WO2022221345A1 - Method and system for automatic power management of portable internet of things devices - Google Patents

Method and system for automatic power management of portable internet of things devices Download PDF

Info

Publication number
WO2022221345A1
WO2022221345A1 PCT/US2022/024507 US2022024507W WO2022221345A1 WO 2022221345 A1 WO2022221345 A1 WO 2022221345A1 US 2022024507 W US2022024507 W US 2022024507W WO 2022221345 A1 WO2022221345 A1 WO 2022221345A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
node
mode
tape
environment
Prior art date
Application number
PCT/US2022/024507
Other languages
French (fr)
Inventor
Hendrik VOLKERINK
Ajay Khoche
Original Assignee
Trackonomy Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trackonomy Systems, Inc. filed Critical Trackonomy Systems, Inc.
Publication of WO2022221345A1 publication Critical patent/WO2022221345A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3209Monitoring remote activity, e.g. over telephone lines or network connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3228Monitoring task completion, e.g. by use of idle timers, stop commands or wait commands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3278Power saving in modem or I/O interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/35Services specially adapted for particular environments, situations or purposes for the management of goods or merchandise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This disclosure generally relates to wireless internet of things (IOT) devices and, in particular, to battery management for wireless IOT devices.
  • IOT internet of things
  • Wireless Internet of Things (IOT) devices are configured to automatically turn on, off, and enter and exit a hibernation mode without requiring user interaction, reducing time, attention, and action required by operators to activate or deactivate wireless tracking devices.
  • the wireless IOT devices are tracking devices and may also be referred to herein as “wireless tracking devices.”
  • the wireless IoT devices are embodiments of an adhesive tape platform which includes a flexible tape form factor.
  • Wireless IOT devices may be configured to operate in a variety of different modes and switch between the different modes, based on current statuses of corresponding assets, actions the wireless IOT devices are required to perform, communications the wireless IOT devices are required to transmit or receive, current battery reserves of the wireless IOT device, events in the environment of the wireless tracking device, and numerous other factors. This enables wireless IOT devices, which may have limited battery life or may benefit from long lifespans across multiple journeys, to conserve battery when they are not in use and to automatically activate the functions and communications of the wireless IOT devices at other times when needed.
  • wireless IOT devices that have not been used e.g., have not yet been attached to assets, have not yet initiated a journey, are awaiting a next phase of a journey, and the like
  • wireless IoT devices that are packaged during manufacturing operate in a hibernation mode, before being initiated for a journey or task.
  • wireless IOT devices that are in between journeys or tasks e.g., having completed a first journey with a first asset and awaiting a second journey with the same or a different asset, operate in a hibernation mode.
  • communications and other actions may be performed on a different or less frequent basis than during an active or standard mode of operation, e.g., every hour, every fifteen minutes, or every ten minutes in the hibernation mode rather than every minute, every thirty seconds, etc. in the active or standard mode.
  • Wireless IOT devices in hibernation mode are configured to periodically scan an environment to detect a start of journey.
  • the wireless IOT device scans the environment by engaging in wireless communications using one or more wireless communication systems of the wireless IOT device or by gathering sensor data using one or more sensors of the wireless IOT device and analyzing the sensor data.
  • the data gathered or received when scanning the environment is used to determine changes in the environmental conditions of the wireless IOT device that correspond to a start of a journey, according to some embodiments.
  • wireless IOT devices Responsive to determining a start of journey or a change in environment, wireless IOT devices are configured to power on or to enter an active mode of operation.
  • wireless IOT devices determine a start of journey or change in environment by searching the environment for surrounding wireless IOT devices. Responsive to detecting that less than a threshold number of other wireless IOT devices are within a threshold distance, the wireless IOT device determines that it is no longer in a manufacturing or other storage package and turns on. In some embodiments, wireless IOT devices determine a start of journey or change in environment based on captured sensor data from, for example, a vibration sensor, accelerometer, a gyroscope sensor, temperature sensor, light sensor, an orientation sensor, a magnetometer, and the like. Responsive to detecting that an event has occurred to indicate a start of journey or change in environment (e.g. a user shaking the wireless IOT device; a change in light indicating removal from a dark box), the wireless IOT device turns on.
  • an event has occurred to indicate a start of journey or change in environment (e.g. a user shaking the wireless IOT device; a change in light indicating removal from a dark box)
  • wireless IOT devices are additionally configured to detect an end of journey and, in response, turn off or enter a hibernation mode without user interaction.
  • wireless IOT devices periodically scan an environment or analyze captured sensor data to determine an end of a journey.
  • the wireless IOT devices detecting an end of a journey comprises searching the environment for surrounding wireless IOT devices. Environments wherein large numbers of wireless IOT devices are in close proximity may occur when tracking devices are removed from assets and gathered into a container or area for reuse, recycling, recharging, and the like, according to some embodiments.
  • wireless IOT device Responsive to detecting that more than a threshold number of other wireless IOT devices are within a threshold distance, the wireless IOT device determines that it is no longer performing an active journey and turns off or enters a low power state (e.g., a hibernation mode).
  • wireless IOT devices determine an end of journey based on captured sensor data from, for example, a vibration sensor, accelerometer, gyroscope, temperature sensor, light sensor, and the like. Responsive to detecting that an event has occurred to indicate an end of journey (e.g. lack of GPS, vibration, and/or accelerometer or gyroscopic movement for more than a threshold amount of time), the wireless IOT device turns off, or re-enters hibernation mode.
  • Embodiments of the subject matter described in this specification include methods, processes, systems, apparatus, and tangible non-transitory carrier media encoded with one or more program instructions for carrying out one or more methods and processes for enabling the various functionalities of the described systems and apparatus.
  • FIG. 1A is a diagrammatic view of an asset that has been sealed for shipment using a segment of an example adhesive tape platform dispensed from a roll, according to some embodiments.
  • FIG. IB is a diagrammatic top view of a portion of the segment of the example adhesive tape platform shown in FIG. 1A, according to some embodiments.
  • FIG. 2 is a diagrammatic view of an example of an envelope carrying a segment of an example adhesive tape platform dispensed from a backing sheet, according to some embodiments.
  • FIG. 3 is a schematic view of an example segment of an adhesive tape platform, according to some embodiments.
  • FIG. 4 is a diagrammatic top view of a length of an example adhesive tape platform, according to some embodiments.
  • FIGs. 5A-5C show diagrammatic cross-sectional side views of portions of different respective adhesive tape platforms, according to some embodiments.
  • FIGs. 6A-6B are diagrammatic top views of a length of an example adhesive tape platform, according to some embodiments.
  • FIG. 6C is a diagrammatic view of a length of an example adhesive tape platform adhered to an asset, according to some embodiments.
  • FIG. 7 is a diagrammatic view of an example of a network environment supporting communications with segments of an adhesive tape platform, according to some embodiments.
  • FIG. 8 is a diagrammatic view of a hierarchical communications network, according to some embodiments.
  • FIG. 9 is a flow diagram of a method of creating a hierarchical communications network, according to some embodiments.
  • FIGs. 10A-10E are diagrammatic views of exemplary use cases for a distributed agent operating system, according to some embodiments.
  • FIG. 1 lA-11C are diagrams showing example environments of a wireless tracking device during different stages of a lifetime of the wireless tracking device, according to some embodiments.
  • FIG. 12 is an example diagram showing example environments during various stages of a wireless tracking device on an asset as it transitions between two separate journeys, according to some embodiments.
  • FIG. 13 is a flow diagram of a method for automatically turning wireless tracking devices on and off, according to some embodiments.
  • FIG. 14 shows an example embodiment of computer apparatus, according to some embodiments.
  • Wireless IOT devices are disclosed which are configured to automatically shut down or enter a hibernation mode (also referred to herein as a “low-power mode”) in response to determining that the wireless IOT device is in a condition or environment where the wireless IOT device should conserve electrical energy.
  • the wireless IOT device includes a battery, a processor, a memory or storage, and at least one wireless communication system.
  • the wireless IOT device in some embodiments, may be a wireless tracking device used to track the location and/or the conditions of an asset.
  • the wireless IOT device is associated with an IOT system that supports the operations of the wireless IOT device and tracks data from the wireless IOT device.
  • the wireless IOT devices may be referred to herein as “wireless tracking devices,” but are not limited to embodiments where the wireless IOT devices are used for tracking purposes.
  • the wireless IOT device is an adhesive tape platform or a segment thereof.
  • the adhesive tape platform includes wireless transducing components and circuitry that perform communication and/or sensing.
  • the adhesive tape platform has a flexible adhesive tape form-factor that allows it to function as both an adhesive tape for adhering to and/or sealing objects and a wireless sensing device.
  • tape node refers to an adhesive tape platform or a segment thereof that is equipped with sensor, processor, memory, energy source/harvesting mechanism, and wireless communications functionality, where the adhesive tape platform (also referred to herein as an “adhesive product” or an “adhesive tape product”) has a variety of different form factors, including a multilayer roll or a sheet that includes a plurality of divisible adhesive segments.
  • adhesive tape platform also referred to herein as an “adhesive product” or an “adhesive tape product”
  • each tape node can function, for example, as an adhesive tape, label, sticker, decal, or the like, and as a wireless communications device.
  • each tape node or wireless node can function, for example, as an adhesive tape, label, sticker, decal, or the like, and as a wireless communications device.
  • a “peripheral” tape node or wireless node also referred to as an outer node, leaf node, or terminal node, refers to a node that does not have any child nodes.
  • the terms “parcel,” “envelope,” “box,” “package,” “container,” “pallet,” “carton,” “wrapping,” and the like are used interchangeably herein to refer to a packaged item or items.
  • wireless tracking system In certain contexts, the terms “wireless tracking system,” “hierarchical communications network,” “distributed agent operating system,” and the like are used interchangeably herein to refer to a system or network of wireless nodes.
  • This specification describes a low-cost, multi-function adhesive tape platform with a form factor that unobtrusively integrates the components useful for implementing a combination of different asset tracking and management functions and also is able to perform a useful ancillary function that otherwise would have to be performed with the attendant need for additional materials, labor, and expense.
  • the adhesive tape platform is implemented as a collection of adhesive products that integrate wireless communications and sensing components within a flexible adhesive structure in a way that not only provides a cost-effective platform for interconnecting, optimizing, and protecting the components of the tracking system but also maintains the flexibility needed to function as an adhesive product that can be deployed seamlessly and unobtrusively into various asset management and tracking applications and workflows, including person and object tracking applications, and asset management workflows such as manufacturing, storage, shipping, delivery, and other logistics associated with moving products and other physical objects, including logistics, sensing, tracking, locationing, warehousing, parking, safety, construction, event detection, road management and infrastructure, security, and healthcare.
  • the adhesive tape platforms are used in various aspects of asset management, including sealing assets, transporting assets, tracking assets, monitoring the conditions of assets, inventorying assets, and verifying asset security.
  • the assets typically are transported from one location to another by truck, train, ship, or aircraft or within premises, e.g., warehouses by forklift, trolleys etc.
  • an adhesive tape platform includes a plurality of segments that can be separated from the adhesive product (e.g., by cutting, tearing, peeling, or the like) and adhesively attached to a variety of different surfaces to inconspicuously implement any of a wide variety of different wireless communications based network communications and transducing (e.g., sensing, actuating, etc.) applications.
  • applications include: event detection applications, monitoring applications, security applications, notification applications, and tracking applications, including inventory tracking, asset tracking, person tracking, animal (e.g., pet) tracking, manufactured parts tracking, and vehicle tracking.
  • each segment of an adhesive tape platform is equipped with an energy source, wireless communication functionality, transducing functionality, and processing functionality that enable the segment to perform one or more transducing functions and report the results to a remote server or other computer system directly or through a network of tapes.
  • the components of the adhesive tape platform are encapsulated within a flexible adhesive structure that protects the components from damage while maintaining the flexibility needed to function as an adhesive tape (e.g., duct tape or a label) for use in various applications and workflows.
  • example embodiments also include multiple transducers (e.g., sensing and/or actuating transducers) that extend the utility of the platform by, for example, providing supplemental information and functionality relating characteristics of the state and or environment of, for example, an article, object, vehicle, or person, overtime.
  • transducers e.g., sensing and/or actuating transducers
  • FIG. 1A shows an example asset 10 that is sealed for shipment using an example adhesive tape platform 12 that includes embedded components of a wireless transducing circuit 14 (collectively referred to herein as a “tape node”).
  • a length 13 of the adhesive tape platform 12 is dispensed from a roll 16 and affixed to the asset 10.
  • the adhesive tape platform 12 includes an adhesive side 18 and a non-adhesive side 20.
  • the adhesive tape platform 12 can be dispensed from the roll 16 in the same way as any conventional packing tape, shipping tape, or duct tape.
  • the adhesive tape platform 12 may be dispensed from the roll 16 by hand, laid across the seam where the two top flaps of the asset 10 meet, and cut to a suitable length either by hand or using a cutting instrument (e.g., scissors or an automated or manual tape dispenser).
  • a cutting instrument e.g., scissors or an automated or manual tape dispenser.
  • tapes include tapes having non -adhesive sides 20 that carry one or more coatings or layers (e.g., colored, light reflective, light absorbing, and/or light emitting coatings or layers).
  • the non-adhesive side 20 of the length 13 of the adhesive tape platform 12 includes writing or other markings that convey instructions, warnings, or other information to a person or machine (e.g., a bar code reader), or may simply be decorative and/or entertaining.
  • a person or machine e.g., a bar code reader
  • different types of adhesive tape platforms may be marked with distinctive colorations to distinguish one type of adhesive tape platform from another.
  • the length 13 of the adhesive tape platform 12 includes a two-dimensional bar code (e.g., a QR Code) 22, written instructions 24 (i.e., “Cut Here”), and an associated cut line 26 that indicates where the user should cut the adhesive tape platform 12.
  • the written instructions 24 and the cut line 26 typically are printed or otherwise marked on the top non-adhesive surface 20 of the adhesive tape platform 12 during manufacture.
  • the two-dimensional bar code 22, on the other hand, may be marked on the non-adhesive surface 20 of the adhesive tape platform 12 during the manufacture of the adhesive product 12 or, alternatively, may be marked on the non-adhesive surface 20 of the adhesive tape platform 12 as needed using, for example, a printer or other marking device.
  • the cut lines 26 typically demarcate the boundaries between adjacent segments at locations that are free of any active components of the wireless transducing circuit 14.
  • the spacing between the wireless transducing circuit components 14 and the cut lines 26 may vary depending on the intended communication, transducing and/or adhesive taping application.
  • the length of the adhesive tape platform 12 that is dispensed to seal the asset 10 corresponds to a single segment of the adhesive tape platform 12.
  • the length of the adhesive tape platform 12 needed to seal a asset or otherwise serve the adhesive function for which the adhesive tape platform 12 is being applied may include multiple segments 13 of the adhesive tape platform 12, one or more of which segments 13 may be activated upon cutting the length of the adhesive tape platform 12 from the roll 16 and/or applying the length of the adhesive tape platform to the asset 10.
  • the transducing components 14 that are embedded in one or more segments 13 of the adhesive tape platform 12 are activated when the adhesive tape platform 12 is cut along the cut line 26.
  • the adhesive tape platform 12 includes one or more embedded energy sources (e.g., thin fdm batteries, which may be printed, or conventional cell batteries, such as conventional watch style batteries, rechargeable batteries, or other energy storage device, such as a super capacitor or charge pump) that supply power to the transducing components 14 in one or more segments of the adhesive tape platform 12 in response to being separated from the adhesive tape platform 12 (e.g., along the cut line 26).
  • embedded energy sources e.g., thin fdm batteries, which may be printed, or conventional cell batteries, such as conventional watch style batteries, rechargeable batteries, or other energy storage device, such as a super capacitor or charge pump
  • each segment 13 of the adhesive tape platform 12 includes its own respective energy source including energy harvesting elements that can harvest energy from the environment.
  • each energy source is configured to only supply power to the components in its respective adhesive tape platform segment regardless of the number of contiguous segments 13 that are in a given length of the adhesive tape platform 12.
  • the energy sources in the respective segments 13 are configured to supply power to the transducing components 14 in all of the segments 13 in the given length of the adhesive tape platform 12.
  • the energy sources are connected in parallel and concurrently activated to power the transducing components 14 in all of the segments 13 at the same time.
  • the energy sources are connected in parallel and alternately activated to power the transducing components 14 in respective ones of the adhesive tape platform segments 13 at different time periods, which may or may not overlap.
  • FIG. 2 shows an example adhesive tape platform 30 that includes a set of adhesive tape platform segments 32 each of which includes a respective set of embedded wireless transducing circuit components 34, and a backing sheet 36 with a release coating that prevents the adhesive segments 32 from adhering strongly to the backing sheet 36.
  • Each adhesive tape platform segment 32 includes an adhesive side facing the backing sheet 36, and an opposing non-adhesive side 40.
  • a particular segment 32’ of the adhesive tape platform 30 has been removed from the backing sheet 36 and affixed to an envelope 44.
  • Each segment 32 of the adhesive tape platform 30 can be removed from the backing sheet 36 in the same way that adhesive labels can be removed from a conventional sheet of adhesive labels (e.g., by manually peeling a segment 32 from the backing sheet 36).
  • the non adhesive side 40’ of the segment 32’ may include any type of writing, markings, decorative designs, or other ornamentation.
  • the non-adhesive side 40’ of the segment 32’ includes writing or other markings that correspond to a destination address for the envelope 44.
  • the envelope 44 also includes a return address 46 and, optionally, a postage stamp or mark 48.
  • segments of the adhesive tape platform 12 are deployed by a human operator.
  • the human operator may be equipped with a mobile phone or other device that allows the operator to authenticate and initialize the adhesive tape platform 12.
  • the operator can take a picture of a asset including the adhesive tape platform and any barcodes associated with the asset and, thereby, create a persistent record that links the adhesive tape platform 12 to the asset.
  • the human operator typically will send the picture to a network service and/or transmit the picture to the adhesive tape platform 12 for storage in a memory component of the adhesive tape platform 12.
  • the wireless transducing circuit components 34 that are embedded in a segment 32 of the adhesive tape platform 12 are activated when the segment 32 is removed from the backing sheet 32.
  • each segment 32 includes an embedded capacitive sensing system that can sense a change in capacitance when the segment 32 is removed from the backing sheet 36.
  • a segment 32 of the adhesive tape platform 30 includes one or more embedded energy sources (e.g., thin fdm batteries, common disk-shaped cell batteries, or rechargeable batteries or other energy storage devices, such as a super capacitor or charge pump) that can be configured to supply power to the wireless transducing circuit components 34 in the segment 32 in response to the detection of a change in capacitance between the segment 32 and the backing sheet 36 as a result of removing the segment 32 from the backing sheet 36.
  • embedded energy sources e.g., thin fdm batteries, common disk-shaped cell batteries, or rechargeable batteries or other energy storage devices, such as a super capacitor or charge pump
  • FIG. 3 shows a block diagram of the components of an example wireless transducing circuit 70 that includes a number of communication systems 72, 74.
  • Example communication systems 72, 74 include a GPS system that includes a GPS receiver circuit 82 (e.g., a receiver integrated circuit) and a GPS antenna 84, and one or more wireless communication systems each of which includes a respective transceiver circuit 86 (e.g., a transceiver integrated circuit) and a respective antenna 88.
  • Example wireless communication systems include a cellular communication system (e.g., GSM/GPRS), a Wi-Fi communication system, an RF communication system (e.g., LoRa), a Bluetooth communication system (e.g., a Bluetooth Low Energy system), a Z-wave communication system, and a ZigBee communication system.
  • the wireless transducing circuit 70 also includes a processor 90 (e.g., a microcontroller or microprocessor), one or more energy storage devices 92 (e.g., non-rechargeable or rechargeable printed flexible battery, conventional single or multiple cell battery, and/or a super capacitor or charge pump), one or more transducers 94 (e.g., sensors and/or actuators, and, optionally, one or more energy harvesting transducer components).
  • the conventional single or multiple cell battery may be a watch style disk or button cell battery that is associated electrical connection apparatus (e.g., a metal clip) that electrically connects the electrodes of the battery to contact pads on the flexible circuit 116.
  • sensing transducers 94 include a capacitive sensor, an altimeter, a gyroscope, an accelerometer, a temperature sensor, a strain sensor, a pressure sensor, a piezoelectric sensor, a weight sensor, an optical or light sensor (e.g., a photodiode or a camera), an acoustic or sound sensor (e.g., a microphone), a smoke detector, a radioactivity sensor, a chemical sensor (e.g., an explosives detector), a biosensor (e.g., a blood glucose biosensor, odor detectors, antibody based pathogen, food, and water contaminant and toxin detectors, DNA detectors, microbial detectors, pregnancy detectors, and ozone detectors), a magnetic sensor, an electromagnetic field sensor, and a humidity sensor.
  • Examples of actuating (e.g., energy emitting) transducers 94 include light emitting components (e.g., light emitting diodes and displays), electro-acoustic transducers (e.g., audio speakers), electric motors, and thermal radiators (e.g., an electrical resistor or a thermoelectric cooler).
  • light emitting components e.g., light emitting diodes and displays
  • electro-acoustic transducers e.g., audio speakers
  • electric motors e.g., electric motors
  • thermal radiators e.g., an electrical resistor or a thermoelectric cooler
  • the wireless transducing circuit 70 includes a memory 96 for storing data, including, e.g., profile data, state data, event data, sensor data, localization data, security data, and one or more unique identifiers (ID) 98 associated with the wireless transducing circuit 70, such as a product ID, a type ID, and a media access control (MAC) ID, and control code 99.
  • ID unique identifiers
  • the memory 96 may be incorporated into one or more of the processor 90 or transducers 94, or may be a separate component that is integrated in the wireless transducing circuit 70 as shown in FIG. 3.
  • the control code typically is implemented as programmatic functions or program modules that control the operation of the wireless transducing circuit 70, including a tape node communication manager that manages the manner and timing of tape node communications, a tape node power manager that manages power consumption, and a tape node connection manager that controls whether connections with other tape nodes are secure connections or unsecure connections, and a tape node storage manager that securely manages the local data storage on the node.
  • the tape node connection manager ensures the level of security required by the end application and supports various encryption mechanisms.
  • the tape node power manager and tape communication manager work together to optimize the battery consumption for data communication. In some examples, execution of the control code by the different types of tape nodes described herein may result in the performance of similar or different functions.
  • FIG. 4 is a top view of a portion of an example flexible adhesive tape platform 100 that shows a first segment 102 and a portion of a second segment 104.
  • Each segment 102, 104 of the flexible adhesive tape platform 100 includes a respective set 106, 108 of the components of the wireless transducing circuit 70.
  • the segments 102, 104 and their respective sets of components 106, 108 typically are identical and configured in the same way. In some other embodiments, however, the segments 102, 104 and/or their respective sets of components 106, 108 are different and/or configured in different ways.
  • different sets of the segments of the flexible adhesive tape platform 100 have different sets or configurations of tracking and/or transducing components that are designed and/or optimized for different applications, or different sets of segments of the flexible adhesive tape platform may have different ornamentations (e.g., markings on the exterior surface of the platform) and/or different (e.g., alternating) lengths.
  • FIG. 4 An example method of fabricating the adhesive tape platform 100 (see FIG. 4) according to a roll-to-roll fabrication process is described in connection with FIGS. 6, 7A, and 7B of U.S. Patent No. 10,262,255, issued April 16, 2019, the entirety of which is incorporated herein by reference.
  • the instant specification describes an example system of adhesive tape platforms (also referred to herein as “tape nodes”) that can be used to implement a low-cost wireless network infrastructure for performing monitoring, tracking, and other asset management functions relating to, for example, parcels, persons, tools, equipment and other physical assets and objects.
  • the example system includes a set of three different types of tape nodes that have different respective functionalities and different respective cover markings that visually distinguish the different tape node types from one another.
  • the covers of the different tape node types are marked with different colors (e.g., white, green, and black).
  • the different tape node types are distinguishable from one another by their respective wireless communications capabilities and their respective sensing capabilities.
  • FIG. 5 A shows a cross-sectional side view of a portion of an example segment 102 of the flexible adhesive tape platform 100 that includes a respective set of the components of the wireless transducing circuit 106 corresponding to the first tape node type (i.e., white).
  • the flexible adhesive tape platform segment 102 includes an adhesive layer 112, an optional flexible substrate 110, and an optional adhesive layer 114 on the bottom surface of the flexible substrate 110. If the bottom adhesive layer 114 is present, a release liner (not shown) may be (weakly) adhered to the bottom surface of the adhesive layer 114.
  • the adhesive layer 114 includes an adhesive (e.g., an acrylic foam adhesive) that has a high bond strength that is sufficient to prevent removal of the adhesive segment 102 from a surface on which the adhesive layer 114 is adhered without destroying the physical or mechanical integrity of the adhesive segment 102 and/or one or more of its constituent components.
  • the optional flexible substrate 110 is implemented as a prefabricated adhesive tape that includes the adhesive layers 112, 114 and the optional release liner. In other examples, the adhesive layers 112, 114 are applied to the top and bottom surfaces of the flexible substrate 110 during the fabrication of the adhesive tape platform 100.
  • the adhesive layer 112 bonds the flexible substrate 110 to a bottom surface of a flexible circuit 116, that includes one or more wiring layers (not shown) that connect the processor 90, a low power wireless communication interface 81 (e.g., a Zigbee, Bluetooth® Low Energy (BLE) interface, or other low power communication interface), a timer circuit 83, transducing and/or energy harvesting component(s) 94 (if present), the memory 96, and other components in a device layer 122 to each other and to the energy storage component 92 and, thereby, enable the transducing, tracking and other functionalities of the flexible adhesive tape platform segment 102.
  • the low power wireless communication interface 81 typically includes one or more of the antennas 84, 88 and one or more of the wireless circuits 82, 86.
  • FIG. 5B shows a cross-sectional side view of a portion of an example segment 103 of the flexible adhesive tape platform 100 that includes a respective set of the components of the wireless transducing circuit 106 corresponding to the second tape node type (i.e., green).
  • the flexible adhesive tape platform segment 103 differs from the segment 102 shown in FIG. 5 A by the inclusion of a medium power communication interface 85 (e.g., a LoRa interface) in addition to the low power communications interface that is present in the first tape node type (i.e., white).
  • the medium power communication interface has longer communication range than the low power communication interface.
  • one or more other components of the flexible adhesive tape platform segment 103 differ, for example, in functionality or capacity (e.g., larger energy source).
  • FIG. 5C shows a cross-sectional side view of a portion of an example segment 105 of the flexible adhesive tape platform 100 that includes a respective set of the components of the wireless transducing circuit 106 corresponding to the third tape node type (i.e., black).
  • the flexible adhesive tape platform segment 105 includes a high power communications interface 87 (e.g., a cellular interface; e.g., GSM/GPRS) and an optional medium and/or low power communications interface 85.
  • the high power communication range provides global coverage to available infrastructure (e.g. the cellular network).
  • one or more other components of the flexible adhesive tape platform segment 105 differ, for example, in functionality or capacity (e.g., larger energy source).
  • FIGS. 5A-5C show examples in which the cover layer 128 of the flexible adhesive tape platform 100 includes one or more interfacial regions 129 positioned over one or more of the transducers 94.
  • one or more of the interfacial regions 129 have features, properties, compositions, dimensions, and/or characteristics that are designed to improve the operating performance of the platform 100 for specific applications.
  • the flexible adhesive tape platform 100 includes multiple interfacial regions 129 over respective transducers 94, which may be the same or different depending on the target applications.
  • Example interfacial regions include an opening, an optically transparent window, and/or a membrane located in the interfacial region 129 of the cover 128 that is positioned over the one or more transducers and/or energy harvesting components 94. Additional details regarding the structure and operation of example interfacial regions 129 are described in U.S. Provisional Patent Application No. 62/680716, filed June 5, 2018, PCT Patent Application No. PCT/US2018/064919, filed December 11, 2018, U.S. Patent No. 10,885,420, issued January 4, 2021, U.S. Patent No.
  • a flexible polymer layer 124 encapsulates the device layer 122 and thereby reduces the risk of damage that may result from the intrusion of contaminants and/or liquids (e.g., water) into the device layer 122.
  • the flexible polymer layer 124 also planarizes the device layer 122.
  • a flexible cover 128 is bonded to the planarizing polymer 124 by an adhesive layer (not shown).
  • the flexible cover 128 and the flexible substrate 110 may have the same or different compositions depending on the intended application.
  • one or both of the flexible cover 128 and the flexible substrate 110 include flexible fdm layers and/or paper substrates, where the film layers may have reflective surfaces or reflective surface coatings.
  • Example compositions for the flexible film layers include polymer films, such as polyester, polyimide, polyethylene terephthalate (PET), and other plastics.
  • the optional adhesive layer on the bottom surface of the flexible cover 128 and the adhesive layers 112, 114 on the top and bottom surfaces of the flexible substrate 110 typically include a pressure-sensitive adhesive (e.g., a silicon-based adhesive).
  • the adhesive layers are applied to the flexible cover 128 and the flexible substrate 110 during manufacture of the adhesive tape platform 100 (e.g., during a roll-to-roll or sheet-to-sheet fabrication process).
  • the flexible cover 128 may be implemented by a prefabricated single-sided pressure-sensitive adhesive tape and the flexible substrate 110 may be implemented by a prefabricated double-sided pressure-sensitive adhesive tape; both kinds of tape may be readily incorporated into a roll-to-roll or sheet-to-sheet fabrication process.
  • the flexible polymer layer 124 is composed of a flexible epoxy (e.g., silicone).
  • the energy storage device 92 is a flexible battery that includes a printed electrochemical cell, which includes a planar arrangement of an anode and a cathode and battery contact pads.
  • the flexible battery may include lithium-ion cells or nickel-cadmium electro chemical cells.
  • the flexible battery typically is formed by a process that includes printing or laminating the electro-chemical cells on a flexible substrate (e.g., a polymer fdm layer).
  • other components may be integrated on the same substrate as the flexible battery.
  • the low power wireless communication interface 81 and/or the processor(s) 90 may be integrated on the flexible battery substrate.
  • one or more of such components also (e.g., the flexible antennas and the flexible interconnect circuits) may be printed on the flexible battery substrate.
  • the flexible circuit 116 is formed on a flexible substrate by printing, etching, or laminating circuit patterns on the flexible substrate.
  • the flexible circuit 116 is implemented by one or more of a single-sided flex circuit, a double access or back bared flex circuit, a sculpted flex circuit, a double-sided flex circuit, a multi-layer flex circuit, a rigid flex circuit, and a polymer thick film flex circuit.
  • a single-sided flexible circuit has a single conductor layer made of, for example, a metal or conductive (e.g., metal filled) polymer on a flexible dielectric film.
  • a double access or back bared flexible circuit has a single conductor layer but is processed so as to allow access to selected features of the conductor pattern from both sides.
  • a sculpted flex circuit is formed using a multi- step etching process that produces a flex circuit that has finished copper conductors that vary in thickness along their respective lengths.
  • a multilayer flex circuit has three of more layers of conductors, where the layers typically are interconnected using plated through holes.
  • Rigid flex circuits are a hybrid construction of flex circuit consisting of rigid and flexible substrates that are laminated together into a single structure, where the layers typically are electrically interconnected via plated through holes.
  • PTF polymer thick film
  • the flexible circuit 116 is a single access flex circuit that interconnects the components of the adhesive tape platform on a single side of the flexible circuit 116.
  • the flexible circuit 116 is a double access flex circuit that includes a front-side conductive pattern that interconnects the low power communications interface 81, the timer circuit 83, the processor 90, the one or more transducers 94 (if present), and the memory 96, and allows through-hole access (not shown) to a back-side conductive pattern that is connected to the flexible battery (not shown).
  • the front-side conductive pattern of the flexible circuit 116 connects the communications circuits 82, 86 (e.g., receivers, transmitters, and transceivers) to their respective antennas 84, 88 and to the processor 90, and also connects the processor 90 to the one or more sensors 94 and the memory 96.
  • the backside conductive pattern connects the active electronics (e.g., the processor 90, the communications circuits 82, 86, and the transducers) on the front-side of the flexible circuit 116 to the electrodes of the flexible battery 116 via one or more through holes in the substrate of the flexible circuit 116.
