WO2022222032A1 - 监测控制、控制指示方法和装置 - Google Patents

监测控制、控制指示方法和装置 Download PDF

Info

Publication number
WO2022222032A1
WO2022222032A1 PCT/CN2021/088406 CN2021088406W WO2022222032A1 WO 2022222032 A1 WO2022222032 A1 WO 2022222032A1 CN 2021088406 W CN2021088406 W CN 2021088406W WO 2022222032 A1 WO2022222032 A1 WO 2022222032A1
Authority
WO
WIPO (PCT)
Prior art keywords
duty cycle
terminal
base station
uplink
maximum
Prior art date
Application number
PCT/CN2021/088406
Other languages
English (en)
French (fr)
Inventor
郭胜祥
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/555,281 priority Critical patent/US20240196394A1/en
Priority to PCT/CN2021/088406 priority patent/WO2022222032A1/zh
Priority to CN202180001038.9A priority patent/CN115500093A/zh
Publication of WO2022222032A1 publication Critical patent/WO2022222032A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a monitoring control method, a control instruction method, a monitoring control apparatus, a control indication apparatus, a communication apparatus, and a computer-readable storage medium.
  • Electromagnetic radiation from mobile terminal equipment such as mobile phones, smart watches, and computers will have an impact on human safety.
  • 5G NR New Radio
  • terminals that support high-frequency and high-power will become the mainstream in the market. It also objectively increases the risk of electromagnetic radiation of the terminal to human safety.
  • the electromagnetic radiation standard for terminal human safety is expressed internationally by the electromagnetic wave absorption ratio or the specific absorption rate SAR (Specific Absorption Rate) and the maximum allowable exposure MPE (Maximum Permissible Exposure).
  • SAR Specific Absorption Rate
  • MPE Maximum Permissible Exposure
  • the former is mainly for low frequency bands, such as below 6GHz frequency band, while the latter is mainly aimed at the millimeter wave frequency band.
  • a certain power backoff based on the transmitting power or reducing the uplink duty cycle (UL Dutycycle) transmitted by the terminal is usually used to Meet the requirements to meet SAR or MPE.
  • the terminal can report the maximum uplink duty cycle capability information (Maximum Dutycycle Capability), and the base station can adjust the uplink and downlink configuration to ensure that the uplink duty of the terminal is not greater than the duty cycle threshold corresponding to the capability information. And the adjusted uplink and downlink configuration can be notified to the terminal, so that the terminal can directly determine the uplink duty cycle according to the uplink and downlink configuration, without monitoring the uplink duty cycle by itself.
  • Maximum Dutycycle Capability Maximum Dutycycle Capability
  • the above-mentioned base station adjusts the uplink and downlink configuration to control the uplink duty cycle of the terminal, which is mainly applicable to the case of TDD (Time Division Duplexing, time division multiplexing), and for the case of FDD (Frequency Division Duplexing, frequency division multiplexing), it will be There are certain problems.
  • the base station cannot control the duty cycle by directly adjusting the uplink and downlink configuration (such as dynamic time slot control, adjusting TDD-UL-DL-ConfigurationCommon, adjusting TDD-UL-DL-ConfigDedicated), but can only control the specific uplink. resources to control the uplink duty cycle.
  • the uplink and downlink configuration such as dynamic time slot control, adjusting TDD-UL-DL-ConfigurationCommon, adjusting TDD-UL-DL-ConfigDedicated
  • the terminal does not know when the base station has enabled this strategy of controlling the uplink duty cycle, so it needs to keep monitoring and calculating the uplink duty cycle to determine whether the uplink duty cycle exceeds the maximum uplink duty cycle capability Maximum Dutycycle Capability
  • the corresponding duty cycle threshold brings complexity and power consumption to the terminal.
  • the embodiments of the present disclosure propose a monitoring control method, a control indication method, a monitoring control apparatus, a control indication apparatus, a communication apparatus, and a computer-readable storage medium to solve the technical problems in the related art.
  • a monitoring control method which is applicable to a terminal, and the method includes:
  • the indication information is used to indicate that the base station has enabled a target control strategy, and the target control strategy is that the base station is within the target time window according to the maximum duty cycle capability information of the terminal controlling the uplink resources of the terminal;
  • a control indication method which is applicable to a base station, and the method includes:
  • the indication information is used to indicate that the base station has enabled a target control strategy
  • the target control strategy is that the base station controls the base station within the target time window according to the maximum duty cycle capability information of the terminal uplink resources of the terminal.
  • a monitoring and control apparatus which is applicable to a terminal, and the apparatus includes:
  • an indication receiving module configured to receive indication information from a base station, wherein the indication information is used to indicate that the base station has enabled a target control strategy, where the target control strategy is the base station according to the maximum duty cycle of the terminal
  • the capability information controls the uplink resources of the terminal within the target time window
  • the monitoring control module is configured to stop monitoring the uplink duty cycle.
  • a control instructing apparatus which is applicable to a base station, and the apparatus includes:
  • an indication sending module configured to send indication information to the terminal, wherein the indication information is used to instruct the base station to enable a target control strategy, where the target control strategy is the base station based on the maximum duty cycle capability of the terminal.
  • the information controls the uplink resources of the terminal within the target time window.
  • a communication apparatus including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the above-mentioned monitoring and control method.
  • a communication device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the above-mentioned control instruction method.
  • a computer-readable storage medium for storing a computer program, and when the program is executed by a processor, the steps in the above monitoring and control method are implemented.
  • a computer-readable storage medium for storing a computer program, and when the program is executed by a processor, the steps in the above-mentioned control instruction method are implemented.
  • the base station may send indication information to the terminal to inform the terminal that the target control strategy is enabled by the base station. Accordingly, the terminal can determine that the base station has enabled the target control strategy, so that the uplink duty cycle of the terminal does not exceed the duty cycle threshold corresponding to the terminal's maximum duty cycle capability information, even if the terminal monitors the uplink duty cycle, the monitored uplink duty cycle The duty cycle will not exceed the duty cycle threshold corresponding to the maximum duty cycle capability information of the terminal, so the terminal can stop monitoring (for example, stop monitoring within the target time window) the uplink duty cycle, which is conducive to saving terminal resources.
  • FIG. 1 is a schematic flowchart of a monitoring control method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of another monitoring control method according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of yet another monitoring control method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of yet another monitoring control method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of yet another monitoring control method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of yet another monitoring control method according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic flow chart of a control indication method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of another control indication method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of yet another control indication method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of yet another control indication method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic block diagram of a monitoring and control apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic block diagram of another monitoring and control apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic block diagram of yet another monitoring and control apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic block diagram of yet another monitoring and control apparatus according to an embodiment of the present disclosure.
  • Fig. 15 is a schematic block diagram of yet another monitoring and control apparatus according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic block diagram of yet another monitoring and control apparatus according to an embodiment of the present disclosure.
  • Fig. 17 is a schematic block diagram of a control indicating device according to an embodiment of the present disclosure.
  • Fig. 18 is a schematic block diagram of another control indicating device according to an embodiment of the present disclosure.
  • Fig. 19 is a schematic block diagram of yet another control and indication apparatus according to an embodiment of the present disclosure.
  • Fig. 20 is a schematic block diagram of yet another control indicating device according to an embodiment of the present disclosure.
  • Fig. 21 is a schematic block diagram of yet another control indicating device according to an embodiment of the present disclosure.
  • Fig. 22 is a schematic block diagram of an apparatus for controlling indication according to an embodiment of the present disclosure.
  • Fig. 23 is a schematic block diagram of an apparatus for monitoring and control according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than”, “higher than” or “lower than” are used herein when characterizing the relationship of magnitude. But for those skilled in the art, it can be understood that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “greater than” covers “greater than or equal to” ", and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 is a schematic flowchart of a monitoring control method according to an embodiment of the present disclosure.
  • the monitoring and control method shown in this embodiment may be applicable to a terminal, and the terminal includes but is not limited to a communication device such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the terminal may communicate with a base station as a user equipment, and the base station includes but is not limited to base stations in communication systems such as a 4G base station, a 5G base station, and a 6G base station.
  • the base station may be a base station to which the control instruction method described in any subsequent embodiment is applicable.
  • the monitoring and control method may include the following steps:
  • step S101 indication information from a base station is received, wherein the indication information is used to indicate that the base station enables a target control strategy, and the target control strategy is the base station according to the maximum duty cycle capability information of the terminal Control the uplink resources of the terminal within the target time window (also referred to as the evaluation window);
  • step S102 the monitoring of the uplink duty cycle is stopped.
  • the terminal may report at least one of the following information to the base station:
  • the base station may determine whether to enable the target control strategy based on at least one of the pieces of information.
  • the target control strategy may be enabled. Because the power headroom report of the terminal is small, it can be determined that the terminal needs less information for uplink transmission. Therefore, even if the target control strategy is enabled to control the uplink duty cycle and uplink resources are reduced, the terminal can complete the uplink transmission in a short time. .
  • the target control strategy may be enabled. Since the maximum output power of the user equipment configured by the terminal is relatively large, it can be determined that the output power used by the terminal is relatively large, which is more likely to cause electromagnetic radiation to affect the user. Therefore, the target control strategy can be enabled to control the uplink duty cycle. to reduce the impact of electromagnetic radiation on users.
  • the target control strategy may be enabled. Since the maximum allowable user power backoff of the terminal is relatively large, it can be determined that the terminal needs to perform a large degree of power backoff, so the output power of the terminal should be relatively large, which is more likely to cause electromagnetic radiation to affect the user, so the target can be enabled.
  • the control strategy controls the uplink duty cycle to be reduced to reduce the impact of electromagnetic radiation on users.
  • the base station can determine whether to enable the target control strategy based on one of the above three pieces of information, and the base station can also determine whether to enable the target control strategy based on two or three of the above three pieces of information.
  • the values of multiple pieces of information are weighted and summed, and whether to enable the target control strategy is determined according to the summation result.
  • the base station enables the target control strategy, which specifically means that the base station controls the uplink resources of the terminal within the target time window, so that the uplink duty cycle of the terminal within the target time window is smaller than that according to the terminal's uplink duty cycle.
  • the duty cycle threshold determined by the maximum duty cycle capability information.
  • the uplink resources of the base station control terminal may be uplink resources for communication in the FDD mode, or may be for the uplink resources for communication in the TDD mode.
  • uplink resources communicated in FDD mode it is possible to specifically control certain frequency domain resources (such as carriers, component carriers, bandwidth parts, etc.) on some time domain units (such as symbols, time slots, subframes, etc.) Perform uplink transmission instead of directly adjusting the uplink and downlink configuration, and will not send the uplink and downlink configuration information after enabling the target control strategy to the terminal.
  • the base station may send indication information to the terminal to inform the terminal that the target control strategy is enabled by the base station, and the base station may control the uplink resources of the terminal within the target time window to ensure that the target Within the time window, the uplink duty cycle of the terminal will not exceed the duty cycle threshold corresponding to the maximum duty cycle capability information of the terminal.
