WO2022219974A1 - Redox flow battery system and method for operating redox flow battery system - Google Patents

Redox flow battery system and method for operating redox flow battery system Download PDF

Info

Publication number
WO2022219974A1
WO2022219974A1 PCT/JP2022/010296 JP2022010296W WO2022219974A1 WO 2022219974 A1 WO2022219974 A1 WO 2022219974A1 JP 2022010296 W JP2022010296 W JP 2022010296W WO 2022219974 A1 WO2022219974 A1 WO 2022219974A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode electrolyte
negative electrode
positive electrode
electrolyte
ions
Prior art date
Application number
PCT/JP2022/010296
Other languages
French (fr)
Japanese (ja)
Inventor
岳文 伊藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2022219974A1 publication Critical patent/WO2022219974A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to redox flow battery systems and methods of operating redox flow batteries.
  • This application claims priority based on Japanese Patent Application No. 2021-069243 filed in Japan on April 15, 2021, and incorporates all the contents described in the Japanese application.
  • Patent Documents 1 and 2 disclose a redox flow battery provided with a monitor cell supplied with an electrolytic solution common to the electrolytic solution supplied to the battery cell, separately from the battery cells that charge and discharge.
  • SOC State Of Charge
  • the redox flow battery system of the present disclosure includes a battery cell to which a positive electrode electrolyte and a negative electrode electrolyte are supplied, a potential of the positive electrode electrolyte, a potential of the negative electrode electrolyte, and a potential of the positive electrode electrolyte and the negative electrode electrolyte.
  • a measuring instrument for measuring a plurality of values selected from a group consisting of potential differences; and a calculator.
  • a method of operating a redox flow battery of the present disclosure is a method of operating a redox flow battery in which a positive electrode electrolyte and a negative electrode electrolyte are supplied to a battery cell for charging and discharging, and the potential of the positive electrode electrolyte and the negative electrode electrolyte and a potential difference between the positive electrode electrolyte and the negative electrode electrolyte; and based on the plurality of values, the positive electrode electrolyte and the negative electrode electrolyte. and calculating the amount of movement of the active material ions between.
  • FIG. 1 is a schematic diagram showing the configuration of a redox flow battery system according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of a cell stack.
  • FIG. 3 is a schematic diagram showing the configuration of a positive electrode monitor cell.
  • FIG. 4 is a schematic diagram showing the configuration of a negative electrode monitor cell.
  • FIG. 5 is a schematic diagram showing another example of the configuration of the redox flow battery system according to the embodiment.
  • FIG. 6 is a schematic diagram showing another example of the configuration of the redox flow battery system according to the embodiment.
  • FIG. 7 is a flow chart showing the processing procedure of the method for operating the redox flow battery according to the embodiment.
  • FIG. 8 is a flowchart showing another processing procedure of the method for operating the redox flow battery according to the embodiment.
  • one of the objects of the present disclosure is to provide a redox flow battery system and a method of operating a redox flow battery that can determine the amount of active material ion movement between the positive electrode electrolyte and the negative electrode electrolyte.
  • the redox flow battery system and the operating method of the redox flow battery of the present disclosure can grasp the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte.
  • a redox flow battery charges and discharges using an oxidation-reduction reaction of active material ions in an electrolyte.
  • the ion valence of the active material ions changes due to oxidation-reduction reaction.
  • the positive electrode electrolyte and the negative electrode electrolyte contain vanadium (V) ions
  • the positive electrode electrolyte contains pentavalent V ions as active material ions.
  • the negative electrode electrolyte contains divalent V ions as active material ions.
  • V-based redox flow battery In the case of a V-based redox flow battery, during charging, tetravalent V ions (V 4+ ) are oxidized to pentavalent V ions (V 5+ ) in the positive electrode electrolyte, and trivalent V ions (V 3+ ) is reduced to a divalent V ion (V 2+ ). On the other hand, during discharge, the pentavalent V ions (V 5+ ) are reduced to tetravalent V ions (V 4+ ) in the positive electrode electrolyte, and the divalent V ions (V 2+ ) are reduced to trivalent V ions in the negative electrode electrolyte. It is oxidized to V ions (V 3+ ).
  • the SOC of the electrolyte is determined by measuring the potential of the electrolyte.
  • the SOC of the electrolyte can be represented by the ratio of ionic valences in the electrolyte.
  • the SOC of the positive electrode electrolyte is the ratio of the number of moles of pentavalent V ions (V 5+ ) to the number of moles of all V ions (V 4+ , V 5+ ) in the positive electrode electrolyte. expressed.
  • the SOC of the negative electrode electrolyte is represented by the ratio of the number of moles of divalent V ions (V 2+ ) to the number of moles of all V ions (V 2+ , V 3+ ) in the negative electrode electrolyte.
  • the battery reaction is, in principle, only the valence change of the active material ions in the electrolyte. Therefore, in principle, the ionic valence ratio of the positive electrode electrolyte, that is, the ratio of V5 +, and the ionic valence ratio of the negative electrode electrolyte, that is, the ratio of V2 + , should be adjusted in advance to be the same. For example, even if charging and discharging are repeated, the ion valence ratio between the positive electrode electrolyte and the negative electrode electrolyte remains the same. That is, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte is maintained.
  • a redox flow battery system includes a battery cell to which a positive electrode electrolyte and a negative electrode electrolyte are supplied, the potential of the positive electrode electrolyte, the potential of the negative electrode electrolyte, and the positive electrode electrolyte. and a measuring instrument for measuring a plurality of values selected from the group consisting of a potential difference between the positive electrode electrolyte and the negative electrode electrolyte, and an active material ion between the positive electrode electrolyte and the negative electrode electrolyte based on the plurality of values and a first computing unit that computes the amount of movement of the
  • the redox flow battery system of the present disclosure can grasp the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte in real time even during operation.
  • the redox flow battery system of the present disclosure calculates the movement amount of active material ions based on a plurality of values measured by a measuring instrument, so that the movement amount of active material ions can be accurately and quantitatively grasped. It is possible. Therefore, it is possible to accurately grasp the decrease in the battery capacity due to the movement of the active material ions.
  • the redox flow battery system of the present disclosure can appropriately manage the state of the electrolyte by grasping the amount of movement of active material ions. This is because it is possible to quantitatively evaluate the shift in the ratio of the ionic valences of the two electrolytic solutions caused by the migration of the active material ions, in other words, the collapse of the valence balance. For example, it is possible to appropriately determine the timing of maintenance for adjusting the valence balance between the positive electrode electrolyte and the negative electrode electrolyte. Therefore, over a long period of time, it is possible to manage the decrease in battery capacity within an allowable range. Maintenance for adjusting the valence balance involves mixing the positive electrode electrolyte and the negative electrode electrolyte. By mixing the positive electrode electrolyte and the negative electrode electrolyte, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte can be restored.
  • the measuring instrument includes a positive electrode monitor cell that measures the potential of the positive electrode electrolyte, a negative electrode monitor cell that measures the potential of the negative electrode electrolyte, and the positive electrode electrolyte and the negative electrode.
  • At least one monitor cell selected from the group consisting of a bipolar monitor cell for measuring a potential difference with the electrolyte, the positive electrode monitor cell having a positive electrode reference solution as a reference for the potential of the positive electrode electrolyte, and the negative electrode monitor cell may have a negative electrode reference solution that serves as a reference for the potential of the negative electrode electrolyte.
  • the above redox flow battery system can easily measure the above multiple values in real time with the monitor cell.
  • the positive electrode electrolyte and the negative electrode electrolyte have the same state of charge based on the amount of movement of the active material ions.
  • the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be appropriately set.
  • the reason is that the second computing unit computes the mixing amount based on the movement amount of the active material ions obtained by the first computing unit.
  • a positive electrode flow channel through which the positive electrode electrolyte is circulated between the positive electrode tank that stores the positive electrode electrolyte, the negative electrode tank that stores the negative electrode electrolyte, and the positive electrode tank and the battery cell, a positive electrode flow channel through which the positive electrode electrolyte is circulated; a negative electrode flow channel through which the negative electrode electrolyte is circulated between the negative electrode tank and the battery cell; and a mixture of the positive electrode electrolyte and the negative electrode electrolyte.
  • a mixing channel, a valve for adjusting the communication state of the mixing channel, and a mixing controller for operating the valve so as to mix the positive electrode electrolyte and the negative electrode electrolyte based on the mixing amount. may have
  • the above-mentioned redox flow battery system can recover the decrease in battery capacity caused by the movement of active material ions.
  • the reason is that by mixing the positive electrode electrolyte and the negative electrode electrolyte, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte can be restored.
  • the mixing channel may have a mixing pipe connecting the positive electrode channel and the negative electrode channel.
  • the above redox flow battery system can easily realize a configuration in which the positive electrode electrolyte and the negative electrode electrolyte are mixed.
  • the mixing channel may have a communication pipe that connects the positive electrode tank and the negative electrode tank.
  • the above redox flow battery system can easily realize a configuration in which the positive electrode electrolyte and the negative electrode electrolyte are mixed.
  • the positive electrode electrolyte contains pentavalent vanadium ions as the active material ions
  • the negative electrode electrolyte contains divalent vanadium ions as the active material ions.
  • the effect on the electrolyte is small. Furthermore, even if the positive electrode electrolyte and the negative electrode electrolyte are mixed, the effect on the electrolyte is small. This is because the elements forming the active material ions are the same in the positive electrode electrolyte and the negative electrode electrolyte. If the elements forming the active material ions in both electrolytes are the same, the elements can function as active materials by forming ions with appropriate valences in both electrolytes.
  • a method of operating a redox flow battery is a method of operating a redox flow battery in which charging and discharging are performed by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell, wherein the positive electrode electrolyte a step of measuring a plurality of values selected from the group consisting of the potential of the negative electrode electrolyte, the potential of the negative electrode electrolyte, and the potential difference between the positive electrode electrolyte and the negative electrode electrolyte; and calculating the amount of movement of active material ions between the liquid and the negative electrode electrolyte.
  • the operating method of the redox flow battery of the present disclosure can grasp the amount of active material ions transferred between the positive electrode electrolyte and the negative electrode electrolyte in real time even during operation.
  • the operating method of the redox flow battery of the present disclosure calculates the movement amount of the active material ions based on the plurality of values, so that the movement amount of the active material ions can be accurately and quantitatively grasped. It is possible. Therefore, it is possible to accurately grasp the decrease in the battery capacity due to the movement of the active material ions.
  • the state of the electrolyte can be appropriately managed by grasping the amount of movement of the active material ions. This is because it is possible to quantitatively evaluate the shift in the ratio of the ionic valences of the two electrolytic solutions caused by the migration of the active material ions, in other words, the collapse of the valence balance.
  • the positive electrode electrolyte and the negative electrode electrolyte are in the same state of charge based on the amount of movement of the active material ions.
  • a step of calculating the amount of mixture with the negative electrode electrolyte may be provided.
  • the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be appropriately set.
  • the reason for this is that the amount of mixture is calculated based on the amount of movement of the active material ions calculated in the step of calculating the amount of movement.
  • the method for operating a redox flow battery described in (9) above may include a step of mixing the positive electrode electrolyte and the negative electrode electrolyte based on the mixing amount.
  • the operating method of the redox flow battery described above can recover the decrease in battery capacity caused by the movement of active material ions.
  • the reason is that by mixing the positive electrode electrolyte and the negative electrode electrolyte, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte can be restored.
  • the pentavalent V ions in the positive electrode electrolyte and the divalent V ions in the negative electrode electrolyte have the same number of moles.
  • the ion valence ratio of the positive electrode electrolyte and the ion valence ratio of the negative electrode electrolyte are the same.
  • the total number of moles of V ions in the positive electrode electrolyte is No, and the total number of moles of V ions in the negative electrode electrolyte is No.
  • N be the number of moles of pentavalent V ions in the positive electrode electrolyte
  • N be the number of moles of divalent V ions in the negative electrode electrolyte.
  • the number of moles of tetravalent V ions in the positive electrode electrolyte and the number of moles of trivalent V ions in the negative electrode electrolyte are [NoN].
  • Table 1 shows changes in the number of moles of V ions of each valence in each electrolyte when divalent V ions in the anode electrolyte migrate to the cathode electrolyte.
  • State I in Table 1 indicates the initial state.
  • State II indicates that divalent V ions in the negative electrolyte have migrated to the positive electrolyte.
  • ⁇ N be the number of moles of the transferred divalent V ions.
  • the pentavalent V ions in the positive electrode electrolyte react with the moved divalent V ions.
  • pentavalent V ions and divalent V ions react, the pentavalent V ions change to tetravalent V ions, and the divalent V ions change to trivalent V ions.
  • the number of moles of V ions of each valence in the positive electrode electrolyte is represented by the formula shown in State III of Table 1.
  • the trivalent V ions and the pentavalent V ions that have changed from divalent react with each other to change the pentavalent V ions into tetravalent V ions, and the trivalent V ions into tetravalent V ions. change to That is, when one divalent V ion moves from the negative electrode electrolyte to the positive electrode electrolyte, the divalent V ion reacts with the pentavalent V ion in the positive electrode electrolyte to become a tetravalent V ion, Two pentavalent V ions in the positive electrode electrolyte become two tetravalent V ions.
  • the number of moles of V ions of each valence in the positive electrode electrolyte is represented by the formula shown in State IV of Table 1.
  • the mole numbers of the pentavalent and tetravalent V ions in the positive electrode electrolyte change from the initial state. That is, the ion valence ratio of the positive electrode electrolyte changes.
  • the number of moles of the divalent V ions is reduced by ⁇ N from the initial state due to the movement of the divalent V ions to the positive electrode electrolyte. Therefore, the ionic valence ratio of the negative electrode electrolyte changes.
  • each electrolyte, the positive electrode electrolyte and the negative electrode electrolyte can be expressed as [Equation 1] and [Equation 2].
  • ⁇ p be the SOC of the positive electrode electrolyte.
  • ⁇ n be the SOC of the negative electrode electrolyte.
  • Each potential of the positive electrode electrolyte and the negative electrode electrolyte is a potential relative to a reference potential.
  • the potential of the positive electrode electrolyte is obtained by measuring the potential difference between the positive electrode reference solution and the positive electrode electrolyte.
  • the potential of the negative electrode electrolyte is obtained by measuring the potential difference between the negative electrode reference solution and the negative electrode electrolyte.
  • the potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte can be measured using a positive electrode monitor cell 31 (FIG. 3) and a negative electrode monitor cell 32 (FIG.
  • the positive electrode reference solution is the same as the initial positive electrode electrolyte.
  • the negative electrode reference solution is the same as the initial negative electrode electrolyte.
  • the positive electrode reference solution and the negative electrode reference solution may be those having known potentials.
  • the cathode reference solution may be different from the initial cathode electrolyte.
  • the negative electrode reference solution may be different from the initial negative electrode electrolyte.
  • ⁇ p be the SOC of the positive electrode electrolyte after the movement of the active material ions
  • ⁇ n be the SOC of the negative electrode electrolyte
  • ⁇ po be the SOC of the positive electrode reference solution
  • ⁇ no be the SOC of the negative electrode reference solution.
  • R is the gas constant (unit: J/K ⁇ mol).
  • T is the absolute temperature (unit: K).
  • F is the Faraday constant (unit: c/mol).
  • the potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte are measured is described as an example, but the potential difference between the positive electrode electrolyte and the negative electrode electrolyte may be measured and determined.
  • the potential difference between the positive electrolyte and the negative electrolyte from the potential difference between the positive electrolyte and the negative electrolyte and one of the potential of the positive electrolyte and the potential of the negative electrolyte, the potential of the other can be calculated. Therefore, when measuring the potential difference between the positive electrolyte and the negative electrolyte, only one of the potential of the positive electrolyte and the potential of the negative electrolyte may be measured. Specifically, the potential difference between both electrolytes can be measured using a bipolar monitor cell 40 (FIG. 5), which will be described later.
  • the potential difference Vc between the positive electrode electrolyte and the negative electrode electrolyte after the movement of the active material ions is represented by [Equation 5].
  • Ep in [Equation 5] is the reference potential of the positive electrode electrolyte.
  • En is the reference potential of the negative electrode electrolyte.
  • the reference potential of each electrolytic solution is the redox potential of each active material ion, and is determined by the active material ions contained in each electrolytic solution. If the potential difference Vc shown in [Equation 5] and one of the potential ⁇ Vp shown in [Equation 3] and the potential ⁇ Vn shown in [Equation 4] are known, from these two values, one of the potentials ⁇ Vp and ⁇ Vn It is possible to calculate the other potential of
  • the amount of movement of the active material ions is defined as the ratio of the number of moles of the active material ions moved to the total number of moles of the active material ions in the initial electrolytic solution.
  • the total number of moles of V ions in each initial electrolytic solution is No
  • the number of moles of migrated divalent V ions is ⁇ N.
  • the movement amount ⁇ is [ ⁇ N/No].
  • [ ⁇ N/No] is [ ⁇ n/no], where no is the initial molar concentration of V ions in each electrolytic solution, and ⁇ n is the molar concentration of migrated divalent V ions.
  • the potential ⁇ Vp of the positive electrode electrolyte is expressed by [Equation 12].
  • the potential ⁇ Vn of the negative electrode electrolyte is expressed by [Equation 13].
  • the amount of movement ⁇ of the divalent V ions is unknown and the others are known. That is, there is one unknown. If there is one unknown, one of the positive electrode monitor cell 31 (FIG. 3) and the negative electrode monitor cell 32 (FIG.
  • Table 2 shows the state of each electrolyte before and after the divalent V ions in the anode electrolyte move to the cathode electrolyte.
  • the number of moles of V ions of each valence shown in Table 1 is divided by No for each electrolytic solution, and the number of moles of V ions of each valence is shown using ⁇ and ⁇ .
  • No is the total number of moles of V ions in each initial electrolyte.
  • is the initial SOC of each electrolyte.
  • is the amount of movement of divalent V ions.
  • State I in Table 2 shows the initial state before divalent V ions in the negative electrode electrolyte move to the positive electrode electrolyte.
  • State IV shows the state after the divalent V ions in the negative electrode electrolyte have migrated to the positive electrode electrolyte.
  • State IV-1 indicates a state in which both electrolytes after divalent V ions have been transferred are discharged to the end of discharge.
  • State IV-2 shows a state in which the battery is charged to the end of charging using both electrolytes after divalent V ions have migrated.
  • end of discharge refers to a completely discharged state.
  • the pentavalent V ions in the positive electrode electrolyte have become zero.
  • the end of charge refers to a fully charged state.
  • the trivalent V ions in the negative electrode electrolyte have become zero. If the SOC of each electrolytic solution after the movement of the active material ions is newly defined as ⁇ , the number of moles of ions of each valence in each electrolytic solution can be expressed as shown in Table 2 using ⁇ .
  • ⁇ N 2 be the number of moles of divalent V ions in the mixed negative electrode electrolyte
  • ⁇ N 3 be the number of moles of trivalent V ions.
  • Tables 5 and 6 show changes in the number of moles of V ions of each valence in the negative electrode electrolyte when the positive electrode electrolyte is mixed with the negative electrode electrolyte.