  • the wireless transducing circuits 70 are distributed across the flexible adhesive tape platform 100 according to a specified sampling density, which is the number of wireless transducing circuits 70 for a given unit size (e.g., length or area) of the flexible adhesive tape platform 100.
  • a specified sampling density is the number of wireless transducing circuits 70 for a given unit size (e.g., length or area) of the flexible adhesive tape platform 100.
  • a set of multiple flexible adhesive tape platforms 100 are provided that include different respective sampling densities in order to seal different asset sizes with a desired number of wireless transducing circuits 70.
  • the number of wireless transducing circuits per asset size is given by the product of the sampling density specified for the adhesive tape platform and the respective size of the adhesive tape platform 100 needed to seal the asset.
  • each of one or more of the segments 270, 272 of a flexible adhesive tape platform 274 includes a respective one-time wake circuit 275 that delivers power from the respective energy source 276 to the respective wireless circuit 278 (e.g., a processor, one or more transducers, and one or more wireless communications circuits) in response to an event.
  • the wake circuit 275 is configured to transition from an off state to an on state when the voltage on the wake node 277 exceeds a threshold level, at which point the wake circuit transitions to an on state to power-on the segment 270.
  • a designated location e.g., along a designated cut-line 280.
  • a minimal amount of current flows through the resistors R1 and R2.
  • the voltage on the wake node 277 remains below the threshold turn-on level.
  • the resistance value of resistor R1 is greater than the resistance value of R2.
  • the resistance values of resistors R1 and R2 are selected based on the overall design of the adhesive product system (e.g., the target wake voltage level and a target leakage current).
  • each of one or more of the segments of an adhesive tape platform includes a respective sensor and a respective wake circuit that delivers power from the respective energy source to the respective one or more of the respective wireless circuit components 278 in response to an output of the sensor.
  • the respective sensor is a strain sensor that produces a wake signal based on a change in strain in the respective segment.
  • the strain sensor is affixed to a adhesive tape platform and configured to detect the stretching of the tracking adhesive tape platform segment as the segment is being peeled off a roll or a sheet of the adhesive tape platform.
  • the respective sensor is a capacitive sensor that produces a wake signal based on a change in capacitance in the respective segment.
  • the capacitive sensor is affixed to an adhesive tape platform and configured to detect the separation of the tracking adhesive tape platform segment from a roll or a sheet of the adhesive tape platform.
  • the respective sensor is a flex sensor that produces a wake signal based on a change in curvature in the respective segment.
  • the flex sensor is affixed to a adhesive tape platform and configured to detect bending of the tracking adhesive tape platform segment as the segment is being peeled off a roll or a sheet of the adhesive tape platform.
  • the respective sensor is a near field communications sensor that produces a wake signal based on a change in inductance in the respective segment.
  • FIG. 6B shows another example of an adhesive tape platform 294 that delivers power from the respective energy source 276 to the respective tracking circuit 278 (e.g., a processor, one or more transducers, and one or more wireless communications circuits) in response to an event.
  • the wake circuit 275 is implemented by a switch 296 that is configured to transition from an open state to a closed state when the voltage on the switch node 277 exceeds a threshold level.
  • the voltage on the switch node is below the threshold level as a result of the low current level flowing through the resistors R1 and R2.
  • the user cuts across the adhesive tape platform 294 along the designated cut-line 280, the user creates an open circuit in the loop 282, which pulls up the voltage on the switch node above the threshold level to close the switch 296 and turn on the wireless circuit 278.
  • FIG. 6C shows a diagrammatic cross-sectional front view of an example adhesive tape platform 300 and a perspective view of an example asset 302.
  • this example is configured to supply power from the energy source 302 to turn on the wireless transducing circuit 306 in response to establishing an electrical connection between two power terminals 308, 310 that are integrated into the adhesive tape platform.
  • each segment of the adhesive tape platform 300 includes a respective set of embedded tracking components, an adhesive layer 312, and an optional backing sheet 314 with a release coating that prevents the segments from adhering strongly to the backing sheet 314.
  • the power terminals 308, 310 are composed of an electrically conductive material (e.g., a metal, such as copper) that may be printed or otherwise patterned and/or deposited on the backside of the adhesive tape platform 300.
  • the adhesive tape platform can be activated by removing the backing sheet 314 and applying the exposed adhesive layer 312 to a surface that includes an electrically conductive region 316.
  • the electrically conductive region 316 is disposed on a portion of the asset 302.
  • the power terminals 308, 310 are electrically connected to any respective nodes of the wireless transducing circuit 306 that would result in the activation of the tracking circuit 306 in response to the creation of an electrical connection between the power terminals 308, 310.
  • a tape node after a tape node is turned on, it will communicate with the network service to confirm that the user/operator who is associated with the tape node is an authorized user who has authenticated himself or herself to the network service 54. In these examples, if the tape node cannot confirm that the user/operator is an authorized user, the tape node will turn itself off.
  • FIG. 7 shows an example network communications environment 400 (also referred to herein as an “IOT system,” “wireless tracking system,” and “tracking system” 400) that includes a network 402 that supports communications between one or more servers 404 executing one or more applications of a network service 408, mobile gateways 410, 412, a stationary gateway 414, and various types of tape nodes that are associated with various assets (e.g., parcels, equipment, tools, persons, and other things).
  • Each member of the IOT system 400 may be referred to as a node of the IOT system 400, including the tape nodes, other wireless IOT devices, gateways (stationary and mobile), client devices, and servers.
  • the network 402 includes one or more network communication systems and technologies, including any one or more of wide area networks, local area networks, public networks (e.g., the internet), private networks (e.g., intranets and extranets), wired networks, and wireless networks.
  • the network 402 includes communications infrastructure equipment, such as a geolocation satellite system 416 (e.g., GPS, GLONASS, and NAVSTAR), cellular communication systems (e.g., GSM/GPRS), Wi-Fi communication systems, RF communication systems (e.g., LoRa), Bluetooth communication systems (e.g., a Bluetooth Low Energy system), Z-wave communication systems, and ZigBee communication systems.
  • a geolocation satellite system 416 e.g., GPS, GLONASS, and NAVSTAR
  • cellular communication systems e.g., GSM/GPRS
  • Wi-Fi communication systems e.g., GSM/GPRS
  • RF communication systems e.g., LoRa
  • Bluetooth communication systems e.g
  • the one or more network service applications 406 leverage the above- mentioned communications technologies to create a hierarchical wireless network of tape nodes that improves asset management operations by reducing costs and improving efficiency in a wide range of processes, from asset packaging, asset transporting, asset tracking, asset condition monitoring, asset inventorying, and asset security verification.
  • Communication across the network is secured by a variety of different security mechanisms. In the case of existing infrastructure, a communication link the communication uses the infrastructure security mechanisms. In case of communications among tapes nodes, the communication is secured through a custom security mechanism.
  • tape nodes can also be configured to support block chain to protect the transmitted and stored data.
  • a set of tape nodes can be configured by the network service 408 to create hierarchical communications network.
  • the hierarchy can be defined in terms of one or more factors, including functionality (e.g., wireless transmission range or power), role (e.g., master tape node vs. peripheral tape node), or cost (e.g., a tape node equipped with a cellular transceiver vs. a peripheral tape node equipped with a Bluetooth LE transceiver).
  • Tape nodes can be assigned to different levels of a hierarchical network according to one or more of the above-mentioned factors.
  • the hierarchy can be defined in terms of communication range or power, where tape nodes with higher power or longer communication range transceivers are arranged at a higher level of the hierarchy than tape nodes with lower power or lower range transceivers.
  • the hierarchy is defined in terms of role, where, e.g., a master tape node is programmed to bridge communications between a designated group of peripheral tape nodes and a gateway node or server node.
  • the problem of finding an optimal hierarchical structure can be formulated as an optimization problem with battery capacity of nodes, power consumption in various modes of operation, desired latency, external environment, etc. and can be solved using modem optimization methods e.g. neural networks, artificial intelligence, and other machine learning computing systems that take expected and historical data to create an optimal solution and can create algorithms for modifying the system’s behavior adaptively in the field.
  • the tape nodes may be deployed by automated equipment or manually.
  • a tape node typically is separated from a roll or sheet and adhered to a asset, or other stationary or mobile object (e.g., a structural element of a warehouse, or a vehicle, such as a delivery truck) or stationary object (e.g., a structural element of a building).
  • This process activates the tape node and causes the tape node to communicate with a server 404 of the network service 408.
  • the tape node may communicate through one or more other tape nodes in the communication hierarchy.
  • the network server 404 executes the network service application 406 to programmatically configure tape nodes that are deployed in the environment 400.
  • there are multiple classes or types of tape nodes where each tape node class has a different respective set of functionalities and/or capacities.
  • the one or more network service servers 404 communicate over the network 402 with one or more gateways that are configured to send, transmit, forward, or relay messages to the network 402 and activated tape nodes that are associated with respective assets and within communication range.
  • Example gateways include mobile gateways 410, 412 and a stationary gateway 414.
  • the mobile gateways 410, 412, and the stationary gateway 414 are able to communicate with the network 402 and with designated sets or groups of tape nodes.
  • the mobile gateway 412 is a vehicle (e.g., a delivery truck or other mobile hub) that includes a wireless communications unit 416 that is configured by the network service 408 to communicate with a designated set of tape nodes, including a peripheral tape node 418 in the form of a label that is adhered to an asset 420 contained within a parcel 421 (e.g., an envelope), and is further configured to communicate with the network service 408 over the network 402.
  • the peripheral tape node 418 includes a lower power wireless communications interface of the type used in, e.g., tape node 102 (shown in FIG.
  • the wireless communications unit 416 is implemented by a tape node (e.g., one of tape node 103 or tape node 105, respectively shown in FIGS. 5B and 5C) that includes a lower power communications interface for communicating with tape nodes within range of the mobile gateway 412 and a higher power communications interface for communicating with the network 402.
  • a tape node e.g., one of tape node 103 or tape node 105, respectively shown in FIGS. 5B and 5C
  • the tape nodes 418 and 416 create a hierarchical wireless network of nodes for transmitting, forwarding, bridging, relaying, or otherwise communicating wireless messages to, between, or on behalf of the peripheral tape node 418 and the network service 408 in a power-efficient and cost- effective way.
  • the mobile gateway 410 is a mobile phone that is operated by a human operator and executes a client application 422 that is configured by the network service 408 to communicate with a designated set of tape nodes, including a master tape node 424 that is adhered to a parcel 426 (e.g., a box), and is further configured to communicate with the network service 408 over the network 402.
  • the parcel 426 contains a first parcel labeled or sealed by a tape node 428 and containing a first asset 430, and a second parcel labeled or sealed by a tape node 432 and containing a second asset 434.
  • the master tape node 424 communicates with each of the peripheral tape nodes 428, 432 and communicates with the mobile gateway 408 in accordance with a hierarchical wireless network of tape nodes.
  • each of the peripheral tape nodes 428, 432 includes a lower power wireless communications interface of the type used in, e.g., tape node 102 (shown in FIG. 5 A), and the master tape node 424 is implemented by a tape node (e.g., tape node 103, shown in FIG. 5B) that includes a lower power communications interface for communicating with the peripheral tape nodes 428, 432 contained within the parcel 426, and a higher power communications interface for communicating with the mobile gateway 410.
  • a tape node e.g., tape node 103, shown in FIG. 5B
  • the master tape node 424 is operable to relay wireless communications between the tape nodes 428, 432 contained within the parcel 426 and the mobile gateway 410, and the mobile gateway 410 is operable to relay wireless communications between the master tape node 424 and the network service 408 over the wireless network 402.
  • the master tape node 424 and the peripheral tape nodes 428 and 432 create a hierarchical wireless network of nodes for transmitting, forwarding, relaying, or otherwise communicating wireless messages to, between, or on behalf of the peripheral tape nodes 428, 432 and the network service 408 in a power-efficient and cost-effective way.
  • the stationary gateway 414 is implemented by a server executing a server application that is configured by the network service 408 to communicate with a designated set 440 of tape nodes 442, 444, 446, 448 that are adhered to respective parcels containing respective assets 450, 452, 454, 456 on a pallet 458.
  • the stationary gateway 414 is implemented by atape node (e.g., one of tape node 103 or tape node 105, respectively shown in FIGS.
  • each of the tape nodes 442-448 is a peripheral tape node and is configured by the network service 408 to communicate individually with the stationary gateway 414, which relays communications from the tape nodes 442-448 to the network service 408 through the stationary gateway 414 and over the communications network 402.
  • one of the tape nodes 442-448 at a time is configured as a master tape node that transmits, forwards, relays, or otherwise communicate wireless messages to, between, or on behalf of the other tape nodes on the pallet 458.
  • the master tape node may be determined by the tape nodes 442-448 or designated by the network service 408.
  • the tape node with the longest range or highest remaining power level is determined to be the master tape node.
  • a certain level e.g., a fixed power threshold level or a threshold level relative to the power levels of one or more of the other tape nodes
  • another one of the tape nodes assumes the role of the master tape node.
  • a master tape node 459 is adhered to the pallet 458 and is configured to perform the role of a master node for the tape nodes 442-448.
  • the tape nodes 442-448, 458 are configurable to create different hierarchical wireless networks of nodes for transmitting, forwarding, relaying, bridging, or otherwise communicating wireless messages with the network service 408 through the stationary gateway 414 and over the network 402 in a power-efficient and cost-effective way.
  • the stationary gateway 414 also is configured by the network service 408 to communicate with a designated set of tape nodes, including a master tape node 460 that is adhered to the inside of a door 462 of a shipping container 464, and is further configured to communicate with the network service 408 over the network 402.
  • the shipping container 464 contains a number of parcels labeled or sealed by respective peripheral tape nodes 466 and containing respective assets.
  • the master tape node 416 communicates with each of the peripheral tape nodes 466 and communicates with the stationary gateway 415 in accordance with a hierarchical wireless network of tape nodes.
  • each of the peripheral tape nodes 466 includes a lower power wireless communications interface of the type used in, e.g., tape node 102 (shown in FIG. 5A), and the master tape node 460 is implemented by a tape node (e.g., tape node 103, shown in FIG. 5B) that includes a lower power communications interface for communicating with the peripheral tape nodes 466 contained within the shipping container 464, and a higher power communications interface for communicating with the stationary gateway 414.
  • a tape node e.g., tape node 103, shown in FIG. 5B
  • the master tape node 460 when the doors of the shipping container 464 are closed, the master tape node 460 is operable to communicate wirelessly with the peripheral tape nodes 466 contained within the shipping container 464.
  • the master tape node 460 is configured to collect sensor data from the peripheral tape nodes and, in some embodiments, process the collected data to generate, for example, one or more histograms from the collected data.
  • the master tape node 460 When the doors of the shipping container 464 are open, the master tape node 460 is programmed to detect the door opening (e.g., with an accelerometer component of the master tape node 460) and, in addition to reporting the door opening event to the network service 408, the master tape node 460 is further programmed to transmit the collected data and/or the processed data in one or more wireless messages to the stationary gateway 414.
  • the stationary gateway 414 is operable to transmit the wireless messages received from the master tape node 460 to the network service 408 over the wireless network 402.
  • the stationary gateway 414 also is operable to perform operations on the data received from the master tape node 460 with the same type of data produced by the master node 459 based on sensor data collected from the tape nodes 442-448.
  • the master tape node 460 and the peripheral tape nodes 466 create a hierarchical wireless network of nodes for transmitting, forwarding, relaying, or otherwise communicating wireless messages to, between, or on behalf of the peripheral tape nodes 466 and the network service 408 in a power-efficient and cost-effective way.
  • a short range tape node typically is adhered directly to parcels containing assets.
  • the tape nodes 418, 428, 432, 442-448, 466 are short range tape nodes.
  • the short range tape nodes typically communicate with a low power wireless communication protocol (e.g., Bluetooth LE, Zigbee, or Z-wave).
  • the medium range tape nodes typically are adhered to objects (e.g., a box 426 and a shipping container 460) that are associated with multiple parcels that are separated from the medium range tape nodes by a barrier or a large distance.
  • the tape nodes 424 and 460 are medium range tape nodes.
  • the medium range tape nodes typically communicate with a medium power wireless communication protocol (e.g., LoRa or Wi-Fi).
  • the long-range tape nodes typically are adhered to mobile or stationary infrastructure of the wireless communication environment 400.
  • the mobile gateway tape node 412 and the stationary gateway tape node 414 are long range tape nodes.
  • the long range tape nodes typically communicate with other nodes using a high power wireless communication protocol (e.g., a cellular data communication protocol).
  • a high power wireless communication protocol e.g., a cellular data communication protocol.
  • the mobile gateway tape node 436 is adhered to a mobile vehicle (e.g., a truck).
  • the mobile gateway 412 may be moved to different locations in the environment 400 to assist in connecting other tape nodes to the server 404.
  • the stationary gateway tape node 414 may be attached to a stationary structure (e.g., a wall) in the environment 400 with a known geographic location. In these examples, other tape nodes in the environment can determine their geographic location by querying the gateway tape node 414.
  • FIG. 8 shows an example hierarchical wireless communications network of tape nodes 470.
  • the short range tape node 472 and the medium range tape node 474 communicate with one another over their respective low power wireless communication interfaces 476, 478.
  • the medium range tape node 474 and the long range tape node 480 communicate with one another over their respective medium power wireless communication interfaces 478, 482.
  • the long range tape node 480 and the network server 404 communicate with one another over the high power wireless communication interface 484.
  • the low power communication interfaces 476, 478 establish wireless communications with one another in accordance with the Bluetooth LE protocol
  • the medium power communication interfaces 452, 482 establish wireless communications with one another in accordance with the LoRa communications protocol
  • the high power communication interface 484 establishes wireless communications with the server 404 in accordance with a cellular communications protocol.
  • the different types of tape nodes are deployed at different levels in the communications hierarchy according to their respective communications ranges, with the long range tape nodes generally at the top of the hierarchy, the medium range tape nodes generally in the middle of the hierarchy, and the short range tape nodes generally at the bottom of the hierarchy.
  • the different types of tape nodes are implemented with different feature sets that are associated with component costs and operational costs that vary according to their respective levels in the hierarchy. This allows system administrators flexibility to optimize the deployment of the tape nodes to achieve various objectives, including cost minimization, asset tracking, asset localization, and power conservation.
  • a server 404 of the network service 408 designates a tape node at a higher level in a hierarchical communications network as a master node of a designated set of tape nodes at a lower level in the hierarchical communications network.
  • the designated master tape node may be adhered to a parcel (e.g., a box, pallet, or shipping container) that contains one or more tape nodes that are adhered to one or more assets containing respective assets.
  • the tape nodes typically communicate according to a schedule promulgated by the server 404 of the network service 408. The schedule usually dictates all aspects of the communication, including the times when particular tape nodes should communicate, the mode of communication, and the contents of the communication.
  • the server 404 transmits programmatic Global Scheduling Description Language (GSDL) code to the master tape node and each of the lower-level tape nodes in the designated set.
  • GSDL Programmatic Global Scheduling Description Language
  • execution of the GSDL code causes each of the tape nodes in the designated set to connect to the master tape node at a different respective time that is specified in the GSDL code, and to communicate a respective set of one or more data packets of one or more specified types of information over the respective connection.
  • the master tape node simply forwards the data packets to the server network node 404, either directly or indirectly through a gateway tape node (e.g., the long range tape node 416 adhered to the mobile vehicle 412 or the long range tape node 414 adhered to an infrastructure component of the environment 400).
  • the master tape node processes the information contained in the received data packets and transmits the processed information to the server network node 404.
  • FIG. 9 shows an example method of creating a hierarchical communications network.
  • a first tape node is adhered to a first asset in a set of associated assets, the first tape node including a first type of wireless communication interface and a second type of wireless communication interface having a longer range than the first type of wireless communication interface (FIG. 9, block 490).
  • a second tape node is adhered to a second asset in the set, the second tape node including the first type of wireless communication interface, wherein the second tape node is operable to communicate with the first tape node over a wireless communication connection established between the first type of wireless communication interfaces of the first and second tape nodes (FIG. 9, block 492).
  • An application executing on a computer system (e.g., a server 404 of a network service 408) establishes a wireless communication connection with the second type of wireless communication interface of the first tape node, and the application transmits programmatic code executable by the first tape node to function as a master tape node with respect to the second tape node (FIG. 9, block 494).
  • the second tape node is assigned the role of the master node of the first tape node.
  • node refers to both a tape node and a non-tape node (i.e., a node or wireless device that is not an adhesive tape platform) unless the node is explicitly designated as a “tape node” or a “non-tape node.”
  • a non-tape node may have the same or similar communication, sensing, processing and other functionalities and capabilities as the tape nodes described herein, except without being integrated into a tape platform.
  • non-tape nodes can interact seamlessly with tape nodes.
  • Each node may be assigned a respective unique identifier, according to some embodiments.
  • the following disclosure describes a distributed software operating system that is implemented by distributed hardware nodes executing intelligent agent software to perform various tasks or algorithms.
  • the operating system distributes functionalities (e.g., performing analytics on data or statistics collected or generated by nodes) geographically across multiple intelligent agents that are bound to items (e.g., parcels, containers, packages, boxes, pallets, a loading dock, a door, a light switch, a vehicle such as a delivery truck, a shipping facility, a port, a hub, etc.).
  • functionalities e.g., performing analytics on data or statistics collected or generated by nodes
  • items e.g., parcels, containers, packages, boxes, pallets, a loading dock, a door, a light switch, a vehicle such as a delivery truck, a shipping facility, a port, a hub, etc.
  • the operating system dynamically allocates the hierarchical roles (e.g., master and slave roles) that nodes perform over time in order to improve system performance, such as optimizing battery life across nodes, improving responsiveness, and achieving overall objectives.
  • optimization is achieved using a simulation environment for optimizing key performance indicators (PKIs).
  • PKIs key performance indicators
  • the nodes are programmed to operate individually or collectively as autonomous intelligent agents.
  • nodes are configured to communicate and coordinate actions and respond to events.
  • a node is characterized by its identity, its mission, and the services that it can provide to other nodes.
  • a node’s identity is defined by its capabilities (e.g., battery life, sensing capabilities, and communications interfaces).
  • a node’s mission is defined by the respective program code, instructions, or directives it receives from another node (e.g., a server or a master node) and the actions or tasks that it performs in accordance with that program code, instructions, or directives (e.g., sense temperature every hour and send temperature data to a master node to upload to a server).
  • a node’s services define the functions or tasks that it is permitted to perform for other nodes (e.g., retrieve temperature data from a peripheral node and send the received temperature data to the server). At least for certain tasks, once programmed and configured with their identities, missions, and services, nodes can communicate with one another and request services from and provide services to one another independently of the server.
  • Every agent knows its objectives (programmed). Every agent knows which capabilities/resources it needs to fulfill objective. Every agent communicates with every other node in proximity to see if it can offer the capability. Examples include communicate data to the server, authorize going to lower power level, temperature reading, send an alert to local hub, send location data, triangulate location, any boxes in same group that already completed group objectives.
  • Nodes can be associated with items. Examples of an item includes, but are not limited to for example, a package, a box, pallet, a container, a truck or other conveyance, infrastructure such as a door, a conveyor belt, a light switch, a road, or any other thing that can be tracked, monitored, sensed, etc. or that can transmit data concerning its state or environment.
  • a server or a master node may associate the unique node identifiers with the items.
  • Communication paths between tape and/or non-tape nodes may be represented by a graph of edges between the corresponding assets (e.g., a storage unit, truck, or hub). In some embodiments, each node in the graph has a unique identifier. A set of connected edges between nodes is represented by a sequence of the node identifiers that defines a communication path between a set of nodes.
  • a node 520 (Node A) is associated with an asset 522 (Asset A).
  • the node 520 may be implemented as a tape node that is used to seal the asset 522 or it may be implemented as a label node that is used to label the asset 522; alternatively, the node 520 may be implemented as a non-tape node that is inserted within the asset 522 or embedded in or otherwise attached to the interior or exterior of the asset 522.
  • the node 520 includes a low power communications interface 524 (e.g., a Bluetooth Low Energy communications interface).
  • Another node 526 (Node B), which is associated with another asset 530 (Asset B), is similarly equipped with a compatible low power communications interface 528 (e.g., a Bluetooth Low Energy communications interface).
  • node 526 In an example scenario, in accordance with the programmatic code stored in its memory, node 526 (Node B) requires a connection to node 520 (Node A) to perform a task that involves checking the battery life of Node A. Initially, Node B is unconnected to any other nodes. In accordance with the programmatic code stored in its memory, Node B periodically broadcasts advertising packets into the surrounding area. When the other node 520 (Node A) is within range of Node B and is operating in a listening mode, Node A will extract the address of Node B and potentially other information (e.g., security information) from an advertising packet.
  • information e.g., security information
  • Node A determines that it is authorized to connect to Node B
  • Node A will attempt to pair with Node B.
  • Node A and Node B determine each other’s identities, capabilities, and services. For example, after successfully establishing a communication path 532 with Node A (e.g., a Bluetooth Low Energy formatted communication path), Node B determines Node A’s identity information (e.g., master node), Node A’s capabilities include reporting its current battery life, and Node A’s services include transmitting its current battery life to other nodes. In response to a request from Node B, Node A transmits an indication of its current battery life to Node B.
  • identity information e.g., master node
  • Node A’s capabilities include reporting its current battery life
  • Node A’s services include transmitting its current battery life to other nodes.
  • Node A transmits an indication of its current battery life to Node B.
  • a node 534 (Node C) is associated with an asset 535 (Asset C).
  • the Node C includes a low power communications interface 536 (e.g., a Bluetooth Low Energy communications interface), and a sensor 537 (e.g., a temperature sensor).
  • a compatible low power communications interface 542 e.g., a Bluetooth Low Energy communications interface.
  • Node D requires a connection to Node C to perform a task that involves checking the temperature in the vicinity of Node C.
  • Node D is unconnected to any other nodes.
  • Node D periodically broadcasts advertising packets in the surrounding area.
  • Node C When Node C is within range of Node D and is operating in a listening mode, Node C will extract the address of Node D and potentially other information (e.g., security information) from the advertising packet. If, according to its programmatic code, Node C determines that it is authorized to connect to Node D, Node C will attempt to pair with Node D.
  • Node C and Node D determine each other’s identities, capabilities, and services. For example, after successfully establishing a communication path 544 with Node C (e.g., a Bluetooth Low Energy formatted communication path), Node D determines Node C’s identity information (e.g., a peripheral node), Node C’s capabilities include retrieving temperature data, and Node C’s services include transmitting temperature data to other nodes. In response to a request from Node D, Node C transmits its measured and/or locally processed temperature data to Node D.
  • Node C e.g., a Bluetooth Low Energy formatted communication path
  • Node C determines Node C’s identity information (e.g., a peripheral node)
  • Node C’s capabilities include retrieving temperature data
  • Node C’s services include transmitting temperature data to other nodes.
  • Node C transmits its measured and/or locally processed temperature data to Node D.
  • a pallet 550 is associated with a master node 551 that includes a low power communications interface 552, a GPS receiver 554, and a cellular communications interface 556.
  • the master node 551 may be implemented as a tape node or a label node that is adhered to the pallet 550. In other embodiments, the master node 551 may be implemented as a non-tape node that is inserted within the body of the pallet 550 or embedded in or otherwise attached to the interior or exterior of the pallet 550.
  • the pallet 550 provides a structure for grouping and containing assets 559, 561, 563 each of which is associated with a respective peripheral node 558, 560, 562 (Node E, Node F, and Node G).
  • Each of the peripheral nodes 558, 560, 562 includes a respective low power communications interface 564,
  • each of the nodes E, F, G and the master node 551 are connected to each of the other nodes over a respective low power communications path (shown by dashed lines).
  • the assets 559, 561, 563 are grouped together because they are related.
  • the assets 559, 561, 563 may share the same shipping itinerary or a portion thereof.
  • the master pallet node 550 scans for advertising packets that are broadcasted from the peripheral nodes 558, 560, 562.
  • the peripheral nodes broadcast advertising packets during respective scheduled broadcast intervals.
  • the master node 551 can determine the presence of the assets 559, 561, 563 in the vicinity of the pallet 550 based on receipt of one or more advertising packets from each of the nodes E, F, and G.
  • the master node 551 in response to receipt of advertising packets broadcasted by the peripheral nodes 558, 560, 562, transmits respective requests to the server to associate the master node 551 and the respective peripheral nodes 558, 560, 562.
  • the master tape node requests authorization from the server to associate the master tape node and the peripheral tape nodes. If the corresponding assets 559, 561, 563 are intended to be grouped together (e.g., they share the same itinerary or certain segments of the same itinerary), the server authorizes the master node 551 to associate the peripheral nodes 558, 560, 562 with one another as a grouped set of assets.
  • the server registers the master node and peripheral tape node identifiers with a group identifier. The server also may associate each node ID with a respective physical label ID that is affixed to the respective asset.
  • the master node 551 may identify another asset arrives in the vicinity of the multi -asset group.
  • the master node may request authorization from the server to associate the other asset with the existing multi -asset group. If the server determines that the other asset is intended to ship with the multi-asset group, the server instructs the master node to merge one or more other assets with currently grouped set of assets. After all assets are grouped together, the server authorizes the multi-asset group to ship. In some embodiments, this process may involve releasing the multi-asset group from a containment area (e.g., customs holding area) in a shipment facility.
  • a containment area e.g., customs holding area
  • the peripheral nodes 558, 560, 562 include environmental sensors for obtaining information regarding environmental conditions in the vicinity of the associated assets 559,
  • Examples of such environmental sensors include temperature sensors, humidity sensors, acceleration sensors, vibration sensors, shock sensors, pressure sensors, altitude sensors, light sensors, and orientation sensors.
  • the master node 551 can determine its own location based on geolocation data transmitted by a satellite-based radio navigation system 570 (e.g., GPS, GLONASS, and NAVSTAR) and received by the GPS receiver 554 component of the master node 551.
  • a satellite-based radio navigation system 570 e.g., GPS, GLONASS, and NAVSTAR
  • the location of the master pallet node 551 can be determined using cellular based navigation techniques that use mobile communication technologies (e.g., GSM, GPRS, CDMA, etc.) to implement one or more cell-based localization techniques.
  • the distance of each of the assets 559, 561, 563 from the master node 551 can be estimated based on the average signal strength of the advertising packets that the master node 551 receives from the respective peripheral node.
  • the master node 551 can then transmit its own location and the locations of the asset nodes E, F, and G to a server over a cellular interface connection with a cell tower 572.
  • RSSI Received Signal-Strength Index
  • the master node 551 reports the location data and the collected and optionally processed (e.g., either by the peripheral nodes peripheral nodes 558, 560, 562 or the master node 551) sensor data to a server over a cellular communication path 571 on a cellular network 572.
  • nodes are able to autonomously detect logistics execution errors if assets that suppose to travel together no longer travel together, and raise an alert.
  • a node e.g., the master node 551 or one of the peripheral nodes 558, 560, 562 alerts the server when the node determines that a particular asset 559 is being or has already been improperly separated from the group of assets.
  • the node may determine that there has been an improper separation of the particular asset 559 in a variety of ways.
