WO2022222374A1 - 转子组件、电机及家用电器 - Google Patents

转子组件、电机及家用电器 Download PDF

Info

Publication number
WO2022222374A1
WO2022222374A1 PCT/CN2021/120351 CN2021120351W WO2022222374A1 WO 2022222374 A1 WO2022222374 A1 WO 2022222374A1 CN 2021120351 W CN2021120351 W CN 2021120351W WO 2022222374 A1 WO2022222374 A1 WO 2022222374A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
rotor
core
ring
rotor assembly
Prior art date
Application number
PCT/CN2021/120351
Other languages
English (en)
French (fr)
Inventor
陈雨
周海东
周倩云
郑浩
李萍
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110419169.0A external-priority patent/CN115224838A/zh
Priority claimed from CN202120804418.3U external-priority patent/CN214543844U/zh
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2022222374A1 publication Critical patent/WO2022222374A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present disclosure relates to the technical field of motors, and in particular, to a rotor assembly, a motor and a household appliance.
  • the built-in permanent magnet motor has the advantages of high power density and is widely used in the field of household appliances.
  • the rotor iron core of the built-in permanent magnet motor is usually connected with the inner iron core bushing through the inner magnetic bridge.
  • This structure cannot increase the insulation between the rotating shaft and the iron core, which may easily lead to electrical corrosion of the bearing and reduce the reliability.
  • the rotor core is connected to the shaft sleeve by an injection molded body, but this structure has the problem of unreasonable design, and the tightness of the connection between the shaft sleeve and the injection molding material affects the stability of the rotor when outputting a large torque.
  • the present disclosure aims to at least partially solve one of the technical problems existing in the prior art.
  • the present disclosure proposes a rotor assembly, which effectively increases the bonding force between the inner iron core and the injection molded body, improves the structural strength, and has higher reliability.
  • the present disclosure also provides a motor and a home appliance including the above-described rotor assembly.
  • a rotor assembly according to an embodiment of the first aspect of the present disclosure comprising:
  • a rotor iron core the rotor iron core includes an inner iron core and an outer iron core, the inner iron core is provided with a shaft hole for installing a rotating shaft, the outer iron core is provided with a accommodating groove, and the outer iron core and the The interval between the inner iron cores is set;
  • the injection molded body is at least filled between the inner iron core and the outer iron core;
  • the outer iron core includes a plurality of outer iron core units spaced around the inner iron core, the accommodating groove is formed between adjacent outer iron core units, and the inner iron core includes a plurality of outer iron core units along the inner iron core.
  • the outer iron core and the inner iron core can be connected to form the rotor iron core through the injection molding body, so that the insulation between the rotating shaft and the outer iron core can be formed, the shaft voltage can be effectively reduced, the electrical corrosion of the bearing can be reduced, and the reliability of the motor can be improved;
  • the outer iron core units surround the inner iron core to form the outer iron core, and the inner iron core is formed by stacking the first ring sheet and the second ring sheet.
  • the protrusion can increase the bonding force between the inner iron core and the injection molded body, make the connection between the inner iron core and the injection molded body more closely, improve the structural strength, and thus improve the stability of the rotor assembly when outputting a large torque; the second ring piece
  • the first protrusion does not completely cover the outer side of the inner iron core, which is conducive to reducing the protrusion structure on the outer side of the inner iron core, thereby reducing the magnetic flux leakage of the inner iron core in the magnetic circuit, effectively reducing the
  • the self-crosslinking flux leakage of the permanent magnet along the inner side of the rotor core radial direction improves the stability and reliability of the motor operation.
  • the second loop sheet is an annular base sheet
  • the first loop sheet is composed of the annular base sheet and distributed at intervals along the circumference of the annular base sheet is composed of a plurality of the first protrusions.
  • the first ring pieces and the second ring pieces are alternately arranged along the axial direction of the rotor core.
  • the first ring pieces are disposed on both ends of the inner iron core along the axial direction of the rotor iron core, and the second ring pieces are disposed on both ends of the inner iron core. between the first loop pieces at the ends.
  • the first protrusions are in one-to-one correspondence with the permanent magnets and are arranged at intervals, and the injection molded body is filled between the first protrusions and the permanent magnets.
  • each of the outer core units includes a plurality of sector-shaped sheets stacked along an axial direction of the rotor core, and the sector-shaped sheets are provided for positioning toward the inner side in the direction of the inner core. the second protrusion of the permanent magnet.
  • the second protrusion includes a first extension section and a second extension section, the first extension section extends along a circumferential direction of the rotor core, and the second extension section extends along the The rotor core extends in a direction away from the first extending section in the circumferential direction.
  • the second protrusion further includes a third protrusion, and the third protrusion is disposed between the first extension section and the second extension section and faces the interior The direction of the iron core extends.
  • an end of the third protrusion is provided with a third extension section and a fourth extension section, the third extension section extends along the circumferential direction of the rotor core, and the fourth extension section The extension section extends in the circumferential direction of the rotor core and in a direction away from the third extension section.
  • the distance between the first protrusion and the inner iron core along the radial direction of the rotor iron core is L1, and satisfies 1.5mm ⁇ L1 ⁇ 2mm.
  • the heights of the first protrusions and the second protrusions in the circumferential direction of the rotor core are L2, and satisfy L2 ⁇ 1 mm.
  • the outer sides of the adjacent sector-shaped pieces are connected.
  • the inner side of the first ring sheet is provided with a first positioning groove
  • the inner side of the second ring sheet is provided with a second positioning groove
  • the first positioning groove is connected to the first positioning groove.
  • Two positioning grooves correspond along the axial direction of the rotor core for positioning the first ring piece and the second ring piece.
  • each of the outer iron core units is provided with a first through hole, and the first through hole penetrates the corresponding outer iron core unit along the axial direction of the rotor iron core, so The first through hole is filled with the injection molded body.
  • each of the outer iron core units is provided with a second through hole, and the second through hole penetrates the corresponding outer iron core unit along the axial direction of the rotor iron core, so as to for positioning the corresponding outer core unit.
  • the second through hole includes a polygonal hole position and a circular hole position, and the center of the polygonal hole position and the circle center of the circular hole position coincide.
  • a motor according to an embodiment of the second aspect of the present disclosure includes the rotor assembly described in the embodiment of the first aspect.
  • a household appliance according to an embodiment of the third aspect of the present disclosure includes the motor described in the embodiment of the second aspect.
  • FIG. 1 is a schematic structural diagram of the combination of a rotor core and a permanent magnet according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a first punching sheet according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a second punching sheet according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a first ring sheet according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a second ring sheet according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic three-dimensional structural diagram of an inner iron core according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic three-dimensional structure diagram of an inner iron core according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a combined structure of a first sector sheet and a first ring sheet according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a first punching sheet according to another embodiment of the present disclosure.
  • Figure 10 is an enlarged schematic view of the structure at A in Figure 9;
  • FIG. 11 is a schematic structural diagram of a third punching sheet according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional structural diagram of a rotor assembly according to an embodiment of the present disclosure
  • FIG. 13 is a partial cross-sectional structural schematic diagram of a rotor assembly according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a rotor according to an embodiment of the present disclosure.
  • Rotor core 100 inner core 110, shaft hole 111, second riveting point 112, outer core 120, second protrusion 121, first extension 1211, second extension 1212, fourth protrusion 122, First through hole 123, second through hole 124, rectangular hole 1241, circular hole 1242, third protrusion 125, third extension 1251, fourth extension 1252, first punch 130, first ring Ring sheet 131, first protrusion 1311, first positioning groove 1312, first sector sheet 132, second punch sheet 140, second ring sheet 141, second positioning groove 1411, second sector sheet 142, outer iron core Unit 150, first riveting point 151, third punching piece 160, third sector piece 161, outer magnetic bridge 1611, accommodating groove 170;
  • the rotor assembly 1000 of the embodiment of the present disclosure is described with reference to FIGS. 1 to 14 , which is suitable for an internal permanent magnet motor.
  • the rotor assembly 1000 is described below with a specific example.
  • a rotor assembly 1000 provided by an embodiment of the present disclosure includes a rotor iron core 100 and a plurality of permanent magnets 200 , wherein the rotor iron core 100 includes an inner iron core 110 and an outer iron core 120 , and the outer iron core 120 includes A plurality of outer iron core units 150 , the plurality of outer iron core units 150 are arranged at intervals around the inner iron core 110 , and accommodating grooves 170 are formed at intervals between adjacent outer iron core units 150 , which are distributed along the circumferential direction of the outer iron core 120 There are a plurality of accommodating grooves 170 , and the permanent magnets 200 are embedded in the accommodating grooves 170 , so that the permanent magnets 200 are placed inside the outer iron core 120 .