  • the base station may send indication information to the terminal to inform the terminal that the target control strategy is enabled by the base station. Accordingly, the terminal can determine that the base station has enabled the target control strategy, so that the uplink duty cycle of the terminal does not exceed the duty cycle threshold corresponding to the terminal's maximum duty cycle capability information, even if the terminal monitors the uplink duty cycle, the monitored uplink duty cycle The duty cycle will not exceed the duty cycle threshold corresponding to the maximum duty cycle capability information of the terminal, so the terminal can stop monitoring (for example, stop monitoring within the target time window) the uplink duty cycle, which is conducive to saving terminal resources.
  • the target time window may be pre-specified by the protocol, or may be configured by the base station to the terminal.
  • the target time window is a specified start point in each radio frame and lasts for a period of time, then the specified start point and duration, Both can be configured as desired, e.g. for 10ms duration.
  • FIG. 2 is a schematic flowchart of another monitoring control method according to an embodiment of the present disclosure. As shown in Figure 2, the method further includes:
  • step S201 maximum duty cycle capability information is sent to the base station.
  • the terminal may send its own maximum duty cycle capability information to the base station, and the duty cycle threshold corresponding to the maximum duty cycle capability information is the maximum uplink duty cycle allowed by the terminal. If the duty cycle exceeds this threshold, it may affect the user.
  • the base station can determine the duty cycle threshold according to the maximum duty cycle capability information, and formulate a specific target control strategy according to the determined duty cycle threshold value. the uplink resources of the terminal, so that the uplink duty cycle of the terminal within the target time window is smaller than the duty cycle threshold determined according to the maximum duty cycle capability information of the terminal.
  • the duty cycle threshold can be determined according to the default maximum duty cycle capability information, for example, according to the default maximum duty cycle capability information.
  • the duty cycle threshold determined by the duty cycle capability information may be 50%.
  • FIG. 3 is a schematic flowchart of yet another monitoring control method according to an embodiment of the present disclosure.
  • the sending the maximum duty cycle capability information to the base station includes:
  • step S301 in response to the current power level being higher than the level threshold, maximum duty cycle capability information is sent to the base station.
  • the terminal may send the maximum duty cycle capability information to the base station only when its current power level is high (eg, higher than a level threshold).
  • the terminal may use a higher output power when the current power level is high, such as PC2 (26dBm) or PC1.5 (29dBm), it is more likely to cause electromagnetic radiation to affect the user, so it can be reported to the base station.
  • the maximum duty cycle capability information is sent, so that the target control strategy can be enabled by the base station to control the uplink duty cycle of the terminal not to exceed the duty cycle threshold, thereby reducing the impact of electromagnetic radiation on the user.
  • the terminal may use a small output power, which generally does not cause electromagnetic radiation to affect the user, so it is not necessary to send the maximum duty cycle capability information to the base station.
  • the terminal can also choose to send the maximum duty cycle capability information to the base station, which can be specifically selected by the terminal according to its own needs.
  • FIG. 4 is a schematic flowchart of yet another monitoring control method according to an embodiment of the present disclosure. As shown in Figure 4, the method further includes:
  • step S401 receiving the effective time of the target control strategy from the base station
  • step S402 maintaining the current power level within the valid time
  • step S403 monitor the uplink duty ratio outside the valid time
  • step S404 in response to the monitored uplink duty cycle being greater than the duty cycle threshold value corresponding to the maximum duty cycle capability information, power backoff is performed.
  • the base station may further determine the effective time of the target control strategy, and then send the effective time to the terminal.
  • the terminal may keep the current power level within the valid time, for example, may keep the power level higher than the level threshold. Because within this effective time, the base station can ensure that the uplink duty cycle of the terminal does not exceed the duty cycle threshold by enabling the target control strategy, thereby avoiding the impact of electromagnetic radiation on the user, so even if the terminal transmits power is high, the target control of the terminal The strategy can still be implemented, so the current power level can be maintained during the valid time, which is beneficial to ensure relatively good communication quality.
  • the terminal may also stop monitoring the uplink duty cycle within the valid time, and outside the valid time, since the base station has stopped the target control strategy, the uplink duty cycle may exceed the duty cycle threshold , so the terminal continues to monitor the uplink duty cycle, and when the monitored uplink duty cycle is greater than the duty cycle threshold corresponding to the maximum duty cycle capability information, the power backoff is performed to ensure that the electromagnetic radiation of the transmitted signal will not cause damage to the user. adverse effects.
  • FIG. 5 is a schematic flowchart of yet another monitoring control method according to an embodiment of the present disclosure. As shown in Figure 5, the method further includes:
  • step S501 in response to the current power level being higher than the level threshold and not receiving the indication information, monitor the uplink duty cycle;
  • step S502 in response to the monitored uplink duty cycle being greater than the duty cycle threshold value corresponding to the maximum duty cycle capability information, power backoff is performed.
  • the base station when the current power level of the terminal is high (for example, higher than the level threshold), if no indication information from the base station is received, it may be determined that the base station does not enable the target control strategy to ensure the uplink duty cycle of the terminal It will not exceed the duty cycle threshold, so the terminal needs to monitor the uplink duty cycle independently.
  • the power backoff is performed to ensure that the transmitted signal is Electromagnetic radiation does not adversely affect users.
  • FIG. 6 is a schematic flowchart of yet another monitoring control method according to an embodiment of the present disclosure. As shown in Figure 6, the method further includes:
  • step S601 in response to the power backoff being performed, the value of the power backoff is decreased.
  • the terminal in the case where the terminal has performed power backoff (for example, the power backoff is performed according to the maximum allowable user power backoff), if the indication information is received, it is determined that the base station has enabled the target control strategy, because the terminal has performed the power backoff
  • the fallback can reduce the impact of the electromagnetic radiation of the transmitted signal on the user to a certain extent, and the base station enables the target control strategy to ensure that the electromagnetic radiation of the transmitted signal does not cause adverse effects on the user, so in this case, it is quite
  • the strategy on the base station side can already ensure that the electromagnetic radiation of the transmitted signal will not cause adverse effects on the user, so the terminal side can appropriately reduce the value of the power backoff to ensure better communication quality.
  • Fig. 7 is a schematic flow chart of a control indication method according to an embodiment of the present disclosure.
  • the control indication method shown in this embodiment may be applicable to base stations, and the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the base station may communicate with a terminal serving as user equipment, and the terminal includes but is not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal may be a terminal to which the monitoring and control method described in any of the foregoing embodiments is applicable.
  • control instruction method may include the following steps:
  • step S701 indication information is sent to the terminal, wherein the indication information is used to indicate that the base station has enabled a target control strategy, and the target control strategy is that the base station uses the maximum duty cycle capability information of the terminal to The uplink resources of the terminal are controlled within the target time window.
  • the indication information may occupy 1 bit, when the bit is 1, it indicates that the base station has enabled the target control strategy, and when the bit is 0, it indicates that the base station has enabled the target control strategy.
  • the base station may receive at least one of the following from the terminal: a power headroom report, a configured maximum user equipment output power, and a maximum allowable user power backoff.
  • the base station may determine whether to enable the target control strategy based on at least one of the pieces of information. For example, the target control policy is enabled in response to satisfying at least one of the following: the power headroom report is less than a power headroom threshold; the configured maximum user equipment output power is greater than an output power threshold; a maximum allowable user power backoff is greater than Fallback power threshold.
  • the target control strategy may be enabled. Because the power headroom report of the terminal is small, it can be determined that the terminal needs less information for uplink transmission. Therefore, even if the target control strategy is enabled to control the uplink duty cycle and uplink resources are reduced, the terminal can complete the uplink transmission in a short time. .
  • the target control strategy may be enabled. Since the maximum output power of the user equipment configured by the terminal is relatively large, it can be determined that the output power used by the terminal is relatively large, which is more likely to cause electromagnetic radiation to affect the user. Therefore, the target control strategy can be enabled to control the uplink duty cycle. to reduce the impact of electromagnetic radiation on users.
  • the target control strategy may be enabled. Since the maximum allowable user power backoff of the terminal is relatively large, it can be determined that the terminal needs to perform a large degree of power backoff, so the output power of the terminal should be relatively large, which is more likely to cause electromagnetic radiation to affect the user, so the target can be enabled.
  • the control strategy controls the uplink duty cycle to be reduced to reduce the impact of electromagnetic radiation on users.
  • the base station can determine whether to enable the target control strategy based on one of the above three pieces of information, and the base station can also determine whether to enable the target control strategy based on two or three of the above three pieces of information.
  • the values of multiple pieces of information are weighted and summed, and whether to enable the target control strategy is determined according to the summation result.
  • the base station enables the target control strategy, which specifically means that the base station controls the uplink resources of the terminal within the target time window, so that the uplink duty cycle of the terminal within the target time window is smaller than that according to the terminal's uplink duty cycle.
  • the duty cycle threshold determined by the maximum duty cycle capability information.
  • the uplink resources of the base station control terminal may be uplink resources for communication in the FDD mode, or may be for the uplink resources for communication in the TDD mode.
  • uplink resources communicated in FDD mode it is possible to specifically control certain frequency domain resources (such as carriers, component carriers, bandwidth parts, etc.) on some time domain units (such as symbols, time slots, subframes, etc.) Perform uplink transmission instead of directly adjusting the uplink and downlink configuration, and will not send the uplink and downlink configuration information after enabling the target control strategy to the terminal.
  • the base station can send indication information to the terminal to inform the terminal that the base station has enabled the target control strategy, and the base station can control the uplink resources of the terminal within the target time window to ensure that the target Within the time window, the uplink duty cycle of the terminal will not exceed the duty cycle threshold corresponding to the maximum duty cycle capability information of the terminal.
  • the base station may send indication information to the terminal to inform the terminal that the target control strategy is enabled by the base station. Accordingly, the terminal can determine that the base station has enabled the target control strategy, so that the uplink duty cycle of the terminal does not exceed the duty cycle threshold corresponding to the terminal's maximum duty cycle capability information, even if the terminal monitors the uplink duty cycle, the monitored uplink duty cycle The duty cycle will not exceed the duty cycle threshold corresponding to the maximum duty cycle capability information of the terminal, so the terminal can stop monitoring (for example, stop monitoring within the target time window) the uplink duty cycle, which is conducive to saving terminal resources.
  • the target time window may be pre-specified by the protocol, or may be configured by the base station to the terminal.
  • the target time window is a specified start point in each radio frame and lasts for a period of time, then the specified start point and duration, Both can be configured as desired, e.g. for 10ms duration.
  • FIG. 8 is a schematic flowchart of another control indication method according to an embodiment of the present disclosure. As shown in Figure 8, the method further includes:
  • step S801 the duty cycle threshold corresponding to the maximum duty cycle capability of the terminal is determined; wherein, the target control strategy is that the base station controls the uplink resources of the terminal within the target time window, so that all The uplink duty cycle of the terminal within the target time window is less than the duty cycle threshold.
  • the base station can determine the duty cycle threshold corresponding to the maximum duty cycle capability of the terminal, and then can formulate a specific target control strategy according to the determined duty cycle threshold.
  • the target control strategy can be set as the base station in the target
  • the uplink resources of the terminal are controlled within the time window, so that the uplink duty cycle of the terminal in the target time window is smaller than the duty cycle threshold determined according to the maximum duty cycle capability information of the terminal.
  • FIG. 9 is a schematic flowchart of yet another control indication method according to an embodiment of the present disclosure.
  • the determining the duty cycle threshold corresponding to the maximum duty cycle capability of the terminal includes:
