WO2022222619A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2022222619A1
WO2022222619A1 PCT/CN2022/079416 CN2022079416W WO2022222619A1 WO 2022222619 A1 WO2022222619 A1 WO 2022222619A1 CN 2022079416 W CN2022079416 W CN 2022079416W WO 2022222619 A1 WO2022222619 A1 WO 2022222619A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
optical
data
windowing
head end
Prior art date
Application number
PCT/CN2022/079416
Other languages
English (en)
French (fr)
Inventor
张伦
郑刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22790728.4A priority Critical patent/EP4311136A1/en
Publication of WO2022222619A1 publication Critical patent/WO2022222619A1/zh
Priority to US18/489,075 priority patent/US20240048262A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and a communication device.
  • Fieldbus is an industrial data bus that has developed rapidly in recent years. It mainly solves the digital communication between field devices such as intelligent instruments, controllers, and actuators in the industrial field, as well as these field control devices and advanced control. Information transfer between systems.
  • the operating cycle of the fieldbus network is relatively long, such as at the millisecond (ms) level, which cannot meet the requirements of low-latency scenarios such as machine vision, motion control, virtual reality (VR), or Augmented reality (AR), etc.
  • the present application provides a communication method and a communication device. It is used to realize the online of the optical terminal and reduce the delay and delay jitter of the online optical terminal sending the uplink service data.
  • the present application provides a communication method.
  • the method includes that an optical head can obtain a cyclic period and a data amount of periodic data, and allocate a first time slot and a second time slot according to the data amount and the cyclic period of the periodic data.
  • the first time slot is used for transmitting periodic data
  • the second time slot is used for windowing
  • the second time slot is part or all of the time slots except the first time slot in the cycle period.
  • the communication method may be applied to an optical bus network system
  • the optical bus system may include an optical head end, an optical terminal, and an optical distribution network (ODN) connecting the optical head end and the optical terminal.
  • the optical head end may be, for example, an optical line terminal (optical line terminal, OLT)
  • the optical terminal may be, for example, an optical network terminal (optical network terminal, ONT) or an optical network unit (optical network unit, ONU).
  • the online optical terminal can be realized, and by uniformly assigning the first time slot for transmitting periodic data and the second time slot for windowing by the optical head end, it can reduce the number of optical terminals that are not online.
  • the windowing of the online process refers to the delay of the service data transmitted by the online optical terminal, and the delay jitter (or called delay variation) can be reduced (for example, less than 1us).
  • the second time slot is located after the first time slot, or the second time slot is located before the first time slot, or the second time slot and the first time slot are alternately distributed.
  • the second time slot is located after the first time slot, it is possible to ensure that the periodic data is preferentially transmitted as much as possible, thereby helping to reduce the time delay of the periodic data.
  • the second time slot is smaller than one frame of a passive optical network (passive optical network, PON) system to which the optical head belongs; or, the second time slot is equal to the frame of the PON system to which the optical head belongs. integer multiples.
  • PON passive optical network
  • the optical head end can open a small window for the optical terminal that is not online, or can open a window for the entire frame of the optical terminal that is not online.
  • opening the window for the optical terminal that is not online has little effect on the time delay of periodic data, so that the time delay of periodic data can be further reduced.
  • the optical head end may receive the cyclic period and the data amount of the periodic data from a programmable logic controller (PLC).
  • PLC programmable logic controller
  • the above-mentioned optical bus network system may further include a PLC, and the PLC, as the management center of the entire optical bus network system, can be used to manage various types of field control devices.
  • the optical head end obtains the uplink rate of the optical terminal, determines the ratio of the data amount of the periodic data to the uplink rate as the size of the first time slot, and divides the first time slot in the cycle period The part or the whole other than the size of the second time slot is determined as the size of the second time slot, and the position of the first time slot and the position of the second time slot are determined.
  • the size of the first time slot and the size of the second time slot is determined by the optical head end, and the position of the first time slot and the position of the second time slot are uniformly arranged, thereby reducing the time delay jitter of periodic data.
  • the optical head end sends first information to the optical terminal, where the first information is used to notify the off-line optical terminal of the second time slot for windowing.
  • the optical head end receives a serial number (serial number, SN) discovery response message or a ranging response message sent from the optical terminal on the second time slot.
  • serial number serial number, SN
  • ranging response message sent from the optical terminal on the second time slot.
  • the off-line optical terminal can ensure that the normal service data sent by the on-line optical terminal to the optical head end is not affected.
  • the windowing includes ranging windowing or SN discovery windowing.
  • the present application provides a communication method.
  • the communication method includes an optical terminal receiving first information from an optical head, determining a second time slot for windowing in the first information, and reporting to the optical head on the second time slot.
  • the terminal sends a sequence number SN discovery response message or a ranging response message.
  • the second time slot is a part or all of the time slots except the first time slot in the cyclic cycle acquired by the optical head end, the first time slot is the time slot allocated by the optical head end for the acquired periodic data, and the optical terminal is an unattended time slot.
  • On-line optical terminal On-line optical terminal.
  • the communication method may be applied to an optical bus network system
  • the optical bus system may include an optical head end, an optical terminal, and an optical distribution network (ODN) connecting the optical head end and the optical terminal.
  • the optical head end may be, for example, an optical line terminal (optical line terminal, OLT)
  • the optical terminal may be, for example, an optical network terminal (optical network terminal, ONT) or an optical network unit (optical network unit, ONU).
  • the offline optical terminal can ensure that the normal service data sent by the online optical terminal to the optical head end is not affected.
  • the windowing includes ranging windowing or serial number SN discovery windowing.
  • the present application provides a communication method.
  • the method includes that the PLC obtains the cyclic period and the data amount of the periodic data; the PLC sends the cyclic period and the data amount of the periodic data to the optical head end.
  • the communication method can be applied to an optical bus network system
  • the optical bus system can include an optical head end, an optical terminal, an optical distribution network (ODN) connecting the optical head end and the optical terminal, and a PLC.
  • the optical head end may be, for example, an optical line terminal (optical line terminal, OLT)
  • the optical terminal may be, for example, an optical network terminal (optical network terminal, ONT) or an optical network unit (optical network unit, ONU), and PLC as the entire optical bus
  • ONT optical line terminal
  • ONT optical network terminal
  • ONU optical network unit
  • PLC optical network unit
  • the cyclic period and the data amount of the periodic data are sent to the optical head through the PLC, so that the optical head can allocate the first time slot and the second time slot based on the cyclic period and the data amount of the periodic data sent by the PLC , there is no need to wait for the optical terminal to request authorization, thereby helping to reduce the time delay for the optical terminal to send periodic data.
  • the present application provides a communication device, which has the function of implementing the optical head end in the first aspect, or the function of the optical terminal in the second aspect, or the third aspect.
  • functions in the PLC This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device may be an optical head end, or a module usable in the optical head end, such as a chip or a chip system or a circuit.
  • the communication apparatus may include a transceiver and a processor.
  • the processor can be configured to support the communication device to perform the corresponding functions of the optical head end shown above, and the transceiver is used to support the communication between the communication device and the optical terminal or PLC or the like.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may further include a memory, which may be coupled to the processor, and stores necessary program instructions and data for the communication device.
  • the transceiver is used to obtain the cyclic period and the data amount of the periodic data; the processor is used to allocate the first time slot and the second time slot according to the data amount and the cyclic period of the periodic data, and the first time slot is used to transmit the periodic data , the second time slot is used for windowing, and the second time slot is a part or all of the time slots except the first time slot in the cycle period.
  • the second time slot is located after the first time slot, or the second time slot is located before the first time slot, or the second time slot and the first time slot are alternately distributed.
  • the second time slot is smaller than one frame of the passive optical network PON system to which the communication device belongs; or, the second time slot is equal to an integer multiple of the frame of the PON system to which the communication device belongs.
  • the transceiver is specifically configured to receive the cyclic period and the data volume of the periodic data from the PLC.
  • the transceiver is further configured to send first information to the optical terminal, where the first information is used to notify the off-line optical terminal of the second time slot for windowing.
  • the transceiver is further configured to receive a sequence number SN discovery response message or a ranging response message sent from the optical terminal on the second time slot.
  • the windowing includes ranging windowing or serial number SN discovery windowing.
  • the processor is specifically configured to obtain the uplink rate of the optical terminal, determine the ratio of the data amount of the periodic data to the uplink rate as the size of the first time slot, and divide the The part or the whole part other than the size of one time slot is determined as the size of the second time slot, and the position of the first time slot and the position of the second time slot are determined.
  • the communication device may be an optical terminal, or a component that can be used for an optical terminal, such as a chip or a chip system or a circuit.
  • the communication apparatus may include a transceiver and a processor.
  • the processor may be configured to support the communication device to perform the corresponding functions of the optical terminal shown above, and the transceiver to support communication between the communication device and the optical head end or the like.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may further include a memory, which may be coupled to the processor, and stores necessary program instructions and data for the communication device.
  • the transceiver is used to receive the first information from the optical head; the processor is used to determine the second time slot used for windowing in the first information, and the second time slot is the time slot other than the first time slot in the cycle obtained by the optical head. Some time slots or all time slots, the first time slot is the time slot allocated by the optical head end for the acquired periodic data; the transceiver is also used to send the sequence number SN discovery response message or ranging to the optical head end on the second time slot response message.
  • the windowing includes ranging windowing or serial number SN discovery windowing.
  • the communication device may be a PLC, or a component usable in a PLC, such as a chip or a system of chips or a circuit.
  • the communication apparatus may include a transceiver and a processor.
  • the processor may be configured to support the communication device to perform the corresponding functions of the PLC shown above, and the transceiver is configured to support communication between the communication device and an optical head end or an optical terminal or the like.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may further include a memory, which may be coupled to the processor, and stores necessary program instructions and data for the communication device.
  • the present application provides a communication device, which is used to implement the first aspect or any method of the first aspect, or to implement any one of the second aspect or the second aspect.
  • the method, or any one of the methods for implementing the above third aspect or the third aspect includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device may be an optical head end, and the communication device may include a processing module and a transceiver module, and these modules may perform the corresponding functions of the optical head end in the above method example.
