’alimentation des multiplexeurs 30, 40 et 60. Les entrées/sorties configurables du deuxième circuit de contrôle 50’ peuvent être juxtaposées avec les entrées/sorties du circuit de contrôle 50 ce permet de doubler la taille d’un bus parallèle de commande, faisant passer la taille maximale du bus de quatre à huit signaux de commande, ce qui peut permettre d’adresser jusqu’à 128 antennes secondaires. A cet effet il est possible d’utiliser des multiplexeurs disposant d’un plus grand nombre d’entrées/sorties voire même de rajouter des multiplexeurs supplémentaires 30’, 40’ et 60’ venant augmenter la capacité d’adressage d’antennes secondaires 20. If it is desired to address a number of antennas greater than eight, it is possible to add a second control circuit 50' as represented in FIG. 7 which shows another variant of the diagrams of FIGS. 1 and 6. The second control circuit 50' is identical to the control circuit 50. The two near-field communication terminals of the second control circuit 50' are connected in parallel to the two near-field communication terminals of the control circuit 50. Thus the reader circuit can address either of the control circuits 50 and 50'. In addition, the second control circuit 50' also has supply voltage VCC and ground outputs also connected in parallel to the supply voltage VCC and ground outputs of the control circuit 50. Thus the control circuits 50 and 50' both contribute to the supply of the multiplexers 30, 40 and 60. The configurable inputs/outputs of the second control circuit 50' can be juxtaposed with the inputs/outputs of the control circuit 50 which makes it possible to doubling the size of a parallel control bus, increasing the maximum bus size from four to eight control signals, which can address up to 128 secondary antennas. For this purpose it is possible to use multiplexers having a greater number of inputs/outputs or even to add additional multiplexers 30', 40' and 60' increasing the addressing capacity of secondary antennas 20 .
[0065] Sur la figure 7, les premier, deuxième et troisième multiplexeurs 30, 40 et 60 sont doublés. Les entrées de commandes des multiplexeurs 30, 30’, 40, 40’, 60 et 60’ recevant seulement une partie du bus de commande. Il est toutefois possible de rajouter un nombre plus important de multiplexeurs à condition de rester dans la limite de capacité d’alimentation que l’on peut obtenir à partir du champ de communication fourni par le lecteur. In Figure 7, the first, second and third multiplexers 30, 40 and 60 are doubled. The control inputs of the 30, 30', 40, 40', 60 and 60' multiplexers only receive part of the control bus. However, it is possible to add a larger number of multiplexers provided that you remain within the supply capacity limit that can be obtained from the communication field provided by the reader.
[0066] Selon un premier exemple de mise en œuvre, la figure 8 montre un plateau de jeu 800 destiné à coopérer avec un téléphone portable intelligent 810, communément appelé smartphone. A cet effet, le plateau de jeu 800 intègre dans son épaisseur un circuit imprimé sur lequel les différents composants constituant le relais 1 objet de l’invention ont été dessinés ou soudés suivant le type de composant. A titre d’exemple, le plateau de jeu comporte une zone de jeu 820 elle-même imprimée en fonction du jeu. Huit spires 23 d’antennes secondaires 20 sont disposées en matrice et placées sous la zone de jeu 820 afin de repérer la position d’une pièce munie d’une étiquette d’identification électronique placée sur ladite zone de jeu 820. Des spires 13’ d’une antenne primaire 10 sont placées sous une zone de dépose 830 localisée sur une partie latérale du plateau de jeu 800. Les autres composants du relais 1 sont regroupés dans une zone neutre 840 du plateau de jeu 800, de préférence la plus éloignée possible des spires 13’ et 23 afin de réduire les risques d’interférence. Une zone d’indication 850 peut regrouper les LEDs 420 à l’intérieur de la zone neutre 840. According to a first example of implementation, FIG. 8 shows a game board 800 intended to cooperate with a smart mobile phone 810, commonly called a smartphone. To this end, the