  • step S901 the duty cycle threshold is determined according to the maximum duty cycle capability information from the terminal; or in response to not receiving the maximum duty cycle capability information from the terminal, according to the default maximum duty cycle capability information determines the duty cycle threshold.
  • the terminal may send its own maximum duty cycle capability information to the base station, and the duty cycle threshold corresponding to the maximum duty cycle capability information is the maximum uplink duty cycle allowed by the terminal. If the duty cycle exceeds this threshold, it may affect the user.
  • the base station when it does not receive the maximum duty cycle capability information from the terminal, if it needs to determine the target control strategy according to the duty cycle threshold value, it can determine the duty cycle threshold value according to the default maximum duty cycle capability information, for example, according to The duty cycle threshold determined by the default maximum duty cycle capability information may be 50%.
  • FIG. 10 is a schematic flowchart of yet another control indication method according to an embodiment of the present disclosure. As shown in Figure 10, the method further includes:
  • step S1001 the effective time of the target control strategy is sent to the terminal.
  • the base station may further determine the effective time of the target control strategy, and then send the effective time to the terminal.
  • the terminal may keep the current power level within the valid time, for example, may keep the power level higher than the level threshold. Because within this effective time, the base station can ensure that the uplink duty cycle of the terminal does not exceed the duty cycle threshold by enabling the target control strategy, thereby avoiding the impact of electromagnetic radiation on the user, so even if the terminal transmits power is high, the target control of the terminal The strategy can still be implemented, so the current power level can be maintained during the valid time, which is beneficial to ensure relatively good communication quality.
  • the terminal may also stop monitoring the uplink duty cycle within the valid time, and outside the valid time, since the base station has stopped the target control strategy, the uplink duty cycle may exceed the duty cycle threshold , so the terminal continues to monitor the uplink duty cycle, and when the monitored uplink duty cycle is greater than the duty cycle threshold corresponding to the maximum duty cycle capability information, the power backoff is performed to ensure that the electromagnetic radiation of the transmitted signal will not cause damage to the user. adverse effects.
  • the present disclosure also provides embodiments of the monitoring control apparatus and the control indication apparatus.
  • FIG. 11 is a schematic block diagram of a monitoring and control apparatus according to an embodiment of the present disclosure.
  • the monitoring and control device shown in this embodiment may be applicable to terminals, and the terminals include but are not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal may communicate with a base station as a user equipment, and the base station includes but is not limited to base stations in communication systems such as a 4G base station, a 5G base station, and a 6G base station.
  • the monitoring and control device may include:
  • the indication receiving module 1101 is configured to receive indication information from a base station, wherein the indication information is used to indicate that the base station has enabled a target control strategy, and the target control strategy is that the base station is based on the maximum duty cycle of the terminal. Control the uplink resources of the terminal within the target time window than the capability information;
  • the monitoring control module 1102 is configured to stop monitoring the uplink duty cycle.
  • FIG. 12 is a schematic block diagram of another monitoring and control apparatus according to an embodiment of the present disclosure. As shown in FIG. 12 , the apparatus further includes: a capability sending module 1201, configured to send maximum duty cycle capability information to the base station.
  • a capability sending module 1201 configured to send maximum duty cycle capability information to the base station.
  • the capability sending module is configured to send maximum duty cycle capability information to the base station in response to the current power level being higher than a level threshold.
  • FIG. 13 is a schematic block diagram of yet another monitoring and control apparatus according to an embodiment of the present disclosure.
  • the apparatus further includes: a time receiving module 1301, configured to receive the effective time of the target control strategy from the base station; a power maintaining module 1302, configured to maintain the effective time within the effective time the current power level; the first monitoring module 1303 is configured to monitor the uplink duty cycle outside the valid time; the first power backoff module 1304 is configured to respond to the monitored uplink duty cycle being greater than the maximum duty cycle The duty cycle threshold corresponding to the duty cycle capability information is used for power backoff.
  • FIG. 14 is a schematic block diagram of yet another monitoring and control apparatus according to an embodiment of the present disclosure.
  • the apparatus further includes: a second monitoring module 1401, configured to monitor the uplink duty cycle in response to the current power level being higher than the level threshold and not receiving the indication information; the second power level
  • the backoff module 1402 is configured to perform power backoff in response to the monitored uplink duty cycle being greater than the duty cycle threshold corresponding to the maximum duty cycle capability information.
  • Fig. 15 is a schematic block diagram of yet another monitoring and control apparatus according to an embodiment of the present disclosure. As shown in FIG. 15 , the apparatus further includes a backoff control module 1501 configured to reduce the value of the power backoff in response to having performed the power backoff.
  • a backoff control module 1501 configured to reduce the value of the power backoff in response to having performed the power backoff.
  • FIG. 16 is a schematic block diagram of yet another monitoring and control apparatus according to an embodiment of the present disclosure.
  • the apparatus further includes: an information sending module 1601 configured to send at least one of the following to the base station: a power headroom report, a configured maximum user equipment output power, and a maximum allowable user power backoff.
  • Fig. 17 is a schematic block diagram of a control indicating device according to an embodiment of the present disclosure.
  • the control indication method shown in this embodiment may be applicable to base stations, and the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the base station may communicate with a terminal serving as user equipment, and the terminal includes but is not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • control indicating device may include:
  • the instruction sending module 1701 is configured to send instruction information to the terminal, wherein the instruction information is used to instruct the base station to enable a target control strategy, where the target control strategy is the base station according to the maximum duty cycle of the terminal.
  • the capability information controls the uplink resources of the terminal within the target time window.
  • Fig. 18 is a schematic block diagram of another control indicating device according to an embodiment of the present disclosure. As shown in Figure 18, the device further includes:
  • the threshold determination module 1801 is configured to determine the duty cycle threshold corresponding to the maximum duty cycle capability of the terminal; wherein, the target control strategy is that the base station controls the uplink resources of the terminal within the target time window, so that the uplink duty cycle of the terminal within the target time window is smaller than the duty cycle threshold.
  • the threshold determination module is configured to determine the duty cycle threshold according to maximum duty cycle capability information from the terminal; or in response to not receiving the maximum duty cycle from the terminal capability information, the duty cycle threshold is determined according to the default maximum duty cycle capability information.
  • Fig. 19 is a schematic block diagram of yet another control and indication apparatus according to an embodiment of the present disclosure. As shown in Figure 19, the device further includes:
  • the time sending module 1901 is configured to send the effective time of the target control policy to the terminal.
  • Fig. 20 is a schematic block diagram of yet another control indicating device according to an embodiment of the present disclosure. As shown in Figure 20, the device further includes:
  • the information receiving module 2001 is configured to receive at least one of the following from the terminal: a power headroom report, a configured maximum user equipment output power, and a maximum allowable user power backoff.
  • Fig. 21 is a schematic block diagram of yet another control indicating device according to an embodiment of the present disclosure. As shown in Figure 21, the device further includes:
  • Policy control module 2101 configured to enable the target control policy in response to satisfying at least one of the following: the power headroom report is less than a power headroom threshold; the configured maximum user equipment output power is greater than an output power threshold; a maximum The user power backoff is allowed to be greater than the backoff power threshold.
  • Embodiments of the present disclosure also provide a communication device, including:
  • Embodiments of the present disclosure also provide a communication device, including:
  • Embodiments of the present disclosure further provide a computer-readable storage medium for storing a computer program, which, when the computer program is executed by a processor, implements the steps in the monitoring and control method described in any of the foregoing embodiments.
  • Embodiments of the present disclosure further provide a computer-readable storage medium for storing a computer program, which, when the computer program is executed by a processor, implements the steps in the control instruction method described in any of the foregoing embodiments.
  • FIG. 22 is a schematic block diagram of an apparatus 2200 for controlling indication according to an embodiment of the present disclosure.
  • the apparatus 2200 may be provided as a base station.
  • apparatus 2200 includes a processing component 2222, a wireless transmit/receive component 2224, an antenna component 2226, and a signal processing portion specific to a wireless interface, which may further include one or more processors.
  • One of the processors in the processing component 2222 may be configured to implement the control instruction method described in any of the foregoing embodiments.
  • FIG. 23 is a schematic block diagram of an apparatus 2300 for monitoring and control according to an embodiment of the present disclosure.
  • apparatus 2300 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • an apparatus 2300 may include one or more of the following components: a processing component 2302, a memory 2304, a power supply component 2306, a multimedia component 2308, an audio component 2310, an input/output (I/O) interface 2312, a sensor component 2314, and communication component 2316.
  • the processing component 2302 generally controls the overall operation of the device 2300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 2302 may include one or more processors 2320 to execute instructions to perform all or part of the steps of the monitoring and control method described above. Additionally, processing component 2302 may include one or more modules that facilitate interaction between processing component 2302 and other components. For example, processing component 2302 may include a multimedia module to facilitate interaction between multimedia component 2308 and processing component 2302.
  • Memory 2304 is configured to store various types of data to support operations at device 2300. Examples of such data include instructions for any application or method operating on the device 2300, contact data, phonebook data, messages, pictures, videos, and the like. Memory 2304 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 2306 provides power to various components of device 2300.
  • Power components 2306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 2300.
  • Multimedia component 2308 includes a screen that provides an output interface between the device 2300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 2308 includes a front-facing camera and/or a rear-facing camera. When the device 2300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 2310 is configured to output and/or input audio signals.
  • audio component 2310 includes a microphone (MIC) that is configured to receive external audio signals when device 2300 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 2304 or transmitted via communication component 2316.
  • audio component 2310 also includes a speaker for outputting audio signals.
  • the I/O interface 2312 provides an interface between the processing component 2302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume buttons, enable button, and lock button.
  • Sensor assembly 2314 includes one or more sensors for providing status assessment of various aspects of device 2300.
  • the sensor assembly 2314 can detect the open/closed state of the device 2300, the relative positioning of components, such as the display and keypad of the device 2300, and the sensor assembly 2314 can also detect a change in the position of the device 2300 or a component of the device 2300 , the presence or absence of user contact with the device 2300 , the orientation or acceleration/deceleration of the device 2300 and the temperature change of the device 2300 .
  • Sensor assembly 2314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 2314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2316 is configured to facilitate wired or wireless communication between apparatus 2300 and other devices.
  • Device 2300 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5GNR, or a combination thereof.
  • the communication component 2316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 2316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 2300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented for implementing the above monitoring control method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components are implemented for implementing the above monitoring control method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 2304 including instructions, is also provided, and the instructions can be executed by the processor 2320 of the apparatus 2300 to complete the monitoring control method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种监测控制方法,包括:接收来自基站的指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源;停止监测上行占空比。根据本公开,基站在启用了目标控制策略后,可以向终端发送指示信息,以告知终端,基站启用了目标控制策略。据此,终端可以确定基站启用了目标控制策略,使得终端的上行占空比不会超过终端的最大占空比能力信息对应的占空比阈值,即使终端监测上行占空比,监测到的上行占空比也不会超过终端的最大占空比能力信息对应的占空比阈值,因此终端可以停止监测上行占空比,有利于节约终端的资源。