  • N 2 be the number of moles of divalent V ions in the negative electrode electrolyte
  • N 3 be the number of moles of trivalent V ions.
  • ⁇ N 5 be the number of moles of pentavalent V ions
  • ⁇ N 4 be the number of moles of tetravalent V ions in the mixed positive electrode electrolyte.
  • each divalent to pentavalent V ion can be expressed as [Equation 22] to [Equation 25].
  • can be the value of (b5) above. Also, it can be said that mixing is preferable when ⁇ is a small value, that is, when the SOC is low.
  • a part of the positive electrode electrolyte is transferred to the negative electrode electrolyte, and the amount of liquid is made different between the positive electrode electrolyte and the negative electrode electrolyte.
  • ⁇ L be the amount of liquid transferred from the positive electrode electrolyte to the negative electrode electrolyte.
  • the liquid amount of the positive electrode electrolyte is [Lo ⁇ L].
  • the total number of moles of V ions in the positive electrode electrolyte is [No- ⁇ N].
  • the liquid volume of the negative electrode electrolyte is [Lo+ ⁇ L].
  • the total number of moles of V ions in the negative electrode electrolyte is [No+ ⁇ N].
  • the number of moles of V ions of each valence in each electrolytic solution after transferring the liquid amount of ⁇ L from the positive electrode electrolytic solution to the negative electrode electrolytic solution is in the state A shown in Table 8.
  • the battery is precharged using the positive electrode electrolyte and the negative electrode electrolyte.
  • trivalent V ions are oxidized to tetravalent V ions in the positive electrode electrolyte.
  • tetravalent V ions are reduced to trivalent V ions.
  • the number of moles of V ions of each valence in each electrolytic solution is in the state B shown in Table 8.
  • all the tetravalent V ions are not reduced in the negative electrode electrolyte, and only the number of moles ⁇ N transferred remains.
  • the battery is further charged from the state at the end of discharge, and all the V ions in the positive electrode electrolyte become pentavalent.
  • This state is the end of charging.
  • the number of moles of V ions of each valence in each electrolytic solution at the end of charging is in state D shown in Table 8.
  • the allowable charge/discharge range is between state C at the end of discharge and state D at the end of charge.
  • the charge state between state C at the end of discharge and state D at the end of charge shown in Table 8 is represented by Ne as the number of moles of divalent V ions
  • the charge state can be described as state E shown in Table 9.
  • the divalent molar number Ne ranges from 0 to [No-2 ⁇ N]. Let the state E shown in Table 9 be the initial state.
  • Table 10 shows the change in the number of moles of V ions of each valence in each electrolyte when the V ions in the anode electrolyte migrate to the cathode electrolyte.
  • State I in Table 10 shows the initial state before the V ions in the negative electrode electrolyte migrate to the positive electrode electrolyte.
  • State II in Table 10 shows a state in which V ions in the negative electrode electrolyte have migrated to the positive electrode electrolyte.
  • ⁇ N be the number of moles of V ions that have migrated from the negative electrode electrolyte to the positive electrode electrolyte.
  • the ratio of divalent V ions and trivalent V ions in the number of moles ⁇ N of V ions that have migrated from the negative electrode electrolyte is ⁇ :(1 ⁇ ).
  • the pentavalent V ions in the positive electrode electrolyte and the moved divalent V reacts with ions.
  • the pentavalent V ions are changed to tetravalent V ions
  • the divalent V ions are changed to trivalent V ions.
  • the number of moles of V ions of each valence in each electrolytic solution is represented by the formula shown in State III of Table 10.
  • the divalent V ions and trivalent V ions in the negative electrode electrolyte when the trivalent V ions move to the positive electrode electrolyte, the pentavalent V ions in the positive electrode electrolyte and the migrated trivalent V reacts with ions. By this reaction, the pentavalent V ions change to tetravalent V ions, and the trivalent V ions change to tetravalent V ions.
  • the number of moles of V ions of each valence in each electrolyte is represented by the formula shown in State IV of Table 10.
  • state IV shown in Table 10 When the V ions in the negative electrode electrolyte move to the positive electrode electrolyte, state IV shown in Table 10 is finally reached.
  • the allowable charge/discharge range changes due to the movement of V ions from the negative electrolyte to the positive electrolyte.
  • the state of charge does not depend on the ratio of divalent V ions and trivalent V ions transferred from the negative electrode electrolyte. That is, in state IV after V ions move from the negative electrode electrolyte to the positive electrode electrolyte, the state of charge does not depend on ⁇ or Ne.
  • the allowable charge/discharge range is represented by 0 to [No-2 ( ⁇ N- ⁇ N)].
  • ⁇ N is the number of moles of V ions transferred from the positive electrolyte to the negative electrolyte.
  • ⁇ N is the number of moles of V ions transferred from the negative electrode electrolyte to the positive electrode electrolyte. The end of charge at this time is limited by the positive electrode electrolyte. The discharge end is limited by the negative electrode electrolyte.
  • ⁇ N ⁇ N the allowable charge/discharge range is expressed from 0 to [No+2( ⁇ N- ⁇ N)].
  • the allowable charge/discharge range begins to decrease.
  • the end of charge at this time is limited by the negative electrode electrolyte.
  • the discharge end is limited by the positive electrolyte.
  • each electrolyte when the liquid volume of the positive electrode electrolyte and the liquid volume of the negative electrode electrolyte are different is as follows.
  • ⁇ p be the SOC of the positive electrode electrolyte in the initial state
  • ⁇ n be the SOC of the negative electrode electrolyte
  • ⁇ ′p be the SOC of the positive electrode electrolyte after the V ions have moved from the negative electrode electrolyte to the positive electrode electrolyte
  • ⁇ ′n be the SOC of the negative electrode electrolyte.
  • the positive electrode electrolyte in the initial state is the positive electrode reference solution
  • the potential ⁇ Vp of the positive electrode electrolyte after the V ions have moved is represented by [Equation 27].
  • the potential ⁇ Vn of the negative electrode electrolyte after the V ions have moved is represented by [Equation 28].
  • ⁇ p and ⁇ 'p can be expressed as [Equation 29] and [Equation 30] using No, ⁇ N, ⁇ N, Ne, and ⁇ , respectively.
  • ⁇ n and ⁇ 'n can be expressed as [Equation 33] and [Equation 34] using No, ⁇ N, Ne, ⁇ N, and ⁇ , respectively.
  • the number of moles of divalent V ions in the negative electrode electrolyte in the initial state is Ne.
  • N is the number of moles of divalent V ions in the negative electrode electrolyte in the initial state.
  • the moving amount of active material ions can be calculated from the potential of . Furthermore, it is possible to calculate the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte based on the calculated amount of movement of the active material ions. In Calculation Example 1 and Calculation Example 2 described above, the case where the active material ions move from the negative electrode electrolyte to the positive electrode electrolyte has been described. Applicable.
  • the RF battery system 1 and the method of operating the RF battery according to the embodiment are based on the verification results regarding the movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte described above.
  • FIG. 1 shows, as an example of an RF battery, a V-based RF battery in which both the positive electrode electrolyte and the negative electrode electrolyte contain V ions as active materials.
  • the solid line arrows indicate the charge reaction
  • the dashed line arrows indicate the discharge reaction.
  • the electrolytic solution is not limited to the vanadium electrolytic solution, and any known electrolytic solution can be used.
  • the RF battery may be a Ti—Mn based RF battery in which the positive electrolyte contains manganese (Mn) ions and the negative electrolyte contains titanium (Ti) ions.
  • the RF battery system 1 is typically connected to the power system 90 via the AC/DC converter 80 and the substation equipment 81 .
  • the RF battery system 1 can charge the power generated by the power generation unit 91 and discharge the charged power to the load 92 .
  • the power generation unit 91 is power generation equipment using natural energy such as solar power generation and wind power generation, and other general power plants.
  • the RF battery system 1 is used, for example, for load leveling applications, voltage sag compensation, emergency power supply applications, and output smoothing applications for natural energy power generation.
  • the RF battery system 1 includes a battery cell 10 , a positive electrode tank 12 , a negative electrode tank 13 , a positive flow channel 14 and a negative flow channel 15 .
  • the positive electrode tank 12 stores a positive electrode electrolyte.
  • the negative electrode tank 13 stores a negative electrode electrolyte.
  • a positive electrode electrolyte is circulated between the positive electrode tank 12 and the battery cell 10 in the positive electrode flow path 14 .
  • the negative electrode electrolyte is circulated between the negative electrode tank 13 and the battery cell 10 .
  • One of the features of the RF battery system 1 of the embodiment is that it includes a measuring instrument 30 and a control device 50 having a first calculator 51 .
  • the battery cells 10 charge and discharge.
  • the battery cell 10 has a positive electrode 104 , a negative electrode 105 and a diaphragm 101 interposed between the electrodes 104 and 105 .
  • the battery cell 10 is separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 .
  • the diaphragm 101 is, for example, a cationic membrane.
  • a positive electrode 104 is incorporated in the positive electrode cell 102 .
  • a negative electrode 105 is incorporated in the negative electrode cell 103 .
  • a positive electrode electrolyte is supplied to the positive electrode cells 102 constituting the battery cells 10 .
  • a negative electrode electrolyte is supplied to the negative electrode cell 103 .
  • the positive electrode flow path 14 has an outbound pipe 108 and a return pipe 110 .
  • the negative electrode channel 15 has an outbound pipe 109 and a return pipe 111 .
  • Outbound pipes 108 and 109 send electrolyte solutions from the positive electrode tank 12 and the negative electrode tank 13 to the battery cell 10 .
  • Each return pipe 110, 111 returns each electrolytic solution from the battery cell 10 to each tank.
  • Pumps 112 and 113 are provided in the respective outbound pipes 108 and 109, respectively.
  • the RF battery system 1 normally includes a cell stack 100 in which a plurality of battery cells 10 are stacked, as shown in FIG.
  • the cell stack 100 is configured by sandwiching a sub-stack 200 s from both sides with two end plates 210 and tightening them with a tightening mechanism 230 .
  • FIG. 2 shows a cell stack 100 comprising multiple substacks 200s.
  • the sub-stack 200s has a structure in which the cell frame 120, the positive electrode 104, the diaphragm 101, and the negative electrode 105 are repeatedly stacked in this order, and the supply/discharge plates 220 are arranged at both ends of the stack.
  • the supply/discharge plate 220 is connected to the outgoing pipes 108 and 109 and the return pipes 110 and 111 shown in FIG.
  • the number of stacked battery cells 10 in the cell stack 100 can be selected as appropriate.
  • the cell frame 120 has, as shown in FIG. On one side of the bipolar plate 121, which is the front side of the paper in FIG. 2, the positive electrodes 104 are arranged so as to face each other. On the other side of the bipolar plate 121, which is the back side of the paper in FIG. 2, the negative electrodes 105 are arranged so as to face each other. Inside the frame 122, the positive electrode 104 and the negative electrode 105 are accommodated with the bipolar plate 121 interposed therebetween.
  • One battery cell 10 is formed by arranging the positive electrode 104 and the negative electrode 105 between the bipolar plates 121 of the adjacent cell frames 120 with the diaphragm 101 interposed therebetween.
  • An annular sealing member 127 such as an O-ring is arranged between the frames 122 of the cell frames 120 in order to suppress leakage of the electrolyte.
  • a frame 122 of the cell frame 120 has liquid supply manifolds 123 and 124 and liquid discharge manifolds 125 and 126 .
  • the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 through a groove formed in the lower portion of the one surface side of the frame 122 .
  • the positive electrode electrolyte supplied to the positive electrode 104 is discharged to the drainage manifold 125 through a groove formed in the upper part of one surface of the frame 122 .
  • the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 through a groove formed in the lower portion of the other surface of the frame 122 .
  • the negative electrode electrolyte supplied to the negative electrode 105 is discharged to the drainage manifold 126 through a groove formed in the upper portion of the other surface of the frame 122 .
  • the liquid supply manifolds 123 and 124 and the liquid discharge manifolds 125 and 126 are provided through the frame 122, and the cell frames 120 are laminated to constitute flow paths for the respective electrolytes. Each of these flow paths communicates with the outgoing pipes 108 and 109 and the return pipes 110 and 111 shown in FIG.
  • the cell stack 100 is capable of circulating the positive electrode electrolyte and the negative electrode electrolyte to each battery cell 10 through the channels.
  • the positive electrode electrolyte and the negative electrode electrolyte are typically aqueous solutions containing active material ions.
  • the aqueous solution is, for example, a sulfuric acid (H 2 SO 4 ) aqueous solution, a phosphoric acid (H 3 PO 4 ) aqueous solution, or a nitric acid (HNO 3 ) aqueous solution.
  • Active material ions are ions of elements that function as active materials in the electrolyte. Active material ions are, for example, ions of elements selected from the group consisting of vanadium (V), manganese (Mn), iron (Fe), chromium (Cr), titanium (Ti), and zinc (Zn).
  • the active material ions of the positive electrode electrolyte are typically V ions, Fe ions, and Mn ions.
  • the active material ions of the negative electrode electrolyte are typically V ions, Cr ions, Ti ions, and Zn ions. These active material ions may be used singly or in combination.
  • both the positive electrode electrolyte and the negative electrode electrolyte are aqueous sulfuric acid solutions containing V ions.
  • the positive electrode electrolyte contains pentavalent V ions.
  • the negative electrode electrolyte contains divalent V ions.
  • the active material ions of the positive electrode electrolyte and the active material ions of the negative electrode electrolyte may be ions of different elements or ions of the same element. Specific combinations of active material ions contained in the positive electrode electrolyte and the negative electrode electrolyte are shown below.
  • Positive electrode electrolyte V ions (V 4+ /V 5+ ), negative electrode electrolyte: V ions (V 3+ /V 2+ ) (2) Positive electrode electrolyte: Fe ions (Fe 2+ /Fe 3+ ), negative electrode electrolyte: Cr ions (Cr 3+ /Cr 2+ ) (3) Positive electrode electrolyte: Mn ions (Mn 2+ /Mn 3+ ), negative electrode electrolyte: Ti ions (Ti 4+ /Ti 3+ ) (4) Positive electrode electrolyte: Fe ions (Fe 2+ /Fe 3+ ), negative electrode electrolyte: Ti ions (Ti 4+ /Ti 3+ ) (5) Positive electrode electrolyte: Mn ions (Mn 2+ /Mn 3+ ), negative electrode electrolyte: Zn ions (Zn 2+ /Zn)
  • the positive electrode electrolyte and the negative electrode electrolyte contain active material ions of the same element. Specifically, at least one type of active material ions contained in the positive electrode electrolyte and the negative electrode electrolyte are ions of the same element. Furthermore, all active material ions contained in the positive electrode electrolyte and the negative electrode electrolyte may be ions of the same element. Since the positive electrode electrolyte and the negative electrode electrolyte contain active material ions of the same element, even if the active material ions move between the two electrolytes due to repeated charging and discharging, the influence on the electrolyte is small. If the active material ions of the positive electrode electrolyte and the negative electrode electrolyte are ions of the same element, mixing the positive electrode electrolyte and the negative electrode electrolyte has little effect.
  • the positive electrode electrolyte and the negative electrode electrolyte in the initial state are adjusted so that the ion valence ratio is the same.
  • the initial state includes, for example, a state before the operation of the RF battery system 1 is started, a state after maintenance and before operation is restarted, and the like.
  • the same ionic valence ratio includes not only strictly the same but also substantially the same. If the difference in the ionic valence ratio between the two electrolytes is in the range of 0.05 or less, and further 0.03 or less, the difference in the ionic valence ratio is considered to be substantially the same.
  • the same ionic valence ratio means the ratio of pentavalent V ions to all V ions in the positive electrode electrolyte and the ratio of divalent V ions to all V ions in the negative electrode electrolyte. It means that the difference is within ⁇ 5% or less.
  • the measuring device 30 measures a plurality of values selected from the group consisting of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the positive electrolyte and the negative electrolyte. That is, the measuring instrument 30 measures two or more of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the two electrolytes.
  • a voltmeter can be used for the measurement.
  • a voltmeter includes any instrument capable of measuring a voltage or a physical quantity convertible to voltage. The values measured by measuring instrument 30 are sent to control device 50 .
  • the potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte are potentials relative to the reference potential.
  • a reference potential is a potential reference and has a known potential.
  • the potential difference between the reference solution and the positive electrode electrolyte can be measured.
  • a reference solution with a known potential can be used to measure the potential difference between the reference solution and the negative electrode electrolyte.
  • the potential of the positive electrode electrolyte may be determined by measuring the potential difference between the reference electrode and the positive electrode electrolyte using a reference electrode.
  • a reference electrode may be used to measure the potential difference between the reference electrode and the negative electrode electrolyte.
  • the reference electrode is, for example, a silver-silver chloride electrode (Ag/AgCl).
  • the measuring instrument 30 measures two values, the potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte.
  • a measuring instrument 30 of this embodiment has two monitor cells, a positive electrode monitor cell 31 and a negative electrode monitor cell 32 .
  • the positive electrode monitor cell 31 and the negative electrode monitor cell 32 do not charge or discharge.
  • the positive electrode monitor cell 31 shown in FIG. 1 measures the potential of the positive electrode electrolyte.
  • the positive electrode monitor cell 31 is provided in the middle of the positive electrode flow path 14 . Specifically, it is provided in the branch flow path 16 branched from the outbound pipe 108 and connected to the inbound pipe 110 .
  • the branch channel 16 is provided so as to bypass the battery cell 10 .
  • the positive electrode monitor cell 31 is supplied with a positive electrode electrolyte common to the positive electrode electrolyte supplied to the battery cell 10 from the outgoing pipe 108 through the branch flow path 16 . That is, the positive electrode electrolyte solution supplied to the battery cell 10 and the positive electrode electrolyte solution supplied to the positive electrode monitor cell 31 are each supplied from the outgoing line pipe 108 .
  • the positive electrode monitor cell 31 has a positive electrode reference solution 24 that serves as a reference for the potential of the positive electrode electrolyte solution 22 .
  • a basic configuration of the positive electrode monitor cell 31 is the same as that of the battery cell 10 .
  • the positive monitor cell 31 is separated into a positive cell 312 and a reference cell 314 by a diaphragm 301 .
  • the positive electrode cell 312 and the reference cell 314 each contain an electrode 31p.
  • a branch channel 16 is connected to the positive electrode cell 312, and the positive electrode electrolyte 22 circulates.
  • the reference cell 314 contains the cathode reference solution 24 .
  • the diaphragm 301 is not particularly limited as long as the active material ions do not migrate between the positive electrode electrolyte solution 22 and the positive electrode reference solution 24 .
  • the diaphragm 301 of this embodiment has a film thickness that is large enough to prevent active material ions from moving.
  • the positive electrode monitor cell 31 has a voltmeter 31v.
  • a voltmeter 31v is attached to the electrode 31p.
  • the voltmeter 31v measures the potential difference between the positive electrode reference solution 24 and the positive electrode electrolyte solution 22 by measuring the open circuit voltage between the electrodes 31p. Let this potential difference be the potential of the positive electrode electrolyte 22 .