game board 800 incorporates in its thickness a printed circuit on which the various components constituting the relay 1 object of the invention have been drawn or welded depending on the type of component. By way of example, the game board includes a game zone 820 itself printed according to the game. of a piece provided with an electronic identification tag placed on said game area 820. Turns 13' of a primary antenna 10 are placed under a deposit area 830 located on a side part of the game board 800. The other components of relay 1 are grouped together in a neutral zone 840 of game board 800, preferably as far as possible from turns 13' and 23 in order to reduce the risk of interference. An 850 indication zone can group 420 LEDs inside the 840 neutral zone.
[0067] Préalablement à la mise en œuvre du jeu, il convient de télécharger une application dans le smartphone 820 qui inclut un procédé de localisation d’étiquettes électronique tel que par exemple décrit dans la demande de brevet WO 2021/038167 et modifié pour prendre en compte le relais 1. Une fois le programme chargé, le smartphone 820 est placé par un utilisateur sur la zone de dépose 830. Le smartphone 820 est ensuite déplacé sur cette zone de dépose jusqu’à ce que les trois LEDs 420 soient allumées. Le smartphone 820 établit une première communication avec le circuit de contrôle 50 lors d’une initialisation du jeu. Par la suite, chaque fois qu’une antenne secondaire 20 doit être sélectionnée le smartphone 820 va envoyer une commande au circuit de contrôle 50 lui indiquant la valeur des signaux de sortie qui doivent être positionnés sur les sorties de commande. Le reste du procédé de localisation peut ensuite être mis en œuvre par le smartphone 820 à l’identique de ce qui décrit dans la demande WO 2021/038167. L’homme du métier pourra apprécier que l’utilisation d’un tel procédé permet d’avoir une précision de localisation qui est environ quatre fois inférieure à la largeur d’une spire 23 d’antennes secondaires, ce qui permet d’éviter d’utiliser un nombre d’antennes secondaires 20 plus important. [0067] Prior to the implementation of the game, it is necessary to download an application in the smartphone 820 which includes a method for locating electronic tags such as for example described in patent application WO 2021/038167 and modified to take into account relay 1. Once the program has been loaded, the smartphone 820 is placed by a user on the zone of deposit 830. The smartphone 820 is then moved over this deposit zone until the three LEDs 420 are lit. The smartphone 820 establishes a first communication with the control circuit 50 during an initialization of the game. Thereafter, each time a secondary antenna 20 must be selected the smartphone 820 will send a command to the control circuit 50 indicating to it the value of the output signals which must be positioned on the control outputs. The rest of the location process can then be implemented by the smartphone 820 identical to what is described in application WO 2021/038167. Those skilled in the art will be able to appreciate that the use of such a method makes it possible to have a location precision which is approximately four times less than the width of a turn 23 of secondary antennas, which makes it possible to avoid use a greater number of secondary antennas 20.
[0068] D’autres exemples de mise en œuvre peuvent être envisagés. Il est relativement courant dans les restaurants que les clients demandent à ce que l’addition soit divisée entre eux. La norme EMV (acronyme de Europay MasterCard Visa) n’autorise une transaction bancaire sans contact que s’il n’y a qu’une seule carte bancaire dans le champ de communication d’un terminal de paiement. Un paiement distribué n’est donc pas possible sauf à disposer de plusieurs antennes sur le terminal de paiement. Other examples of implementation can be considered. It is relatively common in restaurants for customers to request that the bill be split between them. The EMV standard (acronym for Europay MasterCard Visa) only authorizes a contactless banking transaction if there is only one bank card in the communication field of a payment terminal. A distributed payment is therefore not possible unless there are several antennas on the payment terminal.
