WO2022220043A1 - Antistatic polyester film - Google Patents

Antistatic polyester film Download PDF

Info

Publication number
WO2022220043A1
WO2022220043A1 PCT/JP2022/013636 JP2022013636W WO2022220043A1 WO 2022220043 A1 WO2022220043 A1 WO 2022220043A1 JP 2022013636 W JP2022013636 W JP 2022013636W WO 2022220043 A1 WO2022220043 A1 WO 2022220043A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
antistatic
polyester film
layer
Prior art date
Application number
PCT/JP2022/013636
Other languages
French (fr)
Japanese (ja)
Inventor
充晴 中谷
由佳 杉本
博 多喜
紀志 高木
功 瀧井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN202280028665.6A priority Critical patent/CN117157195A/en
Priority to KR1020237039216A priority patent/KR20230170953A/en
Priority to JP2023514550A priority patent/JPWO2022220043A1/ja
Publication of WO2022220043A1 publication Critical patent/WO2022220043A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to antistatic polyester films. More specifically, it relates to an antistatic polyester film obtained by laminating an antistatic layer and an antistatic layer with an adhesive layer, and particularly to protective films such as optical members (for example, constituent members of organic EL and liquid crystal displays).
  • Thermoplastic resin films especially polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. It is widely used for optical films such as antireflection films, diffusion sheets, prism sheets, etc., labels printing films, antistatic films, and protective films.
  • polyester films since polyester films have a highly crystalline surface, they have the drawback of poor adhesion to various paints, resins, and inks during processing for these uses. For this reason, conventionally, studies have been made to impart adhesiveness to the polyester film surface by various methods.
  • a surface activation method in which the surface of a polyester film serving as a substrate is subjected to corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, or the like. Since the adhesive effect decreases with time, it has been difficult to maintain a high level of adhesiveness over a long period of time. (Patent document 1) Therefore, a method of coating various resins on the surface of a polyester film and providing a coating layer with easy adhesion is often used.
  • polyurethane acrylate or polyurethane acrylate used for hard coating agents and prism lens agents by using coating liquids containing copolyester resins or urethane resins, or coating liquids using these resins and cross-linking agents in combination for coating layers.
  • Techniques for improving affinity with resin components such as ester acrylates and giving adhesiveness to them have been known (Patent Documents 2 and 3).
  • UV inks (ultraviolet curable inks) used for label printing contain dyes or pigments in addition to resins in order to develop color tone. % is used.
  • the content of white pigment is as high as about 50% by weight in a white ink system in which hiding power is important, adhesion is insufficient with conventional techniques, and adhesion is particularly difficult under low doses.
  • Patent Document 4 the adhesion between the polyester film and the antistatic layer or the adhesive layer is not sufficient, and the durability is not sufficient especially when stored under high temperature and high humidity. was a problem.
  • the present invention was made against the background of such problems of the prior art. That is, it is an object of the present invention to provide an antistatic polyester film which has good adhesion between the polyester film and the antistatic layer and is excellent in maintaining a high level of adhesion over a long period of time.
  • the present invention consists of the following configurations.
  • An antistatic polyester film in which an easy-adhesion layer and an antistatic layer are laminated in this order on at least one side of a polyester film, wherein the easy-adhesion layer has a carboxyl group and an acid value of 30 to 50 mgKOH/g polyurethane resin and carboxyl It is a layer formed by curing a composition containing a cross-linking agent having an acid value of 30 to 50 mgKOH/g.
  • the cross-linking agent is an isocyanate-based compound.
  • the surface resistivity is 10 10 ⁇ / ⁇ or less.
  • the antistatic layer contains a conductive polymer.
  • the film haze is 3.0% or less.
  • An adhesive film obtained by laminating an adhesive layer on at least one surface of the antistatic polyester film.
  • the antistatic polyester film of the present invention has excellent adhesion to UV curing resins such as hard coat layers, lens layers, and inks, and in particular has excellent adhesion to UV inks at a high level.
  • the antistatic polyester film of the present invention can provide an antistatic polyester film that is excellent in blocking resistance, initial adhesion and wet heat resistance adhesion between the antistatic layer, the easy adhesion layer and the polyester film substrate.
  • polyester film substrate The polyester resin constituting the polyester film substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate and the like, as well as the diol component or dicarboxylic acid component of the polyester resin as described above.
  • copolymerized polyester resin in which a part of is replaced with the following copolymerization components, for example, as copolymerization components, diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
  • diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
  • the polyester resin suitably used for the polyester film substrate in the present invention is mainly selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate and polyethylene-2,6-naphthalate.
  • polyethylene terephthalate is most preferable from the viewpoint of balance between physical properties and cost.
  • the polyester film substrate composed of these polyester resins is preferably a biaxially oriented polyester film, which can improve chemical resistance, heat resistance, mechanical strength, and the like.
  • the catalyst for polycondensation used in the production of polyester resin is not particularly limited, but antimony trioxide is suitable because it is inexpensive and has excellent catalytic activity. It is also preferable to use a germanium compound or a titanium compound. Further preferred polycondensation catalysts include catalysts containing aluminum and/or compounds thereof and phenolic compounds, catalysts containing aluminum and/or compounds thereof and phosphorus compounds, and catalysts containing aluminum salts of phosphorus compounds.
  • the polyester film substrate in the present invention is not particularly limited in its layer structure, and may be a single-layer polyester film, or may be a two-layer structure having different components, and an outer layer and an inner layer. It may be a polyester film substrate consisting of at least three layers.
  • the antistatic polyester film of the present invention has an acid value of 30 to 50 mgKOH/g having a carboxyl group on at least one side of the polyester film substrate in order to improve adhesion with the antistatic layer and adhesive layer and improve blocking resistance. It is preferable that an easy-adhesion layer formed of a polyurethane resin and a cross-linking agent having an acid value of 30 to 50 mgKOH/g having a carboxyl group is laminated.
  • the easy-adhesion layer may be provided on both sides of the polyester film, or may be provided only on one side of the polyester film and a different resin coating layer may be provided on the other side.
  • the easy-adhesion layer in the present invention has excellent adhesion to antistatic layers, hard coat layers, lens layers, inks, and other UV-curable resins or thermosetting resins.
  • the polyurethane resin and the cross-linking agent by having a certain range of carboxyl groups in the polyurethane resin and the cross-linking agent, it is possible to suppress the occurrence of defects such as moisture and heat resistance due to a decrease in water resistance due to a large number of carboxyl groups in the single resin. It became possible to contain many carboxyl groups in itself.
  • the weight ratio of the polyurethane resin having a carboxyl group to the cross-linking agent having a carboxyl group is preferably in the range of 90/10 to 10/90, more preferably 80/20 to 20/80, and further preferably 70/30 to A 30/70 range is preferred. If the amount of the cross-linking agent is too small, the durability such as resistance to moist heat is lowered, and if the amount of the polyurethane resin is too small, the adhesiveness is lowered.
  • a polyurethane resin having a carboxyl group is a urethane resin synthesized from at least a polyol component and a polyisocyanate component, and optionally a chain extender, etc., and has a carboxyl group in the molecule or in a side chain.
  • the term "inside the molecule” as used herein refers to those existing in the main chain or at the end of the polyurethane resin.
  • the side chain is introduced onto the branched molecular chain after being synthesized and polymerized due to the presence of 3 or more terminal functional groups in any of the raw material components constituting the molecular chain. It is.
  • the polyurethane resin having a carboxyl group in the present invention is obtained mainly by using a carboxyl group-containing polyol component as a urethane component.
  • carboxyl group-containing polyol components include the following. Relatively high molecular weight polyalkylene glycols, carboxyl group-containing acrylic polyols, carboxyl group-containing polyolefin polyols, and carboxyl group-containing polyester polyols can be used. In addition, relatively low molecular weight compounds such as 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolvaleric acid, etc. can be used. . Dimethylolpropionic acid and dimethylolbutanoic acid are particularly preferably used for introducing carboxyl groups.
  • the acid value of the polyurethane resin having carboxyl groups is preferably 30-50 mgKOH/g, more preferably 35-45 mgKOH/g.
  • the acid value is 30 mgKOH/g or more, the adhesion to the antistatic layer and adhesive layer is improved.
  • the acid value is 50 mgKOH/g or less, the water resistance of the coating layer is maintained and the films are not likely to adhere to each other due to moisture absorption, which is preferable.
  • other hydrophilic groups such as hydroxyl group, ether, sulfonic acid, phosphonic acid, quaternary amine, etc. are added to supplement the water-solubility or water-dispersibility of the polyurethane resin as long as the performance is not deteriorated. can be introduced internally.
  • the carboxyl group in the polyurethane resin may be neutralized with a basic compound.
  • Basic compounds used for neutralization include alkali metals such as sodium and potassium, alkaline earth metals such as magnesium and calcium, and organic amine compounds. Among these, organic amine compounds that easily dissociate from carboxyl groups by heating are preferred.
  • organic amine compounds include ammonia, methylamine, ethylamine, propylamine, isopropylamine, butylamine, 2-ethylhexylamine, cyclohexylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, Linear, branched primary, secondary or tertiary amines having 1 to 20 carbon atoms such as triisopropylamine, tributylamine and ethylenediamine; cyclic amines such as morpholine, N-alkylmorpholine and pyridine; monoisopropanolamine; hydroxyl group-containing amines such as amines, methylisopropanolamine, dimethylethanolamine, diisopropanolamine, diethanolamine, triethanolamine, diethylethanolamine and triethanolamine;
  • Polycarbonate polyol is preferably used as the other polyol component used for synthesizing and polymerizing the urethane resin in the present invention, and it is particularly preferable to contain aliphatic polycarbonate polyol, which is excellent in heat resistance and hydrolysis resistance.
  • Aliphatic polycarbonate polyols include aliphatic polycarbonate diols and aliphatic polycarbonate triols, and aliphatic polycarbonate diols can be preferably used.
  • Aliphatic polycarbonate diols used for synthesizing and polymerizing the urethane resin having a polycarbonate structure in the present invention include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5 - diols such as pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol and dipropylene glycol; Aliphatic polycarbonate diols obtained by reacting one or more of them with, for example, carbonates such as dimethyl carbonate, ethylene carbonate and phosgene.
  • the number average molecular weight of the polycarbonate polyol in the present invention is preferably 300-5000. More preferably 400-4000, most preferably 500-3000. When it is 300 or more, the adhesion to the antistatic layer or adhesive layer can be improved, which is preferable. When it is 3000 or less, blocking resistance can be improved, which is preferable.
  • Polyisocyanates used for the synthesis and polymerization of urethane resins in the present invention include, for example, aliphatic diisocyanates having aromatic rings such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, 1,3-bis(isocyanate Alicyclic diisocyanates such as methyl)cyclohexane, aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate, or isocyanurate bonds, biuret bonds or allophanate bonds produced from diisocyanates Contained modified polyisocyanates and polyisocyanates obtained by previously adding a single or multiple diisocyanates with trimethylolpropane or the like can be mentioned.
  • Chain extenders include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane and pentaerythritol, and ethylenediamine. , hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water. Polyols, polyamines, etc. having three or more functional groups may be used as long as they are in small amounts.
  • the polyurethane resin of the present invention may have a reactive group such as blocked isocyanate at the end or side chain to improve toughness.
  • crosslinking agent In the present invention, a cross-linking agent having an acid value of 30 to 50 mgKOH/g and having a carboxyl group is used. Also, the carboxyl group of the cross-linking agent may be neutralized with a basic compound as in the polyurethane resin described above.
  • the acid value of the cross-linking agent having a carboxyl group is preferably 30-50 mgKOH/g, more preferably 35-45 mgKOH/g. An acid value of 30 to 50 mgKOH/g or more is preferable because the adhesion to the antistatic layer and adhesive layer is improved.
  • the acid value is 50 mgKOH/g or less
  • the water resistance of the coating layer after coating is maintained, and the films are not likely to adhere to each other due to moisture absorption, which is preferable.
  • other hydrophilic groups such as hydroxyl groups, ethers, sulfonic acids, phosphonic acids, quaternary amines, etc. are introduced to compensate for the water-solubility or water-dispersibility of the cross-linking agent in the present invention within a range in which the performance is not deteriorated. You may
  • cross-linking agents having carboxyl groups include oxazoline compounds, carbodiimide compounds, epoxy compounds, and isocyanate compounds having carboxyl groups introduced into the molecule.
  • the carboxyl groups introduced into the molecule may be neutralized in advance with a basic compound so that they do not react intramolecularly or intermolecularly with the carboxyl groups.
  • isocyanate compounds that easily introduce carboxyl groups into the molecule are preferred, and blocked isocyanate compounds are particularly preferred.
  • blocking agents include bisulfite compounds such as sodium bisulfite, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole, and the like.
  • Pyrazole compounds phenols such as phenol and cresol, aliphatic alcohols such as methanol and ethanol, active methylene compounds such as dimethyl malonate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, acids such as acetanilide and acetic acid amide.
  • lactams such as ⁇ - caprolactam and ⁇ - valerolactam
  • acid imides such as succinimide and maleic imide
  • oximes such as acetaldoxime, acetone oxime, and methyl ethyl ketoxime
  • diphenylaniline, aniline, and ethyleneimine blocking agents such as amines such as
  • the lower limit of the boiling point of the blocking agent for the blocked isocyanate is preferably 150°C, more preferably 160°C, still more preferably 180°C, particularly preferably 200°C, and most preferably 210°C.
  • the higher the boiling point of the blocking agent the more the volatilization of the blocking agent is suppressed by the addition of heat during the drying process after the application of the coating solution or during the film formation process in the case of the in-line coating method, and the generation of fine irregularities on the coated surface is suppressed. is suppressed and the transparency of the film is improved.
  • the upper limit of the boiling point of the blocking agent is not particularly limited, the upper limit is considered to be about 300°C from the viewpoint of productivity.
  • the boiling point is related to the molecular weight
  • a blocking agent having a large molecular weight is preferably 50 or more, more preferably 60 or more, and 80 or more. is more preferred.
  • the upper limit of the dissociation temperature of the blocking agent is preferably 200°C, more preferably 180°C, still more preferably 160°C, particularly preferably 150°C, and most preferably 120°C.
  • the blocking agent is dissociated by heat addition in the drying step after application of the coating solution or in the film formation step in the case of the in-line coating method to generate regenerated isocyanate groups. Therefore, a cross-linking reaction with urethane resin or the like proceeds, and the adhesiveness is improved.
  • the dissociation temperature of the blocked isocyanate is equal to or lower than the above temperature, the dissociation of the blocking agent proceeds sufficiently, resulting in good adhesion, particularly resistance to moist heat.
  • the blocking agent used in the blocked isocyanate of the present invention has a dissociation temperature of 120° C. or lower and a boiling point of 150° C. or higher. , dimethyl malonate, diethyl malonate, acetone oxime, methyl ethyl ketoxime and the like.
  • pyrazole compounds represented by 3,5-dimethylpyrazole and 3-methylpyrazole are preferable from the viewpoint of resistance to moist heat and yellowing.
  • the above-mentioned blocked isocyanate is preferably bifunctional or higher, and trifunctional or higher blocked isocyanate is more preferred from the viewpoint of crosslinkability of the coating film.
  • a polyisocyanate having a functionality of 3 or more which is a precursor of the blocked isocyanate of the present invention, can be suitably obtained by introducing an isocyanate monomer.
  • aromatic diisocyanates having two isocyanate groups aliphatic diisocyanates, araliphatic diisocyanates, or burettes, isocyanurates, and adducts obtained by modifying isocyanate monomers such as alicyclic diisocyanates can be mentioned.
  • the burette body is a self-condensed product having a burette bond formed by self-condensation of an isocyanate monomer, and examples thereof include a burette body of hexamethylene diisocyanate.
  • the isocyanurate is a trimer of an isocyanate monomer, and examples thereof include a trimer of hexamethylene diisocyanate, a trimer of isophorone diisocyanate, a trimer of tolylene diisocyanate, and the like.
  • the adduct refers to a tri- or more functional isocyanate compound obtained by reacting an isocyanate monomer with a tri- or more functional low-molecular-weight active hydrogen-containing compound.
  • a compound obtained by reacting trimethylolpropane and hexamethylene diisocyanate A compound obtained by reacting trimethylolpropane and tolylene diisocyanate, a compound obtained by reacting trimethylolpropane and xylylene diisocyanate, a compound obtained by reacting trimethylolpropane and isophorone diisocyanate, and the like.
  • isocyanate monomers examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 1,5 -naphthylene diisocyanate, 1,4-naphthylene diisocyanate, phenylene diisocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane- 4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, 3,3'-dimethoxydiphenyl-4
  • aromatic diisocyanates isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate
  • alicyclic diisocyanates such as 1,3-bis(isocyanatomethyl)cyclohexane, hexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate and other aliphatic diisocyanates.
  • Aliphatic and alicyclic isocyanates and modified products thereof are preferred from the viewpoint of transparency, yellowing resistance, adhesiveness, and resistance to moist heat.
  • Resins used in combination include carboxyl group-free polyurethanes, polyester resins, acrylic resins, cellulose resins, polyolefin resins, polyacetal resins, and the like.
  • polyester resins are particularly preferable because the adhesion to the antistatic layer and the adhesive layer is improved by using them together.
  • the content can be 1.5 times or more the combined content of the carboxyl group-containing polyurethane resin and the carboxyl group-containing cross-linking agent.
  • the polyester resin since the polyester resin has a better affinity for the polyester resin as the base material than the carboxyl group-containing polyurethane resin or the carboxyl group-containing cross-linking agent, it tends to be localized on the base material side in the thickness direction. , the adhesiveness with the substrate interface is improved, and the carboxyl group-containing polyurethane resin and the carboxyl group-containing cross-linking agent localized on the surface layer improve the adhesiveness with the binder resin contained in the antistatic layer and the adhesive layer. It is speculated that this is due to the manifestation of a synergistic effect.
  • the polyester resin used in combination with the coating layer in the present invention may have a linear chain, but is more preferably a polyester resin having a dicarboxylic acid and a diol (glycol) having a branched structure as its constituent components. is preferred.
  • the dicarboxylic acid referred to here is mainly composed of terephthalic acid, isophthalic acid or 2,6-naphthalenedicarboxylic acid, as well as aliphatic dicarboxylic acids such as adipic acid and sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, 2, Aromatic dicarboxylic acids such as 6-naphthalenedicarboxylic acid are included.
  • a branched glycol is a diol having a branched alkyl group, such as 2,2-dimethyl-1,3-propanediol, 2-methyl-2-ethyl-1,3-propanediol, 2- Methyl-2-butyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-isopropyl-1,3-propanediol, 2-methyl-2-n -hexyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl- 1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-n-butyl-2-propyl-1,3-propane
  • the branched glycol component which is the more preferred embodiment, is contained in the total glycol component in a proportion of preferably 10 mol % or more, more preferably 20 mol % or more. .
  • the upper limit of the glycol component in all glycol components is preferably 80 mol % or less, more preferably 70 mass % or less.
  • the concentration of the oligomer, which is a by-product does not easily increase, and the transparency of the coating layer is maintained, which is preferable.
  • Ethylene glycol is most preferable as the glycol component other than the above compounds.
  • diethylene glycol, propylene glycol, butanediol, hexanediol, 1,4-cyclohexanedimethanol, or the like may be used.
  • Terephthalic acid or isophthalic acid is most preferable as the dicarboxylic acid as a constituent of the polyester resin.
  • 5-sulfoisophthalic acid, 5-sodiumsulfoisophthalic acid and the like can be mentioned.
  • the polyester resin content is 10% by mass or more, and the adhesion between the easy-adhesion layer and the polyester film substrate is improved. It is preferable because it has good properties.
  • the upper limit of the polyester resin content is preferably 65% by mass or less, more preferably 60% by mass or less. When the content of the polyester resin is 70% by mass or less, the wet heat resistance becomes good, which is preferable.
  • a resin other than the polyester resin described above may also be used in the easy-adhesion layer as long as the performance of the present invention does not deteriorate.
  • a representative example of the resin other than the polyester resin is a polyurethane resin having a carboxyl group, but it may contain other resins or may be only a polyurethane resin having a carboxyl group.
  • the content of the resin other than the polyester resin is preferably 40% by mass or less, and 30% by mass or less. More preferably, 20% by mass or less is particularly preferable.
  • the total content of resins other than polyester resins and polyester resins is preferably 70% by mass or less.
  • the content of each of the polyurethane resin and the cross-linking agent in the coating solution forming the coating layer is preferably 3% by mass or more as the total solid content of the resin and the cross-linking agent. When it is 3% by mass or more, the effect of adhesion with the antistatic layer and the adhesive layer is obtained, which is preferable.
  • a more preferable content range is 3.5 to 90% by mass, more preferably 7 to 80% by mass, and particularly preferably 10.5 to 70% by mass.
  • additives such as surfactants, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic lubricants, Pigments, dyes, organic or inorganic particles, antistatic agents, nucleating agents, etc. may be added.
  • particles contained in the coating layer in the present invention include, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, and mixtures thereof.
  • Inorganic particles such as calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride, etc., and organic particles such as styrene, acrylic, melamine, benzoguanamine, and silicone Examples include polymer-based particles.
  • the average particle size of the particles in the easy-adhesion layer is preferably 0.04 to 2.0 ⁇ m, more preferably 0.1 to 1.0 ⁇ m. 0 ⁇ m.
  • the average particle diameter of the inert particles is 0.04 ⁇ m or more, it becomes easy to form unevenness on the film surface, so that the handling properties such as the slipperiness and windability of the film are improved, and the film can be easily laminated. It is preferable because of its good workability.
  • the average particle size of the inert particles is 2.0 ⁇ m or less, the particles are less likely to fall off, which is preferable.
  • the particle concentration in the easy-adhesion layer is preferably 1 to 20 mass % of the solid component.
  • the method for measuring the average particle size of the particles is to observe the particles in the cross section of the laminate of the polyester film substrate and the easy adhesion layer (hereinafter also referred to as the laminated polyester film) with a scanning electron microscope, and observe 30 particles. and the average value thereof is used as the average particle size.
  • the shape of the particles is not particularly limited as long as the object of the present invention is satisfied, and spherical particles and non-spherical particles with irregular shapes can be used.
  • the particle diameter of amorphous particles can be calculated as the equivalent circle diameter.