  • FIG. 1 shows a schematic cross-sectional view of the rotor assembly 1000 along an axial direction perpendicular to the rotor core 100 .
  • the rotor core 100 includes 2P outer core units 150 and one inner core 110 , where 2P is the number of rotor poles, the number 2P of the outer core units 150 in FIG. 1 is 10, and the number of the permanent magnets 200 is also 10 indivual.
  • the plurality of accommodating slots 170 are evenly distributed along the circumference of the outer iron core 120 , so that the permanent magnets 200 can be evenly arranged in the accommodating slots 170 , and the permanent magnets 200 penetrate through the outer core 100 in the axial direction of the rotor core 100 .
  • Iron core 120 Iron core 120 .
  • the inner iron core 110 is provided with a shaft hole 111 , and the rotating shaft 2000 is assembled in the shaft hole 111 .
  • the rotating shaft 2000 is connected to the inner iron core 110 by means of interference fit, which will not be described in detail.
  • each outer iron core unit 150 is separated from the inner iron core 110 , and the outer iron core unit 150 and the inner iron core 110 are filled with insulating non-magnetic material by injection molding.
  • an injection molded body 300 is formed, and the outer iron core 120 , the inner iron core 110 and the permanent magnet 200 can be integrated into one body through the injection molded body 300 .
  • the adjacent outer iron core units 150 are all disconnected, and the accommodating grooves 170 are open along the inner side of the rotor iron core 100 and correspond to the inner iron core 110 , so that the injection molded body 300 can cover
  • the permanent magnet 200 faces the side of the inner iron core 110 , so that insulation is formed between the outer iron core 120 and the inner iron core 110 and between the permanent magnet 200 and the inner iron core 110 , thereby improving the distance between the rotating shaft 2000 and the outer iron core 120
  • the insulation can effectively reduce the shaft voltage, reduce the electrical corrosion of the bearing, and have higher reliability.
  • the injection molded body 300 is formed between the outer iron core 120 and the inner iron core 110 by injection molding, and in the gap between the permanent magnet 200 and the inner iron core 110 , and can also be further filled in the permanent magnet 200 and the outer iron In the space between the cores 120, the combination of the outer iron core 120 and the permanent magnet 200 is more stable, and the reliability is stronger.
  • the injection molded body 300 may be made of resin material, which is not further limited.
  • the permanent magnet 200 adopts a rectangular parallelepiped structure, and the permanent magnet 200 used may be a sintered ferrite magnet or a neodymium magnet.
  • a receiving slot 170 matching the permanent magnets 200 is defined between adjacent outer iron core units 150, and each outer iron core unit 150 is approximately in a fan shape, so that the plurality of outer iron core units 150 and the plurality of permanent magnets 200 are arranged along the rotor iron.
  • the circumferential direction of the cores 100 is alternately arranged to form a cylindrical rotor core 100 , and the structure design is more reasonable, more practical and reliable.
  • the rotor iron core 100 may be formed by laminating punching sheets. Specifically, the rotor iron core 100 includes a plurality of first punching sheets 130 and a plurality of second punching sheets 140 .
  • the first punching piece 130 includes a first ring piece 131 and a plurality of first sector-shaped pieces 132 , and the plurality of first sector-shaped pieces 132 are along the circumference of the rotor core 100 .
  • the first ring piece 131 is located at the center of the first punching piece 130 , and the number of the first fan-shaped pieces 132 is the same as the number of the outer core units 150 .
  • the number of 131 is the same as that of the inner iron core 110 , that is, each first punching piece 130 has 10 first sector pieces 132 and one first ring piece 131 .
  • the first fan-shaped piece 132 is substantially fan-shaped, and the first ring-shaped piece 131 is substantially annular.
  • FIG. 3 is a schematic structural diagram of the second punching piece 140 .
  • the second punching piece 140 includes a second ring piece 141 and a plurality of second sector-shaped pieces 142 , and the plurality of second fan-shaped pieces 142 surround the second punching piece 142 .
  • the ring pieces 141 are arranged at intervals, and the second ring pieces 141 are located at the center of the second punch pieces 140.
  • Each second punch piece 140 has 10 second sector pieces 142 and one second ring piece 141.
  • the fan-shaped piece 142 is substantially fan-shaped, and the second ring piece 141 is substantially annular.
  • each of the first punching pieces 130 and each of the second punching pieces 140 is a separate laminated sheet
  • the first sector-shaped sheet 132 corresponds to the second sector-shaped sheet 142 during lamination
  • the first ring sheet 131 corresponds to the The second ring pieces 141 correspond to each other, so that the rotor core 100 is formed by laminating and pressing a plurality of first punching pieces 130 and a plurality of second punching pieces 140 .
  • the first sector-shaped sheet 132 and the second sector-shaped sheet 142 are stacked to form the outer iron core unit 150. Since the first sector-shaped sheet 132 and the second sector-shaped sheet 142 are arranged at intervals along the circumference of the rotor core 100, a plurality of outer iron cores are formed.
  • the core unit 150 is used to obtain the outer iron core 120 .
  • the first ring piece 131 and the second ring piece 141 are laminated to form the inner iron core 110 , so that the rotor iron core 100 can be made by lamination.
  • first fan-shaped sheet 132 and the second fan-shaped sheet 142 have the same structure, and the difference between the first punching sheet 130 and the second punching sheet 140 is that the first ring sheet 131 and the second ring sheet 141 have different structures 4 shows a schematic diagram of the structure of the first ring sheet 131, the outer side of the first ring sheet 131 is provided with a plurality of first protrusions 1311, a plurality of first protrusions 1311 along the first ring The circumferential spacing of the sheets 131 is distributed.
  • the first protrusion 1311 is formed on the outer periphery of the first ring piece 131 , the outer side of the second ring piece 141 does not have the first protrusion 1311 , and FIG. 5 shows the second ring piece 141 Schematic diagram of the structure.
  • the first protrusion 1311 protrudes outside the inner iron core 110 , so that the first ring piece 131 and the second ring piece 110 are formed.
  • the first protrusions 1311 are only distributed in a partial position of the outer iron core 120 along the axial direction of the rotor iron core 100 , and do not completely cover the outer side of the inner iron core 110 .
  • the first protrusion 1311 extends toward the direction of the accommodating groove 170 , the first protrusion 1311 is a protrusion structure on the outer periphery of the first ring sheet 131 , and the first protrusion 1311 is not limited to the specific shape.
  • the injection molding material When the injection molding material is filled between the inner iron core 110 and the outer iron core 120 , the injection molding material can cover all the first protrusions 1311 , that is, the first protrusions 1311 are embedded in the injection molding body 300 to increase the inner iron core 110
  • the effect of the bonding force with the injection molded body 300 makes the connection between the inner iron core 110 and the injection molded body 300 more closely, effectively improves the structural strength, makes the overall strength of the formed rotor assembly 1000 higher, and improves the output torque of the rotor assembly 1000. time stability.
  • the first ring sheet 131 with the first protrusions 1311 is used and the first ring sheet 131 without the first protrusions 1311 is used
  • the second ring pieces 141 of the first protrusions 1311 are combined to reduce the number of the first protrusions 1311, which can reduce the leakage of the magnetic circuit at the position of the protrusion structure outside the inner core 110, and play a role in reducing magnetic leakage , effectively reducing the self-linkage flux leakage inside the permanent magnet 200, thereby improving the magnetic performance of the motor, ensuring the stability and reliability of the motor operation, and the reduction of the protruding structure is conducive to reducing the manufacturing cost, and the structure is more practical and reliable.
  • the distribution structure of the first protrusions 1311 is set according to the arrangement of the first punch 130 and the second punch 140 along the axial direction of the rotor core 100 , for example, the first punch 130 and the second punch 140
  • the punching pieces 140 can be arranged in an alternate stacking manner, so that the first protrusions 1311 are distributed at intervals along the axial direction of the inner iron core 110 .
  • the first punching sheets 130 can be stacked on each other to form a first punching sheet group
  • the second punching sheets 140 can be stacked on each other to form a second punching sheet group
  • the first punching sheet group and the second punching sheet group can be stacked together .
  • the above is only an example, and the specific arrangement is set according to actual application requirements, and will not be repeated here.
  • the second ring sheet 141 is a circular ring-shaped substrate, and the circular ring is substantially in the shape of a circular ring.
  • the circular ring-shaped substrate It is understood as a ring-shaped metal sheet formed by stamping, and the outer periphery of the ring-shaped substrate is not limited to a smooth arc-shaped edge, but can also be an outer edge formed in the form of a polygon or multiple arcs, so that the second ring-shaped sheet 141 The whole is roughly in the shape of a ring.
  • the first annular sheet 131 is composed of an annular substrate and a plurality of first protrusions 1311, and the plurality of first protrusions 1311 are distributed at intervals along the circumferential direction of the annular substrate.
  • the annular base sheet portion of the first ring sheet 131 and the second ring sheet 141 It can overlap, and the first protrusion 1311 on the outer periphery of the first ring piece 131 does not overlap with the second ring piece 141, so that the first ring piece 131 protrudes from the second ring piece 141 with a first Bump 1311.
  • the number of the first protrusions 1311 provided on the first ring piece 131 is the same as the number of the permanent magnets 200 .