Description

监测控制、控制指示方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及监测控制方法、控制指示方法、监测控制装置、控制指示装置、通信装置和计算机可读存储介质。
背景技术
手机、智能手表、电脑等移动终端设备的电磁辐射会对人体安全产生影响,特别是随着5G NR(New Radio)的即将商用,支持高频段高功率的终端将成为市场上的主流,而这也客观上增加了终端的电磁辐射对人体安全的风险。
终端的人体安全的电磁辐射标准,国际上采用电磁波吸收比值或比吸收率SAR(Specific Absorption Rate)和最大可允许的暴露量MPE(Maximum Permissible Exposure)来表示,前者主要针对低频段,如6GHz以下频段,而后者主要针对的是毫米波频段。
在相关技术中,为了降低终端发射信号对人体安全产生的影响,在单个频段时,通常采用在发射功率的基础上进行一定的功率回退或者减少终端发射的上行占空比(UL Dutycycle)来达到满足SAR或MPE的要求。
例如在高功率等级时,终端可以上报最大上行占空比能力信息(Maximum Dutycycle Capability),基站可以通过调整上下行配置,以确保终端的上行占空不大于该能力信息对应的占空比阈值,并且可以将调整后的上下行配置告知终端,从而终端可以直接根据上下行配置确定上行占空比,无需自行监测上行占空比。
上述基站通过调整上下行配置来控制终端上行占空比的方式,主要适用于TDD(Time Division Duplexing,时分复用)的情况,而对于FDD(Frequency Division Duplexing,频分复用)的情况,会存在一定的问题。
原因在于,在FDD通信场景中,在同一时刻可以在不同频段上进行通信,如果直接配置某个时域单位上没有资源,那么会导致该时域单位对应的所有频段都没有资源,这会出现问题。所以基站不能通过直接调整上下行配置的方式(例如动态时隙控制、调整TDD-UL-DL-ConfigurationCommon、调整TDD-UL-DL-ConfigDedicated) 来控制占空比,而只能通过控制具体地上行资源来控制上行占空比。
但目前终端并不知道基站何时启用了这种控制上行占空比的策略,所以需要一直保持监测和计算上行占空比,以确定上行占空比是否超出最大上行占空比能力Maximum Dutycycle Capability对应的占空比阈值,给终端带来复杂性和功耗问题。
发明内容
有鉴于此,本公开的实施例提出了监测控制方法、控制指示方法、监测控制装置、控制指示装置、通信装置和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种监测控制方法,适用于终端,所述方法包括:
接收来自基站的指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源;
停止监测上行占空比。
根据本公开实施例的第二方面,提出一种控制指示方法,适用于基站,所述方法包括:
向终端发送指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源。
根据本公开实施例的第三方面,提出一种监测控制装置,适用于终端,所述装置包括:
指示接收模块,被配置为接收来自基站的指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源;
监测控制模块,被配置为停止监测上行占空比。
根据本公开实施例的第四方面,提出一种控制指示装置,适用于基站,所述装置包括:
指示发送模块,被配置为向终端发送指示信息,其中,所述指示信息用于指示 所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源。
根据本公开实施例的第五方面,提出一种通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述监测控制方法。
根据本公开实施例的第六方面,提出一种通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述控制指示方法。
根据本公开实施例的第七方面,提出一种计算机可读存储介质,用于存储计算机程序,所述程序被处理器执行时实现上述监测控制方法中的步骤。
根据本公开实施例的第八方面,提出一种计算机可读存储介质,用于存储计算机程序,所述程序被处理器执行时实现上述控制指示方法中的步骤。
根据本公开的实施例,基站在启用了目标控制策略后,可以向终端发送指示信息,以告知终端,基站启用了目标控制策略。据此,终端可以确定基站启用了目标控制策略,使得终端的上行占空比不会超过终端的最大占空比能力信息对应的占空比阈值,即使终端监测上行占空比,监测到的上行占空比也不会超过终端的最大占空比能力信息对应的占空比阈值,因此终端可以停止监测(例如在目标时间窗内停止监测)上行占空比,有利于节约终端的资源。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种监测控制方法的示意流程图。
图2是根据本公开的实施例示出的另一种监测控制方法的示意流程图。
图3是根据本公开的实施例示出的又一种监测控制方法的示意流程图。
图4是根据本公开的实施例示出的又一种监测控制方法的示意流程图。
图5是根据本公开的实施例示出的又一种监测控制方法的示意流程图。
图6是根据本公开的实施例示出的又一种监测控制方法的示意流程图。
图7是根据本公开的实施例示出的一种控制指示方法的示意流程图。
图8是根据本公开的实施例示出的另一种控制指示方法的示意流程图。
图9是根据本公开的实施例示出的又一种控制指示方法的示意流程图。
图10是根据本公开的实施例示出的又一种控制指示方法的示意流程图。
图11是根据本公开的实施例示出的一种监测控制装置的示意框图。
图12是根据本公开的实施例示出的另一种监测控制装置的示意框图。
图13是根据本公开的实施例示出的又一种监测控制装置的示意框图。
图14是根据本公开的实施例示出的又一种监测控制装置的示意框图。
图15是根据本公开的实施例示出的又一种监测控制装置的示意框图。
图16是根据本公开的实施例示出的又一种监测控制装置的示意框图。
图17是根据本公开的实施例示出的一种控制指示装置的示意框图。
图18是根据本公开的实施例示出的另一种控制指示装置的示意框图。
图19是根据本公开的实施例示出的又一种控制指示装置的示意框图。
图20是根据本公开的实施例示出的又一种控制指示装置的示意框图。
图21是根据本公开的实施例示出的又一种控制指示装置的示意框图。
图22是根据本公开的实施例示出的一种用于控制指示的装置的示意框图。
图23是根据本公开的实施例示出的一种用于监测控制的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
图1是根据本公开的实施例示出的一种监测控制方法的示意流程图。本实施例所示的监测控制方法可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以作为用户设备与基站通信,所述基站包括但不限于4G基站、5G基站、6G基站等通信***中的基站。
在一个实施例中,所述基站可以是后续任一实施例所述的控制指示方法所适用的基站。
如图1所示,所述监测控制方法可以包括以下步骤:
在步骤S101中,接收来自基站的指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗(也可以称作评估窗口evaluation window)内控制所述终端的上行资源;
在步骤S102中,停止监测上行占空比。
在一个实施例中,终端可以向所述基站上报以下信息中的至少一项:
功率余量报告(power headroom report,PHR)、配置的最大用户设备输出功 率(The configured maximum UE output power,PCMAX)、最大允许用户功率回退(Maximum allowed UE output power reduction)。基站可以基于这些信息中的至少一项确定后是否启用目标控制策略。
例如在确定终端的功率余量报告较小(例如小于功率余量阈值)的情况下,可以启用目标控制策略。由于终端的功率余量报告较小,可以确定终端所需上行传输的信息较少,所以即使启用目标控制策略控制上行占空比降低,上行资源减少,终端也能够在较短时间内完成上行传输。
例如在配置的最大用户设备输出功率较大(例如大于输出功率阈值)的情况下,可以启用目标控制策略。由于终端的配置的最大用户设备输出功率较大告较大,可以确定终端所采用的输出功率较大,那么更有可能导致电磁辐射对用户造成影响,所以可以启用目标控制策略控制上行占空比降低,以降低电磁辐射对用户的影响。
例如在最大允许用户功率回退较大(例如大于回退功率阈值)的情况下,可以启用目标控制策略。由于终端的最大允许用户功率回退较大,可以确定终端需要进行较大程度的功率回退,那么其输出功率较大应该较大,更有可能导致电磁辐射对用户造成影响,所以可以启用目标控制策略控制上行占空比降低,以降低电磁辐射对用户的影响。
需要说明的是,基站可以根据上述三项信息中的一项来单独确定是否启用目标控制策略,基站也可以基于上述三项信息中的两项或三项综合确定是否启用目标控制策略,例如对于多项信息的值进行加权求和,根据求和结果确定是否启用目标控制策略。
在一个实施例中,基站启用目标控制策略,具体是指基站在目标时间窗内控制所述终端的上行资源,以使所述终端在所述目标时间窗内的上行占空比小于根据终端的最大占空比能力信息确定的占空比阈值。
其中,基站控制终端的上行资源,可以是针对以FDD方式通信的上行资源,也可以针对以TDD方式通信的上行资源。例如针对以FDD方式通信的上行资源进行控制,可以具体控制某些时域单位(例如符号、时隙、子帧等)上的某些频域资源(例如载波、分量载波、带宽部分等)不进行上行传输,而不是直接调整上下行配置,也不会向终端发送启用目标控制策略后的上下行配置信息。
在一个实施例中,基站在启用了目标控制策略后,可以向终端发送指示信息, 以告知终端,基站启用了目标控制策略,基站可以在目标时间窗内控制终端的上行资源,以确保在目标时间窗内,终端的上行占空比不会超过终端的最大占空比能力信息对应的占空比阈值。