  • the circle-equivalent diameter is a value obtained by dividing the observed particle area by ⁇ , calculating the square root, and doubling the result.
  • PET film base material a polyethylene terephthalate (hereinafter sometimes abbreviated as PET) film base material, but it is of course not limited to this.
  • the unstretched PET sheet may have a single-layer structure or a multi-layer structure obtained by a coextrusion method.
  • the obtained unstretched PET sheet is uniaxially stretched or biaxially stretched for crystal orientation.
  • biaxial stretching after stretching 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially stretched PET film, the end of the film is held with a clip. Then, it is led to a hot air zone heated to 80 to 180° C. and stretched 2.5 to 5.0 times in the width direction.
  • uniaxial stretching the film is stretched 2.5 to 5.0 times in a tenter. After stretching, the film is led to a heat treatment zone and heat treated to complete the crystal orientation.
  • the lower limit of the temperature of the heat treatment zone is preferably 170°C, more preferably 180°C.
  • the upper temperature limit of the heat treatment zone is preferably 250°C, more preferably 240°C.
  • the temperature of the heat treatment zone is 240° C. or less, it is preferable because the physical properties of the film do not deteriorate.
  • the easy-adhesion layer can be provided after the film is manufactured or during the manufacturing process.
  • a coating liquid is applied to at least one side of an unstretched or uniaxially stretched PET film at any stage of the film manufacturing process, stretched at least uniaxially, and heat-treated to form an easy-adhesion layer. preferably.
  • any known method can be used to apply this coating liquid to the PET film.
  • reverse roll coating method gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. be done. These methods can be applied singly or in combination.
  • the thickness of the easy adhesion layer can be appropriately set in the range of 0.001 to 2.00 ⁇ m, but the range of 0.01 to 1.00 ⁇ m is preferable in order to achieve both workability and adhesion. , more preferably 0.02 to 0.80 ⁇ m, still more preferably 0.05 to 0.50 ⁇ m. Adhesiveness is favorable and it is preferable that the thickness of an easily-adhesive layer is 0.001 micrometer or more. When the thickness of the easy-adhesion layer is 2.00 ⁇ m or less, blocking is less likely to occur, which is preferable.
  • the upper limit of haze of the laminated polyester film of the present invention is preferably 2.5%, more preferably 2.0%, even more preferably 1.5%, and particularly preferably 1.2%.
  • a haze of 2.5% or less is preferable in terms of transparency, and can be suitably used for optical films that require transparency.
  • the haze is generally preferably as small as possible, it is preferably 0.1% or more, and even preferably 0.2% or more.
  • the antistatic polyester film of the present invention has an antistatic layer on the easily adhesive layer in the laminated polyester film.
  • the antistatic layer may be on one side only or may be laminated on both sides.
  • the means for laminating the antistatic layer is not particularly limited, and known methods such as a coating method, a vacuum deposition method, and lamination can be used. is preferable from the viewpoint of
  • a polymer or surfactant utilizing ion conduction such as a cationic compound, a silicon oxide film, a conductive metal compound, a ⁇ -electron conjugated conductive polymer, or the like can be used. From the viewpoint of antistatic properties under humidity, it is preferable to use a ⁇ -electron conjugated conductive polymer. In addition, since the ⁇ -electron conjugated conductive polymer can maintain a high level of antistatic performance without depending on the moisture in the air, it has good antistatic performance in various usage environments of the protective film. Therefore, it is preferable.
  • Examples of ⁇ -electron conjugated conductive polymers include aniline polymers containing aniline or its derivatives as structural units, pyrrole polymers containing pyrrole or its derivatives as structural units, and acetylene polymers containing acetylene or its derivatives as structural units. Polymers, thiophene-based polymers containing thiophene or a derivative thereof as a structural unit, and the like can be mentioned. In order to obtain high transparency, the ⁇ -electron conjugated conductive polymer preferably does not have a nitrogen atom. Among them, a thiophene-based polymer containing thiophene or its derivative as a structural unit is excellent in terms of transparency.
  • Polyalkylenedioxythiophenes include polyethylenedioxythiophene, polypropylenedioxythiophene, poly(ethylene/propylene)dioxythiophene, and the like.
  • a doping agent is added, for example, to 100 parts by mass of the polymer containing thiophene or a derivative thereof as a structural unit. 0.1 parts by mass or more and 500 parts by mass or less can be blended. If the amount is too small, the electron transfer becomes difficult, resulting in a problem of deterioration in antistatic performance.
  • Examples of the doping agent include LiCl, R 1-30 COOLi (R 1-30 : a saturated hydrocarbon group having 1 to 30 carbon atoms), R 1-30 SO 3 Li, R 1-30 COONa, R 1-30 SO3Na , R1-30COOK , R1-30SO3K , Tetraethylammonium, I2 , BF3Na , BF4Na , HClO4, CF3SO3H , FeCl3 , Tetracyanoquinoline (TCNQ) , Na 2 B 10 Cl 10 , phthalocyanine, porphyrin, glutamic acid, alkyl sulfonate, polystyrene sulfonate Na (K, Li) salt, styrene/styrene sulfonate Na (K, Li) salt copolymer, polystyrene sulfonate anion , styrenesulfonic acid/styrenesulf
  • the antistatic agent contained in the antistatic layer is preferably contained in an amount of 1% by mass or more, more preferably 10% by mass or more, based on 100 parts by mass of the solid content of the antistatic layer.
  • the content of the ⁇ -electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
  • the antistatic agent is 80% by mass or less, and may be 50% by mass or less.
  • the antistatic layer of the present invention preferably contains a binder resin.
  • the binder resin is not particularly limited, but specific examples of the polymer include polyester resin, acrylic resin, urethane resin, polyolefin resin, polyvinyl resin (polyvinyl alcohol, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, and hydroxycellulose. , starches and the like.
  • polyester resins, acrylic resins, and urethane resins are preferably used from the viewpoint of adhesion to the polyester film. It is more preferable to use an acrylic resin because of the ease of molecular design and molecular weight design.
  • the binder resin preferably has a more reactive functional group. Although not particularly limited, it is preferably a hydroxyl group, a carboxyl group, an amino group, an acrylate group, an epoxy group, or the like, and more preferably has a hydroxyl group or a carboxyl group.
  • the binder resin may have a part capable of exhibiting releasability, such as a silicone component or a long-chain alkyl group.
  • a silicone component such as silicone component or a long-chain alkyl group.
  • an antistatic layer having releasability on the opposite side of the adhesive layer of the laminated film because blocking can be prevented even when the film is wound into a roll.
  • the antistatic layer may contain a cross-linking agent to form a crosslinked structure in the antistatic layer.
  • a cross-linking agent is preferable because the adhesiveness with the easy-adhesion layer is improved, durability is improved, and deterioration of antistatic performance is suppressed even when treated under high-temperature and high-humidity conditions.
  • Specific cross-linking agents include urea-based, epoxy-based, melamine-based, isocyanate-based, oxazoline-based, carbodiimide-based, and aziridine-based agents. In particular, melamine, oxazoline, carbodiimide and aziridine are preferred.
  • a catalyst or the like can be appropriately used as necessary in order to accelerate the cross-linking reaction.
  • the cross-linking agent contained in the antistatic layer of the present invention is preferably contained in an amount of 5% by mass or more, more preferably 10% by mass or more, based on 100 parts by mass of the solid content of the antistatic layer. If it is 5% by mass or more, it is preferable because the resistance to moist heat of the antistatic layer can be improved. Moreover, if the cross-linking agent is capable of self-crosslinking, the binder resin may be omitted. For example, the cross-linking agent is 90% by mass or less, and may be 80% by mass or less.
  • a surfactant may be used in the antistatic layer in the present invention to improve the appearance.
  • surfactants include nonionic surfactants such as polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, and fluoroalkylcarboxylic acids, perfluoroalkylcarboxylic acids, perfluoroalkylbenzenesulfones. Acids, fluorine-based surfactants such as perfluoroalkyl quaternary ammonium and perfluoroalkylpolyoxyethylene ethanol, and silicone-based surfactants can be used.
  • the antistatic layer may contain lubricants, pigments, ultraviolet absorbers, silane coupling agents, etc., if necessary, as long as the objects of the present invention are not hindered.
  • the film thickness of the antistatic layer of the present invention is preferably 0.005 ⁇ m or more and 1 ⁇ m or less. It is more preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less, and still more preferably 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the film thickness of the antistatic layer is 0.005 ⁇ m or more, an antistatic effect can be obtained, which is preferable.
  • the thickness is 1 ⁇ m or less, coloring is less and transparency is improved, which is preferable.
  • the surface resistivity of the antistatic film of the present invention is preferably 1 ⁇ 10 10 ⁇ / ⁇ or less. It is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, still more preferably 1 ⁇ 10 7 ⁇ / ⁇ or less, and still more preferably 1 ⁇ 10 6 ⁇ / ⁇ or less.
  • a surface resistivity of 1 ⁇ 10 10 ⁇ / ⁇ or less is preferable because adhesion of foreign matter to the laminated polyester can be suppressed, and peel electrification when the adhesive layer is laminated and peeled can be suppressed.
  • the lower limit of the surface resistivity of the antistatic film does not have to be specified, it is preferably 1 ⁇ 10 3 ⁇ / ⁇ or more. In order to make the surface resistance value of the antistatic film less than 1 ⁇ 10 3 ⁇ / ⁇ , the processing cost of the antistatic layer increases, which is not preferable.
  • the haze of the antistatic film used in the present invention is preferably 3% or less. It is more preferably 1.5% or less, still more preferably 1.0% or less. 0.8% or less is highly preferred. If it is 3% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use. Haze is preferably lower, and may be substantially 0% (0% or more), for example 0.1% or more.
  • the area average surface roughness (Sa) of the surface of the antistatic film used in the present invention is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm.
  • the maximum projection height (P) on the surface of the antistatic film used in the present invention is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less. More preferably, it is 0.8 ⁇ m or less. If Sa is 40 nm or less and P is 2 ⁇ m or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
  • a coating liquid in which the above-mentioned antistatic agent or binder resin is dispersed or dissolved in a solvent is applied by a gravure roll coating method, a reverse roll coating method, a knife coater method,
  • a gravure roll coating method a reverse roll coating method
  • a knife coater method a coating method suitable for the conductive composition is not particularly limited.
  • it can be provided by an in-line coating method in which a coating layer is provided in the film production process, or an off-line coating method in which a coating layer is provided after film production.
  • the drying temperature for forming the antistatic layer by the above method is usually 60°C or higher and 150°C or lower, preferably 90°C or higher and 140°C or lower.
  • this temperature is 60° C. or higher, the treatment can be performed in a short period of time, which is preferable from the viewpoint of improving productivity.
  • a crosslinking reaction progresses sufficiently when a crosslinking agent is included, it is preferable.
  • this temperature is 150° C. or lower, the flatness of the film is maintained, which is preferable.
  • An adhesive layer can be laminated on the antistatic film of the present invention by applying and curing an adhesive.
  • the adhesive is not particularly limited and can be used, and the laminated film obtained is used as a protective film.
  • Either side of the antistatic film may be the surface on which the adhesive layer is laminated.
  • the antistatic layer is provided on the side opposite to the side on which the adhesive layer is laminated.
  • the surface resistance value of the surface of the release film of the present invention is determined by measuring the surface resistance value of the release layer surface with a surface resistance measuring instrument ( It was measured using a work surface tester ST-3 manufactured by Simco Japan Co., Ltd., and evaluated according to the following criteria.
  • Surface resistance value is less than 10 7 ⁇ / ⁇ ⁇ : Surface resistance value is 10 7 to 10 8 ⁇ / ⁇ ⁇ : Surface resistance value is 10 9 to 10 10 ⁇ / ⁇ ⁇ : Surface resistance value is 10 11 ⁇ / ⁇ or more
  • Polymerization of polyurethane resin A-1) 82.8 parts by mass of hydrogenated m-xylylenediisocyanate, 25.0 parts by mass of dimethylolpropanoic acid, 21.0 parts by mass of 1,6-hexanediol, 150.0 parts by mass of a polyester diol composed of adipic acid and 1,4-butanediol and having a number average molecular weight of 2000, and 110 parts by mass of acetone as a solvent were added, and a nitrogen atmosphere was formed. and 75° C. for 3 hours, and it was confirmed that the reaction solution had reached the predetermined amine equivalent weight.
  • a solution containing polyurethane resin (A-2) having an acid value of 36.3 mgKOH/g and having a solid content of 35% by mass was prepared by adjusting the concentration with water.
  • Polymerization of polyurethane resin A-4) 83.4 parts by mass of hydrogenated m-xylylenediisocyanate, 16.9 parts by mass of dimethylolpropanoic acid, 28.4 parts by mass of 1,6-hexanediol, 151.0 parts by mass of a polyester diol composed of adipic acid and 1,4-butanediol and having a number average molecular weight of 2000, and 110 parts by mass of acetone as a solvent were added, and a nitrogen atmosphere was formed. and 75° C. for 3 hours, and it was confirmed that the reaction solution had reached the predetermined amine equivalent weight.
  • Polymerization of polyurethane resin A-6 45.0 parts by mass of hydrogenated m-xylylenediisocyanate and 20.0 parts by mass of 1,6-hexanediol were placed in a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. 149.0 parts by weight of polyethylene glycol having a number average molecular weight of 2000, and 110 parts by weight of acetone as a solvent were added and stirred at 75° C. for 3 hours under a nitrogen atmosphere. confirmed.
  • Polymerization of polyurethane resin A-7) 43.8 parts by mass of hydrogenated diphenylmethane diisocyanate, 12.9 parts by mass of dimethylolbutanoic acid, a number average molecular weight of 2000 polycarbonate diol (1,6-hexanediol type) 153.4 parts by mass and 110 parts by mass of acetone as a solvent were added and stirred at 75° C. for 3 hours under a nitrogen atmosphere, and the reaction solution reached a predetermined amine equivalent weight. confirmed that it has been reached. Next, after the temperature of this reaction liquid was lowered to 40° C., 8.8 parts by mass of triethylamine was added to obtain a polyurethane polymer solution.
  • a solution of polyurethane resin (A-7) having a solid content of 35% by weight and a solid content acid value of 23.1 mgKOH/g was prepared by adjusting the concentration with water.
  • a solution containing a polyurethane resin (A-7) having an acid value of 23.1 mgKOH/g and a solid content of 35% by mass was prepared.
  • a polymerization initiator solution consisting of 18.0 parts by mass of azobis(2-amidinopropane) dihydrochloride and 170.0 parts by mass of water was added from a dropping funnel under a nitrogen atmosphere over 2 hours while maintaining the inside of the flask at 80°C. Dripped. After completion of dropping, the mixture was stirred at 80°C for 5 hours and then cooled to room temperature. An appropriate amount of water was added to prepare a solution of oxazoline-based cross-linking agent (B-3) having a solid content of 40% by mass. The acid value corresponding to the solid content of the cross-linking agent B-3 was 39.8 mgKOH/g.
  • Polymerization of cross-linking agent B-4 65.0 parts by mass of a polyisocyanate compound having an isocyanurate structure made from hexamethylene diisocyanate (Duranate TPA, manufactured by Asahi Kasei Chemicals) and 17.5 parts of N-methylpyrrolidone are placed in a flask equipped with a stirrer, a thermometer, and a reflux condenser. Parts by mass, 29.2 parts by mass of 3,5-dimethylpyrazole, and 21.9 parts by mass of polyethylene glycol monomethyl ether having a number average molecular weight of 500 were added, and the mixture was maintained at 70° C. for 2 hours under a nitrogen atmosphere.
  • a polyisocyanate compound having an isocyanurate structure made from hexamethylene diisocyanate (Duranate TPA, manufactured by Asahi Kasei Chemicals) and 17.5 parts of N-methylpyrrolidone are placed in a flask equipped with a stirrer,
  • polyester resin C-1 194.2 parts by weight of dimethyl terephthalate, 184.5 parts by weight of dimethyl isophthalate, 14.8 parts by weight of dimethyl-5-sodium sulfoisophthalate were added to a stainless steel autoclave equipped with an agitator, thermometer, and partial reflux condenser. , 233.5 parts by mass of diethylene glycol, 136.6 parts by mass of ethylene glycol, and 0.2 parts by mass of tetra-n-butyl titanate were charged, and transesterification was carried out at a temperature of 160° C. to 220° C. over 4 hours.
  • copolymer polyester resin (CR-1) was pale yellow and transparent.
  • the reduced viscosity of the copolymer polyester resin (CR-1) was measured, it was 0.70 dl/g.
  • 15 parts by mass of copolymer polyester resin (CR-1) and 15 parts by mass of ethylene glycol n-butyl ether are placed in a reactor equipped with a stirrer, thermometer and reflux device, heated at 110°C and stirred to dissolve the resin. did.
  • polyester resin C-2 194.2 parts by weight dimethyl terephthalate, 194.2 parts by weight dimethyl isophthalate, 233.5 parts by weight diethylene glycol, 136.6 parts by weight ethylene glycol were added to a stainless steel autoclave equipped with an agitator, thermometer, and partial reflux condenser. parts and 0.2 parts by mass of tetra-n-butyl titanate were charged, and the transesterification reaction was carried out at a temperature of 160° C. to 220° C. over 4 hours. Then, the temperature was raised to 255° C., the pressure of the reaction system was gradually reduced, and then the reaction was allowed to proceed under a reduced pressure of 30 Pa for 1 hour. Further, the inside of the system was cooled to 200° C.
  • polyester resin (C-2) solution C-2 having a solid content of 30% by mass.
  • the acid value corresponding to the solid content of polyester resin C-2 was 37.4 mgKOH/g.
  • polyester resin E-2 for base material
  • antimony trioxide solution As the polycondensation catalyst, a mixture of the aluminum compound solution and the phosphorus compound solution described above was used to obtain 0.014 mol % and Polymerization was carried out in the same manner as polyester resin E-1, except that it was added in an amount of 0.028 mol %.
  • polymerization time By setting the polymerization time to 68 minutes, a polyester resin E-2 having an intrinsic viscosity (IV) of 0.61 dl/ and containing substantially no particles was obtained.
  • Example 1 Preparation of coating solution The following coating agent is mixed with a mixed solvent of water and isopropanol (80/20 parts by mass ratio), and the polyurethane resin (A-1) solution/crosslinking agent (B-1) solution is solidified. A coating liquid for forming an easy-adhesion layer having a weight ratio of 70/30 was prepared.
  • This unstretched PET sheet was heated to 100°C by a group of heated rolls and an infrared heater, and then stretched 3.5 times in the longitudinal direction by a group of rolls with a difference in circumferential speed to obtain a uniaxially stretched PET film.
  • the coating solution was applied to one side of the PET film so that the final coating amount (after biaxial stretching) after drying was 0.13 g/m 2 .
  • the coating liquid was stretched 4.0 times in the width direction at 110° C. and heated at 230° C. for 5 seconds while the width direction of the film was fixed. Further, a relaxation treatment in the width direction was performed by 3% to obtain a laminated polyester film having an easily adhesive layer of 100 ⁇ m.
  • Example 2 An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was (A-2) and the ratio of the polyurethane resin and the cross-linking agent was changed to 60/40 (mass ratio).
  • Example 3 An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was (A-3) and the ratio of the polyurethane resin and the cross-linking agent was changed to 50/50 (mass ratio).
  • Example 4 An antistatic polyester film was obtained in the same manner as in Example 1, except that (B-2) was used as the cross-linking agent and the ratio of the polyurethane resin to the cross-linking agent was changed to 60/40 (mass ratio).
  • Example 5 An antistatic polyester film was obtained in the same manner as in Example 1, except that (B-3) was used as the cross-linking agent and the ratio of the polyurethane resin to the cross-linking agent was changed to 60/40 (mass ratio).
  • Example 9 An antistatic polyester film was obtained in the same manner as in Example 1, except that resin pellets of polyester resin E-2 were used as the film material polymer.
  • Example 10 An antistatic polyester film was obtained in the same manner as in Example 1, except that the coating liquid for the antistatic layer was changed to AS-2.
  • AS-2 Water 38.3 parts by mass Isopropyl alcohol 38.3 parts by mass N-methyl-2-pyrrolidone 3.0 parts by mass Acrylic resin (D-2) 3.0 parts by mass Melamine cross-linking agent 0.3 parts by mass (MX-035 Wa Chemical Co., Ltd., solid content concentration 70% by mass)
  • PEDOT/PSS solution 16.7 parts by mass (ICP1010 manufactured by Agfa Materials Japan, solid content concentration 1.2% by mass)
  • Surfactant 0.5 parts by mass (silicone-based solid content concentration 10% by mass)
  • Example 11 An antistatic polyester film was obtained in the same manner as in Example 1, except that the coating liquid for the antistatic layer was changed to AS-3.
  • AS-3 Water 38.3 parts by mass Isopropyl alcohol 38.3 parts by mass N-methyl-2-pyrrolidone 3.0 parts by mass
  • Melamine cross-linking agent 1.2 parts by mass (MX-035 manufactured by Sanwa Chemical Co., Ltd., solid content concentration 70% by mass)
  • PEDOT/PSS solution 16.7 parts by mass (ICP1010 manufactured by Agfa Materials Japan, solid content concentration 1.2% by mass)
  • Surfactant 0.5 parts by mass (silicone-based solid content concentration 10% by mass)
  • Example 12 An antistatic polyester film was obtained in the same manner as in Example 1, except that the coating solution for the antistatic layer was changed to AS-4.
  • AS-4 Water 38.3 parts by mass Isopropyl alcohol 38.3 parts by mass N-methyl-2-pyrrolidone 3.0 parts by mass
  • Melamine crosslinking agent 0.9 parts by mass (MX-035 manufactured by Sanwa Chemical Co., Ltd., solid content concentration 70% by mass)
  • PEDOT / PSS solution 33.3 parts by mass (ICP1010 manufactured by Agfa Materials Japan, solid content concentration 1.2% by mass)
  • Surfactant 0.5 parts by mass (silicone-based solid content concentration 10% by mass)
  • Example 1 An antistatic polyester film was obtained in the same manner as in Example 1, except that only the polyurethane resin (A-1) was used and the cross-linking agent (B-1) was not used.
  • Example 2 An antistatic polyester film was obtained in the same manner as in Example 1, except that only the cross-linking agent (B-1) was used and the polyurethane resin (A-1) was not used.
  • Example 4 An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was (A-5) and the ratio of the polyurethane resin and the cross-linking agent was changed to 60/40 (mass ratio).
  • Example 5 An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was (A-6) and the ratio of the polyurethane resin and the cross-linking agent was changed to 50/50 (mass ratio).
  • Example 7 An antistatic polyester film was obtained in the same manner as in Example 1, except that (B-5) was used as the cross-linking agent and the ratio of the polyurethane resin to the cross-linking agent was changed to 75/25 (mass ratio).
  • Tables 1 and 2 summarize various physical properties and evaluation results of each example and comparative example.
  • the antistatic polyester film of the present invention has an easily adhesive layer according to the present invention and an antistatic layer in this order.
  • antistatic polyester film excellent in blocking resistance, excellent initial adhesion and wet heat resistance adhesion between the antistatic layer, the easy adhesion layer and the polyester film substrate can provide
  • Comparative Example 1 which did not contain the cross-linking agent of the present invention, was remarkably inferior in wet heat resistance.
  • Comparative Example 2 which does not contain the polyurethane resin of the present invention, was remarkably inferior in wet heat resistance.
  • Comparative Example 3 the acid value of the polyurethane resin was outside the range of the present invention, so the wet heat resistant adhesion was significantly inferior.
  • Comparative Example 4 the acid value of the polyurethane resin was outside the range of the present invention, so the wet heat resistant adhesion was poor.
  • Comparative Example 5 since the polyurethane resin had substantially no acid value, the blocking resistance and the wet heat resistant adhesion were significantly inferior.
  • Comparative Example 6 the acid values of the polyurethane resin and the cross-linking agent were outside the range of the present invention, and the wet heat resistant adhesiveness was significantly inferior.
  • Comparative Example 7 the acid value of the cross-linking agent was out of the range of the present invention, and the wet heat resistant adhesion was significantly inferior.
  • Comparative Example 8 the acid value of the cross-linking agent was outside the range of the present invention, resulting in poor wet heat resistance adhesion.
  • Comparative Examples 9 and 10 are examples in which a polyester resin (Comparative Example 9) or an acrylic resin (Comparative Example 10) was used instead of the polyurethane resin of the present invention.
  • the acid value of the polyester resin or acrylic resin used is equivalent to the acid value range of the polyurethane resin according to the present invention. However, these resins were remarkably inferior in wet heat resistance.
  • an antistatic polyester film that can be suitably used in all fields such as optical applications, packaging applications and label applications.

