WO2022222147A1 - 变换器的控制方法及装置、可读存储介质 - Google Patents

变换器的控制方法及装置、可读存储介质 Download PDF

Info

Publication number
WO2022222147A1
WO2022222147A1 PCT/CN2021/089402 CN2021089402W WO2022222147A1 WO 2022222147 A1 WO2022222147 A1 WO 2022222147A1 CN 2021089402 W CN2021089402 W CN 2021089402W WO 2022222147 A1 WO2022222147 A1 WO 2022222147A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
time
control strategy
control
switch tube
Prior art date
Application number
PCT/CN2021/089402
Other languages
English (en)
French (fr)
Inventor
高锦凤
林贵应
何炜琛
但志敏
杭丽君
何远彬
陈克
廖嘉睿
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180063706.0A priority Critical patent/CN116250171A/zh
Priority to EP21904632.3A priority patent/EP4102708A4/en
Priority to PCT/CN2021/089402 priority patent/WO2022222147A1/zh
Priority to US17/856,453 priority patent/US11695317B2/en
Publication of WO2022222147A1 publication Critical patent/WO2022222147A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of circuit control, and in particular, to a control method and device for a converter, and a readable storage medium.
  • the converter includes a plurality of switch tubes, and by controlling the on or off of the switch tubes, the converter can convert the voltage.
  • the converter is usually provided with a voltage regulation control unit, which is used to realize the stable output of the voltage.
  • the voltage stabilization control is realized by intermittently controlling the on and off of the switch tube, but the control accuracy of this control method is poor, and the efficiency of the voltage stabilization control is not ideal.
  • the purpose of the present application is to provide a control method and device for a converter, and a readable storage medium, so as to realize high-efficiency and high-precision voltage regulation control.
  • the present application provides a control method for a converter, the converter includes a switch tube, and the control method includes: acquiring a real-time input voltage and a real-time output voltage of the converter; The real-time output voltage and the preset closed-loop control algorithm determine the real-time closed-loop control output value corresponding to the converter; according to the real-time closed-loop control output value, the real-time control of the switch tube is determined from at least three preset control strategies strategy; control the switch tube according to the real-time control strategy.
  • the existing intermittent control belongs to the open-loop control, which leads to poor control accuracy; the real-time closed-loop control output value is determined by using the real-time input voltage and the real-time output voltage, and the real-time closed-loop control output value is obtained through the real-time closed-loop control output value.
  • the control accuracy is improved.
  • seamless switching is performed in at least three preset control strategies, and a stable voltage can be output when the load changes.
  • the control strategy corresponding to the closed-loop control is relatively simple (for example, there is no high requirement for the threshold selection of the switching wave of the switching tube), and the efficiency of the voltage regulation control is high, thereby realizing the efficient voltage regulation control.
  • the at least three preset control strategies include: at least three of a pulse frequency modulation control strategy, a pulse width modulation control strategy, a pulse density modulation control strategy, and a pulse phase modulation control strategy.
  • the pulse frequency modulation control strategy realizes the adjustment of the output voltage by adjusting the switching frequency; the pulse width modulation control strategy realizes the reduction of the output voltage by adjusting the duty cycle of the pulse output; the pulse density modulation control strategy realizes the reduction of the output voltage by changing the density of the pulse output
  • the output voltage is reduced; the pulse phase modulation control strategy changes the output gain by changing the phase shift angle; the output value is flexibly and smoothly switched in these control strategies through real-time closed-loop control, which can achieve high-efficiency and high-precision voltage regulation control.
  • the converter is an isolated resonant DC converter
  • the real-time control strategy of the switch tube is determined from at least three preset control strategies according to the real-time closed-loop control output value , including: if the real-time closed-loop control output value is greater than or equal to a first preset value, determining that the real-time control strategy is the pulse frequency modulation control strategy; if the real-time closed-loop control output value is less than the first preset value value and greater than the second preset value, determine that the real-time control strategy is the pulse width modulation control strategy; the first preset value is greater than the second preset value; if the real-time closed-loop control output value is less than or is equal to the second preset value, and it is determined that the real-time control strategy is the pulse density modulation control strategy.
  • the three control strategies of the pulse frequency modulation control strategy, the pulse width modulation control strategy and the pulse density modulation control strategy are smoothly switched.
  • the load changes it can maintain a stable output voltage. For example: first adjust the output voltage through the pulse frequency modulation control strategy, and then use the pulse width modulation control strategy to reduce the output voltage when the output voltage needs to be further reduced; finally, when the wave needs to be turned off, the pulse density modulation control strategy is used to realize the wave off; The output voltage changes smoothly during the whole control process.
  • the real-time control strategy is the pulse frequency modulation control strategy
  • the controlling the switch tube according to the real-time control strategy includes: modulating the switching frequency of the switch tube to Real-time closed-loop control of the reciprocal of the output value; modulating the duty cycle of the switch tube to a first preset duty cycle.
  • the adjustment of the output voltage is realized through the modulation of the switching frequency and the modulation of the duty cycle.
  • the real-time control strategy is the pulse width modulation control strategy
  • the controlling the switch tube according to the real-time control strategy includes: modulating the switching frequency of the switch tube to The reciprocal of the first preset value; the duty cycle of the switch tube is modulated according to the real-time closed-loop control output value and the first preset value.
  • the reduction of the output voltage is achieved through the modulation of the switching frequency and the modulation of the duty cycle.
  • the real-time control strategy is the pulse density modulation control strategy;
  • the controlling the switch tube according to the real-time control strategy includes: if the real-time closed-loop control output value is equal to the the second preset value, the switching frequency of the switch tube is modulated as the reciprocal of the first preset value; the duty cycle of the switch tube is modulated into the second preset duty cycle; if the real-time closed-loop control When the output value is smaller than the second preset value, the duty cycle of the switch tube is modulated to 0.
  • the pulse density modulation control strategy if it is not necessary to turn off the wave (that is, the real-time closed-loop control output value is equal to the second preset value), the output voltage is further reduced through the modulation of the switching frequency; if it is necessary to turn off the wave (that is, the real-time closed-loop control output value is smaller than the second preset value), then the off-wave is realized by modulating the duty cycle to 0.
  • the converter is a phase-shifted full-bridge converter
  • the switch tube of the converter is determined from at least three preset control strategies according to the real-time closed-loop control output value.
  • a real-time control strategy including: if the real-time closed-loop control output value is less than a third preset value, determining that the real-time control strategy is the pulse phase modulation control strategy; if the real-time closed-loop control output value is greater than the third preset value set a value, and determine that the real-time control strategy is the pulse width modulation control strategy; if the real-time closed-loop control output value and the third preset value satisfy a preset relationship, determine that the real-time control strategy is the Pulse density modulation control strategy.
  • the three control strategies of pulse phase modulation control strategy, pulse width modulation control strategy and pulse density modulation control strategy are smoothly switched.
  • the load changes, it can maintain a stable output voltage. For example: first adjust the output voltage through the pulse phase adjustment control strategy, and then use the pulse width modulation control strategy to reduce the output voltage when the output voltage needs to be further reduced; finally, when the wave needs to be turned off, the pulse density modulation control strategy is used to realize the wave off; The output voltage changes smoothly during the whole control process.
  • the real-time control strategy is the pulse phase modulation control strategy
  • the control of the switch tube according to the real-time control strategy includes: adjusting the phase-shifted full-bridge converter in the The phase shift angle of the pulse waveform between the two bridge arms; the duty cycle of the switch tube is modulated to a third preset duty cycle, and the switching frequency of the switch tube is modulated to a preset frequency.
  • the adjustment of the output voltage is realized through the modulation of the phase shift angle and the duty cycle.
  • the real-time control strategy is the pulse width modulation control strategy
  • the control of the switch tube according to the real-time control strategy includes: placing the phase-shifted full-bridge converter in the The phase shift angle of the pulse waveform between the two bridge arms is adjusted to the third preset value; the duty cycle of the switch tube is modulated according to the third preset value and the real-time closed-loop control output value.
  • the reduction of the output voltage can be achieved through the modulation of the phase shift angle and the duty cycle.
  • the real-time control strategy is the pulse density modulation control strategy
  • the control of the switch tube according to the real-time control strategy includes: placing the phase-shifted full-bridge converter in the The phase shift angle of the pulse waveform between the two bridge arms is adjusted to the third preset value, and the duty cycle of the switch tube is modulated to the fourth preset duty cycle; The duty cycle modulation is 0.
  • the phase shift angle and the fixed duty cycle can be adjusted, that is, non-off-wave processing; the duty cycle can also be modulated to 0, that is, off-wave processing.
  • the controlling the switch tube according to the real-time control strategy includes: modulating the parameters of the switch tube according to the real-time control strategy; the parameters of the switch tube include: At least one parameter of switching frequency, duty cycle, and phase shift angle.
  • At least one parameter of the switching frequency, duty cycle and phase shift angle of the switch tube can be modulated to control the output voltage.
  • the present application provides a control device for a converter, the converter includes a switch tube, and the control device includes a control device for implementing the first aspect and any possible implementation manner of the first aspect.
  • Each functional module of the control method is provided.
  • the existing intermittent control belongs to the open-loop control, which leads to poor control accuracy; the real-time closed-loop control output value is determined by using the real-time input voltage and the real-time output voltage, and the real-time closed-loop control output value is obtained through the real-time closed-loop control output value.
  • the control accuracy is improved.
  • seamless switching is performed in at least three preset control strategies, and a stable voltage can be output when the load changes.
  • the control strategy corresponding to the closed-loop control is relatively simple (for example, there is no high requirement for the threshold selection of the switching wave of the switching tube), and the efficiency of the voltage stabilization control is high, thereby realizing the efficient voltage stabilization control.