  • the communication device may include a processing module and a transceiver module, and these modules may perform the corresponding functions of the optical head end in the above method example.
  • the communication device may also be an optical terminal, and the communication device may include a transceiver module and a processing module, and these modules may perform the corresponding functions of the optical terminal in the above method example.
  • the communication device may include a transceiver module and a processing module, and these modules may perform the corresponding functions of the optical terminal in the above method example.
  • the communication device may also be a PLC, and the communication device may include a transceiver module and a processing module, and these modules may perform the corresponding functions of the PLC in the above method example.
  • the communication device may include a transceiver module and a processing module, and these modules may perform the corresponding functions of the PLC in the above method example.
  • the communication device may include a transceiver module and a processing module, and these modules may perform the corresponding functions of the PLC in the above method example.
  • the communication device may include a transceiver module and a processing module, and these modules may perform the corresponding functions of the PLC in the above method example.
  • the present application provides a communication system including an optical head end and an optical terminal.
  • the optical head end can be used to perform any one of the above first aspect or the first aspect method
  • the optical terminal can be used to perform any one of the above second aspect or the second aspect method.
  • the communication system may further include a PLC, and the PLC may be used to execute the third aspect or any one of the methods in the third aspect.
  • the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is executed by a communication device, the communication device is made to perform the above-mentioned first aspect or the first aspect.
  • the method in any possible implementation of an aspect, or the communication device is caused to perform the method in the second aspect or any possible implementation of the second aspect, or the communication device is caused to perform the third aspect or the third aspect method in any possible implementation of .
  • the present application provides a computer program product, the computer program product comprising a computer program or an instruction, when the computer program or instruction is executed by a communication device, the communication device is made to perform the above-mentioned first aspect or any of the first aspects.
  • the method in a possible implementation, or causing the communication device to perform the method in the second aspect or any possible implementation of the second aspect, or causing the communication device to perform the third aspect or any possible implementation of the third aspect method in the implementation.
  • 1 is a schematic structural diagram of an applicable optical bus network system of the application
  • FIG. 3 is a schematic diagram of uplink transmission provided by the present application.
  • Fig. 4 is the schematic diagram of the upstream window opening mode of the prior art
  • FIG. 5 is a schematic flowchart of a method of a communication method provided by the present application.
  • FIG. 6 is a schematic structural diagram of a cycle provided by the application.
  • 7a is a schematic diagram of the relationship between a first time slot, a second time slot and a cyclic period provided by the application;
  • Fig. 7b is another schematic diagram of the relationship between the first time slot, the second time slot and the cyclic period provided by the application;
  • 8a is a schematic diagram of the relationship between a first time slot, a second time slot and a frame provided by the application;
  • Fig. 8b is another schematic diagram of the relationship between the first time slot, the second time slot and the frame provided by the application;
  • 9a is a schematic diagram of the relationship between a first time slot, a second time slot, a third time slot and a cyclic period provided by the application;
  • Fig. 9b is another schematic diagram of the relationship between the first time slot, the second time slot, the third time slot and the cyclic period provided by the application;
  • 10a is a schematic diagram of the positional relationship between a first time slot and a second time slot provided by the application;
  • 10b is a schematic diagram of the positional relationship between another first time slot and a second time slot provided by the application;
  • FIG. 11 is a schematic flowchart of a method in the SN discovery stage provided by the application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 1 is a schematic structural diagram of an applicable optical bus network system of the present application.
  • the optical bus network system may include a controller and an optical communication system.
  • the optical communication system includes at least an optical head end, an optical distribution network (ODN) and an optical terminal, and the optical head end is connected to the optical terminal through the ODN.
  • ODN includes backbone fibers, splitters and branch fibers.
  • FIG. 1 takes an example that an optical communication system includes n optical terminals, and the n optical terminals are optical terminal 1 , optical terminal 2 , . . . , and optical terminal n respectively.
  • An optical splitter can also be called an optical splitter, which can be a fiber optic junction device with multiple input ends and multiple output ends, which is used for coupling and distribution of optical signals.
  • the optical bus network system may also include field control equipment (or traditional industrial equipment), such as transmission equipment (such as servo drives and servo motors), sensing equipment (such as sensors), input/output ports ( input/output, I/O) devices, etc. It should be understood that these field control devices may be collectively referred to as slave stations.
  • the controller may be, for example, a programmable logic controller (PCL). As the management center of the entire optical bus network system, PLC can be used to manage various types of field control equipment.
  • the optical bus network system may further include a device for accessing the Ethernet/Internet protocol (internet protocol, IP) Internet. It should be noted that the field bus can adopt the above-mentioned optical bus network system.
  • each structure in the optical bus network system shown in FIG. 1 above are only for example, and do not constitute a limitation to the present application.
  • the optical head end, the optical terminal, the optical splitter, and the number of ports included in the optical splitter included in the optical communication system in FIG. 1 are only examples, which are not limited in this application.
  • the optical head end may be, for example, an optical line terminal (optical line terminal, OLT), in other words, the OLT may implement the function of the optical head end.
  • the optical terminal may be, for example, an optical network terminal (optical network terminal, ONT) or an optical network unit (optical network unit, ONU), in other words, the ONT or the ONU may implement the function of the optical terminal.
  • ONT optical network terminal
  • ONU optical network unit
  • the name of each structure in the optical bus network system shown in FIG. 1 is only an example, and the name of each structure in a specific implementation may also be other names, which are not specifically limited in this application.
  • the optical head end and the PLC may be deployed separately, or may be deployed in one.
  • the optical head and the PLC can be deployed on different physical devices, or can also be deployed on the same physical device. That is, the optical head end and the PLC can be two independent physical devices, or can also be two functional modules in the same physical device.
  • the optical terminal and the slave station may be deployed separately, or may be deployed in one. In other words, the optical terminal and the slave station are independent and different physical devices, or the optical terminal and the slave station may be integrated devices. This application does not limit this.
  • the optical communication system may be a passive optical network (passive optical network, PON) system
  • the PON system may be, for example, a gigabit-capable PON (GPON) system, an Ethernet passive optical network Network (ethernet PON, EPON) system, 10 Gigabit Ethernet passive optical network (10Gb/s ethernet passive optical network, 10G-EPON) system, time and wavelength division multiplexing passive optical network (time and wavelength division multiplexing passive optical) network, TWDM-PON), 10-gigabit passive optical network (10gigabit-capable passive optical network, XG-PON) system or 10-gigabit symmetric passive optical network (10-gigabit-capable symmetric passive optical network, XGS) -PON) system, etc.
  • GPON gigabit-capable PON
  • ethernet PON ethernet PON
  • 10Gb/s ethernet passive optical network 10G-EPON
  • time and wavelength division multiplexing passive optical network time and wavelength division multiplexing passive optical network
  • the rate of the PON system may be increased to 25Gbps, 50Gbps or even 100Gbps, so the optical communication system may also be a PON system with a higher transmission rate, which is not limited in this application.
  • the above-mentioned PON system may be a PON system supporting a single wavelength.
  • the optical head end is an OLT and the optical terminal is an ONT as an example for description. That is, the OLT described later in this application can be replaced by an optical head end, and the ONT can be replaced by an optical terminal.
  • a PON system mainly includes an OLT, a plurality of ONTs, and an ODN connecting the OLT and the ONTs.
  • OLT is the central office equipment of telecom, which is located at the central office in PON network
  • ONT is the end unit of PON network, also known as "optical cat"
  • ODN can provide optical signal transmission channel between OLT and ONT, in ODN It does not contain any electronic devices and electronic power supplies.
  • ODN is mainly composed of passive devices such as splitters and optical fibers, and does not require active electronic equipment.
  • the transmission direction in which data or optical signals carrying data are transmitted from the OLT to the ONT is called the downstream direction.
  • the direction in which data or optical signals carrying data are transmitted from the ONT to the OLT is called the upstream direction.
  • the way that the OLT transmits the optical signal to the ONT can be broadcast, and the way that the ONT transmits the optical signal to the OLT can be unicast.
  • the PON system is a multi-point to point (MP2P) system; for the downstream direction, the PON system is a point 2 multiple point (P2MP) system.
  • time division multiplexing technology is used to transmit data between the OLT and the ONT, for example, time division multiple access (TDMA).
  • TDMA time division multiple access
  • the OLT sends downlink data to the ONT
  • one optical signal sent by the OLT passes through the optical splitter, and then is divided into n channels and sent to n ONTs respectively.
  • the ONT selectively receives the downlink data with the same number as its own. , discarding other data.
  • upstream transmission please refer to FIG.
  • each dynamic bandwidth assignment (DBA) cycle upstream transmission duration, that is, one frame or multiple frames of the PON system
  • only one ONT is arranged in each time slot to send the upstream data to the OLT, and each ONT sends the data in sequence according to the order specified by the OLT.
  • one ONT may be allocated one or more time slots, and FIG. 3 is only one possible example.
  • each ONT can only send upstream data when its own time slot arrives, and the transmitter must be turned off during the rest of the time. Otherwise, the simultaneous transmission of upstream data by multiple ONTs will cause conflict or interference, so that the OLT cannot receive the upstream data sent by the ONTs, thereby causing service interruption of the entire optical communication system.
  • an ONT that is not in its own time slot and emits light at will is called a rogue ONT.
  • the OLT will strictly allocate the time slot where each ONT is located to avoid the appearance of rogue ONTs.
  • the ONT needs to register (or go online).
  • the OLT can obtain the distance information between the ONT and the OLT, and allocate upstream time slots for the ONT in combination with the distance information between the OLT and the ONT, so as to avoid the conflict of upstream service data of each ONT as much as possible.
  • the upstream windowing method is used to avoid it as much as possible.
  • the so-called upstream windowing means that the OLT periodically does not allow all online ONTs to send upstream service data, the upstream direction presents an empty window state, and only unregistered ONTs are allowed to send registration information (including those used for ranging) during the empty window. Information).
  • a kind of upstream windowing method in the prior art is provided, that is, windowing is performed every 5ms, and the size of one windowing is 2 frames. During the windowing period, all online ONTs are not allowed to send upstream data, That is, an empty window state is present in the upward direction.
