WO2022220536A1 - Single strand dna sensor and method for manufacturing single strand dna sensor - Google Patents

Single strand dna sensor and method for manufacturing single strand dna sensor Download PDF

Info

Publication number
WO2022220536A1
WO2022220536A1 PCT/KR2022/005267 KR2022005267W WO2022220536A1 WO 2022220536 A1 WO2022220536 A1 WO 2022220536A1 KR 2022005267 W KR2022005267 W KR 2022005267W WO 2022220536 A1 WO2022220536 A1 WO 2022220536A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
sensor
graphene
signal
Prior art date
Application number
PCT/KR2022/005267
Other languages
French (fr)
Korean (ko)
Inventor
전성찬
박세원
하지상
임채광
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220035110A external-priority patent/KR20220141741A/en
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2022220536A1 publication Critical patent/WO2022220536A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements

Definitions

  • the present technology relates to single-stranded DNA sensors and methods of making single-stranded DNA sensors.
  • Existing biosensing technology uses enzymes to make a single strand of target DNA for which the nucleotide sequence is to be determined, primers, DNA polymerase, 4 types of dNTPs (deoxynucleotides triphosphates), and 4 types of ddNTPs labeled with fluorescent substances of different colors (dideoxynucleotides triphosphates) are added to allow DNA replication to occur.
  • the DNA is electrophoresed and arranged according to the length, and the nucleotide sequence of the DNA strand to be analyzed can be known by reading the fluorescent label colors at the ends of the DNA in order using a fluorescence detector.
  • one of the problems to be solved by the present technology is to solve the difficulties of the prior art. That is, one of the problems to be solved by this embodiment is to provide a sensor that does not require a label, is free from contamination, and can quickly perform an inspection.
  • the single-stranded DNA sensor includes: a substrate; The first electrode and the second electrode formed on the substrate, and the graphene pattern connected to the first electrode and the second electrode and provided with the single-stranded DNA as the target, and a radio frequency (RF) frequency in the graphene pattern and a driving and detecting unit that provides a signal and detects a change in electrical characteristics with respect to the signal of the RF frequency.
  • RF radio frequency
  • the first electrode and the second electrode are electrically connected to the driving and detecting unit through a GSG probe, and the GSG probe is connected to the RF through the first electrode and the second electrode A signal is provided and a reference voltage is provided to the sensor through a reference electrode further formed on the substrate.
  • the driving and detecting unit detects the target by detecting at least one of a reflection coefficient and a transmission coefficient from the RF signal provided to the target.
  • the substrate (sub) is a silicon substrate on which an oxide film is formed
  • the first electrode and the second electrode include any one of copper, chromium, titanium, platinum, palladium, silver, and gold.
  • the sensor manufacturing method comprises the steps of (a) forming a first electrode and a second electrode on a substrate, and (b) forming a graphene pattern to be electrically connected to the first electrode and the second electrode; (c) connecting the first electrode and the second electrode to the GSG probe.
  • the step (a) is a step of forming an electrode mask corresponding to the shape of the first electrode and the second electrode on the substrate, placing the electrode mask on the substrate Depositing a metal layer and lifting off the electrode mask to form the first electrode and the second electrode are performed.
  • the step (b) includes growing CVD (chemical vapor deposition) graphene on a sacrificial substrate, covering the grown CVD graphene with a carrier and removing the sacrificial substrate and removing the carrier, and disposing the CVD graphene on the substrate.
  • CVD chemical vapor deposition
  • the sacrificial substrate is a copper thin film.
  • a sensor that does not require a label, is free from contamination, and can perform an inspection quickly.
  • FIG. 1 is a view showing a sensor according to the present embodiment.
  • Fig. 2 is a diagram showing an outline of a method for manufacturing a sensor according to the present embodiment.
  • 3(a) to 3(d) are diagrams for explaining the step of forming a graphene pattern on a substrate.
  • 4 (a) to 4 (f) are diagrams illustrating a process of performing the step of forming the first electrode and the second electrode to be electrically connected to the graphene pattern.
  • 5 (a) and 5 (b) are photomicrographs showing the outline of the electrodes formed on the substrate.
  • FIG. 6 is an enlarged view of the sensor according to the present embodiment.
  • 7 (a), 7 (b), and 7 (c) provide pure water, adenine, guanine, thymine, and cytosine on a graphene pattern, a silicon oxide film, and a PDMS pattern, respectively, measured according to the measured frequency It is a diagram showing the reflection coefficient.
  • FIG. 8 is a view showing the transmission coefficient measured by placing pure water, adenine, guanine, thymine, and cytosine on a graphene pattern pattern, and changing the frequency.
  • 9(a), 9(b) and 9(c) are diagrams illustrating the calculation of electrical resistance, inductance and conductance of a sample solution containing adenine, guanine, thymine, and cytosine with the sensor according to the present embodiment; admit.
  • the sensor according to this embodiment is a sensor for detecting single-stranded DNA (T), and the sensor includes: a substrate (sub) and a first electrode (210) formed on the substrate (sub) and a graphene pattern 100 and a graphene pattern connected to the second electrode 220 and the first electrode 210 and the second electrode 220 and provided with single-stranded DNA as the target T 100) provides a radio frequency (RF) frequency signal, and includes a driving and detecting unit for detecting a change in electrical characteristics with respect to the RF frequency signal.
  • RF radio frequency
  • Fig. 2 is a diagram showing an outline of a method for manufacturing a sensor according to the present embodiment.
  • the sensor manufacturing method according to the present embodiment includes a step of forming a graphene pattern 100 on a substrate ( S100 ) and a first electrode ( S100 ) to be electrically connected to the graphene pattern 100 . 210) and forming the second electrode 220 (S100), and connecting the first electrode 210 and the second electrode 220 with the GSG probe (S300).
  • 3 (a) to 3 (d) are views for explaining the step of forming the graphene pattern 100 on the substrate (sub).
  • graphene 100 is grown on the sacrificial substrate 110 .
  • the sacrificial substrate 110 is a copper foil.
  • graphene may be grown on a sacrificial substrate other than a copper thin film.
  • the sacrificial substrate 110 has a graphene pattern 100 formed thereon and is removed in a subsequent process to enable the graphene pattern 100 to be transferred to the substrate sub.
  • the step of growing the graphene 100 may be performed through chemical vapor deposition (CVD). However, graphene may be grown by methods other than CVD.
  • the graphene 100 grown on the sacrificial substrate 110 is covered with a carrier 120 .
  • the carrier 120 moves or facilitates handling of the grown graphene 100 so that it can be used in a subsequent process.
  • the carrier may be PMMA.
  • the sacrificial substrate is removed.
  • the sacrificial substrate 110 may be removed through etching.
  • the step of removing the sacrificial substrate 110 may be removed through wet etching, which is performed using an etchant having low reactivity with graphene.
  • graphene 100 is attached to the carrier 120 in a state in which the sacrificial substrate 110 is removed.
  • the graphene 100 attached to the carrier 120 is moved to a desired position of the substrate (sub).
  • the substrate (sub) is a silicon substrate on which an oxide film is formed, and may be formed of a silicon wafer.
  • the carrier 120 is removed while the graphene 100 is attached.
  • the process of removing the carrier 120 may be performed by wet etching.
  • the carrier 120 may be removed by treating the substrate sub to which the graphene 100 is attached with an organic solvent such as acetone.
  • FIG. 4 (a) to 4 (f) are diagrams illustrating a process of performing the step of forming the first electrode and the second electrode to be electrically connected to the graphene pattern.
  • a wafer on which an oxide film is formed is prepared, and a photoresist PR is formed on the surface of the wafer as shown in FIG. 4(b).
  • a photomask having a desired pattern is formed, and exposure, development, and etching processes are performed.
  • a mask having a desired pattern is formed on the wafer (FIG. 4(d)).
  • a metal film is formed on the wafer. Since the patterned mask exposes the portion where the electrode is to be formed, the electrode is formed at a desired position in the process of forming the metal film.
  • the process of forming the metal film may be performed through a process such as sputtering or evaporation, and the metal has good conductivity such as copper, chromium, titanium, platinum, palladium, silver and gold. It may be a metal having Subsequently, as shown in FIG. 4(f) , the mask may be lifted off to form the first electrode 210 and the second electrode 220 electrically connected to the graphene pattern.
  • 5 (a) and 5 (b) are photomicrographs showing the outline of the electrodes formed on the substrate (sub).
  • 5 (a) is a photograph showing the shape of the first electrode 210 and the second electrode 220 electrically connected to the graphene pattern 100 (inside the circle shown by the broken line).
  • the interval between the first electrode 210 and the second electrode 220 was formed to be 3 ⁇ m. However, this is only an embodiment, and the actual interval may be larger or smaller than 3 ⁇ m.
  • FIG. 5( b ) is a photograph illustrating a connection terminal connected to a ground signal ground (GSG) probe connected to a driving and detecting unit (not shown).
  • GSG ground signal ground
  • the GSG probe is electrically connected to the driving and detecting unit, provides a ground voltage through the ground pad G, and receives an RF through the first electrode 210 or the second electrode 220 . It provides a signal of frequency.
  • the graphene pattern 100 and the driving and detecting unit may be electrically connected through the pads illustrated in FIGS. 5A and 5B .
  • FIGS. 1 and 6 is an enlarged view of the sensor according to this embodiment, and outlines the interaction between the graphene pattern 100 and the target T, ssDNA, between the first electrode 210 and the second electrode 220 shown negatively.
  • the driving and detecting unit connected to the first electrode 210 and the second electrode 220 measures an S-parameter using input and output voltages.
  • the S-coefficient includes a reflection coefficient (S11) and a transmission coefficient (S21), and by using them, RLGC (resistance, inductance, conductance, and capacitance), impedance (Z), and propagation constant ( ⁇ ) can be obtained.
  • the ⁇ - ⁇ interaction that occurs between the target (T) ssDNA and the graphene 100 affects the RF signal provided to the first electrode 210 and the second electrode 220 to easily understand the characteristics of ssDNA. do.
  • the strength of the ⁇ - ⁇ interaction with graphene changes.
  • the magnitude of the interaction between G, A, T, and C, the bases included in single-stranded ssDNA, and graphene is strong in the order of G > A > T > C, and the stronger the interaction, the smaller the reflection coefficient. It is measured.
  • 7(a), 7(b), and 7(c) show pure water (DW) and adenine (A) on the graphene pattern 100, the silicon oxide film (SiO2) and the PDMS pattern, respectively.
  • guanine (Guanine, G), thymine (Thymine, T), to provide cytosine (Cytosine, C), a view showing a reflection coefficient (Reflection coefficient, S11) measured according to the measured frequency.
  • 9(a), 9(b) and 9(c) are a sample solution containing adenine (A), guanine (G), thymine (T), and cytosine (C) as the sensor according to the present embodiment. It is a diagram showing the calculation of electrical resistance (resistance), inductance (inductance), and conductance (conductance). Electrical resistance, inductance, and conductance shown in FIGS. 9A to 9C may be calculated from Equation 1 below.