根据本公开的实施例,基站在启用了目标控制策略后,可以向终端发送指示信息,以告知终端,基站启用了目标控制策略。据此,终端可以确定基站启用了目标控制策略,使得终端的上行占空比不会超过终端的最大占空比能力信息对应的占空比阈值,即使终端监测上行占空比,监测到的上行占空比也不会超过终端的最大占空比能力信息对应的占空比阈值,因此终端可以停止监测(例如在目标时间窗内停止监测)上行占空比,有利于节约终端的资源。
在一个实施例中,目标时间窗可以是协议预先规定的,也可以是基站配置给终端的,例如目标时间窗为在每个无线帧内的指定起点持续一段时长,那么指定起点和持续时长,都可以根据需要配置,例如持续10毫秒。
图2是根据本公开的实施例示出的另一种监测控制方法的示意流程图。如图2所示,所述方法还包括:
在步骤S201中,向所述基站发送最大占空比能力信息。
在一个实施例中,终端可以将自身的最大占空比能力信息发送给基站,该最大占空比能力信息对应的占空比阈值,是终端所允许的上行占空比的最大值,若上行占空比超过该阈值,就有可能对用户造成影响。
相应地,基站可以根据该最大占空比能力信息确定占空比阈值,并根据确定的占空比阈值制定具体地目标控制策略,例如可以设置目标控制策略为基站在目标时间窗内控制所述终端的上行资源,以使所述终端在所述目标时间窗内的上行占空比小于根据终端的最大占空比能力信息确定的占空比阈值。
需要说明的是,基站在需要指定目标控制策略时,没有接收到来自所述终端的最大占空比能力信息,可以根据默认最大占空比能力信息确定所述占空比阈值,例如根据默认最大占空比能力信息确定的占空比阈值可以为50%。
图3是根据本公开的实施例示出的又一种监测控制方法的示意流程图。如图3所示,所述向所述基站发送最大占空比能力信息包括:
在步骤S301中,响应于当前功率等级高于等级阈值,向所述基站发送最大占空比能力信息。
在一个实施例中,终端可以在自身当前功率等级较高(例如高于等级阈值)时,才向基站发送最大占空比能力信息。
由于终端在当前功率等级较高时,例如为PC2(26dBm)或者PC1.5(29dBm)时,终端可能采用的输出功率较大,那么更有可能导致电磁辐射对用户造成影响,所以可以向基站发送最大占空比能力信息,以便能够由基站启用目标控制策略来控制终端的上行占空比不会超过占空比阈值,从而降低电磁辐射对用户的影响。
而在终端当前功率等级较低时,例如为PC3时,终端可能采用的输出功率较小,一般不会导致电磁辐射对用户造成影响,所以可以不必向基站发送最大占空比能力信息。当然,在这种情况下,终端也可以选择向基站发送最大占空比能力信息,具体可以由终端根据自身需要选择。
图4是根据本公开的实施例示出的又一种监测控制方法的示意流程图。如图4所示,所述方法还包括:
在步骤S401中,接收所述来自所述基站的所述目标控制策略的有效时间;
在步骤S402中,在所述有效时间内保持所述当前功率等级;
在步骤S403中,在所述有效时间外监测上行占空比;
在步骤S404中,响应于监测到的上行占空比大于最大占空比能力信息对应的占空比阈值,进行功率回退。
在一个实施例中,基站在制定所述目标控制策略后,还可以确定目标控制策略的有效时间,进而将该有效时间发送给终端。
终端在接收到该有效时间后,可以在该有效时间内保持当前功率等级,例如可以保持高于等级阈值的功率等级。因为在该有效时间内,基站可以通过启用目标控制策略保证终端的上行占空比不会超过占空比阈值,进而避免电磁辐射对用户的影响,那么终端即使发射功率较高,终端的目标控制策略仍然可以实现,所以可以在该有效时间内保持当前功率等级,有利于确保相对良好的通信质量。
在一个实施例中,终端还可以在该有效时间内停止监测上行占空比,而在该有效时间外,由于基站已经停止了目标控制策略,所以上行占空比就可能超过占空比阈值,因此终端继续监测上行占空比,并当监测到的上行占空比大于最大占空比能力信息对应的占空比阈值,进行功率回退,以确保发射信号的电磁辐射不会对用户造成不 良影响。
图5是根据本公开的实施例示出的又一种监测控制方法的示意流程图。如图5所示,所述方法还包括:
在步骤S501中,响应于当前的功率等级高于等级阈值,且未接收到所述指示信息,监测上行占空比;
在步骤S502中,响应于监测到的上行占空比大于最大占空比能力信息对应的占空比阈值,进行功率回退。
在一个实施例中,在终端的当前功率等级较高(例如高于等级阈值)的情况下,如果没有接收到基站的指示信息,可以确定基站没有启用目标控制策略来确保终端的上行占空比不会超过占空比阈值,因此需要终端自主监测上行占空比,当监测到的上行占空比大于最大占空比能力信息对应的占空比阈值,进行功率回退,以确保发射信号的电磁辐射不会对用户造成不良影响。
图6是根据本公开的实施例示出的又一种监测控制方法的示意流程图。如图6所示,所述方法还包括:
在步骤S601中,响应于已进行功率回退,减少功率回退的值。
在一个实施例中,在终端已经进行功率回退(例如按照最大允许用户功率回退进行功率回退)的情况下,若接收到指示信息确定基站启用了目标控制策略,因为终端已经进行了功率回退,在一定程度上可以降低发射信号的电磁辐射对用户造成的影响,而基站启用了目标控制策略也可以确保避免发射信号的电磁辐射对用户造成不良影响,所以在这种情况下,相当于基站侧的策略已经能够确保发射信号的电磁辐射不会对用户造成不良影响,所以终端侧可以适当减少功率回退的值,以便确保较好的通信质量。
图7是根据本公开的实施例示出的一种控制指示方法的示意流程图。本实施例所示的控制指示方法可以适用于基站,所述基站包括但不限于4G基站、5G基站、6G基站等通信***中的基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。
在一个实施例中,所述终端可以是上述任一实施例所述监测控制方法所适用的终端。
如图7所示,所述控制指示方法可以包括以下步骤:
在步骤S701中,向终端发送指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源。例如该指示信息可以占1比特,该比特为1时表示基站启用了目标控制策略,该比特为0时表示基站启用了目标控制策略。
在一个实施例中,基站可以接收来自所述终端的以下至少之一:功率余量报告、配置的最大用户设备输出功率、最大允许用户功率回退。
基站可以基于这些信息中的至少一项确定后是否启用目标控制策略。例如在响应于满足一下至少一项,启用所述目标控制策略:所述功率余量报告小于功率余量阈值;所述配置的最大用户设备输出功率大于输出功率阈值;最大允许用户功率回退大于回退功率阈值。
例如在确定终端的功率余量报告较小(例如小于功率余量阈值)的情况下,可以启用目标控制策略。由于终端的功率余量报告较小,可以确定终端所需上行传输的信息较少,所以即使启用目标控制策略控制上行占空比降低,上行资源减少,终端也能够在较短时间内完成上行传输。
例如在配置的最大用户设备输出功率较大(例如大于输出功率阈值)的情况下,可以启用目标控制策略。由于终端的配置的最大用户设备输出功率较大告较大,可以确定终端所采用的输出功率较大,那么更有可能导致电磁辐射对用户造成影响,所以可以启用目标控制策略控制上行占空比降低,以降低电磁辐射对用户的影响。
例如在最大允许用户功率回退较大(例如大于回退功率阈值)的情况下,可以启用目标控制策略。由于终端的最大允许用户功率回退较大,可以确定终端需要进行较大程度的功率回退,那么其输出功率较大应该较大,更有可能导致电磁辐射对用户造成影响,所以可以启用目标控制策略控制上行占空比降低,以降低电磁辐射对用户的影响。
需要说明的是,基站可以根据上述三项信息中的一项来单独确定是否启用目标控制策略,基站也可以基于上述三项信息中的两项或三项综合确定是否启用目标控制策略,例如对于多项信息的值进行加权求和,根据求和结果确定是否启用目标控制策略。
在一个实施例中,基站启用目标控制策略,具体是指基站在目标时间窗内控制所述终端的上行资源,以使所述终端在所述目标时间窗内的上行占空比小于根据终端的最大占空比能力信息确定的占空比阈值。
其中,基站控制终端的上行资源,可以是针对以FDD方式通信的上行资源,也可以针对以TDD方式通信的上行资源。例如针对以FDD方式通信的上行资源进行控制,可以具体控制某些时域单位(例如符号、时隙、子帧等)上的某些频域资源(例如载波、分量载波、带宽部分等)不进行上行传输,而不是直接调整上下行配置,也不会向终端发送启用目标控制策略后的上下行配置信息。
在一个实施例中,基站在启用了目标控制策略后,可以向终端发送指示信息,以告知终端,基站启用了目标控制策略,基站可以在目标时间窗内控制终端的上行资源,以确保在目标时间窗内,终端的上行占空比不会超过终端的最大占空比能力信息对应的占空比阈值。
根据本公开的实施例,基站在启用了目标控制策略后,可以向终端发送指示信息,以告知终端,基站启用了目标控制策略。据此,终端可以确定基站启用了目标控制策略,使得终端的上行占空比不会超过终端的最大占空比能力信息对应的占空比阈值,即使终端监测上行占空比,监测到的上行占空比也不会超过终端的最大占空比能力信息对应的占空比阈值,因此终端可以停止监测(例如在目标时间窗内停止监测)上行占空比,有利于节约终端的资源。
在一个实施例中,目标时间窗可以是协议预先规定的,也可以是基站配置给终端的,例如目标时间窗为在每个无线帧内的指定起点持续一段时长,那么指定起点和持续时长,都可以根据需要配置,例如持续10毫秒。
图8是根据本公开的实施例示出的另一种控制指示方法的示意流程图。如图8所示,所述方法还包括:
在步骤S801中,确定所述终端的最大占空比能力信对应的占空比阈值;其中,所述目标控制策略为所述基站在目标时间窗内控制所述终端的上行资源,以使所述终端在所述目标时间窗内的上行占空比小于所述占空比阈值。
在一个实施例中,基站可以确定终端的最大占空比能力信对应的占空比阈值,进而可以根据确定的占空比阈值制定具体地目标控制策略,例如可以设置目标控制策略为基站在目标时间窗内控制所述终端的上行资源,以使所述终端在所述目标时间窗 内的上行占空比小于根据终端的最大占空比能力信息确定的占空比阈值。
图9是根据本公开的实施例示出的又一种控制指示方法的示意流程图。如图9所示,所述确定所述终端的最大占空比能力信对应的占空比阈值包括:
在步骤S901中,根据来自所述终端的最大占空比能力信息确定所述占空比阈值;或者响应于未接收到来自所述终端的最大占空比能力信息,根据默认最大占空比能力信息确定所述占空比阈值。
在一个实施例中,终端可以将自身的最大占空比能力信息发送给基站,该最大占空比能力信息对应的占空比阈值,是终端所允许的上行占空比的最大值,若上行占空比超过该阈值,就有可能对用户造成影响。
或者基站在没有接收到来自所述终端的最大占空比能力信息时,若需要根据占空比阈值确定目标控制策略,可以根据默认最大占空比能力信息确定所述占空比阈值,例如根据默认最大占空比能力信息确定的占空比阈值可以为50%。