Abstract

The present invention provides an antistatic polyester film which has good adhesion to an antistatic layer, while being excellent in terms of retention of the adhesion at high levels for a long period of time. An antistatic polyester film which is obtained by sequentially superposing a highly adhesive layer and an antistatic layer in this order on at least one surface of a polyester film, wherein the highly adhesive layer is obtained by curing a coating layer that is formed of a composition containing a polyurethane resin that has a carboxyl group and an acid value of 30 to 50 mgKOH/g and a crosslinking agent that has a carboxyl group and an acid value of 30 to 50 mgKOH/g.

Description

帯電防止ポリエステルフィルムantistatic polyester film
 本発明は、帯電防止ポリエステルフィルムに関する。更に詳しくは、帯電防止層および帯電防止層に粘着層を積層した帯電防止ポリエステルフィルムに関するものであり、特に光学部材(例えば、有機ELや液晶ディスプレイの構成部材)などの保護フィルム関するものである。 The present invention relates to antistatic polyester films. More specifically, it relates to an antistatic polyester film obtained by laminating an antistatic layer and an antistatic layer with an adhesive layer, and particularly to protective films such as optical members (for example, constituent members of organic EL and liquid crystal displays).
 熱可塑性樹脂フィルム、中でもポリエステルフィルムは、機械的性質、電気的性質、寸法安定性、透明性、耐薬品性などに優れた性質を有することから磁気記録材料、包装材料、太陽電池用途、フラットディスプレイ等に用いられる反射防止フィルム、拡散シート、プリズムシート等の光学フィルム及び、ラベル印刷用フィルム、帯電防止フィルム、保護フィルムなどに幅広く使用されている。しかし、ポリエステルフィルムは表面が高度に結晶配向しているため、これらの用途での加工において、各種塗料や樹脂、インクとの接着性に乏しいという欠点を有している。
 このため、従来から、ポリエステルフィルム表面に種々の方法で接着性を与えるための検討がなされてきた
Thermoplastic resin films, especially polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. It is widely used for optical films such as antireflection films, diffusion sheets, prism sheets, etc., labels printing films, antistatic films, and protective films. However, since polyester films have a highly crystalline surface, they have the drawback of poor adhesion to various paints, resins, and inks during processing for these uses.
For this reason, conventionally, studies have been made to impart adhesiveness to the polyester film surface by various methods.
 従来、接着性付与の方法としては、例えば、基材となるポリエステルフィルム表面のコロナ放電処理、紫外線照射処理、プラズマ処理などを行なう表面活性化法が知られているが、これらの処理によって得られた接着効果は経時的に低下するので、長期間にわたる高いレベルの接着性の維持は困難であった。(特許文献1)
 そのため、主に、ポリエステルフィルムの表面に各種樹脂を塗布し、易接着性能を持つ塗布層を設ける方法がよく用いられている
Conventionally, as a method for imparting adhesiveness, for example, a surface activation method is known in which the surface of a polyester film serving as a substrate is subjected to corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, or the like. Since the adhesive effect decreases with time, it has been difficult to maintain a high level of adhesiveness over a long period of time. (Patent document 1)
Therefore, a method of coating various resins on the surface of a polyester film and providing a coating layer with easy adhesion is often used.
 従来、共重合ポリエステル樹脂またはウレタン樹脂を含有する塗布液や、それらの樹脂と架橋剤を併用した塗布液などを塗布層に用いることによりハードコート剤,プリズムレンズ剤に使用されているポリウレタンアクリレートまたはエステルアクリルレート等の樹脂成分との親和性を向上させ、それらに対して密着性を与える技術が知られていた(特許文献2、3)。しかし、ラベル印刷に用いられるUVインキ(紫外線硬化型インキ)では樹脂以外に色調発現のため、染料または顔料が含有されており、比較的、耐光性の良好な顔料ではインキ成分の15~25重量%程度使用されている。さらに、隠蔽性が重要な白色インキ系では白顔料の含有量が50重量%程度多いため、従来技術では密着性が不十分であり、特に低線量下での密着性が困難であった。 Conventionally, polyurethane acrylate or polyurethane acrylate used for hard coating agents and prism lens agents by using coating liquids containing copolyester resins or urethane resins, or coating liquids using these resins and cross-linking agents in combination for coating layers. Techniques for improving affinity with resin components such as ester acrylates and giving adhesiveness to them have been known (Patent Documents 2 and 3). However, UV inks (ultraviolet curable inks) used for label printing contain dyes or pigments in addition to resins in order to develop color tone. % is used. Furthermore, since the content of white pigment is as high as about 50% by weight in a white ink system in which hiding power is important, adhesion is insufficient with conventional techniques, and adhesion is particularly difficult under low doses.
 保護フィルムに関しては、ポリエステルフィルムに帯電防止層や粘着層を設けることが提案されている。(特許文献4)しかし、従来の方法では、ポリエステルフィルムと帯電防止層または、粘着層との密着性が十分ではなく、特に高温高湿度下で保管した場合の耐久性が十分ではなく、密着性の低下が課題であった。 Regarding the protective film, it has been proposed to provide an antistatic layer and an adhesive layer on the polyester film. (Patent Document 4) However, in the conventional method, the adhesion between the polyester film and the antistatic layer or the adhesive layer is not sufficient, and the durability is not sufficient especially when stored under high temperature and high humidity. was a problem.
特開昭58-27724号公報JP-A-58-27724 特開2000-229355号公報JP-A-2000-229355 特開2009-220376号公報JP 2009-220376 A 特開2018-172473号公報JP 2018-172473 A
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、ポリエステルフィルムと帯電防止層との接着性が良好であり、かつ長期間にわたり高いレベルの接着性の維持に優れた帯電防止ポリエステルフィルムを提供することにある。 The present invention was made against the background of such problems of the prior art. That is, it is an object of the present invention to provide an antistatic polyester film which has good adhesion between the polyester film and the antistatic layer and is excellent in maintaining a high level of adhesion over a long period of time.
即ち、本発明は、以下の構成よりなる。
[1]ポリエステルフィルムの少なくとも片面に易接着層、帯電防止層をこの順に積層した帯電防止ポリエステルフィルムであって、前記易接着層がカルボキシル基を有する酸価30~50mgKOH/gのポリウレタン樹脂とカルボキシル基を有する酸価30~50mgKOH/gの架橋剤を含む組成物を硬化して形成した層である。
[2]一態様において、架橋剤は、イソシネート系化合物である。
[3]一態様において、表面抵抗率が1010Ω/□以下である。
[4]一態様において、帯電防止層には、導電性高分子を含む。
[5]一態様において、フィルムヘイズが3.0%以下である。
[6]上記帯電防止ポリエステルフィルムの少なくとも片面に粘着層を積層した粘着フィルム。
 