[0069] Selon un deuxième exemple de mise en œuvre, la figure 9 montre un plateau de paiement 900 destiné à coopérer avec un terminal de paiement 910 pour effectuer un paiement sans contact distribué sur plusieurs cartes bancaires. A cet effet, le plateau de paiement 900 intègre dans son épaisseur un circuit imprimé muni des différents composants constituant le relais 1 objet de l’invention. Le plateau de paiement 900 comporte une pluralité de zones de paiement 920, par exemple huit, repérées par des rectangles d’une taille légèrement supérieure à la taille d’une carte bancaire. Huit spires 23 d’antennes secondaires 20 sont disposées chacune sous chaque zone de paiement 920. Afin de ne pouvoir communiquer qu’avec la carte bancaire située dans la zone de paiement 920, chaque spire 23 est de petite dimension et se trouve placée au centre de chaque zone de paiement 920. L’homme du métier remarquera qu’il n’est pas nécessaire de neutraliser les antennes secondaires 20 dans ce type d’application car celles- ci n’interfèrent pas entre elles. Des spires 13’ d’une antenne primaire 10 sont placées sous une zone de dépose 930 localisée sur une partie latérale du plateau de paiement 900. Les autres composants du relais 1 sont regroupés dans une zone neutre 940 du plateau de paiement 900. Une zone d’indication 850 peut regrouper les LEDs 420 à l’intérieur de la zone neutre 940. According to a second example of implementation, FIG. 9 shows a payment tray 900 intended to cooperate with a payment terminal 910 to make a contactless payment distributed on several bank cards. To this end, the payment plate 900 incorporates in its thickness a printed circuit equipped with the various components constituting the relay 1 which is the subject of the invention. The payment tray 900 comprises a plurality of payment areas 920, for example eight, identified by rectangles of a size slightly larger than the size of a bank card. Eight turns 23 of secondary antennas 20 are each arranged under each payment zone 920. In order to be able to communicate only with the bank card located in the payment zone 920, each turn 23 is of small size and is placed in the center of each payment zone 920. Those skilled in the art will notice that it is not necessary to neutralize the secondary antennas 20 in this type of application because these these do not interfere with each other. Turns 13' of a primary antenna 10 are placed under a deposit zone 930 located on a side part of the payment platform 900. The other components of the relay 1 are grouped together in a neutral zone 940 of the payment platform 900. A zone indication 850 can group the LEDs 420 inside the neutral zone 940.
[0070] Pour effectuer un paiement distribué, le terminal de paiement 910 dispose d’un mode de paiement distribué destiné à coopérer avec le plateau de paiement. Lorsque le commerçant veut réaliser un paiement distribué, celui-ci va placer les cartes bancaires sur lesquelles le paiement doit être distribué sur les zones de paiement 920, à raison d’une carte par zone de paiement 920. Ensuite, le commerçant va rentrer dans le terminal de paiement 910 le total à payer. Le terminal de paiement 910 est alors placé sur la zone de dépose 930 en ajustant la position dudit terminal 910 jusqu’à ce que les trois LEDs 420 soient allumées. Le commerçant peut alors lancer l’application de paiement distribué. To make a distributed payment, the payment terminal 910 has a distributed payment mode intended to cooperate with the payment platform. When the merchant wants to make a distributed payment, he will place the bank cards on which the payment must be distributed on the payment zones 920, at the rate of one card per payment zone 920. Then, the merchant will enter the payment terminal 910 the total to be paid. The payment terminal 910 is then placed on the deposit area 930 by adjusting the position of said terminal 910 until the three LEDs 420 are lit. The merchant can then launch the distributed payment application.