  • the upstream data cannot be sent during the window opening period, which will cause the registered ONT to send the upstream data with a long delay and the delay is uncertain.
  • the existing uplink windowing method cannot meet these requirements. Scenarios with stricter latency requirements.
  • the present application proposes a communication method, which can reduce the delay of periodic data transmitted by an online ONT (for details, please refer to the following related description), and can ensure that the delay jitter is determined as much as possible .
  • the method can be applied to the optical bus network system shown in FIG. 1 above.
  • the OLT in this method may be the optical head end shown in FIG. 1 above, and the ONT may be the optical terminal shown in FIG. 1 above.
  • FIG. 5 it is a schematic flowchart of a method of a communication method provided by the present application. The method includes the following steps:
  • Step 501 the OLT acquires the cycle period and the data amount of the periodic data.
  • the cycle period refers to the cycle period of the PLC, and the cycle period includes the duration of the slave station sampling (such as collecting the speed, position, current, etc. of the industrial control equipment), the input transmission delay of the sampled data to the PLC, and the PLC according to the sampled data.
  • the sum of the calculation time may be called calculation time
  • the output transmission delay of PLC transmitting the calculation result or called configuration data or called downlink data
  • the cycle period refers to the time duration required to perform one cycle operation as shown in FIG. 6
  • the cycle period may also be referred to as cycle time or scan cycle time.
  • the cycle period may be pre-configured by the PLC.
  • the periodic data can be, for example, a process data object (process data object, PDO), the PDO is used to transmit real-time control parameters or variables of each device of the slave station, and the exchange of the PDO is transmitted periodically.
  • PDO process data object
  • periodic data has higher requirements on latency.
  • the data amount of the periodic data is fixed.
  • the data volume of the periodic data of the transmission device (may be referred to as the slave station 1) is 1000 bytes
  • the data volume of the periodic data of the sensing device may be referred to as the slave station 2) is 2000 bytes.
  • the OLT may acquire the data volume of the cyclic period and the periodic data in the following three possible manners.
  • the OLT receives the cyclic cycle and the data volume of the cyclic data from the PLC.
  • the PLC can configure the cycle period in advance and receive the periodic data reported by the slave station.
  • the ONT data includes periodic data, and further, may also include aperiodic data. Accordingly, the PLC can determine the data volume of the received periodic data. Further, the PLC sends the cyclic period and the data amount of the cyclic data to the OLT.
  • the cyclic period and the data amount of the periodic data are sent to the optical head through the PLC, so that the optical head can allocate the first time slot and the second time slot based on the cyclic period and the data amount of the periodic data sent by the PLC. There is no need to wait for the optical terminal to request authorization, thereby helping to reduce the time delay for the optical terminal to send periodic data.
  • the OLT receives the cyclic period from the PLC and receives the periodic data from the slave station.
  • the PLC can pre-configure the cycle period and send the cycle period to the OLT.
  • the OLT can receive periodic data from the slave station and determine the data volume of the periodic data.
  • Mode 3 directly inject the cyclic period and the data amount of the periodic data into the OLT.
  • the cycle period and the data amount of the periodic data can be written into the memory area of the OLT through a serial peripheral interface (serial peripheral interface, SPI) interface.
  • serial peripheral interface serial peripheral interface
  • Step 502 the OLT allocates the first time slot and the second time slot according to the data amount and the cycle period of the periodic data.
  • the first time slot is used for transmitting periodic data
  • the second time slot is used for windowing
  • the second time slot is part or all of the time slots in the cycle except the first time slot. It should be understood that the second time slot is the window size of the window.
  • allocating the first time slot includes allocating the size of the first time slot (or referred to as the length of the first time slot) and the position of the first time slot.
  • Allocating the second time slot includes allocating the size of the second time slot (or referred to as the length of the second time slot) and the location of the second time slot.
  • the OLT can obtain the uplink rate of the ONT, determine the ratio of the data amount of the periodic data to the uplink rate as the size of the first time slot, and set the size of the first time slot in the cycle period except for the size of the first time slot. Part or all of the time slot is determined as the size of the second time slot, and the positions of the first time slot and the second time slot are uniformly determined.
  • the upstream rate of the ONT is the upstream rate of the PON system to which the ONT and the OLT belong. For example, if the ONT belongs to the GPON system, the upstream rate is 1.25Gbps; if the ONT belongs to the XGPON system, the upstream rate is 2.5Gbps; if the ONT belongs to the XGPON system, the upstream rate is 9.95Gbps.
  • the cycle period is 31.25us
  • the data volume of the periodic data is 1000 bytes
  • the uplink rate is 1.25Gbps
  • the size of the second time slot may be equal to 25us, or may be greater than 0 and less than 25us.
  • the online terminal of the optical terminal can be realized, and the first time slot used for transmitting periodic data and the second time slot used for windowing can be uniformly allocated by the optical head end, thereby reducing the number of offline terminals.
  • the delay of the service data transmitted by the optical terminal that has been online during the windowing of the online optical terminal, and the delay jitter (or called delay variation) can be reduced (for example, less than 1us).
  • the second time slot is a part of the time slot other than the first time slot in the cycle period.
  • the second time slot is a part of the time slot other than the first time slot in the cycle period. That is to say, in a cycle, in addition to the first time slot for transmitting periodic data and the second time slot for windowing, there are still some time slots remaining, and this part of the remaining time slots can be used to transmit temporary data. Ordinary data generated (such as the data generated when the slave station temporarily reports the alarm status, or when the slave station is a camera).
  • the second time slot is all the time slots except the first time slot in the cycle.
  • the second time slot is all the time slots except the first time slot in the cycle period. That is, one cycle includes a first time slot for transmitting periodic data and a second time slot for windowing.
  • the cycle period is equal to one frame of the PON system divided by N, where N is a positive integer.
  • one frame of a PON system is equal to 125us.
  • the cycle period is equal to one frame of the PON system multiplied by N, where N is a positive integer.
  • the cycle period is equal to 125us/N, or the cycle period is equal to 125us ⁇ N.
  • GAP gap
  • GAP gap
  • the second time slot is smaller than one frame of the PON system to which the OLT belongs. It can also be understood that the OLT opens a small window, that is, the size of the second time slot is smaller than the size of one frame of the PON system. When one frame of the PON system is equal to 125us, the second time slot is less than 125us. Exemplarily, the OLT determines a part of the time slot (the second time slot) in the ith frame for windowing.
  • the second time slot is equal to an integer multiple of the frame of the PON system to which the OLT belongs. It can also be understood that the OLT opens the window for the entire frame, that is, the size of the second time slot is equal to an integer multiple of the size of one frame of the PON system. It should be noted that the second time slot may be one frame of the PON system, or may also be multiple consecutive frames of the PON system. When one frame of the PON system is equal to 125us, the second time slot is equal to an integer multiple of 125us. Exemplarily, the OLT may determine the jth frame and the j+1th frame for windowing.
  • some temporary common data may also be transmitted in the PON system, for example, a service data object (service data object, SDO).
  • aperiodic data can be transmitted in the third time slot in addition to the first time slot and the second time slot in the cyclic period, please refer to Fig. 9a and Fig. 9b.
  • FIG. 9a and 9b are taken as examples of two off-line ONTs, that is, the OLT allocates the first time slot to the two ONTs respectively, and is the length of the first time slot allocated to the two ONTs. The same is illustrated as an example. It should be understood that the first time slot allocated by the OLT for each ONT is related to the data amount of periodic data reported by the ONT, and FIG. 9 a and FIG. 9 b are only examples.
  • the second time slot may be located after the first time slot (see Figure 7a, Figure 7b, Figure 8a, Figure 8b, Figure 9a, or Figure 9b above), or the second time slot may also be are located before the first time slot (refer to FIG. 10a ), or alternately distribute the second time slot and the first time slot (refer to FIG. 10b ).
  • the OLT may also send first information to the offline ONT, where the first information is used to notify the offline ONT of the second time slot for windowing.
  • the off-line ONT may send an SN discovery response message or a ranging response message to the OLT in the second time slot.
  • the first information may be a bandwidth map BWMAP.
  • the windowing may include SN discovery windowing and ranging windowing, wherein the SN discovery windowing is the windowing corresponding to the SN discovery stage in the ONT registration process, and the ranging windowing is the ONT registration The window corresponding to the ranging stage in the process.
  • FIG. 11 a schematic flowchart of a method in the SN discovery stage provided by the present application.
  • the method may include the steps of:
  • Step 1101 the OLT broadcasts a SN request message.
  • the offline ONT receives the SN request message broadcast by the OLT.
  • Step 1102 The ONT that is not online generates an SN discovery response message according to the received SN request message, and caches the SN discovery response message.
  • Step 1103 the OLT sends the first information to the ONT that is not online. Accordingly, the ONT that is not online receives the first information from the OLT.
  • the first information is used to notify the off-line ONT of the second time slot for SN discovery windowing.
  • Step 1104 the offline ONT determines the second time slot for SN discovery windowing according to the first information.
  • Step 1105 the ONT that is not online sends an SN discovery response message to the OLT in the second time slot.
  • the OLT receives the SN discovery response message from the offline ONT in the second time slot.
  • the OLT may not allocate the BWMAP in the second time slot of the i-th frame, and broadcast the BWMAP in the i+1-th frame.
  • the allocation (alloc)-identification (ID) included in the BWMAP is the broadcast-identification (broadcast- ID), the start time (start time) corresponds to the start time of the second time slot in the i-th frame; the OLT broadcasts the SN request message in the i+1-th frame.
  • the OLT does not allocate a BWMAP in the jth frame, and sends a BWMAP in the j+1th frame.
  • the alloc-ID included in the BWMAP is the broadcast ID, and sends an SN request message in the j+1th frame.
  • the offline ONT sends the SN discovery response message on the second time slot, thereby ensuring that the SN discovery response message does not affect the normal service data sent by the online ONT to the OLT.
  • FIG. 12 a schematic flowchart of a method in a ranging stage provided by the present application.
  • the method may include the following steps:
  • Step 1201 the OLT sends a ranging request message to the offline ONT.