That is, the present invention consists of the following configurations.
[1] An antistatic polyester film in which an easy-adhesion layer and an antistatic layer are laminated in this order on at least one side of a polyester film, wherein the easy-adhesion layer has a carboxyl group and an acid value of 30 to 50 mgKOH/g polyurethane resin and carboxyl It is a layer formed by curing a composition containing a cross-linking agent having an acid value of 30 to 50 mgKOH/g.
[2] In one aspect, the cross-linking agent is an isocyanate-based compound.
[3] In one aspect, the surface resistivity is 10 10 Ω/□ or less.
[4] In one aspect, the antistatic layer contains a conductive polymer.
[5] In one aspect, the film haze is 3.0% or less.
[6] An adhesive film obtained by laminating an adhesive layer on at least one surface of the antistatic polyester film.
 本発明の帯電防止ポリエステルフィルムは、ハードコート層、レンズ層、インキ等のUV硬化樹脂への接着性に優れるが、特にUVインキに対して高いレベルの接着性に優れる。
本発明の帯電防止ポリエステルフィルムは、ブロッキング耐性に優れ、帯電防止層と易接着層とポリエステルフィルム基材との間における初期密着性及び耐湿熱密着性に優れた帯電防止ポリエステルフィルムを提供できる。
The antistatic polyester film of the present invention has excellent adhesion to UV curing resins such as hard coat layers, lens layers, and inks, and in particular has excellent adhesion to UV inks at a high level.
INDUSTRIAL APPLICABILITY The antistatic polyester film of the present invention can provide an antistatic polyester film that is excellent in blocking resistance, initial adhesion and wet heat resistance adhesion between the antistatic layer, the easy adhesion layer and the polyester film substrate.
(ポリエステルフィルム基材)
 本発明においてポリエステルフィルム基材を構成するポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリトリメチレンテレフタレートなどのほか、前記のようなポリエステル樹脂のジオール成分又はジカルボン酸成分の一部を以下のような共重合成分に置き換えた共重合ポリエステル樹脂であり、例えば、共重合成分として、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、5-ナトリウムイソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを挙げることができる。
(Polyester film substrate)
The polyester resin constituting the polyester film substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate and the like, as well as the diol component or dicarboxylic acid component of the polyester resin as described above. is a copolymerized polyester resin in which a part of is replaced with the following copolymerization components, for example, as copolymerization components, diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
 本発明においてポリエステルフィルム基材のために好適に用いられるポリエステル樹脂は、主に、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートから選ばれるものである。これらのポリエステル樹脂の中でも、物性とコストのバランスからポリエチレンテレフタレートが最も好ましい。また、これらのポリエステル樹脂から構成されたポリエステルフィルム基材は二軸延伸ポリエステルフィルムであることが好ましく、耐薬品性、耐熱性、機械的強度などを向上させることができる。 The polyester resin suitably used for the polyester film substrate in the present invention is mainly selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate and polyethylene-2,6-naphthalate. Among these polyester resins, polyethylene terephthalate is most preferable from the viewpoint of balance between physical properties and cost. In addition, the polyester film substrate composed of these polyester resins is preferably a biaxially oriented polyester film, which can improve chemical resistance, heat resistance, mechanical strength, and the like.
 ポリエステル樹脂の製造の際に用いられる重縮合のための触媒としては特に限定されないが、三酸化アンチモンが安価で、かつ優れた触媒活性をもつ触媒であるため好適である。また、ゲルマニウム化合物、又はチタン化合物を用いることも好ましい。さらに好ましい重縮合触媒としては、アルミニウム及び/又はその化合物とフェノール系化合物を含有する触媒、アルミニウム及び/又はその化合物とリン化合物を含有する触媒、リン化合物のアルミニウム塩を含有する触媒が挙げられる。 The catalyst for polycondensation used in the production of polyester resin is not particularly limited, but antimony trioxide is suitable because it is inexpensive and has excellent catalytic activity. It is also preferable to use a germanium compound or a titanium compound. Further preferred polycondensation catalysts include catalysts containing aluminum and/or compounds thereof and phenolic compounds, catalysts containing aluminum and/or compounds thereof and phosphorus compounds, and catalysts containing aluminum salts of phosphorus compounds.
 また、本発明におけるポリエステルフィルム基材は、その層構成について特に限定されるものではなく、単層のポリエステルフィルムであってもよいし、相互に成分が異なる2層構成でもよく、外層と内層を有する、少なくとも3層からなるポリエステルフィルム基材であってもよい。 In addition, the polyester film substrate in the present invention is not particularly limited in its layer structure, and may be a single-layer polyester film, or may be a two-layer structure having different components, and an outer layer and an inner layer. It may be a polyester film substrate consisting of at least three layers.
(易接着層)
 本発明の帯電防止ポリエステルフィルムは、帯電防止層や粘着層との密着性向上、ブロッキング耐性を向上させるために、ポリエステルフィルム基材の少なくとも片面に、カルボキシル基を有する酸価30~50mgKOH/gのポリウレタン樹脂とカルボキシル基を有する酸価30~50mgKOH/gの架橋剤から形成されている易接着層が積層されていることが好ましい。易接着層は、ポリエステルフィルムの両面に設けてもよく、ポリエステルフィルムの片面のみに設け、他方の面には異種の樹脂被覆層を設けてもよい。
(Easy adhesion layer)
The antistatic polyester film of the present invention has an acid value of 30 to 50 mgKOH/g having a carboxyl group on at least one side of the polyester film substrate in order to improve adhesion with the antistatic layer and adhesive layer and improve blocking resistance. It is preferable that an easy-adhesion layer formed of a polyurethane resin and a cross-linking agent having an acid value of 30 to 50 mgKOH/g having a carboxyl group is laminated. The easy-adhesion layer may be provided on both sides of the polyester film, or may be provided only on one side of the polyester film and a different resin coating layer may be provided on the other side.
 本発明における易接着層は帯電防止層やハードコート層、レンズ層、インキ等のUV硬化樹脂または熱硬化樹脂への密着性に優れる。また、一定範囲のカルボキシル基をポリウレタン樹脂と架橋剤がそれぞれ有することにより、単体の樹脂がカルボキシル基を多く有することによる耐水性の低下による耐湿熱性等の欠点の発生を抑制しつつ、易接着層自体に多くのカルボキシル基を含有させることが可能となった。 The easy-adhesion layer in the present invention has excellent adhesion to antistatic layers, hard coat layers, lens layers, inks, and other UV-curable resins or thermosetting resins. In addition, by having a certain range of carboxyl groups in the polyurethane resin and the cross-linking agent, it is possible to suppress the occurrence of defects such as moisture and heat resistance due to a decrease in water resistance due to a large number of carboxyl groups in the single resin. It became possible to contain many carboxyl groups in itself.
 カルボキシル基を有するポリウレタン樹脂とカルボキシル基を有する架橋剤は重量比として90/10~10/90の範囲が好ましく、より好ましくは80/20~20/80の範囲であり、さらには70/30~30/70の範囲が好ましい。架橋剤が少ないと耐湿熱性等の耐久性が低下し、ポリウレタン樹脂が少ないと密着性が低下する。 The weight ratio of the polyurethane resin having a carboxyl group to the cross-linking agent having a carboxyl group is preferably in the range of 90/10 to 10/90, more preferably 80/20 to 20/80, and further preferably 70/30 to A 30/70 range is preferred. If the amount of the cross-linking agent is too small, the durability such as resistance to moist heat is lowered, and if the amount of the polyurethane resin is too small, the adhesiveness is lowered.
 以下、易接着層の各組成について詳説する。
(カルボキシル基を有する酸価30~50mgKOH/gのポリウレタン樹脂)
 カルボキシル基を有するポリウレタン樹脂とは、少なくともポリオール成分とポリイソシアネート成分、さらに必要に応じて鎖延長剤等から合成されるウレタン樹脂であり、分子中または側鎖にカルボキシル基を有するものである。ここでいう分子中とは前記ポリウレタン樹脂の主鎖中または末端に存在するものをいう。また、側鎖とは、分子鎖を構成する前記のようないずれかの原料成分の末端官能基数が3個以上存在することによって、合成、重合された後に枝分かれ上の分子鎖上に導入されたものである。
 本発明におけるカルボキシル基を有するポリウレタン樹脂は、主にウレタンの成分としてカルボキシル基含有ポリオール成分を使用することで得られる。
Each composition of the easy-adhesion layer will be described in detail below.
(Polyurethane resin with carboxyl group and acid value of 30-50 mgKOH/g)
A polyurethane resin having a carboxyl group is a urethane resin synthesized from at least a polyol component and a polyisocyanate component, and optionally a chain extender, etc., and has a carboxyl group in the molecule or in a side chain. The term "inside the molecule" as used herein refers to those existing in the main chain or at the end of the polyurethane resin. Moreover, the side chain is introduced onto the branched molecular chain after being synthesized and polymerized due to the presence of 3 or more terminal functional groups in any of the raw material components constituting the molecular chain. It is.
The polyurethane resin having a carboxyl group in the present invention is obtained mainly by using a carboxyl group-containing polyol component as a urethane component.
 かかる、カルボキシル基含有ポリオール成分としては下記のようなものが挙げられる。
比較的高分子量なもの、例えば、カルボキシル基含有ポリアルキレングリコール、カルボキシル基含有アクリルポリオール、カルボキシル基含有ポリオレフィンポリオール、カルボキシル基含有ポリエステルポリオール等が使用することができる。また、比較的低分子量なもの、例えば、2 , 2 - ジメチロールプロピオン酸、2 , 2 - ジメチロールブタン酸、2 , 2 - ジメチロール酪酸、2 , 2 - ジメチロール吉草酸等を使用することができる。カルボキシル基導入には、特に、ジメチロールプロピオン酸、ジメチロールブタン酸が好適に使用される。
Examples of such carboxyl group-containing polyol components include the following.
Relatively high molecular weight polyalkylene glycols, carboxyl group-containing acrylic polyols, carboxyl group-containing polyolefin polyols, and carboxyl group-containing polyester polyols can be used. In addition, relatively low molecular weight compounds such as 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolvaleric acid, etc. can be used. . Dimethylolpropionic acid and dimethylolbutanoic acid are particularly preferably used for introducing carboxyl groups.
 カルボキシル基を有するポリウレタン樹脂の酸価は、30~50mgKOH/g が好ましく、35~45mgKOH/g がより好ましい。酸価が30 mgKOH/g 以上であると、帯電防止層や粘着層との密着性が向上する。一方、酸価が50 mgKOH/g 以下であると、塗布層の耐水性が保持され、吸湿によりフィルムが相互に固着しやすくなることがないため好ましい。但し、本発明におけるポリウレタン樹脂ではポリウレタン樹脂の水溶性あるいは水分散性を補填するために他の親水性基、例えば、水酸基、エーテル、スルホン酸、ホスホン酸、4級アミン等を性能が悪化しない範囲内で導入してもよい。 The acid value of the polyurethane resin having carboxyl groups is preferably 30-50 mgKOH/g, more preferably 35-45 mgKOH/g. When the acid value is 30 mgKOH/g or more, the adhesion to the antistatic layer and adhesive layer is improved. On the other hand, when the acid value is 50 mgKOH/g or less, the water resistance of the coating layer is maintained and the films are not likely to adhere to each other due to moisture absorption, which is preferable. However, in the polyurethane resin of the present invention, other hydrophilic groups such as hydroxyl group, ether, sulfonic acid, phosphonic acid, quaternary amine, etc. are added to supplement the water-solubility or water-dispersibility of the polyurethane resin as long as the performance is not deteriorated. can be introduced internally.
 ポリウレタン樹脂中のカルボキシル基は塩基性化合物で中和されていてもよい。中和に使用する塩基性化合物としては、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム等のアルカリ土類金属、有機アミン化合物が挙げられる。これらの中でも、加熱により容易にカルボキシル基と解離する有機アミン化合物が好ましい。有機アミン化合物としては、例えば、アンモニア、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、2-エチルヘキシルアミン、シクロヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、エチレンジアミンなどの炭素数1から20の直鎖状、分岐状の1,2または3級アミン、モルホリン、N-アルキルモルホリン、ピリジンなどの環状アミン、モノイソプロパノールアミン、メチルエタノールアミン、メチルイソプロパノールアミン、ジメチルエタノールアミン、ジイソプロパノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチルエタノールアミン、トリエタノールアミンなどの水酸基含有アミンなどが挙げられる。 The carboxyl group in the polyurethane resin may be neutralized with a basic compound. Basic compounds used for neutralization include alkali metals such as sodium and potassium, alkaline earth metals such as magnesium and calcium, and organic amine compounds. Among these, organic amine compounds that easily dissociate from carboxyl groups by heating are preferred. Examples of organic amine compounds include ammonia, methylamine, ethylamine, propylamine, isopropylamine, butylamine, 2-ethylhexylamine, cyclohexylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, Linear, branched primary, secondary or tertiary amines having 1 to 20 carbon atoms such as triisopropylamine, tributylamine and ethylenediamine; cyclic amines such as morpholine, N-alkylmorpholine and pyridine; monoisopropanolamine; hydroxyl group-containing amines such as amines, methylisopropanolamine, dimethylethanolamine, diisopropanolamine, diethanolamine, triethanolamine, diethylethanolamine and triethanolamine;
 本発明におけるウレタン樹脂を合成、重合するために用いる他のポリオール成分には、ポリカーボネートポリオールが好ましく用いられ、耐熱、耐加水分解性に優れる脂肪族系ポリカーボネートポリオールを含有することが特に好ましい。脂肪族系ポリカーボネートポリオールとしては、脂肪族系ポリカーボネートジオール、脂肪族系ポリカーボネートトリオールなどが挙げられるが、好適には脂肪族系ポリカーボネートジオールを用いることができる。本発明におけるポリカーボネート構造を有するウレタン樹脂を合成、重合するために用いる脂肪族系ポリカーボネートジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,8-ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコールなどのジオール類の1種または2種以上と、例えば、ジメチルカーボネート、エチレンカーボネート、ホスゲンなどのカーボネート類とを反応させることにより得られる脂肪族系ポリカーボネートジオールなどが挙げられる。 Polycarbonate polyol is preferably used as the other polyol component used for synthesizing and polymerizing the urethane resin in the present invention, and it is particularly preferable to contain aliphatic polycarbonate polyol, which is excellent in heat resistance and hydrolysis resistance. Aliphatic polycarbonate polyols include aliphatic polycarbonate diols and aliphatic polycarbonate triols, and aliphatic polycarbonate diols can be preferably used. Aliphatic polycarbonate diols used for synthesizing and polymerizing the urethane resin having a polycarbonate structure in the present invention include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5 - diols such as pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol and dipropylene glycol; Aliphatic polycarbonate diols obtained by reacting one or more of them with, for example, carbonates such as dimethyl carbonate, ethylene carbonate and phosgene.
 本発明における前記のポリカーボネートポリオールの数平均分子量としては、好ましくは300~5000である。より好ましくは400~4000、最も好ましくは500~3000である。300以上であると、帯電防止層や粘着層との密着性を向上でき好ましい。3000以下であると、ブロッキング耐性を向上でき好ましい。 The number average molecular weight of the polycarbonate polyol in the present invention is preferably 300-5000. More preferably 400-4000, most preferably 500-3000. When it is 300 or more, the adhesion to the antistatic layer or adhesive layer can be improved, which is preferable. When it is 3000 or less, blocking resistance can be improved, which is preferable.
 本発明におけるウレタン樹脂の合成、重合に用いるポリイソシアネートとしては、例えば、キシリレンジイソシアネート等の芳香環を持つ脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、あるいは、ジイソシアネート類から製造されたイソシアヌレート結合、ビユレット結合またはアロファネート結合含有変性ポリイソシアネート類、ジイソシアネート類を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。前記の芳香環を持つ脂肪族ジイソシアネート類、脂環式ジイソシアネート類、または、脂肪族ジイソシアネート類等を使用した場合、黄変の問題がなく好ましい。 Polyisocyanates used for the synthesis and polymerization of urethane resins in the present invention include, for example, aliphatic diisocyanates having aromatic rings such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, 1,3-bis(isocyanate Alicyclic diisocyanates such as methyl)cyclohexane, aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate, or isocyanurate bonds, biuret bonds or allophanate bonds produced from diisocyanates Contained modified polyisocyanates and polyisocyanates obtained by previously adding a single or multiple diisocyanates with trimethylolpropane or the like can be mentioned. When the above-mentioned aromatic ring-containing aliphatic diisocyanates, alicyclic diisocyanates, or aliphatic diisocyanates are used, there is no problem of yellowing, which is preferable.
 鎖延長剤としては、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール及び1,6-ヘキサンジオール等のグリコール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等の多価アルコール類、エチレンジアミン、ヘキサメチレンジアミン、およびピペラジン等のジアミン類、モノエタノールアミンおよびジエタノールアミン等のアミノアルコール類、チオジエチレングルコール等のチオジグリコール類、あるいは水が挙げられる。また、少量であれば、3官能基以上のポリオール、ポリアミン等を使用してもよい。 Chain extenders include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane and pentaerythritol, and ethylenediamine. , hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water. Polyols, polyamines, etc. having three or more functional groups may be used as long as they are in small amounts.
 本発明のポリウレタン樹脂は強硬性向上のため末端または側鎖にブロックイソシアネート等の反応性基を有していてもよい。 The polyurethane resin of the present invention may have a reactive group such as blocked isocyanate at the end or side chain to improve toughness.
(架橋剤) 
 本発明においては、カルボキシル基を有する酸価30~50mgKOH/gの架橋剤を使用する。また、架橋剤のカルボキシル基は先述のポリウレタン樹脂と同様に塩基性化合物で中和されていてもよい。カルボキシル基を有する架橋剤の酸価は、30~50mgKOH/g が好ましく、35~45mgKOH/g がより好ましい。酸価が30~50mgKOH/g以上であると、帯電防止層や粘着層との密着性が向上するため好ましい。一方、酸価が50mgKOH/g以下であると、塗布後の塗布層の耐水性が保たれ、吸湿してフィルムが相互に固着しやすくなることがなく好ましい。但し、本発明における架橋剤の水溶性あるいは水分散性を補填するために他の親水性基、例えば、水酸基、エーテル、スルホン酸、ホスホン酸、4級アミン等を性能が悪化しない範囲内で導入してもよい。
(crosslinking agent)
In the present invention, a cross-linking agent having an acid value of 30 to 50 mgKOH/g and having a carboxyl group is used. Also, the carboxyl group of the cross-linking agent may be neutralized with a basic compound as in the polyurethane resin described above. The acid value of the cross-linking agent having a carboxyl group is preferably 30-50 mgKOH/g, more preferably 35-45 mgKOH/g. An acid value of 30 to 50 mgKOH/g or more is preferable because the adhesion to the antistatic layer and adhesive layer is improved. On the other hand, when the acid value is 50 mgKOH/g or less, the water resistance of the coating layer after coating is maintained, and the films are not likely to adhere to each other due to moisture absorption, which is preferable. However, other hydrophilic groups such as hydroxyl groups, ethers, sulfonic acids, phosphonic acids, quaternary amines, etc. are introduced to compensate for the water-solubility or water-dispersibility of the cross-linking agent in the present invention within a range in which the performance is not deteriorated. You may
 カルボキシル基を有する架橋剤としては、例えば、カルボキシル基を分子中に導入したオキザゾリン化合物、カルボジイミド化合物、エポキシ化合物、イソシアネート化合物が挙げられる。また、分子中に導入したカルボキシル基と分子内または分子間で反応しない様に、カルボキシル基は塩基性化合物で予め中和しておくことも可能である。これらの架橋剤の中ではカルボキシル基を容易に分子中に導入しやすいイソシアネート化合物が好ましく、特にブロックイソシアネート化合物が特に好ましい。 Examples of cross-linking agents having carboxyl groups include oxazoline compounds, carbodiimide compounds, epoxy compounds, and isocyanate compounds having carboxyl groups introduced into the molecule. In addition, the carboxyl groups introduced into the molecule may be neutralized in advance with a basic compound so that they do not react intramolecularly or intermolecularly with the carboxyl groups. Among these cross-linking agents, isocyanate compounds that easily introduce carboxyl groups into the molecule are preferred, and blocked isocyanate compounds are particularly preferred.
 ブロック化剤としては、重亜硫酸ソーダなどの重亜硫酸塩系化合物、3,5-ジメチルピラゾール、3-メチルピラゾール、4-ブロモー3,5-ジメチルピラゾール、4-ニトロー3,5-ジメチルピラゾールなどのピラゾール系化合物、フェノール、クレゾール等のフェノール系、メタノール、エタノール等の脂肪族アルコール系、マロン酸ジメチル、アセチルアセトン等の活性メチレン系、ブチルメルカプタン、ドデシルメルカプタン等のメルカプタン系、アセトアニリド、酢酸アミド等の酸アミド系、ε - カプロラクタム、δ - バレロラクタム等のラクタム系、コハク酸イミド、マレイン酸イミド等の酸イミド系、アセトアルドオキシム、アセトンオキシム、メチルエチルケトオキシム等のオキシム系、ジフェニルアニリン、アニリン、エチレンイミン等のアミン系等のブロック化剤が挙げられる。 Examples of blocking agents include bisulfite compounds such as sodium bisulfite, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole, and the like. Pyrazole compounds, phenols such as phenol and cresol, aliphatic alcohols such as methanol and ethanol, active methylene compounds such as dimethyl malonate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, acids such as acetanilide and acetic acid amide. Amides, lactams such as ε - caprolactam and δ - valerolactam, acid imides such as succinimide and maleic imide, oximes such as acetaldoxime, acetone oxime, and methyl ethyl ketoxime, diphenylaniline, aniline, and ethyleneimine blocking agents such as amines such as
 前記ブロックイソシアネートのブロック剤の沸点の下限は好ましくは150℃であり、より好ましくは160℃であり、さらに好ましくは180℃であり、特に好ましくは200℃であり、最も好ましくは210℃である。ブロック化剤の沸点が高い程、塗布液の塗布後の乾燥工程やインラインコート法の場合はフィルム製膜工程における熱付加によってもブロック化剤の揮発が抑制され、微小な塗布面凹凸の発生が抑制され、フィルムの透明性が向上する。ブロック化剤の沸点の上限は特に限定しないが、生産性の点から300℃程度が上限であると思われる。沸点は分子量と関係するため、ブロック化剤の沸点を高くするためには、分子量の大きなブロック化剤を用いることが好ましく、ブロック剤の分子量は50以上が好ましく、60以上がより好ましく、80以上がさらに好ましい。 The lower limit of the boiling point of the blocking agent for the blocked isocyanate is preferably 150°C, more preferably 160°C, still more preferably 180°C, particularly preferably 200°C, and most preferably 210°C. The higher the boiling point of the blocking agent, the more the volatilization of the blocking agent is suppressed by the addition of heat during the drying process after the application of the coating solution or during the film formation process in the case of the in-line coating method, and the generation of fine irregularities on the coated surface is suppressed. is suppressed and the transparency of the film is improved. Although the upper limit of the boiling point of the blocking agent is not particularly limited, the upper limit is considered to be about 300°C from the viewpoint of productivity. Since the boiling point is related to the molecular weight, in order to increase the boiling point of the blocking agent, it is preferable to use a blocking agent having a large molecular weight. The molecular weight of the blocking agent is preferably 50 or more, more preferably 60 or more, and 80 or more. is more preferred.
 ブロック化剤の解離温度の上限は好ましくは200℃であり、より好ましくは180℃であり、さらに好ましくは160℃であり、特に好ましくは150℃であり、最も好ましくは120℃である。ブロック化剤は塗布液の塗布後の乾燥工程やインラインコート法の場合はフィルム製膜工程における熱付加によりブロック化剤が解離し、再生イソシアネート基が生成される。そのため、ウレタン樹脂などとの架橋反応が進行し、接着性が向上する。ブロックイソシアネートの解離温度が上記温度以下である場合は、ブロック化剤の解離が十分進行するため、接着性、特に耐湿熱性が良好となる。 The upper limit of the dissociation temperature of the blocking agent is preferably 200°C, more preferably 180°C, still more preferably 160°C, particularly preferably 150°C, and most preferably 120°C. The blocking agent is dissociated by heat addition in the drying step after application of the coating solution or in the film formation step in the case of the in-line coating method to generate regenerated isocyanate groups. Therefore, a cross-linking reaction with urethane resin or the like proceeds, and the adhesiveness is improved. When the dissociation temperature of the blocked isocyanate is equal to or lower than the above temperature, the dissociation of the blocking agent proceeds sufficiently, resulting in good adhesion, particularly resistance to moist heat.
 本発明のブロックイソシアネートに用いる解離温度は120℃以下、かつ、ブロック化剤の沸点が150℃以上であるブロック化剤としては、前述の重亜硫酸ソーダ、3,5-ジメチルピラゾール、3-メチルピラゾール、マロン酸ジメチル、マロン酸ジエチル、アセトンオキシム、メチルエチルケトオキシムなどが挙げられる。なかでも、耐湿熱性、黄変の点から、3,5-ジメチルピラゾール、3-メチルピラゾールに代表されるピラゾール系化合物が好ましい。 The blocking agent used in the blocked isocyanate of the present invention has a dissociation temperature of 120° C. or lower and a boiling point of 150° C. or higher. , dimethyl malonate, diethyl malonate, acetone oxime, methyl ethyl ketoxime and the like. Among them, pyrazole compounds represented by 3,5-dimethylpyrazole and 3-methylpyrazole are preferable from the viewpoint of resistance to moist heat and yellowing.
 前記ブロックイソシアネートは2官能以上ものが好ましく、3官能以上のブロックイソシアネートが塗膜の架橋性の点からさらに好ましい。 The above-mentioned blocked isocyanate is preferably bifunctional or higher, and trifunctional or higher blocked isocyanate is more preferred from the viewpoint of crosslinkability of the coating film.
 本発明のブロックイソシアネートの前駆体である3官能以上のポリイソシアネートは、イソシアネートモノマーを導入して好適に得ることができる。例えば、2個のイソシアネート基を有する芳香族ジイソシアネート、脂肪族ジイソシアネート、芳香脂肪族ジイソシアネート、又は脂環族ジイソシアネート等のイソシアネートモノマーを変性したビュレット体、イソシアヌレート体、およびアダクト体等が挙げられる。
 ビュレット体とは、イソシアネートモノマーが自己縮合して形成したビュレット結合を有する自己縮合物であり、例えば、ヘキサメチレンジイソシアネートのビュレット体などが挙げられる。
 イソシアヌレート体とは、イソシアネートモノマーの3量体であり、例えば、ヘキサメチレンジイソシアネートの3量体、イソホロンジイソシアネートの3量体、トリレンジイソシアネートの3量体などが挙げられる。
 アダクト体とは、イソシアネートモノマーと3官能以上の低分子活性水素含有化合物とを反応させてなる、3官能以上のイソシアネート化合物をいい、例えば、トリメチロールプロパンとヘキサメチレンジイソシアネートとを反応させた化合物、トリメチロールプロパンとトリレンジイソシアネートとを反応させた化合物、トリメチロールプロパンとキシリレンジイソシアネートとを反応させた化合物、トリメチロールプロパンとイソホロンジイソシアネートとを反応させた化合物、などが挙げられる。
A polyisocyanate having a functionality of 3 or more, which is a precursor of the blocked isocyanate of the present invention, can be suitably obtained by introducing an isocyanate monomer. For example, aromatic diisocyanates having two isocyanate groups, aliphatic diisocyanates, araliphatic diisocyanates, or burettes, isocyanurates, and adducts obtained by modifying isocyanate monomers such as alicyclic diisocyanates can be mentioned.
The burette body is a self-condensed product having a burette bond formed by self-condensation of an isocyanate monomer, and examples thereof include a burette body of hexamethylene diisocyanate.
The isocyanurate is a trimer of an isocyanate monomer, and examples thereof include a trimer of hexamethylene diisocyanate, a trimer of isophorone diisocyanate, a trimer of tolylene diisocyanate, and the like.
The adduct refers to a tri- or more functional isocyanate compound obtained by reacting an isocyanate monomer with a tri- or more functional low-molecular-weight active hydrogen-containing compound. For example, a compound obtained by reacting trimethylolpropane and hexamethylene diisocyanate, A compound obtained by reacting trimethylolpropane and tolylene diisocyanate, a compound obtained by reacting trimethylolpropane and xylylene diisocyanate, a compound obtained by reacting trimethylolpropane and isophorone diisocyanate, and the like.
 前記のイソシアネートモノマーとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、2,4′-ジフェニルメタンジイソシアネート、2,2′-ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、1,4-ナフチレンジイソシアネート、フェニレンジイソシアネート、テトラメチルキシリレンジイソシアネート、4,4′-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4′-ジイソシアネート、2,2′-ジフェニルプロパン-4,4′-ジイソシアネート、3,3′-ジメチルジフェニルメタン-4,4′-ジイソシアネート、4,4′-ジフェニルプロパンジイソシアネート、3,3′-ジメトキシジフェニル-4,4′-ジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類が挙げられる。透明性、耐黄変性、接着性、耐湿熱性の点から、脂肪族、脂環式イソシアネートやこれらの変性体が好ましい。 Examples of the isocyanate monomers include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 1,5 -naphthylene diisocyanate, 1,4-naphthylene diisocyanate, phenylene diisocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane- 4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, 3,3'-dimethoxydiphenyl-4,4'-diisocyanate, xylylene diisocyanate, etc. aromatic diisocyanates, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, alicyclic diisocyanates such as 1,3-bis(isocyanatomethyl)cyclohexane, hexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate and other aliphatic diisocyanates. Aliphatic and alicyclic isocyanates and modified products thereof are preferred from the viewpoint of transparency, yellowing resistance, adhesiveness, and resistance to moist heat.
 本発明においては、性能に影響を与えない範囲で他の樹脂と併用してもよい。併用する樹脂としては、カルボキシル基非含有ポリウレタン、ポリエステル樹脂、アクリル樹脂、セルロース樹脂、ポリオレフィン樹脂、ポリアセタール樹脂等が挙げられる。これらの樹脂の中では併用することにより帯電防止層や粘着層との密着性が向上するポリエステル樹脂が特に好ましい。また、ポリエステル樹脂を併用する場合においては、カルボキシル基含有ポリウレタン樹脂及びカルボキシル基含有架橋剤を合わせた含有量よりも1.5倍以上も含有させることが可能である。この効果においては、ポリエステル樹脂は、カルボキシル基含有ポリウレタン樹脂またはカルボキシル基含有架橋剤よりも、基材であるポリエステル樹脂への親和性が良好なため、厚み方向で基材側に局在化しやすいため、基材界面との密着性が向上し、表層に局在化したカルボキシル基含有ポリウレタン樹脂及びカルボキシル基含有架橋剤が帯電防止層や粘着層に含まれるバインダー樹脂との密着性を向上させる様な相乗効果が発現しているためと推測している。 In the present invention, it may be used in combination with other resins as long as it does not affect performance. Resins used in combination include carboxyl group-free polyurethanes, polyester resins, acrylic resins, cellulose resins, polyolefin resins, polyacetal resins, and the like. Among these resins, polyester resins are particularly preferable because the adhesion to the antistatic layer and the adhesive layer is improved by using them together. Moreover, when a polyester resin is used in combination, the content can be 1.5 times or more the combined content of the carboxyl group-containing polyurethane resin and the carboxyl group-containing cross-linking agent. In this effect, since the polyester resin has a better affinity for the polyester resin as the base material than the carboxyl group-containing polyurethane resin or the carboxyl group-containing cross-linking agent, it tends to be localized on the base material side in the thickness direction. , the adhesiveness with the substrate interface is improved, and the carboxyl group-containing polyurethane resin and the carboxyl group-containing cross-linking agent localized on the surface layer improve the adhesiveness with the binder resin contained in the antistatic layer and the adhesive layer. It is speculated that this is due to the manifestation of a synergistic effect.
(ポリエステル樹脂)
 本発明における塗布層に併用するポリエステル樹脂は、直鎖上のものであってもよいが、より好ましくは、ジカルボン酸と、分岐構造を有するジオール(グリコール)とを構成成分とするポリエステル樹脂であることが好ましい。ここで言うジカルボン酸は、その主成分がテレフタル酸、イソフタル酸又は2,6-ナフタレンジカルボン酸である他アジピン酸、セバシン酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸が、挙げられる。また、分岐したグリコールとは枝分かれしたアルキル基を有するジオールであって、例えば、2,2-ジメチル-1,3-プロパンジオール、2-メチル-2-エチル-1,3-プロパンジオール、2-メチル-2-ブチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-メチル-2-イソプロピル-1,3-プロパンジオール、2-メチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-プロピル-1,3-プロパンジオール、及び2,2-ジ-n-ヘキシル-1,3-プロパンジオールなどが挙げられる。
(polyester resin)
The polyester resin used in combination with the coating layer in the present invention may have a linear chain, but is more preferably a polyester resin having a dicarboxylic acid and a diol (glycol) having a branched structure as its constituent components. is preferred. The dicarboxylic acid referred to here is mainly composed of terephthalic acid, isophthalic acid or 2,6-naphthalenedicarboxylic acid, as well as aliphatic dicarboxylic acids such as adipic acid and sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, 2, Aromatic dicarboxylic acids such as 6-naphthalenedicarboxylic acid are included. A branched glycol is a diol having a branched alkyl group, such as 2,2-dimethyl-1,3-propanediol, 2-methyl-2-ethyl-1,3-propanediol, 2- Methyl-2-butyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-isopropyl-1,3-propanediol, 2-methyl-2-n -hexyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl- 1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-n-butyl-2-propyl-1,3-propanediol, and 2,2-di-n- and hexyl-1,3-propanediol.