图10是根据本公开的实施例示出的又一种控制指示方法的示意流程图。如图10所示,所述方法还包括:
在步骤S1001中,向所述终端发送所述目标控制策略的有效时间。
在一个实施例中,基站在制定所述目标控制策略后,还可以确定目标控制策略的有效时间,进而将该有效时间发送给终端。
终端在接收到该有效时间后,可以在该有效时间内保持当前功率等级,例如可以保持高于等级阈值的功率等级。因为在该有效时间内,基站可以通过启用目标控制策略保证终端的上行占空比不会超过占空比阈值,进而避免电磁辐射对用户的影响,那么终端即使发射功率较高,终端的目标控制策略仍然可以实现,所以可以在该有效时间内保持当前功率等级,有利于确保相对良好的通信质量。
在一个实施例中,终端还可以在该有效时间内停止监测上行占空比,而在该有效时间外,由于基站已经停止了目标控制策略,所以上行占空比就可能超过占空比阈值,因此终端继续监测上行占空比,并当监测到的上行占空比大于最大占空比能力信息对应的占空比阈值,进行功率回退,以确保发射信号的电磁辐射不会对用户造成不良影响。
与前述的监测控制方法和控制指示方法的实施例相对应,本公开还提供了监测 控制装置和控制指示装置的实施例。
图11是根据本公开的实施例示出的一种监测控制装置的示意框图。本实施例所示的监测控制装置可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以作为用户设备与基站通信,所述基站包括但不限于4G基站、5G基站、6G基站等通信***中的基站。
如图11所示,所述监测控制装置可以包括:
指示接收模块1101,被配置为接收来自基站的指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源;
监测控制模块1102,被配置为停止监测上行占空比。
图12是根据本公开的实施例示出的另一种监测控制装置的示意框图。如图12所示,所述装置还包括:能力发送模块1201,被配置为向所述基站发送最大占空比能力信息。
在一个实施例中,所述能力发送模块,被配置为响应于当前功率等级高于等级阈值,向所述基站发送最大占空比能力信息。
图13是根据本公开的实施例示出的又一种监测控制装置的示意框图。如图13所示,所述装置还包括:时间接收模块1301,被配置为接收来自所述基站的所述目标控制策略的有效时间;功率保持模块1302,被配置为在所述有效时间内保持所述当前功率等级;第一监测模块1303,被配置为在所述有效时间外监测上行占空比;第一功率回退模块1304,被配置为响应于监测到的上行占空比大于最大占空比能力信息对应的占空比阈值,进行功率回退。
图14是根据本公开的实施例示出的又一种监测控制装置的示意框图。如图14所示,所述装置还包括:第二监测模块1401,被配置为响应于当前的功率等级高于等级阈值,且未接收到所述指示信息,监测上行占空比;第二功率回退模块1402,被配置为响应于监测到的上行占空比大于最大占空比能力信息对应的占空比阈值,进行功率回退。
图15是根据本公开的实施例示出的又一种监测控制装置的示意框图。如图15所示,所述装置还包括:回退控制模块1501,被配置为响应于已进行功率回退,减少功率回退的值。
图16是根据本公开的实施例示出的又一种监测控制装置的示意框图。如图16所示,所述装置还包括:信息发送模块1601,被配置为向所述基站发送以下至少之一:功率余量报告、配置的最大用户设备输出功率、最大允许用户功率回退。
图17是根据本公开的实施例示出的一种控制指示装置的示意框图。本实施例所示的控制指示方法可以适用于基站,所述基站包括但不限于4G基站、5G基站、6G基站等通信***中的基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。
如图17所示,所述控制指示装置可以包括:
指示发送模块1701,被配置为向终端发送指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源。
图18是根据本公开的实施例示出的另一种控制指示装置的示意框图。如图18所示,所述装置还包括:
阈值确定模块1801,被配置为确定所述终端的最大占空比能力信对应的占空比阈值;其中,所述目标控制策略为所述基站在目标时间窗内控制所述终端的上行资源,以使所述终端在所述目标时间窗内的上行占空比小于所述占空比阈值。
在一个实施例中,所述阈值确定模块,被配置为根据来自所述终端的最大占空比能力信息确定所述占空比阈值;或者响应于未接收到来自所述终端的最大占空比能力信息,根据默认最大占空比能力信息确定所述占空比阈值。
图19是根据本公开的实施例示出的又一种控制指示装置的示意框图。如图19所示,所述装置还包括:
时间发送模块1901,被配置为向所述终端发送所述目标控制策略的有效时间。
图20是根据本公开的实施例示出的又一种控制指示装置的示意框图。如图20所示,所述装置还包括:
信息接收模块2001,被配置为接收来自所述终端的以下至少之一:功率余量报告、配置的最大用户设备输出功率、最大允许用户功率回退。
图21是根据本公开的实施例示出的又一种控制指示装置的示意框图。如图21所示,所述装置还包括:
策略控制模块2101,被配置为响应于满足一下至少一项,启用所述目标控制策略:所述功率余量报告小于功率余量阈值;所述配置的最大用户设备输出功率大于输出功率阈值;最大允许用户功率回退大于回退功率阈值。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种通信装置,包括:
处理器;
用于存储计算机程序的存储器;
其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的监测控制方法。
本公开的实施例还提出一种通信装置,包括:
处理器;
用于存储计算机程序的存储器;
其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的控制指示方法。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的监测控制方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的控制指示方法中的步骤。
如图22所示,图22是根据本公开的实施例示出的一种用于控制指示的装置2200的示意框图。装置2200可以被提供为一基站。参照图22,装置2200包括处理组件2222、无线发射/接收组件2224、天线组件2226、以及无线接口特有的信号处理部 分,处理组件2222可进一步包括一个或多个处理器。处理组件2222中的其中一个处理器可以被配置为实现上述任一实施例所述的控制指示方法。
图23是根据本公开的实施例示出的一种用于监测控制的装置2300的示意框图。例如,装置2300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图23,装置2300可以包括以下一个或多个组件:处理组件2302,存储器2304,电源组件2306,多媒体组件2308,音频组件2310,输入/输出(I/O)的接口2312,传感器组件2314,以及通信组件2316。
处理组件2302通常控制装置2300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2302可以包括一个或多个处理器2320来执行指令,以完成上述的监测控制方法的全部或部分步骤。此外,处理组件2302可以包括一个或多个模块,便于处理组件2302和其他组件之间的交互。例如,处理组件2302可以包括多媒体模块,以方便多媒体组件2308和处理组件2302之间的交互。
存储器2304被配置为存储各种类型的数据以支持在装置2300的操作。这些数据的示例包括用于在装置2300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2306为装置2300的各种组件提供电力。电源组件2306可以包括电源管理***,一个或多个电源,及其他与为装置2300生成、管理和分配电力相关联的组件。
多媒体组件2308包括在所述装置2300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2308包括一个前置摄像头和/或后置摄像头。当装置2300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄 像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件2310被配置为输出和/或输入音频信号。例如,音频组件2310包括一个麦克风(MIC),当装置2300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2304或经由通信组件2316发送。在一些实施例中,音频组件2310还包括一个扬声器,用于输出音频信号。
I/O接口2312为处理组件2302和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启用按钮和锁定按钮。
传感器组件2314包括一个或多个传感器,用于为装置2300提供各个方面的状态评估。例如,传感器组件2314可以检测到装置2300的打开/关闭状态,组件的相对定位,例如所述组件为装置2300的显示器和小键盘,传感器组件2314还可以检测装置2300或装置2300一个组件的位置改变,用户与装置2300接触的存在或不存在,装置2300方位或加速/减速和装置2300的温度变化。传感器组件2314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2316被配置为便于装置2300和其他设备之间有线或无线方式的通信。装置2300可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5GNR或它们的组合。在一个示例性实施例中,通信组件2316经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述监测控制方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2304,上述指令可由装置2300的处理器2320执行以完成上述监测控制方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (19)