  • a rotor core with ten permanent magnets 200 is used.
  • 100 is an example, each first ring piece 131 is provided with 10 first protrusions 1311, the first protrusions 1311 are evenly distributed on the outside of the first ring piece 131, the first punching piece 130 and the second punching piece are 140 are alternately arranged along the axial direction of the rotor core 100 .
  • FIG. 6 is a schematic diagram showing the structure of the inner core 110 formed by laminating the first ring sheet 131 and the second ring sheet 141. It can be understood that the structures of the first sector sheet 132 and the second sector sheet 142 are the same, regardless of the first
  • the overall structure of the outer iron core 120 is the same regardless of the arrangement of the punching sheet 130 and the second punching sheet 140 , and the structure of the outer iron core 120 is omitted in FIG. 6 .
  • first ring sheets 131 and the second ring sheets 141 are alternately stacked, so that in the axial direction of the rotor core 100 , the first protrusions 1311 are equally spaced outside the inner core 110 unit, and due to The second ring piece 141 does not have the first protrusion 1311, and the first ring piece 131 and the second ring piece 141 do not overlap, so that the first protrusion 1311 does not completely cover the inner iron along the axial direction of the rotor core 100
  • the outer side of the core 110 unit thereby reducing the protruding structure on the outer side of the inner iron core 110, reducing the magnetic flux leakage, reducing the self-linkage magnetic flux leakage inside the permanent magnet 200, which is beneficial to improve the magnetic performance of the motor and ensure that the motor runs smoothly. Stability and reliability.
  • the alternately stacking of the first punching pieces 130 and the second punching pieces 140 along the axial direction of the rotor core 100 is not limited to alternating single-layer punching pieces, but may also be alternately arranged in the form of punching pieces.
  • the first punching sheets 130 are stacked on each other to form the first punching sheet group
  • the second punching sheets 140 are stacked on each other to form the second punching sheet group
  • the first punching sheet group and the second punching sheet group are alternately stacked to form the rotor core 100 , so that the first protrusions 1311 of the adjacent first ring sheets 131 can overlap, while the first punching group and the second punching group do not overlap, and details are not repeated here.
  • the first punching pieces 130 are arranged at both ends of the rotor core 100 along the axial direction, and the second punching pieces 140 are arranged at the middle part of the rotor core 100 , that is, the second punching pieces 140 It is located between the first punching pieces 130 at both ends of the rotor core 100 .
  • each first ring piece 131 is provided with 10 first protrusions 1311, and the first protrusions 1311 are evenly distributed on the outer side of the first ring piece 131, and FIG. 7 shows the first ring piece 131 and the A schematic diagram of the stacked structure of the second ring pieces 141 , the structure of the outer iron core 120 is omitted in FIG. 7 .
  • first punching pieces 130 are stacked on each other to form a first punching piece group.
  • the sheets 140 are stacked on each other to form a second punching sheet group, and the second punching sheet assembly is stacked between the two first punching sheet groups, thereby forming the rotor core 100 .
  • the outer side of the inner iron core 110 only has the first protrusions 1311 at both ends, and the middle part does not have the first protrusions 1311 .
  • the protrusions 1311 only cover the part of the outer side of the inner iron core 110, thereby reducing the protrusion structure of the inner iron core 110, thereby reducing the magnetic flux leakage, further reducing the self-linkage magnetic leakage of the permanent magnets 200, which is beneficial to improve the motor
  • the magnetic performance ensures the reliability of the motor operation.
  • the inner iron core 110 and the injection molded body 300 are combined with sufficient strength, the smaller the number of the first protrusions 1311, the better the effect of reducing the magnetic flux leakage, which can not only improve the performance of the rotor assembly 1000 The overall strength can further reduce the magnetic flux leakage, thereby improving the magnetic performance of the motor, and the cost is also lower.
  • the number of the first protrusions 1311 on the outer side of the inner iron core 110 is the same as the number of the permanent magnets 200 , and in the radial direction of the rotor iron core 100 , the first protrusions 1311 are facing the accommodating groove 170 , which can The symmetry of the magnetic circuit of the motor is ensured, which is beneficial to reduce the influence of back electromotive force; and the permanent magnet 200 can be separated from the first protrusion 1311 when assembled in the accommodating slot 170, and the injection molded body 300 is filled in the permanent magnet 200 and the inner iron core 110. between, to meet the insulation requirements.
  • second protrusions 121 are respectively provided on the inner side of the first sector-shaped sheet 132 and the second sector-shaped sheet 142 along the radial direction of the rotor core 100 .
  • the second protrusions 121 is used for positioning the permanent magnet 200 .
  • the permanent magnet 200 is assembled in the accommodating groove 170 , the second protrusion 121 extends toward the direction of the accommodating groove 170 , and the second protrusion 121 can understand that the protrusion is formed on the inner side of the first sector-shaped sheet 132 and the second sector-shaped sheet 142
  • the protruding structure, the end of the permanent magnet 200 can be supported by the second protrusion 121, the permanent magnet 200 can be positioned when the injection molded body 300 is filled, and the deviation of the permanent magnet 200 in the accommodating slot 170 can be reduced. , improve stability and reliability.
  • the injection molded body 300 can cover the second protrusions 121 , that is, the second protrusions 121 can be embedded in the injection molded body 300 , which is beneficial to improve the outer iron core 120 Bonding strength with injection molded body 300 .
  • the number of the second protrusions 121 on the first sector-shaped sheet 132 and the second sector-shaped sheet 142 is the same, and the number of the second protrusions 121 along the circumferential direction of the rotor core 100 is consistent with the number of rotor poles.
  • first protrusions 1311 are opposite to the accommodating grooves 170, and the second protrusions 121 and the first protrusions 1311 are alternately distributed in the circumferential direction of the rotor core 100, so that the first protrusions 1311 and the second protrusions 121 do not correspond in the radial direction, and the first protrusions 1311 and the second protrusions 121 can be separated to form insulation, so that both the first protrusions 1311 and the second protrusions 121 can be embedded in the injection molded body 300 to increase the internal
  • the bonding force of the iron core 110 , the outer iron core 120 and the injection molded body 300 can effectively improve the overall strength of the rotor iron core 100 .
  • the second protrusion 121 includes a first extension section 1211 and a second extension section 1212 , and the first extension section 1211 and the second extension section 1212 respectively extend along the circumferential direction of the rotor core 100 . , so that the first extension section 1211 and the second extension section 1212 are positioned corresponding to the adjacent permanent magnets 200 respectively.
  • the first extension segment 1211 and the second extension segment 1212 are both disposed at the end of the first sector sheet 132 and distributed symmetrically along the radial direction of the rotor core 100 , such as The first extension section 1211 shown in FIG.
  • a accommodating groove 170 is formed between two adjacent first sector sheets 132 , wherein the first extension section 1211 on one first sector sheet 132 and the second extension section on the other first sector sheet 132
  • the 1212 is matched with the permanent magnet 200 of the accommodating slot 170 for positioning, and the structure is stable and reliable.
  • first extension section 1211 and the second extension section 1212 both extend along the circumferential direction of the rotor iron core 100 .
  • the distance between the second protrusion 121 and the inner iron core 110 can be It is understood as the distance between the first extension section 1211 and the second extension section 1212 and the inner iron core 110 .
  • the distance between the second protrusion 121 and the inner iron core 110 along the radial direction of the rotor iron core 100 is L1, and satisfies 1.5mm ⁇ L1 ⁇ 2mm, which makes the design more reasonable and ensures the external
  • the iron core 120 and the inner iron core 110 have reliable insulation performance.
  • the distance L1 between the second protrusion 121 and the inner iron core 110 is too small, the insulation performance between the inner iron core 110 and the outer iron core 120 will be reduced, and if the distance L2 is too large, the inner iron core 110 will be reduced.
  • the bonding force between the iron core 110 , the outer iron core 120 and the injection molded body 300 reduces the structural strength of the rotor assembly 1000 and affects the performance of the motor.
  • both the first extension section 1211 and the second extension section 1212 are formed to protrude along the circumferential direction of the rotor core 100 , and the first extension section 1211 and the second extension section 1212 protrude
  • the heights are equal, and the height L2 satisfies L2 ⁇ 1mm, which prevents the protrusions from being too high and prone to magnetic flux leakage, and effectively reduces the magnetic flux leakage at the position of the second protrusions 121 .
  • the second protrusion 121 includes a first extension section 1211, a second extension section 1212 and a third protrusion 125, and the third protrusion 125 is disposed on the first extension section 1211 and the second extension 1212.
  • first extension section 1211 and the second extension section 1212 respectively extend along the circumferential direction of the rotor iron core 100 and are symmetrically distributed along the radial direction of the rotor iron core 100 .
  • the third protrusions 125 extend toward the inner core 110 .
  • FIG. 9 shows a schematic structural diagram of the first punching piece 130.
  • the third protrusion 125 and the inner iron core 110 are separated by a certain gap to ensure the outer iron core. Insulation between 120 and inner core 110.
  • the second protrusion 121 extends toward the inner iron core 110 by adding the third protrusion 125, so that the contact between the second protrusion 121 and the injection molded body 300 is more closely, and the bonding force between the outer iron core 120 and the injection molded body 300 is effectively improved.