 上記ポリエステル樹脂について、上記のより好ましい態様である分岐したグリコール成分は全グリコール成分の中に、好ましくは10モル%以上の割合で、さらに好ましくは20モル%以上の割合で含有されるものと言える。10モル%以上であると、結晶性が高くなり過ぎず、塗布層の接着性が保持されて好ましい。全グリコール成分の中のグリコール成分上限は、好ましくは80モル%以下であり、より好ましくは70質量%以下である。80モル%以下であると、副生成物であるオリゴマー濃度が増加しづらく、塗布層の透明性が保持されて好ましい。上記化合物以外のグリコール成分としてはエチレングリコールが最も好ましい。少量であれば、ジエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオールまたは1,4-シクロヘキサンジメタノールなどを用いてもよい。 Regarding the above polyester resin, it can be said that the branched glycol component, which is the more preferred embodiment, is contained in the total glycol component in a proportion of preferably 10 mol % or more, more preferably 20 mol % or more. . When it is 10 mol % or more, the crystallinity does not become too high, and the adhesiveness of the coating layer is maintained, which is preferable. The upper limit of the glycol component in all glycol components is preferably 80 mol % or less, more preferably 70 mass % or less. When it is 80 mol % or less, the concentration of the oligomer, which is a by-product, does not easily increase, and the transparency of the coating layer is maintained, which is preferable. Ethylene glycol is most preferable as the glycol component other than the above compounds. In small amounts, diethylene glycol, propylene glycol, butanediol, hexanediol, 1,4-cyclohexanedimethanol, or the like may be used.
 上記ポリエステル樹脂の構成成分としてのジカルボン酸としては、テレフタル酸又はイソフタル酸であるのが最も好ましい。上記ジカルボン酸の他に、共重合ポリエステル系樹脂に水分散性を付与させるため、5-スルホイソフタル酸等を1~10モル%の値囲で共重合させるのが好ましく、例えば、スルホテレフタル酸、5-スルホイソフタル酸、5-ナトリウムスルホイソフタル酸等を挙げることができる。  Terephthalic acid or isophthalic acid is most preferable as the dicarboxylic acid as a constituent of the polyester resin. In addition to the above dicarboxylic acid, it is preferable to copolymerize 5-sulfoisophthalic acid or the like in the range of 1 to 10 mol% in order to impart water dispersibility to the copolymerized polyester resin. 5-sulfoisophthalic acid, 5-sodiumsulfoisophthalic acid and the like can be mentioned.
 易接着層を形成する塗布液中の樹脂および架橋剤の固形分の総和を100質量%とするとき、ポリエステル樹脂含有率は10質量%以上であると、易接着層とポリエステルフィルム基材の密着性が良好となり好ましい。ポリエステル樹脂の含有率の上限は好ましくは65質量%以下であり、より好ましくは60質量%以下である。ポリエステル樹脂の含有率が70質量%以下であると、耐湿熱性が良好となり好ましい。 When the total solid content of the resin and the cross-linking agent in the coating solution forming the easy-adhesion layer is 100% by mass, the polyester resin content is 10% by mass or more, and the adhesion between the easy-adhesion layer and the polyester film substrate is improved. It is preferable because it has good properties. The upper limit of the polyester resin content is preferably 65% by mass or less, more preferably 60% by mass or less. When the content of the polyester resin is 70% by mass or less, the wet heat resistance becomes good, which is preferable.
 易接着層中には前述のポリエステル樹脂以外の樹脂も本件の性能が低下しない範囲で使用しても構わない。前記ポリエステル樹脂以外の樹脂の代表例はカルボキシル基を有するポリウレタン樹脂であるが、その他の樹脂を含んでいてもよく、カルボキシル基を有するポリウレタン樹脂だけであってもよい。
 その場合、易接着層を形成する塗布液中の樹脂及び架橋剤の固形分の総和を100質量%とすると、ポリエステル樹脂以外の樹脂は40質量%以下の含有量が好ましく、30質量%以下がより好ましく、20質量%以下が特に好ましい。但し、ポリエステル樹脂以外の樹脂とポリエステル樹脂の含有量の総和は70質量%以下であることが好ましい。塗布層を形成する塗布液中の前述のポリウレタン樹脂及び架橋剤のそれぞれの含有量は、樹脂及び架橋剤の固形分の総和として3質量%以上であることが好ましい。
 3質量%以上であると帯電防止層や粘着層との密着性の効果が得られて好ましい。より好ましい含有量の範囲は3.5~90質量%であり、7~80質量%が更に好ましく、10.5~70質量%が特に好ましい。
A resin other than the polyester resin described above may also be used in the easy-adhesion layer as long as the performance of the present invention does not deteriorate. A representative example of the resin other than the polyester resin is a polyurethane resin having a carboxyl group, but it may contain other resins or may be only a polyurethane resin having a carboxyl group.
In that case, if the total solid content of the resin and the cross-linking agent in the coating liquid forming the easy adhesion layer is 100% by mass, the content of the resin other than the polyester resin is preferably 40% by mass or less, and 30% by mass or less. More preferably, 20% by mass or less is particularly preferable. However, the total content of resins other than polyester resins and polyester resins is preferably 70% by mass or less. The content of each of the polyurethane resin and the cross-linking agent in the coating solution forming the coating layer is preferably 3% by mass or more as the total solid content of the resin and the cross-linking agent.
When it is 3% by mass or more, the effect of adhesion with the antistatic layer and the adhesive layer is obtained, which is preferable. A more preferable content range is 3.5 to 90% by mass, more preferably 7 to 80% by mass, and particularly preferably 10.5 to 70% by mass.
(添加剤)
 本発明における易接着層中には、本発明の効果を阻害しない範囲において公知の添加剤、例えば界面活性剤、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機の易滑剤、顔料、染料、有機または無機の粒子、帯電防止剤、核剤等を添加してもよい。
(Additive)
Known additives such as surfactants, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic lubricants, Pigments, dyes, organic or inorganic particles, antistatic agents, nucleating agents, etc. may be added.
 本発明においては、塗布層の耐ブロッキング性をより向上させるために、塗布層に粒子を添加することも好ましい態様である。本発明において塗布層中に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレーなど或いはこれらの混合物であり、更に、他の一般的無機粒子、例えばリン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウムその他と併用、等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。 In the present invention, it is also a preferred embodiment to add particles to the coating layer in order to further improve the blocking resistance of the coating layer. Particles contained in the coating layer in the present invention include, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, and mixtures thereof. Inorganic particles such as calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride, etc., and organic particles such as styrene, acrylic, melamine, benzoguanamine, and silicone Examples include polymer-based particles.
 易接着層中の粒子の平均粒径(走査型電子顕微鏡(SEM)による個数基準の平均粒径。以下同じ)は、0.04~2.0μmが好ましく、さらに好ましくは0.1~1.0μmである。不活性粒子の平均粒径が0.04μm以上であると、フィルム表面への凹凸の形成が容易となるため、フィルムの滑り性や巻き取り性などのハンドリング性が向上し、貼り合せの際の加工性が良好であって好ましい。一方、不活性粒子の平均粒径が2.0μm以下であると、粒子の脱落が生じ難く好ましい。易接着層中の粒子濃度は、固形成分中1~20質量%であることが好ましい。 The average particle size of the particles in the easy-adhesion layer (number-based average particle size as measured by a scanning electron microscope (SEM); the same shall apply hereinafter) is preferably 0.04 to 2.0 μm, more preferably 0.1 to 1.0 μm. 0 μm. When the average particle diameter of the inert particles is 0.04 μm or more, it becomes easy to form unevenness on the film surface, so that the handling properties such as the slipperiness and windability of the film are improved, and the film can be easily laminated. It is preferable because of its good workability. On the other hand, when the average particle size of the inert particles is 2.0 μm or less, the particles are less likely to fall off, which is preferable. The particle concentration in the easy-adhesion layer is preferably 1 to 20 mass % of the solid component.
  粒子の平均粒径の測定方法は、ポリエステルフィルム基材と易接着層との積層体(以下、積層ポリエステルフィルムともいう)の断面の粒子を走査型電子顕微鏡で観察を行い、粒子30個を観察し、その平均値をもって平均粒径とする方法で行った。 The method for measuring the average particle size of the particles is to observe the particles in the cross section of the laminate of the polyester film substrate and the easy adhesion layer (hereinafter also referred to as the laminated polyester film) with a scanning electron microscope, and observe 30 particles. and the average value thereof is used as the average particle size.
  本発明の目的を満たすものであれば、粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒径は円相当径として計算することができる。円相当径は、観察された粒子の面積をπで除し、平方根を算出し2倍した値である。 The shape of the particles is not particularly limited as long as the object of the present invention is satisfied, and spherical particles and non-spherical particles with irregular shapes can be used. The particle diameter of amorphous particles can be calculated as the equivalent circle diameter. The circle-equivalent diameter is a value obtained by dividing the observed particle area by π, calculating the square root, and doubling the result.
(積層ポリエステルフィルムの製造)
 本発明の積層ポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(以下、PETと略記する場合がある)フィルム基材を用いた例を挙げて説明するが、当然これに限定されるものではない。
(Manufacture of laminated polyester film)
The method for producing the laminated polyester film of the present invention will be described with an example using a polyethylene terephthalate (hereinafter sometimes abbreviated as PET) film base material, but it is of course not limited to this.
 PET樹脂を十分に真空乾燥した後、押出し機に供給し、Tダイから約280℃の溶融PET樹脂を回転冷却ロールにシート状に溶融押出しし、静電印加法により冷却固化して未延伸PETシートを得る。前記未延伸PETシートは、単層構成でもよいし、共押出し法による複層構成であってもよい。 After sufficiently vacuum-drying the PET resin, it is supplied to an extruder, and the melted PET resin at about 280° C. is melt-extruded into a sheet from a T-die onto a rotating cooling roll, and cooled and solidified by an electrostatic application method to form unstretched PET. get a sheet. The unstretched PET sheet may have a single-layer structure or a multi-layer structure obtained by a coextrusion method.
 得られた未延伸PETシートを一軸延伸、もしくは二軸延伸を施すことで結晶配向化させる。例えば二軸延伸の場合は、80~120℃に加熱したロールで長手方向に2.5~5.0倍に延伸して、一軸延伸PETフィルムを得たのち、フィルムの端部をクリップで把持して、80~180℃に加熱された熱風ゾーンに導き、幅方向に2.5~5.0倍に延伸する。また、一軸延伸の場合は、テンター内で2.5~5.0倍に延伸する。延伸後引き続き、熱処理ゾーンに導き、熱処理を行ない、結晶配向を完了させる。  The obtained unstretched PET sheet is uniaxially stretched or biaxially stretched for crystal orientation. For example, in the case of biaxial stretching, after stretching 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially stretched PET film, the end of the film is held with a clip. Then, it is led to a hot air zone heated to 80 to 180° C. and stretched 2.5 to 5.0 times in the width direction. In the case of uniaxial stretching, the film is stretched 2.5 to 5.0 times in a tenter. After stretching, the film is led to a heat treatment zone and heat treated to complete the crystal orientation. 
 熱処理ゾーンの温度の下限は好ましくは170℃であり、より好ましくは180℃である。熱処理ゾーンの温度が170℃以上であると硬化が十分となり、液体の水存在下でのブロッキング性が良好となり好ましく、乾燥時間を長くする必要がない。一方、熱処理ゾーンの温度の上限は好ましくは250℃であり、より好ましくは240℃である。熱処理ゾーンの温度が240℃以下であると、フィルムの物性が低下するおそれがなく好ましい。 The lower limit of the temperature of the heat treatment zone is preferably 170°C, more preferably 180°C. When the temperature of the heat treatment zone is 170° C. or higher, the curing is sufficient and the blocking property in the presence of liquid water is favorable, which is preferable and does not require a long drying time. On the other hand, the upper temperature limit of the heat treatment zone is preferably 250°C, more preferably 240°C. When the temperature of the heat treatment zone is 240° C. or less, it is preferable because the physical properties of the film do not deteriorate.
 易接着層はフィルムの製造後、もしくは製造工程において設けることができる。特に、生産性の点からフィルム製造工程の任意の段階、すなわち未延伸あるいは一軸延伸後のPETフィルムの少なくとも片面に、塗布液を塗布し、少なくとも一軸方向に延伸、熱処理して易接着層を形成することが好ましい。 The easy-adhesion layer can be provided after the film is manufactured or during the manufacturing process. In particular, from the viewpoint of productivity, a coating liquid is applied to at least one side of an unstretched or uniaxially stretched PET film at any stage of the film manufacturing process, stretched at least uniaxially, and heat-treated to form an easy-adhesion layer. preferably.
 この塗布液をPETフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗工することができる。 Any known method can be used to apply this coating liquid to the PET film. For example, reverse roll coating method, gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. be done. These methods can be applied singly or in combination.
 本発明において易接着層の厚みは、0.001~2.00μmの範囲で適宜設定することができるが、加工性と接着性とを両立させるには0.01~1.00μmの範囲が好ましく、より好ましくは0.02~0.80μm、さらに好ましくは0.05~0.50μmである。易接着層の厚みが0.001μm以上であると、接着性が良好であり好ましい。易接着層の厚みが2.00μm以下であると、ブロッキングを生じ難く好ましい。 In the present invention, the thickness of the easy adhesion layer can be appropriately set in the range of 0.001 to 2.00 μm, but the range of 0.01 to 1.00 μm is preferable in order to achieve both workability and adhesion. , more preferably 0.02 to 0.80 μm, still more preferably 0.05 to 0.50 μm. Adhesiveness is favorable and it is preferable that the thickness of an easily-adhesive layer is 0.001 micrometer or more. When the thickness of the easy-adhesion layer is 2.00 μm or less, blocking is less likely to occur, which is preferable.
 本発明の積層ポリエステルフィルムのヘイズの上限は好ましくは2.5%であり、より好ましくは2.0%であり、さらに好ましくは1.5%であり、特に好ましくは1.2%である。ヘイズが2.5%以下であると、透明性の点で好ましく、透明性が求められる光学フィルムへも好適に用いることができる。ヘイズは一般的に小さいほど好ましいが、0.1%以上であっても好ましく、0.2%以上であっても好ましい。 The upper limit of haze of the laminated polyester film of the present invention is preferably 2.5%, more preferably 2.0%, even more preferably 1.5%, and particularly preferably 1.2%. A haze of 2.5% or less is preferable in terms of transparency, and can be suitably used for optical films that require transparency. Although the haze is generally preferably as small as possible, it is preferably 0.1% or more, and even preferably 0.2% or more.
(帯電防止層)
 本発明の帯電防止ポリエステルフィルムは、積層ポリエステルフィルムにおける易接着層の上に帯電防止層を有する。帯電防止層は片面だけでもよいし両面に積層してもよい。帯電防止層を積層することで、粘着層を積層し保護フィルムとして用いた場合にも被着体との剥離帯電を抑えたり、異物の付着を抑えることができるため好ましい。
(Antistatic layer)
The antistatic polyester film of the present invention has an antistatic layer on the easily adhesive layer in the laminated polyester film. The antistatic layer may be on one side only or may be laminated on both sides. By laminating an antistatic layer, even when an adhesive layer is laminated and used as a protective film, it is possible to suppress separation electrification from the adherend and adhesion of foreign matter can be suppressed, which is preferable.
 帯電防止層の積層する手段については特に限定されず、塗布法、真空蒸着法、貼り合せなど、既知の方法を使用することができるが、帯電防止剤を含む塗液を塗布により設けることがコストの観点より好ましい。 The means for laminating the antistatic layer is not particularly limited, and known methods such as a coating method, a vacuum deposition method, and lamination can be used. is preferable from the viewpoint of
 帯電防止剤としては、カチオン性化合物などのイオン伝導を利用した高分子や界面活性剤、酸化ケイ素膜、導電性の金属化合物、π電子共役系導電性高分子などを用いることができるが、低湿度下での帯電防止性の点からπ電子共役系導電性高分子を用いることが好ましい。また、π電子共役系導電性高分子は、空気中の水分に依存することなく帯電防止性能を高水準で維持することができるため、保護フィルムの様々な使用環境で良好な帯電防止性能を有するため好ましい。 As the antistatic agent, a polymer or surfactant utilizing ion conduction such as a cationic compound, a silicon oxide film, a conductive metal compound, a π-electron conjugated conductive polymer, or the like can be used. From the viewpoint of antistatic properties under humidity, it is preferable to use a π-electron conjugated conductive polymer. In addition, since the π-electron conjugated conductive polymer can maintain a high level of antistatic performance without depending on the moisture in the air, it has good antistatic performance in various usage environments of the protective film. Therefore, it is preferable.
 π電子共役系導電性高分子としては、アニリンあるいはその誘導体を構成単位として含むアニリン系高分子、ピロールあるいはその誘導体を構成単位として含むピロール系高分子、アセチレンあるいはその誘導体を構成単位として含むアセチレン系高分子、チオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子等が挙げられる。高い透明性を得ようとするならば、π電子共役系導電性高分子としては窒素原子を有さないものが好ましく、中でもチオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子は透明性の点から好適であり、特にポリアルキレンジオキシチオフェンが好適である。ポリアルキレンジオキシチオフェンとしては、ポリエチレンジオキシチオフェン、ポリプロピレンジオキシチオフェン、ポリ(エチレン/プロピレン)ジオキシチオフェンなどが挙げられる。 Examples of π-electron conjugated conductive polymers include aniline polymers containing aniline or its derivatives as structural units, pyrrole polymers containing pyrrole or its derivatives as structural units, and acetylene polymers containing acetylene or its derivatives as structural units. Polymers, thiophene-based polymers containing thiophene or a derivative thereof as a structural unit, and the like can be mentioned. In order to obtain high transparency, the π-electron conjugated conductive polymer preferably does not have a nitrogen atom. Among them, a thiophene-based polymer containing thiophene or its derivative as a structural unit is excellent in terms of transparency. are preferred, and polyalkylenedioxythiophenes are particularly preferred. Polyalkylenedioxythiophenes include polyethylenedioxythiophene, polypropylenedioxythiophene, poly(ethylene/propylene)dioxythiophene, and the like.
 なお、チオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子には、帯電防止性を更に良好なものとするためドーピング剤を、例えばチオフェンあるいはその誘導体を構成単位として含む高分子100質量部に対し0.1質量部以上500質量部以下配合することができる。少ない場合には、電子移動が困難となるため帯電防止性能の低下の問題があり、逆に多い場合には、溶媒に対する分散性低下の問題がある。このドーピング剤としては、LiCl、R1‐30COOLi(R1‐30:炭素数1以上30以下の飽和炭化水素基)、R1‐30SOLi、R1‐30COONa、R1‐30SONa、R1‐30COOK、R1‐30SOK、テトラエチルアンモニウム、I、BFNa、BFNa、HClO、CFSOH、FeCl、テトラシアノキノリン(TCNQ)、Na10Cl10、フタロシアニン、ポルフィリン、グルタミン酸、アルキルスルホン酸塩、ポリスチレンスルホン酸Na(K、Li)塩、スチレン・スチレンスルホン酸Na(K、Li)塩共重合体、ポリスチレンスルホン酸アニオン、スチレンスルホン酸・スチレンスルホン酸アニオン共重合体等を挙げることができる。 In order to further improve the antistatic properties of the thiophene-based polymer containing thiophene or a derivative thereof as a structural unit, a doping agent is added, for example, to 100 parts by mass of the polymer containing thiophene or a derivative thereof as a structural unit. 0.1 parts by mass or more and 500 parts by mass or less can be blended. If the amount is too small, the electron transfer becomes difficult, resulting in a problem of deterioration in antistatic performance. Examples of the doping agent include LiCl, R 1-30 COOLi (R 1-30 : a saturated hydrocarbon group having 1 to 30 carbon atoms), R 1-30 SO 3 Li, R 1-30 COONa, R 1-30 SO3Na , R1-30COOK , R1-30SO3K , Tetraethylammonium, I2 , BF3Na , BF4Na , HClO4, CF3SO3H , FeCl3 , Tetracyanoquinoline (TCNQ) , Na 2 B 10 Cl 10 , phthalocyanine, porphyrin, glutamic acid, alkyl sulfonate, polystyrene sulfonate Na (K, Li) salt, styrene/styrene sulfonate Na (K, Li) salt copolymer, polystyrene sulfonate anion , styrenesulfonic acid/styrenesulfonic acid anion copolymer, and the like.
 本発明において帯電防止層中に含まれる帯電防止剤は、帯電防止層の固形分100質量部に対して1質量%以上含まれることが好ましく、より好ましくは10質量%以上である。なお、帯電防止剤としてπ電子共役系導電性高分子を用いる場合において、前記ドーピン剤を用いる場合は、本願に規定するπ電子共役系導電性高分子の帯電防止層中の含有量には、導電性高分子と前記ドーピング剤の合計量のことである。
 例えば、帯電防止剤は、80質量%以下であり、50質量%以下であってもよい。
In the present invention, the antistatic agent contained in the antistatic layer is preferably contained in an amount of 1% by mass or more, more preferably 10% by mass or more, based on 100 parts by mass of the solid content of the antistatic layer. In the case of using a π-electron conjugated conductive polymer as an antistatic agent, when using the doping agent, the content of the π-electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
For example, the antistatic agent is 80% by mass or less, and may be 50% by mass or less.
 本発明の帯電防止層には、バインダー樹脂を含むことが好ましい。バインダー樹脂としては特に限定されないが、ポリマーの具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリオレフィン系樹脂、ポリビニル系樹脂(ポリビニルアルコール等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらの中でもポリエステルフィルムとの密着性の観点から、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂を使用することが好ましい。分子設計や分子量設計の容易差からアクリル樹脂を用いることがさらに好ましい。 The antistatic layer of the present invention preferably contains a binder resin. The binder resin is not particularly limited, but specific examples of the polymer include polyester resin, acrylic resin, urethane resin, polyolefin resin, polyvinyl resin (polyvinyl alcohol, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, and hydroxycellulose. , starches and the like. Among these resins, polyester resins, acrylic resins, and urethane resins are preferably used from the viewpoint of adhesion to the polyester film. It is more preferable to use an acrylic resin because of the ease of molecular design and molecular weight design.
 バインダー樹脂には、さらに反応性の官能基を有することが好ましい。特に限定されないが、水酸基、カルボキシル基、アミノ基、アクリレート基、エポキシ基などが好ましく、水酸基、カルボキシル基を有することがより好ましい。 The binder resin preferably has a more reactive functional group. Although not particularly limited, it is preferably a hydroxyl group, a carboxyl group, an amino group, an acrylate group, an epoxy group, or the like, and more preferably has a hydroxyl group or a carboxyl group.
前記バインダー樹脂には、シリコーン成分や長鎖アルキル基などの離型性を発現できる部位を有していてもよい。粘着層を積層した場合、積層フィルムの粘着層の反対面に離型性を有する帯電防止層を有することでロール状態に巻き取った場合でもブロッキングなどを防ぐことができるため好ましい。 The binder resin may have a part capable of exhibiting releasability, such as a silicone component or a long-chain alkyl group. When an adhesive layer is laminated, it is preferable to have an antistatic layer having releasability on the opposite side of the adhesive layer of the laminated film because blocking can be prevented even when the film is wound into a roll.
(架橋剤)
 本発明において、帯電防止層に架橋構造を形成させるために、帯電防止層は架橋剤が含まれて形成されていてもよい。架橋剤を含有させることにより、易接着層との接着性が向上したり、耐久性が向上し高温高湿度条件で処理した場合にも帯電防止性能の低下が抑制されるため好ましい。具体的な架橋剤としては、尿素系、エポキシ系、メラミン系、イソシアネート系、オキサゾリン系、カルボジイミド系、アジリジン系等が挙げられる。特にメラミン系、オキサゾリン系、カルボジイミド系、アジリジン系が好ましい。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用することができる。
(crosslinking agent)
In the present invention, the antistatic layer may contain a cross-linking agent to form a crosslinked structure in the antistatic layer. The inclusion of a cross-linking agent is preferable because the adhesiveness with the easy-adhesion layer is improved, durability is improved, and deterioration of antistatic performance is suppressed even when treated under high-temperature and high-humidity conditions. Specific cross-linking agents include urea-based, epoxy-based, melamine-based, isocyanate-based, oxazoline-based, carbodiimide-based, and aziridine-based agents. In particular, melamine, oxazoline, carbodiimide and aziridine are preferred. In addition, a catalyst or the like can be appropriately used as necessary in order to accelerate the cross-linking reaction.
 本発明の帯電防止層に含まれる架橋剤は、帯電防止層の固形分100質量部に対して5質量%以上含まれることが好ましく、より好ましくは10質量%以上である。5質量%以上であれば、帯電防止層の耐湿熱性などを向上できるため好ましい。また、自己架橋できる架橋剤であれば、バインダー樹脂がなくても構わない。例えば、架橋剤は、90質量%以下であり、80質量%以下であってもよい。 The cross-linking agent contained in the antistatic layer of the present invention is preferably contained in an amount of 5% by mass or more, more preferably 10% by mass or more, based on 100 parts by mass of the solid content of the antistatic layer. If it is 5% by mass or more, it is preferable because the resistance to moist heat of the antistatic layer can be improved. Moreover, if the cross-linking agent is capable of self-crosslinking, the binder resin may be omitted. For example, the cross-linking agent is 90% by mass or less, and may be 80% by mass or less.
 本発明における帯電防止層には、外観向上のために界面活性剤を用いてもかまわない。界面活性剤としては、例えば、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン界面活性剤及びフルオロアルキルカルボン酸、パーフルオロアルキルカルボン酸、パーフルオロアルキルベンゼンスルホン酸、パーフルオロアルキル4級アンモニウム、パーフルオロアルキルポリオキシエチレンエタノールなどのフッ素系界面活性剤や、シリコーン系の界面活性剤を用いることができる。 A surfactant may be used in the antistatic layer in the present invention to improve the appearance. Examples of surfactants include nonionic surfactants such as polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, and fluoroalkylcarboxylic acids, perfluoroalkylcarboxylic acids, perfluoroalkylbenzenesulfones. Acids, fluorine-based surfactants such as perfluoroalkyl quaternary ammonium and perfluoroalkylpolyoxyethylene ethanol, and silicone-based surfactants can be used.
 帯電防止層には、前述のほか、本発明の目的を阻害しない範囲で必要に応じて、滑剤、色素、紫外線吸収剤、シランカップリング剤、等を混合しても良い。 In addition to the above, the antistatic layer may contain lubricants, pigments, ultraviolet absorbers, silane coupling agents, etc., if necessary, as long as the objects of the present invention are not hindered.
 本発明の帯電防止層の膜厚は、0.005μm以上1μm以下が好ましい。より好ましくは、0.01μm以上0.5μm以下であり、さらに好ましくは、0.01μm以上0.2μm以下である。帯電防止層の膜厚が0.005μm以上であると、帯電防止効果が得られ好ましい。一方、1μm以下であると、着色が少なく透明性が高くなるため好ましい。  The film thickness of the antistatic layer of the present invention is preferably 0.005 µm or more and 1 µm or less. It is more preferably 0.01 μm or more and 0.5 μm or less, and still more preferably 0.01 μm or more and 0.2 μm or less. When the film thickness of the antistatic layer is 0.005 μm or more, an antistatic effect can be obtained, which is preferable. On the other hand, when the thickness is 1 μm or less, coloring is less and transparency is improved, which is preferable. 
 本発明の帯電防止フィルムの表面抵抗率は、1×1010Ω/□以下であることが好ましい。さらに好ましくは、1×10Ω/□以下であり、さらに好ましくは、1×10Ω/□以下であり、1×10Ω/□以下がなお好ましい。表面抵抗率を1×1010Ω/□以下にすることで、積層ポリエステルへの異物付着を抑えたり、粘着層を積層し剥離した場合の剥離帯電を抑制することができるため好ましい。また、帯電防止フィルムの表面抵抗率の下限は特に定めなくてもよいが、1×10Ω/□以上であることが好ましい。帯電防止フィルムの表面抵抗値が1×10Ω/□未満にするためには、帯電防止層の加工コストが増大してしまうため好ましくない。 The surface resistivity of the antistatic film of the present invention is preferably 1×10 10 Ω/□ or less. It is more preferably 1×10 9 Ω/□ or less, still more preferably 1×10 7 Ω/□ or less, and still more preferably 1×10 6 Ω/□ or less. A surface resistivity of 1×10 10 Ω/□ or less is preferable because adhesion of foreign matter to the laminated polyester can be suppressed, and peel electrification when the adhesive layer is laminated and peeled can be suppressed. Although the lower limit of the surface resistivity of the antistatic film does not have to be specified, it is preferably 1×10 3 Ω/□ or more. In order to make the surface resistance value of the antistatic film less than 1×10 3 Ω/□, the processing cost of the antistatic layer increases, which is not preferable.
 本発明に用いる帯電防止フィルムのヘイズは、3%以下であることが好ましい。より好ましくは1.5%以下であり、さらに好ましくは1.0%以下である。0.8%以下であれば、極めて好ましい。3%以下であれば、保護フィルムを被着体と貼り合わせた状態で外観検査などが可能なため好ましく、光学用途の部材が被着体の場合に特に好ましい。
ヘイズは、より低いことが好ましく、実質的に0%(0%以上)であってもよく、例えば0.1%以上であってもよい。
The haze of the antistatic film used in the present invention is preferably 3% or less. It is more preferably 1.5% or less, still more preferably 1.0% or less. 0.8% or less is highly preferred. If it is 3% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
Haze is preferably lower, and may be substantially 0% (0% or more), for example 0.1% or more.
 本発明に用いる帯電防止フィルムの表面の領域表面平均粗さ(Sa)は、1~40nmの範囲にあることが好ましく、より好ましくは1~30nmである。さらに好ましくは1~10nmである。本発明に用いる帯電防止フィルムの表面の最大突起高さ(P)は、2μm以下であることが好ましく、より好ましくは1.5μm以下である。さらに好ましくは0.8μm以下である。Saが40nm以下であり、Pが2μm以下であれば、粘着層を積層しロール状に巻き取った際に粘着性の表面を荒らす恐れがなく好ましい。 The area average surface roughness (Sa) of the surface of the antistatic film used in the present invention is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm. The maximum projection height (P) on the surface of the antistatic film used in the present invention is preferably 2 μm or less, more preferably 1.5 μm or less. More preferably, it is 0.8 μm or less. If Sa is 40 nm or less and P is 2 μm or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
 基材フィルム表面に帯電防止層を塗布積層する方法としては、前述の帯電防止剤やバインダー樹脂などを、溶媒に分散・溶解させた塗液をグラビアロールコーティング法、リバースロールコーティング法、ナイフコータ法、ディップコート法、バーコート法、スピンコート法などで塗布する方法があるが、導電性組成物に適したコート法は特に制限はない。また、フィルムの製造工程で塗布層を設けるインラインコート方式、フィルム製造後に塗布層を設けるオフラインコート方式により設けることができる。 As a method for coating and laminating an antistatic layer on the substrate film surface, a coating liquid in which the above-mentioned antistatic agent or binder resin is dispersed or dissolved in a solvent is applied by a gravure roll coating method, a reverse roll coating method, a knife coater method, There are coating methods such as dip coating, bar coating, and spin coating, but the coating method suitable for the conductive composition is not particularly limited. Moreover, it can be provided by an in-line coating method in which a coating layer is provided in the film production process, or an off-line coating method in which a coating layer is provided after film production.
 帯電防止層は、前記方法で帯電防止層を形成する乾燥温度としては、通常60℃以上150℃以下であり、好ましくは90℃以上140℃以下である。この温度が60℃以上であると、短時間の処理でよく、生産性向上の観点から好ましい。また、架橋剤を含む場合は架橋反応が十分進行するため好ましい。一方、この温度が150℃以下であると、フィルムの平面性が保たれるため好ましい。 The drying temperature for forming the antistatic layer by the above method is usually 60°C or higher and 150°C or lower, preferably 90°C or higher and 140°C or lower. When this temperature is 60° C. or higher, the treatment can be performed in a short period of time, which is preferable from the viewpoint of improving productivity. Moreover, since a crosslinking reaction progresses sufficiently when a crosslinking agent is included, it is preferable. On the other hand, when this temperature is 150° C. or lower, the flatness of the film is maintained, which is preferable.
本発明の帯電防止フィルムには、粘着剤を塗布し硬化させることで粘着層を積層することができる。粘着剤は、特に限定されず、使用することができ、得られた積層フィルムは、保護フィルムとして使用される。粘着層を積層する面は、帯電防止フィルムのどちらの側でも構わない。片面のみに帯電防止層を有する帯電防止フィルムを用いる場合は、帯電防止フィルムの粘着層を積層した面とは反対面には、帯電防止層がある方が好ましい。
 