  • the negative electrode monitor cell 32 shown in FIG. 1 measures the potential of the negative electrode electrolyte.
  • the negative electrode monitor cell 32 is provided in the middle of the negative electrode flow path 15 . Specifically, it is provided in a branch flow path 17 branched from the outbound pipe 109 and connected to the inbound pipe 111 .
  • the branch channel 17 is provided so as to bypass the battery cell 10 .
  • a negative electrode electrolyte common to the negative electrode electrolyte supplied to the battery cell 10 is supplied to the negative electrode monitor cell 32 from the outgoing pipe 109 through the branch flow path 17 . That is, the negative electrode electrolyte solution supplied to the battery cell 10 and the negative electrode electrolyte solution supplied to the negative electrode monitor cell 32 are each supplied from the outgoing line pipe 109 .
  • the negative electrode monitor cell 32 has a negative electrode reference solution 25 that serves as a reference for the potential of the negative electrode electrolyte solution 23 .
  • the basic configuration of the negative electrode monitor cell 32 is the same as that of the positive electrode monitor cell 31 .
  • the negative monitor cell 32 is separated into a negative cell 323 and a reference cell 325 by a diaphragm 301 .
  • the negative electrode cell 323 and the reference cell 325 each contain an electrode 32p.
  • a branch flow path 17 is connected to the negative electrode cell 323, and the negative electrode electrolyte 23 circulates.
  • the reference cell 325 contains the negative electrode reference solution 25 .
  • the negative electrode monitor cell 32 has a voltmeter 32v.
  • a voltmeter 32v is attached to the electrode 32p.
  • the voltmeter 32v measures the potential difference between the negative electrode reference solution 25 and the negative electrode electrolyte solution 23 by measuring the open circuit voltage between the electrodes 32p. Let this potential difference be the potential of the negative electrode electrolyte 23 .
  • the positive electrode reference solution 24 and the negative electrode reference solution 25 are not particularly limited as long as their potentials are known.
  • the positive electrode reference liquid 24 and the negative electrode reference liquid 25 are, for example, electrolytic solutions.
  • the positive electrode reference solution 24 may have the same composition as the positive electrode electrolyte solution 22
  • the negative electrode reference solution 25 may have the same composition as the negative electrode electrolyte solution 23 . That is, the positive electrode reference liquid 24 and the negative electrode reference liquid 25 may be aqueous solutions containing V ions.
  • the state of charge (SOC) of each of the positive electrode standard solution 24 and the negative electrode standard solution 25 is substantially the same.
  • the ionic valence ratio of the positive electrode reference solution 24 and the ionic valence ratio of the negative electrode reference solution 25 are adjusted to be substantially the same.
  • the ratio of pentavalent V ions in the positive electrode reference solution 24 and the ratio of divalent V ions in the negative electrode reference solution 25 are substantially the same.
  • the SOC of the positive electrode reference solution 24 and the SOC of the negative electrode reference solution 25 may be different. That is, the ion valence ratio of the positive electrode reference solution 24 and the ion valence ratio of the negative electrode reference solution 25 may be different.
  • the positive electrode reference solution 24 is an electrolytic solution having the same composition as the positive electrode electrolytic solution 22
  • the negative electrode reference solution 25 is an electrolytic solution having the same composition as the negative electrode electrolytic solution 23 . That is, the positive electrode reference liquid 24 and the negative electrode reference liquid 25 contain V ions.
  • the SOC of the positive electrode reference solution 24 and the SOC of the negative electrode reference solution 25 are substantially the same. That is, the ion valence ratio of the positive electrode reference solution 24 and the ion valence ratio of the negative electrode reference solution 25 are substantially the same.
  • the potential values measured by the positive electrode monitor cell 31 and the negative electrode monitor cell 32 are transmitted to the control device 50 .
  • the RF battery system 1 of this embodiment includes a mixing flow path 60 and a valve 70, as shown in FIG.
  • the mixing channel 60 is for mixing the positive electrode electrolyte and the negative electrode electrolyte.
  • the mixing channel 60 has a mixing pipe 61 that connects the positive channel 14 and the negative channel 15 .
  • the mixing pipe 61 of the present embodiment connects the return pipe 110 of the positive electrode flow channel 14 and the return pipe 111 of the negative electrode flow channel 15 .
  • the mixing pipe 61 is composed of two pipes, a first mixing pipe 61a and a second mixing pipe 61b.
  • the first mixing pipe 61 a circulates the positive electrode electrolyte from the return pipe 110 of the positive electrode flow channel 14 to the return pipe 111 of the negative electrode flow channel 15 .
  • the second mixing pipe 61 b circulates the negative electrode electrolyte from the return pipe 111 of the negative electrode flow channel 15 to the return pipe 110 of the positive electrode flow channel 14 . Therefore, the mixing pipe 61 can mix the positive electrode electrolyte and the negative electrode electrolyte through the first mixing pipe 61a and the second mixing pipe 61b.
  • the first mixing pipe 61 a may be directly connected to the negative electrode tank 13 from the return pipe 110 of the positive electrode flow channel 14 .
  • the second mixing pipe 61 b may be directly connected to the positive electrode tank 12 from the return pipe 111 of the negative electrode flow channel 15 .
  • Valve 70 adjusts the communication state of mixing channel 60 .
  • the valve 70 adjusts the state of communication between the first mixing pipe 61 a and the second mixing pipe 61 b that constitute the mixing pipe 61 .
  • the valve 70 is provided at each of the branching portion between the return pipe 110 of the positive electrode flow channel 14 and the first mixing pipe 61a and the branching portion between the return pipe 111 of the negative electrode flow channel 15 and the second mixing pipe 61b.
  • the valve 70 is not particularly limited as long as it can adjust the communication state of the mixing pipe 61 that is the mixing flow path 60, and its mechanism and mounting position are not particularly limited.
  • the valve 70 of this embodiment is a switching valve that switches the flow paths between the return pipes 110, 111 and the mixing pipes 61a, 61b.
  • the valve 70 When the valve 70 is open, the return pipes 110 and 111 are in communication, and the mixing pipes 61a and 61b are in non-communication. Therefore, the positive electrode electrolyte and the negative electrode electrolyte are returned to the positive electrode tank 12 and the negative electrode tank 13 through the return pipes 110 and 111 of the positive electrode flow path 14 and the negative electrode flow path 15, respectively.
  • the valve 70 is closed, the return pipes 110 and 111 are not communicated, and the mixing pipes 61a and 61b are communicated.
  • the positive electrode electrolyte is sent from the return pipe 110 of the positive electrode flow channel 14 to the return pipe 111 of the negative electrode flow channel 15 through the first mixing pipe 61a.
  • the negative electrode electrolytic solution is sent from the return pipe 111 of the negative electrode flow channel 15 to the return pipe 110 of the positive electrode flow channel 14 through the second mixing pipe 61b.
  • the valve 70 can adjust the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte by adjusting the communication state of the mixing pipes 61a and 61b.
  • the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be measured by, for example, the flow rate of each pump 112 and 113 and the open/close time of the valve 70 .
  • a flow meter (not shown) may be attached to the valve 70 or the mixing pipes 61a and 61b to measure the mixing amount using the flow meter.
  • the opening and closing operations of the valve 70 are controlled by control signals from the control device 50 .
  • the controller 50 not only controls the operation of the RF battery system 1, but also monitors the state of the RF battery system 1 and controls operations necessary for improvement.
  • the control device 50 of this embodiment includes a first calculator 51 , a second calculator 52 , and a mixing controller 53 .
  • the control device 50 is typically composed of a computer.
  • a computer includes a processor, memory, and the like.
  • the memory stores a program for causing the processor to execute each process of the first arithmetic unit 51, the second arithmetic unit 52, and the mixing controller 53.
  • FIG. The processor reads and executes programs stored in memory.
  • the program includes a group of instructions for each process of the first arithmetic unit 51, the second arithmetic unit 52, and the mixing controller 53. The processing procedure by the control device 50 will be described in detail in the section ⁇ How to Operate the RF Battery> later.
  • the memory of the control device 50 stores information on the electrolytic solution in the initial state.
  • the information on the electrolyte is, for example, the molar concentration (no) of the active material ions in each electrolyte of the positive electrode electrolyte and the negative electrode electrolyte, the total number of moles of the active material ions (N), the liquid volume of each electrolyte (L ) and so on.
  • the first computing unit 51 computes the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte based on the values measured by the measuring device 30 .
  • the values measured by the measuring instrument 30 are two values, the potential of the positive electrode electrolyte measured by the positive electrode monitor cell 31 and the potential of the negative electrode electrolyte measured by the negative electrode monitor cell 32.
  • the first calculator 51 obtains the above-described movement amount ⁇ by performing the calculation described in the section ⁇ Method for calculating movement amount of active material ions>.
  • the amount of migration ⁇ is represented by the ratio of the number of moles ( ⁇ N) of migrated divalent V ions to the total number of moles (N) of V ions in the negative electrode electrolyte in the initial state.
  • control device 50 may have a determination unit that determines whether or not the movement amount of the active material ions is equal to or less than a predetermined threshold.
  • the amount of movement of active material ions can be used, for example, as one of indicators for determining whether the decrease in battery capacity is within the allowable range. If the amount of movement of the active material ions is small, the difference in the ratio of the ionic valences of both electrolytes is small. That is, the breakdown of the valence balance between the positive electrode electrolyte and the negative electrode electrolyte is small. Therefore, it is a state in which the valence balance is maintained to some extent, that is, a state in which the decrease in battery capacity is small.
  • the threshold value is, for example, 0 or more and 0.1 or less.
  • the control device 50 determines that the decrease in battery capacity is within the allowable range and determines that the battery is normal. On the other hand, when it is determined that the amount of movement of the active material ions exceeds the threshold, the control device 50 determines that the decrease in battery capacity exceeds the allowable range, and determines that there is an abnormality. When the controller 50 determines that there is an abnormality, it notifies the user, for example.
  • the RF battery system 1 of this embodiment may further include an annunciator 59 that notifies the result of determination by the determination unit.
  • the control device 50 causes the notification device 59 to notify the determination result.
  • the annunciator 59 includes, for example, at least one of a speaker, lamp, display, and the like. The annunciator 59 informs the outside that the amount of movement exceeds the threshold by, for example, emitting a sound from a speaker, lighting a lamp, or displaying characters on a display.
  • the second computing unit 52 computes the mixing amount at which the SOC of the positive electrode electrolyte and the SOC of the negative electrode electrolyte become the same, based on the movement amount of the active material ions obtained by the first computing unit 51 .
  • the same SOC as used herein is not limited to the case where the SOC of the positive electrode electrolyte and the SOC of the negative electrode electrolyte are strictly the same, but also includes the case where they are substantially the same.
  • the mixed amount is the amount of mixing the positive electrode electrolyte and the negative electrode electrolyte with each other. In other words, the mixed amount is the amount to replace the positive electrode electrolyte and the negative electrode electrolyte with each other.
  • the second calculator 52 obtains the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte by performing the calculation described in the above section ⁇ method for calculating the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte>. Specifically, the mixing ratio ⁇ o described above is calculated, and the mixed amount of the electrolytic solution is obtained from the mixing ratio ⁇ o.
  • the range of ⁇ o is [0 ⁇ o ⁇ 1/2]. For example, when the mixing ratio ⁇ o is 0.2, the mixing amount is 20% of the liquid amount of each electrolytic solution.
  • the positive electrode electrolyte corresponding to 20% of the liquid amount of the positive electrode electrolyte is mixed with the negative electrode electrolyte
  • the negative electrode electrolyte corresponding to 20% of the liquid amount of the negative electrode electrolyte is mixed with the positive electrode electrolyte.
  • the processing by the second calculator 52 may be executed when the positive electrode electrolyte and the negative electrode electrolyte are mixed, for example, during maintenance. Specifically, the processing by the second calculator 52 is executed when the movement amount of the active material ions exceeds the threshold.
  • the amount of movement of the active material ions can be used as an indicator of the timing of mixing the positive electrode electrolyte and the negative electrode electrolyte. As described above, when the amount of movement of active material ions exceeds the threshold, it can be determined that the decrease in battery capacity exceeds the allowable range. Therefore, when the movement amount of the active material ions exceeds the threshold, it serves as an indicator of the timing of mixing the positive electrode electrolyte and the negative electrode electrolyte to adjust the valence balance. Whether or not the movement amount of the active material ions has exceeded the threshold may be determined based on the determination result of the determination unit described above.
  • the mixing controller 53 operates the valve 70 based on the mixing amount obtained by the second computing unit 52 so as to mix the positive electrode electrolyte and the negative electrode electrolyte.
  • the mixing controller 53 mixes the positive electrode electrolyte and the negative electrode electrolyte through the mixing pipe 61 by closing the valve 70 as described above.
  • the mixing controller 53 stops the mixing of the positive electrode electrolyte and the negative electrode electrolyte by opening the valve 70 .
  • the amount of the positive electrode electrolyte and the negative electrode electrolyte to be mixed can be adjusted by, for example, the flow rate of each pump 112 and 113 and the opening/closing time of the valve 70 . Whether or not the positive electrode electrolyte and the negative electrode electrolyte have been mixed up to the above mixing amount can be determined by, for example, the flow rate of each pump 112 and 113 and the opening/closing time of the valve 70 . Alternatively, it may be determined from the flow rate measured by the flow meter described above.
  • the positive electrode electrolyte and the negative electrode electrolyte are mixed in a state where the SOC is high.
  • the positive electrode electrolyte and the negative electrode electrolyte are mixed in a state where the SOC is low, the energy loss is reduced.
  • the low SOC state means, for example, that the SOC of each electrolytic solution is 30% or less, further 25% or less, or 20% or less.
  • the positive electrode electrolyte and the negative electrode electrolyte may be mixed while the RF battery system 1 is in operation, that is, while charging and discharging, or while the RF battery system 1 is stopped, that is, while charging and discharging are not performed.
  • Modification 1 A modification of the RF battery system 1 according to the embodiment will be described with reference to FIG.
  • the RF battery system 1 of Modification 1 shown in FIG. 5 differs from the RF battery system 1 of the embodiment shown in FIG. 1 in that the measuring instrument 30 has a bipolar monitor cell 40 .
  • the following description focuses on differences from the above-described embodiment. Descriptions of configurations similar to those of the embodiment may be omitted.
  • the bipolar monitor cell 40 measures the potential difference between the positive electrolyte and the negative electrolyte.
  • the bipolar monitor cell 40 does not charge or discharge.
  • the bipolar monitor cell 40 is provided in the middle of the positive flow path 14 and the negative flow path 15 .
  • the bipolar monitor cell 40 is supplied with a positive electrode electrolyte and a negative electrode electrolyte that are common to the positive electrode electrolyte and the negative electrode electrolyte that are supplied to the battery cell 10 .
  • the positive electrode electrolyte and the negative electrode electrolyte are supplied to the bipolar monitor cell 40 from the outgoing pipe 108 of the positive electrode channel 14 and the outgoing pipe 109 of the negative electrode channel 15, respectively.
  • the configuration of the bipolar monitor cell 40 is the same as that of the battery cell 10, and has a positive electrode 104, a negative electrode 105, and a diaphragm 101.
  • a positive electrode 104 and a negative electrode 105 are built in a positive electrode cell 102 and a negative electrode cell 103 separated by a diaphragm 101, respectively.
  • the bipolar monitor cell 40 has a voltmeter 40v.
  • the voltmeter 40v measures the potential difference between the positive electrode electrolyte and the negative electrode electrolyte by measuring the open circuit voltage between the electrodes 104 and 105 .
  • the value of the potential difference measured by the bipolar monitor cell 40 is sent to the controller 50 .
  • Modification 2 Another modification of the RF battery system 1 according to the embodiment will be described with reference to FIG.
  • the RF battery system 1 of Modification 2 shown in FIG. 6 is different from the RF battery system 1 of the embodiment shown in FIG. .
  • the following description focuses on differences from the above-described embodiment. Descriptions of configurations similar to those of the embodiment may be omitted.
  • the communication pipe 65 is composed of two pipes, a first communication pipe 65a and a second communication pipe 65b.
  • the first communication pipe 65 a circulates the positive electrode electrolyte from the positive electrode tank 12 to the negative electrode tank 13 .
  • the second communication pipe 65 b allows the negative electrode electrolyte to flow from the negative electrode tank 13 to the positive electrode tank 12 . Therefore, the communication pipe 65 can mix the positive electrode electrolyte and the negative electrode electrolyte by the first communication pipe 65a and the second communication pipe 65b.
  • one end of the first communication pipe 65a is connected to the downstream side of the pump 112 provided in the outgoing pipe 108 of the positive electrode flow path 14, and the other end of the first communication pipe 65a is connected to the negative electrode tank 13. ing.
  • One end of the second communication pipe 65b is connected to the downstream side of the pump 113 provided in the outward pipe 109 of the negative electrode flow channel 15, and the other end of the second communication pipe 65b is connected to the positive electrode tank 12. Therefore, it is possible to mix the positive electrode electrolyte and the negative electrode electrolyte between the positive electrode tank 12 and the negative electrode tank 13 using the respective pumps 112 and 113 .
  • the valve 70 adjusts the communication state of the first communication pipe 65 a and the second communication pipe 65 b that constitute the communication pipe 65 .
  • the valve 70 is provided at a branching portion between the forward pipe 108 of the positive electrode flow channel 14 and the first communication pipe 65a and at a branching portion between the outward pipe 109 of the negative electrode flow channel 15 and the second communication pipe 65b.
  • the valve 70 of the present example is a switching valve that switches the flow path between the outward piping 108 and the communication piping 65a and switches the flow path between the outward piping 109 and the communication piping 65b. When the valve 70 is open, the outgoing pipes 108 and 109 are in communication, and the communication pipes 65a and 65b are in non-communication.
  • the positive electrode electrolyte solution and the negative electrode electrolyte solution are sent to the battery cell 10 through the outgoing pipes 108 and 109 of the positive electrode flow channel 14 and the negative electrode flow channel 15 , respectively.
  • the valve 70 When the valve 70 is closed, the forward pipes 108 and 109 are not communicated, and the communicating pipes 65a and 65b are communicated. Therefore, the positive electrode electrolyte is sent from the positive electrode tank 12 to the negative electrode tank 13 through the first communication pipe 65a. Further, the negative electrode electrolyte is sent from the negative electrode tank 13 to the positive electrode tank 12 through the second communication pipe 65b.
  • the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be measured by, for example, the flow rate of each pump 112 and 113 and the open/close time of the valve 70 .
  • a flow meter (not shown) may be attached to the valve 70 or the communication pipes 65a and 65b to measure the mixing amount using the flow meter.
  • FIG. 7 A method of operating the RF battery according to the embodiment will be described with reference to FIGS. 7 and 8.
  • FIG. The method of operating the RF battery utilizes the above-described RF battery system 1 to supply the positive electrode electrolyte and the negative electrode electrolyte to the battery cell 10 for charging and discharging.
  • One of the features of the method of operating the RF battery of the embodiment is that it includes a measurement step S11 and a first calculation step S12, as shown in FIG. Descriptions of the same contents as those described for the RF battery system 1 may be omitted.