  • the structural strength is further improved, thereby making the overall strength of the rotor assembly 1000 higher, and improving the stability of the rotor assembly 1000 when outputting a large torque.
  • a third extension section 1251 and a fourth extension section 1252 are provided at the end of the third protrusion 125 , and the third extension section 1251 and the fourth extension section 1252 are along the radial direction of the rotor core 100 . symmetrical distribution.
  • the third extension 1251 and the fourth extension 1252 extend along the circumferential direction of the rotor core 100 respectively, further improving the third
  • the bonding force between the protrusions 125 and the injection molded body 300 makes the combination of the outer iron core 120 and the injection molded body 300 more reliable, and the structural strength is higher.
  • the third extension section 1251 and the fourth extension section 1252 cooperate with the third protrusion 125 to form a Y-shaped structure.
  • the inner iron core 110 and the outer iron core 120 The injection molded body 300 is filled between them, and the injection molded body 300 can completely cover the Y-shaped structure, that is, the Y-shaped structure can be completely embedded in the injection molded body 300 , so that the outer iron core 120 and the injection molded body 300 are connected more tightly and firmly, ensuring that the outer iron
  • the combination of the core 120 with the injection molded body 300 is reinforced in both the radial and circumferential directions, thereby greatly improving the overall strength of the rotor assembly 1000, and the rotor assembly 1000 has higher stability when outputting a large torque.
  • the shapes formed by the third extension section 1251 and the fourth extension section 1252 and the third protrusion 125 are not limited to the above examples, and may also be a T shape or other shapes.
  • the outer iron core 120 is provided with a first through hole 123 along the axial direction of the rotor iron core 100 , and the first through hole 123 penetrates the first punching piece 130 and the first through hole 123 .
  • the outer iron core 120 includes a plurality of outer iron core units 150 arranged around the outer iron core unit.
  • Each outer iron core unit 150 is provided with a first through hole 123, and the first through hole 123 runs along the rotor The axial direction of the iron core 100 penetrates through the outer iron core unit 150 , that is, the first through hole 123 penetrates each of the first sector-shaped pieces 132 and the second sector-shaped pieces 142 .
  • the non-magnetic conductive material is injected into each first through hole 123 , so that the injection molded body 300 can be filled into each first through hole 123 , so that the injection molded body 300 is simultaneously filled in the outer iron core 120 and the inner iron core 110 between and in each of the first through holes 123 of the outer iron core 120 .
  • the injection molded body 300 can cover the permanent magnets 200 and part of the rotor iron core 100 at both axial ends of the rotor iron core 100 , so that the outer iron core 120 , the inner iron core 110 and the permanent magnets 200 form the rotor assembly 1000 .
  • the magnetic flux leakage between the outer iron core 120 and the inner iron core 110 can be reduced, and the power density of the motor can be improved.
  • the first through hole 123 is not limited to a circle, but can also be a polygon.
  • the shape of the first through hole 123 is a triangle, which can be understood as , the injection molded body 300 is filled in the first through hole 123, and the triangular injection molded body 300 has higher strength, which is beneficial to improve the structural strength of the outer iron core 120, and is more practical and reliable.
  • the outer sides of the adjacent outer core units 150 are disconnected, and the first sector 132 and the second The outer sides of the two sector-shaped sheets 142 are respectively provided with fourth protrusions 122 , and the outer sides of the permanent magnet 200 are positioned by the fourth protrusions 122 to further improve the structural strength.
  • the accommodating slot 170 is located outside the outer iron core 120 in an open structure, the injection molded body 300 covers the exposed permanent magnet 200 outside the rotor core 100 at the same time, so that the injection molded body 300 can completely cover the permanent magnet 200 and effectively reduce magnetic flux leakage. The structure is more reliable.
  • the rotor core 100 further includes a third punching piece 160
  • the third punching piece 160 includes a third ring sheet and a plurality of third sector-shaped sheets 161 .
  • the sheets 161 are arranged at intervals around the third ring sheet, and the adjacent third sector sheets 161 are connected at the outer position in the radial direction of the rotor core 100 to form a magnetic bridge, which can be understood as the outer magnetic bridge 1611 of the rotor core 100 , wherein the structure of the third loop piece is the same as that of the first loop piece 131 or the second loop piece 141 , which will not be repeated here.
  • the third punching sheet 160 is stacked on both ends of the rotor core 100 along the axial direction, and the third sector-shaped sheet 161 is stacked with the first sector-shaped sheet 132 and the second sector-shaped sheet 142 to form the outer iron core 120.
  • the connection of the magnetic bridge 1611 can help to improve the strength of the outer iron core 120 .
  • the inner side of the first ring sheet 131 is provided with a first positioning groove 1312
  • the inner side of the second ring sheet 141 is provided with a second positioning groove 1411 .
  • the first positioning groove 1312 and the second positioning groove 1411 correspond along the axial direction of the rotor core 100
  • the first positioning groove 1312 and the second positioning groove 1312 correspond to the axial direction of the rotor core 100
  • the positioning grooves 1411 are matched for positioning the first ring piece 131 and the second ring piece 141 .
  • the outer iron core 120 is provided with a second through hole 124 along the axial direction of the rotor iron core 100 , and the second through hole 124 penetrates the first punching piece 130 and the second punching piece 140 .
  • Each outer iron core unit 150 is provided with a second through hole 124 , the second through hole 124 penetrates through the outer iron core unit 150 along the axial direction of the rotor iron core 100 , and the second through hole 124 is used for positioning the first punching piece 130 and the second punch 140.
  • the injection mold cooperates with the second positioning groove 1411 through the first positioning groove 1312 to position the first ring piece 131 and the second ring piece 141 , and the second through hole 124 The first punch 130 and the second punch 140 are positioned.
  • the first positioning pin (not shown in the drawings) on the injection mold is inserted into the shaft hole 111.
  • 131 and the second ring-shaped sheet 141 can be stacked correspondingly; at the same time, the second through-hole 124 is inserted through the second positioning pin (not shown in the drawings), so that the first sector-shaped sheet 132 and the second sector-shaped sheet 142 can be positioned at the same time, and the positioning is more It is stable and reliable, and then the injection molding operation is carried out.
  • the first positioning pin and the second positioning pin are pulled out, and the structure is simple and practical.
  • the second through hole 124 includes a rectangular hole 1241 and a circular hole 1242 , and the center of the rectangular hole 1241 coincides with the circle of the circular hole 1242 .
  • the diameter of the circular hole 1242 is larger than the width of the rectangular hole 1241, so that the rectangular hole 1241 and the circular hole 1242 are partially overlapped, so that during injection molding, the second through hole 124 can be inserted into a rectangular positioning pin, or can be inserted into Cylindrical balance pin.
  • the injection mold includes an upper mold and a lower mold.
  • the lower mold has a cavity.
  • the cavity is provided with a first positioning pin and a second positioning pin.
  • the first punch 130, the second punch 140 and the permanent magnet 200 are placed In the cavity, the first positioning pin corresponds to the shaft hole 111, the second positioning pin is a cuboid and corresponds to the rectangular hole 1241 of the second through hole 124, the upper mold is provided with a cylindrical balance pin, and the upper mold is connected to the lower mold.
  • the balance pins are inserted into the circular holes 1242 of the second through holes 124 , so that the first and second sectors 132 and 142 are positioned by the second positioning pins and the balance pins.
  • the second positioning pin can be easily separated from the outer iron core 120 quickly, thereby realizing rapid demoulding.
  • shape of the second through hole 124 is not limited to the matching of the rectangular hole 1241 and the circular hole 1242.
  • the rectangular hole 1241 may also be a triangular hole, a square hole or other polygonal holes, and the specific Repeat.
  • first riveting points 151 are respectively provided on each first sector piece 132 and each second sector piece 142
  • first ring Five second riveting points 112 are respectively provided on the sheet 131 and each second ring sheet 141 .
  • An embodiment of the present disclosure also provides a motor, which includes a stator and the rotor assembly 1000 shown in the above embodiments.
  • the rotating shaft 2000 is connected with the inner iron core 110 through the shaft hole 111 to form a rotor, a rotor and a stator Assembled into the casing of the motor, the two ends of the rotating shaft 2000 are respectively provided with bearings.
  • the drawings do not show the structures of the stator, casing, bearings and other components. Since the motor adopts all the technical solutions of the rotor assembly 1000 shown in the above-mentioned embodiments, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.
  • the embodiment of the present disclosure also provides a household appliance (not shown in the drawings), the household appliance may be an air conditioner, a refrigerator, etc., and the motor used in the household appliance is the motor of the above-mentioned embodiment. Since the household appliance adopts all the technical solutions of the motors in the above-mentioned embodiments, it has at least all the beneficial effects brought by the technical solutions in the above-mentioned embodiments, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子组件、电机及家用电器,其中转子组件(1000)包括转子铁芯(100)、永磁体(200)以及注塑体(300)。转子铁芯(100)包括内铁芯(110)和外铁芯(120),内铁芯(110)设有用于安装转轴(2000)的轴孔(111),外铁芯(120)设有容纳槽(170),外铁芯(120)与内铁芯(110)之间间隔设置,永磁体(200)安装于容纳槽(170)内,注塑体(300)至少填充于内铁芯(110)与外铁芯(120)之间。外铁芯(120)包括围绕内铁芯(110)间隔设置的多个外铁芯单元,相邻的外铁芯单元之间形成容纳槽(170),内铁芯(110)包括沿转子铁芯(100)的轴向层叠的第一环圈片(131)和第二环圈片(141),第一环圈片(131)的外周沿相对于第二环圈片(141)的外周沿向外凸出形成有多个第一凸起(1311),这些第一凸起(1311)沿第一环圈片(131)的周向间隔分布。