  • the offline ONT receives the ranging request message from the OLT.
  • Step 1202 the offline ONT generates a ranging response message according to the received ranging request message, and buffers the ranging response message.
  • Step 1203 the OLT sends the first information to the ONT that is not online. Accordingly, the ONT that is not online receives the first information from the OLT.
  • the first information is used to notify the off-line ONT of the second time slot for ranging and windowing.
  • Step 1204 the offline ONT determines a second time slot for ranging and windowing according to the first information.
  • Step 1205 the offline ONT sends a ranging response message to the OLT in the second time slot.
  • the OLT receives the ranging response message from the offline ONT in the second time slot.
  • the off-line ONT can ensure that the ranging response message does not affect the normal service data sent by the online ONT to the OLT by sending the ranging response message on the second time slot.
  • the ONT registration process also includes an authentication stage.
  • Authentication refers to bringing a specific ONT online from the operator's point of view. Therefore, it is necessary to perform authentication management on the ONT to prevent users from accessing incorrect ONTs.
  • the OLT After the OLT enters the operating state, it will request a password (Password, PWD) to the ONT, and compare the PWD responded by the ONT with the locally configured PWD. If the PWD returned by the ONT is the same as the locally configured PWD, the ONT is allowed to go online, and an alarm will be sent to the host command line or the NMS when the ONT goes online. Error alert.
  • PWD password
  • the ONT After the authentication is successful, the ONT enters the running phase.
  • the OLT allocates a default ONT management and control interface (ONT management and control interface, OMCI) bandwidth to the ONT, and the OMCI bandwidth can be used for the ONT to communicate with the OLT.
  • ONT management and control interface ONT management and control interface
  • FIG. 13 it is a schematic flowchart of another communication method provided by the present application.
  • the communication method can be applied to the optical bus network system shown in FIG. 1 above.
  • the method may include the following steps:
  • Step 1301 the PLC and the OLT perform time synchronization.
  • Step 1302 the PLC obtains the periodic data of the slave station.
  • the PLC can obtain the periodic data of the slave station by parsing the configuration file of the slave station (such as an extensible markup language (XML) file).
  • the configuration file of the slave station includes various configuration parameters of the slave station and size.
  • the slave station may also report the periodic data of the slave station to the PLC through an uplink OMCI message.
  • Step 1303 the PLC determines the cycle period and the data amount of the cycle data.
  • step 1303 reference may be made to the relevant introduction in the above-mentioned step 501, and details are not repeated here.
  • Step 1304 the PLC sends the cycle period and the data amount of the periodic data to the OLT.
  • the PLC can send the cycle period and the data amount of the periodic data to the OLT through the management channel between the PLC and the OLT.
  • Step 1305 the OLT allocates the first time slot and the second time slot according to the data amount of the periodic data.
  • step 1305 reference may be made to the relevant description of the foregoing step 502, and details are not repeated here.
  • Step 1306 the OLT sends the first information to each ONT that is not online.
  • the first information is used to notify the offline ONT of the second time slot for windowing.
  • Step 1307 the ONT determines a second time slot for windowing according to the received first information.
  • Step 1308 the ONT sends an SN discovery response message or a ranging response message to the OLT in the second time slot.
  • the optical head end and the optical terminal include corresponding hardware structures and/or software modules for performing each function.
  • the modules and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 14 and FIG. 15 are schematic structural diagrams of possible communication apparatuses provided by the present application. These communication apparatuses can be used to implement the functions of the optical head end or the optical terminal in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be an OLT or an ONT as shown in FIG. 1 , and may also be a module (such as a chip) applied to an optical head end or an optical terminal.
  • the communication device 1400 includes a processing module 1401 and a transceiver module 1402 .
  • the communication device 1400 is configured to implement the functions of the optical head end or the optical terminal in the method embodiments shown in FIG. 5 , FIG. 11 , and FIG. 12 .
  • the processing module 1401 is used to obtain the cyclic period and the data amount of the periodic data; the transceiver module 1402 is used to allocate the data amount according to the periodic data
  • the first time slot and the second time slot the first time slot is used to transmit periodic data, the second time slot is used for windowing, and the second time slot is part or all of the time slot except the first time slot in the cycle period time slot.
  • the transceiver module 1402 is used to receive the first information from the optical head end; the processing module 1401 is used to determine the first information used to open the window.
  • the second time slot, the second time slot is a part of the time slot or all the time slots except the first time slot in the cyclic cycle acquired by the optical head end, and the first time slot is the time slot allocated by the optical head end for the acquired periodic data;
  • the transceiver module 1402 is further configured to send a sequence number SN discovery response message or a ranging response message to the optical head end in the second time slot.