  • the measurement step S11 is a step of measuring a plurality of values selected from the group consisting of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the positive electrolyte and the negative electrolyte. That is, in the measuring step, two or more of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the two electrolytes are measured.
  • the potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte can be measured using, for example, the positive electrode monitor cell 31 (FIG. 3) and the negative electrode monitor cell 32 (FIG. 4) described above.
  • the potential difference between the positive electrode electrolyte and the negative electrode electrolyte can be measured using, for example, the above-described bipolar monitor cell 40 (FIG. 5).
  • the measuring step S11 measures the potential ⁇ Vp of the positive electrode electrolyte and the potential ⁇ Vn of the negative electrode electrolyte.
  • the first calculation step S12 is a step of calculating the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte based on the values measured in the measurement step S11. In the present embodiment, the first calculation step S12 calculates the amount of ion movement ⁇ based on the potential ⁇ Vp of the positive electrode electrolyte and the potential ⁇ Vn of the negative electrode electrolyte measured in the measurement step S11. In the first calculation step S12, the movement amount ⁇ described above is calculated by performing the calculation described in the section ⁇ Method for calculating movement amount of active material ions>.
  • the first computing step S12 is a process executed by the first computing unit 51 described above.
  • the method of operating the RF battery of this embodiment may further include a determination step S13.
  • a determination step S13 determines whether or not the movement amount ⁇ of the active material ions calculated in the first calculation step S12 is equal to or less than a predetermined threshold value. When it is determined that the ion transfer amount ⁇ is equal to or less than the threshold, it is determined that the decrease in battery capacity is within the allowable range, and normality determination S14 is performed. If it is determined that the ion migration amount ⁇ is not below the threshold value, ie, the ion migration amount ⁇ exceeds the threshold value, it is determined that the decrease in battery capacity exceeds the allowable range, and abnormality determination S15 is performed.
  • the determination step S13 is a process executed by the determination unit described above.
  • the operation of the RF battery system 1 is continued.
  • the abnormality determination S15 for example, the user is notified. Specifically, a step of notifying the outside that the amount of ion movement ⁇ exceeds a threshold value may be provided.
  • the notification method is, for example, emitting a sound from a speaker, lighting a lamp, or displaying characters on a display.
  • the method of operating the RF battery of this embodiment further includes a second calculation step S21 and a mixing step S22.
  • the second calculation step S21 based on the movement amount of the active material ions calculated in the first calculation step S12 (FIG. 7), the mixed amount that makes the state of charge of the positive electrode electrolyte and the state of charge of the negative electrode electrolyte the same. is a step of calculating In the second calculation step S21, the mixing amount is calculated by performing the calculation described in the section ⁇ Method for calculating the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte>. Specifically, the mixing ratio ⁇ o described above is calculated, and the mixed amount of the electrolytic solution is obtained from the mixing ratio ⁇ o.
  • the second computing step S21 is a process executed by the second computing unit 52 described above.
  • the mixing step S22 is a step of mixing the positive electrode electrolyte and the negative electrode electrolyte based on the mixing amount calculated in the second calculation step S21.
  • the positive electrode electrolyte and the negative electrode electrolyte are mixed through the mixing pipe 61 (FIG. 1) and the communication pipe 65 (FIG. 6), which are the mixing flow paths 60, by operating the valve 70, for example.
  • the mixing step S22 is a process executed by the mixing controller 53 described above. In the mixing step S22, after mixing the positive electrode electrolyte and the negative electrode electrolyte in the above mixing amount, the mixing of the positive electrode electrolyte and the negative electrode electrolyte is stopped.
  • the measurement step S11, the first calculation step S12, and the determination step S13 are repeated in order during operation of the RF battery.
  • the second calculation step S21 and the mixing step S22 are executed when the abnormality determination S15, that is, when the ion movement amount ⁇ exceeds the threshold value.
  • the RF battery system 1 and the RF battery operating method according to the above-described embodiment have the following effects.
  • the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte can be grasped in real time.
  • the movement amount of the active material ions is calculated based on a plurality of values selected from the potential of the positive electrode electrolyte, the potential of the negative electrode electrolyte, and the potential difference between the positive electrode electrolyte and the negative electrode electrolyte. It is possible to accurately and quantitatively grasp the movement amount of ions. Therefore, it is possible to accurately grasp the decrease in the battery capacity due to the movement of the active material ions.
  • the state of the electrolyte can be appropriately managed. This is because it is possible to quantitatively evaluate the shift in the ratio of the ionic valences of the two electrolytic solutions caused by the migration of the active material ions, in other words, the collapse of the valence balance.
  • the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be set appropriately.
  • the reason is that the mixing amount is calculated based on the accurate movement amount of the active material ions.
  • Redox flow battery system 10 battery cell 101 diaphragm 102 positive electrode cell 103 negative electrode cell 104 positive electrode 105 negative electrode 12 positive electrode tank 13 negative electrode tank 14 positive flow channel 15 negative flow channel 16, 17 branch flow channel 108, 109 outbound pipe 110 , 111 return pipe 112, 113 pump 22 positive electrode electrolyte, 23 negative electrode electrolyte, 24 positive electrode reference solution, 25 negative electrode reference solution 30 measuring instrument 31 positive electrode monitor cell, 32 negative electrode monitor cell 301 diaphragm, 312 positive electrode cell, 323 negative electrode cell 314, 325 Reference cell 31p, 32p Electrode 31v, 32v Voltmeter 40 Bipolar monitor cell 40v Voltmeter 50 Control device 51 First calculator, 52 Second calculator 53 Mixing controller 59 Alarm 60 Mixing channel 61 Mixing pipe, 61a First mixing Piping 61b Second mixing pipe 65 Communication pipe 65a First communication pipe 65b Second communication pipe 70 Valve 80 AC/DC converter 81 Substation equipment 90 Power system 91 Power generation unit 92 Load 100 Cell stack 200s Sub

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is a redox flow battery system comprising: a battery cell to which a positive electrode electrolyte and a negative electrode electrolyte are supplied; a measurement instrument that measures a plurality of values selected from the group consisting of the potential of the positive electrode electrolyte, the potential of the negative electrode electrolyte, and the potential difference between the positive electrode electrolyte and the negative electrode electrolyte; and a first calculation device that calculates, on the basis of the plurality of values, the amount of active material ions moving between the positive electrode electrolyte and the negative electrode electrolyte.

Description

レドックスフロー電池システム、及びレドックスフロー電池の運転方法REDOX FLOW BATTERY SYSTEM AND METHOD OF OPERATION OF REDOX FLOW BATTERY
 本開示は、レドックスフロー電池システム、及びレドックスフロー電池の運転方法に関する。
 本出願は、2021年4月15日付の日本国出願の特願2021-069243に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to redox flow battery systems and methods of operating redox flow batteries.
This application claims priority based on Japanese Patent Application No. 2021-069243 filed in Japan on April 15, 2021, and incorporates all the contents described in the Japanese application.
 特許文献1、2は、充放電を行う電池セルとは別に、電池セルに供給される電解液と共通の電解液が供給されるモニタセルを備えるレドックスフロー電池を開示する。このレドックスフロー電池は、モニタセルの開放電圧を測定することにより、電解液の充電状態(SOC:State Of Charge)を把握する。 Patent Documents 1 and 2 disclose a redox flow battery provided with a monitor cell supplied with an electrolytic solution common to the electrolytic solution supplied to the battery cell, separately from the battery cells that charge and discharge. In this redox flow battery, the state of charge (SOC: State Of Charge) of the electrolyte is grasped by measuring the open-circuit voltage of the monitor cell.
特開2009-16217号公報JP 2009-16217 A 特開2013-37857号公報JP 2013-37857 A
 本開示のレドックスフロー電池システムは、正極電解液及び負極電解液が供給される電池セルと、前記正極電解液の電位、前記負極電解液の電位、及び前記正極電解液と前記負極電解液との電位差からなる群より選択される複数の値を測定する計測器と、前記複数の値に基づいて、前記正極電解液と前記負極電解液との間での活物質イオンの移動量を演算する第一演算器とを備える。 The redox flow battery system of the present disclosure includes a battery cell to which a positive electrode electrolyte and a negative electrode electrolyte are supplied, a potential of the positive electrode electrolyte, a potential of the negative electrode electrolyte, and a potential of the positive electrode electrolyte and the negative electrode electrolyte. a measuring instrument for measuring a plurality of values selected from a group consisting of potential differences; and a calculator.
 本開示のレドックスフロー電池の運転方法は、電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池の運転方法であって、前記正極電解液の電位、前記負極電解液の電位、及び前記正極電解液と前記負極電解液との電位差からなる群より選択される複数の値を測定する工程と、前記複数の値に基づいて、前記正極電解液と前記負極電解液との間での活物質イオンの移動量を演算する工程とを備える。 A method of operating a redox flow battery of the present disclosure is a method of operating a redox flow battery in which a positive electrode electrolyte and a negative electrode electrolyte are supplied to a battery cell for charging and discharging, and the potential of the positive electrode electrolyte and the negative electrode electrolyte and a potential difference between the positive electrode electrolyte and the negative electrode electrolyte; and based on the plurality of values, the positive electrode electrolyte and the negative electrode electrolyte. and calculating the amount of movement of the active material ions between.
図1は、実施形態に係るレドックスフロー電池システムの構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of a redox flow battery system according to an embodiment. 図2は、セルスタックの構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of a cell stack. 図3は、正極モニタセルの構成を示す概略図である。FIG. 3 is a schematic diagram showing the configuration of a positive electrode monitor cell. 図4は、負極モニタセルの構成を示す概略図である。FIG. 4 is a schematic diagram showing the configuration of a negative electrode monitor cell. 図5は、実施形態に係るレドックスフロー電池システムの構成の別の一例を示す概略図である。FIG. 5 is a schematic diagram showing another example of the configuration of the redox flow battery system according to the embodiment. 図6は、実施形態に係るレドックスフロー電池システムの構成の別の一例を示す概略図である。FIG. 6 is a schematic diagram showing another example of the configuration of the redox flow battery system according to the embodiment. 図7は、実施形態に係るレドックスフロー電池の運転方法の処理手順を示すフローチャートである。FIG. 7 is a flow chart showing the processing procedure of the method for operating the redox flow battery according to the embodiment. 図8は、実施形態に係るレドックスフロー電池の運転方法の別の処理手順を示すフローチャートである。FIG. 8 is a flowchart showing another processing procedure of the method for operating the redox flow battery according to the embodiment.
 [本開示が解決しようとする課題]
 レドックスフロー電池の運転中、正極電解液と負極電解液との間での活物質イオンの移動量を把握したいという要望がある。活物質イオンの移動が起こると、正極電解液と負極電解液との価数バランスが崩れることによって、電池容量の低下を招くからである。
[Problems to be Solved by the Present Disclosure]
There is a demand to grasp the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte during operation of the redox flow battery. This is because the movement of the active material ions disturbs the valence balance between the positive electrode electrolyte and the negative electrode electrolyte, resulting in a decrease in battery capacity.
 そこで、本開示は、正極電解液と負極電解液との間での活物質イオンの移動量を把握できるレドックスフロー電池システム及びレドックスフロー電池の運転方法を提供することを目的の一つとする。 Therefore, one of the objects of the present disclosure is to provide a redox flow battery system and a method of operating a redox flow battery that can determine the amount of active material ion movement between the positive electrode electrolyte and the negative electrode electrolyte.
 [本開示の効果]
 本開示のレドックスフロー電池システム及びレドックスフロー電池の運転方法は、正極電解液と負極電解液との間での活物質イオンの移動量を把握できる。
[Effect of the present disclosure]
The redox flow battery system and the operating method of the redox flow battery of the present disclosure can grasp the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte.
 [本開示の実施形態の説明]
 レドックスフロー電池は、電解液中の活物質イオンの酸化還元反応を利用して充放電を行う。活物質イオンは、酸化還元反応によって、イオン価数が変化する。例えば、正極電解液及び負極電解液がバナジウム(V)イオンを含むV系レドックスフロー電池では、正極電解液は、活物質イオンとして5価のVイオンを含む。一方、負極電解液は、活物質イオンとして2価のVイオンを含む。V系レドックスフロー電池の場合、充電時、正極電解液では4価のVイオン(V4+)が5価のVイオン(V5+)に酸化され、負極電解液では3価のVイオン(V3+)が2価のVイオン(V2+)に還元される。一方、放電時は、正極電解液では5価のVイオン(V5+)が4価のVイオン(V4+)に還元され、負極電解液では2価のVイオン(V2+)が3価のVイオン(V3+)に酸化される。
[Description of Embodiments of the Present Disclosure]
A redox flow battery charges and discharges using an oxidation-reduction reaction of active material ions in an electrolyte. The ion valence of the active material ions changes due to oxidation-reduction reaction. For example, in a V-based redox flow battery in which the positive electrode electrolyte and the negative electrode electrolyte contain vanadium (V) ions, the positive electrode electrolyte contains pentavalent V ions as active material ions. On the other hand, the negative electrode electrolyte contains divalent V ions as active material ions. In the case of a V-based redox flow battery, during charging, tetravalent V ions (V 4+ ) are oxidized to pentavalent V ions (V 5+ ) in the positive electrode electrolyte, and trivalent V ions (V 3+ ) is reduced to a divalent V ion (V 2+ ). On the other hand, during discharge, the pentavalent V ions (V 5+ ) are reduced to tetravalent V ions (V 4+ ) in the positive electrode electrolyte, and the divalent V ions (V 2+ ) are reduced to trivalent V ions in the negative electrode electrolyte. It is oxidized to V ions (V 3+ ).
 電解液中のイオン価数の比率と電解液の電位とは相関関係がある。レドックスフロー電池において、電解液のSOCは、電解液の電位を測定することで求められる。電解液のSOCは、電解液中のイオン価数の比率によって表すことができる。V系レドックスフロー電池の場合、正極電解液のSOCは、正極電解液中の全てのVイオン(V4+,V5+)のモル数に対する5価のVイオン(V5+)のモル数の比率で表される。負極電解液のSOCは、負極電解液中の全てのVイオン(V2+,V3+)のモル数に対する2価のVイオン(V2+)のモル数の比率で表される。 There is a correlation between the ratio of ionic valences in the electrolyte and the potential of the electrolyte. In the redox flow battery, the SOC of the electrolyte is determined by measuring the potential of the electrolyte. The SOC of the electrolyte can be represented by the ratio of ionic valences in the electrolyte. In the case of a V-based redox flow battery, the SOC of the positive electrode electrolyte is the ratio of the number of moles of pentavalent V ions (V 5+ ) to the number of moles of all V ions (V 4+ , V 5+ ) in the positive electrode electrolyte. expressed. The SOC of the negative electrode electrolyte is represented by the ratio of the number of moles of divalent V ions (V 2+ ) to the number of moles of all V ions (V 2+ , V 3+ ) in the negative electrode electrolyte.
 レドックスフロー電池では、電池反応は、原理上、電解液中の活物質イオンの価数変化のみである。そのため、原理上は、正極電解液のイオン価数の比率、即ちV5+の比率と、負極電解液のイオン価数の比率、即ちV2+の比率とが同じになるように予め調整されていれば、充放電を繰り返しても、正極電解液と負極電解液とのイオン価数の比率が同じになる。つまり、正極電解液と負極電解液との価数バランスは保たれる。しかし、実際には、充放電を繰り返し行うと、電解液中の活物質イオンが電池セル内の隔膜を通って、正極電解液と負極電解液との間で移動し得る。そのため、レドックスフロー電池の運転初期において、正極電解液と負極電解液とのイオン価数の比率が同じになるように調整したとしても、運転中、両電解液のイオン価数の比率にずれが生じることがある。よって、正極電解液と負極電解液との価数バランスが崩れる。例えば、V系レドックスフロー電池では、特に、負極電解液中の2価のVイオンが正極電解液に移動する。隔膜がカチオン膜であると、負極電解液から正極電解液への活物質イオンの移動が生じ易い。 In the redox flow battery, the battery reaction is, in principle, only the valence change of the active material ions in the electrolyte. Therefore, in principle, the ionic valence ratio of the positive electrode electrolyte, that is, the ratio of V5 +, and the ionic valence ratio of the negative electrode electrolyte, that is, the ratio of V2 + , should be adjusted in advance to be the same. For example, even if charging and discharging are repeated, the ion valence ratio between the positive electrode electrolyte and the negative electrode electrolyte remains the same. That is, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte is maintained. However, in practice, when charging and discharging are repeated, active material ions in the electrolyte can move between the positive electrolyte and the negative electrolyte through the diaphragm in the battery cell. Therefore, even if the ion valence ratio between the positive electrode electrolyte and the negative electrode electrolyte is adjusted to be the same at the initial stage of operation of the redox flow battery, the ion valence ratio between the two electrolytes may deviate during operation. can occur. Therefore, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte is lost. For example, in a V-based redox flow battery, particularly divalent V ions in the negative electrode electrolyte move to the positive electrode electrolyte. When the diaphragm is a cationic membrane, active material ions tend to move from the negative electrode electrolyte to the positive electrode electrolyte.
 活物質イオンの移動は、電池容量の低下を招く。したがって、レドックスフロー電池の運転中、正極電解液と負極電解液との間での活物質イオンの移動量を正確に把握することは、レドックスフロー電池の状態を管理する上で重要である。 The movement of active material ions leads to a decrease in battery capacity. Therefore, it is important for managing the state of the redox flow battery to accurately grasp the amount of active material ions transferred between the positive electrode electrolyte and the negative electrode electrolyte during operation of the redox flow battery.
 本開示は、上記の事情に鑑みてなされたものである。
 最初に本開示の実施態様を列記して説明する。
The present disclosure has been made in view of the circumstances described above.
First, the embodiments of the present disclosure are listed and described.
 (1)本開示の実施形態に係るレドックスフロー電池システムは、正極電解液及び負極電解液が供給される電池セルと、前記正極電解液の電位、前記負極電解液の電位、及び前記正極電解液と前記負極電解液との電位差からなる群より選択される複数の値を測定する計測器と、前記複数の値に基づいて、前記正極電解液と前記負極電解液との間での活物質イオンの移動量を演算する第一演算器とを備える。 (1) A redox flow battery system according to an embodiment of the present disclosure includes a battery cell to which a positive electrode electrolyte and a negative electrode electrolyte are supplied, the potential of the positive electrode electrolyte, the potential of the negative electrode electrolyte, and the positive electrode electrolyte. and a measuring instrument for measuring a plurality of values selected from the group consisting of a potential difference between the positive electrode electrolyte and the negative electrode electrolyte, and an active material ion between the positive electrode electrolyte and the negative electrode electrolyte based on the plurality of values and a first computing unit that computes the amount of movement of the
 本開示のレドックスフロー電池システムは、運転中であっても、正極電解液と負極電解液との間での活物質イオンの移動量をリアルタイムに把握できる。特に、本開示のレドックスフロー電池システムは、計測器によって測定された複数の値に基づいて、活物質イオンの移動量を演算することから、活物質イオンの移動量を正確かつ定量的に把握することが可能である。そのため、活物質イオンの移動に起因する電池容量の低下を正確に把握することが可能である。 The redox flow battery system of the present disclosure can grasp the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte in real time even during operation. In particular, the redox flow battery system of the present disclosure calculates the movement amount of active material ions based on a plurality of values measured by a measuring instrument, so that the movement amount of active material ions can be accurately and quantitatively grasped. It is possible. Therefore, it is possible to accurately grasp the decrease in the battery capacity due to the movement of the active material ions.