[0071] Le paiement distribué fonctionne en deux phases. Une première phase consiste à déterminer combien de cartes bancaires sont présentes. A cet effet, le terminal de paiement va envoyer des commandes de sélection d’antennes secondaires 20 au circuit de contrôle 50 puis détecter si une carte bancaire est présente pour chaque antenne. Après avoir sélectionné et interrogé toutes les antennes secondaires 20, le terminal de paiement 910 connaît le nombre de cartes bancaires à débiter ainsi que l’emplacement correspondant à une antenne secondaire 20. A l’issue de cette première phase, le terminal de paiement affiche le nombre de cartes détectées, calcule le montant à payer pour chaque carte bancaire et demande confirmation du débit. Après confirmation du débit, le terminal de paiement 910 va passer dans une deuxième phase de débit en réalisant des opérations de débit pour chaque carte bancaire. Une commande de sélection d’antenne est envoyée au circuit de contrôle 50 puis une commande de désélection est envoyée au circuit de contrôle afin que celui-ci ne réponde plus aux commandes envoyées par le terminal de paiement. Le paiement selon protocole EMV est ensuite lancé pour réaliser le paiement avec la carte positionnée sur l’antenne secondaire 20 sélectionnée qui se trouve être seule à répondre aux commandes envoyées par le terminal de paiement 910. A l’issue du paiement, le terminal de paiement 910 envoie une commande de sélection au circuit de contrôle 50 afin que celui-ci puisse à nouveau interagir avec le terminal de paiement 910. Une autre antenne secondaire 20 est sélectionnée pour procéder au paiement suivant après avoir à nouveau désélectionné le circuit de contrôle 50. L’opération est ainsi répétée jusqu’à ce que tous les paiements aient été effectués. [0071] Distributed payment operates in two phases. A first phase consists of determining how many bank cards are present. To this end, the payment terminal will send secondary antenna selection commands 20 to the control circuit 50 and then detect whether a bank card is present for each antenna. After having selected and interrogated all the secondary antennas 20, the payment terminal 910 knows the number of bank cards to be debited as well as the location corresponding to a secondary antenna 20. At the end of this first phase, the payment terminal displays the number of cards detected, calculates the amount to be paid for each bank card and requests confirmation of the debit. After confirmation of the debit, the payment terminal 910 will go into a second debit phase by performing debit operations for each bank card. An antenna selection command is sent to the control circuit 50 then a deselection command is sent to the control circuit so that the latter no longer responds to the commands sent by the payment terminal. The payment according to the EMV protocol is then launched to make the payment with the card positioned on the selected secondary antenna 20 which happens to be the only one to respond to the commands sent by the payment terminal 910. At the end payment, the payment terminal 910 sends a selection command to the control circuit 50 so that the latter can again interact with the payment terminal 910. Another secondary antenna 20 is selected to proceed with the next payment after having again deselected the control circuit 50. The operation is thus repeated until all the payments have been made.
[0072] D’autres applications peuvent être envisagées, telles que par exemple une recharge sans contact de dispositifs électroniques que l’on souhaite recharger les uns après les autres. Il est même possible d’envisager des recharges simultanées à condition de prévoir une sélection de plusieurs antennes en même temps, ce qui peut se faire en utilisant deux circuits de contrôles en parallèle et/ou en multipliant le nombre de multiplexeurs. Other applications can be envisaged, such as for example contactless charging of electronic devices which it is desired to charge one after the other. It is even possible to envisage simultaneous recharging provided that several antennas are selected at the same time, which can be done by using two control circuits in parallel and/or by multiplying the number of multiplexers.