  • the present application provides a readable storage medium, where a computer program is stored on the readable storage medium, and when the computer program is run by a computer, the first aspect and any one of the possible implementations of the first aspect are executed.
  • the control method of the converter described in the implementation manner.
  • the existing intermittent control belongs to the open-loop control, which leads to poor control accuracy; the real-time closed-loop control output value is determined by using the real-time input voltage and the real-time output voltage, and the real-time closed-loop control output value is obtained through the real-time closed-loop control output value.
  • the control accuracy is improved.
  • seamless switching is performed in at least three preset control strategies, and a stable voltage can be output when the load changes.
  • the control strategy corresponding to the closed-loop control is relatively simple (for example, there is no high requirement for the threshold selection of the switching wave of the switching tube), and the efficiency of the voltage regulation control is high, thereby realizing the efficient voltage regulation control.
  • FIG. 1 is a schematic diagram of a connection relationship between a converter and a controller disclosed in an embodiment of the present application
  • FIG. 2 is a flowchart of a control method of a converter disclosed in an embodiment of the present application
  • FIG. 3 is a structural block diagram of functional modules of a control device for a converter disclosed in an embodiment of the present application
  • the control method of the converter provided in the embodiment of the present application can be applied to the controller of the converter.
  • FIG. 1 is a schematic diagram of the converter and the controller.
  • the controller includes a voltage sampling module, a closed-loop control controller, switch control module.
  • the converter includes switch tubes. In different converters, the number and connection methods of the switch tubes are different.
  • the converter can be: an isolated resonant converter controller (ie a CLLLC converter); a phase-shifted full-bridge controller, namely a PSHB (Phase Bridge) converter.
  • the converter can be applied to various types of charging equipment to transform the signal sent by the signal source (such as a battery) of the charging equipment.
  • the charging equipment can be, for example, a DC charging pile, an intelligent charging pile, and the like.
  • the voltage sampling module is connected with the converter, and is used for collecting the real-time input voltage and real-time output voltage of the converter.
  • the closed-loop controller is connected with the voltage sampling module to determine the closed-loop control strategy.
  • the switch tube control module is connected to the closed-loop controller and the switch tube of the converter respectively, and is used to control the switch tube according to the closed-loop control strategy determined by the closed-loop controller; the switch tube control module can be understood as the drive of the converter.
  • the closed-loop controller may be a PID controller (Proportion Integration Differentiation, proportional-integral-derivative controller), and the PID controller is composed of a proportional unit P, an integral unit I and a differential unit D; the PID controller corresponds to
  • the closed-loop control algorithm is the PID control algorithm.
  • the closed-loop controller may also be other controllers, which are not limited here.
  • FIG. 2 is a flowchart of a control method for a converter provided by an embodiment of the present application, and the control method includes:
  • Step 210 Acquire the real-time input voltage and real-time output voltage of the converter.
  • Step 220 Determine the real-time closed-loop control output value corresponding to the converter according to the real-time input voltage, real-time output voltage and preset closed-loop control algorithm.
  • Step 230 Determine a real-time control strategy of the switch tube from at least three preset control strategies according to the real-time closed-loop control output value.
  • Step 240 Control the switch tube according to the real-time control strategy.
  • the existing intermittent control belongs to open-loop control, which leads to poor control accuracy;
  • the real-time closed-loop control output value is determined by using the real-time input voltage and real-time output voltage, and the real-time closed-loop control is performed through the real-time closed-loop control.
  • the output value realizes the closed-loop control of the switch tube.
  • the control accuracy is improved.
  • seamless switching is performed in at least three preset control strategies, and a stable voltage can be output when the load changes.
  • the control strategy corresponding to the closed-loop control is relatively simple (for example, there is no high requirement for the threshold selection of the switching wave of the switching tube), and the efficiency of the voltage regulation control is high, thereby realizing the efficient voltage regulation control.
  • the controller may acquire the real-time input voltage and real-time output voltage of the converter through the voltage sampling module.
  • the real-time output voltage may be the sampled voltage at the output side of the converter; the real-time input voltage may be the reference voltage at the input side of the converter.
  • the controller may calculate the real-time input voltage and the real-time output voltage through the closed-loop control algorithm built in the closed-loop controller (ie, the preset closed-loop control algorithm), and determine the real-time closed-loop control output value.
  • the closed-loop control algorithm built in the closed-loop controller (ie, the preset closed-loop control algorithm)
  • a PID closed-loop controller corresponds to a PID control algorithm.
  • the dimension of the finally determined real-time closed-loop control output value is time, which is defined as PID.out here.
  • the at least three preset control strategies are: at least three of a pulse frequency modulation control strategy, a pulse width modulation control strategy, a pulse density modulation control strategy, and a pulse phase modulation control strategy.
  • Pulse frequency modulation control strategy namely PFM (Pulse Frequency Modulation) control strategy
  • Pulse width modulation control strategy namely PWM (Pulse Width Modulation) control strategy
  • this control strategy can reduce the output voltage by adjusting the duty cycle of the pulse output; in this control strategy, the switching frequency can be fixed, and the duty cycle can be in a within a fixed range.
  • Pulse density modulation control strategy namely PDM (Pulse Density Modulation) control strategy
  • this control strategy can further adjust (drop) the output voltage by adjusting the density of the pulse output, and the density of the pulse output can also be understood as the number of pulse outputs;
  • the switching frequency can be fixed, and the duty cycle can be a fixed value.
  • Pulse phase modulation control strategy namely PPM (Pulse Phase Modulation) control strategy
  • this control strategy can change the output gain by adjusting the phase shift angle between the two bridge arms of the converter; the larger the phase shift angle, the smaller the output gain;
  • the duty cycle can be fixed.
  • step 240 includes: modulating the parameters of the switch tube according to the real-time control strategy;
  • the parameters include: at least one parameter of switching frequency, duty cycle and phase shift angle.
  • the implementation manner of determining the control strategy and the realization of the control strategy are also different.
  • the control strategy is determined (ie, the implementation of step 230 ) and the control strategy is implemented (ie, the implementation of step 240 ) introduced separately.
  • step 230 includes: if the real-time closed-loop control output value is greater than or equal to the first preset value, determining that the real-time control strategy is pulse frequency modulation control strategy; if the real-time closed-loop control output value is less than the first preset value and greater than the second preset value, the real-time control strategy is determined to be a pulse width modulation control strategy; the first preset value is greater than the second preset value; if the real-time closed-loop control output value If the value is less than or equal to the second preset value, it is determined that the real-time control strategy is a pulse density modulation control strategy.
  • the first preset value may be the minimum period (that is, the reciprocal of the maximum switching frequency) during which the switch tube control module performs driving control. It can be understood that due to the limitation of hardware conditions, the switching frequency of the switch tube cannot be infinite, and there is a maximum value .
  • the first preset value may be determined according to hardware conditions (such as a hardware drive circuit or a switch tube), and the embodiment of the present application does not limit the specific value.
  • the first preset value may be defined as Tmin.
  • the first preset value is greater than the second preset value.
  • the second preset value may be: A*Tmin, and the value range of A is 0-1, for example, the value of A may be 0.2 .
  • the specific value of A may be determined according to the hardware conditions, which is not limited in the embodiments of the present application.
  • the pulse frequency modulation control strategy when the real-time closed-loop control output values are different, among the three control strategies: the pulse frequency modulation control strategy, the pulse width modulation control strategy, and the pulse density modulation control strategy Smooth switching, when the load changes, it can maintain a stable output voltage. For example: first adjust the output voltage through the pulse frequency modulation control strategy, and then use the pulse width modulation control strategy to reduce the output voltage when the output voltage needs to be further reduced; finally, when the wave needs to be turned off, the pulse density modulation control strategy is used to realize the wave off; The output voltage changes smoothly during the whole control process.
  • the switch control module controls the switch through the pulse frequency modulation control strategy; when PID.out is less than Tmin and greater than A*Tmin, the switch control module passes The pulse width modulation control strategy controls the switch tube; when PID.out is less than or equal to A*Tmin, the switch tube control module controls the switch tube through the pulse density modulation control strategy.
  • step 240 includes: modulating the switching frequency of the switch tube to be the reciprocal of the real-time closed-loop control output value; modulating the duty cycle of the switch tube to The first preset duty cycle.
  • the first preset duty cycle may be set according to an actual application scenario, which is not limited in this embodiment of the present application.
  • the first preset duty cycle may be 50%.
  • the switching frequency of the switch tube is: 1/Tmin, and the switching frequency can be understood as the maximum switching frequency.
  • step 240 includes: modulating the switching frequency of the switching tube to be the reciprocal of the first preset value; according to the real-time closed-loop control output value and the first The preset value modulates the duty cycle of the switch.
  • the value range of B is 0-1, for example, the value of B can be 0.5.
  • the B value can be determined according to the value range of the duty cycle of the switch tube, and the value range of the duty cycle can be determined according to the actual test waveform.
  • the value range of the duty cycle It can be 10% to 50%. When the duty cycle is less than 10%, the hardware circuit of the isolated resonant DC converter cannot be turned on.
  • the switching frequency of the switch tube is 1/Tmin.
  • step 240 includes: if the real-time closed-loop control output value is equal to the second preset value, modulating the switching frequency of the switching tube to the first preset value The inverse of the value; the duty cycle of the switch tube is modulated to a second preset duty cycle; if the real-time closed-loop control output value is less than the second preset value, the duty cycle of the switch tube is modulated to 0.
  • the second preset duty cycle may be the minimum duty cycle for turning on the converter, for example, the second preset duty cycle may be 10%.
  • the switching frequency of the switch tube is 1/Tmin.
  • PID.out is equal to A*Tmin.