 本開示のレドックスフロー電池システムは、活物質イオンの移動量を把握することによって、電解液の状態を適切に管理できる。活物質イオンの移動によって生じた両電解液のイオン価数の比率のずれ、換言すれば価数バランスの崩れを定量的に評価できるからである。例えば、正極電解液と負極電解液との価数バランスを調整するメンテナンスのタイミングを適切に判断できる。したがって、長期にわたって、電池容量の低下を許容範囲内に抑えるように管理できる。価数バランスを調整するメンテナンスでは、正極電解液と負極電解液とを混合することが行われる。正極電解液と負極電解液とを混合することで、正極電解液と負極電解液との価数バランスを戻すことが可能である。 The redox flow battery system of the present disclosure can appropriately manage the state of the electrolyte by grasping the amount of movement of active material ions. This is because it is possible to quantitatively evaluate the shift in the ratio of the ionic valences of the two electrolytic solutions caused by the migration of the active material ions, in other words, the collapse of the valence balance. For example, it is possible to appropriately determine the timing of maintenance for adjusting the valence balance between the positive electrode electrolyte and the negative electrode electrolyte. Therefore, over a long period of time, it is possible to manage the decrease in battery capacity within an allowable range. Maintenance for adjusting the valence balance involves mixing the positive electrode electrolyte and the negative electrode electrolyte. By mixing the positive electrode electrolyte and the negative electrode electrolyte, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte can be restored.
 (2)上記本開示のレドックスフロー電池システムにおいて、前記計測器は、前記正極電解液の電位を測定する正極モニタセル、前記負極電解液の電位を測定する負極モニタセル、及び前記正極電解液と前記負極電解液との電位差を測定する両極モニタセルからなる群より選択される少なくとも一つのモニタセルを有し、前記正極モニタセルは、前記正極電解液の電位の基準となる正極基準液を有し、前記負極モニタセルは、前記負極電解液の電位の基準となる負極基準液を有してもよい。 (2) In the redox flow battery system of the present disclosure, the measuring instrument includes a positive electrode monitor cell that measures the potential of the positive electrode electrolyte, a negative electrode monitor cell that measures the potential of the negative electrode electrolyte, and the positive electrode electrolyte and the negative electrode. At least one monitor cell selected from the group consisting of a bipolar monitor cell for measuring a potential difference with the electrolyte, the positive electrode monitor cell having a positive electrode reference solution as a reference for the potential of the positive electrode electrolyte, and the negative electrode monitor cell may have a negative electrode reference solution that serves as a reference for the potential of the negative electrode electrolyte.
 上記レドックスフロー電池システムは、モニタセルによって、上記複数の値をリアルタイムに容易に測定できる。 The above redox flow battery system can easily measure the above multiple values in real time with the monitor cell.
 (3)上記本開示のレドックスフロー電池システムにおいて、前記活物質イオンの移動量に基づいて、前記正極電解液及び前記負極電解液の各々の充電状態が同じになる前記正極電解液及び前記負極電解液との混合量を演算する第二演算器を有してもよい。 (3) In the redox flow battery system of the present disclosure, the positive electrode electrolyte and the negative electrode electrolyte have the same state of charge based on the amount of movement of the active material ions. You may have a 2nd computing unit which computes the mixing amount with a liquid.
 上記レドックスフロー電池システムは、正極電解液と負極電解液との混合量を適切に設定できる。その理由は、第一演算器により得られた活物質イオンの移動量に基づいて、第二演算器が混合量を演算するからである。 In the above redox flow battery system, the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be appropriately set. The reason is that the second computing unit computes the mixing amount based on the movement amount of the active material ions obtained by the first computing unit.
 (4)上記(3)に記載のレドックスフロー電池システムにおいて、前記正極電解液を貯留する正極タンクと、前記負極電解液を貯留する負極タンクと、前記正極タンクと前記電池セルとの間で、前記正極電解液が循環される正極流路と、前記負極タンクと前記電池セルとの間で、前記負極電解液が循環される負極流路と、前記正極電解液と前記負極電解液とを混合する混合流路と、前記混合流路の連通状態を調節するバルブと、前記混合量に基づいて前記正極電解液と前記負極電解液とを混合するように、前記バルブを動作させる混合制御器とを有してもよい。 (4) In the redox flow battery system described in (3) above, between the positive electrode tank that stores the positive electrode electrolyte, the negative electrode tank that stores the negative electrode electrolyte, and the positive electrode tank and the battery cell, a positive electrode flow channel through which the positive electrode electrolyte is circulated; a negative electrode flow channel through which the negative electrode electrolyte is circulated between the negative electrode tank and the battery cell; and a mixture of the positive electrode electrolyte and the negative electrode electrolyte. a mixing channel, a valve for adjusting the communication state of the mixing channel, and a mixing controller for operating the valve so as to mix the positive electrode electrolyte and the negative electrode electrolyte based on the mixing amount. may have
 上記レドックスフロー電池システムは、活物質イオンの移動に起因する電池容量の低下を回復できる。その理由は、正極電解液と負極電解液とを混合することで、正極電解液と負極電解液との価数バランスを戻すことができるからである。 The above-mentioned redox flow battery system can recover the decrease in battery capacity caused by the movement of active material ions. The reason is that by mixing the positive electrode electrolyte and the negative electrode electrolyte, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte can be restored.
 (5)上記(4)に記載のレドックスフロー電池システムにおいて、前記混合流路は、前記正極流路と前記負極流路とをつなぐ混合配管を有してもよい。 (5) In the redox flow battery system described in (4) above, the mixing channel may have a mixing pipe connecting the positive electrode channel and the negative electrode channel.
 上記レドックスフロー電池システムは、正極電解液と負極電解液とを混合する構成を容易に実現できる。 The above redox flow battery system can easily realize a configuration in which the positive electrode electrolyte and the negative electrode electrolyte are mixed.
 (6)上記(4)に記載のレドックスフロー電池システムにおいて、前記混合流路は、前記正極タンクと前記負極タンクとをつなぐ連通配管を有してもよい。 (6) In the redox flow battery system described in (4) above, the mixing channel may have a communication pipe that connects the positive electrode tank and the negative electrode tank.
 上記レドックスフロー電池システムは、正極電解液と負極電解液とを混合する構成を容易に実現できる。 The above redox flow battery system can easily realize a configuration in which the positive electrode electrolyte and the negative electrode electrolyte are mixed.
 (7)上記本開示のレドックスフロー電池システムにおいて、前記正極電解液は、前記活物質イオンとして、5価のバナジウムイオンを含み、前記負極電解液は、前記活物質イオンとして、2価のバナジウムイオンを含んでもよい。 (7) In the redox flow battery system of the present disclosure, the positive electrode electrolyte contains pentavalent vanadium ions as the active material ions, and the negative electrode electrolyte contains divalent vanadium ions as the active material ions. may include
 上記レドックスフロー電池システムは、充放電の繰り返しによって正極電解液と負極電解液との間で活物質イオンが移動しても、電解液に与える影響が小さい。更に、正極電解液と負極電解液とを混合しても、電解液に与える影響が小さい。正極電解液と負極電解液とにおいて活物質イオンとなる元素が同じであるからである。両電解液中の活物質イオンとなる元素が同じであれば、両電解液中において上記元素が適切な価数のイオンとなることで、活物質として機能できる。 In the above redox flow battery system, even if the active material ions move between the positive electrode electrolyte and the negative electrode electrolyte due to repeated charging and discharging, the effect on the electrolyte is small. Furthermore, even if the positive electrode electrolyte and the negative electrode electrolyte are mixed, the effect on the electrolyte is small. This is because the elements forming the active material ions are the same in the positive electrode electrolyte and the negative electrode electrolyte. If the elements forming the active material ions in both electrolytes are the same, the elements can function as active materials by forming ions with appropriate valences in both electrolytes.
 (8)本開示の実施形態に係るレドックスフロー電池の運転方法は、電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池の運転方法であって、前記正極電解液の電位、前記負極電解液の電位、及び前記正極電解液と前記負極電解液との電位差からなる群より選択される複数の値を測定する工程と、前記複数の値に基づいて、前記正極電解液と前記負極電解液との間での活物質イオンの移動量を演算する工程とを備える。 (8) A method of operating a redox flow battery according to an embodiment of the present disclosure is a method of operating a redox flow battery in which charging and discharging are performed by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell, wherein the positive electrode electrolyte a step of measuring a plurality of values selected from the group consisting of the potential of the negative electrode electrolyte, the potential of the negative electrode electrolyte, and the potential difference between the positive electrode electrolyte and the negative electrode electrolyte; and calculating the amount of movement of active material ions between the liquid and the negative electrode electrolyte.
 本開示のレドックスフロー電池の運転方法は、運転中であっても、正極電解液と負極電解液との間での活物質イオンの移動量をリアルタイムに把握できる。特に、本開示のレドックスフロー電池の運転方法は、上記の複数の値に基づいて、活物質イオンの移動量を演算することから、活物質イオンの移動量を正確かつ定量的に把握することが可能である。そのため、活物質イオンの移動に起因する電池容量の低下を正確に把握することが可能である。 The operating method of the redox flow battery of the present disclosure can grasp the amount of active material ions transferred between the positive electrode electrolyte and the negative electrode electrolyte in real time even during operation. In particular, the operating method of the redox flow battery of the present disclosure calculates the movement amount of the active material ions based on the plurality of values, so that the movement amount of the active material ions can be accurately and quantitatively grasped. It is possible. Therefore, it is possible to accurately grasp the decrease in the battery capacity due to the movement of the active material ions.
 本開示のレドックスフロー電池の運転方法は、活物質イオンの移動量を把握することによって、電解液の状態を適切に管理できる。活物質イオンの移動によって生じた両電解液のイオン価数の比率のずれ、換言すれば価数バランスの崩れを定量的に評価できるからである。 According to the operating method of the redox flow battery of the present disclosure, the state of the electrolyte can be appropriately managed by grasping the amount of movement of the active material ions. This is because it is possible to quantitatively evaluate the shift in the ratio of the ionic valences of the two electrolytic solutions caused by the migration of the active material ions, in other words, the collapse of the valence balance.
 (9)上記本開示のレドックスフロー電池の運転方法において、前記活物質イオンの移動量に基づいて、前記正極電解液及び前記負極電解液の各々の充電状態が同じになる前記正極電解液及び前記負極電解液との混合量を演算する工程を備えてもよい。 (9) In the method for operating a redox flow battery of the present disclosure, the positive electrode electrolyte and the negative electrode electrolyte are in the same state of charge based on the amount of movement of the active material ions. A step of calculating the amount of mixture with the negative electrode electrolyte may be provided.
 上記レドックスフロー電池の運転方法は、正極電解液と負極電解液との混合量を適切に設定できる。その理由は、上記移動量を演算する工程により算出した活物質イオンの移動量に基づいて、混合量を演算するからである。 In the operating method of the redox flow battery described above, the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be appropriately set. The reason for this is that the amount of mixture is calculated based on the amount of movement of the active material ions calculated in the step of calculating the amount of movement.
 (10)上記(9)に記載のレドックスフロー電池の運転方法において、前記混合量に基づいて、前記正極電解液と前記負極電解液とを混合する工程を備えてもよい。 (10) The method for operating a redox flow battery described in (9) above may include a step of mixing the positive electrode electrolyte and the negative electrode electrolyte based on the mixing amount.
 上記レドックスフロー電池の運転方法は、活物質イオンの移動に起因する電池容量の低下を回復できる。その理由は、正極電解液と負極電解液とを混合することで、正極電解液と負極電解液との価数バランスを戻すことができるからである。 The operating method of the redox flow battery described above can recover the decrease in battery capacity caused by the movement of active material ions. The reason is that by mixing the positive electrode electrolyte and the negative electrode electrolyte, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte can be restored.
 [本開示の実施形態の詳細]
 本開示のレドックスフロー電池システム、及びレドックスフロー電池の運転方法の具体例を、図面を参照して説明する。以下、レドックスフロー電池を「RF電池」と呼ぶ場合がある。図中の同一符号は同一又は相当部分を示す。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present disclosure]
A specific example of the redox flow battery system of the present disclosure and a method of operating the redox flow battery will be described with reference to the drawings. Hereinafter, the redox flow battery may be referred to as "RF battery". The same reference numerals in the drawings indicate the same or corresponding parts.
The present invention is not limited to these exemplifications, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 以下、まず、正極電解液と負極電解液との間の活物質イオンの移動に関する説明を行う。次いで、実施形態に係るRF電池システム1及びRF電池の運転方法について説明する。活物質イオンの移動に関する説明では、正極電解液の液量と負極電解液の液量とが同じである場合と、正極電解液の液量と負極電解液の液量とが異なる場合とのそれぞれについて説明する。後述する[算出例1]は、正極電解液の液量と負極電解液の液量とが初期状態において同じ場合での活物質イオンの移動量の算出方法を説明する。後述する[算出例2]は、正極電解液の液量と負極電解液の液量とが初期状態において異なる場合での活物質イオンの移動量の算出方法を説明する。正極電解液と負極電解液との液量が同じ場合、或いは異なる場合のいずれもの場合であっても、活物質イオンの移動量を算出することが可能である。 First, the movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte will be described below. Next, the RF battery system 1 and the method of operating the RF battery according to the embodiment will be described. In the description of movement of the active material ions, the case where the liquid amount of the positive electrode electrolyte and the liquid amount of the negative electrode electrolyte are the same and the case where the liquid amount of the positive electrode electrolyte and the liquid amount of the negative electrode electrolyte are different. will be explained. [Calculation Example 1], which will be described later, describes a method of calculating the movement amount of the active material ions when the liquid amount of the positive electrode electrolyte and the liquid amount of the negative electrode electrolyte are the same in the initial state. [Calculation Example 2], which will be described later, describes a method of calculating the movement amount of the active material ions when the liquid amount of the positive electrode electrolyte and the liquid amount of the negative electrode electrolyte are different in the initial state. It is possible to calculate the movement amount of the active material ions regardless of whether the liquid amounts of the positive electrode electrolyte and the negative electrode electrolyte are the same or different.
 [算出例1]
 <活物質イオンが移動したときの各電解液中の活物質イオンの変化>
 正極電解液と負極電解液との間で活物質イオンが移動したときにおける、各電解液中の活物質イオンの変化を説明する。ここでは、正極電解液及び負極電解液の双方がVイオンを含むV系RF電池の場合を例にとって説明する。活物質イオンが移動する前の初期の状態において、正極電解液と負極電解液とは、活物質イオンのモル濃度が同じで、かつ液量も同じである。つまり、正極電解液中の5価のVイオンと負極電解液中の2価のVイオンとは、モル数が同じである。正極電解液のイオン価数の比率と負極電解液のイオン価数の比率は同じである。
[Calculation example 1]
<Changes in Active Material Ions in Each Electrolyte When Active Material Ions Move>
A change in the active material ions in each electrolyte when the active material ions move between the positive electrode electrolyte and the negative electrode electrolyte will be described. Here, the case of a V-based RF battery in which both the positive electrode electrolyte and the negative electrode electrolyte contain V ions will be described as an example. In the initial state before active material ions move, the positive electrode electrolyte and the negative electrode electrolyte have the same molar concentration of active material ions and the same amount of liquid. That is, the pentavalent V ions in the positive electrode electrolyte and the divalent V ions in the negative electrode electrolyte have the same number of moles. The ion valence ratio of the positive electrode electrolyte and the ion valence ratio of the negative electrode electrolyte are the same.
 初期の状態において、正極電解液中のVイオンの全モル数をNo、負極電解液中のVイオンの全モル数をNoとする。正極電解液中の5価のVイオンのモル数をN、負極電解液中の2価のVイオンのモル数をNとする。正極電解液における4価のVイオンのモル数、及び負極電解液における3価のVイオンのモル数は[No-N]である。正極電解液又は負極電解液において、Vイオンのモル濃度をno、液量をLとすると、Vイオンの全モル数Noは、[No=no・L]と表すことができる。また、各電解液の充電状態(SOC)は[N/No]として求められる。つまり、SOCをχとすると、正極電解液における5価のVイオンのモル数N、及び負極電解液における2価のVイオンのモル数Nは、[N=No・χ]と表すことができる。 In the initial state, the total number of moles of V ions in the positive electrode electrolyte is No, and the total number of moles of V ions in the negative electrode electrolyte is No. Let N be the number of moles of pentavalent V ions in the positive electrode electrolyte, and N be the number of moles of divalent V ions in the negative electrode electrolyte. The number of moles of tetravalent V ions in the positive electrode electrolyte and the number of moles of trivalent V ions in the negative electrode electrolyte are [NoN]. If no is the molar concentration of V ions and L is the liquid volume in the positive electrode electrolyte or the negative electrode electrolyte, the total number of moles of V ions, No, can be expressed as [No=no·L]. Also, the state of charge (SOC) of each electrolytic solution is obtained as [N/No]. That is, when SOC is χ, the number of moles N of pentavalent V ions in the positive electrode electrolyte and the number of moles N of divalent V ions in the negative electrode electrolyte can be expressed as [N=No·χ]. .
 負極電解液中の2価のVイオンが正極電解液に移動した状況を考える。表1は、負極電解液中の2価のVイオンが正極電解液に移動したときにおける、各電解液中の各価数のVイオンのモル数の変化を示している。表1の状態Iは、初期の状態を示す。状態IIは、負極電解液中の2価のVイオンが正極電解液に移動したことを示す。移動した2価のVイオンのモル数はΔNとする。 Consider the situation in which the divalent V ions in the negative electrode electrolyte move to the positive electrode electrolyte. Table 1 shows changes in the number of moles of V ions of each valence in each electrolyte when divalent V ions in the anode electrolyte migrate to the cathode electrolyte. State I in Table 1 indicates the initial state. State II indicates that divalent V ions in the negative electrolyte have migrated to the positive electrolyte. Let ΔN be the number of moles of the transferred divalent V ions.