  • the associated node 558 that is bound to the particular asset 559 may include an accelerometer that generates a signal in response to movement of the asset from the pallet.
  • the associated node 558 determines that the master node 551 has not disassociated the particular asset 559 from the group and therefore broadcasts advertising packets to the master node, which causes the master node 551 to monitor the average signal strength of the advertising packets and, if the master node 551 determines that the signal strength is decreasing over time, the master node 551 will issue an alert either locally (e.g., through a speaker component of the master node 551) or to the server.
  • a truck 580 is configured as a mobile node or mobile hub that includes a cellular communications interface 582, a medium power communications interface 584, and a low power communications interface 586.
  • the communications interfaces 580-586 may be implemented on one or more tape and non-tape nodes.
  • the truck 580 visits a storage facility, such as a warehouse 588, to wirelessly obtain temperature data generated by temperature sensors in the medium range nodes 590, 592, 594.
  • the warehouse 588 contains nodes 590, 592, and 594 that are associated with respective assets 591, 593, 595.
  • each node 590-594 is a medium range node that includes a respective medium power communications interface 596, 602, 608, a respective low power communications interface 598, 604, 610 and one or more respective sensors 600, 606, 612.
  • each of the asset nodes 590, 592, 594 and the truck 580 is connected to each of the other ones of the asset nodes through a respective medium power communications path (shown by dashed lines).
  • the medium power communications paths are LoRa formatted communication paths.
  • the communications interfaces 584 and 586 (e.g., a LoRa communications interface and a Bluetooth Low Energy communications interface) on the node on the truck 580 is programmed to broadcast advertisement packets to establish connections with other network nodes within range of the truck node.
  • a warehouse 588 includes medium range nodes 590, 592, 594 that are associated with respective containers 591, 593, 595 (e.g., assets, boxes, pallets, and the like).
  • the medium range node When the truck node’s low power interface 586 is within range of any of the medium range nodes 590, 592, 594 and one or more of the medium range nodes is operating in a listening mode, the medium range node will extract the address of truck node and potentially other information (e.g., security information) from the advertising packet. If, according to its programmatic code, the truck node determines that it is authorized to connect to one of the medium range nodes 590, 592, 594, the truck node will attempt to pair with the medium range node. In this process, the truck node and the medium range node determine each other’s identities, capabilities, and services.
  • the truck node and the medium range node determine each other’s identities, capabilities, and services.
  • the truck node determines the identity information for the medium range node 590 (e.g., a peripheral node), the medium range node’s capabilities include retrieving temperature data, and the medium range node’s services include transmitting temperature data to other nodes.
  • the truck 580 initially may communicate with the nodes 590, 592, 594 using a low power communications interface (e.g., Bluetooth Low Energy interface).
  • the truck 580 will try to communicate with the non-responsive nodes using a medium power communications interface (e.g., LoRa interface).
  • a medium power communications interface e.g., LoRa interface
  • the medium range node 590 transmits an indication of its measured temperature data to the truck node.
  • the truck node repeats the process for each of the other medium range nodes 592, 594 that generate temperature measurement data in the warehouse 588.
  • the truck node reports the collected (and optionally processed, either by the medium range nodes 590, 592, 594 or the truck node) temperature data to a server over a cellular communication path 616 with a cellular network 618.
  • a master node 630 is associated with an item 632 (e.g., an asset) and grouped together with other items 634, 636 (e.g., assets) that are associated with respective peripheral nodes 638, 640.
  • the master node 630 includes a GPS receiver 642, a medium power communications interface 644, one or more sensors 646, and a cellular communications interface 648.
  • Each of the peripheral nodes 638, 640 includes a respective medium power communications interface 650, 652 and one or more respective sensors 654, 656.
  • the peripheral and master nodes are connected to one another other over respective pairwise communications paths (shown by dashed lines).
  • the nodes 630638, 640 communicate through respective LoRa communications interfaces over LoRa formatted communications paths 658, 660, 662.
  • the master and peripheral nodes 638, 638, 640 include environmental sensors for obtaining information regarding environmental conditions in the vicinity of the associated assets 632, 634, 636.
  • environmental sensors include temperature sensors, humidity sensors, acceleration sensors, vibration sensors, shock sensors, pressure sensors, altitude sensors, light sensors, and orientation sensors.
  • the master node 630 periodically broadcasts advertising packets in the surrounding area.
  • the peripheral nodes 638, 640 When the peripheral nodes 638, 640 are within range of master node 630, and are operating in a listening mode, the peripheral nodes 638, 640 will extract the address of master node 630 and potentially other information (e.g., security information) from the advertising packets. If, according to their respective programmatic code, the peripheral nodes 638, 640 determine that hey are authorized to connect to the master node 630, the peripheral nodes 638, 640 will attempt to pair with the master node 630. In this process, the peripheral nodes 638, 640 and the master node and the peripheral nodes determine each other’s identities, capabilities, and services.
  • the master node 630 determines certain information about the peripheral nodes 638, 640, such as their identity information (e.g., peripheral nodes), their capabilities (e.g., measuring temperature data), and their services include transmitting temperature data to other nodes.
  • their identity information e.g., peripheral nodes
  • their capabilities e.g., measuring temperature data
  • their services include transmitting temperature data to other nodes.
  • the master node 630 After establishing UoRa formatted communications paths 658, 660 with the peripheral nodes 638, 640, the master node 630 transmits requests for the peripheral nodes 638, 640 to transmit their measured and/or locally processed temperature data to the master node 630.
  • the master node 630 can determine its own location based on geolocation data transmitted by a satellite-based radio navigation system 666 (e.g., GPS, GUONASS, and NAVSTAR) and received by the GPS receiver 642 component of the master node 630.
  • a satellite-based radio navigation system 666 e.g., GPS, GUONASS, and NAVSTAR
  • the location of the master node 630 can be determined using cellular based navigation techniques that use mobile communication technologies (e.g., GSM, GPRS, CDMA, etc.) to implement one or more cell-based localization techniques.
  • mobile communication technologies e.g., GSM, GPRS, CDMA, etc.
  • the distance of each of the assets 634, 636 from the master node 630 can be estimated based on the average signal strength of the advertising packets that the master node 630 receives from the respective peripheral node.
  • the master node 630 can then transmit its own location and the locations of the asset nodes E, F, and G to a server over a cellular interface connection with a cell tower 672.
  • Other methods of determining the distance of each of the assets 634, 636 from the master node 630 such as Received Signal-Strength Index (RSSI) based indoor localization techniques, also may be used.
  • RSSI Received Signal-Strength Index
  • the master node 630 reports the location data the collected and optionally processed (e.g., either by the peripheral nodes peripheral nodes 634, 636 or the master node 630) sensor data to a server over a cellular communication path 670 on a cellular network 672.
  • Wireless tracking devices are configured to automatically turn on and off without requiring user interaction, reducing time, attention, and action required by users and human operators to activate or deactivate wireless tracking devices.
  • a wireless tracking device is configured to track one or more assets and wirelessly communicate the location and/or condition of the asset to members of the wireless tracking system 400.
  • the wireless tracking device is configured to perform functions other than tracking an asset, but may still be configured to wirelessly communicate data with one or more other wireless nodes of the IOT system 400.
  • the wireless tracking device may be an embodiment of the adhesive tape platform 12, the segment of the adhesive tape platform 13, adhesive tape platform 32, or adhesive tape platform 102, 103, 105, but is not limited thereto.
  • Wireless tracking devices may be configured to operate in a variety of different modes, based on current statuses of corresponding assets, actions they are required to perform, communications they are required to transmit or receive, current battery reserves, events in the environment, and numerous other factors. This enables wireless tracking devices, which may have limited battery life or may benefit from long lifespans across multiple journeys, to conserve battery when they are not in use and to communicate without limiting tracking capabilities during transportation.
  • the terms “turning on,” “entering a standard mode of operation,” and “entering an active mode of operation” may be used interchangeably, and refer to wireless tracking devices being powered on and able to perform a set of functions for tracking assets during transportation, storage, and the like.
  • the terms “turning off,” “entering hibernation mode,” and “entering a low-power mode” may further be used interchangeably, and refer to wireless tracking devices being powered down so as to minimize battery use over time while not actively tracking assets or performing other functions besides a minimal set of functions.
  • the power consumption of the wireless tracking device in the hibernation mode is lower than the power consumption in the active mode of operation.
  • wireless tracking devices that have not been use e.g., have not yet been attached to assets, have not yet initiated a journey, are awaiting a next phase of a journey, and the like
  • initially operate in a hibernation or low-power mode e.g., wireless tracking devices that are packaged during manufacturing operate in a hibernation mode before they are deployed for use on a journey or task.
  • wireless tracking devices that are in between journeys e.g., having completed a first journey with a first asset and awaiting a second journey with the same or a different asset, operate in a hibernation mode.
  • hibernation or low-power mode communications and other actions may be performed on a different or less frequent basis than during an active or standard mode of operation, e.g., every hour, every fifteen minutes, every ten minutes rather than every minute, every thirty seconds, etc.
  • one or more functions of wireless tracking devices are limited or unavailable in hibernation mode.
  • satellite communications or other high-power functions may be unavailable, while local communications such as radio or Bluetooth may be enabled when communications are required.
  • Wireless tracking devices in hibernation mode are configured to periodically perform a scan to determine when to turn on or initiate an active mode.
  • the periodic scan may comprise, for example, scanning an environment to determine a change in environment, or may comprise capturing and analyzing sensor data to identify events indicating a start of journey.
  • the scanning the environment may comprise using one or more wireless communication systems or sensors to determine information on the environment of the wireless tracking device.
  • scanning the environment comprises detecting one or more other wireless devices in the environment using a wireless communication system of the wireless tracking device (e.g., a Bluetooth communication system).
  • various wireless devices may broadcast a signal using Bluetooth, and the wireless tracking device may detect that the various wireless devices are within a communication range based on receiving the broadcasted signal using its BLE communication system, the communication range corresponding to a range of the BLE communication system.
  • scanning an environment comprises activating a sensor of the wireless tracking device to gather sensor data on the environmental conditions of the wireless tracking device.
  • the wireless tracking device may use an accelerometer to detect motion or acceleration of the wireless tracking device. Responsive to determining a start of journey or a change in environment, wireless tracking devices are configured to power on or to enter an active mode of operation.
  • wireless tracking devices determine a start of journey or change in environment by searching the environment for surrounding wireless tracking devices.
  • Environments wherein a large number of tracking devices are within a threshold distance may be typical environments wherein the tracking devices are being stored and not in active use, e.g., as packaged after manufacturing, or aggregated into a single location for recharging, refurbishment, or reuse, according to some embodiments.
  • a threshold distance e.g. 50+ tracking devices within 1 sq. ft.
  • wireless tracking devices in these environments are unlikely to be required to perform all functions and communications at high frequencies.
  • the wireless tracking device Responsive to a scan detecting that more than a threshold amount of other tracking devices are within a threshold distance, the wireless tracking device determines that it is not in active use, and maintains hibernation or low-power mode. Responsive to detecting that less than a threshold amount of other wireless tracking devices are within a threshold distance, the wireless tracking device determines that it is no longer in an environment that corresponds to the hibernation or low-power mode and turns on, switching to an active mode.
  • FIG. 1 lA-11C are diagrams showing example environments of a wireless tracking device during different stages of a lifetime of the wireless tracking device, according to some embodiments.
  • FIG. 11A shows a container 1110 containing multiple wireless tracking devices, including a wireless tracking device 1130 (not shown in FIG. 11A).
  • the wireless tracking devices are stored in the container 1110 before they are deployed for use in tracking assets, according to some embodiments.
  • the container 1110 is a box, but in other embodiments the wireless tracking devices may be stored in a different container.
  • the wireless tracking devices may each be a segment of an adhesive tape platform that are on a roll and stored on spool.
  • the container includes a container node 1120 that tracks the container 1110 and is associated with each of the wireless tracking devices stored in the container 1110.
  • the container node 1120 is inside the container 1110 (e.g., attached to an inner wall of the container 1110).
  • the wireless tracking devices may be in the hibernation mode while stored in the container 1110, with one or more functions of the wireless tracking devices disabled or reduced to conserve power.
  • the wireless tracking devices stored in the container 1110 may communicate with the container node 1120, according to some embodiments.
  • the wireless tracking devices are configured to periodically scan for the container node 1120 using a wireless communication system (e.g., BLE), to determine that they are still in the container 1110 or within a threshold distance of the container 1110.
  • the wireless tracking devices and the container node 1120 may follow a schedule for communicating with each other over the respective wireless communication systems. For example, the wireless tracking devices and the container node 1120 may activate respective BLE systems every hour and perform the communication to check if the wireless tracking devices are still in the container 1110.
  • FIG. 1 IB shows the wireless tracking device 1130 as it is removed from the container.
  • the wireless tracking device 1130 determines that it has been removed from the container 1110 and automatically initializes an activated mode in response, ending the hibernation mode that it was in while it was in the container 1110, according to some embodiments.
  • the wireless tracking device 1130 may determine that it has been removed from the container based on wireless communication with the container node 1120.
  • the wireless tracking device 1130 periodically communicates with the container node 1120 while in the hibernation mode and determines an estimated distance from the container node 1120 based on a received signal strength (e.g., RSSI).
  • RSSI received signal strength
  • the wireless tracking device 1130 determines that it has been removed from the container 1110.
  • the container 1110 may act as or include a faraday cage which blocks wireless communications.
  • the tracking device 1130 When the tracking device 1130 is inside the container 1110, communication from external sources is blocked, including from the container node 1120.
  • the tracking device 1130 periodically scans for received wireless communications when in the hibernation mode. If the tracking device 1130 receives a wireless communication from the container node 1120, it determines that it has been removed from the container 1110 and initializes the activated mode.
  • FIG. llC shows the wireless tracking device 1130 after it has been removed from the container 1110 and installed on an asset 1140 for tracking the asset 1140.
  • the wireless tracking device 1130 is configured to track environmental information for the asset.
  • the tracked environmental information includes location data for the asset 1140.
  • the wireless tracking device 1130 may use one or more of its wireless communication systems (e.g., GPS) to determine the location of the wireless tracking device 1130 and the associated asset 1140.
  • the wireless tracking device 1130 automatically detects when it is has been installed on an asset 1130, based on scanning the environment.
  • the wireless tracking device 1130 may track its location via one or more of its wireless communication system (e.g., GPS or cellular communications). The tracking device 1130 may determine that it is on the asset 1140 based on its location. For example, there may be a predetermined staging area where wireless tracking devices are installed on assets. The tracking device 1130 may determine that it is on the asset 1140 by determining that the location of the tracking device corresponds to the staging area.
  • its wireless communication system e.g., GPS or cellular communications
  • the wireless tracking device 1130 may determine that it is on the asset based on a trajectory of the wireless tracking device 1130, a velocity or acceleration of the wireless tracking device 1130 detected using an accelerometer or other sensor of the wireless tracking device 1130, other sensor data from a sensor of the wireless tracking device 1130, or some other information received by the wireless tracking device 1130.1n some examples, the wireless tracking devices may additionally scan for one or more of the following: wireless communication via a wireless communication system of the wireless tracking device (e.g., Bluetooth, WiFi, LoRa, etc.) from another tracking device or another entity of the wireless tracking system (e.g., gateway node, master node, server, or cloud) instructing the wireless tracking device to turn on, communication from a client device instructing the wireless tracking device to turn on; for example, responsive to the client device scanning a barcode, QR code, or NFC tag of the wireless tracking device, or having a radio broadcast at a frequency to turn on the wireless tracking device, identifying an entity of the wireless tracking system corresponding to a start of
  • FIG. 12 shows example phases of a journey for a tracking device 1220, along with a description of the power state of the tracking device 1220 while in that phase of the journey.
  • the tracking device 1220 is installed on an asset 1210.
  • the asset 1210 and the tracking device 1220 is being transported on a vehicle 1230.
  • the tracking device 1220 is configured to detect when the asset is on the vehicle and continue operating in an activated state while the tracking device 1220 is still in the vehicle.
  • the asset 1210 is then transported to a storage room 1240 where it will be stored.
  • the tracking device 1220 detects the location of the storage room and stores the location on its memory. The location may be determined, for example, based on wireless communications with other wireless nodes of the IOT system 400, such as a gateway device, installed in the storage room 1240 and associated with the location of the storage room 1240.
  • the asset 1210 remains stored in the storage room 1240.
  • the tracking device 1220 detects that the asset 1210 has entered the second phase and enters the hibernation mode, in response.
  • the tracking device 1220 may detect the second phase based on the location of the storage room 1240 corresponding to a trigger for entering the hibernation mode, in some embodiments. In other embodiments, the tracking device 1220 detects that it has not moved for over a threshold period of time, and enters the hibernation mode in response.
  • the tracking device 1220 In the hibernation mode, the tracking device 1220 periodically performs a scan of its environment to determine if the asset 1210 and the tracking device 1220 has entered a new phase that corresponds to the tracking device 1220 exiting the hibernation mode and entering an activated state. Other functions of the tracking device 1220 may be limited or disabled while in the hibernation mode.
  • the tracking device 1220 may stop tracking its location while in the hibernation mode, since in the second phase, it is not moving.
  • the tracking device 1220 enters the activated state, as shown in FIG. 12.
  • the third state includes a human operator moving the asset from the storage room 1240.
  • the tracking device 1220 periodically performs a check-in communication with a wireless node installed in the storage room 1240 as part of its periodic scan.
  • the check-in communication is used to determine if the tracking device 1220 is no longer in the storage room 1240. If the check-in communication cannot be performed successfully, the tracking device 1220 determines that it is no longer in the storage room and has been moved, detecting the third phase and triggering the activation of the activated state.
  • the tracking device 1220 detects that it has entered the third phase of the journey based on collecting accelerometer data while it is in the hibernation mode. When the tracking device 1220 detects an acceleration above a threshold level, the tracking device 1220 determines that it has been moved and is in the third phase of the journey. In other embodiments, other methods may be used to detect the beginning of another phase of the journey.
  • wireless tracking devices determine a start of journey or change in environment based on captured sensor data from, for example, a vibration sensor, accelerometer, gyroscope, temperature sensor, light sensor, and the like. Responsive to detecting that an event has occurred corresponding to a start of journey or change in environment, the wireless tracking device turns on.
  • the wireless tracking devices capture and analyze sensor data to detect one or more of the following: vibration data corresponding to a user of the wireless tracking system shaking the wireless tracking device to turn it on, vibration, accelerometer, and/or location (e.g., GPS) data corresponding to the wireless tracking device being moved or relocated (e.g., detecting that the wireless tracking device is being loaded onto a vehicle or method of transportation), location (e.g., GPS) data corresponding to the wireless tracking device being moved more than a threshold distance (e.g., 1 mile) from an initial location, light and/or audio data corresponding to the wireless tracking device being removed from a box or storage container, magnetic or other electronic fields corresponding to a user of the wireless tracking system using a magnet or other device to turn on the wireless tracking device, temperature data corresponding to a change in temperature in the environment of the wireless tracking device (e.g., the wireless tracking device being moved to a refrigerator, freezer, or other cold storage space), any sensor data corresponding to a predetermined or preset signal,
  • the sensor data may be captured using one or more sensors of the wireless tracking device, according to some embodiments.
  • the one or more sensors may be integrated with the wireless tracking device and configured to gather the sensor data.
  • the sensor data may be stored on a storage or memory of the wireless tracking device.
  • the sensor data may be transmitted to the wireless tracking system 400 and analysis or processing of the sensor data may be performed by another node or member of the wireless tracking system 400.
  • the determining that the event corresponding to an active mode of the wireless tracking device is not performed locally by the wireless tracking device, but by another node or member of the wireless tracking system 400.
  • a server or client device of the wireless tracking system 400 may receive the sensor data and determine that the wireless tracking device that the event has occurred corresponding to the conditions where the wireless tracking device should turn on.
  • the wireless tracking system 400 may then transmit an activation signal which the wireless tracking device is configured to receive. In response to receiving the activation signal, the wireless tracking device turns on.
  • the wireless tracking device may be in the hibernation mode but configured to activate one or more wireless communication systems to transmit the sensor data to the wireless tracking system 400 in response to determining a potential for a condition or event that corresponds to turning the wireless tracking device.
  • the wireless tracking device may enter an intermediate state in which the wireless tracking device is able to wirelessly transmit the sensor data, but still has a lower power consumption than the active mode (e.g., by suspending or refraining from other communications or activities that are part of the active mode).
  • the wireless tracking device may detect the potential condition or event and transmits the sensor data to the wireless tracking system 400, in order to receive confirmation that the wireless tracking device should fully exit the hibernation mode and turn on.
  • wireless tracking devices may receive confusing signals due to events that that do not correspond to triggering of an active or standard mode of operation.
  • the wireless tracking devices are configured to differentiate between events that should trigger the wireless tracking device to initiate an active mode and events that should not trigger the wireless tracking device to initiate the active mode.
  • the wireless tracking device is configured to identify a signature waveform or trend in received sensor data that corresponds to events that trigger the active mode.
  • the wireless tracking device uses gyroscope sensor data from a gyroscope sensor of the wireless tracking device to differentiate between a wireless tracking device being carried or moved by a user of the wireless tracking device and the wireless tracking device being dropped or knocked over.
  • the wireless tracking device requires that vibration data corresponding to a user of the wireless tracking device shaking the wireless tracking device to turn it on continues for more than a threshold amount of time (e.g., 5 seconds) to ensure that the vibration is not accidental.
  • the wireless tracking device may identify one or more of the following as being false alarms that do not require the wireless tracking device to turn on: vibration, accelerometer, and/or gyroscopic data corresponding to the wireless tracking device being dropped, knocked over, or other accidental triggers (e.g., brief acceleration along one plane of motion is likely to indicate dropping, as opposed to shaking by a user of the wireless tracking device wherein acceleration occurs rapidly in two planes of motion), anomalous sensor data, e.g., location data corresponding to impossible or glitched movement, or audio data corresponding to a brief increase in ambient noise that may indicate a passerby or nearby activity that does not correspond to a start of journey, temperature data fluctuations within a threshold range (for example, 5°C), e.g., such that the fluctuations reasonably correspond to changes in ambient temperature of a room rather than movement of the wireless tracking device to a cold storage, and other false alarm conditions.
  • a threshold range for example, 5°C
  • the wireless tracking device is configured to request or collect additional data to confirm whether an event that triggers the active mode has occurred. For example, if the wireless tracking device detects that an event that triggers the active mode may have occurred based on location data, the wireless tracking data may collect sensor data from another sensor to confirm that the event has occurred. In further embodiments, the wireless tracking data may request or collect additional data based on a confidence level or score associated with the determination that the event that triggers the active mode has occurred. If the confidence score is below a threshold value, the wireless tracking data requests or collects additional data (e.g., sensor data) and checks if the determination was accurate based on the additional data.
  • additional data e.g., sensor data
  • the wireless tracking device requests the additional data from another node or member of the wireless tracking system 400.
  • the wireless tracking device may request the additional data from another wireless tracking device that is in proximity.
  • the requested data may include an indication of whether the other wireless tracking device is in an active or hibernation mode. If the other wireless tracking device is in the active mode, the wireless tracking device may determine that it is not in storage with other inactive or hibernating wireless tracking.
  • FIG. 13 is a flow diagram of a method 1301 for automatically turning wireless IOT devices on and off, according to some embodiments.
  • the method 1301 includes a wireless IOT device operating 1305 in a first mode.
  • the first mode may be, for example, a hibernation mode of the wireless IOT device.
  • the wireless IOT device performs 1310 periodic scans of the environment while in the first mode.
  • the periodic scans may include performing wireless communications with other wireless nodes of the IOT system 400, collecting sensor data from sensors of the wireless IOT device or from sensors on other devices, other methods for scanning information on the environment, or some combination thereof.
  • the wireless IOT device analyzes 1315 the information captured by the periodic scan of the environment in order to determine if an event corresponding to a new phase has occurred or if the wireless IOT device is in an environment with conditions corresponding to the new phase.
  • the wireless IOT device initiates 1320 a second mode of operation different from the first mode of operation.
  • the first mode of operation may be a hibernation mode
  • the second mode of operation may be an activated mode (or vice-versa). While not shown in FIG. 13, the method 1301 may include a different number of steps or alternate steps than described above.
  • FIG. 14 shows an example embodiment of computer apparatus 320 that, either alone or in combination with one or more other computing apparatus, is operable to implement one or more of the computer systems described in this specification.
  • the computer apparatus 320 includes a processing unit 322, a system memory 324, and a system bus 326 that couples the processing unit 322 to the various components of the computer apparatus 320.
  • the processing unit 322 may include one or more data processors, each of which may be in the form of any one of various commercially available computer processors.
  • the system memory 324 includes one or more computer-readable media that typically are associated with a software application addressing space that defines the addresses that are available to software applications.
  • the system memory 324 may include a read only memory (ROM) that stores a basic input/output system (BIOS) that contains start-up routines for the computer apparatus 320, and a random access memory (RAM).
  • ROM read only memory
  • BIOS basic input/output system
  • RAM random access memory
  • the system bus 326 may be a memory bus, a peripheral bus or a local bus, and may be compatible with any of a variety of bus protocols, including PCI, VESA, MicroChannel, ISA, and EISA.
  • the computer apparatus 320 also includes a persistent storage memory 328 (e.g., a hard drive, a floppy drive, a CD ROM drive, magnetic tape drives, flash memory devices, and digital video disks) that is connected to the system bus 326 and contains one or more computer-readable media disks that provide non-volatile or persistent storage for data, data structures and computer-executable instructions.
  • a persistent storage memory 328 e.g., a hard drive, a floppy drive, a CD ROM drive, magnetic tape drives, flash memory devices, and digital video disks
  • a user may interact (e.g., input commands or data) with the computer apparatus 320 using one or more input devices 330 (e.g. one or more keyboards, computer mice, microphones, cameras, joysticks, physical motion sensors, and touch pads). Information may be presented through a graphical user interface (GUI) that is presented to the user on a display monitor 332, which is controlled by a display controller 334.
  • GUI graphical user interface
  • the computer apparatus 320 also may include other input/output hardware (e.g., peripheral output devices, such as speakers and a printer).
  • the computer apparatus 320 connects to other network nodes through a network adapter 336 (also referred to as a “network interface card” or NIC).
  • a number of program modules may be stored in the system memory 324, including application programming interfaces 338 (APIs), an operating system (OS) 340 (e.g., the Windows® operating system available from Microsoft Corporation of Redmond, Washington U.S.A.), software applications 341 including one or more software applications programming the computer apparatus 320 to perform one or more of the steps, tasks, operations, or processes of the locationing and/or tracking systems described herein, drivers 342 (e.g., a GUI driver), network transport protocols 344, and data 346 (e.g., input data, output data, program data, a registry, and configuration settings).
  • APIs application programming interfaces 338
  • OS operating system
  • software applications 341 including one or more software applications programming the computer apparatus 320 to perform one or more of the steps, tasks, operations, or processes of the locationing and/or tracking systems described herein
  • drivers 342 e.g., a GUI driver
  • network transport protocols 344 e.g., input data, output data, program data, a registry,
  • Examples of the subject matter described herein can be implemented in data processing apparatus (e.g., computer hardware and digital electronic circuitry) operable to perform functions by operating on input and generating output. Examples of the subject matter described herein also can be tangibly embodied in software or firmware, as one or more sets of computer instructions encoded on one or more tangible non- transitory carrier media (e.g., a machine readable storage device, substrate, or sequential access memory device) for execution by data processing apparatus.
  • data processing apparatus e.g., computer hardware and digital electronic circuitry
  • Examples of the subject matter described herein also can be tangibly embodied in software or firmware, as one or more sets of computer instructions encoded on one or more tangible non- transitory carrier media (e.g., a machine readable storage device, substrate, or sequential access memory device) for execution by data processing apparatus.
  • a plurality of tape nodes are stored in a box or containers before deployment.
  • the tape nodes When the tape nodes are inside the box, they remain in a hibernation mode.
  • the tape node enters an activated mode different from the hibernation mode.
  • the tape node scans its environment periodically at a set frequency (e.g., every hour, every 10 minutes, or every 15 minutes) to check whether the tape node is still inside the box.
  • the tape node detects in the periodic scan that its no longer inside the box, the tape node automatically enters the activated mode.
  • the tape node is configured to exit the hibernation mode and enter the activation mode in response to detecting that a user or a machine is shaking the tape node.
  • the tape node may determine this based on data collected from one or more of vibration sensors, accelerometer, gyroscope, and other motion sensors while in the hibernation mode.
  • the tape node based on accelerometer data from an accelerometer integrated with the tape node, the tape node analyzes the accelerometer data and distinguishes whether the tape node has fallen to the ground or if the accelerometer data corresponds to a user shaking the tape node to activate it. Increased acceleration along the same dimension but opposite / 180-degree difference, which clearly distinguishes from other movements that might occur accidentally.
  • the tape node when the tape node enters the activated mode after exiting the hibernation mode, the tape node emits a corresponding sound or audio clip using a speaker integrated into the tape node. This is useful for signaling to a user that the tape node is in the activated state now.
  • a sensor integrated with the tape node is used as an interrupt sensor connected to a processor of the tape node.
  • the interrupt sensor samples data at a certain frequency and sends an interrupt signal to the processor in response to detecting a specific set of conditions.
  • the tape node While in the hibernation mode, the tape node operates in a low-power state. Having an interrupt sensor in a steady state requires almost no battery use.
  • First phase any shock to initiate shock circuit.
  • Second phase determine whether the particular shock meets the particular signature.
  • Third phase when the tape node determines that the shock has occurred, the tape node enters the activated mode.
  • Method and system disclosed applies to tape nodes and other wireless nodes (e.g., wireless devices without the adhesive tape form factor) of wireless tracking system.
  • a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.
  • Embodiments of the disclosure may also relate to an apparatus for performing the operations herein.
  • This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer.
  • a computer program may be stored in a non-transitory, tangible computer readable storage medium, or any type of media suitable for storing electronic instructions, which may be coupled to a computer system bus.
  • any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
  • Embodiments of the disclosure may also relate to a product that is produced by a computing process described herein. Such a product may comprise information resulting from a computing process, where the information is stored on a non-transitory, tangible computer readable storage medium and may include any embodiment of a computer program product or other data combination described herein.