An adhesive layer can be laminated on the antistatic film of the present invention by applying and curing an adhesive. The adhesive is not particularly limited and can be used, and the laminated film obtained is used as a protective film. Either side of the antistatic film may be the surface on which the adhesive layer is laminated. When using an antistatic film having an antistatic layer only on one side, it is preferable that the antistatic layer is provided on the side opposite to the side on which the adhesive layer is laminated.
 次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。まず、以下に本発明で用いた評価方法について説明する。 Next, the present invention will be described in detail using examples and comparative examples, but the present invention is not limited to the following examples. First, the evaluation method used in the present invention will be described below.
(1)ヘイズ
 得られた帯電防止ポリエステルフィルムのヘイズはJIS K 7136:2000に準拠し、濁度計(日本電色製、NDH5000)を用いて測定した。
(1) Haze The haze of the obtained antistatic polyester film was measured according to JIS K 7136:2000 using a turbidity meter (NDH5000 manufactured by Nippon Denshoku).
(2)酸価
 樹脂及び架橋剤の酸価はJIS K1557-5:2007記載の滴定滴定法により測定した。
但し、アミン等で中和処理されたカルボキシル基の場合は、高温処理によりアミン等を除去するか、予め塩酸等で処理してアミン等を遊離、除去させてから測定した。また、架橋剤の場合は予めイソシアネート等の反応性基をアミン等で反応させた後に測定を実施した。測定する樹脂が溶剤であるイソプロパノールへの溶解性が悪い場合には、代わりにN-メチルピロリドンを使用した。上記等のいずれの処理でも、対比用の測定は十分に実施した。 
(2) Acid value The acid value of the resin and the cross-linking agent was measured by the titration method described in JIS K1557-5:2007.
However, in the case of a carboxyl group neutralized with an amine or the like, the amine or the like was removed by high-temperature treatment, or the amine or the like was previously treated with hydrochloric acid or the like to liberate and remove the amine or the like before measurement. In the case of a cross-linking agent, the measurement was carried out after reacting a reactive group such as isocyanate with an amine or the like in advance. If the resin to be measured had poor solubility in the solvent isopropanol, N-methylpyrrolidone was used instead. In any of the above treatments, comparison measurements were sufficiently carried out.
(3)ブロッキング耐性
 2枚のフィルム試料を塗布層面同士が対向するように重ね合わせ、98kPaの荷重を掛け、これを50℃の雰囲気下で24時間密着させ、放置した。その後、フィルムを剥離し、その剥離状態を下記の基準で判定した。
   ○:塗布層の転移がなく軽く剥離できる。
   △:塗布層は維持されているが、部分的に塗布層の表層が相手面に転移している。
   ×:2枚のフィルムが固着し剥離できないもの、あるいは剥離できてもフィルム基材が劈開している。
(3) Blocking resistance Two film samples were superimposed so that the coated layer surfaces face each other, a load of 98 kPa was applied, and the two were brought into close contact with each other in an atmosphere of 50°C for 24 hours and left to stand. After that, the film was peeled off, and the peeled state was evaluated according to the following criteria.
◯: The coating layer is not transferred and can be easily peeled off.
Δ: The coating layer is maintained, but the surface layer of the coating layer is partially transferred to the other surface.
x: The two films adhered to each other and could not be separated, or even if they could be separated, the film substrate was cleaved.
(4)帯電防止層との密着性
 積層ポリエステルフィルムの易接着層上に積層した帯電防止層に隙間間隔2mmのカッターガイドを用いて、帯電防止層を貫通してフィルム基材に達する100個のマス目状の切り傷を帯電防止層面につける。次いで、セロハン粘着テープ(ニチバン製、405番;24mm幅)をマス目状の切り傷面に貼り付け、しっかり付着させる。その後、垂直にセロハン粘着テープを積層フィルムの帯電防止層面から引き剥がした。粘着テープ付着剥離操作を同一ヵ所で計5回行った後、積層フィルムの帯電防止層面から剥がれたマス目の数を目視で数え、下記の式から帯電防止層とフィルム基材との密着性を求める。なお、マス目の中で部分的に剥離しているものも剥がれたマス目として数えて、下記式の様に帯電防止層の密着性を求めた。
帯電防止層の密着性(%)=100-(剥がれたマス目の数)
 帯電防止層の密着性を下記の基準で判定した。
  ◎:100%、○:96~99%、△:80~95%、×:80%未満
  基準として〇以上を合格とした。
(4) Adhesion with antistatic layer Using a cutter guide with a gap interval of 2 mm on the antistatic layer laminated on the easy adhesion layer of the laminated polyester film, 100 pieces that penetrate the antistatic layer and reach the film substrate Make a grid-like cut on the antistatic layer side. Next, a cellophane adhesive tape (No. 405, 24 mm width, manufactured by Nichiban Co., Ltd.) is attached to the square-shaped cut surface and adhered firmly. Then, the adhesive cellophane tape was vertically peeled off from the antistatic layer surface of the laminated film. After performing the adhesive tape adhesion and peeling operation at the same place a total of 5 times, the number of squares peeled off from the antistatic layer surface of the laminated film was visually counted, and the adhesion between the antistatic layer and the film substrate was determined by the following formula. Ask. Partially peeled squares among the squares were also counted as peeled squares, and the adhesion of the antistatic layer was determined according to the following formula.
Adhesion of antistatic layer (%) = 100 - (number of peeled squares)
The adhesion of the antistatic layer was evaluated according to the following criteria.
◎: 100%, ○: 96 to 99%, △: 80 to 95%, ×: less than 80%.
(5)耐湿熱性
上記(4)と同様に作成した帯電防止層を積層した帯電防止ポリエステルフィルムを80℃、80%RHの環境下で塗布面を垂直にし、かつ塗布面に他のフィルム等の接触がない状態で500時間放置した。処理後、23℃、65%RHの環境下に、塗布面に他のフィルム等の接触がない状態で10分間放置した。時間経過直後に塗布面の密着性を先述と同様に評価した。
(5) Humidity and heat resistance An antistatic polyester film laminated with an antistatic layer prepared in the same manner as in (4) above is placed in an environment of 80 ° C. and 80% RH with the coated surface vertical and another film etc. on the coated surface. It was left untouched for 500 hours. After the treatment, the coated surface was allowed to stand for 10 minutes in an environment of 23° C. and 65% RH without contact with other film or the like. Immediately after the passage of time, the adhesion of the coated surface was evaluated in the same manner as described above.
(6)表面抵抗率
本発明の離型フィルム表面の表面抵抗値は、温度23℃、湿度55%の条件下で24時間調湿後、離型層表面の表面抵抗値を表面抵抗測定器(シムコジャパン(株)製、ワークサーフェイステスター ST-3)を用いて測定し、下記の判定基準で評価した。
 