 負極電解液中の2価のVイオンが正極電解液に移動すると、正極電解液中の5価のVイオンと、移動した2価のVイオンとが反応する。5価のVイオンと2価のVイオンとが反応すると、5価のVイオンは4価のVイオンに変化し、2価のVイオンは3価のVイオンに変化する。このとき、正極電解液中の各価数のVイオンのモル数は、表1の状態IIIに示す式で表される。更に、2価から変化した3価のVイオンと5価のVイオンとが反応して、5価のVイオンは4価のVイオンに変化し、3価のVイオンは4価のVイオンに変化する。つまり、負極電解液から正極電解液に2価のVイオンが1つ移動すると、2価のVイオンは正極電解液中の5価のVイオンと反応して4価のVイオンとなると共に、正極電解液中の2つの5価のVイオンが2つの4価のVイオンになる。最終的には、正極電解液中の各価数のVイオンのモル数は、表1の状態IVに示す式で表される。このように、負極電解液中の2価のVイオンが正極電解液に移動すると、初期の状態から、正極電解液中の5価及び4価のVイオンのモル数が変わる。つまり、正極電解液のイオン価数の比率が変わる。また、負極電解液では、2価のVイオンが正極電解液に移動したことにより、初期の状態から、2価のVイオンのモル数がΔNだけ減る。そのため、負極電解液のイオン価数の比率が変わる。ここでは、状態IVにおいて正極電解液に5価のVイオンが存在している状況、要するに[N-2ΔN>0]、即ち[N/2>ΔN]である場合を前提に説明を進める。なお、[N-2ΔN<0]、即ち[N/2<ΔN]である場合とは、正極電解液に3価のVイオンや4価のVイオンのVイオンが存在する状況といえる。 When the divalent V ions in the negative electrode electrolyte move to the positive electrode electrolyte, the pentavalent V ions in the positive electrode electrolyte react with the moved divalent V ions. When pentavalent V ions and divalent V ions react, the pentavalent V ions change to tetravalent V ions, and the divalent V ions change to trivalent V ions. At this time, the number of moles of V ions of each valence in the positive electrode electrolyte is represented by the formula shown in State III of Table 1. Furthermore, the trivalent V ions and the pentavalent V ions that have changed from divalent react with each other to change the pentavalent V ions into tetravalent V ions, and the trivalent V ions into tetravalent V ions. change to That is, when one divalent V ion moves from the negative electrode electrolyte to the positive electrode electrolyte, the divalent V ion reacts with the pentavalent V ion in the positive electrode electrolyte to become a tetravalent V ion, Two pentavalent V ions in the positive electrode electrolyte become two tetravalent V ions. Ultimately, the number of moles of V ions of each valence in the positive electrode electrolyte is represented by the formula shown in State IV of Table 1. Thus, when the divalent V ions in the negative electrode electrolyte move to the positive electrode electrolyte, the mole numbers of the pentavalent and tetravalent V ions in the positive electrode electrolyte change from the initial state. That is, the ion valence ratio of the positive electrode electrolyte changes. In addition, in the negative electrode electrolyte, the number of moles of the divalent V ions is reduced by ΔN from the initial state due to the movement of the divalent V ions to the positive electrode electrolyte. Therefore, the ionic valence ratio of the negative electrode electrolyte changes. Here, the description will proceed on the premise that pentavalent V ions are present in the positive electrode electrolyte in state IV, that is, [N−2ΔN>0], that is, [N/2>ΔN]. The case where [N−2ΔN<0], ie, [N/2<ΔN], can be said to be a situation in which trivalent V ions and tetravalent V ions are present in the positive electrode electrolyte.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 活物質イオンが移動した後の状態、即ち表1の状態IVに示すように、負極電解液中の2価のVイオンがΔNだけ正極電解液に移動した後の状態おいて、各電解液中のVイオンの全モル数はそれぞれ次のようになる。
 正極電解液:[N-2ΔN]+[No-N+3ΔN]=[No+ΔN]
 負極電解液:[No-N]+[N-ΔN]=[No-ΔN]
In the state after the active material ions have migrated, that is, in the state after the divalent V ions in the negative electrode electrolyte have migrated to the positive electrode electrolyte by ΔN as shown in state IV in Table 1, The total number of moles of V ions in are respectively as follows.
Positive electrode electrolyte: [N-2ΔN] + [No-N + 3ΔN] = [No + ΔN]
Negative electrode electrolyte: [No-N] + [N-ΔN] = [No-ΔN]
 正極電解液及び負極電解液の各電解液のSOCは[数1]、[数2]のように示せる。正極電解液のSOCをχpとする。負極電解液のSOCをχnとする。移動した2価のVイオンのモル濃度をΔnとすると、移動した2価のVイオンのモル数ΔNは、[ΔN=Δn・L]と表すことができる。 The SOC of each electrolyte, the positive electrode electrolyte and the negative electrode electrolyte, can be expressed as [Equation 1] and [Equation 2]. Let χp be the SOC of the positive electrode electrolyte. Let χn be the SOC of the negative electrode electrolyte. Assuming that the molar concentration of the migrated divalent V ions is Δn, the mole number ΔN of the migrated divalent V ions can be expressed as [ΔN=Δn·L].
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 <活物質イオンが移動した後の各電解液の電位>
 活物質イオンが移動した後の各電解液の電位について説明する。正極電解液及び負極電解液の各電位は、基準電位に対する電位である。ここでは、正極電解液の電位は、正極基準液と正極電解液との電位差を測定して求めるものとする。負極電解液の電位は、負極基準液と負極電解液との電位差を測定して求めるものとする。正極電解液の電位及び負極電解液の電位は、具体的には、後述する正極モニタセル31(図3)及び負極モニタセル32(図4)を用いて測定することができる。また、正極基準液は初期の正極電解液と同じものとする。負極基準液は初期の負極電解液と同じものとする。正極基準液及び負極基準液は、電位が既知のものであればよい。正極基準液は初期の正極電解液と異なるものでもよい。負極基準液は初期の負極電解液と異なるものでもよい。
<Potential of Each Electrolyte After Active Material Ions Move>
The potential of each electrolytic solution after the active material ions have moved will be described. Each potential of the positive electrode electrolyte and the negative electrode electrolyte is a potential relative to a reference potential. Here, the potential of the positive electrode electrolyte is obtained by measuring the potential difference between the positive electrode reference solution and the positive electrode electrolyte. The potential of the negative electrode electrolyte is obtained by measuring the potential difference between the negative electrode reference solution and the negative electrode electrolyte. Specifically, the potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte can be measured using a positive electrode monitor cell 31 (FIG. 3) and a negative electrode monitor cell 32 (FIG. 4), which will be described later. Also, the positive electrode reference solution is the same as the initial positive electrode electrolyte. The negative electrode reference solution is the same as the initial negative electrode electrolyte. The positive electrode reference solution and the negative electrode reference solution may be those having known potentials. The cathode reference solution may be different from the initial cathode electrolyte. The negative electrode reference solution may be different from the initial negative electrode electrolyte.
 活物質イオンが移動した後の正極電解液のSOCをχp、負極電解液のSOCをχnとし、正極基準液のSOCをχpo、負極基準液のSOCをχnoとする。ここでは、正極基準液のSOCと負極基準液のSOCは同じであるので、χpo=χno=χとする。正極電解液の電位ΔVp、負極電解液の電位ΔVnは[数3]、[数4]のように表される。Rは気体定数(単位:J/K・mol)である。Tは絶対温度(単位:K)である。Fはファラデー定数(単位:c/mol)である。 Let χp be the SOC of the positive electrode electrolyte after the movement of the active material ions, χn be the SOC of the negative electrode electrolyte, χpo be the SOC of the positive electrode reference solution, and χno be the SOC of the negative electrode reference solution. Here, since the SOC of the positive electrode reference solution and the SOC of the negative electrode reference solution are the same, χpo=χno=χ. The potential ΔVp of the positive electrode electrolyte and the potential ΔVn of the negative electrode electrolyte are expressed by [Equation 3] and [Equation 4]. R is the gas constant (unit: J/K·mol). T is the absolute temperature (unit: K). F is the Faraday constant (unit: c/mol).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上述の説明では、正極電解液の電位及び負極電解液の電位を測定して求める場合を例に説明したが、正極電解液と負極電解液との電位差を測定して求めるようにしてもよい。この場合、正極電解液と負極電解液との電位差と、正極電解液の電位及び負極電解液の電位のうちの一方の電位とから、他方の電位を算出することができる。そのため、正極電解液と負極電解液との電位差を測定する場合、正極電解液の電位及び負極電解液の電位のうち、一方の電位のみを測定すればよい。両電解液の電位差は、具体的には、後述する両極モニタセル40(図5)を用いて測定することができる。活物質イオンが移動した後の正極電解液と負極電解液との電位差Vcは[数5]のように表される。 In the above description, the case where the potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte are measured is described as an example, but the potential difference between the positive electrode electrolyte and the negative electrode electrolyte may be measured and determined. In this case, from the potential difference between the positive electrolyte and the negative electrolyte and one of the potential of the positive electrolyte and the potential of the negative electrolyte, the potential of the other can be calculated. Therefore, when measuring the potential difference between the positive electrolyte and the negative electrolyte, only one of the potential of the positive electrolyte and the potential of the negative electrolyte may be measured. Specifically, the potential difference between both electrolytes can be measured using a bipolar monitor cell 40 (FIG. 5), which will be described later. The potential difference Vc between the positive electrode electrolyte and the negative electrode electrolyte after the movement of the active material ions is represented by [Equation 5].
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 [数5]中の「Ep」は正極電解液の基準電位である。「En」は負極電解液の基準電位である。各電解液の基準電位は、それぞれの活物質イオンの酸化還元電位であり、各電解液に含まれる活物質イオンによって決まっている。[数5]に示す電位差Vcと、[数3]に示す電位ΔVp及び[数4]に示す電位ΔVnのうちの一方の電位とが分かれば、これら2つの値から、電位ΔVp、ΔVnのうちの他方の電位を算出することが可能である。 "Ep" in [Equation 5] is the reference potential of the positive electrode electrolyte. "En" is the reference potential of the negative electrode electrolyte. The reference potential of each electrolytic solution is the redox potential of each active material ion, and is determined by the active material ions contained in each electrolytic solution. If the potential difference Vc shown in [Equation 5] and one of the potential ΔVp shown in [Equation 3] and the potential ΔVn shown in [Equation 4] are known, from these two values, one of the potentials ΔVp and ΔVn It is possible to calculate the other potential of
 <活物質イオンの移動量の算出方法>
 活物質イオンの移動量は、初期の電解液中の活物質イオンの全モル数に対する移動した活物質イオンのモル数の比とする。ここでは、初期の各電解液中のVイオンの全モル数がNo、移動した2価のVイオンのモル数がΔNである。活物質イオンの移動量をδとすると、移動量δは[ΔN/No]である。初期の各電解液のVイオンのモル濃度をno、移動した2価のVイオンのモル濃度をΔnとすると、[ΔN/No]は[Δn/no]である。
<Method for calculating the amount of movement of active material ions>
The amount of movement of the active material ions is defined as the ratio of the number of moles of the active material ions moved to the total number of moles of the active material ions in the initial electrolytic solution. Here, the total number of moles of V ions in each initial electrolytic solution is No, and the number of moles of migrated divalent V ions is ΔN. Assuming that the movement amount of the active material ions is δ, the movement amount δ is [ΔN/No]. [ΔN/No] is [Δn/no], where no is the initial molar concentration of V ions in each electrolytic solution, and Δn is the molar concentration of migrated divalent V ions.
 2価のVイオンの移動量δを[δ=ΔN/No=Δn/no]とすると、[数3]中のχpは、[数1]から、χとδを用いて[数6]のように示せる。また、1-χpは、[数7]のように示せる。[数4]中のχnは、[数2]から、χとδを用いて[数8]のように示せる。また、1-χnは[数9]のように示せる。 When the movement amount δ of the divalent V ion is [δ=ΔN/No=Δn/no], χp in [Equation 3] is obtained from [Equation 1] using χ and δ in [Equation 6] can be shown as Also, 1-χp can be expressed as in [Equation 7]. χn in [Equation 4] can be expressed as [Equation 8] using χ and δ from [Equation 2]. Also, 1-χn can be expressed as in [Formula 9].
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 [数3]及び[数4]に[数6]から[数9]を代入すると、ΔVp及びΔVnは、χとδを用いて[数10]及び[数11]のように示せる。 When [Equation 6] to [Equation 9] are substituted for [Equation 3] and [Equation 4], ΔVp and ΔVn can be expressed as [Equation 10] and [Equation 11] using χ and δ.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 よって、負極電解液中の2価のVイオンが正極電解液に移動した後の状態において、正極電解液の電位ΔVpは[数12]で表される。負極電解液の電位ΔVnは[数13]で表されることになる。負極電解液中の2価のVイオンのみが移動する本例のモデルでは、2価のVイオンの移動量δが未知数であり、他は既知としている。つまり、未知数が1つである。未知数が1つであれば、後述する正極モニタセル31(図3)及び負極モニタセル32(図4)のうち、1つのモニタセルを用いて、正極電解液の電位及び負極電解液の電位のうちの一方の電位を測定することで、イオンの移動量δを算出することが可能である。つまり、モニタセルは1つ以上あればよい。 Therefore, in the state after the divalent V ions in the negative electrode electrolyte have migrated to the positive electrode electrolyte, the potential ΔVp of the positive electrode electrolyte is expressed by [Equation 12]. The potential ΔVn of the negative electrode electrolyte is expressed by [Equation 13]. In the model of this example in which only the divalent V ions in the negative electrode electrolyte move, the amount of movement δ of the divalent V ions is unknown and the others are known. That is, there is one unknown. If there is one unknown, one of the positive electrode monitor cell 31 (FIG. 3) and the negative electrode monitor cell 32 (FIG. 4), which will be described later, is used to determine one of the potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte. By measuring the potential of , it is possible to calculate the movement amount δ of the ions. That is, one or more monitor cells suffice.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 [数12]及び[数13]をδについて解くと、[数14]のように示せる。 When [Equation 12] and [Equation 13] are solved for δ, it can be shown as [Equation 14].
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 <活物質イオンが移動した後の各電解液の状態>
 活物質イオンが移動した後の各電解液の状態について説明する。表2は、負極電解液中の2価のVイオンが正極電解液に移動する前後における各電解液の状態を示す。表2では、各電解液について、表1に示す各価数のVイオンのモル数をNoで割って、各価数のVイオンのモル数をχとδを用いて示している。Noは、初期の各電解液中のVイオンの全モル数である。χは、初期の各電解液のSOCである。δは2価のVイオンの移動量である。表2の状態Iは、負極電解液中の2価のVイオンが正極電解液に移動する前の初期の状態を示す。状態IVは、負極電解液中の2価のVイオンが正極電解液に移動した後の状態を示す。また、状態IV-1は、2価のVイオンが移動した後の両電解液を用いて、放電末まで放電した状態を示す。状態IV-2は、2価のVイオンが移動した後の両電解液を用いて、充電末まで充電した状態を示す。放電末とは、完全に放電した状態をいう。ここでは、正極電解液中の5価のVイオンが0になった状態である。充電末とは、完全に充電した状態をいう。ここでは、負極電解液中の3価のVイオンが0になった状態である。活物質イオンが移動した後の各電解液のSOCをλと新たに定義すると、各電解液中の各価数のイオンのモル数は、λを用いて表2のように表すことができる。
<State of Each Electrolyte After Active Material Ions Move>
The state of each electrolytic solution after the active material ions have moved will be described. Table 2 shows the state of each electrolyte before and after the divalent V ions in the anode electrolyte move to the cathode electrolyte. In Table 2, the number of moles of V ions of each valence shown in Table 1 is divided by No for each electrolytic solution, and the number of moles of V ions of each valence is shown using χ and δ. No is the total number of moles of V ions in each initial electrolyte. χ is the initial SOC of each electrolyte. δ is the amount of movement of divalent V ions. State I in Table 2 shows the initial state before divalent V ions in the negative electrode electrolyte move to the positive electrode electrolyte. State IV shows the state after the divalent V ions in the negative electrode electrolyte have migrated to the positive electrode electrolyte. State IV-1 indicates a state in which both electrolytes after divalent V ions have been transferred are discharged to the end of discharge. State IV-2 shows a state in which the battery is charged to the end of charging using both electrolytes after divalent V ions have migrated. The term "end of discharge" refers to a completely discharged state. Here, the pentavalent V ions in the positive electrode electrolyte have become zero. The end of charge refers to a fully charged state. Here, the trivalent V ions in the negative electrode electrolyte have become zero. If the SOC of each electrolytic solution after the movement of the active material ions is newly defined as λ, the number of moles of ions of each valence in each electrolytic solution can be expressed as shown in Table 2 using λ.
 <正極電解液と負極電解液とを混合したときの各電解液の状態>
 表2の状態Vは、2価のVイオンの移動量がδのとき、λで示すSOCの状態下で、正極電解液と負極電解液とを互いにεの割合で混合したときの状態を示している。表2のC欄は、正極電解液と負極電解液とを混合した状態Vにおいて、正極電解液の5価及び4価のVイオン、負極電解液の3価及び2価のVイオンについてそれぞれ合算したものである。
<State of Each Electrolyte when the Positive Electrolyte and Negative Electrolyte are Mixed>
State V in Table 2 shows the state when the positive electrode electrolyte and the negative electrode electrolyte are mixed at a ratio of ε under the SOC state indicated by λ when the amount of movement of divalent V ions is δ. ing. Column C in Table 2 shows the sum of the pentavalent and tetravalent V ions of the positive electrode electrolyte and the trivalent and divalent V ions of the negative electrode electrolyte in the mixed state V of the positive electrode electrolyte and the negative electrode electrolyte. It is what I did.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 ここで、正極電解液と負極電解液とを混合したときにおける、各電解液中の各価数のVイオンのモル数の変化を、表3から表6を参照して説明する。表3、表4は、正極電解液に負極電解液を混合したときの正極電解液中の各価数のVイオンのモル数の変化を示す。正極電解液中の5価のVイオンのモル数をN、4価のVイオンのモル数をNとする。混合した負極電解液中の2価のVイオンのモル数をΔN、3価のVイオンのモル数をΔNとする。表5、表6は、負極電解液に正極電解液を混合したときの負極電解液中の各価数のVイオンのモル数の変化を示す。負極電解液中の2価のVイオンのモル数をN、3価のVイオンのモル数をNとする。混合した正極電解液中の5価のVイオンのモル数をΔN、4価のVイオンのモル数をΔNとする。 Here, changes in the number of moles of V ions of each valence in each electrolyte when the positive electrode electrolyte and the negative electrode electrolyte are mixed will be described with reference to Tables 3 to 6. Tables 3 and 4 show changes in the number of moles of V ions of each valence in the positive electrode electrolyte when the negative electrode electrolyte is mixed with the positive electrode electrolyte. Let the number of moles of pentavalent V ions in the positive electrode electrolyte be N 5 , and the number of moles of tetravalent V ions be N 4 . Let ΔN 2 be the number of moles of divalent V ions in the mixed negative electrode electrolyte, and ΔN 3 be the number of moles of trivalent V ions. Tables 5 and 6 show changes in the number of moles of V ions of each valence in the negative electrode electrolyte when the positive electrode electrolyte is mixed with the negative electrode electrolyte. Let N 2 be the number of moles of divalent V ions in the negative electrode electrolyte, and let N 3 be the number of moles of trivalent V ions. Let ΔN 5 be the number of moles of pentavalent V ions and ΔN 4 be the number of moles of tetravalent V ions in the mixed positive electrode electrolyte.