Abstract

Wireless tracking devices are configured to automatically turn on and off without user interactions. Wireless tracking devices operating in a first mode perform periodic scans of an environment. Scanning may, for example, determine a number of other tracking devices within a threshold distance, or may comprise capturing sensor data using one or more sensors of the wireless tracking device. Based on information captured by the scan, wireless tracking devices determine that a change in environment or status of a journey has occurred and enters a second mode of operation.

Description

Method and System for Automatic Power Management of Portable
Internet of Things Devices
Inventors:
Hendrik J Volkerink Ajay Khoche
Cross-Reference to Related Applications
[0001] This application claims priority to pending U.S. Provisional Patent App. No. 63/173,673, filed on April 12, 2021, which is incorporated herein in its entirety. U.S. Patent Application No. 17/448,346, filed on September 21, 2021 is also are herein incorporated by reference in its entirety.
Field of the Disclosure
[0002] This disclosure generally relates to wireless internet of things (IOT) devices and, in particular, to battery management for wireless IOT devices.
Background
[0003] Environments may have large numbers of assets that require tracking during storage and transportation. When tracking devices are used to track assets, it becomes increasingly time-consuming for users in the environments to activate and deactivate each of the tracking devices associated with the assets thoroughly and in a timely manner, as the number of assets increases. Tracking devices that include embedded buttons or other methods of control that require a human or manual interaction add additional complexity to the operation of the tracking devices.
Summary
[0004] Wireless Internet of Things (IOT) devices are configured to automatically turn on, off, and enter and exit a hibernation mode without requiring user interaction, reducing time, attention, and action required by operators to activate or deactivate wireless tracking devices. In some embodiments, the wireless IOT devices are tracking devices and may also be referred to herein as “wireless tracking devices.” In further embodiments, the wireless IoT devices are embodiments of an adhesive tape platform which includes a flexible tape form factor.
[0005] Wireless IOT devices may be configured to operate in a variety of different modes and switch between the different modes, based on current statuses of corresponding assets, actions the wireless IOT devices are required to perform, communications the wireless IOT devices are required to transmit or receive, current battery reserves of the wireless IOT device, events in the environment of the wireless tracking device, and numerous other factors. This enables wireless IOT devices, which may have limited battery life or may benefit from long lifespans across multiple journeys, to conserve battery when they are not in use and to automatically activate the functions and communications of the wireless IOT devices at other times when needed.
[0006] In some embodiments, wireless IOT devices that have not been used (e.g., have not yet been attached to assets, have not yet initiated a journey, are awaiting a next phase of a journey, and the like) operate in a hibernation mode. For example, wireless IoT devices that are packaged during manufacturing operate in a hibernation mode, before being initiated for a journey or task. In another example, wireless IOT devices that are in between journeys or tasks, e.g., having completed a first journey with a first asset and awaiting a second journey with the same or a different asset, operate in a hibernation mode. In hibernation mode, communications and other actions may be performed on a different or less frequent basis than during an active or standard mode of operation, e.g., every hour, every fifteen minutes, or every ten minutes in the hibernation mode rather than every minute, every thirty seconds, etc. in the active or standard mode.
[0007] Wireless IOT devices in hibernation mode are configured to periodically scan an environment to detect a start of journey. In some embodiments, the wireless IOT device scans the environment by engaging in wireless communications using one or more wireless communication systems of the wireless IOT device or by gathering sensor data using one or more sensors of the wireless IOT device and analyzing the sensor data. The data gathered or received when scanning the environment is used to determine changes in the environmental conditions of the wireless IOT device that correspond to a start of a journey, according to some embodiments. Responsive to determining a start of journey or a change in environment, wireless IOT devices are configured to power on or to enter an active mode of operation. In some embodiments, wireless IOT devices determine a start of journey or change in environment by searching the environment for surrounding wireless IOT devices. Responsive to detecting that less than a threshold number of other wireless IOT devices are within a threshold distance, the wireless IOT device determines that it is no longer in a manufacturing or other storage package and turns on. In some embodiments, wireless IOT devices determine a start of journey or change in environment based on captured sensor data from, for example, a vibration sensor, accelerometer, a gyroscope sensor, temperature sensor, light sensor, an orientation sensor, a magnetometer, and the like. Responsive to detecting that an event has occurred to indicate a start of journey or change in environment (e.g. a user shaking the wireless IOT device; a change in light indicating removal from a dark box), the wireless IOT device turns on.
[0008] In some embodiments, wireless IOT devices are additionally configured to detect an end of journey and, in response, turn off or enter a hibernation mode without user interaction. During an active or standard mode of operation, wireless IOT devices periodically scan an environment or analyze captured sensor data to determine an end of a journey. In some embodiments, the wireless IOT devices detecting an end of a journey comprises searching the environment for surrounding wireless IOT devices. Environments wherein large numbers of wireless IOT devices are in close proximity may occur when tracking devices are removed from assets and gathered into a container or area for reuse, recycling, recharging, and the like, according to some embodiments. Responsive to detecting that more than a threshold number of other wireless IOT devices are within a threshold distance, the wireless IOT device determines that it is no longer performing an active journey and turns off or enters a low power state (e.g., a hibernation mode). In some embodiments, wireless IOT devices determine an end of journey based on captured sensor data from, for example, a vibration sensor, accelerometer, gyroscope, temperature sensor, light sensor, and the like. Responsive to detecting that an event has occurred to indicate an end of journey (e.g. lack of GPS, vibration, and/or accelerometer or gyroscopic movement for more than a threshold amount of time), the wireless IOT device turns off, or re-enters hibernation mode.
[0009] Embodiments of the subject matter described in this specification include methods, processes, systems, apparatus, and tangible non-transitory carrier media encoded with one or more program instructions for carrying out one or more methods and processes for enabling the various functionalities of the described systems and apparatus.
[0010] Other features, aspects, objects, and advantages of the subject matter described in this specification will become apparent from the description, the drawings, and the claims.
Brief Description of the Drawings
[0011] FIG. 1A is a diagrammatic view of an asset that has been sealed for shipment using a segment of an example adhesive tape platform dispensed from a roll, according to some embodiments.
[0012] FIG. IB is a diagrammatic top view of a portion of the segment of the example adhesive tape platform shown in FIG. 1A, according to some embodiments.
[0013] FIG. 2 is a diagrammatic view of an example of an envelope carrying a segment of an example adhesive tape platform dispensed from a backing sheet, according to some embodiments.
[0014] FIG. 3 is a schematic view of an example segment of an adhesive tape platform, according to some embodiments.
[0015] FIG. 4 is a diagrammatic top view of a length of an example adhesive tape platform, according to some embodiments.
[0016] FIGs. 5A-5C show diagrammatic cross-sectional side views of portions of different respective adhesive tape platforms, according to some embodiments.
[0017] FIGs. 6A-6B are diagrammatic top views of a length of an example adhesive tape platform, according to some embodiments. [0018] FIG. 6C is a diagrammatic view of a length of an example adhesive tape platform adhered to an asset, according to some embodiments.
[0019] FIG. 7 is a diagrammatic view of an example of a network environment supporting communications with segments of an adhesive tape platform, according to some embodiments.
[0020] FIG. 8 is a diagrammatic view of a hierarchical communications network, according to some embodiments.
[0021] FIG. 9 is a flow diagram of a method of creating a hierarchical communications network, according to some embodiments.
[0022] FIGs. 10A-10E are diagrammatic views of exemplary use cases for a distributed agent operating system, according to some embodiments.
[0023] FIG. 1 lA-11C are diagrams showing example environments of a wireless tracking device during different stages of a lifetime of the wireless tracking device, according to some embodiments.
[0024] FIG. 12 is an example diagram showing example environments during various stages of a wireless tracking device on an asset as it transitions between two separate journeys, according to some embodiments.
[0025] FIG. 13 is a flow diagram of a method for automatically turning wireless tracking devices on and off, according to some embodiments.
[0026] FIG. 14 shows an example embodiment of computer apparatus, according to some embodiments.
Detailed Description
[0027] Wireless IOT devices are disclosed which are configured to automatically shut down or enter a hibernation mode (also referred to herein as a “low-power mode”) in response to determining that the wireless IOT device is in a condition or environment where the wireless IOT device should conserve electrical energy. The wireless IOT device includes a battery, a processor, a memory or storage, and at least one wireless communication system. The wireless IOT device, in some embodiments, may be a wireless tracking device used to track the location and/or the conditions of an asset. The wireless IOT device is associated with an IOT system that supports the operations of the wireless IOT device and tracks data from the wireless IOT device. The wireless IOT devices, may be referred to herein as “wireless tracking devices,” but are not limited to embodiments where the wireless IOT devices are used for tracking purposes.
[0028] In some embodiments, the wireless IOT device is an adhesive tape platform or a segment thereof. The adhesive tape platform includes wireless transducing components and circuitry that perform communication and/or sensing. The adhesive tape platform has a flexible adhesive tape form-factor that allows it to function as both an adhesive tape for adhering to and/or sealing objects and a wireless sensing device.
[0029] In the following description, like reference numbers are used to identify like elements. Furthermore, the drawings are intended to illustrate major features of exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of actual embodiments nor relative dimensions of the depicted elements and are not drawn to scale.
[0030] As used herein, the term “or” refers to an inclusive “or” rather than an exclusive “or.” In addition, the articles “a” and “an” as used in the specification and claims mean “one or more” unless specified otherwise or clear from the context to refer the singular form.
[0031] The term “tape node” refers to an adhesive tape platform or a segment thereof that is equipped with sensor, processor, memory, energy source/harvesting mechanism, and wireless communications functionality, where the adhesive tape platform (also referred to herein as an “adhesive product” or an “adhesive tape product”) has a variety of different form factors, including a multilayer roll or a sheet that includes a plurality of divisible adhesive segments. Once deployed, each tape node can function, for example, as an adhesive tape, label, sticker, decal, or the like, and as a wireless communications device.
[0032] The terms “adhesive tape node,” “wireless node,” or “tape node” may be used interchangeably in certain contexts, and refer to an adhesive tape platform or a segment thereof that is equipped with sensor, processor, memory, energy source/harvesting mechanism, and wireless communications functionality, where the adhesive product has a variety of different form factors, including a multilayer roll or a sheet that includes a plurality of divisible adhesive segments. Once deployed, each tape node or wireless node can function, for example, as an adhesive tape, label, sticker, decal, or the like, and as a wireless communications device. A “peripheral” tape node or wireless node, also referred to as an outer node, leaf node, or terminal node, refers to a node that does not have any child nodes.
[0033] In certain contexts, the terms “parcel,” “envelope,” “box,” “package,” “container,” “pallet,” “carton,” “wrapping,” and the like are used interchangeably herein to refer to a packaged item or items.
[0034] In certain contexts, the terms “wireless tracking system,” “hierarchical communications network,” “distributed agent operating system,” and the like are used interchangeably herein to refer to a system or network of wireless nodes.
INTRODUCTION
[0035] This specification describes a low-cost, multi-function adhesive tape platform with a form factor that unobtrusively integrates the components useful for implementing a combination of different asset tracking and management functions and also is able to perform a useful ancillary function that otherwise would have to be performed with the attendant need for additional materials, labor, and expense. In an aspect, the adhesive tape platform is implemented as a collection of adhesive products that integrate wireless communications and sensing components within a flexible adhesive structure in a way that not only provides a cost-effective platform for interconnecting, optimizing, and protecting the components of the tracking system but also maintains the flexibility needed to function as an adhesive product that can be deployed seamlessly and unobtrusively into various asset management and tracking applications and workflows, including person and object tracking applications, and asset management workflows such as manufacturing, storage, shipping, delivery, and other logistics associated with moving products and other physical objects, including logistics, sensing, tracking, locationing, warehousing, parking, safety, construction, event detection, road management and infrastructure, security, and healthcare. In some examples, the adhesive tape platforms are used in various aspects of asset management, including sealing assets, transporting assets, tracking assets, monitoring the conditions of assets, inventorying assets, and verifying asset security. In these examples, the assets typically are transported from one location to another by truck, train, ship, or aircraft or within premises, e.g., warehouses by forklift, trolleys etc.
[0036] In disclosed examples, an adhesive tape platform includes a plurality of segments that can be separated from the adhesive product (e.g., by cutting, tearing, peeling, or the like) and adhesively attached to a variety of different surfaces to inconspicuously implement any of a wide variety of different wireless communications based network communications and transducing (e.g., sensing, actuating, etc.) applications. Examples of such applications include: event detection applications, monitoring applications, security applications, notification applications, and tracking applications, including inventory tracking, asset tracking, person tracking, animal (e.g., pet) tracking, manufactured parts tracking, and vehicle tracking. In example embodiments, each segment of an adhesive tape platform is equipped with an energy source, wireless communication functionality, transducing functionality, and processing functionality that enable the segment to perform one or more transducing functions and report the results to a remote server or other computer system directly or through a network of tapes. The components of the adhesive tape platform are encapsulated within a flexible adhesive structure that protects the components from damage while maintaining the flexibility needed to function as an adhesive tape (e.g., duct tape or a label) for use in various applications and workflows. In addition to single function applications, example embodiments also include multiple transducers (e.g., sensing and/or actuating transducers) that extend the utility of the platform by, for example, providing supplemental information and functionality relating characteristics of the state and or environment of, for example, an article, object, vehicle, or person, overtime.
[0037] Systems and processes for fabricating flexible multifunction adhesive tape platforms in efficient and low-cost ways also are described. In addition to using roll-to-roll and/or sheet-to-sheet manufacturing techniques, the fabrication systems and processes are configured to optimize the placement and integration of components within the flexible adhesive structure to achieve high flexibility and ruggedness. These fabrication systems and processes are able to create useful and reliable adhesive tape platforms that can provide local sensing, wireless transmitting, and locationing functionalities. Such functionality together with the low cost of production is expected to encourage the ubiquitous deployment of adhesive tape platform segments and thereby alleviate at least some of the problems arising from gaps in conventional infrastructure coverage that prevent continuous monitoring, event detection, security, tracking, and other asset tracking and management applications across heterogeneous environments.
ADHESIVE TAPE PLATFORM
[0038] FIG. 1A shows an example asset 10 that is sealed for shipment using an example adhesive tape platform 12 that includes embedded components of a wireless transducing circuit 14 (collectively referred to herein as a “tape node”). In this example, a length 13 of the adhesive tape platform 12 is dispensed from a roll 16 and affixed to the asset 10. The adhesive tape platform 12 includes an adhesive side 18 and a non-adhesive side 20. The adhesive tape platform 12 can be dispensed from the roll 16 in the same way as any conventional packing tape, shipping tape, or duct tape. For example, the adhesive tape platform 12 may be dispensed from the roll 16 by hand, laid across the seam where the two top flaps of the asset 10 meet, and cut to a suitable length either by hand or using a cutting instrument (e.g., scissors or an automated or manual tape dispenser). Examples of such tapes include tapes having non -adhesive sides 20 that carry one or more coatings or layers (e.g., colored, light reflective, light absorbing, and/or light emitting coatings or layers).
[0039] Referring to FIG. IB, in some examples, the non-adhesive side 20 of the length 13 of the adhesive tape platform 12 includes writing or other markings that convey instructions, warnings, or other information to a person or machine (e.g., a bar code reader), or may simply be decorative and/or entertaining. For example, different types of adhesive tape platforms may be marked with distinctive colorations to distinguish one type of adhesive tape platform from another. In the illustrated example, the length 13 of the adhesive tape platform 12 includes a two-dimensional bar code (e.g., a QR Code) 22, written instructions 24 (i.e., “Cut Here”), and an associated cut line 26 that indicates where the user should cut the adhesive tape platform 12. The written instructions 24 and the cut line 26 typically are printed or otherwise marked on the top non-adhesive surface 20 of the adhesive tape platform 12 during manufacture. The two-dimensional bar code 22, on the other hand, may be marked on the non-adhesive surface 20 of the adhesive tape platform 12 during the manufacture of the adhesive product 12 or, alternatively, may be marked on the non-adhesive surface 20 of the adhesive tape platform 12 as needed using, for example, a printer or other marking device.
[0040] In order to avoid damage to the functionality of the segments of the adhesive tape platform 12, the cut lines 26 typically demarcate the boundaries between adjacent segments at locations that are free of any active components of the wireless transducing circuit 14. The spacing between the wireless transducing circuit components 14 and the cut lines 26 may vary depending on the intended communication, transducing and/or adhesive taping application. In the example illustrated in FIG. 1A, the length of the adhesive tape platform 12 that is dispensed to seal the asset 10 corresponds to a single segment of the adhesive tape platform 12. In other examples, the length of the adhesive tape platform 12 needed to seal a asset or otherwise serve the adhesive function for which the adhesive tape platform 12 is being applied may include multiple segments 13 of the adhesive tape platform 12, one or more of which segments 13 may be activated upon cutting the length of the adhesive tape platform 12 from the roll 16 and/or applying the length of the adhesive tape platform to the asset 10.
[0041] In some examples, the transducing components 14 that are embedded in one or more segments 13 of the adhesive tape platform 12 are activated when the adhesive tape platform 12 is cut along the cut line 26. In these examples, the adhesive tape platform 12 includes one or more embedded energy sources (e.g., thin fdm batteries, which may be printed, or conventional cell batteries, such as conventional watch style batteries, rechargeable batteries, or other energy storage device, such as a super capacitor or charge pump) that supply power to the transducing components 14 in one or more segments of the adhesive tape platform 12 in response to being separated from the adhesive tape platform 12 (e.g., along the cut line 26).
[0042] In some examples, each segment 13 of the adhesive tape platform 12 includes its own respective energy source including energy harvesting elements that can harvest energy from the environment. In some of these examples, each energy source is configured to only supply power to the components in its respective adhesive tape platform segment regardless of the number of contiguous segments 13 that are in a given length of the adhesive tape platform 12. In other examples, when a given length of the adhesive tape platform 12 includes multiple segments 13, the energy sources in the respective segments 13 are configured to supply power to the transducing components 14 in all of the segments 13 in the given length of the adhesive tape platform 12. In some of these examples, the energy sources are connected in parallel and concurrently activated to power the transducing components 14 in all of the segments 13 at the same time. In other examples, the energy sources are connected in parallel and alternately activated to power the transducing components 14 in respective ones of the adhesive tape platform segments 13 at different time periods, which may or may not overlap.
[0043] FIG. 2 shows an example adhesive tape platform 30 that includes a set of adhesive tape platform segments 32 each of which includes a respective set of embedded wireless transducing circuit components 34, and a backing sheet 36 with a release coating that prevents the adhesive segments 32 from adhering strongly to the backing sheet 36. Each adhesive tape platform segment 32 includes an adhesive side facing the backing sheet 36, and an opposing non-adhesive side 40. In this example, a particular segment 32’ of the adhesive tape platform 30 has been removed from the backing sheet 36 and affixed to an envelope 44. Each segment 32 of the adhesive tape platform 30 can be removed from the backing sheet 36 in the same way that adhesive labels can be removed from a conventional sheet of adhesive labels (e.g., by manually peeling a segment 32 from the backing sheet 36). In general, the non adhesive side 40’ of the segment 32’ may include any type of writing, markings, decorative designs, or other ornamentation. In the illustrated example, the non-adhesive side 40’ of the segment 32’ includes writing or other markings that correspond to a destination address for the envelope 44. The envelope 44 also includes a return address 46 and, optionally, a postage stamp or mark 48.
[0044] In some examples, segments of the adhesive tape platform 12 are deployed by a human operator. The human operator may be equipped with a mobile phone or other device that allows the operator to authenticate and initialize the adhesive tape platform 12. In addition, the operator can take a picture of a asset including the adhesive tape platform and any barcodes associated with the asset and, thereby, create a persistent record that links the adhesive tape platform 12 to the asset. In addition, the human operator typically will send the picture to a network service and/or transmit the picture to the adhesive tape platform 12 for storage in a memory component of the adhesive tape platform 12.
[0045] In some examples, the wireless transducing circuit components 34 that are embedded in a segment 32 of the adhesive tape platform 12 are activated when the segment 32 is removed from the backing sheet 32. In some of these examples, each segment 32 includes an embedded capacitive sensing system that can sense a change in capacitance when the segment 32 is removed from the backing sheet 36. As explained in detail below, a segment 32 of the adhesive tape platform 30 includes one or more embedded energy sources (e.g., thin fdm batteries, common disk-shaped cell batteries, or rechargeable batteries or other energy storage devices, such as a super capacitor or charge pump) that can be configured to supply power to the wireless transducing circuit components 34 in the segment 32 in response to the detection of a change in capacitance between the segment 32 and the backing sheet 36 as a result of removing the segment 32 from the backing sheet 36.
[0046] FIG. 3 shows a block diagram of the components of an example wireless transducing circuit 70 that includes a number of communication systems 72, 74. Example communication systems 72, 74 include a GPS system that includes a GPS receiver circuit 82 (e.g., a receiver integrated circuit) and a GPS antenna 84, and one or more wireless communication systems each of which includes a respective transceiver circuit 86 (e.g., a transceiver integrated circuit) and a respective antenna 88. Example wireless communication systems include a cellular communication system (e.g., GSM/GPRS), a Wi-Fi communication system, an RF communication system (e.g., LoRa), a Bluetooth communication system (e.g., a Bluetooth Low Energy system), a Z-wave communication system, and a ZigBee communication system. The wireless transducing circuit 70 also includes a processor 90 (e.g., a microcontroller or microprocessor), one or more energy storage devices 92 (e.g., non-rechargeable or rechargeable printed flexible battery, conventional single or multiple cell battery, and/or a super capacitor or charge pump), one or more transducers 94 (e.g., sensors and/or actuators, and, optionally, one or more energy harvesting transducer components). In some examples, the conventional single or multiple cell battery may be a watch style disk or button cell battery that is associated electrical connection apparatus (e.g., a metal clip) that electrically connects the electrodes of the battery to contact pads on the flexible circuit 116.
[0047] Examples of sensing transducers 94 include a capacitive sensor, an altimeter, a gyroscope, an accelerometer, a temperature sensor, a strain sensor, a pressure sensor, a piezoelectric sensor, a weight sensor, an optical or light sensor (e.g., a photodiode or a camera), an acoustic or sound sensor (e.g., a microphone), a smoke detector, a radioactivity sensor, a chemical sensor (e.g., an explosives detector), a biosensor (e.g., a blood glucose biosensor, odor detectors, antibody based pathogen, food, and water contaminant and toxin detectors, DNA detectors, microbial detectors, pregnancy detectors, and ozone detectors), a magnetic sensor, an electromagnetic field sensor, and a humidity sensor. Examples of actuating (e.g., energy emitting) transducers 94 include light emitting components (e.g., light emitting diodes and displays), electro-acoustic transducers (e.g., audio speakers), electric motors, and thermal radiators (e.g., an electrical resistor or a thermoelectric cooler).
[0048] In some examples, the wireless transducing circuit 70 includes a memory 96 for storing data, including, e.g., profile data, state data, event data, sensor data, localization data, security data, and one or more unique identifiers (ID) 98 associated with the wireless transducing circuit 70, such as a product ID, a type ID, and a media access control (MAC) ID, and control code 99. In some examples, the memory 96 may be incorporated into one or more of the processor 90 or transducers 94, or may be a separate component that is integrated in the wireless transducing circuit 70 as shown in FIG. 3. The control code typically is implemented as programmatic functions or program modules that control the operation of the wireless transducing circuit 70, including a tape node communication manager that manages the manner and timing of tape node communications, a tape node power manager that manages power consumption, and a tape node connection manager that controls whether connections with other tape nodes are secure connections or unsecure connections, and a tape node storage manager that securely manages the local data storage on the node. The tape node connection manager ensures the level of security required by the end application and supports various encryption mechanisms. The tape node power manager and tape communication manager work together to optimize the battery consumption for data communication. In some examples, execution of the control code by the different types of tape nodes described herein may result in the performance of similar or different functions.
[0049] FIG. 4 is a top view of a portion of an example flexible adhesive tape platform 100 that shows a first segment 102 and a portion of a second segment 104. Each segment 102, 104 of the flexible adhesive tape platform 100 includes a respective set 106, 108 of the components of the wireless transducing circuit 70. The segments 102, 104 and their respective sets of components 106, 108 typically are identical and configured in the same way. In some other embodiments, however, the segments 102, 104 and/or their respective sets of components 106, 108 are different and/or configured in different ways. For example, in some examples, different sets of the segments of the flexible adhesive tape platform 100 have different sets or configurations of tracking and/or transducing components that are designed and/or optimized for different applications, or different sets of segments of the flexible adhesive tape platform may have different ornamentations (e.g., markings on the exterior surface of the platform) and/or different (e.g., alternating) lengths.
[0050] An example method of fabricating the adhesive tape platform 100 (see FIG. 4) according to a roll-to-roll fabrication process is described in connection with FIGS. 6, 7A, and 7B of U.S. Patent No. 10,262,255, issued April 16, 2019, the entirety of which is incorporated herein by reference.