Abstract

A single strand DNA sensor according to the present embodiment comprises: a substrate; a first electrode and a second electrode formed on the substrate; a graphene pattern connected to the first electrode and the second electrode and provided with a single-stranded DNA, which is a target; and a driving and detection unit, which provides a radio frequency (RF) frequency signal to the graphene pattern and detects a change in electrical properties for the RF frequency signal.

Description

단일 가닥 DNA 센서 및 단일 가닥 DNA 센서 제조 방법Single-stranded DNA sensor and single-stranded DNA sensor manufacturing method
본 기술은 단일 가닥 DNA 센서 및 단일 가닥 DNA 센서 제조 방법과 관련된다.The present technology relates to single-stranded DNA sensors and methods of making single-stranded DNA sensors.
기존 바이오 센싱 기술은 효소를 사용하여 염기 서열을 알아보려는 표적 DNA를 단일 가닥으로 만들고, 프라이머, DNA 중합 효소, 4종류의 dNTP(deoxynucleotides triphosphates), 서로 다른 색의 형광 물질로 표지된 4종류의 ddNTP(dideoxynucleotides triphosphates)를 넣어 DNA 복제가 일어나게 한다. 이때, DNA를 전기 영동 하여 길이에 따라 나열하고 형광 검출기를 이용하여 DNA 말단의 형광 표지 색을 순서대로 읽으면 분석하고자 하는 DNA 가닥의 염기 서열을 알 수 있다.Existing biosensing technology uses enzymes to make a single strand of target DNA for which the nucleotide sequence is to be determined, primers, DNA polymerase, 4 types of dNTPs (deoxynucleotides triphosphates), and 4 types of ddNTPs labeled with fluorescent substances of different colors (dideoxynucleotides triphosphates) are added to allow DNA replication to occur. At this time, the DNA is electrophoresed and arranged according to the length, and the nucleotide sequence of the DNA strand to be analyzed can be known by reading the fluorescent label colors at the ends of the DNA in order using a fluorescence detector.
종래 기술은 높은 정확도를 가지고 있지만 많은 검사시간을 필요로 하며, 라벨이 필요하다는 점, 오염이 되기 쉽다는 단점이 있다. 본 기술로 해결하고자 하는 과제 중 하나는 이러한 종래 기술의 난점을 해소하는 것이다. 즉, 본 실시예로 해결하고자 하는 과제 중 하나는, 라벨이 필요하지 않고, 오염에서 자유로우며 신속하게 검사를 수행할 수 있는 센서를 제공하는 것이다. Although the prior art has high accuracy, it requires a lot of inspection time, requires a label, and is prone to contamination. One of the problems to be solved by the present technology is to solve the difficulties of the prior art. That is, one of the problems to be solved by this embodiment is to provide a sensor that does not require a label, is free from contamination, and can quickly perform an inspection.
본 실시예에 의한 단일 가닥 DNA(Single Strand DNA) 센서는: 기판; 기판에 형성된 제1 전극 및 제2 전극 및 제1 전극 및 제2 전극과 연결되고, 타겟인 상기 단일 가닥 DNA가 제공되는 그래핀 패턴(graphene pattern) 및 상기 그래핀 패턴에 RF(radio frequency) 주파수 신호를 제공하고, 상기 RF 주파수의 신호에 대한 전기적 특성 변화를 검출하는 구동 및 검출부를 포함한다.The single-stranded DNA sensor according to this embodiment includes: a substrate; The first electrode and the second electrode formed on the substrate, and the graphene pattern connected to the first electrode and the second electrode and provided with the single-stranded DNA as the target, and a radio frequency (RF) frequency in the graphene pattern and a driving and detecting unit that provides a signal and detects a change in electrical characteristics with respect to the signal of the RF frequency.
본 실시예의 어느 한 측면에 의하면, 상기 제1 전극 및 제2 전극은, GSG 프로브를 통하여 상기 구동 및 검출부와 전기적으로 연결되고, 상기 GSG 프로브는, 상기 제1 전극 및 제2 전극을 통하여 상기 RF 신호를 제공하고, 상기 기판에 더 형성된 기준 전극을 통하여 상기 센서에 기준 전압을 제공한다.According to any one aspect of the present embodiment, the first electrode and the second electrode are electrically connected to the driving and detecting unit through a GSG probe, and the GSG probe is connected to the RF through the first electrode and the second electrode A signal is provided and a reference voltage is provided to the sensor through a reference electrode further formed on the substrate.
본 실시예의 어느 한 측면에 의하면, 상기 구동 및 검출부는, 상기 타겟에 제공된 상기 RF 신호로부터 반사 계수(refelction coefficient) 및 투과 계수(transmission coefficient) 중 어느 하나 이상을 검출하여 상기 타겟을 검출한다.According to one aspect of the present embodiment, the driving and detecting unit detects the target by detecting at least one of a reflection coefficient and a transmission coefficient from the RF signal provided to the target.
본 실시예의 어느 한 측면에 의하면, 상기 기판(sub)은 산화막이 형성된 실리콘 기판이고, 상기 제1 전극 및 제2 전극은 구리, 크롬, 티타늄, 백금, 팔라듐, 은 및 금 중 어느 하나를 포함한다.According to one aspect of this embodiment, the substrate (sub) is a silicon substrate on which an oxide film is formed, and the first electrode and the second electrode include any one of copper, chromium, titanium, platinum, palladium, silver, and gold. .
본 실시예에 의한 센서 제조 방법은 (a) 기판에 제1 전극 및 제2 전극을 형성하는 단계 및 (b) 상기 제1 전극 및 제2 전극에 전기적으로 연결되도록 그래핀 패턴을 형성하는 단계 및 (c) 상기 제1 전극 및 상기 제2 전극과 GSG 프로브를 연결하는 단계를 포함한다.The sensor manufacturing method according to this embodiment comprises the steps of (a) forming a first electrode and a second electrode on a substrate, and (b) forming a graphene pattern to be electrically connected to the first electrode and the second electrode; (c) connecting the first electrode and the second electrode to the GSG probe.