  • the switching frequency of the switching tube is modulated to the maximum switching frequency, and the second duty cycle ensures that the converter can be turned on. , can play a role in reducing the output voltage.
  • PID.out is less than A*Tmin, at this time, the duty cycle can be controlled to 0, that is, the wave is directly turned off. Directly turning off the wave will cause the output voltage to continue to drop.
  • the controller will continue to make judgments, such as:
  • a pulse frequency modulation control strategy may again be employed.
  • the pulse density modulation control strategy can be understood as changing the density of the pulse output, that is, changing the number of pulse outputs.
  • the switching frequency is fixed and the duty cycle is fixed, the less the number of pulse outputs, the smaller the output voltage, and then the output voltage is realized. adjustment.
  • the controller when the output voltage needs to be reduced, the controller generally first adopts the pulse frequency modulation control strategy.
  • the switching frequency reaches the maximum switching frequency, the switching frequency is fixed to the maximum switching frequency, and the pulse width modulation control is adopted at this time.
  • the duty cycle reaches the minimum value (ie, the second duty cycle)
  • the fixed switching frequency is the maximum switching frequency
  • the fixed duty cycle is the minimum value, and a pulse density modulation control strategy is adopted.
  • the pulse frequency modulation control strategy can be used first, and the switching frequency can be raised to the maximum frequency (such as 390kHz) and maintained to obtain the minimum output gain of the DC charging pile, but at this time the reference voltage (ie the input side voltage) is lower than The actual sampling voltage (ie the output side voltage), at this time, the DC charging pile can judge the output value of the closed-loop control, and can use the pulse width modulation control strategy and the pulse density modulation control strategy to further reduce the voltage to realize mixed modulation to meet the equipment requirements. Minimum output voltage 250V is required.
  • pulse frequency modulation + pulse width modulation + pulse realizes regulated output.
  • step 230 includes: if the real-time closed-loop control output value is less than a third preset value, determining that the real-time control strategy is a pulse-phase modulation control strategy ; if the real-time closed-loop control output value is greater than the third preset value, determine the real-time control strategy as the pulse width modulation control strategy; if the real-time closed-loop control output value and the third preset value satisfy the preset relationship, determine the real-time control strategy is the pulse density modulation control strategy.
  • the third preset value is the maximum phase shift angle of the switching tube of the phase-shifted full-bridge converter, assuming that it is defined as: PSHmax, which can be expressed as: the phase shift angle corresponding to the pulse Tprd/2; Tprd is the pulse waveform period, which is a fixed value. Therefore, the specific value of the third preset value depends on the hardware driving circuit and the switch tube, and the specific value is not limited in this embodiment of the present application.
  • Tprd/2-(PID.out-PSHmax) is equal to or less than (C*Tprd)
  • the preset relationship can be expressed as: PID.out Equal to or greater than Tprd/2-C*Tprd+PSHmax.
  • the value of C can be preset according to actual hardware circuit conditions, and the value range is 0-1, for example, the value of C can be 0.1.
  • the three control strategies of pulse phase modulation control strategy, pulse width modulation control strategy and pulse density modulation control strategy are smoothly switched.
  • the load changes, it can maintain a stable output voltage. For example: first adjust the output voltage through the pulse phase adjustment control strategy, and then use the pulse width modulation control strategy to reduce the output voltage when the output voltage needs to be further reduced; finally, when the wave needs to be turned off, the pulse density modulation control strategy is used to realize the wave off; The output voltage changes smoothly during the whole control process.
  • step 240 includes: adjusting the phase shift angle of the pulse waveform between the two bridge arms in the phase-shifted full-bridge converter; The duty cycle of the switch is modulated to a third preset duty cycle, and the switching frequency of the switch tube is modulated to a preset frequency.
  • the third preset duty cycle may be the maximum duty cycle of the switch tube, for example: 50%.
  • the preset frequency can be the maximum switching frequency of the switch tube or other frequencies. In practical applications, the third preset duty cycle and the preset frequency may be determined according to a specific application scenario (for example, in combination with the actual situation of the waveform), which are not limited in this embodiment of the present application.
  • the output gain is changed by adjusting the phase shift angle of the pulse waveform between the two bridge arms in the phase-shifted full-bridge converter.
  • the phase-shift angle When modulating the phase-shift angle, the phase-shift angle can be gradually increased. When the phase-shift angle increases, the PID.out will also change accordingly, and the controller will correspondingly change the control strategy of the switch tube. Therefore, the modulation of the phase-shift angle It is not necessary to set the target value of the phase shift angle modulation.
  • step 240 includes: adjusting the phase shift angle of the pulse waveform between the two bridge arms in the phase-shifted full-bridge converter to the first Three preset values; the duty cycle of the switch tube is modulated according to the third preset value and the real-time closed-loop control output value.
  • the third preset value is PSHmax (ie, the maximum phase shift angle) introduced in the foregoing embodiment.
  • the modulation mode of the duty cycle may be: modulate the duty cycle as Tprd/2-(PID.out-PSHmax).
  • Tprd/2-( PID.out-PSHmax) needs to be greater than the minimum duty cycle.
  • the output voltage is adjusted by adjusting the duty cycle of the pulse output.
  • the duty cycle When the phase shift angle is fixed at the maximum phase shift angle, the smaller the duty cycle, the smaller the output voltage.
  • the adjustment range of the duty cycle can be: 10% to 50%.
  • step 240 includes: adjusting the phase-shift angle of the pulse waveform between the two bridge arms in the phase-shifted full-bridge converter to a third the preset value, and modulating the duty cycle of the switch tube to be a fourth preset duty cycle; or, modulating the duty cycle of the switch tube to 0.
  • the fourth preset duty cycle may be the minimum duty cycle in the foregoing embodiments.
  • Tprd/2-(PID.out-PSHmax) is equal to (C*Tprd)
  • the phase shift angle can be fixed as PSHmax
  • the duty cycle can be fixed as the fourth preset duty cycle. If Tprd/2-(PID.out- PSHmax) is less than (C*Tprd), the duty cycle is modulated to 0, that is, the wave is directly turned off. Directly turning off the wave will cause the output voltage to continue to drop, and the controller will continue to control the output of real-time closed-loop control. The value is judged to switch the control strategy.
  • the phase shift angle and fixed duty cycle can be adjusted, that is, non-off-wave processing; the duty cycle can also be modulated to 0, that is, off-wave processing.
  • the modulation method is to change the density of the pulse output, which can also be understood as changing the number of pulse outputs.
  • a mixed control strategy of pulse phase modulation + pulse width modulation + pulse density modulation may also be used to achieve regulated output.
  • the acquisition module 310 is used to acquire the real-time input voltage and real-time output voltage of the converter; the control module 320 is used to: determine the conversion according to the real-time input voltage, the real-time output voltage and a preset closed-loop control algorithm The real-time closed-loop control output value corresponding to the controller is determined; the real-time control strategy of the switch tube is determined from at least three preset control strategies according to the real-time closed-loop control output value; control.
  • control module 320 is specifically configured to: if the real-time closed-loop control output value is greater than or equal to a first preset value, determine that the real-time control strategy is the pulse frequency modulation control strategy; The closed-loop control output value is less than the first preset value and greater than the second preset value, and the real-time control strategy is determined to be the pulse width modulation control strategy; the first preset value is greater than the second preset value ; if the real-time closed-loop control output value is less than or equal to the second preset value, determine that the real-time control strategy is the pulse density modulation control strategy.
  • control module 320 is further configured to: modulate the switching frequency of the switch tube to be the reciprocal of the real-time closed-loop control output value; modulate the duty cycle of the switch tube to the first preset duty cycle Compare.
  • control module 320 is further configured to: modulate the switching frequency of the switch tube to be the reciprocal of the first preset value; modulate the output value according to the real-time closed-loop control and the first preset value the duty cycle of the switch.
  • control module 320 is further configured to: if the real-time closed-loop control output value is equal to the second preset value, modulate the switching frequency of the switch tube to be the reciprocal of the first preset value; The duty cycle of the switch tube is modulated to a second preset duty cycle; if the real-time closed-loop control output value is less than the second preset value, the duty cycle of the switch tube is modulated to 0.
  • control module 320 is further configured to: if the real-time closed-loop control output value is less than a third preset value, determine that the real-time control strategy is the pulse phase modulation control strategy; if the real-time closed-loop control strategy is the pulse phase modulation control strategy; If the control output value is greater than the third preset value, it is determined that the real-time control strategy is the pulse width modulation control strategy; if the real-time closed-loop control output value and the third preset value satisfy a preset relationship, It is determined that the real-time control strategy is the pulse density modulation control strategy.
  • control module 320 is further configured to: adjust the phase shift angle of the pulse waveform between the two bridge arms in the phase-shifted full-bridge converter; modulate the duty cycle of the switch tube to Three preset duty ratios, and the switching frequency of the switch tube is modulated to a preset frequency.
  • control module 320 is further configured to: adjust the phase shift angle of the pulse waveform between the two bridge arms in the phase-shift full-bridge converter to the third preset value; according to the The third preset value and the real-time closed-loop control output value modulate the duty cycle of the switch tube.
  • control module 320 is further configured to: adjust the phase shift angle of the pulse waveform between the two bridge arms in the phase-shift full-bridge converter to the third preset value, and adjust the The duty cycle of the switch tube is modulated to a fourth preset duty cycle; or, the duty cycle of the switch tube is modulated to 0.
  • control module 320 is further configured to: modulate the parameters of the switch tube according to the real-time control strategy; the parameters of the switch tube include: switching frequency, duty cycle, and phase shift angle among at least one parameter of .
  • the inverter control device 300 corresponds to the inverter control method in the foregoing embodiments, and each module of the inverter control method corresponds to each step of the inverter control method one-to-one. Therefore, the implementation of each module refers to each step in the foregoing embodiment. implementation, which will not be repeated here.
  • an embodiment of the present application further provides a readable storage medium, where a computer program is stored on the readable storage medium, and when the computer program is run by a computer, the control of the converter described in the foregoing embodiments is executed. method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本申请实施例提供一种变换器的控制方法及装置、可读存储介质。控制方法包括:获取所述变换器的实时输入电压和实时输出电压;根据所述实时输入电压、所述实时输出电压和预设的闭环控制算法确定所述变换器对应的实时闭环控制输出值;根据所述实时闭环控制输出值从至少三个预设的控制策略中确定出变换器的开关管的实时控制策略;根据所述实时控制策略对所述开关管进行控制。该控制方法用以实现高效且高精度的稳压控制。