  1. 一种监测控制方法,其特征在于,适用于终端,所述方法包括:
    接收来自基站的指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源;
    停止监测上行占空比。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述基站发送最大占空比能力信息。
  3. 根据权利要求2所述的方法,其特征在于,所述向所述基站发送最大占空比能力信息包括:
    响应于当前功率等级高于等级阈值,向所述基站发送最大占空比能力信息。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收来自所述基站的所述目标控制策略的有效时间;
    在所述有效时间内保持所述当前功率等级;
    在所述有效时间外监测上行占空比;
    响应于监测到的上行占空比大于最大占空比能力信息对应的占空比阈值,进行功率回退。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于当前的功率等级高于等级阈值,且未接收到所述指示信息,监测上行占空比;
    响应于监测到的上行占空比大于最大占空比能力信息对应的占空比阈值,进行功率回退。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于已进行功率回退,减少功率回退的值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    向所述基站发送以下至少之一:
    功率余量报告、配置的最大用户设备输出功率、最大允许用户功率回退。
  8. 一种控制指示方法,其特征在于,适用于基站,所述方法包括:
    向终端发送指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    确定所述终端的最大占空比能力信对应的占空比阈值;
    其中,所述目标控制策略为所述基站在目标时间窗内控制所述终端的上行资源,以使所述终端在所述目标时间窗内的上行占空比小于所述占空比阈值。
  10. 根据权利要求9所述的方法,其特征在于,所述确定所述终端的最大占空比能力信对应的占空比阈值包括:
    根据来自所述终端的最大占空比能力信息确定所述占空比阈值;
    或者响应于未接收到来自所述终端的最大占空比能力信息,根据默认最大占空比能力信息确定所述占空比阈值。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述终端发送所述目标控制策略的有效时间。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端的以下至少之一:
    功率余量报告、配置的最大用户设备输出功率、最大允许用户功率回退。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    响应于满足一下至少一项,启用所述目标控制策略:
    所述功率余量报告小于功率余量阈值;
    所述配置的最大用户设备输出功率大于输出功率阈值;
    最大允许用户功率回退大于回退功率阈值。
  14. 一种监测控制装置,其特征在于,适用于终端,所述装置包括:
    指示接收模块,被配置为接收来自基站的指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源;
    监测控制模块,被配置为停止监测上行占空比。
  15. 一种控制指示装置,其特征在于,适用于基站,所述装置包括:
    指示发送模块,被配置为向终端发送指示信息,其中,所述指示信息用于指示所述基站启用了目标控制策略,所述目标控制策略为所述基站根据所述终端的最大占空比能力信息在目标时间窗内控制所述终端的上行资源。
  16. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求1至7中任一项所述的监测控制方法。
  17. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求8至13中任一项所述的控制指示方法。
  18. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求1至7中任一项所述的监测控制方法中的步骤。
  19. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求8至13中任一项所述的控制指示方法中的步骤。
PCT/CN2021/088406 2021-04-20 2021-04-20 监测控制、控制指示方法和装置 WO2022222032A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/555,281 US20240196394A1 (en) 2021-04-20 2021-04-20 Control method and communication apparatus
PCT/CN2021/088406 WO2022222032A1 (zh) 2021-04-20 2021-04-20 监测控制、控制指示方法和装置
CN202180001038.9A CN115500093A (zh) 2021-04-20 2021-04-20 监测控制、控制指示方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/088406 WO2022222032A1 (zh) 2021-04-20 2021-04-20 监测控制、控制指示方法和装置