본 실시예의 어느 한 측면에 의하면, 상기 (a)단계는, 상기 기판 상에 상기 제1 전극과 상기 제2 전극의 형태에 상응하는 전극 마스크를 형성하는 단계, 상기 기판 상에 상기 전극 마스크를 두고 금속층을 증착하는 단계 및 상기 전극 마스크를 리프트 오프(lift-off)하여 상기 제1 전극 및 제2 전극을 형성하여 수행한다.According to any one aspect of this embodiment, the step (a) is a step of forming an electrode mask corresponding to the shape of the first electrode and the second electrode on the substrate, placing the electrode mask on the substrate Depositing a metal layer and lifting off the electrode mask to form the first electrode and the second electrode are performed.
본 실시예의 어느 한 측면에 의하면, 상기 (b) 단계는, 희생 기판 상에 CVD(Chemical vapor deposition) 그래핀을 성장시키는 단계와, 성장한 상기 CVD 그래핀을 캐리어로 덮고 상기 희생 기판을 제거하는 단계 및 상기 캐리어를 제거하고, 상기 CVD 그래핀을 상기 기판에 배치하는 단계로 수행된다.According to one aspect of this embodiment, the step (b) includes growing CVD (chemical vapor deposition) graphene on a sacrificial substrate, covering the grown CVD graphene with a carrier and removing the sacrificial substrate and removing the carrier, and disposing the CVD graphene on the substrate.
본 실시예의 어느 한 측면에 의하면, 상기 희생 기판은 구리 박막이다.According to one aspect of the present embodiment, the sacrificial substrate is a copper thin film.
본 실시예에 의하면 라벨이 필요하지 않고, 오염에서 자유로우며 신속하게 검사를 수행할 수 있는 센서가 제공된다는 장점이 제공된다.According to the present embodiment, there is provided an advantage in that a sensor is provided that does not require a label, is free from contamination, and can perform an inspection quickly.
도 1은 본 실시예에 의한 센서를 도시한 도면이다.1 is a view showing a sensor according to the present embodiment.
도 2는 본 실시예에 의한 센서 제조 방법의 개요를 도시한 도면이다.Fig. 2 is a diagram showing an outline of a method for manufacturing a sensor according to the present embodiment.
도 3(a) 내지 도 3(d)는 기판에 그래핀 패턴을 형성하는 단계를 설명하기 위한 도면이다. 3(a) to 3(d) are diagrams for explaining the step of forming a graphene pattern on a substrate.
도 4(a) 내지 도 4(f)는 그래핀 패턴에 전기적으로 연결되도록 제1 전극 및 제2 전극을 형성하는 단계를 수행하는 과정을 도시한 도면이다. 4 (a) to 4 (f) are diagrams illustrating a process of performing the step of forming the first electrode and the second electrode to be electrically connected to the graphene pattern.
도 5(a) 및 도 5(b)는 기판 상에 형성된 전극들의 개요를 도시한 현미경 사진들이다. 5 (a) and 5 (b) are photomicrographs showing the outline of the electrodes formed on the substrate.
도 6은 본 실시예에 의한 센서를 확대하여 도시한 도면이다.6 is an enlarged view of the sensor according to the present embodiment.
도 7(a), 도 7(b) 및 도 7(c)는 각각 그래핀 패턴, 실리콘 산화막 및 PDMS 패턴 상에 순수와 아데닌, 구아닌, 티민, 사이토신을 제공하고, 측정한 주파수에 따라 측정한 반사계수를 도시한 도면이다. 7 (a), 7 (b), and 7 (c) provide pure water, adenine, guanine, thymine, and cytosine on a graphene pattern, a silicon oxide film, and a PDMS pattern, respectively, measured according to the measured frequency It is a diagram showing the reflection coefficient.
도 8은 그래핀 패턴 패턴 상에 순수와 아데닌, 구아닌, 티민, 사이토신을 위치하고, 주파수를 변화시켜 측정한 투과 계수를 도시한 도면이다. 8 is a view showing the transmission coefficient measured by placing pure water, adenine, guanine, thymine, and cytosine on a graphene pattern pattern, and changing the frequency.
도 9(a), 도 9(b) 및 도 9(c)는 본 실시예에 의한 센서로 아데닌, 구아닌, 티민, 사이토신을 포함하는 시료 용액의 전기저항, 인덕턴스 및 컨덕턴스를 연산하여 도시한 도면들이다.9(a), 9(b) and 9(c) are diagrams illustrating the calculation of electrical resistance, inductance and conductance of a sample solution containing adenine, guanine, thymine, and cytosine with the sensor according to the present embodiment; admit.
이하에서는 첨부된 도면들을 참조하여 본 실시예를 설명한다.Hereinafter, this embodiment will be described with reference to the accompanying drawings.
도 1은 본 실시예에 의한 센서를 도시한 도면이다. 도 1을 참조하면, 본 실시예에 의한 센서는 단일 가닥 DNA(Single Strand DNA, T)를 검출하는 센서로, 센서는: 기판(sub)과, 기판(sub)에 형성된 제1 전극(210) 및 제2 전극(220) 및 제1 전극(210) 및 제2 전극(220)과 연결되고, 타겟(T)인 단일 가닥 DNA가 제공되는 그래핀 패턴(graphene pattern, 100) 및 그래핀 패턴(100)에 RF(radio frequency) 주파수 신호를 제공하고, RF 주파수의 신호에 대한 전기적 특성 변화를 검출하는 구동 및 검출부를 포함한다. 1 is a view showing a sensor according to the present embodiment. Referring to FIG. 1 , the sensor according to this embodiment is a sensor for detecting single-stranded DNA (T), and the sensor includes: a substrate (sub) and a first electrode (210) formed on the substrate (sub) and a graphene pattern 100 and a graphene pattern connected to the second electrode 220 and the first electrode 210 and the second electrode 220 and provided with single-stranded DNA as the target T 100) provides a radio frequency (RF) frequency signal, and includes a driving and detecting unit for detecting a change in electrical characteristics with respect to the RF frequency signal.
도 2는 본 실시예에 의한 센서 제조 방법의 개요를 도시한 도면이다. 도 2를 참조하면, 본 실시예에 의한 센서 제조 방법은 기판(sub)에 그래핀 패턴(100)을 형성하는 단계(S100)와, 그래핀 패턴(100)에 전기적으로 연결되도록 제1 전극(210) 및 제2 전극(220)을 형성하는 단계(S100) 및 제1 전극(210) 및 제2 전극(220)과 GSG 프로브를 연결하는 단계(S300)를 포함한다.Fig. 2 is a diagram showing an outline of a method for manufacturing a sensor according to the present embodiment. Referring to FIG. 2 , the sensor manufacturing method according to the present embodiment includes a step of forming a graphene pattern 100 on a substrate ( S100 ) and a first electrode ( S100 ) to be electrically connected to the graphene pattern 100 . 210) and forming the second electrode 220 (S100), and connecting the first electrode 210 and the second electrode 220 with the GSG probe (S300).