 ◎:表面抵抗値が10Ω/□未満
 ○:表面抵抗値が107~108Ω/□
 △:表面抵抗値が10~1010Ω/□
 ×:表面抵抗値が1011Ω/□以上
 
(6) Surface resistivity The surface resistance value of the surface of the release film of the present invention is determined by measuring the surface resistance value of the release layer surface with a surface resistance measuring instrument ( It was measured using a work surface tester ST-3 manufactured by Simco Japan Co., Ltd., and evaluated according to the following criteria.

◎: Surface resistance value is less than 10 7 Ω/□ ○: Surface resistance value is 10 7 to 10 8 Ω/□
△: Surface resistance value is 10 9 to 10 10 Ω/□
×: Surface resistance value is 10 11 Ω/□ or more
(ポリウレタン樹脂A-1の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添m-キシリレンジイソシアネート82.8質量部、ジメチロールプロパン酸25.0質量部、1,6-ヘキサンジオール21.0質量部、アジピン酸と1,4-ブタンジオールからなる数平均分子量2000のポリエステルジオール150.0質量部、及び溶剤としてアセトン110質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン19.8質量部を添加し、ポリウレタンポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水500gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンポリマー溶液を添加して水分散した。その後、減圧下で、溶剤であるアセトンを除去した。水で濃度調整することにより、酸価37.5mgKOH/gのポリウレタン樹脂(A-1)を含む固形分35質量%の溶液を調製した。
(Polymerization of polyurethane resin A-1)
82.8 parts by mass of hydrogenated m-xylylenediisocyanate, 25.0 parts by mass of dimethylolpropanoic acid, 21.0 parts by mass of 1,6-hexanediol, 150.0 parts by mass of a polyester diol composed of adipic acid and 1,4-butanediol and having a number average molecular weight of 2000, and 110 parts by mass of acetone as a solvent were added, and a nitrogen atmosphere was formed. and 75° C. for 3 hours, and it was confirmed that the reaction solution had reached the predetermined amine equivalent weight. Next, after the temperature of this reaction liquid was lowered to 40° C., 19.8 parts by mass of triethylamine was added to obtain a polyurethane polymer solution. Next, 500 g of water was added to a reactor equipped with a homodisper capable of high-speed stirring, adjusted to 25° C., and the polyurethane polymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . After that, the solvent, acetone, was removed under reduced pressure. A solution containing polyurethane resin (A-1) having an acid value of 37.5 mgKOH/g and having a solid content of 35% by mass was prepared by adjusting the concentration with water.
(ポリウレタン樹脂A-2の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添m-キシリレンジイソシアネート63.0質量部、ジメチロールプロパン酸21.0質量部、数平均分子量2000のポリカーボネートジオール(1,6-ヘキサンジオールタイプ)147.0質量部、及び溶剤としてアセトン110質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン16.6質量部を添加し、ポリウレタンポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水500gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンポリマー溶液を添加して水分散した。その後、減圧下で、溶剤であるアセトンを除去した。水で濃度調整することにより、酸価36.3mgKOH/gのポリウレタン樹脂(A-2)を含む固形分35質量%の溶液を調製した。
(Polymerization of polyurethane resin A-2)
63.0 parts by mass of hydrogenated m-xylylenediisocyanate, 21.0 parts by mass of dimethylolpropanoic acid, 147.0 parts by mass of a polycarbonate diol (1,6-hexanediol type) having a number average molecular weight of 2000 and 110 parts by mass of acetone as a solvent were charged, and stirred at 75° C. for 3 hours under a nitrogen atmosphere. It was confirmed that the amine equivalence was reached. Next, after the temperature of this reaction liquid was lowered to 40° C., 16.6 parts by mass of triethylamine was added to obtain a polyurethane polymer solution. Next, 500 g of water was added to a reactor equipped with a homodisper capable of high-speed stirring, adjusted to 25° C., and the polyurethane polymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . After that, the solvent, acetone, was removed under reduced pressure. A solution containing polyurethane resin (A-2) having an acid value of 36.3 mgKOH/g and having a solid content of 35% by mass was prepared by adjusting the concentration with water.
(ポリウレタン樹脂A-3の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添ジフェニルメタンジイソシアネート64.5質量部、ジメチロールプロパン酸21.5質量部、ネオペンチルグリコール11.2質量部、数平均分子量2000のポリカーボネートジオール(1,6-ヘキサンジオールタイプ)150.5質量部、及び溶剤としてアセトン110質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン17.0質量部を添加し、ポリウレタンポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水500gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンポリマー溶液を添加して水分散した。その後、減圧下で、溶剤であるアセトンを除去した。水で濃度調整することにより、酸価36.0mgKOH/gのポリウレタン樹脂(A-3)を含む固形分35質量%の溶液を調製した。
(Polymerization of polyurethane resin A-3)
64.5 parts by mass of hydrogenated diphenylmethane diisocyanate, 21.5 parts by mass of dimethylolpropanoic acid, and neopentyl glycol were added to a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. 11.2 parts by mass, 150.5 parts by mass of a polycarbonate diol (1,6-hexanediol type) with a number average molecular weight of 2000, and 110 parts by mass of acetone as a solvent were added, and stirred at 75° C. for 3 hours under a nitrogen atmosphere. , confirmed that the reaction had reached the desired amine equivalent weight. Next, after the temperature of this reaction liquid was lowered to 40° C., 17.0 parts by mass of triethylamine was added to obtain a polyurethane polymer solution. Next, 500 g of water was added to a reactor equipped with a homodisper capable of high-speed stirring, adjusted to 25° C., and the polyurethane polymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . After that, the solvent, acetone, was removed under reduced pressure. A solution containing polyurethane resin (A-3) having an acid value of 36.0 mgKOH/g and having a solid content of 35% by mass was prepared by adjusting the concentration with water.
(ポリウレタン樹脂A-4の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添m-キシリレンジイソシアネート83.4質量部、ジメチロールプロパン酸16.9質量部、1,6-ヘキサンジオール28.4質量部、アジピン酸と1,4-ブタンジオールからなる数平均分子量2000のポリエステルジオール151.0質量部、及び溶剤としてアセトン110質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン13.3質量部を添加し、ポリウレタンポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水500gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンポリマー溶液を添加して水分散した。その後、減圧下で、溶剤であるアセトンを除去した。水で濃度調整することにより、固形分酸価25.3mgKOH/gを有する固形分35質量%のポリウレタン樹脂(A-4)溶液を調製した。酸価25.3mgKOH/gのポリウレタン樹脂(A-4)を含む固形分35質量%の溶液を調製した。
(Polymerization of polyurethane resin A-4)
83.4 parts by mass of hydrogenated m-xylylenediisocyanate, 16.9 parts by mass of dimethylolpropanoic acid, 28.4 parts by mass of 1,6-hexanediol, 151.0 parts by mass of a polyester diol composed of adipic acid and 1,4-butanediol and having a number average molecular weight of 2000, and 110 parts by mass of acetone as a solvent were added, and a nitrogen atmosphere was formed. and 75° C. for 3 hours, and it was confirmed that the reaction solution had reached the predetermined amine equivalent weight. Next, after the temperature of this reaction liquid was lowered to 40° C., 13.3 parts by mass of triethylamine was added to obtain a polyurethane polymer solution. Next, 500 g of water was added to a reactor equipped with a homodisper capable of high-speed stirring, adjusted to 25° C., and the polyurethane polymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . After that, the solvent, acetone, was removed under reduced pressure. A solution of polyurethane resin (A-4) having a solid content of 35 mass % and a solid content acid value of 25.3 mgKOH/g was prepared by adjusting the concentration with water. A solution containing a polyurethane resin (A-4) having an acid value of 25.3 mgKOH/g and a solid content of 35% by mass was prepared.
(ポリウレタン樹脂A-5の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添m-キシリレンジイソシアネート104.9質量部、ジメチロールプロパン酸41.8質量部、1,6-ヘキサンジオール19.0質量部、アジピン酸と1,4-ブタンジオールからなる数平均分子量2000のポリエステルジオール152.0質量部、及び溶剤としてアセトン110質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン33.1質量部を添加し、ポリウレタンポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水500gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンポリマー溶液を添加して水分散した。その後、減圧下で、溶剤であるアセトンを除去した。水で濃度調整することにより、固形分酸価55.0mgKOH/gを有する固形分35質量%のポリウレタン樹脂(A-5)溶液を調製した。酸価55.0mgKOH/gのポリウレタン樹脂(A-5)を含む固形分35質量%の溶液を調製した。
(Polymerization of polyurethane resin A-5)
104.9 parts by mass of hydrogenated m-xylylenediisocyanate, 41.8 parts by mass of dimethylolpropanoic acid, and 19.0 parts by mass of 1,6-hexanediol, 152.0 parts by mass of a polyester diol composed of adipic acid and 1,4-butanediol and having a number average molecular weight of 2000, and 110 parts by mass of acetone as a solvent were added, and a nitrogen atmosphere was added. and 75° C. for 3 hours, and it was confirmed that the reaction solution had reached the predetermined amine equivalent weight. Next, after the temperature of this reaction liquid was lowered to 40° C., 33.1 parts by mass of triethylamine was added to obtain a polyurethane polymer solution. Next, 500 g of water was added to a reactor equipped with a homodisper capable of high-speed stirring, adjusted to 25° C., and the polyurethane polymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . After that, the solvent, acetone, was removed under reduced pressure. A solution of polyurethane resin (A-5) having a solid content of 35 mass % and a solid content acid value of 55.0 mgKOH/g was prepared by adjusting the concentration with water. A solution with a solid content of 35% by mass containing polyurethane resin (A-5) having an acid value of 55.0 mgKOH/g was prepared.
(ポリウレタン樹脂A-6の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添m-キシリレンジイソシアネート45.0質量部、1,6-ヘキサンジオール20.0質量部、数平均分子量2000のポリエチレングリコール149.0質量部、及び溶剤としてアセトン110質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、高速攪拌可能なホモディスパーを備えた反応容器に、水500gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンポリマー溶液を添加して水分散した。その後、減圧下で、溶剤であるアセトンを除去した。水で濃度調整することにより、酸価0.2mgKOH/gのポリウレタン樹脂(A-6)を含む固形分35質量%の溶液を調製した。
(Polymerization of polyurethane resin A-6)
45.0 parts by mass of hydrogenated m-xylylenediisocyanate and 20.0 parts by mass of 1,6-hexanediol were placed in a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. 149.0 parts by weight of polyethylene glycol having a number average molecular weight of 2000, and 110 parts by weight of acetone as a solvent were added and stirred at 75° C. for 3 hours under a nitrogen atmosphere. confirmed. Next, after cooling this reaction solution to 40° C., 500 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25° C., and stirred and mixed at 2000 min −1 . , the polyurethane polymer solution was added and dispersed in water. After that, the solvent, acetone, was removed under reduced pressure. A solution containing polyurethane resin (A-6) having an acid value of 0.2 mgKOH/g and having a solid content of 35% by mass was prepared by adjusting the concentration with water.
(ポリウレタン樹脂A-7の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添ジフェニルメタンジイソシアネート43.8質量部、ジメチロールブタン酸12.9質量部、数平均分子量2000のポリカーボネートジオール(1,6-ヘキサンジオールタイプ)153.4質量部、及び溶剤としてアセトン110質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.8質量部を添加し、ポリウレタンポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水500gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンポリマー溶液を添加して水分散した。その後、減圧下で、溶剤であるアセトンを除去した。水で濃度調整することにより、固形分酸価23.1mgKOH/gを有する固形分35質量%のポリウレタン樹脂(A-7)溶液を調製した。酸価23.1mgKOH/gのポリウレタン樹脂(A-7)を含む固形分35質量%の溶液を調製した。
(Polymerization of polyurethane resin A-7)
43.8 parts by mass of hydrogenated diphenylmethane diisocyanate, 12.9 parts by mass of dimethylolbutanoic acid, a number average molecular weight of 2000 polycarbonate diol (1,6-hexanediol type) 153.4 parts by mass and 110 parts by mass of acetone as a solvent were added and stirred at 75° C. for 3 hours under a nitrogen atmosphere, and the reaction solution reached a predetermined amine equivalent weight. confirmed that it has been reached. Next, after the temperature of this reaction liquid was lowered to 40° C., 8.8 parts by mass of triethylamine was added to obtain a polyurethane polymer solution. Next, 500 g of water was added to a reactor equipped with a homodisper capable of high-speed stirring, adjusted to 25° C., and the polyurethane polymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . After that, the solvent, acetone, was removed under reduced pressure. A solution of polyurethane resin (A-7) having a solid content of 35% by weight and a solid content acid value of 23.1 mgKOH/g was prepared by adjusting the concentration with water. A solution containing a polyurethane resin (A-7) having an acid value of 23.1 mgKOH/g and a solid content of 35% by mass was prepared.
(架橋剤B-1の合成)
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネート59.5質量部、ネオペンチルグリコール10.7質量部、ジメチロールブタン酸11.0質量部、及び溶剤としてN-メチルピロリドン20.0質量部を投入し、窒素雰囲気下、80℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液に2-ブタノン オキシム29.9質量部を滴下し、さらに窒素雰囲気下、80℃で1時間保持した。その後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、この反応液を40℃にまで降温して、トリエチルアミン7.9質量部を加えた。そのまま1時間攪拌後、水を適量添加して、固形分40質量%のブロックイソシアネート系架橋剤(B-1)溶液を調整した。架橋剤B-1の固形分相当の酸価は37.6mgKOH/gであった。
(Synthesis of cross-linking agent B-1)
59.5 parts by weight of hexamethylene diisocyanate, 10.7 parts by weight of neopentyl glycol, 11.0 parts by weight of dimethylolbutanoic acid, and 20 parts by weight of N-methylpyrrolidone as a solvent were placed in a flask equipped with a stirrer, thermometer, and reflux condenser. 0 parts by mass was added, and the reaction solution was stirred at 80°C for 3 hours under a nitrogen atmosphere, and it was confirmed that the reaction solution reached a predetermined amine equivalent weight. Next, 29.9 parts by mass of 2-butanone oxime was added dropwise to this reaction solution, and the solution was maintained at 80° C. for 1 hour under a nitrogen atmosphere. Thereafter, the infrared spectrum of the reaction liquid was measured, and after confirming that the absorption of the isocyanate group had disappeared, the temperature of the reaction liquid was lowered to 40° C., and 7.9 parts by mass of triethylamine was added. After stirring for 1 hour, an appropriate amount of water was added to prepare a blocked isocyanate-based cross-linking agent (B-1) solution having a solid content of 40% by mass. The acid value corresponding to the solid content of the cross-linking agent B-1 was 37.6 mgKOH/g.
(架橋剤B-2の合成)
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)66.6質量部、N-メチルピロリドン17.5質量部に3,5-ジメチルピラゾール21.7質量部を滴下し、窒素雰囲気下、70℃で1時間保持した。その後、ジメチロールプロパン酸9.0質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、N,N-ジメチルエタノールアミン6.3質量部を加えた。そのまま1時間攪拌後、水を適量添加して、固形分40質量%のブロックイソシアネート系架橋剤(B-2)溶液を調整した。架橋剤B-2の固形分相当の酸価は41.2mgKOH/gであった。
(Synthesis of cross-linking agent B-2)
66.6 parts by mass of a polyisocyanate compound having an isocyanurate structure made from hexamethylene diisocyanate (Duranate TPA, manufactured by Asahi Kasei Chemicals) and 17.5 parts of N-methylpyrrolidone were placed in a flask equipped with a stirrer, thermometer, and reflux condenser. 21.7 parts by mass of 3,5-dimethylpyrazole was added dropwise to the parts by mass, and the mixture was maintained at 70° C. for 1 hour in a nitrogen atmosphere. After that, 9.0 parts by mass of dimethylolpropanoic acid was added dropwise. After measuring the infrared spectrum of the reaction solution and confirming that the absorption of the isocyanate group disappeared, 6.3 parts by mass of N,N-dimethylethanolamine was added. After stirring for 1 hour, an appropriate amount of water was added to prepare a blocked isocyanate-based cross-linking agent (B-2) solution having a solid content of 40% by mass. The acid value corresponding to the solid content of the cross-linking agent B-2 was 41.2 mgKOH/g.
(架橋剤B-3の合成)
 撹拌機、温度計、還流冷却管を備えたフラスコに、水150.0質量部およびメトキシプロピルアルコール250.0質量部を仕込み、窒素雰囲気下、80℃に加熱した。その後、メタクリル酸メチル126.0質量部、2-イソプロペニル-2-オキサゾリン210.0質量部およびメタクリル酸トリエチルアミン53.0質量部からなる単量体混合物と、重合開始剤として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩18.0質量部および水170.0質量部からなる重合開始剤溶液をそれぞれ滴下ロートから窒素雰囲気下、フラスコ内を80℃に保持しつつ2時間かけて滴下した。滴下終了後、80℃、5時間攪拌した後、室温まで冷却した。水を適量添加して、固形分40質量%のオキサゾリン系架橋剤(B-3)溶液を調整した。架橋剤B-3の固形分相当の酸価は39.8mgKOH/gであった。
(Synthesis of cross-linking agent B-3)
A flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 150.0 parts by mass of water and 250.0 parts by mass of methoxypropyl alcohol and heated to 80° C. under a nitrogen atmosphere. Then, a monomer mixture comprising 126.0 parts by mass of methyl methacrylate, 210.0 parts by mass of 2-isopropenyl-2-oxazoline and 53.0 parts by mass of triethylamine methacrylate, and 2,2'- as a polymerization initiator. A polymerization initiator solution consisting of 18.0 parts by mass of azobis(2-amidinopropane) dihydrochloride and 170.0 parts by mass of water was added from a dropping funnel under a nitrogen atmosphere over 2 hours while maintaining the inside of the flask at 80°C. Dripped. After completion of dropping, the mixture was stirred at 80°C for 5 hours and then cooled to room temperature. An appropriate amount of water was added to prepare a solution of oxazoline-based cross-linking agent (B-3) having a solid content of 40% by mass. The acid value corresponding to the solid content of the cross-linking agent B-3 was 39.8 mgKOH/g.
(架橋剤B-4の重合)
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)65.0質量部、N-メチルピロリドン17.5質量部、3,5-ジメチルピラゾール29.2質量部、数平均分子量500のポリエチレングリコールモノメチルエーテル21.9質量部を加えて、窒素雰囲気下、70℃で2時間保持した。その後、トリメチロールプロパン4.0質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、水280.0質量部を加えた。水を適量添加して、固形分40質量%のブロックポリイソシアネート系架橋剤(B-4)溶液を調整した。架橋剤B-4の固形分相当の酸価は0.0mgKOH/gであった。
(Polymerization of cross-linking agent B-4)
65.0 parts by mass of a polyisocyanate compound having an isocyanurate structure made from hexamethylene diisocyanate (Duranate TPA, manufactured by Asahi Kasei Chemicals) and 17.5 parts of N-methylpyrrolidone are placed in a flask equipped with a stirrer, a thermometer, and a reflux condenser. Parts by mass, 29.2 parts by mass of 3,5-dimethylpyrazole, and 21.9 parts by mass of polyethylene glycol monomethyl ether having a number average molecular weight of 500 were added, and the mixture was maintained at 70° C. for 2 hours under a nitrogen atmosphere. After that, 4.0 parts by mass of trimethylolpropane was added dropwise. After confirming that the absorption of the isocyanate group disappeared by measuring the infrared spectrum of the reaction liquid, 280.0 parts by mass of water was added. An appropriate amount of water was added to prepare a solution of a blocked polyisocyanate-based cross-linking agent (B-4) having a solid content of 40% by mass. The acid value corresponding to the solid content of the cross-linking agent B-4 was 0.0 mgKOH/g.
( 架橋剤B-5の重合)
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原
料としたイソシアヌレート構造を有するポリイソシアネート化合物( 旭化成ケミカルズ製
、デュラネートTPA)66.04質量部、N-メチルピロリドン17.50質量部に3,5-ジメチルピラゾール 25.19質量部を滴下し、素雰囲気下、70℃ で1時間保持した。その後、ジメチロールプロパン酸5.27質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、N,N-ジメチルエタノールアミン5.59質量部、水132.5質量部を加えた。水を適量添加して、固形分40質量%のブロックポリイソシアネート系架橋剤(B-5)溶液を調整した。架橋剤B-5の固形分相当の酸価は22.8mgKOH/gであった。
(Polymerization of cross-linking agent B-5)
66.04 parts by mass of a polyisocyanate compound having an isocyanurate structure made from hexamethylene diisocyanate (Duranate TPA, manufactured by Asahi Kasei Chemicals) and 17.50 parts of N-methylpyrrolidone were placed in a flask equipped with a stirrer, thermometer, and reflux condenser. 25.19 parts by mass of 3,5-dimethylpyrazole was added dropwise to the parts by mass, and the mixture was kept at 70° C. for 1 hour in a pure atmosphere. After that, 5.27 parts by mass of dimethylolpropanoic acid was added dropwise. After confirming that the absorption of the isocyanate group disappeared by measuring the infrared spectrum of the reaction solution, 5.59 parts by mass of N,N-dimethylethanolamine and 132.5 parts by mass of water were added. An appropriate amount of water was added to prepare a solution of a blocked polyisocyanate-based cross-linking agent (B-5) having a solid content of 40% by mass. The acid value corresponding to the solid content of the cross-linking agent B-5 was 22.8 mgKOH/g.
(架橋剤B-6の合成)
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネート59.5質量部、ネオペンチルグリコール6.8質量部、ジメチロールブタン酸16.6質量部、及び溶剤としてN-メチルピロリドン20.0質量部を投入し、窒素雰囲気下、80℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液に2-ブタノン オキシム30.3質量部を滴下し、さらに窒素雰囲気下、80℃で1時間保持した。その後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、この反応液を40℃にまで降温して、トリエチルアミン11.9質量部を加えた。そのまま1時間攪拌後、水を適量添加して、固形分40質量%のブロックイソシアネート系架橋剤(B-6)溶液を調整した。架橋剤B-6の固形分相当の酸価は55.4mgKOH/gであった。
(Synthesis of cross-linking agent B-6)
59.5 parts by weight of hexamethylene diisocyanate, 6.8 parts by weight of neopentyl glycol, 16.6 parts by weight of dimethylolbutanoic acid, and 20 parts by weight of N-methylpyrrolidone as a solvent were placed in a flask equipped with a stirrer, thermometer, and reflux condenser. 0 parts by mass was added, and the reaction solution was stirred at 80°C for 3 hours under a nitrogen atmosphere, and it was confirmed that the reaction solution reached a predetermined amine equivalent weight. Next, 30.3 parts by mass of 2-butanone oxime was added dropwise to this reaction solution, and the solution was maintained at 80° C. for 1 hour under a nitrogen atmosphere. Thereafter, the infrared spectrum of the reaction liquid was measured, and after confirming that the absorption of the isocyanate group had disappeared, the temperature of the reaction liquid was lowered to 40° C., and 11.9 parts by mass of triethylamine was added. After stirring for 1 hour, an appropriate amount of water was added to prepare a blocked isocyanate-based cross-linking agent (B-6) solution having a solid content of 40% by mass. The acid value corresponding to the solid content of the cross-linking agent B-6 was 55.4 mgKOH/g.
(ポリエステル樹脂C-1の製造)
 攪拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート194.2質量部、ジメチルイソフタレート184.5質量部、ジメチル-5-ナトリウムスルホイソフタレート14.8質量部、ジエチレングリコール233.5質量部、エチレングリコール136.6質量部、およびテトラ-n-ブチルチタネート0.2質量部を仕込み、160℃から220℃の温度で4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(CR-1)を得た。得られた共重合ポリエステル樹脂(CR-1)は、淡黄色透明であった。共重合ポリエステル樹脂(CR-1)の還元粘度を測定したところ,0.70dl/gであった。
さらに、攪拌機、温度計と還流装置を備えた反応器に、共重合ポリエステル樹脂(CR-1)15質量部、エチレングリコールn-ブチルエーテル15質量部を入れ、110℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、水70質量部をポリエステル溶液に攪拌しつつ徐々に添加し、添加後、液を攪拌しつつ室温まで冷却した。水を適量添加して、固形分30質量%のポリエステル樹脂(C-1)溶液を調整した。ポリエステル樹脂C-1の固形分相当の酸価は0.9mgKOH/gであった。
(Production of polyester resin C-1)
194.2 parts by weight of dimethyl terephthalate, 184.5 parts by weight of dimethyl isophthalate, 14.8 parts by weight of dimethyl-5-sodium sulfoisophthalate were added to a stainless steel autoclave equipped with an agitator, thermometer, and partial reflux condenser. , 233.5 parts by mass of diethylene glycol, 136.6 parts by mass of ethylene glycol, and 0.2 parts by mass of tetra-n-butyl titanate were charged, and transesterification was carried out at a temperature of 160° C. to 220° C. over 4 hours. Then, the temperature was raised to 255° C., the pressure in the reaction system was gradually reduced, and the reaction was allowed to proceed under a reduced pressure of 30 Pa for 1 hour and 30 minutes to obtain a copolymer polyester resin (CR-1). The resulting copolymer polyester resin (CR-1) was pale yellow and transparent. When the reduced viscosity of the copolymer polyester resin (CR-1) was measured, it was 0.70 dl/g.
Furthermore, 15 parts by mass of copolymer polyester resin (CR-1) and 15 parts by mass of ethylene glycol n-butyl ether are placed in a reactor equipped with a stirrer, thermometer and reflux device, heated at 110°C and stirred to dissolve the resin. did. After the resin was completely dissolved, 70 parts by mass of water was gradually added to the polyester solution while stirring, and after the addition, the liquid was cooled to room temperature while stirring. An appropriate amount of water was added to prepare a polyester resin (C-1) solution having a solid content of 30% by mass. The acid value corresponding to the solid content of the polyester resin C-1 was 0.9 mgKOH/g.
(ポリエステル樹脂C-2の製造)
 攪拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート194.2質量部、ジメチルイソフタレート194.2質量部、ジエチレングリコール233.5質量部、エチレングリコール136.6質量部、およびテトラ-n-ブチルチタネート0.2質量部を仕込み、160℃から220℃の温度で4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間反応させた。さらに、窒素を系中に導入して減圧を解除しつつ、系内を200℃まで冷却した。系中に攪拌しつつ無水トリメリット酸28.0質量部を添加してさらに2時間付加反応させて、共重合ポリエステル樹脂(CR-2)を得た。得られた共重合ポリエステル樹脂(CR-2)は、淡黄色透明であった。共重合ポリエステル樹脂(CR-2)の還元粘度を測定したところ,0.35dl/gであった。
さらに、攪拌機、温度計と還流装置を備えた反応器に、共重合ポリエステル樹脂(CR-2)15質量部、テトラヒドロフラン15質量部を入れ、70℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、トリエチルアミン31質量部と水70質量部をポリエステル溶液に攪拌しつつ徐々に添加した。添加後、系中を減圧させて、テトラヒドロフラン除去し、室温まで冷却した。水を適量添加して、固形分30質量%のポリエステル樹脂(C-2)溶液C-2を調整した。ポリエステル樹脂C-2の固形分相当の酸価は37.4mgKOH/gであった。
(Production of polyester resin C-2)
194.2 parts by weight dimethyl terephthalate, 194.2 parts by weight dimethyl isophthalate, 233.5 parts by weight diethylene glycol, 136.6 parts by weight ethylene glycol were added to a stainless steel autoclave equipped with an agitator, thermometer, and partial reflux condenser. parts and 0.2 parts by mass of tetra-n-butyl titanate were charged, and the transesterification reaction was carried out at a temperature of 160° C. to 220° C. over 4 hours. Then, the temperature was raised to 255° C., the pressure of the reaction system was gradually reduced, and then the reaction was allowed to proceed under a reduced pressure of 30 Pa for 1 hour. Further, the inside of the system was cooled to 200° C. while nitrogen was introduced into the system to release the pressure reduction. 28.0 parts by mass of trimellitic anhydride was added to the system while stirring, and the mixture was further subjected to an addition reaction for 2 hours to obtain a copolymerized polyester resin (CR-2). The resulting copolymer polyester resin (CR-2) was pale yellow and transparent. When the reduced viscosity of the copolymer polyester resin (CR-2) was measured, it was 0.35 dl/g.
Further, 15 parts by mass of copolymer polyester resin (CR-2) and 15 parts by mass of tetrahydrofuran were added to a reactor equipped with a stirrer, a thermometer and a reflux device, heated at 70° C. and stirred to dissolve the resin. After the resin was completely dissolved, 31 parts by mass of triethylamine and 70 parts by mass of water were gradually added to the polyester solution while stirring. After the addition, the pressure in the system was reduced to remove tetrahydrofuran, and the mixture was cooled to room temperature. An appropriate amount of water was added to prepare a polyester resin (C-2) solution C-2 having a solid content of 30% by mass. The acid value corresponding to the solid content of polyester resin C-2 was 37.4 mgKOH/g.
(アクリル樹脂D-1の製造)
  撹拌機、温度計、還流冷却管を備えたフラスコにプロピレングリコールモノメチルエーテル40部を入れ、100℃に加熱保持して、ノルマルブチルアクリレート60.0質量部、メチルメタクリレート42.0質量部、2−ヒドロキシエチルメタクリレート2.9質量部、アクリル酸5.7質量部及びアゾビスイソブチロニトリル5部の混合物を3時間かけて滴下した。滴下後、同温度で2時間熟成させた。その後、この反応液を40℃にまで降温して、トリエチルアミン8.4質量部及び水165質量部を攪拌しながら添加した。そのまま1時間攪拌後、水を適量添加して、固形分35質量%のアクリル樹脂(D-1)溶液を調整した。このアクリル樹脂D-1の固形分相当の酸価は40.1mgKOH/gであった。
(Production of acrylic resin D-1)
40 parts of propylene glycol monomethyl ether was placed in a flask equipped with a stirrer, a thermometer, and a reflux condenser, heated and maintained at 100° C., and 60.0 parts by mass of normal butyl acrylate, 42.0 parts by mass of methyl methacrylate, and 2°C. 8722; A mixture of 2.9 parts by mass of hydroxyethyl methacrylate, 5.7 parts by mass of acrylic acid and 5 parts by mass of azobisisobutyronitrile was added dropwise over 3 hours. After dropping, the mixture was aged at the same temperature for 2 hours. After that, the temperature of this reaction liquid was lowered to 40° C., and 8.4 parts by mass of triethylamine and 165 parts by mass of water were added while stirring. After stirring for 1 hour, an appropriate amount of water was added to prepare an acrylic resin (D-1) solution having a solid content of 35% by mass. The acid value corresponding to the solid content of this acrylic resin D-1 was 40.1 mgKOH/g.
(アクリル樹脂D-2の製造)
 撹拌機、還流式冷却器、温度計および窒素吹き込み管を備えた4つ口フラスコに、メチルメタクリレート(MMA)231質量部、ステアリルメタクリレート(SMA)130質量部、ヒドロキシエチルメタクリレート(HEMA)100質量部、メタクリル酸(MAA)33質量部およびイソプロピルアルコール(IPA)1153質量部を仕込み、撹拌を行いながら80℃までフラスコ内を昇温した。フラスコ内を80℃に維持したまま3時間の撹拌を行い、その後、2,2-アゾビス-2―メチル-N-2-ヒドロキシエチルプロピオンアミドを0.5質量部フラスコに添加した。フラスコ内を120℃に昇温しながら窒素置換を行った後、120℃で混合物を2時間撹拌した。
 次いで、120℃で1.5kPaの減圧操作を行い、未反応の原材料と溶媒を除去し、長鎖アルキル基含有アクリル樹脂を得た。フラスコ内を大気圧に戻して室温まで冷却し、IPA水溶液(水含量50質量%)1592質量部を添加混合した。その後、撹拌しながら滴下ロートを用いて、アンモニアを加え、溶液のpHが5.5~7.5の範囲になるまで長鎖アルキル基含有アクリル樹脂の中和処理を行い、固形分濃度が20質量%の長鎖アルキル基含有アクリル樹脂(D-2)溶液を得た。このアクリル樹脂(D-2)の固形分相当の酸化は、104mgKOH/gであった。
(Manufacture of acrylic resin D-2)
231 parts by mass of methyl methacrylate (MMA), 130 parts by mass of stearyl methacrylate (SMA), and 100 parts by mass of hydroxyethyl methacrylate (HEMA) were added to a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube. , 33 parts by mass of methacrylic acid (MAA) and 1153 parts by mass of isopropyl alcohol (IPA) were charged, and the temperature in the flask was raised to 80° C. while stirring. Stirring was performed for 3 hours while maintaining the inside of the flask at 80° C., and then 0.5 parts by mass of 2,2-azobis-2-methyl-N-2-hydroxyethylpropionamide was added to the flask. After purging with nitrogen while raising the temperature in the flask to 120°C, the mixture was stirred at 120°C for 2 hours.
Subsequently, a pressure reduction operation of 1.5 kPa was performed at 120° C. to remove unreacted raw materials and solvent to obtain a long-chain alkyl group-containing acrylic resin. The inside of the flask was returned to atmospheric pressure and cooled to room temperature, and 1592 parts by mass of an IPA aqueous solution (water content: 50% by mass) was added and mixed. Then, using a dropping funnel while stirring, ammonia is added to neutralize the long-chain alkyl group-containing acrylic resin until the pH of the solution is in the range of 5.5 to 7.5, and the solid content concentration is 20. A long-chain alkyl group-containing acrylic resin (D-2) solution of 1% by mass was obtained. The oxidation of this acrylic resin (D-2) as a solid content was 104 mgKOH/g.
(基材用ポリエステル樹脂E-1の製造)
(三酸化アンチモン溶液の調製)
三酸化アンチモン(シグマ アルドリッチ ジャパン合同会社製)をエチレングリコールとともにフラスコに仕込み、
150℃で4時間攪拌して溶解後、室温まで冷却して、20g/lの三酸化アンチモンのエチレングリコール溶液を調製した。
(Manufacturing of base material polyester resin E-1)
(Preparation of antimony trioxide solution)
Antimony trioxide (manufactured by Sigma-Aldrich Japan G.K.) was charged into a flask with ethylene glycol,
After dissolution by stirring at 150° C. for 4 hours, the mixture was cooled to room temperature to prepare an ethylene glycol solution of 20 g/l antimony trioxide.
(基材用ポリエステル樹脂E-1の重合)
  攪拌機付き2リッターステンレス製オートクレーブに高純度テレフタル酸とその2倍モル量のエチレングリコールを仕込み、トリエチルアミンを酸成分に対して0.3モル%加え、0.25MPaの加圧下250℃にて水を系外に留去しながらエステル化反応を行いエステル化率が約95%のビス(2-ヒドロキシエチル)テレフタレートおよびオリゴマーの混合物(以下BHET混合物という)を得た。このBHET混合物に重縮合触媒として、
上記三酸化アンチモン溶液を用い、ポリエステル中の酸成分に対してアンチモン原子として0.04モル%になるように加え、次いで、窒素雰囲気下、常圧にて250℃で10分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Paで68分間重縮合反応を実施して、固有粘度(IV)(溶媒:フェノール/テトラクロロエタン=60/40)が0.61dl/であり、粒子を実質上含有していないポリエステル樹脂E-1を得た。
(Polymerization of polyester resin E-1 for base material)
A 2-liter stainless steel autoclave equipped with a stirrer was charged with high-purity terephthalic acid and twice the molar amount of ethylene glycol, 0.3 mol% of triethylamine was added to the acid component, and water was added at 250°C under a pressure of 0.25 MPa. Esterification reaction was carried out while distilling out of the system to obtain a mixture of bis(2-hydroxyethyl)terephthalate and an oligomer (hereinafter referred to as BHET mixture) having an esterification rate of about 95%. As a polycondensation catalyst in this BHET mixture,
Using the above antimony trioxide solution, it was added so as to be 0.04 mol % in terms of antimony atoms with respect to the acid component in the polyester, and then stirred at 250° C. for 10 minutes under a nitrogen atmosphere at normal pressure. After that, the pressure of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while the temperature was raised to 280 ° C. over 60 minutes, and the polycondensation reaction was further performed at 280 ° C. and 13.3 Pa for 68 minutes. A polyester resin E-1 having a viscosity (IV) (solvent: phenol/tetrachloroethane=60/40) of 0.61 dl/ and containing substantially no particles was obtained.
(基材用ポリエステル樹脂E-2の製造)
(アルミニウム化合物溶液の調製例)
  塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート;シグマ アルドリッチ ジャパン合同会社製)の20g/l水溶液に対して等量(容量比)のエチレングリコールをともにフラスコに仕込み、室温で6時間攪拌した後、減圧(133Pa)下、70~90℃で数時間攪拌しながら系から水を留去し、20g/lのアルミニウム化合物のエチレングリコール溶液を調製した。
(Production of base material polyester resin E-2)
(Preparation example of aluminum compound solution)
A flask was charged with an equal amount (volume ratio) of ethylene glycol to a 20 g/l aqueous solution of basic aluminum acetate (hydroxyaluminum diacetate; manufactured by Sigma-Aldrich Japan LLC), stirred at room temperature for 6 hours, and then reduced in pressure ( Under 133 Pa), water was distilled off from the system while stirring at 70 to 90° C. for several hours to prepare an ethylene glycol solution of 20 g/l aluminum compound.
(リン化合物溶液の調製例)
  リン化合物として3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸 ジエチル(Irganox1222(BASF社製))をエチレングリコールと
ともにフラスコに仕込み、窒素置換下攪拌しながら液温160℃で25時間加熱し、50g/lのリン化合物のエチレングリコール溶液を調製した。
(Preparation example of phosphorus compound solution)
Diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate (Irganox 1222 (manufactured by BASF)) as a phosphorus compound was placed in a flask together with ethylene glycol, and heated at a liquid temperature of 160°C for 25 hours while stirring under a nitrogen atmosphere. to prepare an ethylene glycol solution of a 50 g/l phosphorus compound.
(アルミニウム化合物の溶液とリン化合物の溶液の混合物の調製)
  上記アルミニウム化合物の調製例および上記リン化合物の調整例で得られたそれぞれのエチレングリコール溶液をフラスコに仕込み、アルミニウム原子とリン原子がモル比で1:2となるように室温で混合し、1日間攪拌して触媒溶液を調製した。
(Preparation of mixture of aluminum compound solution and phosphorus compound solution)
Each of the ethylene glycol solutions obtained in the aluminum compound preparation example and the phosphorus compound preparation example was charged into a flask and mixed at room temperature so that the molar ratio of aluminum atoms and phosphorus atoms was 1:2. A catalyst solution was prepared by stirring.
(基材用ポリエステル樹脂E-2の重合)
  重縮合触媒として三酸化アンチモン溶液の代わりに、前述のアルミニウム化合物の溶液とリン化合物の溶液の混合物を用いて、ポリエステル中の酸成分に対してアルミニウム原子およびリン原子としてそれぞれ0.014モル%および0.028モル%になるように
加えた以外は、ポリエステル樹脂E-1と同様に重合した。但し、重合時間は68分間とすることで、固有粘度(IV)が0.61dl/であり、粒子を実質上含有していないポリエステル樹脂E-2を得た。
(Polymerization of polyester resin E-2 for base material)
Instead of the antimony trioxide solution as the polycondensation catalyst, a mixture of the aluminum compound solution and the phosphorus compound solution described above was used to obtain 0.014 mol % and Polymerization was carried out in the same manner as polyester resin E-1, except that it was added in an amount of 0.028 mol %. However, by setting the polymerization time to 68 minutes, a polyester resin E-2 having an intrinsic viscosity (IV) of 0.61 dl/ and containing substantially no particles was obtained.
(実施例1)
(1)塗布液の調整
 水とイソプロパノールの混合溶媒(80/20質量部比)に、下記の塗剤を混合し、ポリウレタン樹脂(A-1)溶液/架橋剤(B-1)溶液の固形分質量比が70/30になる易接着層形成用の塗布液を作成した。
 
混合溶剤(水/イソプロパノール)         78.26質量部
ポリウレタン樹脂(A-1)溶液           14.00質量部
架橋剤(B-1)溶液                 5.25質量部
粒子I                        0.12質量部
 (平均粒径100nmのシリカゾル、固形分濃度40質量%)
粒子II                       1.87質量部
 (平均粒径40~50nmのシリカゾル、固形分濃度30質量%)
界面活性剤                    0.50質量部
 (シリコーン系、固形分濃度10質量%)    
(Example 1)
(1) Preparation of coating solution The following coating agent is mixed with a mixed solvent of water and isopropanol (80/20 parts by mass ratio), and the polyurethane resin (A-1) solution/crosslinking agent (B-1) solution is solidified. A coating liquid for forming an easy-adhesion layer having a weight ratio of 70/30 was prepared.