 表3の状態Iに示すように、正極電解液に負極電解液中の2価のVイオンを混合すると、5価のVイオンと2価のVイオンとが反応する。5価のVイオンは4価のVイオンに変化し、2価のVイオンは3価のVイオンに変化する。更に、5価のVイオンと3価のVイオンとが反応して、5価のVイオンは4価のVイオンに変化し、3価のVイオンは4価のVイオンに変化する。よって、正極電解液中の5価及び4価のVイオンのモル数は、表3の状態IVに示す式で表される。表4の状態Iに示すように、正極電解液に負極電解液中の3価のVイオンを混合すると、5価のVイオンと3価のVイオンとが反応して、5価のVイオンは4価のVイオンに変化し、3価のVイオンは4価のVイオンに変化する。よって、正極電解液中の5価及び4価のVイオンのモル数は、表4の状態IVに示す式で表される。 As shown in state I in Table 3, when the positive electrode electrolyte is mixed with the divalent V ions in the negative electrode electrolyte, the pentavalent V ions and the divalent V ions react. Pentavalent V ions change to tetravalent V ions, and divalent V ions change to trivalent V ions. Furthermore, the pentavalent V ions and the trivalent V ions react to change the pentavalent V ions into tetravalent V ions and the trivalent V ions into tetravalent V ions. Therefore, the number of moles of pentavalent and tetravalent V ions in the positive electrode electrolyte is represented by the formula shown in State IV of Table 3. As shown in state I in Table 4, when the positive electrode electrolyte is mixed with the trivalent V ions in the negative electrode electrolyte, the pentavalent V ions react with the trivalent V ions to form pentavalent V ions. changes to tetravalent V ions, and trivalent V ions change to tetravalent V ions. Therefore, the number of moles of pentavalent and tetravalent V ions in the positive electrode electrolyte is represented by the formula shown in State IV of Table 4.
 表5の状態Iに示すように、負極電解液に正極電解液中の5価のVイオンを混合すると、2価のVイオンと5価のVイオンとが反応する。その反応は上述したとおりである。よって、負極電解液中の2価及び3価のVイオンのモル数は、表5の状態IVに示す式で表される。表6の状態Iに示すように、負極電解液に正極電解液中の4価のVイオンを混合すると、2価のVイオンと4価のVイオンとが反応して、2価のVイオンは3価のVイオンに変化し、4価のVイオンは3価のVイオンに変化する。よって、負極電解液中の2価及び3価のVイオンのモル数は、表6の状態IVに示す式で表される。 As shown in state I in Table 5, when the pentavalent V ions in the positive electrode electrolyte are mixed with the negative electrode electrolyte, the divalent V ions and the pentavalent V ions react. The reaction is as described above. Therefore, the number of moles of divalent and trivalent V ions in the negative electrode electrolyte is represented by the formula shown in State IV of Table 5. As shown in state I in Table 6, when the negative electrode electrolyte is mixed with the tetravalent V ions in the positive electrode electrolyte, the divalent V ions react with the tetravalent V ions to form divalent V ions. changes to trivalent V ions, and tetravalent V ions change to trivalent V ions. Therefore, the number of moles of divalent and trivalent V ions in the negative electrode electrolyte is represented by the formula shown in State IV of Table 6.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 正極電解液と負極電解液とを混合したとき、表3から表6に示すように、各電解液中の各価数のVイオンのモル数が変わる。正極電解液と負極電解液とをεの割合で混合すると、混合後の各電解液における各価数のVイオンのモル数は、表2の状態Vに示す式で表される。 When the positive electrode electrolyte and the negative electrode electrolyte are mixed, the number of moles of V ions of each valence in each electrolyte changes as shown in Tables 3 to 6. When the positive electrode electrolyte and the negative electrode electrolyte are mixed at a ratio of ε, the number of moles of V ions of each valence in each electrolyte after mixing is represented by the formula shown in State V in Table 2.
 <正極電解液と負極電解液との混合量の算出方法>
 表2において、δ、ε、λの範囲はそれぞれ、表2に示す(x)の式の値が正であること、(y)の式のカッコの中の値が正であること、(z)の式より、[数15]から[数17]に示す範囲となる
<Method for Calculating Mixed Amount of Positive Electrolyte and Negative Electrolyte>
In Table 2, the ranges of δ, ε, and λ are that the value of the formula (x) shown in Table 2 is positive, the value in the parentheses of the formula (y) is positive, and (z ), the range shown in [Equation 15] to [Equation 17]
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 また、δが[数15]に示す範囲にあるとすると、2価から5価の各Vイオンについて、放電末から充電末までとり得るモル濃度の範囲は、2価、3価及び5価のVイオンでは0から1である。4価のVイオンについては、表2に示す(w)を考慮すると、0から[1+δ]となる。 Further, if δ is in the range shown in [Equation 15], the range of molar concentrations that can be taken from the end of discharge to the end of charge for each of divalent to pentavalent V ions is divalent, trivalent and pentavalent. 0 to 1 for V ions. For tetravalent V ions, considering (w) shown in Table 2, it is from 0 to [1+δ].
 正極電解液と負極電解液とをεの割合で混合した表2に示す状態Vにおいて、2価から5価の各Vイオンのモル濃度が、上記0から1、0から[1+δ]の範囲にあるものとすると、[数18]から[数21]が成り立つ。 In the state V shown in Table 2 in which the positive electrode electrolyte and the negative electrode electrolyte are mixed at a ratio of ε, the molar concentration of each divalent to pentavalent V ion is in the range of 0 to 1 and 0 to [1 + δ]. Assuming that there is, [Equation 18] to [Equation 21] are established.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 [数18]から[数21]に示す4つの不等式をεについて解くと、2価から5価の各Vイオンについて、[数22]から[数25]のように示せる。 When the four inequalities shown in [Equation 18] to [Equation 21] are solved for ε, each divalent to pentavalent V ion can be expressed as [Equation 22] to [Equation 25].
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 [数15]に示すδの条件(0≦δ<1/2)、[数17]に示すλの条件(0≦λ≦1)の下、[数22]から[数25]の左辺(a5)、(a4)、(a3)、(a2)の各値は全て0以下であることが分かる。また、[数22]から[数25]の右辺(b5)、(b4)、(b3)、(b2)の各値は全て1/3以下であることが分かる。したがって、[数16]に示すεの条件(0≦ε<1/2)は[0≦ε<1/3]に改まる。更に、右辺(b5)、(b4)、(b3)、(b2)の各値の大小を評価すると、(b5)が最も小さいことが分かる。 Under the condition of δ shown in [Formula 15] (0 ≤ δ < 1/2) and the condition of λ shown in [Formula 17] (0 ≤ λ ≤ 1), the left side of [Formula 22] to [Formula 25] ( It can be seen that the values of a5), (a4), (a3), and (a2) are all 0 or less. Also, it can be seen that the values of (b5), (b4), (b3), and (b2) on the right side of [Formula 22] to [Formula 25] are all less than 1/3. Therefore, the condition of ε (0≦ε<1/2) shown in [Formula 16] is changed to [0≦ε<1/3]. Furthermore, when the magnitude of each value of the right side (b5), (b4), (b3), and (b2) is evaluated, it can be seen that (b5) is the smallest.
 正極電解液と負極電解液との価数バランスを崩さない最大限度の割合εで、正極電解液と負極電解液とを混合することで、活物質イオンの移動によって生じたイオン価数の比率のずれを効果的に解消できる。よって、εは上記(b5)の値とすることができる。また、λが小さい値、即ちSOCが低いときに、混合することが好ましいといえる。 By mixing the positive electrode electrolyte and the negative electrode electrolyte at the maximum ratio ε that does not disturb the valence balance between the positive electrode electrolyte and the negative electrode electrolyte, the ion valence ratio generated by the movement of the active material ions is changed. Distortion can be effectively eliminated. Therefore, ε can be the value of (b5) above. Also, it can be said that mixing is preferable when λ is a small value, that is, when the SOC is low.
 活物質イオンの移動量δ=δo、SOCλ=λoのとき、混合割合εoは、[数22]の(b5)を用いて、[数26]のように示せる。 When the amount of movement of active material ions δ=δo and SOCλ=λo, the mixing ratio εo can be expressed as in [Equation 26] using (b5) of [Equation 22].
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 このεoを表7のA欄に示す式に代入する。表7のA欄に示す式は、表2に示す混合状態Vにおける、各電解液中の各価数のVイオンのモル比を表す式であり、活物質イオンの移動量はδ=δo、SOCはλ=λoの状態を示している。表7のA欄に示す式に上記εoを代入すると、表7のB欄に示す式のようになる。表7のC欄は、正極電解液の5価及び4価のVイオン、負極電解液の3価及び2価のVイオンについてB欄の式を合算したものである。 Substitute this εo into the formula shown in column A of Table 7. The formula shown in column A of Table 7 is a formula representing the molar ratio of V ions of each valence in each electrolytic solution in the mixed state V shown in Table 2, and the amount of movement of active material ions is δ = δo, SOC indicates the state of λ=λo. Substituting εo into the equation shown in column A of Table 7 results in the equation shown in column B of Table 7. Column C in Table 7 is a sum of the equations in column B for the pentavalent and tetravalent V ions of the positive electrode electrolyte and the trivalent and divalent V ions of the negative electrode electrolyte.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表7のC欄に示す結果から、2価のVイオンの移動量δo、充電状態λoのとき、正極電解液と負極電解液とをεoの割合で混合することで、両電解液のイオン価数の比率のずれをδ’に抑えることができる。 From the results shown in column C of Table 7, when the amount of movement of divalent V ions is δo and the state of charge is λo, by mixing the positive electrode electrolyte and the negative electrode electrolyte at a ratio of εo, the ionic values of both electrolytes The deviation of the number ratio can be suppressed to δ'.
 [算出例2]
 算出例2では、正極電解液の液量と負極電解液の液量とが異なる場合での活物質イオンの移動量の算出方法について説明する。
 算出例2において、正極電解液及び負極電解液は、次のように用意したものとする。
 3価のVイオン及び4価のVイオンを等しい割合で含む電解液を原液として用意する。つまり、電解液中、3価のVイオンのモル数と4価のVイオンのモル数とは同じである。この電解液を二等分することによって、正極電解液と負極電解液とを得る。このときの正極電解液の液量をLo、負極電解液の液量をLoとする。正極電解液又は負極電解液において、Vイオンのモル濃度をnoとすると、Vイオンの全モル数Noは[No=no・Lo]と表すことができる。
[Calculation example 2]
In Calculation Example 2, a method for calculating the movement amount of the active material ions when the liquid amount of the positive electrode electrolyte is different from the liquid amount of the negative electrode electrolyte will be described.
In Calculation Example 2, it is assumed that the positive electrode electrolyte and the negative electrode electrolyte are prepared as follows.
An electrolytic solution containing equal proportions of trivalent V ions and tetravalent V ions is prepared as a stock solution. That is, the number of moles of trivalent V ions and the number of moles of tetravalent V ions in the electrolyte are the same. By dividing this electrolyte into two equal parts, a positive electrode electrolyte and a negative electrode electrolyte are obtained. Let Lo be the liquid volume of the positive electrode electrolyte and Lo be the liquid volume of the negative electrode electrolyte at this time. Assuming that the molar concentration of V ions in the positive electrode electrolyte or the negative electrode electrolyte is no, the total number of moles of V ions, No, can be expressed as [No=no·Lo].
 正極電解液の一部を負極電解液に移して、正極電解液と負極電解液とで液量を異ならせる。正極電解液から負極電解液に移した液量をΔLとする。正極電解液から負極電解液に移したVイオンのモル数をΔNとする。正極電解液のVイオンのモル濃度をnoとすると、正極電解液から負極電解液に移したVイオンのモル数ΔNは[ΔN=no・ΔL]と表すことができる。正極電解液から負極電解液にΔLの液量を移した後の状態において、正極電解液の液量は[Lo-ΔL]である。正極電解液中のVイオンの全モル数は[No-ΔN]である。負極電解液の液量は[Lo+ΔL]である。負極電解液中のVイオンの全モル数は[No+ΔN]である。正極電解液から負極電解液にΔLの液量を移した後における、各電解液中の各価数のVイオンのモル数は、表8に示す状態Aとなる。 A part of the positive electrode electrolyte is transferred to the negative electrode electrolyte, and the amount of liquid is made different between the positive electrode electrolyte and the negative electrode electrolyte. Let ΔL be the amount of liquid transferred from the positive electrode electrolyte to the negative electrode electrolyte. Let ΔN be the number of moles of V ions transferred from the positive electrode electrolyte to the negative electrode electrolyte. Assuming that the molar concentration of V ions in the positive electrode electrolyte is no, the number of moles ΔN of V ions transferred from the positive electrode electrolyte to the negative electrode electrolyte can be expressed as [ΔN=no·ΔL]. In the state after transferring the liquid amount of ΔL from the positive electrode electrolyte to the negative electrode electrolyte, the liquid amount of the positive electrode electrolyte is [Lo−ΔL]. The total number of moles of V ions in the positive electrode electrolyte is [No-ΔN]. The liquid volume of the negative electrode electrolyte is [Lo+ΔL]. The total number of moles of V ions in the negative electrode electrolyte is [No+ΔN]. The number of moles of V ions of each valence in each electrolytic solution after transferring the liquid amount of ΔL from the positive electrode electrolytic solution to the negative electrode electrolytic solution is in the state A shown in Table 8.
 次に、正極電解液と負極電解液とを用いて予備充電する。予備充電を行うと、正極電解液では、3価のVイオンが4価のVイオンに酸化される。負極電解液では、4価のVイオンが3価のVイオンに還元される。このときの各電解液中の各価数のVイオンのモル数は、表8に示す状態Bとなる。予備充電時、正極電解液と負極電解液との液量差により、負極電解液では、4価のVイオンが全て還元されずに、移したモル数ΔNの分だけ残る。更に、充電を継続すると、負極電解液中の残りの4価のVイオンが還元されて、負極電解液中のVイオンは全て3価になる。但し、正極電解液では、4価のVイオンが5価のVイオンにΔNだけ酸化される。この状態を放電末とする。放電末における各電解液中の各価数のVイオンのモル数は、表8に示す状態Cとなる。 Next, the battery is precharged using the positive electrode electrolyte and the negative electrode electrolyte. When pre-charging is performed, trivalent V ions are oxidized to tetravalent V ions in the positive electrode electrolyte. In the negative electrode electrolyte, tetravalent V ions are reduced to trivalent V ions. At this time, the number of moles of V ions of each valence in each electrolytic solution is in the state B shown in Table 8. During preliminary charging, due to the liquid volume difference between the positive electrode electrolyte and the negative electrode electrolyte, all the tetravalent V ions are not reduced in the negative electrode electrolyte, and only the number of moles ΔN transferred remains. Further, when the charging is continued, the remaining tetravalent V ions in the negative electrode electrolyte are reduced, and all the V ions in the negative electrode electrolyte become trivalent. However, in the positive electrode electrolyte, tetravalent V ions are oxidized to pentavalent V ions by ΔN. This state is defined as the end of discharge. The number of moles of V ions of each valence in each electrolytic solution at the end of discharge is in state C shown in Table 8.
 放電末の状態から更に充電を行い、正極電解液中のVイオンが全て5価になる状態とする。この状態を充電末とする。充電末における各電解液中の各価数のVイオンのモル数は、表8に示す状態Dとなる。表8中、放電末の状態Cと充電末の状態Dとの間が充放電許容範囲である。充放電に利用可能なモル数は[No-2ΔN]である。[ΔN=no・ΔL]であることから、[No-2ΔN]=[No-2no・ΔL]と表される。更に、[No=no・Lo]であることから、[No-2no・ΔL]=No[1-2ΔL/Lo]と表される。これは、正極電解液を移した後の状態では、正極電解液を移す前の基の状態に比べて、充放電許容範囲が[1-2ΔL/Lo]倍に減少することを意味する。  The battery is further charged from the state at the end of discharge, and all the V ions in the positive electrode electrolyte become pentavalent. This state is the end of charging. The number of moles of V ions of each valence in each electrolytic solution at the end of charging is in state D shown in Table 8. In Table 8, the allowable charge/discharge range is between state C at the end of discharge and state D at the end of charge. The number of moles available for charging and discharging is [No-2ΔN]. Since [ΔN=no·ΔL], it is expressed as [No−2ΔN]=[No−2no·ΔL]. Further, since [No=no·Lo], it is expressed as [No−2no·ΔL]=No[1−2ΔL/Lo]. This means that the allowable charge/discharge range in the state after the positive electrode electrolyte is transferred is [1-2ΔL/Lo] times smaller than the state before the positive electrode electrolyte is transferred.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表8に示す放電末の状態Cと充電末の状態Dの間の充電状態を2価のVイオンのモル数をNeとして示すと、充電状態は表9に示す状態Eのように記述することができる。2価のモル数Neは0から[No-2ΔN]までの範囲となる。表9に示す状態Eを初期の状態とする。 When the charge state between state C at the end of discharge and state D at the end of charge shown in Table 8 is represented by Ne as the number of moles of divalent V ions, the charge state can be described as state E shown in Table 9. can be done. The divalent molar number Ne ranges from 0 to [No-2ΔN]. Let the state E shown in Table 9 be the initial state.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 正極電解液の液量と負極電解液の液量とが異なる上記状態Eにおいて、負極電解液中のVイオンが正極電解液に移動した状況を考える。表10は、負極電解液中のVイオンが正極電解液に移動したときにおける、各電解液中の各価数のVイオンのモル数の変化を示している。表10の状態Iは、負極電解液中のVイオンが正極電解液に移動する前の初期の状態を示す。表10の状態IIは、負極電解液中のVイオンが正極電解液に移動した状態を示す。負極電解液から正極電解液に移動したVイオンのモル数はδNとする。また、負極電解液から移動したVイオンのモル数δNのうち、2価のVイオンと3価のVイオンとの割合はλ:(1-λ)とする。 Consider the situation in which the V ions in the negative electrode electrolyte migrate to the positive electrode electrolyte in the state E in which the liquid amount of the positive electrode electrolyte and the liquid amount of the negative electrode electrolyte are different. Table 10 shows the change in the number of moles of V ions of each valence in each electrolyte when the V ions in the anode electrolyte migrate to the cathode electrolyte. State I in Table 10 shows the initial state before the V ions in the negative electrode electrolyte migrate to the positive electrode electrolyte. State II in Table 10 shows a state in which V ions in the negative electrode electrolyte have migrated to the positive electrode electrolyte. Let δN be the number of moles of V ions that have migrated from the negative electrode electrolyte to the positive electrode electrolyte. In addition, the ratio of divalent V ions and trivalent V ions in the number of moles δN of V ions that have migrated from the negative electrode electrolyte is λ:(1−λ).