도 3(a) 내지 도 3(d)는 기판(sub)에 그래핀 패턴(100)을 형성하는 단계를 설명하기 위한 도면이다. 도 3(a)를 참조하면, 희생 기판(110)에 그래핀(100)을 성장시킨다. 도 3(a)로 예시된 실시예에서, 희생 기판(110)은 구리 박막(Cu foil)이다. 다른 실시예에서, 구리 박막 이외의 다른 희생 기판 상에 그래핀을 성장시킬 수 있다. 일 실시예로, 희생 기판(110)은 그 상부에 그래핀 패턴(100)이 형성되고, 후속하는 과정에서 제거되어 그래핀 패턴(100)을 기판(sub)으로 전사하는 것을 가능하게 한다. 3 (a) to 3 (d) are views for explaining the step of forming the graphene pattern 100 on the substrate (sub). Referring to FIG. 3A , graphene 100 is grown on the sacrificial substrate 110 . In the embodiment illustrated in FIG. 3A , the sacrificial substrate 110 is a copper foil. In another embodiment, graphene may be grown on a sacrificial substrate other than a copper thin film. In an embodiment, the sacrificial substrate 110 has a graphene pattern 100 formed thereon and is removed in a subsequent process to enable the graphene pattern 100 to be transferred to the substrate sub.
그래핀(100)을 성장시키는 단계는 화학적 기상 증착(CVD, chemical vapor deposition)을 통하여 수행될 수 있다. 다만, CVD 이외의 다른 방법으로 그래핀을 성장시킬 수 있다. The step of growing the graphene 100 may be performed through chemical vapor deposition (CVD). However, graphene may be grown by methods other than CVD.
도 3(b)를 참조하면, 희생 기판(110) 상에 성장된 그래핀(100)을 캐리어(carrier, 120)로 덮는다. 캐리어(120)는 성장된 그래핀(100)을 이후 공정에서 사용할 수 있도록 이동하거나 취급을 용이하게 한다. 도 3(b)로 예시된 실시예에서 캐리어는 PMMA일 수 있다. Referring to FIG. 3B , the graphene 100 grown on the sacrificial substrate 110 is covered with a carrier 120 . The carrier 120 moves or facilitates handling of the grown graphene 100 so that it can be used in a subsequent process. In the embodiment illustrated by FIG. 3( b ), the carrier may be PMMA.
도 3(c)를 참조하면, 희생 기판을 제거한다. 일 실시예로, 희생 기판(110)은 식각을 통해서 제거될 수 있다. 일 예로, 희생 기판(110)을 제거하는 단계는 습식각을 통해서 제거될 수 있으며, 습식각은 그래핀과 반응성이 낮은 에쳔트(etchant)를 사용하여 수행한다. 도 3(c)로 예시된 것과 같이 희생 기판(110)이 제거된 상태에서는 캐리어(120)에 그래핀(100)이 부착되어 있다. Referring to FIG. 3C , the sacrificial substrate is removed. In an embodiment, the sacrificial substrate 110 may be removed through etching. For example, the step of removing the sacrificial substrate 110 may be removed through wet etching, which is performed using an etchant having low reactivity with graphene. As illustrated in FIG. 3C , graphene 100 is attached to the carrier 120 in a state in which the sacrificial substrate 110 is removed.
이어서 캐리어(120)에 부착된 그래핀(100)을 기판(sub)의 목적하는 위치로 이동한다. 기판(sub)은 산화막이 형성된 실리콘 기판으로, 실리콘 웨이퍼로 형성될 수 있다. 이어서, 그래핀(100)이 부착된 상태에서 캐리어(120)를 제거한다. 캐리어(120)를 제거하는 과정은 습식각으로 수행될 수 있다. 일 예로, 그래핀(100)이 부착된 상태의 기판(sub)을 아세톤 등의 유기 용매로 처리하여 캐리어(120)를 제거할 수 있다. Then, the graphene 100 attached to the carrier 120 is moved to a desired position of the substrate (sub). The substrate (sub) is a silicon substrate on which an oxide film is formed, and may be formed of a silicon wafer. Next, the carrier 120 is removed while the graphene 100 is attached. The process of removing the carrier 120 may be performed by wet etching. As an example, the carrier 120 may be removed by treating the substrate sub to which the graphene 100 is attached with an organic solvent such as acetone.
도 4(a) 내지 도 4(f)는 그래핀 패턴에 전기적으로 연결되도록 제1 전극 및 제2 전극을 형성하는 단계를 수행하는 과정을 도시한 도면이다. 도 4(a)를 참조하면, 산화막이 형성된 웨이퍼(wafer)를 준비하고, 도 4(b)와 같이 웨이퍼(wafer)의 표면에 포토레지스트(PR)을 형성한다. 이어서 도 4(c)와 같이 목적하는 패턴이 형성된 포토마스크(photomask)를 형성하고, 노광, 현상 및 식각 과정을 수행한다. 웨이퍼(wafer)에는 목적하는 패턴이 형성된 마스크가 형성된다(도 4(d)).4 (a) to 4 (f) are diagrams illustrating a process of performing the step of forming the first electrode and the second electrode to be electrically connected to the graphene pattern. Referring to FIG. 4(a), a wafer on which an oxide film is formed is prepared, and a photoresist PR is formed on the surface of the wafer as shown in FIG. 4(b). Then, as shown in FIG. 4(c), a photomask having a desired pattern is formed, and exposure, development, and etching processes are performed. A mask having a desired pattern is formed on the wafer (FIG. 4(d)).
도 4(e)로 예시된 것과 같이 웨이퍼 상부에 금속막을 형성한다. 패턴된 마스크는 전극이 형성될 부분을 노출하므로 금속막을 형성하는 과정에서 목적하는 위치에 전극이 형성된다. 일 예로, 금속막을 형성하는 과정은 스퍼터(sputter), 증착(evaporate)등의 과정을 통해서 수행될 수 있으며, 금속은 구리, 크롬, 티타늄, 백금, 팔라듐, 은 및 금(gold) 등과 같이 양호한 도전성을 가지는 금속일 수 있다. 이어서 도 4(f)와 같이 마스크를 제거(lift-off)하여 그래핀 패턴과 전기적으로 연결된 제1 전극(210) 및 제2 전극(220)을 형성할 수 있다. As illustrated in FIG. 4(e), a metal film is formed on the wafer. Since the patterned mask exposes the portion where the electrode is to be formed, the electrode is formed at a desired position in the process of forming the metal film. For example, the process of forming the metal film may be performed through a process such as sputtering or evaporation, and the metal has good conductivity such as copper, chromium, titanium, platinum, palladium, silver and gold. It may be a metal having Subsequently, as shown in FIG. 4(f) , the mask may be lifted off to form the first electrode 210 and the second electrode 220 electrically connected to the graphene pattern.