Description

转子组件、电机及家用电器
相关申请的交叉引用
本申请要求于2021年04月19日提交的申请号为202110419169.0、名称为“转子组件、电机及家用电器”,以及于2021年04月19日提交的申请号为202120804418.3、名称为“转子组件、电机及家用电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电机相关技术领域,尤其是涉及一种转子组件、电机及家用电器。
背景技术
内置式永磁电机具有功率密度高等优势,在家用电器领域广泛使用。目前内置式永磁电机的转子铁芯通常通过内磁桥与内部铁芯轴套连接,该种结构无法增加转轴与铁芯之间的绝缘性,容易会导致轴承出现电腐蚀,可靠性降低。相关技术中,转子铁芯采用注塑体连接轴套,但这种结构存在设计不合理的问题,轴套与注塑材料的连接紧密性影响着转子在输出大转矩时的稳定性。
发明内容
本公开旨在至少部分解决现有技术中存在的技术问题之一。为此,本公开提出一种转子组件,有效增加内铁芯与注塑体之间的结合力,提高结构强度,可靠性更高。
本公开还提供包括上述转子组件的电机及家用电器。
根据本公开的第一方面实施例的转子组件,包括:
转子铁芯,所述转子铁芯包括内铁芯和外铁芯,所述内铁芯设有用于安装转轴的轴孔,所述外铁芯设有容纳槽,所述外铁芯与所述内铁芯之间间隔设置;
永磁体,所述永磁体安装于所述容纳槽内;
注塑体,所述注塑体至少填充于所述内铁芯与所述外铁芯之间;
其中,所述外铁芯包括围绕所述内铁芯间隔设置的多个外铁芯单元,相邻的所述外铁芯单元之间形成所述容纳槽,所述内铁芯包括沿所述转子铁芯的轴向层叠的第一环圈片和第二环圈片,所述第一环圈片的外周沿相对于所述第二环圈片的外周沿向外凸出形成有多个第一凸起,多个所述第一凸起沿所述第一环圈片的周向间隔分布。
根据本公开实施例的转子组件,至少具有如下有益效果:
通过注塑体能够使外铁芯与内铁芯连接形成转子铁芯,使得转轴与外铁芯之间形成绝缘,有效降低轴电压,减小轴承的电腐蚀,有利于提高电机的可靠性;多个外铁芯单元围绕内铁芯构成外铁芯,利用第一环圈片与第二环圈片层叠构成内铁芯,第一环圈片的外周沿间隔设置第一凸起,通过第一凸起能够增加内铁芯与注塑体之间的结合力,使内铁芯与注塑体连接更加紧密,提高结构强度,从而提高转子组件在输出大转矩时的稳定性;第二环圈片的外周沿不具有第一凸起,即第一凸起不完全覆盖内铁芯的外侧,有利于减少内铁芯外侧的凸起结构,从而减少磁路在内铁芯的漏磁,有效降低永磁体沿转子铁芯径向的内侧的自交链漏磁,提高电机运行的稳定性和可靠性。
根据本公开的一些实施例,所述第二环圈片为圆环状基片,所述第一环圈片由所述圆环状基片和沿所述圆环状基片周向间隔分布的多个所述第一凸起组成。
根据本公开的一些实施例,所述第一环圈片和所述第二环圈片沿所述转子铁芯的轴向交替设置。
根据本公开的一些实施例,所述第一环圈片设置于所述内铁芯沿所述转子铁芯的轴向的两端,所述第二环圈片设置于所述内铁芯两端的所述第一环圈片之间。
根据本公开的一些实施例,所述第一凸起与所述永磁体一一对应且间隔设置,所述第一 凸起与所述永磁体之间填充有所述注塑体。
根据本公开的一些实施例,每个所述外铁芯单元包括沿所述转子铁芯的轴向层叠的多个扇形片,所述扇形片朝向所述内铁芯方向的内侧设有用于定位所述永磁体的第二凸起。
根据本公开的一些实施例,所述第二凸起包括第一延伸段和第二延伸段,所述第一延伸段沿所述转子铁芯的周向延伸,所述第二延伸段沿所述转子铁芯的周向且朝向远离所述第一延伸段的方向延伸。
根据本公开的一些实施例,所述第二凸起还包括第三凸起,所述第三凸起设于所述第一延伸段与所述第二延伸段之间,且朝向所述内铁芯的方向延伸。
根据本公开的一些实施例,所述第三凸起的端部设有第三延伸段和第四延伸段,所述第三延伸段沿所述转子铁芯的周向延伸,所述第四延伸段沿所述转子铁芯的周向且朝向远离所述第三延伸段的方向延伸。
根据本公开的一些实施例,所述第一凸起与所述内铁芯之间沿所述转子铁芯径向的距离为L1,且满足1.5mm≤L1≤2mm。
根据本公开的一些实施例,所述第一凸起和所述第二凸起沿所述转子铁芯的周向的高度为L2,且满足L2≤1mm。
根据本公开的一些实施例,在所述外铁芯沿所述转子铁芯轴向的两端上,相邻的所述扇形片的外侧相连接。
根据本公开的一些实施例,所述第一环圈片的内侧设有第一定位槽,所述第二环圈片的内侧设有第二定位槽,所述第一定位槽与所述第二定位槽沿所述转子铁芯的轴向对应,以用于定位所述第一环圈片和所述第二环圈片。
根据本公开的一些实施例,每个所述外铁芯单元均设有第一通孔,所述第一通孔沿所述转子铁芯的轴向贯穿相应的所述外铁芯单元,所述第一通孔内填充有所述注塑体。
根据本公开的一些实施例,每个所述外铁芯单元均设有第二通孔,所述第二通孔沿所述转子铁芯的轴向贯穿相应的所述外铁芯单元,以用于定位相应的所述外铁芯单元。
根据本公开的一些实施例,所述第二通孔包括多边形孔位和圆形孔位,所述多边形孔位的中心和所述圆形孔位的圆心重合。
根据本公开的第二方面实施例的电机,包括上述第一方面实施例所述的转子组件。
根据本公开的第三方面实施例的家用电器,包括上述第二方面实施例所述的电机。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一实施例的转子铁芯与永磁体结合的结构示意图;
图2是本公开一实施例的第一冲片的结构示意图;
图3是本公开一实施例的第二冲片的结构示意图;
图4是本公开一实施例的第一环圈片的结构示意图;
图5是本公开一实施例的第二环圈片的结构示意图;
图6是本公开一实施例的内铁芯的立体结构示意图;
图7是本公开另一实施例的内铁芯的立体结构示意图;
图8是本公开一实施例的第一扇形片与第一环圈片的组合结构示意图;
图9是本公开另一实施例的第一冲片的结构示意图;
图10是图9中A处的放大结构示意图;
图11是本公开一实施例的第三冲片的结构示意图;
图12是本公开一实施例的转子组件的剖面结构示意图;
图13是本公开一实施例的转子组件的局部剖视结构示意图;
图14是本公开一实施例的转子的结构示意图。
附图标记:
转子组件1000;
转轴2000;
转子铁芯100,内铁芯110,轴孔111,第二铆扣点112,外铁芯120,第二凸起121,第一延伸段1211,第二延伸段1212,第四凸起122,第一通孔123,第二通孔124,长方形孔位1241,圆形孔位1242,第三凸起125,第三延伸段1251,第四延伸段1252,第一冲片130,第一环圈片131,第一凸起1311,第一定位槽1312,第一扇形片132,第二冲片140,第二环圈片141,第二定位槽1411,第二扇形片142,外铁芯单元150,第一铆扣点151,第三冲片160,第三扇形片161,外磁桥1611,容纳槽170;
永磁体200;
注塑体300。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,如果有描述到第一、第二等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本公开的描述中,需要说明的是,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本公开中的具体含义。
参考图1至图14描述本公开实施例的转子组件1000,适用于内置式永磁电机。下面以具体示例对转子组件1000进行说明。
参见图1所示,本公开实施例提供的转子组件1000,包括转子铁芯100和多个永磁体200,其中,转子铁芯100包括内铁芯110和外铁芯120,外铁芯120包括多个外铁芯单元150,多个外铁芯单元150围绕内铁芯110间隔排列设置,相邻的外铁芯单元150之间隔开形成容纳槽170,这样沿外铁芯120的周向分布有多个容纳槽170,永磁体200嵌入在容纳槽170内,使永磁体200置于外铁芯120内部。
参见图1所示,图1所示为转子组件1000沿垂直于转子铁芯100轴向的截面示意图。转子铁芯100包括有2P个外铁芯单元150和1个内铁芯110,其中2P为转子极数,图1中外铁芯单元150的数量2P为10个,永磁体200的数量也为10个。
为了使磁回路均匀分布,多个容纳槽170沿外铁芯120的周向均匀分布,这样永磁体200能够均匀排列在容纳槽170内,且永磁体200沿转子铁芯100的轴向贯穿外铁芯120。
此外,内铁芯110设有轴孔111,转轴2000装配在该轴孔111内,例如转轴2000通过过盈配合方式与内铁芯110连接,具体不再赘述。
考虑到电机在工作时,转子铁芯100与端盖(附图未示出)之间会形成电势差,相关技术中通过内磁桥将外铁芯120与内铁芯110连接起来,在转轴2000处形成轴电压,会对端盖上的轴承产生电腐蚀,进而对轴承造成损伤,可靠性降低。基于此,如图1所示,实施例中将每个外铁芯单元150均与内铁芯110隔开,通过注塑方式将绝缘的非导磁材料填充在外铁芯单元150与内铁芯110之间,形成注塑体300,通过注塑体300能够使外铁芯120、内铁芯110与永磁体200结合成一体。
参见图1所示,可理解到,相邻外铁芯单元150之间均断开,容纳槽170沿转子铁芯100的内侧均敞开且与内铁芯110相对应,这样注塑体300能够覆盖永磁体200朝向内铁芯110的一侧,使得外铁芯120与内铁芯110之间以及永磁体200与内铁芯110之间均形成绝缘, 从而提高转轴2000与外铁芯120之间的绝缘性,有效降低轴电压,减小轴承的电腐蚀,可靠性更高。
需要说明的是,注塑体300通过注塑方式形成在外铁芯120与内铁芯110之间,以及永磁体200与内铁芯110之间的间隙内,也可以进一步填充在永磁体200与外铁芯120之间的空隙内,使外铁芯120与永磁体200结合更稳定,可靠性更强。实施例中注塑体300可以是树脂类材质,具体不作进一步限定。
参见图1所示,实施例中永磁体200采用长方体结构,采用的永磁体200可以是铁氧体类的烧结磁铁或钕磁铁等。相邻外铁芯单元150之间限定出与永磁体200匹配的容纳槽170,每个外铁芯单元150大致呈扇形形状,这样多个外铁芯单元150与多个永磁体200沿转子铁芯100的周向交替排列形成圆柱形的转子铁芯100,结构设计更加合理,更实用可靠。