  • processing module 1401 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 1402 may be implemented by a transceiver or a transceiver-related circuit component.
  • the present application further provides a communication apparatus 1500 .
  • the communication device 1500 may include a processor 1501 and a transceiver 1502 .
  • the processor 1501 and the transceiver 1502 are coupled to each other.
  • the transceiver 1502 can be an interface circuit or an input-output interface.
  • the communication device 1500 may further include a memory 1503 for storing instructions executed by the processor 1501 or input data required by the processor 1501 to execute the instructions or data generated after the processor 1501 executes the instructions.
  • the processor 1501 is used to execute the function of the above-mentioned processing module 1401
  • the transceiver 1502 is used to execute the function of the above-mentioned transceiver module 1402 .
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (programmable ROM) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disks, removable hard disks, CD-ROMs or known in the art in any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the optical head end or in the optical terminal.
  • the processor and the storage medium may also exist in the optical head end or the optical terminal as discrete components.
  • a computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, optical headend, optical terminal, user equipment, or other programmable device.
  • Computer programs or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website site, computer, server, or data center Transmission by wire or wireless to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that a computer can access, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • Usable media can be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs (DVD); and semiconductor media, such as solid state drives (SSDs) ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种通信方法及通信装置,可应用于光通信技术领域,用于解决现场总线采用PON***进行通信时,ONT如何上线及已上线的ONT发送上行业务数据的时延较大及时延抖动较大的问题。该方法包括:光线路终端OLT可获取循环周期和周期性数据的数据量,根据周期性数据的数据量和循环周期分配第一时隙和第二时隙,第一时隙用于传输周期性数据,第二时隙用于开窗,第二时隙为循环周期中除第一时隙外的部分时隙或全部时隙。通过OLT统一分配用于传输周期性数据的第一时隙和用于开窗的第二时隙,从而可减小未上线的ONT在上线过程的开窗已上线的ONT传输的业务数据的时延,并且可减小时延抖动。

Description

一种通信方法及通信装置
相关申请的交叉引用
本申请要求于2021年4月19日提交中国国家知识产权局、申请号202110420777.3、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
现场总线(Field bus)是近年来迅速发展起来的一种工业数据总线,它主要解决工业现场的智能化仪器仪表、控制器、执行机构等现场设备间的数字通信以及这些现场控制设备和高级控制***之间的信息传递问题。
目前,现场总线网络的运行周期较长,例如在毫秒(ms)级别,无法满足低时延场景的要求,其中低时延场景例如机器视觉、运动控制、虚拟现实(virtual reality,VR)、或增强现实(augmented reality,AR)等。
综上,如何在现场总线实现较低时延的通信是当前亟需解决的技术问题。
发明内容
本申请提供一种通信方法及通信装置。用于实现光终端的上线及减小已上线的光终端发送上行业务数据的时延及时延抖动。
第一方面,本申请提供一种通信方法,该方法包括光头端可获取循环周期和周期性数据的数据量,并根据周期性数据的数据量和循环周期分配第一时隙和第二时隙,第一时隙用于传输周期性数据,第二时隙用于开窗,第二时隙为循环周期中除第一时隙外的部分时隙或全部时隙。
示例性地,该通信方法可应用于光总线网络***,该光总线***可包括光头端、光终端、以及连接光头端和光终端的光分配网络(optical distribution network,ODN)。其中,光头端例如可以是光线路终端(optical line terminal,OLT),光终端例如可以是光网络终端(optical network terminal,ONT)或光网络单元(optical network unit,ONU)。
基于该方案,可实现光终端的上线,而且通过由光头端统一分配用于传输周期性数据的第一时隙和用于开窗的第二时隙,从而可减小未上线的光终端在上线过程的开窗已上线的光终端传输的业务数据的时延,并且可减小时延抖动(或称为时延变化)(如小于1us)。
在一种可能的实现方式中,第二时隙位于第一时隙之后、或者第二时隙位于第一时隙之前、或者第二时隙与第一时隙交替分布。
当第二时隙位于第一时隙之后,如此,可以尽可能的保证周期性数据优先被传输,从而有助于减小周期性数据的时延。
在一种可能的实现方式中,第二时隙小于光头端所属的无源光网络(passive optical  network,PON)***的一帧;或者,第二时隙等于光头端所属的PON***的帧的整数倍。
也可以理解为,光头端可以为未上线的光终端开小窗,或者也可以为未上线的光终端整帧开窗。当第二时隙小于PON***的一帧时,为未上线的光终端开窗对周期性数据的时延影响较小,从而可进一步减小周期性数据的时延。
在一种可能的实现方式中,光头端可接收来自可编程逻辑控制器(programmable logic controller,PLC)的循环周期和周期性数据的数据量。
示例性地,上述光总线网络***还可包括PLC,PLC作为整个光总线网络***的管理中心,可用于管理各种类型的现场控制设备。
在一种可能的实现方式中,光头端获取光终端的上行速率,将周期性数据的数据量与上行速率的比值,确定为第一时隙的大小,并将循环周期中除第一时隙的大小外的部分或全部,确定为第二时隙的大小,并确定第一时隙的位置及第二时隙的位置。
通过光头端确定第一时隙的大小和第二时隙的大小,并统一编排第一时隙的位置和第二时隙的位置,从而可减小周期性数据的时延抖动。
在一种可能的实现方式中,光头端向光终端发送第一信息,第一信息用于向未上线的光终端通知用于开窗的第二时隙。
进一步,可选地,光头端接收来自光终端在第二时隙上发送的序列号(serial number,SN)发现响应消息或测距响应消息。
未上线的光终端通过在第二时隙上发送SN发现响应消息或测距响应消息,可以保证不影响在线的光终端向光头端发送的正常业务数据。
在一种可能的实现方式中,开窗包括测距开窗或SN发现开窗。
第二方面,本申请提供一种通信方法,该通信方法包括光终端接收来自光头端的第一信息,并确定第一信息中用于开窗的第二时隙,在第二时隙上向光头端发送序列号SN发现响应消息或测距响应消息。第二时隙为光头端获取的循环周期中除第一时隙外的部分时隙或全部时隙,第一时隙为光头端为获取的周期性数据分配的时隙,该光终端为未上线的光终端。
示例性地,该通信方法可应用于光总线网络***,该光总线***可包括光头端、光终端、以及连接光头端和光终端的光分配网络(optical distribution network,ODN)。其中,光头端例如可以是光线路终端(optical line terminal,OLT),光终端例如可以是光网络终端(optical network terminal,ONT)或光网络单元(optical network unit,ONU)。
基于该方案,未上线的光终端通过在第二时隙上发送序列号SN发现响应消息或测距响应消息,可以保证不影响在线的光终端向光头端发送的正常业务数据。
在一种可能的实现方式中,开窗包括测距开窗或序列号SN发现开窗。
第三方面,本申请提供一种通信方法,该方法包括PLC获取循环周期和周期性数据的数据量;PLC向光头端发送循环周期和周期性数据的数据量。
示例性地,该通信方法可应用于光总线网络***,该光总线***可包括光头端、光终端、连接光头端和光终端的光分配网络(optical distribution network,ODN)以及PLC。其中,光头端例如可以是光线路终端(optical line terminal,OLT),光终端例如可以是光网络终端(optical network terminal,ONT)或光网络单元(optical network unit,ONU),PLC作为整个光总线网络***的管理中心,可用于管理各种类型的现场控制设备。
基于该方案,通过PLC向光头端发送循环周期和周期性数据的数据量,如此,可以使 得光头端可以基于PLC发送的循环周期和周期性数据的数据量分配第一时隙和第二时隙,不需要等光终端请求授权,从而有助于减小光终端发送周期性数据的时延。
第四方面,本申请提供一种通信装置,该通信装置具有实现上述第一方面中的光头端的功能,或者用于实现上述第二方面中的光终端的功能,或者用于实现上述第三方面中的PLC的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置可以是光头端,或者是可用于光头端中的模块,例如芯片或芯片***或者电路。有益效果可参见上述第一方面的描述,此处不再赘述。该通信装置可以包括:收发器和处理器。该处理器可被配置为支持该通信装置执行以上所示光头端的相应功能,该收发器用于支持该通信装置与光终端或PLC等之间的通信。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。可选地,该通信装置还可以包括存储器,该存储器可以与处理器耦合,其保存该通信装置必要的程序指令和数据。
其中,收发器用于获取循环周期和周期性数据的数据量;处理器用于根据周期性数据的数据量和循环周期分配第一时隙和第二时隙,第一时隙用于传输周期性数据,第二时隙用于开窗,第二时隙为循环周期中除第一时隙外的部分时隙或全部时隙。
在一种可能的实现方式中,第二时隙位于第一时隙之后、或者第二时隙位于第一时隙之前、或者第二时隙与第一时隙交替分布。
在一种可能的实现方式中,第二时隙小于通信装置所属的无源光网络PON***的一帧;或者,第二时隙等于通信装置所属的PON***的帧的整数倍。
在一种可能的实现方式中,收发器具体用于接收来自PLC的循环周期和周期性数据的数据量。
在一种可能的实现方式中,收发器还用于向光终端发送第一信息,第一信息用于向未上线的光终端通知用于开窗的第二时隙。
在一种可能的实现方式中,收发器还用于接收来自光终端在第二时隙上发送的序列号SN发现响应消息或测距响应消息。
在一种可能的实现方式中,开窗包括测距开窗或序列号SN发现开窗。
在一种可能的实现方式中,处理器具体用于获取光终端的上行速率,将周期性数据的数据量与上行速率的比值,确定为第一时隙的大小,并将循环周期中除第一时隙的大小外的部分或全部,确定为第二时隙的大小,并确定第一时隙的位置及第二时隙的位置。
在另一种可能的实现方式中,该通信装置可以是光终端,或者是可用于光终端的部件,例如芯片或芯片***或者电路。有益效果可参见上述第二方面的描述,此处不再赘述。该通信装置可以包括:收发器和处理器。该处理器可被配置为支持该通信装置执行以上所示光终端的相应功能,该收发器用于支持该通信装置与光头端等之间的通信。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。可选地,该通信装置还可以包括存储器,该存储器可以与处理器耦合,其保存该通信装置必要的程序指令和数据。
其中,收发器用于接收来自光头端的第一信息;处理器用于确定第一信息中用于开窗的第二时隙,第二时隙为光头端获取的循环周期中除第一时隙外的部分时隙或全部时隙,第一时隙为光头端为获取的周期性数据分配的时隙;收发器还用于在第二时隙上向光头端 发送序列号SN发现响应消息或测距响应消息。