도 5(a) 및 도 5(b)는 기판(sub) 상에 형성된 전극들의 개요를 도시한 현미경 사진들이다. 도 5(a)는 그래핀 패턴(100)(파선으로 도시된 원 내부)와 전기적으로 연결된 제1 전극(210)과 제2 전극(220)의 형태를 도시한 사진이다. 도 5(a)로 예시된 것과 같이 제1 전극(210)과 제2 전극(220)의 간격은 3um로 형성되었다. 다만, 이는 구현예일 따름이며, 실제의 간격은 3um 보다 더 크거나 또는 더 작을 수 있다. 5 (a) and 5 (b) are photomicrographs showing the outline of the electrodes formed on the substrate (sub). 5 (a) is a photograph showing the shape of the first electrode 210 and the second electrode 220 electrically connected to the graphene pattern 100 (inside the circle shown by the broken line). As illustrated in FIG. 5( a ), the interval between the first electrode 210 and the second electrode 220 was formed to be 3 μm. However, this is only an embodiment, and the actual interval may be larger or smaller than 3 μm.
도 5(b)는 구동 및 검출부(미도시)와 연결된 GSG(ground signal ground) 프로브와 접속하는 접속 단자를 도시한 사진이다. 도 5(b)를 참조하면, GSG 프로브는 구동 및 검출부와 전기적으로 연결되고, 그라운드 패드(G)를 통하여 접지 전압을 제공하고, 제1 전극(210) 혹은 제2 전극(220)을 통하여 RF 주파수의 신호를 제공한다. 도 5(a) 및 도 5(b)로 예시된 패드들을 통하여 본 그래핀 패턴(100)과 구동 및 검출부를 전기적으로 연결할 수 있다. 5( b ) is a photograph illustrating a connection terminal connected to a ground signal ground (GSG) probe connected to a driving and detecting unit (not shown). Referring to FIG. 5B , the GSG probe is electrically connected to the driving and detecting unit, provides a ground voltage through the ground pad G, and receives an RF through the first electrode 210 or the second electrode 220 . It provides a signal of frequency. The graphene pattern 100 and the driving and detecting unit may be electrically connected through the pads illustrated in FIGS. 5A and 5B .
이하에서는 도 1 및 도 6을 참조하여 본 실시예에 의한 센서의 동작을 설명한다. 도 6은 본 실시예에 의한 센서를 확대하여 도시하였으며, 제1 전극(210)과 제2 전극(220)사이에서 그래핀 패턴(100)과 타겟(T)인 ssDNA가 상호작용 하는 모습을 개요적으로 도시하였다. 도 1 및 도 6을 참조하면, 제1 전극(210) 및 제2 전극(220)과 연결된 구동 및 검출부는 입력과 출력 전압을 이용하여 S-계수(S-parameter)를 측정한다. S-계수는 반사계수(S11)와 투과계수(S21)를 포함하며, 이를 이용하면 RLGC(저항, 인덕턴스, 컨덕턴스, 캐패시턴스)와 임피던스(Z), 전파상수(γ)를 구할 수 있다.Hereinafter, an operation of the sensor according to the present embodiment will be described with reference to FIGS. 1 and 6 . 6 is an enlarged view of the sensor according to this embodiment, and outlines the interaction between the graphene pattern 100 and the target T, ssDNA, between the first electrode 210 and the second electrode 220 shown negatively. 1 and 6 , the driving and detecting unit connected to the first electrode 210 and the second electrode 220 measures an S-parameter using input and output voltages. The S-coefficient includes a reflection coefficient (S11) and a transmission coefficient (S21), and by using them, RLGC (resistance, inductance, conductance, and capacitance), impedance (Z), and propagation constant (γ) can be obtained.
타겟(T)인 ssDNA와 그래핀(100) 사이에서 일어나는 π-π 상호작용이 제1 전극(210) 및 제2 전극(220)으로 제공된 RF 신호에 영향을 주어 ssDNA의 특성을 용이하게 파악하게 한다. ssDNA의 종류에 따라 그래핀과 발생하는 π-π 상호작용의 강도가 변화한다. 단일 가닥 ssDNA에 포함된 염기인 G, A, T, C와 그래핀 사이의 상호 작용의 크기는 G > A > T > C 의 순으로 강하며, 더욱 강하게 상호작용이 일어날수록 더 작은 반사 계수가 측정된다.The π-π interaction that occurs between the target (T) ssDNA and the graphene 100 affects the RF signal provided to the first electrode 210 and the second electrode 220 to easily understand the characteristics of ssDNA. do. Depending on the type of ssDNA, the strength of the π-π interaction with graphene changes. The magnitude of the interaction between G, A, T, and C, the bases included in single-stranded ssDNA, and graphene is strong in the order of G > A > T > C, and the stronger the interaction, the smaller the reflection coefficient. It is measured.
도 7(a), 도 7(b) 및 도 7(c)는 각각 그래핀 패턴(100), 실리콘 산화막(SiO2) 및 PDMS 패턴 상에 순수(Distilled water, DW)와 아데닌(Adenine, A), 구아닌(Guanine, G), 티민(Thymine, T), 사이토신(Cytosine, C)을 제공하고, 측정한 주파수에 따라 측정한 반사계수(Reflection coefficient, S11)를 도시한 도면이다. 7(a), 7(b), and 7(c) show pure water (DW) and adenine (A) on the graphene pattern 100, the silicon oxide film (SiO2) and the PDMS pattern, respectively. , guanine (Guanine, G), thymine (Thymine, T), to provide cytosine (Cytosine, C), a view showing a reflection coefficient (Reflection coefficient, S11) measured according to the measured frequency.
도 7(a)를 참조하면, 그래핀 패턴 상에 순수(DW)를 위치시킨 경우, 1.960 GHz에서 공진이 일어나는 것을 확인할 수 있다. 이러한 결과는 ssDNA를 포함하지 않는 DW의 경우 S11 값이 -41.468dB로 ssDNA가 포함된 시료에서 측정된 S11 값보다 약 2배 큰 것을 확인할 수 있다. Referring to FIG. 7( a ), when pure (DW) is placed on the graphene pattern, it can be seen that resonance occurs at 1.960 GHz. These results confirm that the DW without ssDNA has an S11 value of -41.468 dB, which is about twice as large as the S11 value measured from a sample containing ssDNA.