Claims

Revendications Claims
[Revendication 1] Relais (1) d’antenne de communication en champ proche comprenant une antenne primaire (10) destinée à être placée dans le champ d’un lecteur en champ proche (810, 910), l’antenne primaire (10) disposant d’une première borne (11 ) et d’une deuxième borne (12), caractérisé en ce qu’il comporte : [Claim 1] A near-field communication antenna relay (1) comprising a primary antenna (10) intended to be placed in the field of a near-field reader (810, 910), the primary antenna (10) having a first terminal (11) and a second terminal (12), characterized in that it comprises:
- au moins un circuit de contrôle (50, 50’) et de récupération d’énergie connecté aux première et deuxième bornes (11, 12) de l’antenne primaire (10) afin d’une part de produire une tension d’alimentation (VCC) et d’autre part de communiquer avec le lecteur, le circuit de contrôle (50, 50’) disposant d’au moins une sortie de commande, - at least one control (50, 50') and energy recovery circuit connected to the first and second terminals (11, 12) of the primary antenna (10) in order on the one hand to produce a supply voltage (VCC) and on the other hand to communicate with the reader, the control circuit (50, 50') having at least one control output,
- au moins un premier multiplexeur (30, 30’) alimenté par la tension d’alimentation (VCC) et disposant d’au moins une entrée de commande d’une entrée/sortie de signal primaire et d’au moins deux entrées/sorties de signal secondaire, l’entrée de commande étant reliée à la sortie de commande du circuit de contrôle (50, 50’) et l’entrée/sortie de signal primaire étant reliée à la première borne (11 ) de l’antenne primaire (10), - at least one first multiplexer (30, 30') powered by the supply voltage (VCC) and having at least one control input for a primary signal input/output and at least two inputs/outputs secondary signal, the control input being connected to the control output of the control circuit (50, 50') and the primary signal input/output being connected to the first terminal (11) of the primary antenna ( 10),
- au moins deux antennes secondaires (20) disposant chacune d’une première borne (21) et d’une deuxième borne (22), la première borne (21) de chaque antenne secondaire (20) étant reliée à l’une des entrées/sorties de signal secondaire du premier multiplexeur (30, 30’) et la deuxième borne (22) de chaque antenne secondaire (20) étant reliée à la deuxième borne (12) de l’antenne primaire (10). - at least two secondary antennas (20) each having a first terminal (21) and a second terminal (22), the first terminal (21) of each secondary antenna (20) being connected to one of the inputs /secondary signal outputs of the first multiplexer (30, 30 ') and the second terminal (22) of each secondary antenna (20) being connected to the second terminal (12) of the primary antenna (10).
[Revendication 2] Relais d’antenne de communication en champ proche selon la revendication précédente, lequel comporte au moins un deuxième multiplexeur (40, 40’) alimenté par la tension d’alimentation (VCC) et disposant d’au moins une entrée de commande d’une entrée/sortie de signal primaire et d’au moins deux entrées/sorties de signal secondaire, l’entrée de commande étant reliée à la sortie de commande du circuit de contrôle (50, 50’) et l’entrée/sortie de signal primaire étant reliée à la deuxième borne (12) de l’antenne primaire (10), la deuxième borne (22) de chaque antenne secondaire (20) étant reliée à la deuxième borne (12) de l’antenne primaire (10) par l’intemnédiaire de l’une des entrées/sorties de signal secondaire du deuxième multiplexeur (40). [Claim 2] Near-field communication antenna relay according to the preceding claim, which comprises at least a second multiplexer (40, 40') powered by the supply voltage (VCC) and having at least one input of control of a primary signal input/output and at least two secondary signal inputs/outputs, the control input being connected to the control output of the control circuit (50, 50') and the input/ primary signal output being connected to the second terminal (12) of the primary antenna (10), the second terminal (22) of each secondary antenna (20) being connected to the second terminal (12) of the primary antenna (10) via one of the secondary signal inputs/outputs of the second multiplexer (40).
[Revendication 3] Relais d’antenne de communication en champ proche selon l’une des revendications précédentes, dans lequel l’antenne primaire (10) comporte au moins une spire (13, 13’) connectée en parallèle sur un condensateur d’accord primaire (14), les bornes du condensateur (14) correspondant aux première et deuxième bornes (11, 12) de l’antenne primaire (10). [Claim 3] Near-field communication antenna relay according to one of the preceding claims, in which the primary antenna (10) comprises at least one turn (13, 13') connected in parallel to a tuning capacitor primary (14), the terminals of the capacitor (14) corresponding to the first and second terminals (11, 12) of the primary antenna (10).