可以理解的是,转子铁芯100可以由冲片层叠压制而成,具体来说,转子铁芯100包括多个第一冲片130和多个第二冲片140。
图2中所示为第一冲片130的结构示意图,第一冲片130包括第一环圈片131和多个第一扇形片132,多个第一扇形片132沿转子铁芯100的周向且围绕第一环圈片131间隔设置,第一环圈片131位于第一冲片130的中心位置,第一扇形片132的数量与外铁芯单元150的数量一致,第一环圈片131与内铁芯110数量一致,即每个第一冲片130具有10个第一扇形片132和1个第一环圈片131。第一扇形片132大致呈扇形形状,第一环圈片131大致呈环形。
图3中所示为第二冲片140的结构示意图,具体来说,第二冲片140包括第二环圈片141和多个第二扇形片142,多个第二扇形片142围绕第二环圈片141间隔设置,第二环圈片141位于第二冲片140的中心位置,每个第二冲片140具有10个第二扇形片142和1个第二环圈片141,第二扇形片142大致呈扇形形状,第二环圈片141大致呈环形。
可以理解的是,每个第一冲片130和每个第二冲片140分别为单独的一层叠片,层叠时第一扇形片132与第二扇形片142对应,第一环圈片131与第二环圈片141对应,这样通过多个第一冲片130和多个第二冲片140层叠压制形成转子铁芯100。
其中,第一扇形片132与第二扇形片142层叠形成外铁芯单元150,由于第一扇形片132与第二扇形片142均沿转子铁芯100周向间隔排列,从而组成多个外铁芯单元150,得到外铁芯120。第一环圈片131与第二环圈片141层叠形成内铁芯110,从而实现通过层叠方式制成转子铁芯100。
需要说明的是,第一扇形片132与第二扇形片142采用相同的结构,第一冲片130与第二冲片140的区别在于第一环圈片131与第二环圈片141结构不同,具体来说,图4所示为第一环圈片131的结构示意图,第一环圈片131的外侧设置有多个第一凸起1311,多个第一凸起1311沿第一环圈片131的周向间隔分布。
可理解到,第一凸起1311凸出形成于第一环圈片131的外周沿,第二环圈片141的外侧不具有第一凸起1311,图5所示为第二环圈片141的结构示意图。当第一环圈片131与第二环圈片141层叠形成内铁芯110时,第一凸起1311凸出于内铁芯110的外侧,使第一环圈片131与第二环圈片141不完全重合,即第一凸起1311沿转子铁芯100的轴向仅分布在外铁芯120的局部位置,并非全部覆盖在内铁芯110的外侧。
参见图1所示,可以理解到,第一凸起1311朝向容纳槽170的方向延伸,第一凸起1311为第一环圈片131外周沿的凸起结构,第一凸起1311不限于具体形状。在内铁芯110与外铁芯120之间填充注塑材料时,注塑材料能够包覆所有的第一凸起1311,即第一凸起1311嵌入到注塑体300内,起到增加内铁芯110与注塑体300之间结合力的作用,使内铁芯110与注塑体300连接更加紧密,有效提高结构强度,使构成的转子组件1000的整体强度更高,提高转子组件1000在输出大转矩时的稳定性。
参见图4和图5所示,相对于在内铁芯110的外侧全部覆盖第一凸起1311的结构,本实 施例中通过采用具有第一凸起1311的第一环圈片131与不具有第一凸起1311的第二环圈片141进行组合,减少第一凸起1311的数量,这样能够减少磁路在内铁芯110外侧的凸起结构位置的泄漏,起到减少漏磁的作用,有效降低永磁体200内侧的自交链漏磁,进而提高电机的磁性能,保证电机运行的稳定性和可靠性,且凸起结构的减少有利于降低制作成本,结构更加实用可靠。
需要说明的是,第一凸起1311的分布结构根据第一冲片130和第二冲片140沿转子铁芯100的轴向的排列方式而设定,例如,第一冲片130和第二冲片140可以采用交替层叠方式进行排列,使第一凸起1311沿内铁芯110的轴向间隔分布。又如,可以将第一冲片130相互层叠形成第一冲片组,第二冲片140相互层叠形成第二冲片组,然后将第一冲片组与第二冲片组叠合在一起。以上仅为示例,具体排列方式根据实际应用需求而设置,不再赘述。
需要说明的是,参见图5所示,在一实施例中,第二环圈片141为圆环状基片,该圆环状基本大致呈圆环形状,可理解到,圆环状基片理解为冲压成型的圆环金属片,圆环状基片的外周沿不限于光滑的圆弧形边,也可以是多边形或多段圆弧等形式构成的外侧边,使第二环圈片141整体大致呈圆环形状。
参见图4所示,第一环圈片131由圆环状基片和多个第一凸起1311组成,多个第一凸起1311沿圆环状基片的周向间隔分布。
可理解到,第一环圈片131与第二环圈片141层叠时,在转子铁芯100的轴向上,第一环圈片131与第二环圈片141的圆环状基片部分能够重叠,而第一环圈片131外周沿的第一凸起1311部位与第二环圈片141不重合,从而使第一环圈片131相对于第二环圈片141凸出有第一凸起1311。
参见图6所示,在一实施例中,第一环圈片131上设置的第一凸起1311的数量与永磁体200的数量一致,具体的,以具有10个永磁体200的转子铁芯100为示例,每个第一环圈片131上设置有10个第一凸起1311,第一凸起1311均匀分布在第一环圈片131的外侧,第一冲片130与第二冲片140沿转子铁芯100的轴向交替设置。
图6所示为第一环圈片131与第二环圈片141层叠形成内铁芯110的结构示意图,可理解到,第一扇形片132与第二扇形片142的结构一致,无论第一冲片130与第二冲片140采用何种排列方式进行层叠,外铁芯120的整体结构均相同,图6中略去外铁芯120的结构。
可以理解的是,第一环圈片131与第二环圈片141交替层叠,这样在转子铁芯100的轴向上,第一凸起1311等间隔分布在内铁芯110单元外侧,且由于第二环圈片141上不具有第一凸起1311,第一环圈片131与第二环圈片141不重合,这样第一凸起1311沿转子铁芯100的轴向不完全覆盖内铁芯110单元的外侧,从而减少内铁芯110外侧的凸起结构,起到减少漏磁的作用,降低永磁体200内侧的自交链漏磁,有利于提高电机的磁性能,保证电机运行的稳定性和可靠性。
需要说明的是,第一冲片130与第二冲片140沿转子铁芯100的轴向交替层叠方式不限于单层冲片相互交替,也可以是以冲片组的形式进行交替排列。例如,第一冲片130相互层叠形成第一冲片组,第二冲片140相互层叠形成第二冲片组,第一冲片组与第二冲片组相互交替进行层叠形成转子铁芯100,这样相邻的第一环圈片131的第一凸起1311能够重合,而第一冲片组与第二冲片组不重合,具体不再赘述。
参见图7所示,在一实施例中,第一冲片130设置在转子铁芯100沿轴向的两端,第二冲片140设置转子铁芯100的中间部分,即第二冲片140位于转子铁芯100两端的第一冲片130之间。
其中,每个第一环圈片131上设置有10个第一凸起1311,第一凸起1311均匀分布在第一环圈片131的外侧,图7所示为第一环圈片131与第二环圈片141层叠的结构示意图,图7中略去外铁芯120的结构。
参见图7所示,可以理解的是,多个第一冲片130相互层叠形成第一冲片组,第一冲片 组分别位于转子铁芯100沿轴向的两端,多个第二冲片140相互层叠形成第二冲片组,第二冲片组件叠压在两个第一冲片组之间,从而构成转子铁芯100。如7图所示,内铁芯110的外侧仅在两端具有第一凸起1311,而中间部位不具有第一凸起1311,该中间部位与上下两端的凸起部位不重合,即第一凸起1311仅覆盖内铁芯110外侧的局部部位,从而减少内铁芯110的凸起结构,进而起到减少漏磁的作用,进一步降低永磁体200的自交链漏磁,有利于提高电机的磁性能,保证电机运行的可靠性。
需要说明的是,在保证内铁芯110与注塑体300结合具有足够强度的情况下,第一凸起1311的数量越小,降低漏磁的效果越好,这样既可对提高转子组件1000的整体强度,又可进一步降低漏磁,从而提高电机磁性能,成本也更低。
可以理解的是,内铁芯110外侧的第一凸起1311的数量与永磁体200的数量一致,且在转子铁芯100的径向上,第一凸起1311与容纳槽170正对,这样能够保证电机磁路的对称性,有利于降低反电势的影响;而且永磁体200装配在容纳槽170内时能够与第一凸起1311隔开,注塑体300填充在永磁体200与内铁芯110之间,满足绝缘性要求。
参见图1和图2所示,在一些实施例中,第一扇形片132和第二扇形片142沿转子铁芯100的径向的内侧分别设置有第二凸起121,该第二凸起121用于对永磁体200进行定位。可理解到,永磁体200装配在容纳槽170内,第二凸起121朝向容纳槽170的方向延伸,第二凸起121可理解凸出形成在第一扇形片132和第二扇形片142内侧的凸起结构,通过第二凸起121能够对永磁体200的端部进行支撑,在填充注塑体300时能够对永磁体200起到定位作用,减少永磁体200在容纳槽170内出现偏移,提高稳定性和可靠性。此外,由于第二凸起121凸出于外铁芯120的内侧,注塑体300能够覆盖第二凸起121,即第二凸起121能够嵌入到注塑体300内,有利于提高外铁芯120与注塑体300的结合强度。
需要说明的是,第一扇形片132与第二扇形片142上的第二凸起121的数量相同,且第二凸起121沿转子铁芯100周向的数量与转子极数一致。可理解到,第一凸起1311与容纳槽170正对,而第二凸起121与第一凸起1311在转子铁芯100的周向上交替分布,使第一凸起1311与第二凸起121沿径向不对应,且第一凸起1311与第二凸起121能够隔开形成绝缘,这样第一凸起1311与第二凸起121均能嵌入到注塑体300内,起到增加内铁芯110、外铁芯120与注塑体300的结合力,从而有效提高转子铁芯100的整体强度。