이러한 결과는 도 7(b) 및 도 7(c)로 예시된 결과와 달리 그래핀과 ssDNA 사이에서 일어나는 상호작용이 시그널에 영향을 미친다는 것을 나타낸다. 또한, 상술한 바와 같이 G > A > T > C 의 순으로 그래핀과의 상호작용이 강하기 때문에 반사계수의 세기가 C > T > A > G 순으로 나타나는 것을 확인할 수 있다.These results indicate that the interaction between graphene and ssDNA affects the signal, unlike the results exemplified in FIGS. 7(b) and 7(c). In addition, as described above, since the interaction with graphene is strong in the order of G > A > T > C, it can be confirmed that the intensity of the reflection coefficient appears in the order of C > T > A > G.
도 7(b)로 예시된 그래프를 참조하면, 실리콘 산화막 상에 순수(DW) 시료 및 ssDNA를 포함하는 시료를 위치시켜 반사 계수를 측정한 경우에는 각 시료를 포함하는 경우와, 순수(DW) 시료가 형성하는 반사 계수는 서로 근사하여 분리가 곤란할 것으로 파악된다. 마찬가지로, 도 7(c)로 예시된 그래프를 참조하면, PDMS 상에 순수(DW) 시료 및 ssDNA를 포함하는 시료를 위치시켜 반사 계수를 측정한 경우에도ssDNA 시료를 포함하는 경우와, 순수(DW) 시료가 형성하는 반사 계수는 서로 근사한 것으로 파악되어 분리가 곤란할 것으로 파악된다. Referring to the graph illustrated in FIG. 7( b ), when the reflection coefficient is measured by placing a pure (DW) sample and a sample including ssDNA on a silicon oxide layer, each sample is included, and pure (DW) It is understood that the reflection coefficients formed by the sample are close to each other and thus it is difficult to separate them. Similarly, referring to the graph illustrated in FIG. 7(c), even when the reflection coefficient is measured by placing a pure (DW) sample and a sample containing ssDNA on the PDMS, the case including the ssDNA sample and the pure water (DW) ) The reflection coefficients formed by the sample are considered to be close to each other, so it is considered that it is difficult to separate them.
도 7(a) 내지 도 7(c)로 예시된 결과를 참조하면, 상술한 바와 같이 그래핀과 시료에 포함된 ssDNA와의 상호 작용이 반사 계수의 변화를 크게 형성하므로, 다른 재질로 형성하는 경우에 비하여 높은 검출 민감도를 얻을 수 있다는 장점이 제공되는 것을 확인할 수 있다. Referring to the results exemplified in FIGS. 7(a) to 7(c), as described above, the interaction between graphene and ssDNA contained in the sample greatly changes the reflection coefficient, so when formed of a different material It can be seen that the advantage of obtaining a high detection sensitivity compared to the above is provided.
도 8은 그래핀 패턴(100) 패턴 상에 순수(DW)와 아데닌(Adenine, A), 구아닌(Guanine, G), 티민(Thymine, T), 사이토신(Cytosine, C)을 위치하고, 주파수를 변화시켜 측정한 투과 계수(Transmission coefficient, S21)를 도시한 도면이다. 도 8을 참조하면, ssDNA를 포함하는 시료와 DW 시료는 모두 2.3~ 2.4GHz에서 공진하는 것을 알 수 있다. 또한, ssDNA를 포함하는 시료는 공진 주파수를 포함하는 모든 주파수 영역대에서 순수(DW)에 비하여 낮은 투과 계수(S21)를 형성하는 것으로 파악된다.8 is a graphene pattern 100 on the pattern of pure (DW), adenine (Adenine, A), guanine (Guanine, G), thymine (Thymine, T), cytosine (Cytosine, C), the frequency It is a view showing a transmission coefficient (Transmission coefficient, S21) measured by changing it. Referring to FIG. 8 , it can be seen that both the sample including ssDNA and the DW sample resonate at 2.3 to 2.4 GHz. In addition, it is understood that the sample including ssDNA forms a lower transmission coefficient (S21) than that of pure water (DW) in all frequency bands including the resonant frequency.
또한, 도 8로 예시된 것과 같이 순수(DW)에서의 반사 계수는 G, A, T, C의 ssDNA를 포함하는 시료에서 형성되는 반사 계수와 명확하게 구별되는 것을 알 수 있다. 이로부터 높은 민감도로 ssDNA를 검출할 수 있다는 것을 확인할 수 있다. In addition, as illustrated in FIG. 8 , it can be seen that the reflection coefficient in pure water (DW) is clearly distinguished from the reflection coefficient formed in a sample containing ssDNA of G, A, T, and C. From this, it can be confirmed that ssDNA can be detected with high sensitivity.
도 9(a), 도 9(b) 및 도 9(c)는 본 실시예에 의한 센서로 아데닌(A), 구아닌(G), 티민(T), 사이토신(C)을 포함하는 시료 용액의 전기저항(resistance), 인덕턴스(inductance) 및 컨덕턴스(conductance)를 연산하여 도시한 도면들이다. 도 9(a) 내지 도 9(c)로 도시된 전기저항(resistance), 인덕턴스(inductance) 및 컨덕턴스(conductance)는 아래의 수학식 1로부터 연산될 수 있다.9(a), 9(b) and 9(c) are a sample solution containing adenine (A), guanine (G), thymine (T), and cytosine (C) as the sensor according to the present embodiment. It is a diagram showing the calculation of electrical resistance (resistance), inductance (inductance), and conductance (conductance). Electrical resistance, inductance, and conductance shown in FIGS. 9A to 9C may be calculated from Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2022005267-appb-img-000001
Figure PCTKR2022005267-appb-img-000001
즉, 측정 주파수와 반사 계수(S11) 및 투과 계수(S21)를 얻고 이들을 상기한 수학식 1로 연산하여 전기저항(resistance), 인덕턴스(inductance) 및 컨덕턴스(conductance)를 연산할 수 있다.That is, it is possible to obtain the measurement frequency, the reflection coefficient S11 and the transmission coefficient S21, and calculate the electrical resistance, inductance, and conductance by calculating them using Equation 1 above.
본 발명에 대한 이해를 돕기 위하여 도면에 도시된 실시 예를 참고로 설명되었으나, 이는 실시를 위한 실시예로, 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.Although it has been described with reference to the embodiment shown in the drawings in order to help the understanding of the present invention, this is an embodiment for implementation, it is merely an example, and various modifications and equivalents from those of ordinary skill in the art It will be appreciated that other embodiments are possible. Accordingly, the true technical protection scope of the present invention should be defined by the appended claims.