在一种可能的实现方式中,开窗包括测距开窗或序列号SN发现开窗。
在又一种可能的实现方式中,该通信装置可以是PLC,或者是可用于PLC的部件,例如芯片或芯片***或者电路。有益效果可参见上述第三方面的描述,此处不再赘述。该通信装置可以包括:收发器和处理器。该处理器可被配置为支持该通信装置执行以上所示PLC的相应功能,该收发器用于支持该通信装置与光头端或光终端等之间的通信。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。可选地,该通信装置还可以包括存储器,该存储器可以与处理器耦合,其保存该通信装置必要的程序指令和数据。
第五方面,本申请提供一种通信装置,该通信装置用于实现上述第一方面或第一方面中的任意一种方法,或者用于实现上述第二方面或第二方面中的任意一种方法,或者用于实现上述第三方面或第三方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,该通信装置可为光头端,该通信装置可以括处理模块和收发模块,这些模块可以执行上述方法示例中光头端的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的实施方式中,该通信装置还可以是光终端,该通信装置可以包括收发模块和处理模块,这些模块可以执行上述方法示例中光终端的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的实施方式中,该通信装置还可以是PLC,该通信装置可以包括收发模块和处理模块,这些模块可以执行上述方法示例中PLC的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,本申请提供一种通信***,该通信***包括光头端和光终端。其中,光头端可以用于执行上述第一方面或第一方面中的任意一种方法,光终端可以用于执行上述第二方面或第二方面中的任意一种方法。
进一步,可选地,该通信***还可包括PLC,PLC可用于执行上述第三方面或第三方面中任意一种方法。
第七方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被通信装置执行时,使得该通信装置执行上述第一方面或第一方面的任意可能的实现方式中的方法、或者使得该通信装置执行上述第二方面或第二方面的任意可能的实现方式中的方法、或者使得该通信装置执行上述第三方面或第三方面的任意可能的实现方式中的方法。
第八方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当该计算机程序或指令被通信装置执行时,使得该通信装置执行上述第一方面或第一方面的任意可能的实现方式中的方法、或者使得该通信装置执行上述第二方面或第二方面的任意可能的实现方式中的方法、或者使得该通信装置执行上述第三方面或第三方面的任意可能的实现方式中的方法。
附图说明
图1为本申请的可应用的一种光总线网络***的架构示意图;
图2为本申请提供的一种下行传输示意图;
图3为本申请提供的一种上行传输示意图;
图4为现有技术的上行开窗方式示意图;
图5为本申请提供的一种通信方法的方法流程示意图;
图6为本申请提供的一种循环周期的结构示意图;
图7a为本申请提供的一种第一时隙、第二时隙与循环周期的关系示意图;
图7b为本申请提供的另一种第一时隙、第二时隙与循环周期的关系示意图;
图8a为本申请提供的一种第一时隙、第二时隙与帧的关系示意图;
图8b为本申请提供的另一种第一时隙、第二时隙与帧的关系示意图;
图9a为本申请提供的一种第一时隙、第二时隙、第三时隙与循环周期的关系示意图;
图9b为本申请提供的另一种第一时隙、第二时隙、第三时隙与循环周期的关系示意图;
图10a为本申请提供的一种第一时隙与第二时隙的位置关系示意图;
图10b为本申请提供的另一种第一时隙与第二时隙的位置关系示意图;
图11为本申请提供的一种SN发现阶段的方法流程示意图;
图12为本申请提供的一种测距阶段的方法流程示意图;
图13为本申请提供的另一种通信方法的方法流程示意图;
图14为本申请提供的一种通信装置的结构示意图;
图15为本申请提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
图1是本申请的可应用的一种光总线网络***的架构示意图。该光总线网络***可包括控制器和光通信***。其中,光通信***至少包括光头端、光分配网络(optical distribution network,ODN)和光终端,光头端通过ODN与光终端连接。ODN包括主干光纤、分光器(splitter)和分支光纤。图1是以光通信***包括n个光终端为例,n个光终端分别为光终端1、光终端2、……、光终端n。分光器也可以称为光分路器,可以是具有多个输入端和多个输出端的光纤汇接器件,用于光信号的耦合和分配。光头端与分光器之间通过主干光纤连接。分光器与光终端之间通过分支光纤连接。进一步,可选地,该光总线网络***还可包括现场控制设备(或传统的工业设备),例如传动设备(如伺服驱动器和伺服电机)、传感设备(如传感器)、输入/输出端口(input/output,I/O)设备等。应理解,这些现场控制设备可以统称为从站。控制器例如可以是可编程逻辑控制器(programmable logic controller,PCL)。PLC作为整个光总线网络***的管理中心,可用于管理各种类型的现场控制设备。进一步,可选地,光总线网络***还可包括接入以太/网络协议(internet protocol,IP)互联网的设备。需要说明的是,现场总线可采用上述光总线网络***。
需要说明的是,上述图1中所示的光总线网络***中的各个结构的形态和数量仅用于举例,并不构成对本申请的限定。图1中的光通信***中包括的光头端、光终端、分光器、 以及分光器包括的端口的数量也仅是示例,本申请对此不做限定。其中,光头端例如可以是光线路终端(optical line terminal,OLT),换言之,OLT可以实现光头端的功能。光终端例如可以是光网络终端(optical network terminal,ONT)或光网络单元(optical network unit,ONU),换言之,ONT或ONU可以实现光终端的功能。此外,图1所示的光总线网络***中的各个结构的名称仅是一个示例,具体实现中各个结构的名称也可能为其他名称,本申请对此不做具体限定。
还需要说明的是,光头端与PLC可以是分离部署的、或者也可以是合一部署的。换言之,光头端与PLC可以部署于不同的物理设备,或者也可以部署于同一物理设备。即光头端与PLC可以是两个独立的物理设备,或者也可以是同一物理设备中的两个功能模块。另外,光终端与从站可以是分离部署的、或者也可以是合一部署的。换言之,光终端与从站是独立的不同的物理设备,或者也可以是光终端与从站是合一的设备。本申请对此不做限定。
此处,光通信***可以是无源光网络(passive optical network,PON)***,其中,PON***例如可以是千兆比特无源光网络(gigabit-capable PON,GPON)***、以太网无源光网络(ethernet PON,EPON)***、10千兆以太无源光网络(10Gb/s ethernet passive optical network,10G-EPON)***、时分和波分复用无源光网络(time and wavelength division multiplexing passive optical network,TWDM-PON)、10千兆比特无源光网络(10gigabit-capable passive optical network,XG-PON)***或者10千兆比特对称无源光网络(10-gigabit-capable symmetric passive optical network,XGS-PON)***等。随着未来演进的新技术的出现,PON***的速率可能会提升到25Gbps、50Gbps甚至100Gbps,因此光通信***还可以是更高传输速率的PON***,本申请对此不做限定。
在一种可能的实现方式中,上述PON***可以是支持单波长的PON***。
需要说明的是,本申请所描述的***架构是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本申请提供的技术方案对于出现下述类似的技术问题,同样适用。
为方便说明,本申请后续,以光头端为OLT,光终端为ONT为例进行说明。即本申请后续所描述的OLT均可替换为光头端,ONT均可替换为光终端。
示例性地,PON***主要包括OLT、多个ONT、以及连接OLT与ONT的ODN。其中,OLT是电信的局端设备,在PON网络中位于局端;ONT是PON网络的末端单元,也称为“光猫”;ODN可以为OLT与ONT之间提供光信号传输通道,在ODN中不含任何电子器件及电子电源,ODN主要由分光器(splitter)、光纤等无源器件组成,不需要有源电子设备。
基于上述图1,数据或承载数据的光信号从OLT传输至ONT的传输方向称为下行方向。数据或承载数据的光信号从ONT传输至OLT的方向称为上行方向。OLT向ONT传输光信号的方式可以是广播,ONT向OLT传输光信号的方式可以单播。应理解,对于上行方向,该PON***是多点对点(multi-point to point,MP2P)***;对于下行方向,该PON***是点到多点(point 2 multiple point,P2MP)***。
通常,OLT与ONT之间传输数据采用时分复用技术,比如,时分多址(time division multiple access,TDMA)。在下行传输时,请参阅图2,OLT向ONT发送下行数据时,OLT发送的一路光信号通过分光器后,分成n路分别发送给n个ONT,ONT选择性接收与自 身编号相同的下行数据,丢弃其他的数据。在上行传输时,请参阅图3,每个动态带宽分配(dynamically bandwidth assignment,DBA)周期(上行传输时长,即PON***的一帧或者多帧)被分为多个时隙Ti(i=1,2,3,…),在每个时隙内只安排一个ONT向OLT发送上行数据,各ONT按OLT规定的顺序依次发送。应理解,一个ONT可以被分配一个或者多个时隙,图3是仅是一种可能的示例。
上行传输时,每个ONT仅在自己的时隙到来时才能发送上行数据,在其余时间必须关闭发射机。否则,多个ONT同时发射上行数据会造成冲突或干扰,从而造成OLT无法接收到ONT发送的上行数据,从而导致整个光通信***的业务中断。出现上述情况时,把不在自己的时隙而随意发光的ONT称为流氓ONT。为了确保光通信***的正常运行,OLT会严格分配每个ONT所在的时隙,避免流氓ONT的出现。
应理解,每个ONT在与OLT建立可控连接并传输数据之前,ONT需要先进行注册(或称为上线)。在ONT注册阶段,OLT可获取ONT与OLT之间的距离信息,并结合OLT与ONT之间的距离信息为ONT分配上行时隙,以尽可能的避免各个ONT上行业务数据的冲突。当有新的ONT需要注册(或称为上线)时,为了避免新的ONT在注册阶段发送的信息对已上线的ONT的上行数据造成影响,目前是通过上行开窗的方式来尽可能避免的。所谓上行开窗是指OLT周期性的不允许所有已上线的ONT发送上行业务数据,上行方向上呈现空窗状态,且在空窗期间只允许未注册的ONT发送注册信息(包括用于测距的信息)。如图4所示,提供的一种现有技术中上行开窗方式,即每隔5ms进行开窗,一次开窗大小为2帧,在开窗期间不允许所有已上线的ONT发送上行数据,即上行方向上呈现空窗状态。因此,对于已注册的ONT,在开窗期间是不能发送上行数据的,从而会导致已注册ONT发送上行数据的时延较大且时延是不确定的。当上述光通信***应用于无线承载、虚拟现实(virtual reality,VR)、或增强现实(augmented reality,AR)等对时延要求较严格的场景时,现有技术的上行开窗方式无法满足这些时延要求较严格的场景的需求。
鉴于上述问题,本申请提出一种通信方法,该方法可以减小已上线的ONT传输的周期性数据(具体可参见下述相关描述)的时延、且可以尽可能保证时延抖动是确定的。该方法可应用于上述图1所示的光总线网络***。该方法中的OLT可以是上述图1的光头端,ONT可以是上述图1中的光终端。
下面参考图5,为本申请提供的一种通信方法的方法流程示意图。该方法包括以下步骤:
步骤501,OLT获取循环周期和周期性数据的数据量。
此处,循环周期是指PLC的循环周期,循环周期包括从站采样(例如采集工业控制设备的速度、位置、电流等)时长、采样数据传输至PLC的输入传输时延、PLC根据采样数据进行计算的时长(可称为计算时长)、PLC将计算结果(或称为配置数据或称为下行数据)传输至从站的输出传输时延以及从站执行接收到的计算结果的输出时长的总和,可参见图6。也可以理解为,循环周期是指执行一次如图6所示的循环操作所需的时长,循环周期也可称为循环时间或扫描循环时间。示例性地,循环周期可以是PLC预先配置的。
其中,周期性数据例如可以是过程数据对象(process data object,PDO),PDO用于传递从站的各个设备实时控制参数或变量,PDO的交换是周期性传递的。通常,周期性数据对时延要求较高。
需要说明的是,周期性数据的数据量是固定的。示例性地,结合上述图1,传动设备(可称为从站1)的周期性数据的数据量为1000字节,传感设备(可称为从站2)的周期性数据的数据量是2000字节。
在一种可能的实现方式中,OLT可通过如下三种可能的方式获取循环周期和周期性数据的数据量。
方式1,OLT接收来自PLC的循环周期和周期性数据的数据量。
基于该方式1,PLC可预先配置循环周期,并接收从站上报的周期性数据。结合上述图6,ONT数据包括周期性数据,进一步,还可以包括非周期性数据。相应地,PLC可确定接收到的周期性数据的数据量。进一步,PLC向OLT发送循环周期和周期性数据的数据量。
基于该方式1,通过PLC向光头端发送循环周期和周期性数据的数据量,如此,可以使得光头端可以基于PLC发送的循环周期和周期性数据的数据量分配第一时隙和第二时隙,不需要等光终端请求授权,从而有助于减小光终端发送周期性数据的时延。