[0051] The instant specification describes an example system of adhesive tape platforms (also referred to herein as “tape nodes”) that can be used to implement a low-cost wireless network infrastructure for performing monitoring, tracking, and other asset management functions relating to, for example, parcels, persons, tools, equipment and other physical assets and objects. The example system includes a set of three different types of tape nodes that have different respective functionalities and different respective cover markings that visually distinguish the different tape node types from one another. In one non limiting example, the covers of the different tape node types are marked with different colors (e.g., white, green, and black). In the illustrated examples, the different tape node types are distinguishable from one another by their respective wireless communications capabilities and their respective sensing capabilities. [0052] FIG. 5 A shows a cross-sectional side view of a portion of an example segment 102 of the flexible adhesive tape platform 100 that includes a respective set of the components of the wireless transducing circuit 106 corresponding to the first tape node type (i.e., white). The flexible adhesive tape platform segment 102 includes an adhesive layer 112, an optional flexible substrate 110, and an optional adhesive layer 114 on the bottom surface of the flexible substrate 110. If the bottom adhesive layer 114 is present, a release liner (not shown) may be (weakly) adhered to the bottom surface of the adhesive layer 114. In some examples, the adhesive layer 114 includes an adhesive (e.g., an acrylic foam adhesive) that has a high bond strength that is sufficient to prevent removal of the adhesive segment 102 from a surface on which the adhesive layer 114 is adhered without destroying the physical or mechanical integrity of the adhesive segment 102 and/or one or more of its constituent components. In some examples, the optional flexible substrate 110 is implemented as a prefabricated adhesive tape that includes the adhesive layers 112, 114 and the optional release liner. In other examples, the adhesive layers 112, 114 are applied to the top and bottom surfaces of the flexible substrate 110 during the fabrication of the adhesive tape platform 100. The adhesive layer 112 bonds the flexible substrate 110 to a bottom surface of a flexible circuit 116, that includes one or more wiring layers (not shown) that connect the processor 90, a low power wireless communication interface 81 (e.g., a Zigbee, Bluetooth® Low Energy (BLE) interface, or other low power communication interface), a timer circuit 83, transducing and/or energy harvesting component(s) 94 (if present), the memory 96, and other components in a device layer 122 to each other and to the energy storage component 92 and, thereby, enable the transducing, tracking and other functionalities of the flexible adhesive tape platform segment 102. The low power wireless communication interface 81 typically includes one or more of the antennas 84, 88 and one or more of the wireless circuits 82, 86.
[0053] FIG. 5B shows a cross-sectional side view of a portion of an example segment 103 of the flexible adhesive tape platform 100 that includes a respective set of the components of the wireless transducing circuit 106 corresponding to the second tape node type (i.e., green). In this example, the flexible adhesive tape platform segment 103 differs from the segment 102 shown in FIG. 5 A by the inclusion of a medium power communication interface 85 (e.g., a LoRa interface) in addition to the low power communications interface that is present in the first tape node type (i.e., white). The medium power communication interface has longer communication range than the low power communication interface.
In some examples, one or more other components of the flexible adhesive tape platform segment 103 differ, for example, in functionality or capacity (e.g., larger energy source).
[0054] FIG. 5C shows a cross-sectional side view of a portion of an example segment 105 of the flexible adhesive tape platform 100 that includes a respective set of the components of the wireless transducing circuit 106 corresponding to the third tape node type (i.e., black). In this example, the flexible adhesive tape platform segment 105 includes a high power communications interface 87 (e.g., a cellular interface; e.g., GSM/GPRS) and an optional medium and/or low power communications interface 85. The high power communication range provides global coverage to available infrastructure (e.g. the cellular network). In some examples, one or more other components of the flexible adhesive tape platform segment 105 differ, for example, in functionality or capacity (e.g., larger energy source).
[0055] FIGS. 5A-5C show examples in which the cover layer 128 of the flexible adhesive tape platform 100 includes one or more interfacial regions 129 positioned over one or more of the transducers 94. In examples, one or more of the interfacial regions 129 have features, properties, compositions, dimensions, and/or characteristics that are designed to improve the operating performance of the platform 100 for specific applications. In some examples, the flexible adhesive tape platform 100 includes multiple interfacial regions 129 over respective transducers 94, which may be the same or different depending on the target applications. Example interfacial regions include an opening, an optically transparent window, and/or a membrane located in the interfacial region 129 of the cover 128 that is positioned over the one or more transducers and/or energy harvesting components 94. Additional details regarding the structure and operation of example interfacial regions 129 are described in U.S. Provisional Patent Application No. 62/680716, filed June 5, 2018, PCT Patent Application No. PCT/US2018/064919, filed December 11, 2018, U.S. Patent No. 10,885,420, issued January 4, 2021, U.S. Patent No.
10,902,310 issued January 25, 2021, and US Provisional Patent Application No. 62/670712, filed May 11, 2018, all of which are incorporated herein in their entirety. [0056] In some examples, a flexible polymer layer 124 encapsulates the device layer 122 and thereby reduces the risk of damage that may result from the intrusion of contaminants and/or liquids (e.g., water) into the device layer 122. The flexible polymer layer 124 also planarizes the device layer 122. This facilitates optional stacking of additional layers on the device layer 122 and also distributes forces generated in, on, or across the adhesive tape platform segment 102 so as to reduce potentially damaging asymmetric stresses that might be caused by the application of bending, torqueing, pressing, or other forces that may be applied to the flexible adhesive tape platform segment 102 during use. In the illustrated example, a flexible cover 128 is bonded to the planarizing polymer 124 by an adhesive layer (not shown).
[0057] The flexible cover 128 and the flexible substrate 110 may have the same or different compositions depending on the intended application. In some examples, one or both of the flexible cover 128 and the flexible substrate 110 include flexible fdm layers and/or paper substrates, where the film layers may have reflective surfaces or reflective surface coatings. Example compositions for the flexible film layers include polymer films, such as polyester, polyimide, polyethylene terephthalate (PET), and other plastics. The optional adhesive layer on the bottom surface of the flexible cover 128 and the adhesive layers 112, 114 on the top and bottom surfaces of the flexible substrate 110 typically include a pressure-sensitive adhesive (e.g., a silicon-based adhesive). In some examples, the adhesive layers are applied to the flexible cover 128 and the flexible substrate 110 during manufacture of the adhesive tape platform 100 (e.g., during a roll-to-roll or sheet-to-sheet fabrication process). In other examples, the flexible cover 128 may be implemented by a prefabricated single-sided pressure-sensitive adhesive tape and the flexible substrate 110 may be implemented by a prefabricated double-sided pressure-sensitive adhesive tape; both kinds of tape may be readily incorporated into a roll-to-roll or sheet-to-sheet fabrication process. In some examples, the flexible polymer layer 124 is composed of a flexible epoxy (e.g., silicone).
[0058] In some examples, the energy storage device 92 is a flexible battery that includes a printed electrochemical cell, which includes a planar arrangement of an anode and a cathode and battery contact pads. In some examples, the flexible battery may include lithium-ion cells or nickel-cadmium electro chemical cells. The flexible battery typically is formed by a process that includes printing or laminating the electro-chemical cells on a flexible substrate (e.g., a polymer fdm layer). In some examples, other components may be integrated on the same substrate as the flexible battery. For example, the low power wireless communication interface 81 and/or the processor(s) 90 may be integrated on the flexible battery substrate. In some examples, one or more of such components also (e.g., the flexible antennas and the flexible interconnect circuits) may be printed on the flexible battery substrate.
[0059] In some examples, the flexible circuit 116 is formed on a flexible substrate by printing, etching, or laminating circuit patterns on the flexible substrate. In some examples, the flexible circuit 116 is implemented by one or more of a single-sided flex circuit, a double access or back bared flex circuit, a sculpted flex circuit, a double-sided flex circuit, a multi-layer flex circuit, a rigid flex circuit, and a polymer thick film flex circuit. A single-sided flexible circuit has a single conductor layer made of, for example, a metal or conductive (e.g., metal filled) polymer on a flexible dielectric film. A double access or back bared flexible circuit has a single conductor layer but is processed so as to allow access to selected features of the conductor pattern from both sides. A sculpted flex circuit is formed using a multi- step etching process that produces a flex circuit that has finished copper conductors that vary in thickness along their respective lengths. A multilayer flex circuit has three of more layers of conductors, where the layers typically are interconnected using plated through holes. Rigid flex circuits are a hybrid construction of flex circuit consisting of rigid and flexible substrates that are laminated together into a single structure, where the layers typically are electrically interconnected via plated through holes. In polymer thick film (PTF) flex circuits, the circuit conductors are printed onto a polymer base film, where there may be a single conductor layer or multiple conductor layers that are insulated from one another by respective printed insulating layers.
[0060] In the example flexible adhesive tape platform segments 102 shown in FIGS. 5A-5C, the flexible circuit 116 is a single access flex circuit that interconnects the components of the adhesive tape platform on a single side of the flexible circuit 116. In other examples, the flexible circuit 116 is a double access flex circuit that includes a front-side conductive pattern that interconnects the low power communications interface 81, the timer circuit 83, the processor 90, the one or more transducers 94 (if present), and the memory 96, and allows through-hole access (not shown) to a back-side conductive pattern that is connected to the flexible battery (not shown). In these examples, the front-side conductive pattern of the flexible circuit 116 connects the communications circuits 82, 86 (e.g., receivers, transmitters, and transceivers) to their respective antennas 84, 88 and to the processor 90, and also connects the processor 90 to the one or more sensors 94 and the memory 96. The backside conductive pattern connects the active electronics (e.g., the processor 90, the communications circuits 82, 86, and the transducers) on the front-side of the flexible circuit 116 to the electrodes of the flexible battery 116 via one or more through holes in the substrate of the flexible circuit 116.
[0061] Depending on the target application, the wireless transducing circuits 70 are distributed across the flexible adhesive tape platform 100 according to a specified sampling density, which is the number of wireless transducing circuits 70 for a given unit size (e.g., length or area) of the flexible adhesive tape platform 100. In some examples, a set of multiple flexible adhesive tape platforms 100 are provided that include different respective sampling densities in order to seal different asset sizes with a desired number of wireless transducing circuits 70. In particular, the number of wireless transducing circuits per asset size is given by the product of the sampling density specified for the adhesive tape platform and the respective size of the adhesive tape platform 100 needed to seal the asset. This allows an automated packaging system to select the appropriate type of flexible adhesive tape platform 100 to use for sealing a given asset with the desired redundancy (if any) in the number of wireless transducer circuits 70. In some example applications (e.g., shipping low value goods), only one wireless transducing circuit 70 is used per asset, whereas in other applications (e.g., shipping high value goods) multiple wireless transducing circuits 70 are used per asset. Thus, a flexible adhesive tape platform 100 with a lower sampling density of wireless transducing circuits 70 can be used for the former application, and a flexible adhesive tape platform 100 with a higher sampling density of wireless transducing circuits 70 can be used for the latter application. In some examples, the flexible adhesive tape platforms 100 are color-coded or otherwise marked to indicate the respective sampling densities with which the wireless transducing circuits 70 are distributed across the different types of adhesive tape platforms 100.
[0062] Referring to FIG. 6A, in some examples, each of one or more of the segments 270, 272 of a flexible adhesive tape platform 274 includes a respective one-time wake circuit 275 that delivers power from the respective energy source 276 to the respective wireless circuit 278 (e.g., a processor, one or more transducers, and one or more wireless communications circuits) in response to an event. In some of these examples, the wake circuit 275 is configured to transition from an off state to an on state when the voltage on the wake node 277 exceeds a threshold level, at which point the wake circuit transitions to an on state to power-on the segment 270. In the illustrated example, this occurs when the user separates the segment from the adhesive tape platform 274, for example, by cutting across the adhesive tape platform 274 at a designated location (e.g., along a designated cut-line 280). In particular, in its initial, un-cut state, a minimal amount of current flows through the resistors R1 and R2. As a result, the voltage on the wake node 277 remains below the threshold turn-on level. After the user cuts across the adhesive tape platform 274 along the designated cut-line 280, the user creates an open circuit in the loop 282, which pulls the voltage of the wake node above the threshold level and turns on the wake circuit 275. As a result, the voltage across the energy source 276 will appear across the wireless circuit 278 and, thereby, turn on the segment 270. In particular embodiments, the resistance value of resistor R1 is greater than the resistance value of R2. In some examples, the resistance values of resistors R1 and R2 are selected based on the overall design of the adhesive product system (e.g., the target wake voltage level and a target leakage current).
[0063] In some examples, each of one or more of the segments of an adhesive tape platform includes a respective sensor and a respective wake circuit that delivers power from the respective energy source to the respective one or more of the respective wireless circuit components 278 in response to an output of the sensor. In some examples, the respective sensor is a strain sensor that produces a wake signal based on a change in strain in the respective segment. In some of these examples, the strain sensor is affixed to a adhesive tape platform and configured to detect the stretching of the tracking adhesive tape platform segment as the segment is being peeled off a roll or a sheet of the adhesive tape platform. In some examples, the respective sensor is a capacitive sensor that produces a wake signal based on a change in capacitance in the respective segment. In some of these examples, the capacitive sensor is affixed to an adhesive tape platform and configured to detect the separation of the tracking adhesive tape platform segment from a roll or a sheet of the adhesive tape platform. In some examples, the respective sensor is a flex sensor that produces a wake signal based on a change in curvature in the respective segment. In some of these examples, the flex sensor is affixed to a adhesive tape platform and configured to detect bending of the tracking adhesive tape platform segment as the segment is being peeled off a roll or a sheet of the adhesive tape platform. In some examples, the respective sensor is a near field communications sensor that produces a wake signal based on a change in inductance in the respective segment.
[0064] FIG. 6B shows another example of an adhesive tape platform 294 that delivers power from the respective energy source 276 to the respective tracking circuit 278 (e.g., a processor, one or more transducers, and one or more wireless communications circuits) in response to an event. This example is similar in structure and operation as the adhesive tape platform 294 shown in FIG. 6A, except that the wake circuit 275 is implemented by a switch 296 that is configured to transition from an open state to a closed state when the voltage on the switch node 277 exceeds a threshold level. In the initial state of the adhesive tape platform 294, the voltage on the switch node is below the threshold level as a result of the low current level flowing through the resistors R1 and R2. After the user cuts across the adhesive tape platform 294 along the designated cut-line 280, the user creates an open circuit in the loop 282, which pulls up the voltage on the switch node above the threshold level to close the switch 296 and turn on the wireless circuit 278.
[0065] FIG. 6C shows a diagrammatic cross-sectional front view of an example adhesive tape platform 300 and a perspective view of an example asset 302. Instead of activating the adhesive tape platform in response to separating a segment of the adhesive tape platform from a roll or a sheet of the adhesive tape platform, this example is configured to supply power from the energy source 302 to turn on the wireless transducing circuit 306 in response to establishing an electrical connection between two power terminals 308, 310 that are integrated into the adhesive tape platform. In particular, each segment of the adhesive tape platform 300 includes a respective set of embedded tracking components, an adhesive layer 312, and an optional backing sheet 314 with a release coating that prevents the segments from adhering strongly to the backing sheet 314. In some examples, the power terminals 308, 310 are composed of an electrically conductive material (e.g., a metal, such as copper) that may be printed or otherwise patterned and/or deposited on the backside of the adhesive tape platform 300. In operation, the adhesive tape platform can be activated by removing the backing sheet 314 and applying the exposed adhesive layer 312 to a surface that includes an electrically conductive region 316. In the illustrated embodiment, the electrically conductive region 316 is disposed on a portion of the asset 302. When the adhesive backside of the adhesive tape platform 300 is adhered to the asset with the exposed terminals 308, 310 aligned and in contact with the electrically conductive region 316 on the asset 302, an electrical connection is created through the electrically conductive region 316 between the exposed terminals 308, 310 that completes the circuit and turns on the wireless transducing circuit 306. In particular embodiments, the power terminals 308, 310 are electrically connected to any respective nodes of the wireless transducing circuit 306 that would result in the activation of the tracking circuit 306 in response to the creation of an electrical connection between the power terminals 308, 310.
[0066] In some examples, after a tape node is turned on, it will communicate with the network service to confirm that the user/operator who is associated with the tape node is an authorized user who has authenticated himself or herself to the network service 54. In these examples, if the tape node cannot confirm that the user/operator is an authorized user, the tape node will turn itself off.
DEPLOYMENT OF TAPE NODES
[0067] FIG. 7 shows an example network communications environment 400 (also referred to herein as an “IOT system,” “wireless tracking system,” and “tracking system” 400) that includes a network 402 that supports communications between one or more servers 404 executing one or more applications of a network service 408, mobile gateways 410, 412, a stationary gateway 414, and various types of tape nodes that are associated with various assets (e.g., parcels, equipment, tools, persons, and other things). Each member of the IOT system 400 may be referred to as a node of the IOT system 400, including the tape nodes, other wireless IOT devices, gateways (stationary and mobile), client devices, and servers. In some examples, the network 402 includes one or more network communication systems and technologies, including any one or more of wide area networks, local area networks, public networks (e.g., the internet), private networks (e.g., intranets and extranets), wired networks, and wireless networks. For example, the network 402 includes communications infrastructure equipment, such as a geolocation satellite system 416 (e.g., GPS, GLONASS, and NAVSTAR), cellular communication systems (e.g., GSM/GPRS), Wi-Fi communication systems, RF communication systems (e.g., LoRa), Bluetooth communication systems (e.g., a Bluetooth Low Energy system), Z-wave communication systems, and ZigBee communication systems.
[0068] In some examples, the one or more network service applications 406 leverage the above- mentioned communications technologies to create a hierarchical wireless network of tape nodes that improves asset management operations by reducing costs and improving efficiency in a wide range of processes, from asset packaging, asset transporting, asset tracking, asset condition monitoring, asset inventorying, and asset security verification. Communication across the network is secured by a variety of different security mechanisms. In the case of existing infrastructure, a communication link the communication uses the infrastructure security mechanisms. In case of communications among tapes nodes, the communication is secured through a custom security mechanism. In certain cases, tape nodes can also be configured to support block chain to protect the transmitted and stored data.
[0069] A set of tape nodes can be configured by the network service 408 to create hierarchical communications network. The hierarchy can be defined in terms of one or more factors, including functionality (e.g., wireless transmission range or power), role (e.g., master tape node vs. peripheral tape node), or cost (e.g., a tape node equipped with a cellular transceiver vs. a peripheral tape node equipped with a Bluetooth LE transceiver). Tape nodes can be assigned to different levels of a hierarchical network according to one or more of the above-mentioned factors. For example, the hierarchy can be defined in terms of communication range or power, where tape nodes with higher power or longer communication range transceivers are arranged at a higher level of the hierarchy than tape nodes with lower power or lower range transceivers. In another example, the hierarchy is defined in terms of role, where, e.g., a master tape node is programmed to bridge communications between a designated group of peripheral tape nodes and a gateway node or server node. The problem of finding an optimal hierarchical structure can be formulated as an optimization problem with battery capacity of nodes, power consumption in various modes of operation, desired latency, external environment, etc. and can be solved using modem optimization methods e.g. neural networks, artificial intelligence, and other machine learning computing systems that take expected and historical data to create an optimal solution and can create algorithms for modifying the system’s behavior adaptively in the field.
[0070] The tape nodes may be deployed by automated equipment or manually. In this process, a tape node typically is separated from a roll or sheet and adhered to a asset, or other stationary or mobile object (e.g., a structural element of a warehouse, or a vehicle, such as a delivery truck) or stationary object (e.g., a structural element of a building). This process activates the tape node and causes the tape node to communicate with a server 404 of the network service 408. In this process, the tape node may communicate through one or more other tape nodes in the communication hierarchy. In this process, the network server 404 executes the network service application 406 to programmatically configure tape nodes that are deployed in the environment 400. In some examples, there are multiple classes or types of tape nodes, where each tape node class has a different respective set of functionalities and/or capacities.
[0071] In some examples, the one or more network service servers 404 communicate over the network 402 with one or more gateways that are configured to send, transmit, forward, or relay messages to the network 402 and activated tape nodes that are associated with respective assets and within communication range. Example gateways include mobile gateways 410, 412 and a stationary gateway 414. In some examples, the mobile gateways 410, 412, and the stationary gateway 414 are able to communicate with the network 402 and with designated sets or groups of tape nodes. [0072] In some examples, the mobile gateway 412 is a vehicle (e.g., a delivery truck or other mobile hub) that includes a wireless communications unit 416 that is configured by the network service 408 to communicate with a designated set of tape nodes, including a peripheral tape node 418 in the form of a label that is adhered to an asset 420 contained within a parcel 421 (e.g., an envelope), and is further configured to communicate with the network service 408 over the network 402. In some examples, the peripheral tape node 418 includes a lower power wireless communications interface of the type used in, e.g., tape node 102 (shown in FIG. 5 A), and the wireless communications unit 416 is implemented by a tape node (e.g., one of tape node 103 or tape node 105, respectively shown in FIGS. 5B and 5C) that includes a lower power communications interface for communicating with tape nodes within range of the mobile gateway 412 and a higher power communications interface for communicating with the network 402. In this way, the tape nodes 418 and 416 create a hierarchical wireless network of nodes for transmitting, forwarding, bridging, relaying, or otherwise communicating wireless messages to, between, or on behalf of the peripheral tape node 418 and the network service 408 in a power-efficient and cost- effective way.
[0073] In some examples, the mobile gateway 410 is a mobile phone that is operated by a human operator and executes a client application 422 that is configured by the network service 408 to communicate with a designated set of tape nodes, including a master tape node 424 that is adhered to a parcel 426 (e.g., a box), and is further configured to communicate with the network service 408 over the network 402. In the illustrated example, the parcel 426 contains a first parcel labeled or sealed by a tape node 428 and containing a first asset 430, and a second parcel labeled or sealed by a tape node 432 and containing a second asset 434. As explained in detail below, the master tape node 424 communicates with each of the peripheral tape nodes 428, 432 and communicates with the mobile gateway 408 in accordance with a hierarchical wireless network of tape nodes. In some examples, each of the peripheral tape nodes 428, 432 includes a lower power wireless communications interface of the type used in, e.g., tape node 102 (shown in FIG. 5 A), and the master tape node 424 is implemented by a tape node (e.g., tape node 103, shown in FIG. 5B) that includes a lower power communications interface for communicating with the peripheral tape nodes 428, 432 contained within the parcel 426, and a higher power communications interface for communicating with the mobile gateway 410. The master tape node 424 is operable to relay wireless communications between the tape nodes 428, 432 contained within the parcel 426 and the mobile gateway 410, and the mobile gateway 410 is operable to relay wireless communications between the master tape node 424 and the network service 408 over the wireless network 402. In this way, the master tape node 424 and the peripheral tape nodes 428 and 432 create a hierarchical wireless network of nodes for transmitting, forwarding, relaying, or otherwise communicating wireless messages to, between, or on behalf of the peripheral tape nodes 428, 432 and the network service 408 in a power-efficient and cost-effective way.
[0074] In some examples, the stationary gateway 414 is implemented by a server executing a server application that is configured by the network service 408 to communicate with a designated set 440 of tape nodes 442, 444, 446, 448 that are adhered to respective parcels containing respective assets 450, 452, 454, 456 on a pallet 458. In other examples, the stationary gateway 414 is implemented by atape node (e.g., one of tape node 103 or tape node 105, respectively shown in FIGS. 5B and 5C) that is adhered to, for example, a wall, column or other infrastructure component of the environment 400, and includes a lower power communications interface for communicating with tape nodes within range of the stationary gateway 414 and a higher power communications interface for communicating with the network 402. In one embodiment, each of the tape nodes 442-448 is a peripheral tape node and is configured by the network service 408 to communicate individually with the stationary gateway 414, which relays communications from the tape nodes 442-448 to the network service 408 through the stationary gateway 414 and over the communications network 402. In another embodiment, one of the tape nodes 442-448 at a time is configured as a master tape node that transmits, forwards, relays, or otherwise communicate wireless messages to, between, or on behalf of the other tape nodes on the pallet 458. In this embodiment, the master tape node may be determined by the tape nodes 442-448 or designated by the network service 408. In some examples, the tape node with the longest range or highest remaining power level is determined to be the master tape node. In some examples, when the power level of the current master tape node drops below a certain level (e.g., a fixed power threshold level or a threshold level relative to the power levels of one or more of the other tape nodes), another one of the tape nodes assumes the role of the master tape node. In some examples, a master tape node 459 is adhered to the pallet 458 and is configured to perform the role of a master node for the tape nodes 442-448. In these ways, the tape nodes 442-448, 458 are configurable to create different hierarchical wireless networks of nodes for transmitting, forwarding, relaying, bridging, or otherwise communicating wireless messages with the network service 408 through the stationary gateway 414 and over the network 402 in a power-efficient and cost-effective way.
[0075] In the illustrated example, the stationary gateway 414 also is configured by the network service 408 to communicate with a designated set of tape nodes, including a master tape node 460 that is adhered to the inside of a door 462 of a shipping container 464, and is further configured to communicate with the network service 408 over the network 402. In the illustrated example, the shipping container 464 contains a number of parcels labeled or sealed by respective peripheral tape nodes 466 and containing respective assets. The master tape node 416 communicates with each of the peripheral tape nodes 466 and communicates with the stationary gateway 415 in accordance with a hierarchical wireless network of tape nodes. In some examples, each of the peripheral tape nodes 466 includes a lower power wireless communications interface of the type used in, e.g., tape node 102 (shown in FIG. 5A), and the master tape node 460 is implemented by a tape node (e.g., tape node 103, shown in FIG. 5B) that includes a lower power communications interface for communicating with the peripheral tape nodes 466 contained within the shipping container 464, and a higher power communications interface for communicating with the stationary gateway 414.
[0076] In some examples, when the doors of the shipping container 464 are closed, the master tape node 460 is operable to communicate wirelessly with the peripheral tape nodes 466 contained within the shipping container 464. In an example, the master tape node 460 is configured to collect sensor data from the peripheral tape nodes and, in some embodiments, process the collected data to generate, for example, one or more histograms from the collected data. When the doors of the shipping container 464 are open, the master tape node 460 is programmed to detect the door opening (e.g., with an accelerometer component of the master tape node 460) and, in addition to reporting the door opening event to the network service 408, the master tape node 460 is further programmed to transmit the collected data and/or the processed data in one or more wireless messages to the stationary gateway 414. The stationary gateway 414, in turn, is operable to transmit the wireless messages received from the master tape node 460 to the network service 408 over the wireless network 402. Alternatively, in some examples, the stationary gateway 414 also is operable to perform operations on the data received from the master tape node 460 with the same type of data produced by the master node 459 based on sensor data collected from the tape nodes 442-448. In this way, the master tape node 460 and the peripheral tape nodes 466 create a hierarchical wireless network of nodes for transmitting, forwarding, relaying, or otherwise communicating wireless messages to, between, or on behalf of the peripheral tape nodes 466 and the network service 408 in a power-efficient and cost-effective way.