Claims (8)

  1. 단일 가닥 DNA(Single Strand DNA) 센서로, 상기 센서는:A single strand DNA sensor, the sensor comprising:
    기판;Board;
    기판에 형성된 제1 전극 및 제2 전극 및 a first electrode and a second electrode formed on the substrate; and
    제1 전극 및 제2 전극과 연결되고, 타겟인 상기 단일 가닥 DNA가 제공되는 그래핀 패턴(graphene pattern) 및 A graphene pattern connected to the first electrode and the second electrode and provided with the single-stranded DNA as a target, and
    상기 그래핀 패턴에 RF(radio frequency) 주파수 신호를 제공하고, 상기 RF 주파수의 신호에 대한 전기적 특성 변화를 검출하는 구동 및 검출부를 포함하는 센서.A sensor including a driving and detecting unit for providing a radio frequency (RF) frequency signal to the graphene pattern and detecting a change in electrical characteristics with respect to the signal of the RF frequency.
  2. 제1항에 있어서, According to claim 1,
    상기 제1 전극 및 제2 전극은,The first electrode and the second electrode,
    GSG 프로브를 통하여 상기 구동 및 검출부와 전기적으로 연결되고, It is electrically connected to the driving and detecting unit through the GSG probe,
    상기 GSG 프로브는, The GSG probe,
    상기 제1 전극 및 제2 전극을 통하여 상기 RF 신호를 제공하고, providing the RF signal through the first electrode and the second electrode;
    상기 기판에 더 형성된 기준 전극을 통하여 상기 센서에 기준 전압을 제공하는 센서.A sensor for providing a reference voltage to the sensor through a reference electrode further formed on the substrate.
  3. 제1항에 있어서, According to claim 1,
    상기 구동 및 검출부는, The driving and detecting unit,
    상기 타겟에 제공된 상기 RF 신호로부터 반사 계수(refelction coefficient) 및 투과 계수(transmission coefficient) 중 어느 하나 이상을 검출하여 상기 타겟을 검출하는 센서.A sensor for detecting the target by detecting at least one of a reflection coefficient and a transmission coefficient from the RF signal provided to the target.
  4. 제1항에 있어서, According to claim 1,
    상기 기판(sub)은 산화막이 형성된 실리콘 기판이고, The substrate (sub) is a silicon substrate on which an oxide film is formed,
    상기 제1 전극 및 제2 전극은 구리, 크롬, 티타늄, 백금, 팔라듐, 은 및 금 중 어느 하나를 포함하는 센서.The first electrode and the second electrode may include any one of copper, chromium, titanium, platinum, palladium, silver, and gold.
  5. (a) 기판에 제1 전극 및 제2 전극을 형성하는 단계 및 (a) forming a first electrode and a second electrode on a substrate; and
    (b) 상기 제1 전극 및 제2 전극에 전기적으로 연결되도록 그래핀 패턴을 형성하는 단계 및 (b) forming a graphene pattern to be electrically connected to the first electrode and the second electrode;
    (c) 상기 제1 전극 및 상기 제2 전극과 GSG 프로브를 연결하는 단계를 포함하는 센서 제조 방법.(c) connecting the first electrode and the second electrode to a GSG probe.
  6. 제5항에 있어서, 6. The method of claim 5,
    상기 (a)단계는, The step (a) is,
    상기 기판 상에 상기 제1 전극과 상기 제2 전극의 형태에 상응하는 전극 마스크를 형성하는 단계, forming an electrode mask corresponding to the shape of the first electrode and the second electrode on the substrate;
    상기 기판 상에 상기 전극 마스크를 두고 금속층을 증착하는 단계 및 depositing a metal layer with the electrode mask on the substrate; and
    상기 전극 마스크를 리프트 오프(lift-off)하여 상기 제1 전극 및 제2 전극을 형성하여 수행하는 센서 제조 방법.A method for manufacturing a sensor, which is performed by lifting off the electrode mask to form the first electrode and the second electrode.
  7. 제5항에 있어서, 6. The method of claim 5,
    상기 (b) 단계는,Step (b) is,
    희생 기판 상에 CVD(Chemical vapor deposition) 그래핀을 성장시키는 단계와, Growing CVD (Chemical Vapor Deposition) graphene on a sacrificial substrate;
    성장한 상기 CVD 그래핀을 캐리어로 덮고 상기 희생 기판을 제거하는 단계 및 covering the grown CVD graphene with a carrier and removing the sacrificial substrate;
    상기 캐리어를 제거하고, 상기 CVD 그래핀을 상기 기판에 배치하는 단계로 수행되는 센서 제조 방법.A method of manufacturing a sensor performed by removing the carrier and disposing the CVD graphene on the substrate.
  8. 제7항에 있어서, 8. The method of claim 7,
    상기 희생 기판은 구리 박막인 센서 제조 방법.wherein the sacrificial substrate is a thin copper film.
PCT/KR2022/005267 2021-04-13 2022-04-12 Single strand dna sensor and method for manufacturing single strand dna sensor WO2022220536A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210048098 2021-04-13
KR10-2021-0048098 2021-04-13
KR1020220035110A KR20220141741A (en) 2021-04-13 2022-03-22 Single strand dna sensor and single strand dna sensor manufacturing method
KR10-2022-0035110 2022-03-22