方式2,OLT接收来自PLC的循环周期、以及接收来自从站的周期性数据。
基于该方式2,PLC可预先配置循环周期,并向OLT发送循环周期。OLT可从从站接收周期性数据,并确定周期性数据的数据量。
方式3,直接向OLT注入循环周期和周期性数据的数据量。
例如,可以通过串行外设接口(serial peripheral interface,SPI)接口,将循环周期和周期性数据的数据量写入OLT的内存区。
步骤502,OLT根据周期性数据的数据量和循环周期分配第一时隙和第二时隙。
其中,第一时隙用于传输周期性数据,第二时隙用于开窗,第二时隙为循环周期中除第一时隙外的部分时隙或全部时隙。应理解,第二时隙即为开窗的窗口大小。
需要说明的是,分配第一时隙包括分配第一时隙的大小(或称为第一时隙的长度)以及第一时隙的位置。分配第二时隙包括分配第二时隙的大小(或称为第二时隙的长度)以及第二时隙的位置。
在一种可能的实现方式中,OLT可获取ONT的上行速率,将周期性数据的数据量与上行速率的比值,确定为第一时隙的大小,将循环周期中除第一时隙大小外的部分或全部,确定为第二时隙的大小,并统一确定第一时隙和第二时隙的位置。
需要说明的是,ONT的上行速率即为ONT和OLT所属的PON***的上行速率。例如,若ONT属于GPON***,则上行速率为1.25Gbp;若ONT属于XGPON***,则上行速率为2.5Gbp;若ONT属于XGPON***,则上行速率为9.95Gbp。
示例性地,若循环周期为31.25us,周期性数据的数据量为1000字节(Byte),上行速率为1.25Gbp,则第一时隙的大小等于1000Byte/1.25Gbp=6.25us,第二时隙的大小可以是31.25-6.25=25us中部分或全部。换言之,第二时隙的大小可以等于25us,或者也可以大于0且小于25us。
基于上述步骤501至步骤502,可实现光终端的上线,而且通过由光头端统一分配用于传输周期性数据的第一时隙和用于开窗的第二时隙,从而可减小未上线的光终端在上线过程的开窗已上线的光终端传输的业务数据的时延,并且可减小时延抖动(或称为时延变化)(如小于1us)。
如下,示例性地的示出了第一时隙、第二时隙与循环周期的两种可能的关系。
关系一,第二时隙为循环周期中除第一时隙外的部分时隙。
如图7a所示,第二时隙为循环周期中除第一时隙外的部分时隙。也就是说,在一个循环周期中,除了用于传输周期性数据的第一时隙及用于开窗的第二时隙外,还剩余部分时隙,这部分剩余的时隙可用于传输临时产生的普通数据(如从站临时上报告警状态、或者从站为摄像头时等产生的数据)。
关系二,第二时隙为循环周期中除第一时隙外的全部时隙。
如图7b所示,第二时隙为循环周期中除第一时隙外的全部时隙。也就是说,一个循环周期包括用于传输周期性数据的第一时隙及用于开窗的第二时隙。
应理解,不是每个循环周期都需要分配用于开窗的第二时隙。若循环周期、第一时隙与第二时隙满足上述关系二,则临时产生的普通数据可在不分配用于开窗的第二时隙的循环周期中传输。
在一种可能的实现方式中,循环周期等于PON***的一帧除以N,N为正整数。示例性地,PON***的一帧等于125us。或者,循环周期等于PON***的一帧乘以N,N为正整数。示例性地,循环周期等于125us/N,或者,循环周期等于125us×N。
为了便于方案的说明,如下以N=1为例,即循环周期等于PON***的一帧为例。
需要说明的是,为了尽可能的避免不同ONU之间传输的周期性数据之间的相互干扰,可以在分配给每个ONU的第一时隙之前有一段间隔(GAP)。进一步,可选地,分配的第三时隙之前也有一段GAP。
请参阅图8a,第二时隙小于OLT所属的PON***的一帧。也可以理解为OLT开小窗,即第二时隙的大小小于PON***的一帧的大小。当PON***的一帧等于125us,第二时隙小于125us。示例性地,OLT确定第i帧中的部分时隙(第二时隙)用于开窗。
请参阅图8b,第二时隙等于OLT所属的PON***的帧的整数倍。也可以理解为OLT整帧开窗,即第二时隙的大小等于PON***的一帧的大小的整数倍。需要说明的是,第二时隙可以是PON***的一帧,或者也可以是PON***的连续多帧。当PON***的一帧等于125us,第二时隙等于125us的整数倍。示例性地,OLT可确定第j帧和第j+1帧用于开窗。
进一步,可选地,PON***中也可能会传输一些临时的普通数据(或称为非周期性数据),例如服务数据对象(service data object,SDO)。这些非周期性数据可以在循环周期中的除第一时隙和第二时隙外的第三时隙传输,请参阅图9a和图9b。
需要说明的是,上述图9a和图9b是以为两个未上线ONT为例的,即OLT为两个ONT分别分配第一时隙,且是以为这两个ONT分配的第一时隙的长度相同的为例说明的。应理解,OLT会为每个ONT分配的第一时隙与ONT上报的周期性数据的数据量有关,图9a和图9b仅是示例。
在一种可能的实现方式中,第二时隙可位于第一时隙之后(可参阅上述图7a、图7b、图8a、图8b、图9a或图9b),或者第二时隙也可以为位于第一时隙之前(可参阅图10a),或者第二时隙与第一时隙交替分布(可参阅图10b)。
在一种可能的实现方式中,OLT还可向未上线的ONT发送第一信息,第一信息用于向未上线的ONT通知用于开窗的第二时隙。相应地,未上线的ONT可在第二时隙向OLT发送SN发现响应消息或测距响应消息。进一步,可选地,第一信息可以是带宽映射图 BWMAP。
在一种可能的实现方式中,开窗可包括SN发现开窗和测距开窗,其中,SN发现开窗是ONT注册过程中的SN发现阶段对应的开窗,测距开窗是ONT注册过程中的测距阶段对应的开窗。
如图11所示,为本申请提供的一种SN发现阶段的方法流程示意图。该方法可包括如下步骤:
步骤1101,OLT广播SN请求消息。相应地,未上线的ONT接收OLT广播的SN请求消息。
步骤1102,未上线的ONT根据接收到的SN请求消息生成SN发现响应消息,并将SN发现响应消息缓存。
步骤1103,OLT向未上线的ONT发送第一信息。相应地,未上线的ONT接收来自OLT的第一信息。
此处,第一信息用于向未上线的ONT通知用于SN发现开窗的第二时隙。
步骤1104,未上线的ONT根据第一信息确定用于SN发现开窗的第二时隙。
步骤1105,未上线的ONT在第二时隙向OLT发送SN发现响应消息。相应地,OLT在第二时隙接收来自未上线的ONT的SN发现响应消息。
结合上述图8a,OLT可在第i帧的第二时隙不分配BWMAP,在第i+1帧广播BWMAP,BWMAP中包括的分配(alloc)-标识(identification,ID)为广播标识(broadcast-ID),开始时刻(start time)对应第i帧中的第二时隙的开始时刻;OLT在第i+1帧广播SN请求消息。
结合上述图8b,OLT在第j帧不分配BWMAP,在第j+1帧下发BWMAP,该BWMAP中包括的alloc-ID为broadcast ID,并在第j+1帧下发SN请求消息。
通过上述步骤1101至步骤1105可以看出,未上线的ONT通过在第二时隙上发送SN发现响应消息,从而可以保证SN发现响应消息不影响在线ONT向OLT发送的正常业务数据。
如图12所示,为本申请提供的一种测距(ranging)阶段的方法流程示意图。该方法可包括以下步骤:
步骤1201,OLT向未上线的ONT发送测距请求消息。相应地,未上线的ONT接收OLT的测距请求消息。
步骤1202,未上线的ONT根据接收到的测距请求消息生成测距响应消息,并将测距响应消息缓存。
步骤1203,OLT向未上线的ONT发送第一信息。相应地,未上线的ONT接收来自OLT的第一信息。
此处,第一信息用于向未上线的ONT通知用于测距开窗的第二时隙。
步骤1204,未上线的ONT根据第一信息确定用于测距开窗的第二时隙。
步骤1205,未上线的ONT在第二时隙向OLT发送测距响应消息。相应地,OLT在第二时隙接收来自未上线的ONT的测距响应消息。
通过上述步骤1201至步骤1205可以看出,未上线的ONT通过在第二时隙上发送测距响应消息,可以保证测距响应消息不影响在线ONT向OLT发送的正常业务数据。
在一种可能的实现方式中,ONT注册过程中还包括认证阶段。认证是指从运营商角度 让特定的ONT上线,所以需要对ONT进行认证管理,防止用户接入不正确的ONT。在认证阶段,OLT进入操作状态后,会向ONT进行密码(Password,PWD)请求,并将ONT回应的PWD与本地配置的PWD进行比较。若ONT回应的PWD与本地配置的PWD相同,则允许ONT上线,并向主机命令行或网管防爆ONT上线告警,若ONT回应的PWD与本地配置的PWD不同,则向主机命令行或者网管上报PWD错误告警。
认证成功后,ONT进入运行阶段。
在ONT的运行阶段,OLT为ONT分配默认的ONT管理和控制接口(ONT management and control interface,OMCI)带宽,该OMCI带宽可以用于ONT与OLT进行通信。
基于上述内容,如图13所示,为本申请提供的另一种通信方法的流程示意图。该通信方法可应用于上述图1所示的光总线网络***。该方法可包括以下步骤:
步骤1301,PLC与OLT进行时间同步。
步骤1302,PLC获取从站的周期性数据。
此处,PLC可通过解析从站的配置文件(如可扩展标记语言(extensible markup language,XML)文件)来获取从站的周期性数据,从站的配置文件中包括从站的各个配置参数及大小。或者,也可以是从站通过上行OMCI消息向PLC上报从站的周期性数据。
步骤1303,PLC确定循环周期及周期数据的数据量。
该步骤1303可参见上述步骤501中的相关的介绍,此处不再赘述。
步骤1304,PLC向OLT发送循环周期及周期性数据的数据量。
此处,PLC可通过与OLT之间的管理通道向OLT发送循环周期及周期性数据的数据量。
步骤1305,OLT根据周期性数据的数据量分配第一时隙和第二时隙。
该步骤1305可参见前述步骤502的相关描述,此处不再赘述。
步骤1306,OLT向各个未上线的ONT发送第一信息。
此处,第一信息用于向未上线的ONT通知用于开窗的第二时隙。
步骤1307,ONT根据接收到的第一信息,确定用于开窗的第二时隙。
步骤1308,ONT在第二时隙,向OLT发送SN发现响应消息或测距响应消息。
可以理解的是,为了实现上述实施例中功能,光头端和光终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的模块及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
基于上述内容和相同构思,图14和图15为本申请的提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中光头端或光终端的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请中,该通信装置可以是如图1所示OLT或ONT,还可以是应用于光头端或光终端的模块(如芯片)。
如图14所示,该通信装置1400包括处理模块1401和收发模块1402。通信装置1400用于实现上述图5、图11、图12所示的方法实施例中光头端或光终端的功能。
当通信装置1400用于实现图5所示的方法实施例的光头端的功能时:处理模块1401用于获取循环周期和周期性数据的数据量;收发模块1402用于根据周期性数据的数据量 分配第一时隙和第二时隙,第一时隙用于传输周期性数据,第二时隙用于开窗,第二时隙为循环周期中除第一时隙外的部分时隙或全部时隙。
当通信装置1400用于实现图5所示的方法实施例的光终端的功能时:收发模块1402用于接收来自光头端的第一信息;处理模块1401用于确定第一信息中用于开窗的第二时隙,第二时隙为光头端获取的循环周期中除第一时隙外的部分时隙或全部时隙,第一时隙为光头端为获取的周期性数据分配的时隙;收发模块1402还用于在第二时隙上向光头端发送序列号SN发现响应消息或测距响应消息。
有关上述处理模块1401和收发模块1402更详细的描述可以参考图5所示的方法实施例中相关描述直接得到,此处不再一一赘述。
应理解,本申请实施例中的处理模块1401可以由处理器或处理器相关电路组件实现,收发模块1402可以由收发器或收发器相关电路组件实现。
基于上述内容和相同构思,如图15所示,本申请还提供一种通信装置1500。该通信装置1500可包括处理器1501和收发器1502。处理器1501和收发器1502之间相互耦合。可以理解的是,收发器1502可以为接口电路或输入输出接口。可选地,通信装置1500还可包括存储器1503,用于存储处理器1501执行的指令或存储处理器1501运行指令所需要的输入数据或存储处理器1501运行指令后产生的数据。
当通信装置1500用于实现图5所示的方法时,处理器1501用于执行上述处理模块1401的功能,收发器1502用于执行上述收发模块1402的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于光头端或光终端中。当然,处理器和存储介质也可以作为分立组件存在于光头端或光终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行计算机程序或指令时,全部或部分地执行本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、光头端、光终端、用户设备或者其它可编程装置。计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输, 例如,计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。另外,在本申请中,“示例性地”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。或者可理解为,使用示例的一词旨在以具体方式呈现概念,并不对本申请构成限定。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”等类似表述,是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块。方法、***、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    光头端获取循环周期和周期性数据的数据量;