Description

变换器的控制方法及装置、可读存储介质 技术领域
本申请涉及电路控制技术领域,特别是涉及一种变换器的控制方法及装置、可读存储介质。
背景技术
变换器中包括多个开关管,通过对开关管的导通或者关断进行控制,变换器可以对电压进行转换。为了实现变换器的稳压控制,变换器通常设置有稳压控制单元,用于实现电压的稳定输出。
现有技术中,通过间歇控制开关管的导通和关断来实现稳压控制,但是,这种控制方式的控制精度差,稳压控制的效率也不理想。
发明内容
本申请的目的在于提供一种变换器的控制方法及装置、可读存储介质,用以实现高效且高精度的稳压控制。
第一方面,本申请提供一种变换器的控制方法,变换器包括开关管,所述控制方法包括:获取所述变换器的实时输入电压和实时输出电压;根据所述实时输入电压、所述实时输出电压和预设的闭环控制算法确定所述变换器对应的实时闭环控制输出值;根据所述实时闭环控制输出值从至少三个预设的控制策略中确定出所述开关管的实时控制策略;根据所述实时控制策略对所述开关管进行控制。
在本申请中,与现有技术相比,现有的间歇控制属于开环控制,进而导致控制精度差;利用实时输入电压和实时输出电压确定实时闭环控制 输出值,通过该实时闭环控制输出值,实现开关管的闭环控制,相较于开环控制,控制精度提高。并且,通过实时闭环控制输出值,在至少三个预设的控制策略中进行无缝切换,当负载变化时能输出稳定的电压。以及,闭环控制对应的控制策略较为简单(比如,对开关管的开关波的阈值选取没有太高要求),稳压控制的效率较高,进而实现高效的稳压控制。
作为一种可能的实现方式,所述至少三个预设的控制策略包括:脉冲频率调制控制策略、脉冲宽度调制控制策略、脉冲密度调制控制策略以及脉冲相位调制控制策略中的至少三个。
在本申请中,脉冲频率调制控制策略通过调整开关频率实现输出电压的调整;脉冲宽度调制控制策略通过调整脉冲输出的占空比实现输出电压的降低;脉冲密度调制控制策略通过改变脉冲输出的密度实现输出电压的降低;脉冲相位调制控制策略通过改变移相角改变输出增益;通过实时闭环控制输出值在这些控制策略中灵活且平滑地切换,能够实现高效且高精度的稳压控制。
作为一种可能的实现方式,所述变换器为隔离型谐振直流变换器,所述根据所述实时闭环控制输出值从至少三个预设的控制策略中确定出所述开关管的实时控制策略,包括:若所述实时闭环控制输出值大于或者等于第一预设值,确定所述实时控制策略为所述脉冲频率调制控制策略;若所述实时闭环控制输出值小于所述第一预设值且大于第二预设值,确定所述实时控制策略为所述脉冲宽度调制控制策略;所述第一预设值大于所述第二预设值;若所述实时闭环控制输出值小于或者等于所述第二预设值,确定所述实时控制策略为所述脉冲密度调制控制策略。
在本申请中,对于隔离型谐振直流变换器来说,当实时闭环控制输出值不同时,在脉冲频率调制控制策略、脉冲宽度调制控制策略、脉冲密度调制控制策略这三种控制策略中平滑切换,当负载变化时,能够保持输 出稳定的电压。比如:先通过脉冲频率调制控制策略调节输出电压,当输出电压需要进一步降低时,再利用脉冲宽度调制控制策略降低输出电压;最后,当需要关波时,利用脉冲密度调制控制策略实现关波;整个控制过程中输出电压平滑的变化。
作为一种可能的实现方式,所述实时控制策略为所述脉冲频率调制控制策略,所述根据所述实时控制策略对所述开关管进行控制,包括:将所述开关管的开关频率调制为实时闭环控制输出值的倒数;将所述开关管的占空比调制为第一预设占空比。
在本申请中,在脉冲频率调制控制策略中,通过开关频率的调制,以及占空比的调制,实现输出电压的调整。
作为一种可能的实现方式,所述实时控制策略为所述脉冲宽度调制控制策略,所述根据所述实时控制策略对所述开关管进行控制,包括:将所述开关管的开关频率调制为第一预设值的倒数;根据所述实时闭环控制输出值和所述第一预设值调制所述开关管的占空比。
在本申请中,在脉冲宽度调制控制策略中,通过开关频率的调制,以及占空比的调制,实现输出电压的降低。
作为一种可能的实现方式,所述实时控制策略为所述脉冲密度调制控制策略;所述根据所述实时控制策略对所述开关管进行控制,包括:若所述实时闭环控制输出值等于所述第二预设值,将所述开关管的开关频率调制为第一预设值的倒数;将所述开关管的占空比调制为第二预设占空比;若所述实时闭环控制输出值小于所述第二预设值,将所述开关管的占空比调制为0。
在本申请中,在脉冲密度调制控制策略中,如果不需要关波(即实时闭环控制输出值等于第二预设值),则通过开关频率的调制实现输出电压的进一步降低;如果需要关波(即实时闭环控制输出值小于第二预设 值),则通过将占空比调制为0,实现关波。
作为一种可能的实现方式,所述变换器为移相全桥变换器,所述根据所述实时闭环控制输出值从至少三个预设的控制策略中确定出所述变换器的开关管的实时控制策略,包括:若所述实时闭环控制输出值小于第三预设值,确定所述实时控制策略为所述脉冲相位调制控制策略;若所述实时闭环控制输出值大于所述第三预设值,确定所述实时控制策略为所述脉冲宽度调制控制策略;若所述实时闭环控制输出值与所述第三预设值之间满足预设关系,确定所述实时控制策略为所述脉冲密度调制控制策略。
在本申请中,对于移相全桥变换器来说,当实时闭环控制输出值不同时,在脉冲相位调制控制策略、脉冲宽度调制控制策略、脉冲密度调制控制策略这三种控制策略中平滑切换,当负载变化时,能够保持输出稳定的电压。比如:先通过脉冲相位调整控制策略调节输出电压,当输出电压需要进一步降低时,再利用脉冲宽度调制控制策略降低输出电压;最后,当需要关波时,利用脉冲密度调制控制策略实现关波;整个控制过程中输出电压平滑的变化。
作为一种可能的实现方式,所述实时控制策略为所述脉冲相位调制控制策略,所述根据所述实时控制策略对所述开关管进行控制,包括:调节所述移相全桥变换器中两个桥臂间的脉冲波形的移相角;将所述开关管的占空比调制为第三预设占空比,并将所述开关管的开关频率调制为预设频率。
在本申请中,在脉冲相位调制控制策略中,通过移相角和占空比的调制,实现输出电压的调整。
作为一种可能的实现方式,所述实时控制策略为所述脉冲宽度调制控制策略,所述根据所述实时控制策略对所述开关管进行控制,包括:将所述移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为所述第三预 设值;根据所述第三预设值和所述实时闭环控制输出值调制所述开关管的占空比。
在本申请中,在脉冲宽度调制控制策略中,通过移相角和占空比的调制,可以实现输出电压的降低。
作为一种可能的实现方式,所述实时控制策略为所述脉冲密度调制控制策略,所述根据所述实时控制策略对所述开关管进行控制,包括:将所述移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为所述第三预设值,以及将所述开关管的占空比调制为第四预设占空比;或者,将所述开关管的占空比调制为0。
在本申请中,在脉冲密度调制控制策略中,可以调节移相角和固定占空比,即非关波处理;也可以将占空比调制为0,即关波处理。
作为一种可能的实现方式,所述根据所述实时控制策略对所述开关管进行控制,包括:根据所述实时控制策略对所述开关管的参数进行调制;所述开关管的参数包括:开关频率、占空比和移相角中的至少一个参数。
在本申请中,基于不同的实时控制策略,可以对开关管的开关频率、占空比和移相角中的至少一个参数进行调制,实现输出电压的控制。
第二方面,本申请提供一种变换器的控制装置,变换器包括开关管,该控制装置包括用于实现第一方面以及第一方面的任意一种可能的实现方式中所述的变换器的控制方法的各个功能模块。
在本申请中,与现有技术相比,现有的间歇控制属于开环控制,进而导致控制精度差;利用实时输入电压和实时输出电压确定实时闭环控制输出值,通过该实时闭环控制输出值,实现开关管的闭环控制,相较于开环控制,控制精度提高。并且,通过实时闭环控制输出值,在至少三个预设的控制策略中进行无缝切换,当负载变化时能输出稳定的电压。以及, 闭环控制对应的控制策略较为简单(比如,对开关管的开关波的阈值选取没有太高要求),稳压控制的效率较高,进而实现高效的稳压控制。
第三方面,本申请提供一种可读存储介质,所述可读存储介质上存储有计算机程序,所述计算机程序被计算机运行时,执行如第一方面以及第一方面的任意一种可能的实现方式中所述的变换器的控制方法。
在本申请中,与现有技术相比,现有的间歇控制属于开环控制,进而导致控制精度差;利用实时输入电压和实时输出电压确定实时闭环控制输出值,通过该实时闭环控制输出值,实现开关管的闭环控制,相较于开环控制,控制精度提高。并且,通过实时闭环控制输出值,在至少三个预设的控制策略中进行无缝切换,当负载变化时能输出稳定的电压。以及,闭环控制对应的控制策略较为简单(比如,对开关管的开关波的阈值选取没有太高要求),稳压控制的效率较高,进而实现高效的稳压控制。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的变换器与控制器的连接关系示意图;
图2是本申请一实施例公开的变换器的控制方法的流程图;
图3是本申请一实施例公开的变换器的控制装置的功能模块的结构框图;