参见图8所示,上述实施例中,第二凸起121包括第一延伸段1211和第二延伸段1212,第一延伸段1211和第二延伸段1212分别沿转子铁芯100的周向延伸,使第一延伸段1211和第二延伸段1212分别对应相邻的永磁体200进行定位。如图8所示,以第一扇形片132为示例,第一延伸段1211和第二延伸段1212均设置在第一扇形片132的端部且沿转子铁芯100的径向对称分布,如图8中所示第一延伸段1211沿第一环圈片131的逆时针方向延伸,第二延伸段1212沿第一环圈片131的顺时针方向延伸。可理解到,相邻的两个第一扇形片132之间形成一个容纳槽170,其中一个第一扇形片132上的第一延伸段1211与另一个第一扇形片132上的第二延伸段1212配合对该容纳槽170的永磁体200进行定位,结构稳定可靠。
需要说明的是,第一延伸段1211和第二延伸段1212均沿转子铁芯100的周向延伸,在转子铁芯100径向上,第二凸起121与内铁芯110之间的距离可理解为第一延伸段1211和第二延伸段1212与内铁芯110之间的距离。
参见图8所示,实施例中,第二凸起121与内铁芯110之间沿转子铁芯100径向的距离为L1,且满足1.5mm≤L1≤2mm,使设计更加合理,保证外铁芯120与内铁芯110之间具有可靠的绝缘性能。
可理解到,第二凸起121与内铁芯110之间的距离L1若过小,会降低内铁芯110与外铁芯120之间的绝缘性能,而L2过大时,则会降低内铁芯110、外铁芯120与注塑体300连接的结合力,进而降低转子组件1000结构强度,影响电机的性能。
参见图8所示,实施例中,第一延伸段1211和第二延伸段1212均沿转子铁芯100的周 向凸出而形成,且第一延伸段1211和第二延伸段1212的凸起高度相等,该高度L2满足L2≤1mm,避免凸起的高度过大而容易漏磁,有效减少第二凸起121位置的漏磁。
参见图9和图10所示,在一些实施例中,第二凸起121包括第一延伸段1211、第二延伸段1212和第三凸起125,第三凸起125设置在第一延伸段1211与第二延伸段1212之间。
具体来说,第一延伸段1211和第二延伸段1212分别沿转子铁芯100的周向延伸,且沿转子铁芯100的径向对称分布。在转子铁芯100的径向上,第三凸起125朝向内铁芯110延伸。第一延伸段1211和第二延伸段1212的具体结构可参见图7所示的实施例,此处不再赘述。
以第一冲片130为示例进行说明,图9所示为第一冲片130的结构示意图,可理解到,第三凸起125与内铁芯110之间隔开一定的间隙,保证外铁芯120与内铁芯110之间的绝缘性。第二凸起121通过增加第三凸起125朝向内铁芯110延伸,使得第二凸起121与注塑体300的接触更加紧密,有效提高外铁芯120与注塑体300之间的结合力,结构强度进一步得到提高,进而使转子组件1000的整体强度更高,提高转子组件1000在输出大转矩时的稳定性。
参见图10所示,具体的,在第三凸起125的端部设置第三延伸段1251和第四延伸段1252,第三延伸段1251和第四延伸段1252沿转子铁芯100的径向对称分布。
可理解到,在第三凸起125凸出形成于第一扇形片132的内侧端部,第三延伸段1251和第四延伸段1252分别沿转子铁芯100的周向延伸,进一步提高第三凸起125与注塑体300的结合力,使外铁芯120与注塑体300的结合更加可靠,结构强度更大。
需要说明的是,图10所示实施例中,第三延伸段1251和第四延伸段1252与第三凸起125配合形成Y形结构,可理解到,在内铁芯110与外铁芯120之间填充注塑体300,注塑体300能够完全包覆该Y形结构,即该Y形结构能够完全嵌入到注塑体300内,使外铁芯120与注塑体300连接更加紧密牢固,保证外铁芯120在径向和周向上与注塑体300的结合均得到加固,从而大大提高转子组件1000的整体强度,转子组件1000在输出大转矩时的稳定性更高。当然,第三延伸段1251和第四延伸段1252与第三凸起125形成的形状不限于上述示例,也可以是T形或其它形状。
参见图1、图12和图13所示,在一些实施例中,外铁芯120沿转子铁芯100的轴向设有第一通孔123,第一通孔123贯穿第一冲片130和第二冲片140,可理解到,外铁芯120包括环绕设置的多个外铁芯单元150,每个外铁芯单元150上均设置有第一通孔123,第一通孔123沿转子铁芯100的轴向贯穿外铁芯单元150,即第一通孔123贯穿每个第一扇形片132和第二扇形片142。
注塑时,将非导磁材料注入到每个第一通孔123中,使注塑体300能够填充到每个第一通孔123中,这样注塑体300同时填充在外铁芯120与内铁芯110之间以及外铁芯120的各个第一通孔123中。
可理解到,注塑体300能够在转子铁芯100轴向的两端覆盖永磁体200以及部分的转子铁芯100,使外铁芯120、内铁芯110和永磁体200组成转子组件1000,这样能够在保证结构强度的前提下,降低了外铁芯120与内铁芯110之间的漏磁,提高了电机的功率密度。
需要说明的是,第一通孔123不限于圆形,也可以是多边形,例如,如图9所示的第一扇形片132的结构示意图,第一通孔123的形状为三角形,可理解到,注塑体300填充在第一通孔123内,三角形的注塑体300具有更高的强度,有利于提高外铁芯120的结构强度,更加实用可靠。
需要说明的是,在一实施例中,如图1和2所示,在转子铁芯100径向上,相邻的外铁芯单元150外侧之间是断开,在第一扇形片132和第二扇形片142的外侧分别设置第四凸起122,通过第四凸起122对永磁体200的外侧进行定位,进一步提高结构强度。考虑到容纳槽170位于外铁芯120外侧位置为敞开结构,注塑体300同时覆盖在转子铁芯100外侧裸露的 永磁体200上,使得注塑体300能够完全覆盖永磁体200,有效降低漏磁,结构更加可靠。
参见图11所示,在一实施例中,转子铁芯100还包括有第三冲片160,第三冲片160包括第三环圈片和多个第三扇形片161,多个第三扇形片161围绕第三环圈片间隔设置,相邻的第三扇形片161在转子铁芯100的径向的外侧位置相连形成磁桥,该磁桥可理解为转子铁芯100的外磁桥1611,其中第三环圈片与第一环圈片131或第二环圈片141的结构相同,此处不再赘述。实施例中,将第三冲片160层叠在转子铁芯100沿轴向的两端,第三扇形片161与第一扇形片132和第二扇形片142层叠形成外铁芯120,这样通过外磁桥1611的连接能够有利于提高外铁芯120的强度。
参见图4、图5、图12和图13所示,第一环圈片131的内侧设有第一定位槽1312,第二环圈片141的内侧设有第二定位槽1411。可理解到,在第一环圈片131与第二环圈片141层叠时,第一定位槽1312与第二定位槽1411沿转子铁芯100的轴向对应,第一定位槽1312与第二定位槽1411配合用于定位第一环圈片131和第二环圈片141。
此外,外铁芯120沿转子铁芯100的轴向设有第二通孔124,第二通孔124贯穿第一冲片130和第二冲片140。每个外铁芯单元150上均设置有第二通孔124,第二通孔124沿转子铁芯100的轴向贯穿外铁芯单元150,第二通孔124用于定位第一冲片130和第二冲片140。
具体来说,在注塑过程,注塑模具通过第一定位槽1312与第二定位槽1411配合,对第一环圈片131和第二环圈片141进行定位,并通过第二通孔124对第一冲片130和第二冲片140进行定位。
例如,利用注塑模具上的第一定位销(附图未示出)***轴孔111中,第一定位销通过对第一定位槽1312与第二定位槽1411进行定位,使第一环圈片131与第二环圈片141能够对应层叠;同时通过第二定位销(附图未示出)***第二通孔124,使第一扇形片132与第二扇形片142同时得到定位,定位更加稳定可靠,然后再进行注塑操作,注塑完成后拔出第一定位销和第二定位销,结构简单实用。
需要说明的是,参见图8所示,第二通孔124包括有长方形孔位1241和圆形孔位1242,长方形孔位1241的中心与圆形孔位1242的圆形重合,实施例中,圆形孔位1242的直径大于长方形孔位1241的宽度,使长方形孔位1241与圆形孔位1242部分重合,这样在注塑时,第二通孔124即可***长方形的定位销,也可以***圆柱形的平衡钉。
具体来说,注塑模具包括上模和下模,下模具有腔室,腔室内设有第一定位销和第二定位销,将第一冲片130、第二冲片140和永磁体200放置在腔室内,其中,第一定位销与轴孔111对应,第二定位销呈长方体且与第二通孔124的长方形孔位1241对应,上模设置有圆柱形的平衡钉,上模与下模扣合进行注塑时,平衡钉对应***到第二通孔124的圆形孔位1242中,从而通过第二定位销与平衡钉配合对第一扇形片132与第二扇形片142进行定位。由于平衡钉与第二定位销沿轴向方向不完全重合,在拨出第二定位销时,能够便于第二定位销与外铁芯120快速分离,实现快速脱模。需要说明的是,第二通孔124的形状不限于长方形孔位1241与圆形孔位1242配合,长方形孔位1241也可以是三角形孔位、正方形孔位或其它的多边形孔位,具体不再赘述。
参见图2、图3、图4和图5所示,每个第一扇形片132和每个第二扇形片142上分别设置有3个第一铆扣点151,同时每个第一环圈片131与每个第二环圈片141上分别设置有5个第二铆扣点112。第一冲片130与第二冲片140层叠时,相邻的扇形片之间通过第一铆扣点151连接,相邻的环圈片之间通过第二铆扣点112连接,这样进一步提高转子铁芯100整体结构的稳定性。
本公开实施例还提供了一种电机,该电机包括定子和上述实施例所示的转子组件1000,如图14所示,转轴2000通过轴孔111与内铁芯110连接组成转子,转子和定子装配到电机的壳体内,转轴2000的两端分别设有轴承,附图未示出定子、壳体、轴承等部件的结构。由于电机采用了上述实施例所示的转子组件1000的全部技术方案,因此至少具有上述实施例的 技术方案所带来的所有有益效果,在此不再赘述。
本公开实施例还提供了一种家用电器(附图未示出),该家用电器可以是空调、冰箱等,家用电器采用的电机为上述实施例的电机。由于家用电器采用了上述实施例的电机的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再赘述。
上面结合附图对本公开实施例作了详细说明,但是本公开不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本公开宗旨的前提下作出各种变化。