    所述光头端根据所述循环周期和所述周期性数据的数据量分配第一时隙和第二时隙,所述第一时隙用于传输所述周期性数据,所述第二时隙用于开窗,所述第二时隙为所述循环周期中除所述第一时隙外的部分时隙或全部时隙。
  2. 如权利要求1所述的方法,其特征在于,所述第二时隙位于所述第一时隙之后、或者所述第二时隙位于所述第一时隙之前、或者所述第二时隙与所述第一时隙交替分布。
  3. 如权利要求1或2所述的方法,其特征在于,所述第二时隙小于所述光头端所属的无源光网络PON***的一帧;或者,
    所述第二时隙等于所述光头端所属的PON***的帧的整数倍。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述光头端获取循环周期和周期性数据的数据量,包括:
    所述光头端接收来自可编程逻辑控制器PLC的所述循环周期和所述周期性数据的数据量。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    所述光头端向光终端发送第一信息,所述第一信息用于向未上线的光终端通知用于开窗的所述第二时隙。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述光头端接收来自所述光终端在所述第二时隙上发送的序列号SN发现响应消息或测距响应消息。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述开窗包括测距开窗或序列号SN发现开窗。
  8. 如权利要求1至7任一项所述的方法,其特征在于,所述光头端根据所述循环周期和所述周期性数据的数据量分配第一时隙和第二时隙,包括:
    所述光头端获取光终端的上行速率;
    所述光头端将所述周期性数据的数据量与所述上行速率的比值,确定为所述第一时隙的大小;
    所述光头端将所述循环周期中除所述第一时隙的大小外的部分或全部,确定为所述第二时隙的大小;
    所述光头端确定所述第一时隙的位置及所述第二时隙的位置。
  9. 一种通信方法,其特征在于,包括:
    光终端接收来自光头端的第一信息,所述光终端为未上线的光终端;
    所述光终端根据所述第一信息确定用于开窗的第二时隙,所述第二时隙为所述光头端获取的循环周期中除第一时隙外的部分时隙或全部时隙,所述第一时隙为所述光头端为获取的周期性数据分配的时隙;
    所述光终端在所述第二时隙上向所述光头端发送序列号SN发现响应消息或测距响应消息。
  10. 如权利要求9所述的方法,其特征在于,所述开窗包括测距开窗或序列号SN发现 开窗。
  11. 一种通信方法,其特征在于,包括:
    可编程逻辑控制器PLC获取循环周期和周期性数据的数据量;
    所述PLC向光线路终端光头端发送所述循环周期和所述周期性数据的数据量。
  12. 一种通信装置,其特征在于,包括用于执行如权利要求1至11中的任一项所述方法的模块。
  13. 一种通信装置,其特征在于,包括收发器和处理器;
    所述收发器,用于获取循环周期和周期性数据的数据量;
    所述处理器,用于根据所述周期性数据的数据量和所述循环周期分配第一时隙和第二时隙,所述第一时隙用于传输所述周期性数据,所述第二时隙用于开窗,所述第二时隙为所述循环周期中除所述第一时隙外的部分时隙或全部时隙。
  14. 如权利要求13所述的装置,其特征在于,所述第二时隙位于所述第一时隙之后、或者所述第二时隙位于所述第一时隙之前、或者所述第二时隙与所述第一时隙交替分布。
  15. 如权利要求13或14所述的装置,其特征在于,所述第二时隙小于所述通信装置所属的无源光网络PON***的一帧;或者,
    所述第二时隙等于所述通信装置所属的PON***的帧的整数倍。
  16. 如权利要求13至15任一项所述的装置,其特征在于,所述收发器,具体用于:
    接收来自可编程逻辑控制器PLC的所述循环周期和所述周期性数据的数据量。
  17. 如权利要求13至16任一项所述的装置,其特征在于,所述收发器,还用于:
    向光终端发送第一信息,所述第一信息用于向未上线的光终端通知用于开窗的所述第二时隙。
  18. 如权利要求17所述的装置,其特征在于,所述收发器,还用于:
    接收来自所述光终端在所述第二时隙上发送的序列号SN发现响应消息或测距响应消息。
  19. 如权利要求13至18任一项所述的装置,其特征在于,所述开窗包括测距开窗或序列号SN发现开窗。
  20. 如权利要求13至19任一项所述的装置,其特征在于,所述处理器,具体用于:
    获取光终端的上行速率;
    将所述周期性数据的数据量与所述上行速率的比值,确定为所述第一时隙的大小;
    将所述循环周期中除所述第一时隙的大小外的部分或全部,确定为所述第二时隙的大小;
    确定所述第一时隙的位置及所述第二时隙的位置。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,使得所述通信装置执行如权利要求1至11中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被通信装置执行时,使得所述通信装置执行如权利要求1至11中任一项所述的方法。
PCT/CN2022/079416 2021-04-19 2022-03-04 一种通信方法及通信装置 WO2022222619A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22790728.4A EP4311136A1 (en) 2021-04-19 2022-03-04 Communication method and communication apparatus
US18/489,075 US20240048262A1 (en) 2021-04-19 2023-10-18 Communication method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110420777.3A CN115225195A (zh) 2021-04-19 2021-04-19 一种通信方法及通信装置
CN202110420777.3 2021-04-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/489,075 Continuation US20240048262A1 (en) 2021-04-19 2023-10-18 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022222619A1 true WO2022222619A1 (zh) 2022-10-27

Family

ID=83604915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079416 WO2022222619A1 (zh) 2021-04-19 2022-03-04 一种通信方法及通信装置

Country Status (4)

Country Link
US (1) US20240048262A1 (zh)
EP (1) EP4311136A1 (zh)
CN (1) CN115225195A (zh)
WO (1) WO2022222619A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418217A (zh) * 2018-04-26 2019-11-05 中兴通讯股份有限公司 开放安静窗口的方法和装置以及注册方法、装置和***
US20200214022A1 (en) * 2019-01-02 2020-07-02 Nokia Technologies Oy Systems and methods for avoiding delays for ull traffic
CN112584262A (zh) * 2020-11-20 2021-03-30 华为技术有限公司 一种数据传输方法及相关设备
CN113328824A (zh) * 2021-04-19 2021-08-31 华为技术有限公司 一种传输方法、装置及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418217A (zh) * 2018-04-26 2019-11-05 中兴通讯股份有限公司 开放安静窗口的方法和装置以及注册方法、装置和***
US20200214022A1 (en) * 2019-01-02 2020-07-02 Nokia Technologies Oy Systems and methods for avoiding delays for ull traffic
CN112584262A (zh) * 2020-11-20 2021-03-30 华为技术有限公司 一种数据传输方法及相关设备
CN113328824A (zh) * 2021-04-19 2021-08-31 华为技术有限公司 一种传输方法、装置及***

Also Published As

Publication number Publication date
CN115225195A (zh) 2022-10-21
US20240048262A1 (en) 2024-02-08
EP4311136A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
US8797854B2 (en) Scheduling for RF over fiber optic cable [RFoG]
JP3819898B2 (ja) ギガビットイーサネット(登録商標)受動光加入者網の音声サービスのための帯域幅割当方法
US8965206B2 (en) Network system, station-side apparatus, and method of controlling communications
US8873565B2 (en) Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network
TWI725274B (zh) 資料通信系統、光線路終端及基帶單元
CN108370270B (zh) 动态带宽的分配方法、装置和无源光网络***
US8184976B2 (en) Passive optical network system and operating method thereof
JP2015523811A (ja) 多波長パッシブ光ネットワークの波長ネゴシエーション方法及び装置、及び多波長パッシブ光ネットワークシステム
EP1333612A2 (en) Idle-pattern output control circuit in a gigabit ethernet-passive optical network
US20240048880A1 (en) Transmission method, apparatus, and system
US11405109B2 (en) Information transmission method, optical line termination, optical network unit, and communications system
AU2018403910B2 (en) Communication network and related devices
JP6205847B2 (ja) 通信制御装置及びプログラム
US20230144582A1 (en) Registration method and device, method for writing registration information, optical line terminal, and optical network unit
JP6459588B2 (ja) アクセス制御システム、アクセス制御方法、親局装置及び子局装置
WO2022222619A1 (zh) 一种通信方法及通信装置
EP4040746A1 (en) Passive optical network-based communication method, related device, and system
US20230403488A1 (en) Optical bus communication method and system, device, and medium
EP4240022A1 (en) Timing information configuration method and related apparatus
WO2022269853A1 (ja) 帯域割り当て装置、加入者線端局装置、及び帯域割り当て方法
JP6827435B2 (ja) 光通信装置、制御方法、及び制御プログラム
US9294370B2 (en) System and method for reduced latency reporting in an ethernet passive optical network (EPON)
CN115209244A (zh) 一种信息处理方法、装置、光线路终端以及光网络单元
CN116614733A (zh) 信息请求方法、光网络单元及光线路终端
WO2016157626A1 (ja) 局側装置および通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022790728

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022790728

Country of ref document: EP

Effective date: 20231020

NENP Non-entry into the national phase

Ref country code: DE