[Revendication 4] Relais d’antenne de communication en champ proche selon la revendication précédente, dans lequel l’antenne primaire (10) comporte une pluralité de spires (13’) connectée en parallèle sur le condensateur d’accord primaire (14). [Claim 4] A near field communication antenna relay according to the preceding claim, wherein the primary antenna (10) has a plurality of turns (13') connected in parallel across the primary tuning capacitor (14).
[Revendication 5] Relais d’antenne de communication en champ proche selon l’une des revendications précédentes, dans lequel chaque antenne secondaire (20) comporte une spire (23) en parallèle sur un condensateur d’accord secondaire (24). [Claim 5] A near field communication antenna relay according to any preceding claim, wherein each secondary antenna (20) includes a coil (23) in parallel to a secondary tuning capacitor (24).
[Revendication 6] Relais d’antenne de communication en champ proche selon l’une des revendications précédentes, lequel comporte au moins un troisième multiplexeur (60, 60’) et au moins deux circuits de neutralisation (70) d’antenne secondaire couplées à chacune des antennes secondaires (20), le troisième multiplexeur (60, 60’) et les circuits de neutralisation (70) étant alimenté par la tension d’alimentation (VCC), une entrée de commande de chaque circuit de neutralisation (70) étant connectée à une sortie du troisième multiplexeur (60, 60’). [Claim 6] A near-field communication antenna relay according to one of the preceding claims, which comprises at least a third multiplexer (60, 60') and at least two secondary antenna disabling circuits (70) coupled to each of the secondary antennas (20), the third multiplexer (60, 60') and the neutralization circuits (70) being powered by the supply voltage (VCC), a control input of each neutralization circuit (70) being connected to an output of the third multiplexer (60, 60').
[Revendication 7] Relais d’antenne de communication en champ proche selon la revendication précédente lorsqu’elle dépend de la revendication 5, dans lequel chaque circuit de neutralisation (70) comporte au moins un transistor (71 , 72) mettant en court-circuit le condensateur d’accord secondaire (24) de l’antenne secondaire (20). [Claim 7] Near-field communication antenna relay according to the preceding claim when dependent on claim 5, wherein each neutralization circuit (70) comprises at least one transistor (71, 72) shorting the secondary tuning capacitor (24) of the secondary antenna (20).
[Revendication 8] Relais d’antenne de communication en champ proche selon l’une des revendications précédentes, lequel comporte un circuit indicateur de couplage (400) qui donne une information visuelle en fonction du couplage électromagnétique de l’antenne primaire (10) avec le circuit lecteur (810, 910). [Claim 8] A near-field communication antenna relay according to any preceding claim, which includes a coupling indicator circuit (400) which provides visual information as a function of the electromagnetic coupling of the primary antenna (10) with the reader circuit (810, 910).
[Revendication 9] Relais d’antenne de communication en champ proche selon la revendication précédente, dans lequel le circuit indicateur de couplage (400) est un circuit thermométrique à diode électroluminescente[Claim 9] A near field communication antenna relay according to the preceding claim, wherein the coupling indicator circuit (400) is a light emitting diode thermometric circuit
(420) qui allume un nombre de diodes proportionnel à la tension d’alimentation (VCC) fournie par le circuit de contrôle (50). (420) which lights a number of diodes proportional to the supply voltage (VCC) provided by the control circuit (50).
[Revendication 10] Plateau (800) intégrant un relais (1) selon l’une des revendications 1 à 8, lequel comporte une zone de localisation (820) correspondant à une matrice d’antennes secondaire (20) permettant de localiser une étiquette électronique lorsqu’un lecteur en champ proche est positionnée sur l’antenne primaire. [Claim 10] Tray (800) integrating a relay (1) according to one of Claims 1 to 8, which comprises a location zone (820) corresponding to a matrix of secondary antennas (20) making it possible to locate an electronic tag when a near field reader is positioned on the primary antenna.
[Revendication 11] Plateau (900) intégrant un relais selon l’une des revendications 1 à 8, lequel comporte une pluralité de zones de communication (920) correspondant chacune à une antenne secondaire (20), les antennes secondaires (20) étant suffisamment espacées afin de ne pas pouvoir communiquer avec une étiquette électronique se trouvant dans une zone de communication (920) voisine.
Figure imgf000023_0001
[Claim 11] Plate (900) incorporating a relay according to one of claims 1 to 8, which comprises a plurality of communication zones (920) each corresponding to a secondary antenna (20), the secondary antennas (20) being sufficiently spaced apart so as not to be able to communicate with an electronic tag located in a neighboring communication zone (920).
Figure imgf000023_0001
PCT/FR2022/050708 2021-04-19 2022-04-14 Near-field communication antenna relay WO2022223912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2104065A FR3122054B1 (en) 2021-04-19 2021-04-19 Near Field Communication Antenna Relay
FR2104065 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022223912A1 true WO2022223912A1 (en) 2022-10-27