Publications (1)

Publication Number Publication Date
WO2022220536A1 true WO2022220536A1 (en) 2022-10-20

Family

ID=83640497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005267 WO2022220536A1 (en) 2021-04-13 2022-04-12 Single strand dna sensor and method for manufacturing single strand dna sensor

Country Status (1)

Country Link
WO (1) WO2022220536A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120125906A (en) * 2011-05-09 2012-11-19 성균관대학교산학협력단 Method for preparing biosensor comprising reduced graphene oxide pattern using printing of self-assembled monolayer and biosensor prepared thereby
KR20130107915A (en) * 2012-03-23 2013-10-02 삼성전자주식회사 Sensing apparatus using radio frequencyand manufacturing mathod thereof
KR20130125916A (en) * 2012-05-10 2013-11-20 삼성전자주식회사 Method and apparatus for measuring radio frequency properties of biomaterial

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120125906A (en) * 2011-05-09 2012-11-19 성균관대학교산학협력단 Method for preparing biosensor comprising reduced graphene oxide pattern using printing of self-assembled monolayer and biosensor prepared thereby
KR20130107915A (en) * 2012-03-23 2013-10-02 삼성전자주식회사 Sensing apparatus using radio frequencyand manufacturing mathod thereof
KR20130125916A (en) * 2012-05-10 2013-11-20 삼성전자주식회사 Method and apparatus for measuring radio frequency properties of biomaterial

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNG YOUNGMO, MOON HI GYU, LIM CHAEHYUN, CHOI KEUNSU, SONG HYUN SEOK, BAE SUKANG, KIM SOO MIN, SEO MINAH, LEE TAIKJIN, LEE SEOK, P: "Humidity-Tolerant Single-Stranded DNA-Functionalized Graphene Probe for Medical Applications of Exhaled Breath Analysis", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 27, no. 26, 1 July 2017 (2017-07-01), DE , pages 1700068, XP055976817, ISSN: 1616-301X, DOI: 10.1002/adfm.201700068 *
VISHNUBHOTLA RAMYA; SRIRAM ADITHYA; DICKENS OLIVIA O.; MANDYAM SRINIVAS V.; PING JINGLEI; ADU-BENG EMMELINE; JOHNSON A. T. CHARLIE: "Attomolar Detection of ssDNA Without Amplification and Capture of Long Target Sequences With Graphene Biosensors", IEEE SENSORS JOURNAL, IEEE, USA, vol. 20, no. 11, 13 February 2020 (2020-02-13), USA, pages 5720 - 5724, XP011786749, ISSN: 1530-437X, DOI: 10.1109/JSEN.2020.2973949 *

Similar Documents

Publication Publication Date Title
US8535512B2 (en) Devices and methods for sequencing nucleic acids
US20080242562A1 (en) Apparatus and methods for detecting nucleic acid in biological samples
EP1450156A1 (en) Sensor cell, biosensor, capacitive device manufacturing method, biological reaction detection method, and gene analyzing method
WO2010041875A2 (en) Ultra high speed and high sensitivity base sequence analysis system and analysis method for same
DE112011105961T5 (en) Nanoluck converter with diamond electrodes
WO2009119972A2 (en) Highly sensitive bio-sensor, biochip including same and method for manufacturing same
WO2022220536A1 (en) Single strand dna sensor and method for manufacturing single strand dna sensor
Lin et al. Target DNA detection of human papilloma virus-16 E7 gene by capture-target-reporter sandwich on interdigitated electrode sensor
CN114715840B (en) Differential suspension single-layer graphene nanopore sensor and preparation method and application thereof
CN115144443A (en) Gas sensor and manufacturing method thereof
KR20220141741A (en) Single strand dna sensor and single strand dna sensor manufacturing method
WO2018131981A2 (en) Biosensor having rf bandpass structure and method for sensing biometric data using same, and method for manufacturing same biosensor
WO2015182918A1 (en) Bio-sensor having nano-gap
US20240027451A1 (en) Biosensor for electrochemical detection of e.g. malaria biomarkers
CN112485313A (en) Electrochemical sensor for detecting virus and preparation method thereof
KR100530085B1 (en) Method of Manufacturing Microelectrode -Array type DNA Chip
ITMI20070393A1 (en) ELECTROCHEMICAL SENSOR, KIT INCLUDING THE SENSOR AND PROCESS FOR ITS PRODUCTION
WO2019168209A1 (en) Biosensor having rf bandstop filter structure, which measures glucose concentration, method for sensing biometric data using same, and method for manufacturing rf biosensor having metal line and air-bridge structure
Tayyab et al. Electrical Detection of DNA Nanoballs Using Impedance Spectroscopy in a Microfluidic Chip
CN111579541B (en) Self-calibration dual-signal biosensor and application thereof in miRNA detection
KR101165860B1 (en) Apparatus and methods for detecting nucleic acid in biological samples
Cummins et al. CARBON SCREEN PRINTED ELECTRODES ON LOW TEMPERATURE CO-FIRED CERAMICS FOR LABEL FREE MOLECULAR DIAGNOSTICS
TOYAMA et al. Fabrication of electrodes for chemical sensors on overhead-transparency film
CN116519767A (en) DNA detection sensor, system, manufacturing method, detection method and application
CN117949517A (en) Graphene transistor chip for simultaneously and rapidly detecting multiple biomarkers in specificity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788392

Country of ref document: EP

Kind code of ref document: A1