Mixed solvent (water/isopropanol) 78.26 parts by mass Polyurethane resin (A-1) solution 14.00 parts by mass Crosslinking agent (B-1) solution 5.25 parts by mass Particle I 0.12 parts by mass (average particle diameter 100 nm silica sol, solid content concentration 40% by mass)
Particle II 1.87 parts by mass (silica sol with an average particle size of 40 to 50 nm, solid content concentration of 30% by mass)
Surfactant 0.50 parts by mass (silicone type, solid content concentration 10% by mass)
(2)積層ポリエステルフィルムの製造
 フィルム原料ポリマーとして、ポリエステル樹脂E-1の樹脂ペレットを、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(2) Production of Laminated Polyester Film Resin pellets of polyester resin E-1 as a film material polymer were dried at 135° C. for 6 hours under a reduced pressure of 133 Pa. After that, it was supplied to an extruder, melt-extruded into a sheet at about 280° C., and rapidly cooled and solidified on a rotating cooling metal roll whose surface temperature was maintained at 20° C. to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 This unstretched PET sheet was heated to 100°C by a group of heated rolls and an infrared heater, and then stretched 3.5 times in the longitudinal direction by a group of rolls with a difference in circumferential speed to obtain a uniaxially stretched PET film.
 次いで、前記塗布液をPETフィルムの片面に、最終(二軸延伸後)の乾燥後の塗布量が0.13g/mになるように塗布した。塗布液を乾燥後、110℃で幅方向に4.0倍に延伸し、フィルムの幅方向を固定した状態で、230℃で5秒間加熱した。さらに3%の幅方向の弛緩処理を行ない、100μmの易接着層を有する積層ポリエステルフィルムを得た。 Then, the coating solution was applied to one side of the PET film so that the final coating amount (after biaxial stretching) after drying was 0.13 g/m 2 . After the coating liquid was dried, it was stretched 4.0 times in the width direction at 110° C. and heated at 230° C. for 5 seconds while the width direction of the film was fixed. Further, a relaxation treatment in the width direction was performed by 3% to obtain a laminated polyester film having an easily adhesive layer of 100 μm.
3.帯電防止ポリエステルフィルムの製造
得られた積層ポリエステルフィルムの易接着層上に、下記塗液(AS-1)を乾燥後の塗布量が0.08g/m2になるように塗布した。塗布後、熱風で140℃20秒加熱し、乾燥・硬化を行い、帯電防止層付きの積層ポリエステルフィルム(帯電防止ポリエステルフィルム)を得た。各種物性、評価結果を表1及び表2に示す。
なお、表中において、略語「AS」とは、帯電防止を意味する。
 (AS-1)
水                                              38.9質量部
イソプロピルアルコール                          38.9質量部
N-メチル-2-ピロリドン                      3.0質量部
アクリル樹脂(D-1)                          1.7質量部
メラミン架橋剤                                  0.3質量部
(MX-035 三和ケミカル社製、固形分濃度70質量%)
PEDOT/PSS溶液                          16.7質量部
(ICP1010 日本アグファマテリアル社製、固形分濃度1.2質量%)
界面活性剤                                     0.5質量部
(シリコーン系 固形分濃度10質量%)
3. Manufacture of antistatic polyester film On the easily adhesive layer of the obtained laminated polyester film, the following coating liquid (AS-1) was applied so that the coating amount after drying was 0.08 g/m2. After coating, the film was heated with hot air at 140° C. for 20 seconds, dried and cured to obtain a laminated polyester film with an antistatic layer (antistatic polyester film). Various physical properties and evaluation results are shown in Tables 1 and 2.
In the table, the abbreviation "AS" means antistatic.
(AS-1)
Water 38.9 parts by mass Isopropyl alcohol 38.9 parts by mass N-methyl-2-pyrrolidone 3.0 parts by mass Acrylic resin (D-1) 1.7 parts by mass Melamine cross-linking agent 0.3 parts by mass (MX-035 Wa Chemical Co., Ltd., solid content concentration 70% by mass)
PEDOT/PSS solution 16.7 parts by mass (ICP1010 manufactured by Agfa Materials Japan, solid content concentration 1.2% by mass)
Surfactant 0.5 parts by mass (silicone-based solid content concentration 10% by mass)
(実施例2)
 ポリウレタン樹脂を(A-2)とし、ポリウレタン樹脂と架橋剤の比率を60/40(質量比)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Example 2)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was (A-2) and the ratio of the polyurethane resin and the cross-linking agent was changed to 60/40 (mass ratio).
(実施例3)
 ポリウレタン樹脂を(A-3)とし、ポリウレタン樹脂と架橋剤の比率を50/50(質量比)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Example 3)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was (A-3) and the ratio of the polyurethane resin and the cross-linking agent was changed to 50/50 (mass ratio).
(実施例4)
  架橋剤を(B-2)とし、ポリウレタン樹脂と架橋剤の比率を60/40(質量比)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Example 4)
An antistatic polyester film was obtained in the same manner as in Example 1, except that (B-2) was used as the cross-linking agent and the ratio of the polyurethane resin to the cross-linking agent was changed to 60/40 (mass ratio).
(実施例5)
架橋剤を(B-3)とし、ポリウレタン樹脂と架橋剤の比率を60/40(質量比)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Example 5)
An antistatic polyester film was obtained in the same manner as in Example 1, except that (B-3) was used as the cross-linking agent and the ratio of the polyurethane resin to the cross-linking agent was changed to 60/40 (mass ratio).
(実施例6)
 ポリウレタン樹脂(A-1)、架橋剤(B-1)以外に架橋剤(B-4)を併用し、比率を(A-1)/(B-1)/(B-4)=55/35/10(質量比)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Example 6)
A cross-linking agent (B-4) is used in addition to the polyurethane resin (A-1) and the cross-linking agent (B-1), and the ratio is (A-1)/(B-1)/(B-4)=55/ An antistatic polyester film was obtained in the same manner as in Example 1, except that the ratio was changed to 35/10 (mass ratio).
(実施例7)
ポリウレタン樹脂(A-1)、架橋剤(B-1)以外にポリエステル樹脂(C-1)を併用し、比率を(A-1)/(B-1)/(C-1)=36/24/40(質量比)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Example 7)
In addition to the polyurethane resin (A-1) and the cross-linking agent (B-1), the polyester resin (C-1) is used in combination, and the ratio is (A-1)/(B-1)/(C-1)=36/ An antistatic polyester film was obtained in the same manner as in Example 1, except that the ratio was changed to 24/40 (mass ratio).
(実施例8)
 ポリウレタン樹脂(A-1)、架橋剤(B-1)以外にポリエステル樹脂(C-1)を併用し、比率を(A-1)/(B-1)/(C-1)=24/16/60(質量比)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Example 8)
In addition to the polyurethane resin (A-1) and the cross-linking agent (B-1), the polyester resin (C-1) is used in combination, and the ratio is (A-1)/(B-1)/(C-1)=24/ An antistatic polyester film was obtained in the same manner as in Example 1, except that the ratio was changed to 16/60 (mass ratio).
(実施例9)
 フィルム原料ポリマーとして、ポリエステル樹脂E-2の樹脂ペレットを使用した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Example 9)
An antistatic polyester film was obtained in the same manner as in Example 1, except that resin pellets of polyester resin E-2 were used as the film material polymer.
(実施例10)
帯電防止層の塗液をAS-2に変更した以外は、実施例1と同様にして帯電防止ポリエステルフィルムを得た。
(AS-2)
水                                              38.3質量部
イソプロピルアルコール                          38.3質量部
N-メチル-2-ピロリドン                      3.0質量部
アクリル樹脂(D-2)                          3.0質量部
メラミン架橋剤                                  0.3質量部
(MX-035 三和ケミカル社製、固形分濃度70質量%)
PEDOT/PSS溶液                          16.7質量部
(ICP1010 日本アグファマテリアル社製、固形分濃度1.2質量%)
界面活性剤                                     0.5質量部
(シリコーン系 固形分濃度10質量%)
(Example 10)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the coating liquid for the antistatic layer was changed to AS-2.
(AS-2)
Water 38.3 parts by mass Isopropyl alcohol 38.3 parts by mass N-methyl-2-pyrrolidone 3.0 parts by mass Acrylic resin (D-2) 3.0 parts by mass Melamine cross-linking agent 0.3 parts by mass (MX-035 Wa Chemical Co., Ltd., solid content concentration 70% by mass)
PEDOT/PSS solution 16.7 parts by mass (ICP1010 manufactured by Agfa Materials Japan, solid content concentration 1.2% by mass)
Surfactant 0.5 parts by mass (silicone-based solid content concentration 10% by mass)
(実施例11)
帯電防止層の塗液をAS-3に変更した以外は、実施例1と同様にして帯電防止ポリエステルフィルムを得た。
(AS-3)
水                                              38.3質量部
イソプロピルアルコール                          38.3質量部
N-メチル-2-ピロリドン                      3.0質量部
メラミン架橋剤                                  1.2質量部
(MX-035 三和ケミカル社製、固形分濃度70質量%)
PEDOT/PSS溶液                          16.7質量部
(ICP1010 日本アグファマテリアル社製、固形分濃度1.2質量%)
界面活性剤                                     0.5質量部
(シリコーン系 固形分濃度10質量%)
(Example 11)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the coating liquid for the antistatic layer was changed to AS-3.
(AS-3)
Water 38.3 parts by mass Isopropyl alcohol 38.3 parts by mass N-methyl-2-pyrrolidone 3.0 parts by mass Melamine cross-linking agent 1.2 parts by mass (MX-035 manufactured by Sanwa Chemical Co., Ltd., solid content concentration 70% by mass)
PEDOT/PSS solution 16.7 parts by mass (ICP1010 manufactured by Agfa Materials Japan, solid content concentration 1.2% by mass)
Surfactant 0.5 parts by mass (silicone-based solid content concentration 10% by mass)
(実施例12)
帯電防止層の塗液をAS-4に変更した以外は、実施例1と同様にして帯電防止ポリエステルフィルムを得た。
(AS-4)
水                                              38.3質量部
イソプロピルアルコール                          38.3質量部
N-メチル-2-ピロリドン                      3.0質量部
メラミン架橋剤                                   0.9質量部
(MX-035 三和ケミカル社製、固形分濃度70質量%)
PEDOT/PSS溶液                          33.3質量部
(ICP1010 日本アグファマテリアル社製、固形分濃度1.2質量%)
界面活性剤                                      0.5質量部
(シリコーン系 固形分濃度10質量%)
(Example 12)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the coating solution for the antistatic layer was changed to AS-4.
(AS-4)
Water 38.3 parts by mass Isopropyl alcohol 38.3 parts by mass N-methyl-2-pyrrolidone 3.0 parts by mass Melamine crosslinking agent 0.9 parts by mass (MX-035 manufactured by Sanwa Chemical Co., Ltd., solid content concentration 70% by mass)
PEDOT / PSS solution 33.3 parts by mass (ICP1010 manufactured by Agfa Materials Japan, solid content concentration 1.2% by mass)
Surfactant 0.5 parts by mass (silicone-based solid content concentration 10% by mass)
(比較例1)
 ポリウレタン樹脂(A-1)のみを使用し、架橋剤(B-1)を使用しない以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative example 1)
An antistatic polyester film was obtained in the same manner as in Example 1, except that only the polyurethane resin (A-1) was used and the cross-linking agent (B-1) was not used.
(比較例2)
 架橋剤(B-1)のみを使用し、ポリウレタン樹脂(A-1)を使用しない以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative example 2)
An antistatic polyester film was obtained in the same manner as in Example 1, except that only the cross-linking agent (B-1) was used and the polyurethane resin (A-1) was not used.
(比較例3)
 ポリウレタン樹脂を(A-4)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative Example 3)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was changed to (A-4).
(比較例4)
 ポリウレタン樹脂を(A-5)とし、ポリウレタン樹脂と架橋剤の比率を60/40(質量比)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative Example 4)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was (A-5) and the ratio of the polyurethane resin and the cross-linking agent was changed to 60/40 (mass ratio).
(比較例5)
 ポリウレタン樹脂を(A-6)とし、ポリウレタン樹脂と架橋剤の比率を50/50(質量比)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative Example 5)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was (A-6) and the ratio of the polyurethane resin and the cross-linking agent was changed to 50/50 (mass ratio).
(比較例6)
 ポリウレタン樹脂を(A-7)、架橋剤を(B-5)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative Example 6)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin was changed to (A-7) and the cross-linking agent was changed to (B-5).
(比較例7)
 架橋剤を(B-5)とし、ポリウレタン樹脂と架橋剤の比率を75/25(質量比)に変更した以外は、実施例1と同様にして同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative Example 7)
An antistatic polyester film was obtained in the same manner as in Example 1, except that (B-5) was used as the cross-linking agent and the ratio of the polyurethane resin to the cross-linking agent was changed to 75/25 (mass ratio).
(比較例8)
 架橋剤を(B-6)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative Example 8)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the cross-linking agent was changed to (B-6).
(比較例9)
 ポリウレタン樹脂(A-1)を、ポリエステル樹脂(C-2)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative Example 9)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin (A-1) was changed to the polyester resin (C-2).
(比較例10)
 ポリウレタン樹脂(A-1)を、アクリル樹脂(D-1)に変更した以外は、実施例1と同様にして、帯電防止ポリエステルフィルムを得た。
(Comparative Example 10)
An antistatic polyester film was obtained in the same manner as in Example 1, except that the polyurethane resin (A-1) was changed to the acrylic resin (D-1).
 表1及び表2に各実施例、比較例の各種物性、評価結果を整理する。 Tables 1 and 2 summarize various physical properties and evaluation results of each example and comparative example.
 表2に示すように、各実施例においては、ヘイズ、ブロッキング耐性、帯電防止層との密着性、および耐湿熱性において満足できる結果が得られた。一方、比較例1~10では、前記の少なくともいずれかの評価項目において満足できるものではなかった。 As shown in Table 2, in each example, satisfactory results were obtained in terms of haze, blocking resistance, adhesion to the antistatic layer, and resistance to moist heat. On the other hand, Comparative Examples 1 to 10 were not satisfactory in at least one of the above evaluation items.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明の帯電防止ポリエステルフィルムは、本発明に係る易接着層と、帯電防止層とをこの順に有している。特に、本発明に係る易接着層を有することで、ブロッキング耐性に優れ、帯電防止層と易接着層とポリエステルフィルム基材との間における初期密着性及び耐湿熱密着性に優れた帯電防止ポリエステルフィルムを提供できる。 The antistatic polyester film of the present invention has an easily adhesive layer according to the present invention and an antistatic layer in this order. In particular, by having the easy adhesion layer according to the present invention, antistatic polyester film excellent in blocking resistance, excellent initial adhesion and wet heat resistance adhesion between the antistatic layer, the easy adhesion layer and the polyester film substrate can provide
一方、比較例1は、本発明の架橋剤を含まないため、耐湿熱密着性が著しく劣る結果であった。比較例2は、本発明のポリウレタン樹脂を含まないため、耐湿熱密着性が著しく劣る結果であった。比較例3は、ポリウレタン樹脂の酸価が本発明の範囲外であるため、耐湿熱密着性が著しく劣る結果であった。比較例4は、ポリウレタン樹脂の酸価が本発明の範囲外であるため、耐湿熱密着性が劣る結果であった。比較例5は、ポリウレタン樹脂が実質的に酸価を有さないため、ブロッキング耐性及び、耐湿熱密着性が著しく劣る結果であった。比較例6は、ポリウレタン樹脂及び架橋剤の酸価が本発明の範囲外であり、耐湿熱密着性が著しく劣る結果であった。比較例7は、架橋剤の酸価が本発明の範囲外であり、耐湿熱密着性が著しく劣る結果であった。比較例8は、架橋剤の酸価が本発明の範囲外であり、耐湿熱密着性が劣る結果であった。比較例9、10は、本発明のポリウレタン樹脂の代わりのポリエステル樹脂(比較例9)またはアクリル樹脂(比較例10)使用した例である。用いたポリエステル樹脂またはアクリル樹脂の酸価は、本発明に係るポリウレタン樹脂の酸価の範囲と同等である。しかしながら、これらの樹脂では、耐湿熱密着性が著しく劣る結果であった。 On the other hand, Comparative Example 1, which did not contain the cross-linking agent of the present invention, was remarkably inferior in wet heat resistance. Comparative Example 2, which does not contain the polyurethane resin of the present invention, was remarkably inferior in wet heat resistance. In Comparative Example 3, the acid value of the polyurethane resin was outside the range of the present invention, so the wet heat resistant adhesion was significantly inferior. In Comparative Example 4, the acid value of the polyurethane resin was outside the range of the present invention, so the wet heat resistant adhesion was poor. In Comparative Example 5, since the polyurethane resin had substantially no acid value, the blocking resistance and the wet heat resistant adhesion were significantly inferior. In Comparative Example 6, the acid values of the polyurethane resin and the cross-linking agent were outside the range of the present invention, and the wet heat resistant adhesiveness was significantly inferior. In Comparative Example 7, the acid value of the cross-linking agent was out of the range of the present invention, and the wet heat resistant adhesion was significantly inferior. In Comparative Example 8, the acid value of the cross-linking agent was outside the range of the present invention, resulting in poor wet heat resistance adhesion. Comparative Examples 9 and 10 are examples in which a polyester resin (Comparative Example 9) or an acrylic resin (Comparative Example 10) was used instead of the polyurethane resin of the present invention. The acid value of the polyester resin or acrylic resin used is equivalent to the acid value range of the polyurethane resin according to the present invention. However, these resins were remarkably inferior in wet heat resistance.
 本発明によれば、光学用途、包装用途、ラベル用途などあらゆる分野において好適に使用できる帯電防止ポリエステルフィルムの提供が可能となった。
 
 
According to the present invention, it has become possible to provide an antistatic polyester film that can be suitably used in all fields such as optical applications, packaging applications and label applications.

Claims (6)

  1.  ポリエステルフィルムの少なくとも片面に易接着層、帯電防止層をこの順に積層した帯電防止ポリエステルフィルムであって、前記易接着層がカルボキシル基を有する酸価30~50mgKOH/gのポリウレタン樹脂とカルボキシル基を有する酸価30~50mgKOH/gの架橋剤を含む組成物を硬化して形成した層であることを特徴とする帯電防止ポリエステルフィルム。 An antistatic polyester film in which an easy-adhesion layer and an antistatic layer are laminated in this order on at least one side of a polyester film, wherein the easy-adhesion layer has a carboxyl group-containing polyurethane resin having an acid value of 30 to 50 mgKOH/g and a carboxyl group. An antistatic polyester film characterized by being a layer formed by curing a composition containing a cross-linking agent having an acid value of 30 to 50 mgKOH/g.
  2.  架橋剤が、イソシネート系化合物である請求項1に記載の帯電防止ポリエステルフィルム。 The antistatic polyester film according to claim 1, wherein the cross-linking agent is an isocyanate compound.
  3.  表面抵抗率が1010Ω/□以下であることを特徴とする請求項1または2に記載の帯電防止ポリエステルフィルム。 3. The antistatic polyester film according to claim 1, which has a surface resistivity of 10< 10 > [Omega]/square or less.
  4.  帯電防止層には、導電性高分子を含むことを特徴とする請求項1~3のいずれかに記載の帯電防止ポリエステルフィルム。 The antistatic polyester film according to any one of claims 1 to 3, wherein the antistatic layer contains a conductive polymer.
  5.  フィルムヘイズが3.0%以下であることを特徴とする請求項1~4のいずれかに記載の帯電防止ポリエステルフィルム。 The antistatic polyester film according to any one of claims 1 to 4, which has a film haze of 3.0% or less.
  6.  請求項1~5のいずれかに記載の帯電防止ポリエステルフィルムの少なくとも片面に粘着層を積層した粘着フィルム。
     
    An adhesive film obtained by laminating an adhesive layer on at least one side of the antistatic polyester film according to any one of claims 1 to 5.
PCT/JP2022/013636 2021-04-16 2022-03-23 Antistatic polyester film WO2022220043A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280028665.6A CN117157195A (en) 2021-04-16 2022-03-23 Antistatic polyester film
KR1020237039216A KR20230170953A (en) 2021-04-16 2022-03-23 Anti-static polyester film
JP2023514550A JPWO2022220043A1 (en) 2021-04-16 2022-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021069792 2021-04-16
JP2021-069792 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022220043A1 true WO2022220043A1 (en) 2022-10-20

Family

ID=83640567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013636 WO2022220043A1 (en) 2021-04-16 2022-03-23 Antistatic polyester film

Country Status (5)

Country Link
JP (1) JPWO2022220043A1 (en)
KR (1) KR20230170953A (en)
CN (1) CN117157195A (en)
TW (1) TWI813253B (en)
WO (1) WO2022220043A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160883A (en) * 2004-12-07 2006-06-22 Unitika Ltd Bondable polyester film
WO2009157199A1 (en) * 2008-06-27 2009-12-30 ユニチカ株式会社 Highly adhesive polyester film and packaging material using the same
JP2018104532A (en) * 2016-12-26 2018-07-05 日本合成化学工業株式会社 Primer composition and aqueous liquid prepared therewith, base film with primer layer, and prism sheet
WO2019142615A1 (en) * 2018-01-19 2019-07-25 東洋紡株式会社 Readily bondable polyester film
JP2019162807A (en) * 2018-03-20 2019-09-26 株式会社きもと Functional member
JP2021059117A (en) * 2021-01-04 2021-04-15 三菱ケミカル株式会社 Primer composition and aqueous liquid using the same, substrate film with primer layer and prism sheet
WO2021085327A1 (en) * 2019-10-29 2021-05-06 東洋紡株式会社 Laminated polyester film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827724A (en) 1981-08-12 1983-02-18 Toyobo Co Ltd Polyester film having improved adhesive property
JP4253895B2 (en) 1999-02-12 2009-04-15 東洋紡績株式会社 Method for producing optically easy-adhesive film
JP4798156B2 (en) 2008-03-17 2011-10-19 三菱樹脂株式会社 Laminated film
JP2018172473A (en) 2017-03-31 2018-11-08 リンテック株式会社 Adhesive film for display protection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160883A (en) * 2004-12-07 2006-06-22 Unitika Ltd Bondable polyester film
WO2009157199A1 (en) * 2008-06-27 2009-12-30 ユニチカ株式会社 Highly adhesive polyester film and packaging material using the same
JP2018104532A (en) * 2016-12-26 2018-07-05 日本合成化学工業株式会社 Primer composition and aqueous liquid prepared therewith, base film with primer layer, and prism sheet
WO2019142615A1 (en) * 2018-01-19 2019-07-25 東洋紡株式会社 Readily bondable polyester film
JP2019162807A (en) * 2018-03-20 2019-09-26 株式会社きもと Functional member
WO2021085327A1 (en) * 2019-10-29 2021-05-06 東洋紡株式会社 Laminated polyester film
JP2021059117A (en) * 2021-01-04 2021-04-15 三菱ケミカル株式会社 Primer composition and aqueous liquid using the same, substrate film with primer layer and prism sheet

Also Published As

Publication number Publication date
TWI813253B (en) 2023-08-21
CN117157195A (en) 2023-12-01
JPWO2022220043A1 (en) 2022-10-20
TW202246061A (en) 2022-12-01
KR20230170953A (en) 2023-12-19

Similar Documents

Publication Publication Date Title
TWI524995B (en) Laminated film
JP7405103B2 (en) laminated polyester film
JP5621642B2 (en) Easy-adhesive polyester film
JP2024045365A (en) laminated polyester film
JP2014221560A (en) Laminated optical polyester film
JP7207589B2 (en) laminated polyester film
TW202241710A (en) Void-containing polyester-based film
WO2022220043A1 (en) Antistatic polyester film
TWI840500B (en) Laminated polyester film
WO2021261174A1 (en) Laminated polyester film for optical use
WO2022004263A1 (en) Printed object
WO2022030123A1 (en) Layered polyester film
JP2023049612A (en) laminated polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514550

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237039216

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039216

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787968

Country of ref document: EP

Kind code of ref document: A1