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请实施例提供的变换器的控制方法可以应用于变换器的控制器,为了便于理解,请参照图1,为变换器与控制器的示意图,在控制器中,包括电压采样模块、闭环控制器、开关管控制模块。变换器包括开关管,在不同的变换器中,开关管的数量和连接方式不相同。该变换器可以是:隔离型谐振变换控制器(即CLLLC变换器);移相全桥控制器,即PSHB(Phase Bridge)变换器。
该变换器可以应用于各类充电设备中,用于对充电设备的信号源(比如电池)发出的信号进行变换,充电设备例如可以是直流充电桩、智能充电桩等。
其中,电压采样模块与变换器连接,用于采集变换器的实时输入电压和实时输出电压。闭环控制器与电压采样模块连接,用于确定闭环控制策略。开关管控制模块与闭环控制器和变换器的开关管分别连接,用于根 据闭环控制器确定的闭环控制策略对开关管进行控制;开关管控制模块可以理解为变换器的驱动。
在本申请实施例中,闭环控制器可以是PID控制器(Proportion Integration Differentiation,比例-积分-微分控制器),PID控制器由比例单元P、积分单元I和微分单元D组成;PID控制器对应的闭环控制算法为PID控制算法。闭环控制器也可以是其他控制器,在此不作限定。
基于上述应用场景的介绍,请参照图2,为本申请实施例提供的变换器的控制方法的流程图,该控制方法包括:
步骤210:获取变换器的实时输入电压和实时输出电压。
步骤220:根据实时输入电压、实时输出电压和预设的闭环控制算法确定变换器对应的实时闭环控制输出值。
步骤230:根据实时闭环控制输出值从至少三个预设的控制策略中确定出开关管的实时控制策略。
步骤240:根据实时控制策略对开关管进行控制。
在本申请实施例中,与现有技术相比,现有的间歇控制属于开环控制,进而导致控制精度差;利用实时输入电压和实时输出电压确定实时闭环控制输出值,通过该实时闭环控制输出值,实现开关管的闭环控制,相较于开环控制,控制精度提高。并且,通过实时闭环控制输出值,在至少三个预设的控制策略中进行无缝切换,当负载变化时能输出稳定的电压。以及,闭环控制对应的控制策略较为简单(比如,对开关管的开关波的阈值选取没有太高要求),稳压控制的效率较高,进而实现高效的稳压控制。
接下来对步骤210-步骤240的详细实施方式进行介绍。
在步骤210中,控制器可以通过电压采样模块获取变换器的实时输入电压和实时输出电压。其中,实时输出电压可以是变换器的输出侧的采样电压;实时输入电压可以是变换器的输入侧的参考电压。
在步骤220中,控制器可以通过闭环控制器中内置的闭环控制算法(即预设的闭环控制算法),对实时输入电压和实时输出电压进行运算,确定出实时闭环控制输出值。
可以理解,不同的闭环控制器对应不同的闭环控制算法,比如:PID闭环控制器对应PID控制算法。在本申请实施例中,如果采用PID控制算法,最终确定出的实时闭环控制输出值的量纲为时间,在此将其定义为PID.out。
在步骤230中,至少三个预设的控制策略为:脉冲频率调制控制策略、脉冲宽度调制控制策略、脉冲密度调制控制策略以及脉冲相位调制控制策略中的至少三个。
脉冲频率调制控制策略,即PFM(Pulse Frequency Modulation)控制策略,该控制策略可以通过调整开关管的开关频率来改变变换器的输出增益,输出增益=实时输出电压/实时输入电压;开关频率越高,输出增益越小;因此,当调制开关频率时,输出增益随之改变,实时输出电压也对应改变。
脉冲宽度调制控制策略,即PWM(Pulse Width Modulation)控制策略,该控制策略可以通过调整脉冲输出的占空比输出电压的降低;在该控制策略中,开关频率可以固定,占空比可以在一个固定的范围内。
脉冲密度调制控制策略,即PDM(Pulse Density Modulation)控制策略,该控制策略可以通过调整脉冲输出的密度实现输出电压的进一步调节(下降),脉冲输出的密度也可以理解为脉冲输出的次数;在该控制策略中,开关频率可以固定,占空比可以为一个固定值。
脉冲相位调制控制策略,即PPM(Pulse Phase Modulation)控制策略,该控制策略可以通过调整变换器的两个桥臂间的移相角来改变输出增益;移相角越大,输出增益越小;在该控制策略中,占空比可以固定。
在本申请实施例中,通过实时闭环控制输出值在上述四种控制策略中的至少三个控制策略中灵活且平滑地切换,能够实现高效且高精度的稳压控制。
从各个控制策略的介绍可以看出,各个控制策略对应不同的参数控制方式,因此,作为一种可选的实施方式,步骤240包括:根据实时控制策略对开关管的参数进行调制;开关管的参数包括:开关频率、占空比和移相角中的至少一个参数。
可以理解,不同的变换器,电路结构不相同,因此,针对不同的变换器,确定控制策略的实施方式,以及控制策略的实现也是不相同的。在本申请实施例中,针对隔离型谐振直流变换器和移相全桥变换器,就控制策略的确定方式(即步骤230的实施方式)和控制策略的实现方式(即步骤240的实施方式)进行分别介绍。
作为一种可选的实施方式,变换器为隔离型谐振直流变换器;此时,步骤230包括:若实时闭环控制输出值大于或者等于第一预设值,确定实时控制策略为脉冲频率调制控制策略;若实时闭环控制输出值小于第一预设值且大于第二预设值,确定实时控制策略为脉冲宽度调制控制策略;第一预设值大于第二预设值;若实时闭环控制输出值小于或者等于第二预设值,确定实时控制策略为脉冲密度调制控制策略。
其中,第一预设值可以为开关管控制模块进行驱动控制的最小周期(也即最大开关频率的倒数),可以理解,由于硬件条件限制,开关管的开关频率不能无限大,存在一个最大值。在实际应用时,该第一预设值可以根据硬件的情况(比如硬件驱动电路或开关管)确定,在本申请实施例不对具体的值进行限定。在此,将第一预设值可以定义为Tmin。
第一预设值大于第二预设值,作为一种可选的实施方式,第二预设值可以为:A*Tmin,A的取值范围为0-1,比如:A值可以为0.2。在实际应用时,可以根据硬件的情况确定A的具体取值,在本申请实施例中不作限定。
在本申请实施例中,对于隔离型谐振直流变换器来说,当实时闭环控制输出值不同时,在脉冲频率调制控制策略、脉冲宽度调制控制策略、脉冲密度调制控制策略这三种控制策略中平滑切换,当负载变化时,能够保持输出稳定的电压。比如:先通过脉冲频率调制控制策略调节输出电压,当输出电压需要进一步降低时,再利用脉冲宽度调制控制策略降低输出电压;最后,当需要关波时,利用脉冲密度调制控制策略实现关波;整个控制过程中输出电压平滑的变化。
举例来说,当PID.out大于或者等于Tmin,此时开关管控制模块通过脉冲频率调制控制策略对开关管进行控制;当PID.out小于Tmin且大于 A*Tmin,此时开关管控制模块通过脉冲宽度调制控制策略对开关管进行控制;当PID.out小于或者等于A*Tmin,此时开关管控制模块通过脉冲密度调制控制策略对开关管进行控制。
作为一种可选的实施方式,当实时控制策略为脉冲频率调制控制策略时,步骤240包括:将开关管的开关频率调制为实时闭环控制输出值的倒数;将开关管的占空比调制为第一预设占空比。
其中,第一预设占空比可以根据实际的应用场景进行设置,在本申请实施例中不作限定。作为举例,第一预设占空比可以为50%。
对应的,开关管的开关频率为:1/Tmin,该开关频率可以理解为最大开关频率。
可以看出,在脉冲频率调制控制策略中,通过开关频率的调制,以及占空比的固定,实现输出电压的调整,开关频率越高,增益越小。
作为一种可选的实施方式,当实时控制策略为脉冲宽度调制控制策略时,步骤240包括:将开关管的开关频率调制为第一预设值的倒数;根据实时闭环控制输出值和第一预设值调制开关管的占空比。
其中,占空比与实时闭环控制输出值和第一预设值的关系可以为:占空比=(PID.out*B)/Tmin。B的取值范围为0-1,比如:B值可以为0.5。在实际应用时,可以根据开关管的占空比的取值范围确定B值,占空比的取值范围可以根据实际测试波形而定,在本申请实施例中,占空比的取值范围可以为10%~50%。当占空比小于10%时,隔离型谐振直流变换器的硬件电路无法导通。
对应的,开关管的开关频率为1/Tmin。
在这种控制策略中,当开关管的开关频率固定时,占空比越小,输出电压越小,进而可以实现输出电压的降低。
作为一种可选的实施方式,当实时控制策略为脉冲密度调制控制策略时,步骤240包括:若实时闭环控制输出值等于第二预设值,将开关管的开关频率调制为第一预设值的倒数;将开关管的占空比调制为第二预设占空比;若实时闭环控制输出值小于第二预设值,将开关管的占空比调制为0。
其中,第二预设占空比可以为使变换器导通的最小占空比,比如:第二预设占空比可以为10%。对应的,开关管的开关频率为1/Tmin。
在脉冲密度调制控制策略中,存在两种情况,一种情况为PID.out等于A*Tmin,此时将开关管的开关频率调制为最大开关频率,第二占空比保证变换器可以导通,能够起到降低输出电压的作用。另一种情况为PID.out小于A*Tmin,此时可以控制占空比为0,即直接关波,直接关波会导致输出电压持续下降,此时控制器便会继续作判断,比如:可能会再次采用脉冲频率调制控制策略。
脉冲密度调制控制策略,可以理解为改变脉冲输出的密度,也即改变脉冲输出的次数,当开关频率固定,占空比固定时,脉冲输出的次数越少,输出电压越小,进而实现输出电压的调整。