Claims (18)

  1. 一种转子组件,包括:
    转子铁芯,所述转子铁芯包括内铁芯和外铁芯,所述内铁芯设有用于安装转轴的轴孔,所述外铁芯设有容纳槽,所述外铁芯与所述内铁芯之间间隔设置;
    永磁体,所述永磁体安装于所述容纳槽内;以及
    注塑体,所述注塑体至少填充于所述内铁芯与所述外铁芯之间;
    其中,所述外铁芯包括围绕所述内铁芯间隔设置的多个外铁芯单元,相邻的所述外铁芯单元之间形成所述容纳槽,所述内铁芯包括沿所述转子铁芯的轴向层叠的第一环圈片和第二环圈片,所述第一环圈片的外周沿相对于所述第二环圈片的外周沿向外凸出形成有多个第一凸起,多个所述第一凸起沿所述第一环圈片的周向间隔分布。
  2. 根据权利要求1所述的转子组件,其中,所述第二环圈片为圆环状基片,所述第一环圈片由所述圆环状基片和沿所述圆环状基片周向间隔分布的多个所述第一凸起组成。
  3. 根据权利要求1所述的转子组件,其中,所述第一环圈片和所述第二环圈片沿所述转子铁芯的轴向交替设置。
  4. 根据权利要求1所述的转子组件,其中,所述第一环圈片设置于所述内铁芯沿所述转子铁芯的轴向的两端,所述第二环圈片设置于所述内铁芯两端的所述第一环圈片之间。
  5. 根据权利要求1所述的转子组件,其中,所述第一凸起与所述永磁体一一对应且间隔设置,所述第一凸起与所述永磁体之间填充有所述注塑体。
  6. 根据权利要求1所述的转子组件,其中,每个所述外铁芯单元包括沿所述转子铁芯的轴向层叠的多个扇形片,所述扇形片朝向所述内铁芯方向的内侧设有用于定位所述永磁体的第二凸起。
  7. 根据权利要求6所述的转子组件,其中,所述第二凸起包括第一延伸段和第二延伸段,所述第一延伸段沿所述转子铁芯的周向延伸,所述第二延伸段沿所述转子铁芯的周向且朝向远离所述第一延伸段的方向延伸。
  8. 根据权利要求7所述的转子组件,其中,所述第二凸起还包括第三凸起,所述第三凸起设于所述第一延伸段与所述第二延伸段之间,且朝向所述内铁芯的方向延伸。
  9. 根据权利要求8所述的转子组件,其中,所述第三凸起的端部设有第三延伸段和第四延伸段,所述第三延伸段沿所述转子铁芯的周向延伸,所述第四延伸段沿所述转子铁芯的周向且朝向远离所述第三延伸段的方向延伸。
  10. 根据权利要求7所述的转子组件,其中,所述第二凸起与所述内铁芯之间沿所述转子铁芯径向的距离为L1,且满足1.5mm≤L1≤2mm。
  11. 根据权利要求7所述的转子组件,其中,所述第一凸起和所述第二凸起沿所述转子铁芯的周向的高度为L2,且满足L2≤1mm。
  12. 根据权利要求1所述的转子组件,其中,所述第一环圈片的内侧设有第一定位槽,所述第二环圈片的内侧设有第二定位槽,所述第一定位槽与所述第二定位槽沿所述转子铁芯的轴向对应,以用于定位所述第一环圈片和所述第二环圈片。
  13. 根据权利要求6所述的转子组件,其中,在所述外铁芯沿所述转子铁芯轴向的两端上,相邻的所述扇形片的外侧相连接。
  14. 根据权利要求1所述的转子组件,其中,每个所述外铁芯单元均设有第一通孔,所述第一通孔沿所述转子铁芯的轴向贯穿相应的所述外铁芯单元,所述第一通孔内填充有所述注塑体。
  15. 根据权利要求1所述的转子组件,其中,每个所述外铁芯单元均设有第二通孔,所述第二通孔沿所述转子铁芯的轴向贯穿相应的所述外铁芯单元,以用于定位相应的所述外铁芯单元。
  16. 根据权利要求15所述的转子组件,其中,所述第二通孔包括多边形孔位和圆形孔位,所述多边形孔位的中心和所述圆形孔位的圆心重合。
  17. 一种电机,包括如权利要求1至16任意一项所述的转子组件。
  18. 一种家用电器,包括如权利要求17所述的电机。
PCT/CN2021/120351 2021-04-19 2021-09-24 转子组件、电机及家用电器 WO2022222374A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110419169.0 2021-04-19
CN202110419169.0A CN115224838A (zh) 2021-04-19 2021-04-19 转子组件、电机及家用电器
CN202120804418.3 2021-04-19
CN202120804418.3U CN214543844U (zh) 2021-04-19 2021-04-19 转子组件、电机及家用电器

Publications (1)

Publication Number Publication Date
WO2022222374A1 true WO2022222374A1 (zh) 2022-10-27

Family

ID=83723516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120351 WO2022222374A1 (zh) 2021-04-19 2021-09-24 转子组件、电机及家用电器

Country Status (1)

Country Link
WO (1) WO2022222374A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223658A1 (de) * 2001-01-12 2002-07-17 Siemens Aktiengesellschaft Dauermagneterregter Rotor mit geminderten Leckfluss
CN206712566U (zh) * 2017-05-16 2017-12-05 珠海格力节能环保制冷技术研究中心有限公司 转子冲片、转子和电机
CN107735924A (zh) * 2015-05-11 2018-02-23 纽摩泰科有限公司 转子芯的堆叠结构
KR20180020030A (ko) * 2016-08-17 2018-02-27 효성전기주식회사 스포크 타입 모터의 로터
CN111969747A (zh) * 2020-09-28 2020-11-20 珠海格力电器股份有限公司 转子结构及具有其的电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223658A1 (de) * 2001-01-12 2002-07-17 Siemens Aktiengesellschaft Dauermagneterregter Rotor mit geminderten Leckfluss
CN107735924A (zh) * 2015-05-11 2018-02-23 纽摩泰科有限公司 转子芯的堆叠结构
KR20180020030A (ko) * 2016-08-17 2018-02-27 효성전기주식회사 스포크 타입 모터의 로터
CN206712566U (zh) * 2017-05-16 2017-12-05 珠海格力节能环保制冷技术研究中心有限公司 转子冲片、转子和电机
CN111969747A (zh) * 2020-09-28 2020-11-20 珠海格力电器股份有限公司 转子结构及具有其的电机

Similar Documents

Publication Publication Date Title
US11456632B2 (en) Consequent-pole type rotor, electric motor, air conditioner, and method for manufacturing consequent-pole type rotor
US9712007B2 (en) Rotor core, motor and motor manufacturing method
CN205725208U (zh) 转子以及马达
CN104283336B (zh) 马达
JP5879121B2 (ja) アキシャルギャップ回転電機
CN203933316U (zh) 马达
US11101708B2 (en) Rotor, motor, air conditioning apparatus, and manufacturing method of rotor
WO2016150128A1 (zh) 一种塑封定子的制造方法、塑封定子和外转子电机
JP6545393B2 (ja) コンシクエントポール型の回転子、電動機および空気調和機
CN104756368A (zh) 转子以及马达
JP6545387B2 (ja) コンシクエントポール型の回転子、電動機および空気調和機
WO2022222374A1 (zh) 转子组件、电机及家用电器
TW201828572A (zh) 軸向間隙型旋轉電機
CN214543845U (zh) 转子组件、电机及家用电器
CN115224838A (zh) 转子组件、电机及家用电器
CN112350477B (zh) 电机及洗衣机
CN109274237B (zh) 外转子电机和具有其的洗衣机
CN214543844U (zh) 转子组件、电机及家用电器
CN207304187U (zh) 外转式永磁电机结构
KR102019126B1 (ko) 모터의 로터 및 이를 제작하는 방법
KR102019127B1 (ko) 로터 및 이를 포함하는 모터
CN219477699U (zh) 一种转子铁芯及包含其的电机转子
CN220210054U (zh) 转子、电机和电器设备
CN216056537U (zh) 转子铁芯和电机转子
CN219420385U (zh) 电机和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/02/2024)