[0077] In an example of the embodiment shown in FIG. 7, there are three classes of tape nodes: a short range tape node, a medium range tape node, and a long range tape node, as respectively shown in FIGS. 5A-5C. The short range tape nodes typically are adhered directly to parcels containing assets. In the illustrated example, the tape nodes 418, 428, 432, 442-448, 466 are short range tape nodes. The short range tape nodes typically communicate with a low power wireless communication protocol (e.g., Bluetooth LE, Zigbee, or Z-wave). The medium range tape nodes typically are adhered to objects (e.g., a box 426 and a shipping container 460) that are associated with multiple parcels that are separated from the medium range tape nodes by a barrier or a large distance. In the illustrated example, the tape nodes 424 and 460 are medium range tape nodes. The medium range tape nodes typically communicate with a medium power wireless communication protocol (e.g., LoRa or Wi-Fi). The long-range tape nodes typically are adhered to mobile or stationary infrastructure of the wireless communication environment 400. In the illustrated example, the mobile gateway tape node 412 and the stationary gateway tape node 414 are long range tape nodes. The long range tape nodes typically communicate with other nodes using a high power wireless communication protocol (e.g., a cellular data communication protocol). In some examples, the mobile gateway tape node 436 is adhered to a mobile vehicle (e.g., a truck). In these examples, the mobile gateway 412 may be moved to different locations in the environment 400 to assist in connecting other tape nodes to the server 404. In some examples, the stationary gateway tape node 414 may be attached to a stationary structure (e.g., a wall) in the environment 400 with a known geographic location. In these examples, other tape nodes in the environment can determine their geographic location by querying the gateway tape node 414.
WIRELESS COMMUNICATIONS NETWORK
[0078] FIG. 8 shows an example hierarchical wireless communications network of tape nodes 470. In this example, the short range tape node 472 and the medium range tape node 474 communicate with one another over their respective low power wireless communication interfaces 476, 478. The medium range tape node 474 and the long range tape node 480 communicate with one another over their respective medium power wireless communication interfaces 478, 482. The long range tape node 480 and the network server 404 communicate with one another over the high power wireless communication interface 484. In some examples, the low power communication interfaces 476, 478 establish wireless communications with one another in accordance with the Bluetooth LE protocol, the medium power communication interfaces 452, 482 establish wireless communications with one another in accordance with the LoRa communications protocol, and the high power communication interface 484 establishes wireless communications with the server 404 in accordance with a cellular communications protocol.
[0079] In some examples, the different types of tape nodes are deployed at different levels in the communications hierarchy according to their respective communications ranges, with the long range tape nodes generally at the top of the hierarchy, the medium range tape nodes generally in the middle of the hierarchy, and the short range tape nodes generally at the bottom of the hierarchy. In some examples, the different types of tape nodes are implemented with different feature sets that are associated with component costs and operational costs that vary according to their respective levels in the hierarchy. This allows system administrators flexibility to optimize the deployment of the tape nodes to achieve various objectives, including cost minimization, asset tracking, asset localization, and power conservation.
[0080] In some examples, a server 404 of the network service 408 designates a tape node at a higher level in a hierarchical communications network as a master node of a designated set of tape nodes at a lower level in the hierarchical communications network. For example, the designated master tape node may be adhered to a parcel (e.g., a box, pallet, or shipping container) that contains one or more tape nodes that are adhered to one or more assets containing respective assets. In order to conserve power, the tape nodes typically communicate according to a schedule promulgated by the server 404 of the network service 408. The schedule usually dictates all aspects of the communication, including the times when particular tape nodes should communicate, the mode of communication, and the contents of the communication. In one example, the server 404 transmits programmatic Global Scheduling Description Language (GSDL) code to the master tape node and each of the lower-level tape nodes in the designated set. In this example, execution of the GSDL code causes each of the tape nodes in the designated set to connect to the master tape node at a different respective time that is specified in the GSDL code, and to communicate a respective set of one or more data packets of one or more specified types of information over the respective connection. In some examples, the master tape node simply forwards the data packets to the server network node 404, either directly or indirectly through a gateway tape node (e.g., the long range tape node 416 adhered to the mobile vehicle 412 or the long range tape node 414 adhered to an infrastructure component of the environment 400). In other examples, the master tape node processes the information contained in the received data packets and transmits the processed information to the server network node 404.
[0081] FIG. 9 shows an example method of creating a hierarchical communications network. In accordance with this method, a first tape node is adhered to a first asset in a set of associated assets, the first tape node including a first type of wireless communication interface and a second type of wireless communication interface having a longer range than the first type of wireless communication interface (FIG. 9, block 490). A second tape node is adhered to a second asset in the set, the second tape node including the first type of wireless communication interface, wherein the second tape node is operable to communicate with the first tape node over a wireless communication connection established between the first type of wireless communication interfaces of the first and second tape nodes (FIG. 9, block 492). An application executing on a computer system (e.g., a server 404 of a network service 408) establishes a wireless communication connection with the second type of wireless communication interface of the first tape node, and the application transmits programmatic code executable by the first tape node to function as a master tape node with respect to the second tape node (FIG. 9, block 494).
[0082] In other embodiments, the second tape node is assigned the role of the master node of the first tape node.
DISTRIBUTED AGENT OPERATING SYSTEM
[0083] As used herein, the term “node” refers to both a tape node and a non-tape node (i.e., a node or wireless device that is not an adhesive tape platform) unless the node is explicitly designated as a “tape node” or a “non-tape node.” In some embodiments, a non-tape node may have the same or similar communication, sensing, processing and other functionalities and capabilities as the tape nodes described herein, except without being integrated into a tape platform. In some embodiments, non-tape nodes can interact seamlessly with tape nodes. Each node may be assigned a respective unique identifier, according to some embodiments.
[0084] The following disclosure describes a distributed software operating system that is implemented by distributed hardware nodes executing intelligent agent software to perform various tasks or algorithms. In some embodiments, the operating system distributes functionalities (e.g., performing analytics on data or statistics collected or generated by nodes) geographically across multiple intelligent agents that are bound to items (e.g., parcels, containers, packages, boxes, pallets, a loading dock, a door, a light switch, a vehicle such as a delivery truck, a shipping facility, a port, a hub, etc.). In addition, the operating system dynamically allocates the hierarchical roles (e.g., master and slave roles) that nodes perform over time in order to improve system performance, such as optimizing battery life across nodes, improving responsiveness, and achieving overall objectives. In some embodiments, optimization is achieved using a simulation environment for optimizing key performance indicators (PKIs).
[0085] In some embodiments, the nodes are programmed to operate individually or collectively as autonomous intelligent agents. In some embodiments, nodes are configured to communicate and coordinate actions and respond to events. In some embodiments, a node is characterized by its identity, its mission, and the services that it can provide to other nodes. A node’s identity is defined by its capabilities (e.g., battery life, sensing capabilities, and communications interfaces). A node’s mission (or objective) is defined by the respective program code, instructions, or directives it receives from another node (e.g., a server or a master node) and the actions or tasks that it performs in accordance with that program code, instructions, or directives (e.g., sense temperature every hour and send temperature data to a master node to upload to a server). A node’s services define the functions or tasks that it is permitted to perform for other nodes (e.g., retrieve temperature data from a peripheral node and send the received temperature data to the server). At least for certain tasks, once programmed and configured with their identities, missions, and services, nodes can communicate with one another and request services from and provide services to one another independently of the server.
[0086] Thus, in accordance with the runtime operating system every agent knows its objectives (programmed). Every agent knows which capabilities/resources it needs to fulfill objective. Every agent communicates with every other node in proximity to see if it can offer the capability. Examples include communicate data to the server, authorize going to lower power level, temperature reading, send an alert to local hub, send location data, triangulate location, any boxes in same group that already completed group objectives.
[0087] Nodes can be associated with items. Examples of an item includes, but are not limited to for example, a package, a box, pallet, a container, a truck or other conveyance, infrastructure such as a door, a conveyor belt, a light switch, a road, or any other thing that can be tracked, monitored, sensed, etc. or that can transmit data concerning its state or environment. In some examples, a server or a master node may associate the unique node identifiers with the items. [0088] Communication paths between tape and/or non-tape nodes may be represented by a graph of edges between the corresponding assets (e.g., a storage unit, truck, or hub). In some embodiments, each node in the graph has a unique identifier. A set of connected edges between nodes is represented by a sequence of the node identifiers that defines a communication path between a set of nodes.
[0089] Referring to FIG. 10A, a node 520 (Node A) is associated with an asset 522 (Asset A). In some embodiments, the node 520 may be implemented as a tape node that is used to seal the asset 522 or it may be implemented as a label node that is used to label the asset 522; alternatively, the node 520 may be implemented as a non-tape node that is inserted within the asset 522 or embedded in or otherwise attached to the interior or exterior of the asset 522. In the illustrated embodiment, the node 520 includes a low power communications interface 524 (e.g., a Bluetooth Low Energy communications interface). Another node 526 (Node B), which is associated with another asset 530 (Asset B), is similarly equipped with a compatible low power communications interface 528 (e.g., a Bluetooth Low Energy communications interface).
[0090] In an example scenario, in accordance with the programmatic code stored in its memory, node 526 (Node B) requires a connection to node 520 (Node A) to perform a task that involves checking the battery life of Node A. Initially, Node B is unconnected to any other nodes. In accordance with the programmatic code stored in its memory, Node B periodically broadcasts advertising packets into the surrounding area. When the other node 520 (Node A) is within range of Node B and is operating in a listening mode, Node A will extract the address of Node B and potentially other information (e.g., security information) from an advertising packet. If, according to its programmatic code, Node A determines that it is authorized to connect to Node B, Node A will attempt to pair with Node B. In this process, Node A and Node B determine each other’s identities, capabilities, and services. For example, after successfully establishing a communication path 532 with Node A (e.g., a Bluetooth Low Energy formatted communication path), Node B determines Node A’s identity information (e.g., master node), Node A’s capabilities include reporting its current battery life, and Node A’s services include transmitting its current battery life to other nodes. In response to a request from Node B, Node A transmits an indication of its current battery life to Node B.
[0091] Referring to FIG. 10B, a node 534 (Node C) is associated with an asset 535 (Asset C). In the illustrated embodiment, the Node C includes a low power communications interface 536 (e.g., a Bluetooth Low Energy communications interface), and a sensor 537 (e.g., a temperature sensor). Another node 538 (Node D), which is associated with another asset 540 (Asset D), is similarly equipped with a compatible low power communications interface 542 (e.g., a Bluetooth Low Energy communications interface).
[0092] In an example scenario, in accordance with the programmatic code stored in its memory, Node D requires a connection to Node C to perform a task that involves checking the temperature in the vicinity of Node C. Initially, Node D is unconnected to any other nodes. In accordance with the programmatic code stored in its memory, Node D periodically broadcasts advertising packets in the surrounding area. When Node C is within range of Node D and is operating in a listening mode, Node C will extract the address of Node D and potentially other information (e.g., security information) from the advertising packet. If, according to its programmatic code, Node C determines that it is authorized to connect to Node D, Node C will attempt to pair with Node D. In this process, Node C and Node D determine each other’s identities, capabilities, and services. For example, after successfully establishing a communication path 544 with Node C (e.g., a Bluetooth Low Energy formatted communication path), Node D determines Node C’s identity information (e.g., a peripheral node), Node C’s capabilities include retrieving temperature data, and Node C’s services include transmitting temperature data to other nodes. In response to a request from Node D, Node C transmits its measured and/or locally processed temperature data to Node D.
[0093] Referring to FIG. IOC, a pallet 550 is associated with a master node 551 that includes a low power communications interface 552, a GPS receiver 554, and a cellular communications interface 556.
In some embodiments, the master node 551 may be implemented as a tape node or a label node that is adhered to the pallet 550. In other embodiments, the master node 551 may be implemented as a non-tape node that is inserted within the body of the pallet 550 or embedded in or otherwise attached to the interior or exterior of the pallet 550.
[0094] The pallet 550 provides a structure for grouping and containing assets 559, 561, 563 each of which is associated with a respective peripheral node 558, 560, 562 (Node E, Node F, and Node G). Each of the peripheral nodes 558, 560, 562 includes a respective low power communications interface 564,
566, 568 (e.g., Bluetooth Low Energy communications interface). In the illustrated embodiment, each of the nodes E, F, G and the master node 551 are connected to each of the other nodes over a respective low power communications path (shown by dashed lines).
[0095] In some embodiments, the assets 559, 561, 563 are grouped together because they are related. For example, the assets 559, 561, 563 may share the same shipping itinerary or a portion thereof. In an example scenario, the master pallet node 550 scans for advertising packets that are broadcasted from the peripheral nodes 558, 560, 562. In some examples, the peripheral nodes broadcast advertising packets during respective scheduled broadcast intervals. The master node 551 can determine the presence of the assets 559, 561, 563 in the vicinity of the pallet 550 based on receipt of one or more advertising packets from each of the nodes E, F, and G. In some embodiments, in response to receipt of advertising packets broadcasted by the peripheral nodes 558, 560, 562, the master node 551 transmits respective requests to the server to associate the master node 551 and the respective peripheral nodes 558, 560, 562. In some examples, the master tape node requests authorization from the server to associate the master tape node and the peripheral tape nodes. If the corresponding assets 559, 561, 563 are intended to be grouped together (e.g., they share the same itinerary or certain segments of the same itinerary), the server authorizes the master node 551 to associate the peripheral nodes 558, 560, 562 with one another as a grouped set of assets. In some embodiments, the server registers the master node and peripheral tape node identifiers with a group identifier. The server also may associate each node ID with a respective physical label ID that is affixed to the respective asset.
[0096] In some embodiments, after an initial set of assets is assigned to a multi-asset group, the master node 551 may identify another asset arrives in the vicinity of the multi -asset group. The master node may request authorization from the server to associate the other asset with the existing multi -asset group. If the server determines that the other asset is intended to ship with the multi-asset group, the server instructs the master node to merge one or more other assets with currently grouped set of assets. After all assets are grouped together, the server authorizes the multi-asset group to ship. In some embodiments, this process may involve releasing the multi-asset group from a containment area (e.g., customs holding area) in a shipment facility.
[0097] In some embodiments, the peripheral nodes 558, 560, 562 include environmental sensors for obtaining information regarding environmental conditions in the vicinity of the associated assets 559,
561, 563. Examples of such environmental sensors include temperature sensors, humidity sensors, acceleration sensors, vibration sensors, shock sensors, pressure sensors, altitude sensors, light sensors, and orientation sensors.
[0098] In the illustrated embodiment, the master node 551 can determine its own location based on geolocation data transmitted by a satellite-based radio navigation system 570 (e.g., GPS, GLONASS, and NAVSTAR) and received by the GPS receiver 554 component of the master node 551. In an alternative embodiment, the location of the master pallet node 551 can be determined using cellular based navigation techniques that use mobile communication technologies (e.g., GSM, GPRS, CDMA, etc.) to implement one or more cell-based localization techniques. After the master node 551 has ascertained its location, the distance of each of the assets 559, 561, 563 from the master node 551 can be estimated based on the average signal strength of the advertising packets that the master node 551 receives from the respective peripheral node. The master node 551 can then transmit its own location and the locations of the asset nodes E, F, and G to a server over a cellular interface connection with a cell tower 572. Other methods of determining the distance of each of the assets 559, 561, 563 from the master node 551, such as Received Signal-Strength Index (RSSI) based indoor localization techniques, also may be used.
[0099] In some embodiments, after determining its own location and the locations of the peripheral nodes, the master node 551 reports the location data and the collected and optionally processed (e.g., either by the peripheral nodes peripheral nodes 558, 560, 562 or the master node 551) sensor data to a server over a cellular communication path 571 on a cellular network 572.
[0100] In some examples, nodes are able to autonomously detect logistics execution errors if assets that suppose to travel together no longer travel together, and raise an alert. For example, a node (e.g., the master node 551 or one of the peripheral nodes 558, 560, 562) alerts the server when the node determines that a particular asset 559 is being or has already been improperly separated from the group of assets. The node may determine that there has been an improper separation of the particular asset 559 in a variety of ways. For example, the associated node 558 that is bound to the particular asset 559 may include an accelerometer that generates a signal in response to movement of the asset from the pallet. In accordance with its intelligent agent program code, the associated node 558 determines that the master node 551 has not disassociated the particular asset 559 from the group and therefore broadcasts advertising packets to the master node, which causes the master node 551 to monitor the average signal strength of the advertising packets and, if the master node 551 determines that the signal strength is decreasing over time, the master node 551 will issue an alert either locally (e.g., through a speaker component of the master node 551) or to the server.
[0101] Referring to FIG. 10D, a truck 580 is configured as a mobile node or mobile hub that includes a cellular communications interface 582, a medium power communications interface 584, and a low power communications interface 586. The communications interfaces 580-586 may be implemented on one or more tape and non-tape nodes. In an illustrative scenario, the truck 580 visits a storage facility, such as a warehouse 588, to wirelessly obtain temperature data generated by temperature sensors in the medium range nodes 590, 592, 594. The warehouse 588 contains nodes 590, 592, and 594 that are associated with respective assets 591, 593, 595. In the illustrated embodiment, each node 590-594 is a medium range node that includes a respective medium power communications interface 596, 602, 608, a respective low power communications interface 598, 604, 610 and one or more respective sensors 600, 606, 612. In the illustrated embodiment, each of the asset nodes 590, 592, 594 and the truck 580 is connected to each of the other ones of the asset nodes through a respective medium power communications path (shown by dashed lines). In some embodiments, the medium power communications paths are LoRa formatted communication paths.
[0102] In some embodiments, the communications interfaces 584 and 586 (e.g., a LoRa communications interface and a Bluetooth Low Energy communications interface) on the node on the truck 580 is programmed to broadcast advertisement packets to establish connections with other network nodes within range of the truck node. A warehouse 588 includes medium range nodes 590, 592, 594 that are associated with respective containers 591, 593, 595 (e.g., assets, boxes, pallets, and the like). When the truck node’s low power interface 586 is within range of any of the medium range nodes 590, 592, 594 and one or more of the medium range nodes is operating in a listening mode, the medium range node will extract the address of truck node and potentially other information (e.g., security information) from the advertising packet. If, according to its programmatic code, the truck node determines that it is authorized to connect to one of the medium range nodes 590, 592, 594, the truck node will attempt to pair with the medium range node. In this process, the truck node and the medium range node determine each other’s identities, capabilities, and services. For example, after successfully establishing a communication path with the truck node (e.g., a Bluetooth Low Energy formatted communication path 614 or a LoRa formatted communication path 617), the truck node determines the identity information for the medium range node 590 (e.g., a peripheral node), the medium range node’s capabilities include retrieving temperature data, and the medium range node’s services include transmitting temperature data to other nodes. Depending of the size of the warehouse 588, the truck 580 initially may communicate with the nodes 590, 592, 594 using a low power communications interface (e.g., Bluetooth Low Energy interface). If any of the anticipated nodes fails to respond to repeated broadcasts of advertising packets by the truck 580, the truck 580 will try to communicate with the non-responsive nodes using a medium power communications interface (e.g., LoRa interface). In response to a request from the truck node 584, the medium range node 590 transmits an indication of its measured temperature data to the truck node. The truck node repeats the process for each of the other medium range nodes 592, 594 that generate temperature measurement data in the warehouse 588. The truck node reports the collected (and optionally processed, either by the medium range nodes 590, 592, 594 or the truck node) temperature data to a server over a cellular communication path 616 with a cellular network 618.
[0103] Referring to FIG. 10E, a master node 630 is associated with an item 632 (e.g., an asset) and grouped together with other items 634, 636 (e.g., assets) that are associated with respective peripheral nodes 638, 640. The master node 630 includes a GPS receiver 642, a medium power communications interface 644, one or more sensors 646, and a cellular communications interface 648. Each of the peripheral nodes 638, 640 includes a respective medium power communications interface 650, 652 and one or more respective sensors 654, 656. In the illustrated embodiment, the peripheral and master nodes are connected to one another other over respective pairwise communications paths (shown by dashed lines). In some embodiments, the nodes 630638, 640 communicate through respective LoRa communications interfaces over LoRa formatted communications paths 658, 660, 662.
[0104] In the illustrated embodiment, the master and peripheral nodes 638, 638, 640 include environmental sensors for obtaining information regarding environmental conditions in the vicinity of the associated assets 632, 634, 636. Examples of such environmental sensors include temperature sensors, humidity sensors, acceleration sensors, vibration sensors, shock sensors, pressure sensors, altitude sensors, light sensors, and orientation sensors.
[0105] In accordance with the programmatic code stored in its memory, the master node 630 periodically broadcasts advertising packets in the surrounding area. When the peripheral nodes 638, 640 are within range of master node 630, and are operating in a listening mode, the peripheral nodes 638, 640 will extract the address of master node 630 and potentially other information (e.g., security information) from the advertising packets. If, according to their respective programmatic code, the peripheral nodes 638, 640 determine that hey are authorized to connect to the master node 630, the peripheral nodes 638, 640 will attempt to pair with the master node 630. In this process, the peripheral nodes 638, 640 and the master node and the peripheral nodes determine each other’s identities, capabilities, and services. For example, after successfully establishing a respective communication path 658, 660 with each of the peripheral nodes 638, 640 (e.g., a LoRa formatted communication path), the master node 630 determines certain information about the peripheral nodes 638, 640, such as their identity information (e.g., peripheral nodes), their capabilities (e.g., measuring temperature data), and their services include transmitting temperature data to other nodes.
[0106] After establishing UoRa formatted communications paths 658, 660 with the peripheral nodes 638, 640, the master node 630 transmits requests for the peripheral nodes 638, 640 to transmit their measured and/or locally processed temperature data to the master node 630.
[0107] In the illustrated embodiment, the master node 630 can determine its own location based on geolocation data transmitted by a satellite-based radio navigation system 666 (e.g., GPS, GUONASS, and NAVSTAR) and received by the GPS receiver 642 component of the master node 630. In an alternative embodiment, the location of the master node 630 can be determined using cellular based navigation techniques that use mobile communication technologies (e.g., GSM, GPRS, CDMA, etc.) to implement one or more cell-based localization techniques. After the master node 630 has ascertained its location, the distance of each of the assets 634, 636 from the master node 630 can be estimated based on the average signal strength of the advertising packets that the master node 630 receives from the respective peripheral node. The master node 630 can then transmit its own location and the locations of the asset nodes E, F, and G to a server over a cellular interface connection with a cell tower 672. Other methods of determining the distance of each of the assets 634, 636 from the master node 630, such as Received Signal-Strength Index (RSSI) based indoor localization techniques, also may be used.
[0108] In some embodiments, after determining its own location and the locations of the peripheral nodes, the master node 630 reports the location data the collected and optionally processed (e.g., either by the peripheral nodes peripheral nodes 634, 636 or the master node 630) sensor data to a server over a cellular communication path 670 on a cellular network 672.
AUTOMATICAUUY AUGMENTING THE POWER STATE OF WIRELESS TRACKING DEVICES
WITHOUT USER INTERACTION [0109] Wireless tracking devices are configured to automatically turn on and off without requiring user interaction, reducing time, attention, and action required by users and human operators to activate or deactivate wireless tracking devices. According to some embodiments, a wireless tracking device is configured to track one or more assets and wirelessly communicate the location and/or condition of the asset to members of the wireless tracking system 400. In other embodiments, the wireless tracking device is configured to perform functions other than tracking an asset, but may still be configured to wirelessly communicate data with one or more other wireless nodes of the IOT system 400. The wireless tracking device may be an embodiment of the adhesive tape platform 12, the segment of the adhesive tape platform 13, adhesive tape platform 32, or adhesive tape platform 102, 103, 105, but is not limited thereto.
[0110] Wireless tracking devices may be configured to operate in a variety of different modes, based on current statuses of corresponding assets, actions they are required to perform, communications they are required to transmit or receive, current battery reserves, events in the environment, and numerous other factors. This enables wireless tracking devices, which may have limited battery life or may benefit from long lifespans across multiple journeys, to conserve battery when they are not in use and to communicate without limiting tracking capabilities during transportation.
[0111] For the purposes of the specification, the terms “turning on,” “entering a standard mode of operation,” and “entering an active mode of operation” may be used interchangeably, and refer to wireless tracking devices being powered on and able to perform a set of functions for tracking assets during transportation, storage, and the like. The terms “turning off,” “entering hibernation mode,” and “entering a low-power mode” may further be used interchangeably, and refer to wireless tracking devices being powered down so as to minimize battery use over time while not actively tracking assets or performing other functions besides a minimal set of functions. The power consumption of the wireless tracking device in the hibernation mode is lower than the power consumption in the active mode of operation.