对于上述三种控制策略,当需要降低输出电压时,控制器一般会先采用脉冲频率调制控制策略,当开关频率达到最大开关频率时,开关频率固定为最大开关频率,此时采用脉冲宽度调制控制策略。当占空比达到最小值(即第二占空比)时,固定开关频率为最大开关频率,固定占空比为最小值,采用脉冲密度调制控制策略。
在实际应用时,举例来说:假设变换器应用于直流充电桩,在直流充电桩给电动汽车充电时,需要先进行绝缘检测,此工况下直流充电桩空载启动,通常输出电压最低为250V,此时可以先采用脉冲频率调制控制策略,将开关频率拉升至最大频率(比如390kHz)并保持,以获得直流充电桩最小输出增益,但此时参考电压(即输入侧电压)低于实际采样电压(即输出侧电压),此时直流充电桩通过闭环控制输出值的判断,可以再采用脉冲宽度调制控制策略和脉冲密度调制控制策略进行进一步的降压,实现混合调制,以满足设备输出电压最低250V的要求。
因此,当隔离型谐振直流变换器的输出电压较低或者轻载的情况下,如直流充电桩给车充电时,电池电压较低或充电末端时,可以采用脉冲频率调制+脉冲宽度调制+脉冲密度调制的混合控制策略,实现稳压输出。
作为另一种可选的实施方式,变换器为移相全桥变换器,此时,步 骤230包括:若实时闭环控制输出值小于第三预设值,确定实时控制策略为脉冲相位调制控制策略;若实时闭环控制输出值大于第三预设值,确定实时控制策略为所述脉冲宽度调制控制策略;若实时闭环控制输出值与第三预设值之间满足预设关系,确定实时控制策略为脉冲密度调制控制策略。
其中,第三预设值为移相全桥变换器的开关管的最大移相角,假设将其定义为:PSHmax,可以表示为:为脉冲Tprd/2对应的移相角;Tprd为脉冲波形周期,为固定值。因此,第三预设值的具体值取决于硬件驱动电路和开关管,在本申请实施例不对具体值作限定。
作为一种可选的实施方式,当采用脉冲密度调制控制策略时,Tprd/2-(PID.out-PSHmax)等于或者小于(C*Tprd),因此,预设关系可以表示为:PID.out等于或者大于Tprd/2-C*Tprd+PSHmax。其中,C的值可以根据实际的硬件电路情况预设,取值范围为0-1,比如,其取值可以是0.1。
举例来说,当PID.out值小于PSHmax(即最大移相角)时,采用脉冲相位调制控制策略;当PID.out值大于PSHmax时,采用脉冲宽度调制控制策略;当PID.out=Tprd/2-C*Tprd+PSHmax,采用脉冲密度调制控制策略。
可以看出,对于移相全桥变换器来说,当实时闭环控制输出值不同时,在脉冲相位调制控制策略、脉冲宽度调制控制策略、脉冲密度调制控制策略这三种控制策略中平滑切换,当负载变化时,能够保持输出稳定的电压。比如:先通过脉冲相位调整控制策略调节输出电压,当输出电压需要进一步降低时,再利用脉冲宽度调制控制策略降低输出电压;最后,当需要关波时,利用脉冲密度调制控制策略实现关波;整个控制过程中输出电压平滑的变化。
作为一种可选的实施方式,如果实时控制策略为脉冲相位调制控制策略,此时步骤240包括:调节移相全桥变换器中两个桥臂间的脉冲波形的移相角;将开关管的占空比调制为第三预设占空比,并将开关管的开关频率调制为预设频率。
其中,第三预设占空比可以是开关管的最大占空比,比如:50%。预设频率,可以是开关管的最大开关频率,也可以是其他频率。在实际应用中,可以根据具体的应用场景(比如结合波形实际情况)确定第三预设占空比和预设频率,在本申请实施例中不作限定。
在脉冲相位调制控制策略中,通过调整移相全桥变换器中两个桥臂间的脉冲波形的移相角来改变输出增益,移相角越大,输出增益越小。
在调制移相角时,可以逐渐增大移相角,当移相角增大时,PID.out也会对应变化,控制器会相应的改变开关管的控制策略,因此,移相角的调制可以无需设定移相角调制的目标值。
作为一种可选的实施方式,如果实时控制策略为脉冲相位宽度调制控制策略,此时步骤240包括:将移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为第三预设值;根据第三预设值和实时闭环控制输出值调制开关管的占空比。
其中,第三预设值为前述实施例中介绍的PSHmax(即最大移相角)。占空比的调制方式可以为:将占空比调制为Tprd/2-(PID.out-PSHmax)。
在进行占空比的调制时,与隔离型谐振直流变换器类似,当占空比小于最小占空比时,移相全桥变换器的硬件电路可能无法导通,因此,Tprd/2-(PID.out-PSHmax)需要大于最小占空比。
在脉冲宽度调制控制策略中,通过调节脉冲输出的占空比实现输出电压的调节,当移相角固定在最大移相角时,占空比越小,输出电压越小。占空比的调节范围可以是:10%~50%。
作为一种可选的实施方式,如果实时控制策略为脉冲密度调制控制策略,此时步骤240包括:将移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为第三预设值,以及将开关管的占空比调制为第四预设占空比;或者,将开关管的占空比调制为0。
其中,第四预设占空比可以是前述实施例中的最小占空比。
如果Tprd/2-(PID.out-PSHmax)等于(C*Tprd),可以将移相角固定为PSHmax,占空比固定为第四预设占空比。如果Tprd/2-(PID.out- PSHmax)小于(C*Tprd),将占空比调制为0,即直接关波,直接关波会导致输出电压持续下降,控制器继续对实时闭环控制输出值进行判断,以切换控制策略。
在脉冲密度调制控制策略中,可以调节移相角和固定占空比,即非关波处理;也可以将占空比调制为0,即关波处理。其调制方式是改变脉冲输出的密度,也可以理解为改变脉冲输出的次数,当开关频率固定,且占空比固定时,脉冲输出的次数越少,输出电压越小,进而实现输出电压的控制。
因此,在本申请实施例中,除了前述的混合控制策略,还可以采用脉冲相位调制+脉冲宽度调制+脉冲密度调制的混合控制策略,实现稳压输出。
获取模块310,用于获取所述变换器的实时输入电压和实时输出电压;控制模块320,用于:根据所述实时输入电压、所述实时输出电压和预设的闭环控制算法确定所述变换器对应的实时闭环控制输出值;根据所述实时闭环控制输出值从至少三个预设的控制策略中确定出所述开关管的实时控制策略;根据所述实时控制策略对所述开关管进行控制。
在本申请实施例中,控制模块320具体用于:若所述实时闭环控制输出值大于或者等于第一预设值,确定所述实时控制策略为所述脉冲频率调制控制策略;若所述实时闭环控制输出值小于所述第一预设值且大于第二预设值,确定所述实时控制策略为所述脉冲宽度调制控制策略;所述第一预设值大于所述第二预设值;若所述实时闭环控制输出值小于或者等于所述第二预设值,确定所述实时控制策略为所述脉冲密度调制控制策略。
在本申请实施例中,控制模块320具体还用于:将所述开关管的开关频率调制为实时闭环控制输出值的倒数;将所述开关管的占空比调制为第一预设占空比。
在本申请实施例中,控制模块320具体还用于:将所述开关管的开关频率调制为第一预设值的倒数;根据所述实时闭环控制输出值和所述第一预设值调制所述开关管的占空比。
在本申请实施例中,控制模块320具体还用于:若所述实时闭环控制输出值等于所述第二预设值,将所述开关管的开关频率调制为第一预设值的倒数;将所述开关管的占空比调制为第二预设占空比;若所述实时闭环控制输出值小于所述第二预设值,将所述开关管的占空比调制为0。
在本申请实施例中,控制模块320具体还用于:若所述实时闭环控制输出值小于第三预设值,确定所述实时控制策略为所述脉冲相位调制控制策略;若所述实时闭环控制输出值大于所述第三预设值,确定所述实时控制策略为所述脉冲宽度调制控制策略;若所述实时闭环控制输出值与所述第三预设值之间满足预设关系,确定所述实时控制策略为所述脉冲密度调制控制策略。
在本申请实施例中,控制模块320具体还用于:调节所述移相全桥变换器中两个桥臂间的脉冲波形的移相角;将所述开关管的占空比调制为第三预设占空比,并将所述开关管的开关频率调制为预设频率。
在本申请实施例中,控制模块320具体还用于:将所述移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为所述第三预设值;根据所述第三预设值和所述实时闭环控制输出值调制所述开关管的占空比。
在本申请实施例中,控制模块320具体还用于:将所述移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为所述第三预设值,以及将所述开关管的占空比调制为第四预设占空比;或者,将所述开关管的占空比调制为0。
在本申请实施例中,控制模块320具体还用于:根据所述实时控制策略对所述开关管的参数进行调制;所述开关管的参数包括:开关频率、占空比和移相角中的至少一个参数。
变换器的控制装置300,与前述实施例中的变换器的控制方法对应,其各个模块与变换器的控制方法的各个步骤一一对应,因此,各个模块的实施方式参照前述实施例中各个步骤的实施方式,在此不再重复介绍。
基于同一发明构思,本申请实施例还提供一种可读存储介质,该可读存储介质上存储有计算机程序,所述计算机程序被计算机运行时,执 行前述实施例中所述的变换器的控制方法。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (23)