Family

ID=76375226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050708 WO2022223912A1 (en) 2021-04-19 2022-04-14 Near-field communication antenna relay

Country Status (2)

Country Link
FR (1) FR3122054B1 (en)
WO (1) WO2022223912A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140015641A1 (en) * 2012-07-16 2014-01-16 Christopher J. White Masked container rfid tag communications system
US20170170875A1 (en) * 2014-07-31 2017-06-15 Continental Automotive France Device for near-field radiofrequency communication with a portable element on board a motor vehicle
US10307661B2 (en) * 2015-04-22 2019-06-04 Nxp B.V. Game board
US20190370621A1 (en) 2017-01-18 2019-12-05 Wavedu S.R.L. Studying and gaming interactive surfaces with the identification of objects using rfid
US10747970B2 (en) * 2017-11-14 2020-08-18 Capital One Services, Llc Activating an output component to indicate an orientation of a near-field communication (NFC)-capable transaction card
WO2021038167A2 (en) 2019-08-29 2021-03-04 Centiloc Near-field communication surface and method for locating on said surface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140015641A1 (en) * 2012-07-16 2014-01-16 Christopher J. White Masked container rfid tag communications system
US20170170875A1 (en) * 2014-07-31 2017-06-15 Continental Automotive France Device for near-field radiofrequency communication with a portable element on board a motor vehicle
US10307661B2 (en) * 2015-04-22 2019-06-04 Nxp B.V. Game board
US20190370621A1 (en) 2017-01-18 2019-12-05 Wavedu S.R.L. Studying and gaming interactive surfaces with the identification of objects using rfid
US10747970B2 (en) * 2017-11-14 2020-08-18 Capital One Services, Llc Activating an output component to indicate an orientation of a near-field communication (NFC)-capable transaction card
WO2021038167A2 (en) 2019-08-29 2021-03-04 Centiloc Near-field communication surface and method for locating on said surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TEXAS INSTRUMENTS: "Data sheet acquired from Harris Semiconductor SCHS208D Features @BULLET Wide Analog-Input-Voltage Range @BULLET Low "ON" Resistance -V CC = 4.5V @BULLET Fast Switching and Propagation Delay Times @BULLET Low "OFF" Leakage Current @BULLET Wide Operating Temperature Range . . . -55 o C to 125 o C @BUL", 28 February 1998 (1998-02-28), XP055927235, Retrieved from the Internet <URL:https://www.ti.com/lit/ds/symlink/cd74hc4066.pdf?ts=1654093463570&ref_url=https%3A%2F%2Fwww.ti.com%2Fproduct%2FCD74HC4066%3Futm_source%3D***%26utm_medium%3Dcpc%26utm_campaign%3Dasc-int-mpd-prodfolderdynamic-cpc-pf-***-wwe%26utm_content%3Dprodfolddynamic%26ds_k%3DDYNAMIC+SEARCH+ADS%26DCM%3Dyes%> [retrieved on 20220601] *
TEXAS INSTRUMENTS: "Low Cost HF RFID Multiplexer Examplespdf @BULLET Selecting the Right Texas Instruments Signal Switchpdf @BULLET Mini-Circuits Silicon Switch Productspdfs/RSW-2-25P.pdf @BULLET Peregrine Semiconductor Silicon Switch Productspdf @BULLET Skyworks Silicon RF Switch Products", 31 October 2009 (2009-10-31), XP055927236, Retrieved from the Internet <URL:https://download.datasheets.com/pdfs/2010/7/22/17/23/34/584/txn_/auto/sloa144.pdf?HQS=TI-null-null-DScom-refdes-rd-null-wwe> [retrieved on 20220601] *

Also Published As

Publication number Publication date
FR3122054A1 (en) 2022-10-21
FR3122054B1 (en) 2023-06-16

Similar Documents

Publication Publication Date Title
CA2382083C (en) Contact-free display peripheral device for contact-free portable object
EP1295249B1 (en) Contact-free portable object comprising one or several contact-free peripheral devices
EP1134690B1 (en) Transmission power adaptation in a reader for electromagnetic transponders
EP0917684B1 (en) Microcircuit with contact and non-contact operating modes
EP3001575B1 (en) Method for managing the operation of an object capable of contactless communication with a reader, corresponding device and object
EP2070018B1 (en) Radiofrequency identification device (rfid) affixed to an object to be identified
EP1158603A1 (en) Antenna for generation of an electromagnetic field for transponder
CA2439516A1 (en) Non-contact portable object comprising at least a peripheral device coneected to the same antenna as the chip
EP2065858A2 (en) Microprocessor card, telephone comprising such a card and method of executing a command on such a card
EP1164535B1 (en) Device for generating an electromagnetic field for transponders
FR2796782A1 (en) SIZING OF AN ELECTROMAGNETIC TRANSPONDER SYSTEM FOR DEDICATED OPERATION IN REMOTE COUPLING
WO2013072578A1 (en) Radio-frequency communication device whereof the operation is controlled by a deliberate gesture by the wearer
EP1087332B1 (en) Transponder constructed for several different applications
EP3427189B1 (en) Finger-controlled contactless chip card
EP2936379A1 (en) Detection of a transactional device
WO2022223912A1 (en) Near-field communication antenna relay
EP1071039A1 (en) Electromagnetic transponder system designed for short-range transmission
EP3054402B1 (en) Microelectronic chip with multiple pads
EP2942735B1 (en) Contactless smart-card reader
WO2024115822A1 (en) Multi-chip electronic module for a contactless chip card

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22722855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22722855

Country of ref document: EP

Kind code of ref document: A1