[0112] In some embodiments, wireless tracking devices that have not been use (e.g., have not yet been attached to assets, have not yet initiated a journey, are awaiting a next phase of a journey, and the like) initially operate in a hibernation or low-power mode. For example, wireless tracking devices that are packaged during manufacturing operate in a hibernation mode before they are deployed for use on a journey or task. In another example, wireless tracking devices that are in between journeys, e.g., having completed a first journey with a first asset and awaiting a second journey with the same or a different asset, operate in a hibernation mode. In hibernation or low-power mode, communications and other actions may be performed on a different or less frequent basis than during an active or standard mode of operation, e.g., every hour, every fifteen minutes, every ten minutes rather than every minute, every thirty seconds, etc. In some embodiments, one or more functions of wireless tracking devices are limited or unavailable in hibernation mode. For example, in the hibernation mode or low-power mode, satellite communications or other high-power functions may be unavailable, while local communications such as radio or Bluetooth may be enabled when communications are required.
[0113] Wireless tracking devices in hibernation mode are configured to periodically perform a scan to determine when to turn on or initiate an active mode. The periodic scan may comprise, for example, scanning an environment to determine a change in environment, or may comprise capturing and analyzing sensor data to identify events indicating a start of journey. The scanning the environment may comprise using one or more wireless communication systems or sensors to determine information on the environment of the wireless tracking device. In some embodiments, scanning the environment comprises detecting one or more other wireless devices in the environment using a wireless communication system of the wireless tracking device (e.g., a Bluetooth communication system). For example, various wireless devices may broadcast a signal using Bluetooth, and the wireless tracking device may detect that the various wireless devices are within a communication range based on receiving the broadcasted signal using its BLE communication system, the communication range corresponding to a range of the BLE communication system. In some embodiments, scanning an environment comprises activating a sensor of the wireless tracking device to gather sensor data on the environmental conditions of the wireless tracking device. For example, the wireless tracking device may use an accelerometer to detect motion or acceleration of the wireless tracking device. Responsive to determining a start of journey or a change in environment, wireless tracking devices are configured to power on or to enter an active mode of operation.
[0114] In some embodiments, wireless tracking devices determine a start of journey or change in environment by searching the environment for surrounding wireless tracking devices. Environments wherein a large number of tracking devices are within a threshold distance (e.g., 50+ tracking devices within 1 sq. ft.) may be typical environments wherein the tracking devices are being stored and not in active use, e.g., as packaged after manufacturing, or aggregated into a single location for recharging, refurbishment, or reuse, according to some embodiments. As such, wireless tracking devices in these environments are unlikely to be required to perform all functions and communications at high frequencies. Responsive to a scan detecting that more than a threshold amount of other tracking devices are within a threshold distance, the wireless tracking device determines that it is not in active use, and maintains hibernation or low-power mode. Responsive to detecting that less than a threshold amount of other wireless tracking devices are within a threshold distance, the wireless tracking device determines that it is no longer in an environment that corresponds to the hibernation or low-power mode and turns on, switching to an active mode.
[0115] FIG. 1 lA-11C are diagrams showing example environments of a wireless tracking device during different stages of a lifetime of the wireless tracking device, according to some embodiments.
FIG. 11A shows a container 1110 containing multiple wireless tracking devices, including a wireless tracking device 1130 (not shown in FIG. 11A). The wireless tracking devices are stored in the container 1110 before they are deployed for use in tracking assets, according to some embodiments. In the example of FIGs. 11A and 1 IB the container 1110 is a box, but in other embodiments the wireless tracking devices may be stored in a different container. For example, the wireless tracking devices may each be a segment of an adhesive tape platform that are on a roll and stored on spool. The container includes a container node 1120 that tracks the container 1110 and is associated with each of the wireless tracking devices stored in the container 1110. In some embodiments, the container node 1120 is inside the container 1110 (e.g., attached to an inner wall of the container 1110). The wireless tracking devices may be in the hibernation mode while stored in the container 1110, with one or more functions of the wireless tracking devices disabled or reduced to conserve power. In the hibernation mode, the wireless tracking devices stored in the container 1110 may communicate with the container node 1120, according to some embodiments. In further embodiments, the wireless tracking devices are configured to periodically scan for the container node 1120 using a wireless communication system (e.g., BLE), to determine that they are still in the container 1110 or within a threshold distance of the container 1110. The wireless tracking devices and the container node 1120 may follow a schedule for communicating with each other over the respective wireless communication systems. For example, the wireless tracking devices and the container node 1120 may activate respective BLE systems every hour and perform the communication to check if the wireless tracking devices are still in the container 1110.
[0116] FIG. 1 IB shows the wireless tracking device 1130 as it is removed from the container. The wireless tracking device 1130 determines that it has been removed from the container 1110 and automatically initializes an activated mode in response, ending the hibernation mode that it was in while it was in the container 1110, according to some embodiments. The wireless tracking device 1130 may determine that it has been removed from the container based on wireless communication with the container node 1120. In some embodiments, the wireless tracking device 1130 periodically communicates with the container node 1120 while in the hibernation mode and determines an estimated distance from the container node 1120 based on a received signal strength (e.g., RSSI). If the estimated distance from the container node 1120 is greater than a threshold distance or if the wireless tracking device 1130 is unable to communicate with the container node 1120 (for example, due to being outside of a wireless communication range from the container), the wireless tracking device 1130 determines that it has been removed from the container 1110.
[0117] Other methods may be used by the tracking device 1130 to detect if it has been removed from the container 1110. In some embodiments, the container 1110 may act as or include a faraday cage which blocks wireless communications. When the tracking device 1130 is inside the container 1110, communication from external sources is blocked, including from the container node 1120. The tracking device 1130 periodically scans for received wireless communications when in the hibernation mode. If the tracking device 1130 receives a wireless communication from the container node 1120, it determines that it has been removed from the container 1110 and initializes the activated mode.
[0118] FIG. llC shows the wireless tracking device 1130 after it has been removed from the container 1110 and installed on an asset 1140 for tracking the asset 1140. The wireless tracking device 1130 is configured to track environmental information for the asset. In some embodiments, the tracked environmental information includes location data for the asset 1140. For example, the wireless tracking device 1130 may use one or more of its wireless communication systems (e.g., GPS) to determine the location of the wireless tracking device 1130 and the associated asset 1140. In some embodiments, the wireless tracking device 1130 automatically detects when it is has been installed on an asset 1130, based on scanning the environment. For example, in the activated mode after it has been removed from the container 1110, the wireless tracking device 1130 may track its location via one or more of its wireless communication system (e.g., GPS or cellular communications). The tracking device 1130 may determine that it is on the asset 1140 based on its location. For example, there may be a predetermined staging area where wireless tracking devices are installed on assets. The tracking device 1130 may determine that it is on the asset 1140 by determining that the location of the tracking device corresponds to the staging area. In other examples, the wireless tracking device 1130 may determine that it is on the asset based on a trajectory of the wireless tracking device 1130, a velocity or acceleration of the wireless tracking device 1130 detected using an accelerometer or other sensor of the wireless tracking device 1130, other sensor data from a sensor of the wireless tracking device 1130, or some other information received by the wireless tracking device 1130.1n some examples, the wireless tracking devices may additionally scan for one or more of the following: wireless communication via a wireless communication system of the wireless tracking device (e.g., Bluetooth, WiFi, LoRa, etc.) from another tracking device or another entity of the wireless tracking system (e.g., gateway node, master node, server, or cloud) instructing the wireless tracking device to turn on, communication from a client device instructing the wireless tracking device to turn on; for example, responsive to the client device scanning a barcode, QR code, or NFC tag of the wireless tracking device, or having a radio broadcast at a frequency to turn on the wireless tracking device, identifying an entity of the wireless tracking system corresponding to a start of journey being within a threshold distance; for example, a node associated with a vehicle or other method of transportation being within 50 ft, a node associated with a cold storage unit or other infrastructure entity, identifying one or more other wireless tracking devices operating in an active or standard mode of operation being within a threshold distance, receiving wireless communications from another wireless node of the tracking system that is associated with a storage area, an endpoint of a journey, a starting point of a journey, or another location or event, detecting that another wireless node associated with a storage area, an endpoint of a journey, a starting point of a journey, or another location or event is in within a threshold distance of the wireless tracking device, receiving a wireless communication instructing the wireless tracking device to turn on, turn off, enter a hibernation mode, or exit a hibernation mode, and other events or environmental conditions.
[0119] FIG. 12 shows example phases of a journey for a tracking device 1220, along with a description of the power state of the tracking device 1220 while in that phase of the journey. The tracking device 1220 is installed on an asset 1210. In a first phase of the journey, the asset 1210 and the tracking device 1220 is being transported on a vehicle 1230. The tracking device 1220 is configured to detect when the asset is on the vehicle and continue operating in an activated state while the tracking device 1220 is still in the vehicle.
[0120] The asset 1210 is then transported to a storage room 1240 where it will be stored. The tracking device 1220 detects the location of the storage room and stores the location on its memory. The location may be determined, for example, based on wireless communications with other wireless nodes of the IOT system 400, such as a gateway device, installed in the storage room 1240 and associated with the location of the storage room 1240.
[0121] In the second phase of the journey, the asset 1210 remains stored in the storage room 1240.
The tracking device 1220 detects that the asset 1210 has entered the second phase and enters the hibernation mode, in response. The tracking device 1220 may detect the second phase based on the location of the storage room 1240 corresponding to a trigger for entering the hibernation mode, in some embodiments. In other embodiments, the tracking device 1220 detects that it has not moved for over a threshold period of time, and enters the hibernation mode in response.
[0122] In the hibernation mode, the tracking device 1220 periodically performs a scan of its environment to determine if the asset 1210 and the tracking device 1220 has entered a new phase that corresponds to the tracking device 1220 exiting the hibernation mode and entering an activated state. Other functions of the tracking device 1220 may be limited or disabled while in the hibernation mode.
For example, the tracking device 1220 may stop tracking its location while in the hibernation mode, since in the second phase, it is not moving.
[0123] When the asset 1210 and the tracking device 1220 exit the second phase and begin the third phase of the journey, the tracking device 1220 enters the activated state, as shown in FIG. 12. The third state includes a human operator moving the asset from the storage room 1240.
[0124] In some embodiments, the tracking device 1220 periodically performs a check-in communication with a wireless node installed in the storage room 1240 as part of its periodic scan. The check-in communication is used to determine if the tracking device 1220 is no longer in the storage room 1240. If the check-in communication cannot be performed successfully, the tracking device 1220 determines that it is no longer in the storage room and has been moved, detecting the third phase and triggering the activation of the activated state.
[0125] In other embodiments, the tracking device 1220 detects that it has entered the third phase of the journey based on collecting accelerometer data while it is in the hibernation mode. When the tracking device 1220 detects an acceleration above a threshold level, the tracking device 1220 determines that it has been moved and is in the third phase of the journey. In other embodiments, other methods may be used to detect the beginning of another phase of the journey.
[0126] In some embodiments, wireless tracking devices determine a start of journey or change in environment based on captured sensor data from, for example, a vibration sensor, accelerometer, gyroscope, temperature sensor, light sensor, and the like. Responsive to detecting that an event has occurred corresponding to a start of journey or change in environment, the wireless tracking device turns on.
[0127] For example, the wireless tracking devices capture and analyze sensor data to detect one or more of the following: vibration data corresponding to a user of the wireless tracking system shaking the wireless tracking device to turn it on, vibration, accelerometer, and/or location (e.g., GPS) data corresponding to the wireless tracking device being moved or relocated (e.g., detecting that the wireless tracking device is being loaded onto a vehicle or method of transportation), location (e.g., GPS) data corresponding to the wireless tracking device being moved more than a threshold distance (e.g., 1 mile) from an initial location, light and/or audio data corresponding to the wireless tracking device being removed from a box or storage container, magnetic or other electronic fields corresponding to a user of the wireless tracking system using a magnet or other device to turn on the wireless tracking device, temperature data corresponding to a change in temperature in the environment of the wireless tracking device (e.g., the wireless tracking device being moved to a refrigerator, freezer, or other cold storage space), any sensor data corresponding to a predetermined or preset signal, detecting light exposure using a light sensor to determine that the wireless tracking device has been removed from a container or another dark space or enclosure, and other events detected by analyzing sensor data of the wireless tracking devices.
[0128] In the above examples, the sensor data may be captured using one or more sensors of the wireless tracking device, according to some embodiments. The one or more sensors may be integrated with the wireless tracking device and configured to gather the sensor data. The sensor data may be stored on a storage or memory of the wireless tracking device.
[0129] In other embodiments, the sensor data may be transmitted to the wireless tracking system 400 and analysis or processing of the sensor data may be performed by another node or member of the wireless tracking system 400. In some embodiments, the determining that the event corresponding to an active mode of the wireless tracking device is not performed locally by the wireless tracking device, but by another node or member of the wireless tracking system 400. For example, a server or client device of the wireless tracking system 400 may receive the sensor data and determine that the wireless tracking device that the event has occurred corresponding to the conditions where the wireless tracking device should turn on. The wireless tracking system 400 may then transmit an activation signal which the wireless tracking device is configured to receive. In response to receiving the activation signal, the wireless tracking device turns on.
[0130] The wireless tracking device may be in the hibernation mode but configured to activate one or more wireless communication systems to transmit the sensor data to the wireless tracking system 400 in response to determining a potential for a condition or event that corresponds to turning the wireless tracking device. According to some embodiments, the wireless tracking device may enter an intermediate state in which the wireless tracking device is able to wirelessly transmit the sensor data, but still has a lower power consumption than the active mode (e.g., by suspending or refraining from other communications or activities that are part of the active mode). In some examples, the wireless tracking device may detect the potential condition or event and transmits the sensor data to the wireless tracking system 400, in order to receive confirmation that the wireless tracking device should fully exit the hibernation mode and turn on.
[0131] In these and other examples, wireless tracking devices may receive confusing signals due to events that that do not correspond to triggering of an active or standard mode of operation. The wireless tracking devices are configured to differentiate between events that should trigger the wireless tracking device to initiate an active mode and events that should not trigger the wireless tracking device to initiate the active mode. In some embodiments, the wireless tracking device is configured to identify a signature waveform or trend in received sensor data that corresponds to events that trigger the active mode.
[0132] For example, the wireless tracking device uses gyroscope sensor data from a gyroscope sensor of the wireless tracking device to differentiate between a wireless tracking device being carried or moved by a user of the wireless tracking device and the wireless tracking device being dropped or knocked over. In another example, the wireless tracking device requires that vibration data corresponding to a user of the wireless tracking device shaking the wireless tracking device to turn it on continues for more than a threshold amount of time (e.g., 5 seconds) to ensure that the vibration is not accidental.
[0133] In other examples, the wireless tracking device may identify one or more of the following as being false alarms that do not require the wireless tracking device to turn on: vibration, accelerometer, and/or gyroscopic data corresponding to the wireless tracking device being dropped, knocked over, or other accidental triggers (e.g., brief acceleration along one plane of motion is likely to indicate dropping, as opposed to shaking by a user of the wireless tracking device wherein acceleration occurs rapidly in two planes of motion), anomalous sensor data, e.g., location data corresponding to impossible or glitched movement, or audio data corresponding to a brief increase in ambient noise that may indicate a passerby or nearby activity that does not correspond to a start of journey, temperature data fluctuations within a threshold range (for example, 5°C), e.g., such that the fluctuations reasonably correspond to changes in ambient temperature of a room rather than movement of the wireless tracking device to a cold storage, and other false alarm conditions.
[0134] In some embodiments, the wireless tracking device is configured to request or collect additional data to confirm whether an event that triggers the active mode has occurred. For example, if the wireless tracking device detects that an event that triggers the active mode may have occurred based on location data, the wireless tracking data may collect sensor data from another sensor to confirm that the event has occurred. In further embodiments, the wireless tracking data may request or collect additional data based on a confidence level or score associated with the determination that the event that triggers the active mode has occurred. If the confidence score is below a threshold value, the wireless tracking data requests or collects additional data (e.g., sensor data) and checks if the determination was accurate based on the additional data. According to some embodiments, the wireless tracking device requests the additional data from another node or member of the wireless tracking system 400. For example, the wireless tracking device may request the additional data from another wireless tracking device that is in proximity. The requested data may include an indication of whether the other wireless tracking device is in an active or hibernation mode. If the other wireless tracking device is in the active mode, the wireless tracking device may determine that it is not in storage with other inactive or hibernating wireless tracking.
[0135] FIG. 13 is a flow diagram of a method 1301 for automatically turning wireless IOT devices on and off, according to some embodiments. The method 1301 includes a wireless IOT device operating 1305 in a first mode. The first mode may be, for example, a hibernation mode of the wireless IOT device. The wireless IOT device performs 1310 periodic scans of the environment while in the first mode. The periodic scans may include performing wireless communications with other wireless nodes of the IOT system 400, collecting sensor data from sensors of the wireless IOT device or from sensors on other devices, other methods for scanning information on the environment, or some combination thereof. The wireless IOT device analyzes 1315 the information captured by the periodic scan of the environment in order to determine if an event corresponding to a new phase has occurred or if the wireless IOT device is in an environment with conditions corresponding to the new phase. In response to the analysis determining that the new phase is active, the wireless IOT device initiates 1320 a second mode of operation different from the first mode of operation. For example, the first mode of operation may be a hibernation mode, and the second mode of operation may be an activated mode (or vice-versa). While not shown in FIG. 13, the method 1301 may include a different number of steps or alternate steps than described above.
COMPUTER APPARATUS
[0136] FIG. 14 shows an example embodiment of computer apparatus 320 that, either alone or in combination with one or more other computing apparatus, is operable to implement one or more of the computer systems described in this specification.
[0137] The computer apparatus 320 includes a processing unit 322, a system memory 324, and a system bus 326 that couples the processing unit 322 to the various components of the computer apparatus 320. The processing unit 322 may include one or more data processors, each of which may be in the form of any one of various commercially available computer processors. The system memory 324 includes one or more computer-readable media that typically are associated with a software application addressing space that defines the addresses that are available to software applications. The system memory 324 may include a read only memory (ROM) that stores a basic input/output system (BIOS) that contains start-up routines for the computer apparatus 320, and a random access memory (RAM). The system bus 326 may be a memory bus, a peripheral bus or a local bus, and may be compatible with any of a variety of bus protocols, including PCI, VESA, MicroChannel, ISA, and EISA. The computer apparatus 320 also includes a persistent storage memory 328 (e.g., a hard drive, a floppy drive, a CD ROM drive, magnetic tape drives, flash memory devices, and digital video disks) that is connected to the system bus 326 and contains one or more computer-readable media disks that provide non-volatile or persistent storage for data, data structures and computer-executable instructions.
[0138] A user may interact (e.g., input commands or data) with the computer apparatus 320 using one or more input devices 330 (e.g. one or more keyboards, computer mice, microphones, cameras, joysticks, physical motion sensors, and touch pads). Information may be presented through a graphical user interface (GUI) that is presented to the user on a display monitor 332, which is controlled by a display controller 334. The computer apparatus 320 also may include other input/output hardware (e.g., peripheral output devices, such as speakers and a printer). The computer apparatus 320 connects to other network nodes through a network adapter 336 (also referred to as a “network interface card” or NIC).
[0139] A number of program modules may be stored in the system memory 324, including application programming interfaces 338 (APIs), an operating system (OS) 340 (e.g., the Windows® operating system available from Microsoft Corporation of Redmond, Washington U.S.A.), software applications 341 including one or more software applications programming the computer apparatus 320 to perform one or more of the steps, tasks, operations, or processes of the locationing and/or tracking systems described herein, drivers 342 (e.g., a GUI driver), network transport protocols 344, and data 346 (e.g., input data, output data, program data, a registry, and configuration settings).
[0140] Examples of the subject matter described herein, including the disclosed systems, methods, processes, functional operations, and logic flows, can be implemented in data processing apparatus (e.g., computer hardware and digital electronic circuitry) operable to perform functions by operating on input and generating output. Examples of the subject matter described herein also can be tangibly embodied in software or firmware, as one or more sets of computer instructions encoded on one or more tangible non- transitory carrier media (e.g., a machine readable storage device, substrate, or sequential access memory device) for execution by data processing apparatus.
[0141] The details of specific implementations described herein may be specific to particular embodiments of particular inventions and should not be construed as limitations on the scope of any claimed invention. For example, features that are described in connection with separate embodiments may also be incorporated into a single embodiment, and features that are described in connection with a single embodiment may also be implemented in multiple separate embodiments. In addition, the disclosure of steps, tasks, operations, or processes being performed in a particular order does not necessarily require that those steps, tasks, operations, or processes be performed in the particular order; instead, in some cases, one or more of the disclosed steps, tasks, operations, and processes may be performed in a different order or in accordance with a multi-tasking schedule or in parallel.
[0142] Other embodiments are within the scope of the claims.
ADDITIONAL EMBODIMENTS
[0143] In some embodiments, a plurality of tape nodes are stored in a box or containers before deployment. When the tape nodes are inside the box, they remain in a hibernation mode. When an individual tape node from the box no longer detects that it is inside of the box (e.g., close to the box tape), the tape node enters an activated mode different from the hibernation mode. While in the hibernation mode, the tape node scans its environment periodically at a set frequency (e.g., every hour, every 10 minutes, or every 15 minutes) to check whether the tape node is still inside the box. When the tape node detects in the periodic scan that its no longer inside the box, the tape node automatically enters the activated mode. [0144] In some embodiments, the tape node is configured to exit the hibernation mode and enter the activation mode in response to detecting that a user or a machine is shaking the tape node. The tape node may determine this based on data collected from one or more of vibration sensors, accelerometer, gyroscope, and other motion sensors while in the hibernation mode. In some furhter embodiments, based on accelerometer data from an accelerometer integrated with the tape node, the tape node analyzes the accelerometer data and distinguishes whether the tape node has fallen to the ground or if the accelerometer data corresponds to a user shaking the tape node to activate it. Increased acceleration along the same dimension but opposite / 180-degree difference, which clearly distinguishes from other movements that might occur accidentally.
[0145] In further embodiments, when the tape node enters the activated mode after exiting the hibernation mode, the tape node emits a corresponding sound or audio clip using a speaker integrated into the tape node. This is useful for signaling to a user that the tape node is in the activated state now.
[0146] In some embodiments, a sensor integrated with the tape node is used as an interrupt sensor connected to a processor of the tape node. The interrupt sensor samples data at a certain frequency and sends an interrupt signal to the processor in response to detecting a specific set of conditions.
[0147] While in the hibernation mode, the tape node operates in a low-power state. Having an interrupt sensor in a steady state requires almost no battery use. First phase: any shock to initiate shock circuit. Second phase: determine whether the particular shock meets the particular signature. Third phase: when the tape node determines that the shock has occurred, the tape node enters the activated mode.
[0148] Method and system disclosed applies to tape nodes and other wireless nodes (e.g., wireless devices without the adhesive tape form factor) of wireless tracking system.
[0149] Other options for sensors that may be used to detect conditions corresponding to a change of phase for the tape node include: temperature sensors, magnetic sensors, wake up radio, NFC communications sensors, and other sensors.
ADDITIONAL CONFIGURATION INFORMATION [0150] The foregoing description of the embodiments of the disclosure have been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.
[0151] Some portions of this description describe the embodiments of the disclosure in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work effectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it has also proven convenient at times, to refer to these arrangements of operations as modules, without loss of generality. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combinations thereof.
[0152] Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices. In one embodiment, a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.
[0153] Embodiments of the disclosure may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a non-transitory, tangible computer readable storage medium, or any type of media suitable for storing electronic instructions, which may be coupled to a computer system bus. Furthermore, any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability. [0154] Embodiments of the disclosure may also relate to a product that is produced by a computing process described herein. Such a product may comprise information resulting from a computing process, where the information is stored on a non-transitory, tangible computer readable storage medium and may include any embodiment of a computer program product or other data combination described herein.
[0155] Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the disclosure be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments is intended to be illustrative, but not limiting, of the scope of the disclosure, which is set forth in the following claims.