  1. 一种变换器的控制方法,其特征在于,变换器包括开关管,所述控制方法包括:
    获取所述变换器的实时输入电压和实时输出电压;
    根据所述实时输入电压、所述实时输出电压和预设的闭环控制算法确定所述变换器对应的实时闭环控制输出值;
    根据所述实时闭环控制输出值从至少三个预设的控制策略中确定出所述开关管的实时控制策略;
    根据所述实时控制策略对所述开关管进行控制。
  2. 根据权利要求1所述的控制方法,其特征在于,所述至少三个预设的控制策略包括:脉冲频率调制控制策略、脉冲宽度调制控制策略、脉冲密度调制控制策略以及脉冲相位调制控制策略中的至少三个。
  3. 根据权利要求2所述的控制方法,其特征在于,所述变换器为隔离型谐振直流变换器,所述根据所述实时闭环控制输出值从至少三个预设的控制策略中确定出所述开关管的实时控制策略,包括:
    若所述实时闭环控制输出值大于或者等于第一预设值,确定所述实时控制策略为所述脉冲频率调制控制策略;
    若所述实时闭环控制输出值小于所述第一预设值且大于第二预设值,确定所述实时控制策略为所述脉冲宽度调制控制策略;所述第一预设值大于所述第二预设值;
    若所述实时闭环控制输出值小于或者等于所述第二预设值,确定所述实时控制策略为所述脉冲密度调制控制策略。
  4. 根据权利要求3所述的控制方法,其特征在于,所述实时控制策略为所述脉冲频率调制控制策略,所述根据所述实时控制策略对所述开关管 进行控制,包括:
    将所述开关管的开关频率调制为实时闭环控制输出值的倒数;
    将所述开关管的占空比调制为第一预设占空比。
  5. 根据权利要求3所述的控制方法,其特征在于,所述实时控制策略为所述脉冲宽度调制控制策略,所述根据所述实时控制策略对所述开关管进行控制,包括:
    将所述开关管的开关频率调制为第一预设值的倒数;
    根据所述实时闭环控制输出值和所述第一预设值调制所述开关管的占空比。
  6. 根据权利要求3所述的控制方法,其特征在于,所述实时控制策略为所述脉冲密度调制控制策略;所述根据所述实时控制策略对所述开关管进行控制,包括:
    若所述实时闭环控制输出值等于所述第二预设值,将所述开关管的开关频率调制为第一预设值的倒数;将所述开关管的占空比调制为第二预设占空比;
    若所述实时闭环控制输出值小于所述第二预设值,将所述开关管的占空比调制为0。
  7. 根据权利要求2所述的控制方法,其特征在于,所述变换器为移相全桥变换器,所述根据所述实时闭环控制输出值从至少三个预设的控制策略中确定出所述变换器的开关管的实时控制策略,包括:
    若所述实时闭环控制输出值小于第三预设值,确定所述实时控制策略为所述脉冲相位调制控制策略;
    若所述实时闭环控制输出值大于所述第三预设值,确定所述实时控制策略为所述脉冲宽度调制控制策略;
    若所述实时闭环控制输出值与所述第三预设值之间满足预设关系,确 定所述实时控制策略为所述脉冲密度调制控制策略。
  8. 根据权利要求7所述的控制方法,其特征在于,所述实时控制策略为所述脉冲相位调制控制策略,所述根据所述实时控制策略对所述开关管进行控制,包括:
    调节所述移相全桥变换器中两个桥臂间的脉冲波形的移相角;
    将所述开关管的占空比调制为第三预设占空比,并将所述开关管的开关频率调制为预设频率。
  9. 根据权利要求7所述的控制方法,其特征在于,所述实时控制策略为所述脉冲宽度调制控制策略,所述根据所述实时控制策略对所述开关管进行控制,包括:
    将所述移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为所述第三预设值;
    根据所述第三预设值和所述实时闭环控制输出值调制所述开关管的占空比。
  10. 根据权利要求7所述的控制方法,其特征在于,所述实时控制策略为所述脉冲密度调制控制策略,所述根据所述实时控制策略对所述开关管进行控制,包括:
    将所述移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为所述第三预设值,以及将所述开关管的占空比调制为第四预设占空比;或者,
    将所述开关管的占空比调制为0。
  11. 根据权利要求1所述的控制方法,其特征在于,所述根据所述实时控制策略对所述开关管进行控制,包括:
    根据所述实时控制策略对所述开关管的参数进行调制;所述开关管的参数包括:开关频率、占空比和移相角中的至少一个参数。
  12. 一种变换器的控制装置,其特征在于,变换器包括开关管,所述控 制装置包括:
    获取模块,用于获取所述变换器的实时输入电压和实时输出电压;
    控制模块,用于:
    根据所述实时输入电压、所述实时输出电压和预设的闭环控制算法确定所述变换器对应的实时闭环控制输出值;根据所述实时闭环控制输出值从至少三个预设的控制策略中确定出所述开关管的实时控制策略;根据所述实时控制策略对所述开关管进行控制。
  13. 根据权利要求11所述的控制装置,其特征在于,所述至少三个预设的控制策略包括:脉冲频率调制控制策略、脉冲宽度调制控制策略、脉冲密度调制控制策略以及脉冲相位调制控制策略中的至少三个。
  14. 根据权利要求13所述的控制装置,其特征在于,所述变换器为隔离型谐振直流变换器,所述控制模块具体用于:
    若所述实时闭环控制输出值大于或者等于第一预设值,确定所述实时控制策略为所述脉冲频率调制控制策略;
    若所述实时闭环控制输出值小于所述第一预设值且大于第二预设值,确定所述实时控制策略为所述脉冲宽度调制控制策略;所述第一预设值大于所述第二预设值;
    若所述实时闭环控制输出值小于或者等于所述第二预设值,确定所述实时控制策略为所述脉冲密度调制控制策略。
  15. 根据权利要求14所述的控制装置,其特征在于,所述实时控制策略为所述脉冲频率调制控制策略,所述控制模块具体用于:
    将所述开关管的开关频率调制为实时闭环控制输出值的倒数;
    将所述开关管的占空比调制为第一预设占空比。
  16. 根据权利要求14所述的控制装置,其特征在于,所述实时控制策略为所述脉冲宽度调制控制策略,所述控制模块具体用于:
    将所述开关管的开关频率调制为第一预设值的倒数;
    根据所述实时闭环控制输出值和所述第一预设值调制所述开关管的占空比。
  17. 根据权利要求14所述的控制装置,其特征在于,所述实时控制策略为所述脉冲密度调制控制策略;所述控制模块具体用于:
    若所述实时闭环控制输出值等于所述第二预设值,将所述开关管的开关频率调制为第一预设值的倒数;将所述开关管的占空比调制为第二预设占空比;
    若所述实时闭环控制输出值小于所述第二预设值,将所述开关管的占空比调制为0。
  18. 根据权利要求13所述的控制装置,其特征在于,所述变换器为移相全桥变换器,所述控制模块具体用于:
    若所述实时闭环控制输出值小于第三预设值,确定所述实时控制策略为所述脉冲相位调制控制策略;
    若所述实时闭环控制输出值大于所述第三预设值,确定所述实时控制策略为所述脉冲宽度调制控制策略;
    若所述实时闭环控制输出值与所述第三预设值之间满足预设关系,确定所述实时控制策略为所述脉冲密度调制控制策略。
  19. 根据权利要求18所述的控制装置,其特征在于,所述实时控制策略为所述脉冲相位调制控制策略,所述控制模块具体用于:
    调节所述移相全桥变换器中两个桥臂间的脉冲波形的移相角;
    将所述开关管的占空比调制为第三预设占空比,并将所述开关管的开关频率调制为预设频率。
  20. 根据权利要求18所述的控制装置,其特征在于,所述实时控制策略为所述脉冲宽度调制控制策略,所述控制模块具体用于:
    将所述移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为所述第三预设值;
    根据所述第三预设值和所述实时闭环控制输出值调制所述开关管的占空比。
  21. 根据权利要求18所述的控制装置,其特征在于,所述实时控制策略为所述脉冲密度调制控制策略,所述控制模块具体用于:
    将所述移相全桥变换器中两个桥臂间的脉冲波形的移相角调节为所述第三预设值,以及将所述开关管的占空比调制为第四预设占空比;或者,
    将所述开关管的占空比调制为0。
  22. 根据权利要求12所述的控制装置,其特征在于,所述控制模块具体用于:
    根据所述实时控制策略对所述开关管的参数进行调制;所述开关管的参数包括:开关频率、占空比和移相角中的至少一个参数。
  23. 一种可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序,所述计算机程序被计算机运行时,执行如权利要求1-10任一项所述的变换器的控制方法。
PCT/CN2021/089402 2021-04-23 2021-04-23 变换器的控制方法及装置、可读存储介质 WO2022222147A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180063706.0A CN116250171A (zh) 2021-04-23 2021-04-23 变换器的控制方法及装置、可读存储介质
EP21904632.3A EP4102708A4 (en) 2021-04-23 2021-04-23 CONVERTER CONTROL METHOD AND APPARATUS, AND COMPUTER READABLE STORAGE MEDIA
PCT/CN2021/089402 WO2022222147A1 (zh) 2021-04-23 2021-04-23 变换器的控制方法及装置、可读存储介质
US17/856,453 US11695317B2 (en) 2021-04-23 2022-07-01 Converter control method, converter control apparatus, and readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/089402 WO2022222147A1 (zh) 2021-04-23 2021-04-23 变换器的控制方法及装置、可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/856,453 Continuation US11695317B2 (en) 2021-04-23 2022-07-01 Converter control method, converter control apparatus, and readable storage medium