Publications (1)

Publication Number Publication Date
WO2022222032A1 true WO2022222032A1 (zh) 2022-10-27

Family

ID=83723669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088406 WO2022222032A1 (zh) 2021-04-20 2021-04-20 监测控制、控制指示方法和装置

Country Status (3)

Country Link
US (1) US20240196394A1 (zh)
CN (1) CN115500093A (zh)
WO (1) WO2022222032A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267345A (zh) * 2018-03-12 2019-09-20 苹果公司 网络辅助无线设备优选带宽部分配置
WO2020076965A1 (en) * 2018-10-09 2020-04-16 Qualcomm Incorporated System and method for reporting energy related to transmission
CN111279758A (zh) * 2020-01-19 2020-06-12 北京小米移动软件有限公司 上行数据传输方法、装置及计算机存储介质
CN111726135A (zh) * 2019-03-22 2020-09-29 成都华为技术有限公司 通信方法和通信设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220078824A1 (en) * 2018-12-20 2022-03-10 Beijing Xiaomi Mobile Software Co., Ltd. Method for transmitting uplink information, apparatus base station and terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267345A (zh) * 2018-03-12 2019-09-20 苹果公司 网络辅助无线设备优选带宽部分配置
WO2020076965A1 (en) * 2018-10-09 2020-04-16 Qualcomm Incorporated System and method for reporting energy related to transmission
CN111726135A (zh) * 2019-03-22 2020-09-29 成都华为技术有限公司 通信方法和通信设备
CN111279758A (zh) * 2020-01-19 2020-06-12 北京小米移动软件有限公司 上行数据传输方法、装置及计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on FR2 maximum UL duty cycle", 3GPP DRAFT; R4-1904656_DISCUSSION ON DUTY CYCLE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Xi’an, China; 20190408 - 20190412, 1 April 2019 (2019-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051714985 *

Also Published As

Publication number Publication date
US20240196394A1 (en) 2024-06-13
CN115500093A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN109314931B (zh) 调整终端上行发射功率的方法、装置及存储介质
WO2019227444A1 (zh) 控制上行发射功率的方法和装置、基站及用户设备
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
EP3771261B1 (en) Paging synchronization indication method and device, paging synchronization method, and device and base station
CN109451842B (zh) 用户设备省电方法、装置、用户设备和基站
CN107996030B (zh) 功率余量报告传输方法和装置
WO2023097525A1 (zh) 工作模式指示、确定方法和装置、通信装置和存储介质
WO2023044624A1 (zh) 一种bwp切换方法、装置及存储介质
WO2022021292A1 (zh) 随机接入方法和装置、配置指示方法和装置
US20210392578A1 (en) Timer adjustment method and device
WO2022133699A1 (zh) 功率控制方法及装置、通信设备和存储介质
WO2022205348A1 (zh) 一种发送和接收下行信息的方法、装置、设备及存储介质
US20200145877A1 (en) User equipment protection method, device, user equipment and base station
WO2022222032A1 (zh) 监测控制、控制指示方法和装置
WO2022188067A1 (zh) 一种发送、接收下行控制信道的方法、装置、设备及介质
CN111147210A (zh) 状态转换方法及装置
US20230345363A1 (en) State control method and electronic device
WO2022147730A1 (zh) 省电信号的处理方法及装置、通信设备及存储介质
CN113796110A (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2023206162A1 (zh) 一种功率控制方法、装置、设备及存储介质
WO2024020941A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2022141553A1 (zh) 一种上行链路传输方法和装置
WO2022205222A1 (zh) 上行pusch的开环功率控制方法、装置及存储介质
WO2024036446A1 (zh) 一种发送接收配置信息的方法、装置及可读存储介质
WO2024138698A1 (zh) 一种功率信息上报方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937277

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18555281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937277

Country of ref document: EP

Kind code of ref document: A1