Claims

Claims What is claimed is:
1. A method comprising: operating, by a wireless internet of things (IOT) device associated with an IOT system, in a first mode; performing, by the wireless IOT device, a periodic scan of an environment of the wireless IOT device; analyzing, by the wireless IOT device, information captured by the periodic scan of the environment; and responsive to the analysis, initiating, by the wireless IOT device, a second mode of operation, the second mode of operation corresponding to conditions or information on the environment determined based on the periodic scan.
2. The method of claim 1, wherein the first mode is a hibernation mode wherein one or more functions are performed at less than a threshold frequency, and the second mode is an active mode wherein the one or more functions are performed at more than the threshold frequency.
3. The method of claim 1, wherein the first mode is an active mode wherein one or more functions are performed at more than a threshold frequency, and the second mode is a hibernation mode wherein the one or more functions are performed at less than the threshold frequency.
4. The method of claim 1, wherein the periodic scan comprises the wireless IOT device performing wireless communications with other wireless IOT devices in the environment to determine a number of other wireless IOT devices within a threshold distance.
5. The method of claim 4, wherein the other wireless IOT devices in the environment comprise wireless nodes associated with the IOT system.
6. The method of claim 1, wherein the periodic scan comprises capturing sensor data by one or more sensors of the wireless IOT device, and wherein analyzing information captured by the periodic scan comprises determining that the captured sensor data corresponds to a change in environment of the wireless IOT device.
7. The method of claim 6, wherein the one or more sensors comprises one or more of: vibration sensor, accelerometer, gyroscope, temperature sensor, light sensor, audio sensor.
8. The method of claim 1, wherein the wireless IOT device comprises: a processor; a memory; a first wireless communication system; a battery; and a circuit coupling the processor, the memory, the first wireless communication antenna and interface, and the battery.
9. The method of claim 8, wherein the wireless IOT device is an adhesive tape platform comprising: a flexible substrate; a cover layer on the flexible substrate; a device layer, between the flexible substrate and the cover layer, comprising the processor, the memory, the first wireless communication system, and the battery, wherein the circuit is a flexible circuit between the flexible substrate and the cover layer.
10. The method of claim 1, wherein the wireless IOT device is configured to track the location of an asset.
11. The method of claim 1, wherein the periodic scan comprises determining the location of the environment, and the second mode of operation corresponds to the determined location being at a second location.
12. The method of claim 1, wherein the wireless IOT device is configured to store a first location on a memory of the wireless IOT device, the periodic scan comprises determining the location of the environment, and the second mode of operation corresponds to determining that the location of the environment is a second location different than the first location of the asset.
13. The method of claim 12, wherein the first location is a previously determined location of the wireless IOT device at an earlier time.
14. The method of claim 12, wherein the determining the location of the environment is based on wireless communications performed between the wireless IOT device and other wireless nodes of the IOT system.
15. The method of claim 1, wherein the wireless IOT device is configured to store a first location on a memory of the wireless IOT device, the periodic scan comprises determining the location of the asset, and the second mode of operation corresponds to determining that the location of the asset is a second location different than the first location of the asset.
16. A method comprising: operating, by a wireless internet of things (IOT) device associated with an IOT system, in a first power mode, the first power mode corresponding to the environment of the wireless IOT device having a first set of conditions; periodically performing, by the wireless IOT device, a scan of an environment of the wireless
IOT device; determining, by the wireless IOT device, a change in the conditions of the environment based on data from the periodic scan, wherein the environment now has a second set of conditions; responsive to the analysis, initiating, by the wireless IOT device, a second mode of operation, the second mode of operation corresponding to the environment of the wireless IOT device having the second set of conditions.
17. The method of claim 16, wherein the periodic scan comprises attempting to perform wireless communications with other wireless IOT nodes in the environment.
18. The method of claim 17, wherein the wireless communications with other wireless IOT nodes in the environment are attempted in order to determine one or more of: a location of the environment, a location of the wireless IOT device relative to the other wireless IOT devices, a location of the wireless IOT device, a distance of the wireless IOT device from the other wireless IOT devices, a number of wireless IOT devices within a threshold distance of the wireless IOT device, an absence of other wireless IOT devices in the environment, a location of another wireless IOT device, a presence or location of a client device in the environment, a duration of time between wireless communications received from other wireless nodes in the environment, and the receiving of a wireless communication signal from another wireless node in the environment.
19. The method of claim 16, wherein the first mode is a hibernation mode wherein the wireless IOT device draws electrical power at a rate higher than a first power rate, and the second mode is an active mode wherein the wireless IOT device draws electrical power at a rate equal to or lower than a second power rate, the second power rate equal to or lower than the first power rate.
20. The method of claim 16, wherein the first mode is an active mode wherein the wireless IOT device draws electrical power at a rate equal to or lower than a first power rate, and the second mode is a hibernation mode wherein the wireless IOT device draws electrical power at a rate higher than a second power rate, the first power rate equal to or lower than second power rate.
21. The method of claim 16, wherein the second set of conditions correspond to the wireless IOT device being dispensed and installed on an asset in order to track the location of the asset.
PCT/US2022/024507 2021-04-12 2022-04-12 Method and system for automatic power management of portable internet of things devices WO2022221345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163173673P 2021-04-12 2021-04-12
US63/173,673 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022221345A1 true WO2022221345A1 (en) 2022-10-20

Family

ID=83641007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/024507 WO2022221345A1 (en) 2021-04-12 2022-04-12 Method and system for automatic power management of portable internet of things devices

Country Status (1)

Country Link
WO (1) WO2022221345A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161958A1 (en) * 2010-12-28 2012-06-28 Crossbow Technology Inc. Power management in wireless tracking device operating with restricted power source
US20130039239A1 (en) * 2011-08-10 2013-02-14 Yung-Sen Lin Wireless communication method with low power consumption
US20190066036A1 (en) * 2017-08-31 2019-02-28 Roger Roisen Method and apparatus for distributed asset location monitoring
US20200051007A1 (en) * 2018-07-18 2020-02-13 Mapsted Corp. Method and system for localizing tracking devices
US20200275369A1 (en) * 2019-02-26 2020-08-27 Apple Inc. Multi-Interface Transponder Device - Altering Power Modes
US20210027122A1 (en) * 2019-04-04 2021-01-28 Trackonomy Systems, Inc. Correlating asset identifiers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161958A1 (en) * 2010-12-28 2012-06-28 Crossbow Technology Inc. Power management in wireless tracking device operating with restricted power source
US20130039239A1 (en) * 2011-08-10 2013-02-14 Yung-Sen Lin Wireless communication method with low power consumption
US20190066036A1 (en) * 2017-08-31 2019-02-28 Roger Roisen Method and apparatus for distributed asset location monitoring
US20200051007A1 (en) * 2018-07-18 2020-02-13 Mapsted Corp. Method and system for localizing tracking devices
US20200275369A1 (en) * 2019-02-26 2020-08-27 Apple Inc. Multi-Interface Transponder Device - Altering Power Modes
US20210027122A1 (en) * 2019-04-04 2021-01-28 Trackonomy Systems, Inc. Correlating asset identifiers

Similar Documents

Publication Publication Date Title
US11775797B2 (en) Hierarchical combination of distributed statistics in a monitoring network
US11627436B2 (en) Battery management
US20220167122A1 (en) Detecting special events and strategically important areas in an iot tracking system
US20220256308A1 (en) Method for Remote Interaction of Assets with Cellular Device and System Thereof
US20240127685A1 (en) Client Device Interactions and Asset Monitoring at Checkpoint Locations in an IOT Device Network
CA3194726A1 (en) Battery management
US20230222892A1 (en) Augmented reality for guiding users to assets in iot applications
US20220182849A1 (en) Method and system for performing ad hoc diagnostics, maintenance, programming, and tests of internet of things devices
US20220279449A1 (en) Method and System for Automatic Power Management of Portable Internet of Things Devices
WO2022221345A1 (en) Method and system for automatic power management of portable internet of things devices
US20220286814A1 (en) Locating Assets and Infrastructure Testing Using Client Devices in an IOT Device Network
US11879624B1 (en) Wireless sensor device and system thereof for light bulb diagnostics using a light sensor of an adhesive tape platform
US11819305B1 (en) Method for determining direction of movement through gates and system thereof
US11900195B2 (en) Tearing to turn on wireless node with multiple cutouts for re-use
US11711722B2 (en) Detecting airwave congestion and using variable handshaking granularities to reduce airwave congestion
US11861441B1 (en) Spreading out electronics in an internet of things device for resiliency to environmental hazards
US11885644B1 (en) Sensor form factors in hostile environments
US20240135134A1 (en) Hierarchical combination of distributed statistics in a monitoring network
US20230028603A1 (en) Hybrid RFID and Wireless Communication System for Tracking of Assets and People and Method Thereof
AU2019308300B2 (en) Hierarchical combination of distributed statistics in a monitoring network
US20220374826A1 (en) Hazardous Material Monitoring and Detecting Rule Violations for Grouped Assets Using Wireless Tracking Devices
WO2022261152A1 (en) Client device interactions and asset monitoring at checkpoint locations in an iot device network
EP4295589A1 (en) Locating assets and infrastructure testing using client devices in an iot device network
WO2022125841A1 (en) Detecting special events and strategically important areas in an iot tracking system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788817

Country of ref document: EP

Kind code of ref document: A1