Publications (1)

Publication Number Publication Date
WO2022222147A1 true WO2022222147A1 (zh) 2022-10-27

Family

ID=83694569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089402 WO2022222147A1 (zh) 2021-04-23 2021-04-23 变换器的控制方法及装置、可读存储介质

Country Status (4)

Country Link
US (1) US11695317B2 (zh)
EP (1) EP4102708A4 (zh)
CN (1) CN116250171A (zh)
WO (1) WO2022222147A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826796A (zh) * 2009-03-02 2010-09-08 昂宝电子(上海)有限公司 利用多模控制的准谐振***和方法
CN103023330A (zh) * 2012-12-18 2013-04-03 深圳市明微电子股份有限公司 一种开关电源及其自适应多模式控制电路
US20130093407A1 (en) * 2011-10-12 2013-04-18 Electronics And Telecommunications Research Institute Dc-dc converter
CN104426364A (zh) * 2013-08-27 2015-03-18 英特希尔美国公司 配合具切换模式的电源供应器使用的pwm/pfm控制器
CN106130346A (zh) * 2015-05-06 2016-11-16 三星电子株式会社 用于电力管理的电压转换器
CN106358354A (zh) * 2016-11-15 2017-01-25 上海联影医疗科技有限公司 X射线高压发生器、谐振变换器的控制电路和控制方法
CN112087140A (zh) * 2020-07-31 2020-12-15 西安电子科技大学 一种多模式自动切换的两级谐振dc-dc转换器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957651B2 (en) * 2010-12-06 2015-02-17 Microchip Technology Incorporated User-configurable, efficiency-optimizing, power/energy conversion switch-mode power supply with a serial communications interface
GB2499220B (en) * 2012-02-08 2018-12-12 Radiant Res Limited A power control system for an illumination system
US9231463B2 (en) * 2012-08-06 2016-01-05 Peter Oaklander Noise resistant regulator including an encoded control signal
TWI470396B (zh) * 2013-06-26 2015-01-21 Ind Tech Res Inst 功率點追蹤方法與裝置
US9735661B2 (en) * 2014-08-22 2017-08-15 Infineon Technologies Ag Mixed-mode power factor correction
US9843257B2 (en) * 2016-02-05 2017-12-12 Infineon Technologies Austria Ag Set point independent regulation of a switched mode power converter
US9819191B1 (en) * 2016-11-15 2017-11-14 Infineon Technologies Ag Maximum power point tracking for low power energy harvesting
US10375776B2 (en) * 2016-11-30 2019-08-06 Infineon Technologies Ag Modulated quasi-resonant peak-current-mode control
US10693454B2 (en) * 2018-05-24 2020-06-23 Infineon Technologies Austria Ag Signals for the control of power devices
US10530352B1 (en) * 2018-09-27 2020-01-07 Infineon Technologies Austria Ag Power transition filtering with pulse modulated control
US12034376B2 (en) * 2019-10-11 2024-07-09 Virginia Tech Intellectual Properties, Inc. Hybrid modulation controlled DC-to-AC converters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826796A (zh) * 2009-03-02 2010-09-08 昂宝电子(上海)有限公司 利用多模控制的准谐振***和方法
US20130093407A1 (en) * 2011-10-12 2013-04-18 Electronics And Telecommunications Research Institute Dc-dc converter
CN103023330A (zh) * 2012-12-18 2013-04-03 深圳市明微电子股份有限公司 一种开关电源及其自适应多模式控制电路
CN104426364A (zh) * 2013-08-27 2015-03-18 英特希尔美国公司 配合具切换模式的电源供应器使用的pwm/pfm控制器
CN106130346A (zh) * 2015-05-06 2016-11-16 三星电子株式会社 用于电力管理的电压转换器
CN106358354A (zh) * 2016-11-15 2017-01-25 上海联影医疗科技有限公司 X射线高压发生器、谐振变换器的控制电路和控制方法
CN112087140A (zh) * 2020-07-31 2020-12-15 西安电子科技大学 一种多模式自动切换的两级谐振dc-dc转换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102708A4 *

Also Published As

Publication number Publication date
US11695317B2 (en) 2023-07-04
EP4102708A1 (en) 2022-12-14
EP4102708A4 (en) 2023-01-18
CN116250171A (zh) 2023-06-09
US20220345023A1 (en) 2022-10-27
CN116250171A8 (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
CN109687719B (zh) 一种用于cllc双向隔离型dc-dc变换器的调制方法
CN110212767B (zh) 实现llc谐振变换器多步调频的数字控制方法
CN109831099B (zh) 应用于双向谐振式cllc电路的工作方向平滑切换控制方法
US10673343B1 (en) Diode clamp mixed three-level dual active full-bridge converter and control method thereof
US20200366204A1 (en) Control method for dc/dc converter and dc/dc converter
US8284570B2 (en) Method and system of syntonic circuit modulation controlling
CN101064476B (zh) 一种谐振直流/直流变换器及其控制方法
CN111293891B (zh) 双有源桥变换器基于三移相调制的负载电流前馈控制方法
JP5812040B2 (ja) 電力変換装置
CN108964476B (zh) 基于双有源桥的隔离型双向ac/dc变换器的控制方法
WO2013167002A1 (zh) 一种串联谐振变换器的控制方法
CN108880268B (zh) 电压源型半有源桥dc-dc变换器的多模式控制方法
WO2016125682A1 (ja) Dc/dcコンバータ
CN108242891A (zh) 一种隔离双向dc/dc的pwm与pfm混合控制***及方法
CN114977872A (zh) 双向双有源桥型微逆变器及功率调制模式切换方法、***
WO2022222147A1 (zh) 变换器的控制方法及装置、可读存储介质
WO2023246512A1 (zh) 多电平直流变换器和飞跨电容的电压控制方法、控制装置
CN115360892B (zh) 一种应用于dc-dc变换器的低纹波控制方法
CN116613993A (zh) 一种谐振变换器的控制方法、电路及谐振变换器
CN115995985A (zh) 一种双向对称llc谐振变换器的控制方法
CN116032143A (zh) Dc/ac电路的控制方法及dc/ac电路
CN111277145B (zh) 一种dc-dc变换电路的控制装置和控制方法
RU2339993C1 (ru) Способ управления обратимым импульсным преобразователем постоянного напряжения со стабилизацией предельного тока
CN114844382B (zh) 一种基于谐振电感电压的llc谐振变换器同步整流方法
CN113630014B (zh) 一种双有源桥钳位变换器及其控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021904632

Country of ref document: EP

Effective date: 20220623

NENP Non-entry into the national phase

Ref country code: DE