 負極電解液中の2価のVイオンと3価のVイオンのうち、2価のVイオンが正極電解液に移動すると、正極電解液中の5価のVイオンと、移動した2価のVイオンとが反応する。この反応により、5価のVイオンは4価のVイオンに変化し、2価のVイオンは3価のVイオンに変化する。このとき、各電解液中の各価数のVイオンのモル数は、表10の状態IIIに示す式で表される。更に、2価から3価に変化したVイオンと、5価のVイオンとが反応して、変化した3価のVイオンが4価に変化すると共に、5価のVイオンが4価のVイオンに変化する。負極電解液中の2価のVイオンと3価のVイオンのうち、3価のVイオンが正極電解液に移動すると、正極電解液中の5価のVイオンと、移動した3価のVイオンとが反応する。この反応により、5価のVイオンは4価のVイオンに変化し、3価のVイオンは4価のVイオンに変化する。最終的には、各電解液中の各価数のVイオンのモル数は、表10の状態IVに示す式で表される。 Among the divalent V ions and trivalent V ions in the negative electrode electrolyte, when the divalent V ions move to the positive electrode electrolyte, the pentavalent V ions in the positive electrode electrolyte and the moved divalent V reacts with ions. By this reaction, the pentavalent V ions are changed to tetravalent V ions, and the divalent V ions are changed to trivalent V ions. At this time, the number of moles of V ions of each valence in each electrolytic solution is represented by the formula shown in State III of Table 10. Furthermore, the V ions that have changed from divalent to trivalent react with the pentavalent V ions, and the changed trivalent V ions change to tetravalent V ions, and the pentavalent V ions become tetravalent V ions. change to ions. Of the divalent V ions and trivalent V ions in the negative electrode electrolyte, when the trivalent V ions move to the positive electrode electrolyte, the pentavalent V ions in the positive electrode electrolyte and the migrated trivalent V reacts with ions. By this reaction, the pentavalent V ions change to tetravalent V ions, and the trivalent V ions change to tetravalent V ions. Ultimately, the number of moles of V ions of each valence in each electrolyte is represented by the formula shown in State IV of Table 10.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 負極電解液中のVイオンが正極電解液に移動すると、最終的に表10に示す状態IVとなる。充放電許容範囲は、負極電解液から正極電解液へのVイオンの移動によって、変化する。しかし、充電状態は、負極電解液から移動した2価のVイオンと3価のVイオンとの比率などに依存しない。つまり、負極電解液から正極電解液にVイオンが移動した後の状態IVにおいて、充電状態はλやNeに依存しない。 When the V ions in the negative electrode electrolyte move to the positive electrode electrolyte, state IV shown in Table 10 is finally reached. The allowable charge/discharge range changes due to the movement of V ions from the negative electrolyte to the positive electrolyte. However, the state of charge does not depend on the ratio of divalent V ions and trivalent V ions transferred from the negative electrode electrolyte. That is, in state IV after V ions move from the negative electrode electrolyte to the positive electrode electrolyte, the state of charge does not depend on λ or Ne.
 ΔN>δNのとき、充放電許容範囲は0から[No-2(ΔN-δN)]で表される。ΔNは正極電解液から負極電解液に移したVイオンのモル数である。δNは負極電解液から正極電解液に移動したVイオンのモル数である。このときの充電末は正極電解液によって制限される。放電末は負極電解液によって制限される。ΔN=δNのとき、充放電許容範囲はNoで最大となる。ΔN<δNのとき、充放電許容範囲は0から[No+2(ΔN-δN)]で表される。即ち、負極電解液から正極電解液へのイオンの移動量が一定以上になると、充放電許容範囲が減少に転じる。このときの充電末は負極電解液によって制限される。放電末は正極電解液によって制限される。 When ΔN>δN, the allowable charge/discharge range is represented by 0 to [No-2 (ΔN-δN)]. ΔN is the number of moles of V ions transferred from the positive electrolyte to the negative electrolyte. δN is the number of moles of V ions transferred from the negative electrode electrolyte to the positive electrode electrolyte. The end of charge at this time is limited by the positive electrode electrolyte. The discharge end is limited by the negative electrode electrolyte. When ΔN=δN, the allowable charging/discharging range is maximum at No. When ΔN<δN, the allowable charge/discharge range is expressed from 0 to [No+2(ΔN-δN)]. That is, when the amount of ions transferred from the negative electrode electrolyte to the positive electrode electrolyte exceeds a certain level, the allowable charge/discharge range begins to decrease. The end of charge at this time is limited by the negative electrode electrolyte. The discharge end is limited by the positive electrolyte.
 正極電解液の液量と負極電解液の液量とが異なる場合での各電解液の電位は次のようになる。初期の状態における正極電解液のSOCをχp、負極電解液のSOCをχnとする。負極電解液から正極電解液にVイオンが移動した後の正極電解液のSOCをχ´p、負極電解液のSOCをχ´nとする。初期の状態の正極電解液を正極基準液としたとき、Vイオンが移動した後の正極電解液の電位ΔVpは[数27]のように表される。初期の状態の負極電解液を負極基準液としたとき、Vイオンが移動した後の負極電解液の電位ΔVnは[数28]のように表される。 The potential of each electrolyte when the liquid volume of the positive electrode electrolyte and the liquid volume of the negative electrode electrolyte are different is as follows. Let χp be the SOC of the positive electrode electrolyte in the initial state, and χn be the SOC of the negative electrode electrolyte. Let χ′p be the SOC of the positive electrode electrolyte after the V ions have moved from the negative electrode electrolyte to the positive electrode electrolyte, and χ′n be the SOC of the negative electrode electrolyte. Assuming that the positive electrode electrolyte in the initial state is the positive electrode reference solution, the potential ΔVp of the positive electrode electrolyte after the V ions have moved is represented by [Equation 27]. Assuming that the negative electrode electrolyte in the initial state is the negative electrode reference solution, the potential ΔVn of the negative electrode electrolyte after the V ions have moved is represented by [Equation 28].
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
 χp及びχ´pはそれぞれ、No、ΔN、δN、Ne、λを用いて[数29]、[数30]のように示せる。 χp and χ'p can be expressed as [Equation 29] and [Equation 30] using No, ΔN, δN, Ne, and λ, respectively.
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 [数29]に基づいて[χp/(1-χp)]は[数31]のように示せる。[数30]に基づいて[χ´p/(1-χ´p)]は[数32]のように示せる。 Based on [Equation 29], [χp/(1-χp)] can be expressed as [Equation 31]. Based on [Equation 30], [χ′p/(1−χ′p)] can be expressed as [Equation 32].
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
 χn及びχ´nはそれぞれ、No、ΔN、Ne、δN、λを用いて[数33]、[数34]のように示せる。 χn and χ'n can be expressed as [Equation 33] and [Equation 34] using No, ΔN, Ne, δN, and λ, respectively.
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
 [数33]に基づいて[χn/(1-χn)]は[数35]のように示せる。[数34]に基づいて[χ´n/(1-χ´n)]は[数36]のように示せる。 Based on [Equation 33], [χn/(1-χn)] can be expressed as [Equation 35]. Based on [Formula 34], [χ′n/(1−χ′n)] can be expressed as in [Formula 36].
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
 上述した算出例1では、負極電解液から正極電解液にVイオンが移動した後の各電解液の電位について、正極電解液の液量と負極電解液の液量とが同じで、かつ、負極電解液から移動するVイオンが2価のVイオンのみである場合を想定して説明した。一方、算出例2では、正極電解液の液量と負極電解液の液量とが異なり、かつ、負極電解液から移動するVイオンが2価のVイオンと3価のVイオンである場合を想定している。算出例1と算出例2との変数の対応は以下のとおりである。 In Calculation Example 1 described above, regarding the potential of each electrolyte after V ions move from the negative electrode electrolyte to the positive electrode electrolyte, the liquid amount of the positive electrode electrolyte is the same as the liquid amount of the negative electrode electrolyte, and the negative electrode The description has been made on the assumption that the V ions that migrate from the electrolytic solution are only divalent V ions. On the other hand, in Calculation Example 2, the liquid amount of the positive electrode electrolyte is different from the liquid amount of the negative electrode electrolyte, and the V ions that move from the negative electrode electrolyte are divalent V ions and trivalent V ions. I assume. Correspondence of variables between Calculation Example 1 and Calculation Example 2 is as follows.
 算出例2では、正極電解液と負極電解液との液量差に起因する正極電解液中のVイオンのモル数と負極電解液中のVイオンのモル数との差はΔNである。算出例1では、正極電解液と負極電解液との液量が同じであるため、正極電解液中のVイオンのモル数と負極電解液中のVイオンのモル数との差は0である。 In Calculation Example 2, the difference between the number of moles of V ions in the positive electrode electrolyte and the number of moles of V ions in the negative electrode electrolyte due to the liquid volume difference between the positive electrode electrolyte and the negative electrode electrolyte is ΔN. In Calculation Example 1, since the liquid amounts of the positive electrode electrolyte and the negative electrode electrolyte are the same, the difference between the number of moles of V ions in the positive electrode electrolyte and the number of moles of V ions in the negative electrode electrolyte is 0. .
 算出例2では、負極電解液から正極電解液に移動したVイオンのうち、2価のVイオンの割合はλである。算出例1では、負極電解液から2価のVイオンのみが移動すると仮定しているため、2価のVイオンの割合は1である。 In Calculation Example 2, the proportion of divalent V ions among the V ions transferred from the negative electrode electrolyte to the positive electrode electrolyte is λ. In Calculation Example 1, it is assumed that only divalent V ions move from the negative electrode electrolyte, so the proportion of divalent V ions is 1.
 算出例2では、初期の状態における負極電解液中の2価のVイオンのモル数はNeである。算出例1では、初期の状態における負極電解液中の2価のVイオンのモル数はNである。ここで、負極電解液中のVイオンの全モル数をNo、負極電解液のSOCをχとすると、負極電解液中の2価のVイオンのモル数Neは[Ne=χ・No]である。 In Calculation Example 2, the number of moles of divalent V ions in the negative electrode electrolyte in the initial state is Ne. In Calculation Example 1, N is the number of moles of divalent V ions in the negative electrode electrolyte in the initial state. Here, when the total number of moles of V ions in the negative electrode electrolyte is No, and the SOC of the negative electrode electrolyte is χ, the number of moles of divalent V ions Ne in the negative electrode electrolyte is [Ne = χ No]. be.
 算出例2では、負極電解液から正極電解液に移動したVイオンのモル数はδNである。算出例1では、移動した2価のVイオンのモル数はΔNである。ここで、2価のVイオンの移動量δは[ΔN/No]と定義されるため、[ΔN=δ・No]である。 In Calculation Example 2, the number of moles of V ions transferred from the negative electrode electrolyte to the positive electrode electrolyte is δN. In Calculation Example 1, the number of moles of divalent V ions that have moved is ΔN. Here, since the movement amount δ of divalent V ions is defined as [ΔN/No], it is [ΔN=δ·No].
 上記[数31]、[数32]のそれぞれの右辺について、上記算出例2の変数に上記算出例1の変数を当てはめると、[数37]、[数38]のように示せる。なお、[数37]において、式中の矢印(→)は、ΔNを0、Neをχ・Noに変換することを意味する。更に、[数38]において、式中の矢印(→)は、上記に加えて、λを1、δNをδ・Noに変換することを意味する。 Regarding the right sides of [Equation 31] and [Equation 32] above, when the variables of Calculation Example 1 are applied to the variables of Calculation Example 2 above, [Equation 37] and [Equation 38] are obtained. In [Formula 37], the arrow (→) in the formula means that ΔN is converted to 0 and Ne is converted to χ·No. Furthermore, in [Formula 38], the arrows (→) in the formula mean that λ is converted to 1 and δN is converted to δ·No in addition to the above.
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 上記[数35]、[数36]のそれぞれの右辺について、上記算出例2の変数に上記算出例1の変数を当てはめると、[数39]、[数40]のように示せる。なお、[数39]において、式中の矢印(→)は、ΔNを0、Neをχ・Noに変換することを意味する。更に、[数40]において、式中の矢印(→)は、上記に加えて、λを1、δNをδ・Noに変換することを意味する。 For the right sides of [Equation 35] and [Equation 36] above, when the variables in Calculation Example 1 are applied to the variables in Calculation Example 2 above, [Equation 39] and [Equation 40] are obtained. In [Formula 39], the arrow (→) in the formula means that ΔN is converted to 0 and Ne is converted to χ·No. Furthermore, in [Formula 40], the arrows (→) in the formula mean that λ is converted to 1 and δN is converted to δ·No in addition to the above.
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
 [数37]と[数38]から次式[数41]が得られる。[数39]と[数40]から次式[数42]が得られる。 The following equation [Equation 41] is obtained from [Equation 37] and [Equation 38]. The following equation [Equation 42] is obtained from [Equation 39] and [Equation 40].
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000052
 [数41]の右辺は、正極電解液の電位ΔVpを求める算出例1の[数12]における対数の真数部分と合致していることが分かる。また、[数42]の右辺は、負極電解液の電位ΔVnを求める算出例1の[数13]における対数の真数部分と合致していることが分かる。これらのことから、正極電解液と負極電解液との液量が異なる場合であっても、液量が同じ場合と同様に、活物質イオンが移動した後の正極電解液の電位及び負極電解液の電位から活物質イオンの移動量を算出できることが理解できる。更に、算出した活物質イオンの移動量に基づいて、正極電解液と負極電解液との混合量を算出することが可能である。上述した算出例1及び算出例2では、負極電解液から正極電解液へ活物質イオンが移動する場合を説明したが、正極電解液から負極電解液へ活物質イオンが移動する場合も同じ考え方を適用できる。 It can be seen that the right side of [Formula 41] matches the antilogarithm part of the logarithm in [Formula 12] of Calculation Example 1 for obtaining the potential ΔVp of the positive electrode electrolyte. Also, it can be seen that the right side of [Equation 42] matches the antilogarithm part of the logarithm in [Equation 13] of Calculation Example 1 for obtaining the potential ΔVn of the negative electrode electrolyte. From these facts, even if the liquid amounts of the positive electrode electrolyte and the negative electrode electrolyte are different, the potential of the positive electrode electrolyte after the active material ions move and the negative electrode electrolyte are similar to the case where the liquid amounts are the same. It can be understood that the moving amount of active material ions can be calculated from the potential of . Furthermore, it is possible to calculate the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte based on the calculated amount of movement of the active material ions. In Calculation Example 1 and Calculation Example 2 described above, the case where the active material ions move from the negative electrode electrolyte to the positive electrode electrolyte has been described. Applicable.
 実施形態に係るRF電池システム1及びRF電池の運転方法は、上述した正極電解液と負極電解液との間の活物質イオンの移動に関する検証結果に基づくものである。 The RF battery system 1 and the method of operating the RF battery according to the embodiment are based on the verification results regarding the movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte described above.
 <RF電池システムの概要>
 図1を参照して、実施形態に係るRF電池システム1を説明する。RF電池システム1は、電池セル10に正極電解液及び負極電解液を供給して充放電を行う。正極電解液及び負極電解液は活物質イオンを含有する。図1では、RF電池の一例として、正極電解液及び負極電解液の双方が活物質としてVイオンを含むV系RF電池を示す。図1において、実線矢印は充電反応、破線矢印は放電反応をそれぞれ示している。電解液はバナジウム電解液に限定されるものではなく、公知のものを利用できる。RF電池は、正極電解液がマンガン(Mn)イオンを含み、負極電解液がチタン(Ti)イオンを含むTi-Mn系RF電池であってもよい。
<Overview of RF battery system>
An RF battery system 1 according to an embodiment will be described with reference to FIG. The RF battery system 1 supplies a positive electrode electrolyte and a negative electrode electrolyte to the battery cells 10 to perform charging and discharging. The positive electrode electrolyte and the negative electrode electrolyte contain active material ions. FIG. 1 shows, as an example of an RF battery, a V-based RF battery in which both the positive electrode electrolyte and the negative electrode electrolyte contain V ions as active materials. In FIG. 1, the solid line arrows indicate the charge reaction, and the dashed line arrows indicate the discharge reaction. The electrolytic solution is not limited to the vanadium electrolytic solution, and any known electrolytic solution can be used. The RF battery may be a Ti—Mn based RF battery in which the positive electrolyte contains manganese (Mn) ions and the negative electrolyte contains titanium (Ti) ions.
 RF電池システム1は、代表的には、交流/直流変換器80や変電設備81を介して電力系統90に接続される。RF電池システム1は、発電部91で発電された電力を充電したり、充電した電力を負荷92に放電したりすることが可能である。発電部91は、太陽光発電や風力発電などの自然エネルギーを利用した発電設備やその他一般の発電所である。RF電池システム1は、例えば、負荷平準化用途、瞬低補償、非常用電源などの用途、自然エネルギー発電の出力平滑化用途に利用される。 The RF battery system 1 is typically connected to the power system 90 via the AC/DC converter 80 and the substation equipment 81 . The RF battery system 1 can charge the power generated by the power generation unit 91 and discharge the charged power to the load 92 . The power generation unit 91 is power generation equipment using natural energy such as solar power generation and wind power generation, and other general power plants. The RF battery system 1 is used, for example, for load leveling applications, voltage sag compensation, emergency power supply applications, and output smoothing applications for natural energy power generation.
 <RF電池システムの構成>
 RF電池システム1は、電池セル10と、正極タンク12と、負極タンク13と、正極流路14と、負極流路15とを備える。正極タンク12は正極電解液を貯留する。負極タンク13は負極電解液を貯留する。正極流路14では、正極タンク12と電池セル10との間で正極電解液が循環される。負極流路15では、負極タンク13と電池セル10との間で負極電解液が循環される。実施形態のRF電池システム1の特徴の一つは、計測器30と、第一演算器51を有する制御装置50とを備える点にある。
<Configuration of RF battery system>
The RF battery system 1 includes a battery cell 10 , a positive electrode tank 12 , a negative electrode tank 13 , a positive flow channel 14 and a negative flow channel 15 . The positive electrode tank 12 stores a positive electrode electrolyte. The negative electrode tank 13 stores a negative electrode electrolyte. A positive electrode electrolyte is circulated between the positive electrode tank 12 and the battery cell 10 in the positive electrode flow path 14 . In the negative electrode flow path 15 , the negative electrode electrolyte is circulated between the negative electrode tank 13 and the battery cell 10 . One of the features of the RF battery system 1 of the embodiment is that it includes a measuring instrument 30 and a control device 50 having a first calculator 51 .
 (電池セル)
 電池セル10は、充放電を行う。電池セル10は、正極電極104と、負極電極105と、両電極104,105間に介在される隔膜101とを有する。電池セル10は、隔膜101によって正極セル102と負極セル103とに分離されている。隔膜101は、例えばカチオン膜である。正極セル102には正極電極104が内蔵されている。負極セル103には負極電極105が内蔵されている。電池セル10を構成する正極セル102には、正極電解液が供給される。負極セル103には、負極電解液が供給される。
(battery cell)
The battery cells 10 charge and discharge. The battery cell 10 has a positive electrode 104 , a negative electrode 105 and a diaphragm 101 interposed between the electrodes 104 and 105 . The battery cell 10 is separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 . The diaphragm 101 is, for example, a cationic membrane. A positive electrode 104 is incorporated in the positive electrode cell 102 . A negative electrode 105 is incorporated in the negative electrode cell 103 . A positive electrode electrolyte is supplied to the positive electrode cells 102 constituting the battery cells 10 . A negative electrode electrolyte is supplied to the negative electrode cell 103 .
 正極流路14は往路配管108と復路配管110とを有する。負極流路15は往路配管109と復路配管111とを有する。各往路配管108,109は、正極タンク12及び負極タンク13の各タンクから電池セル10に各電解液を送る。各復路配管110,111は、電池セル10から各タンクに各電解液を戻す。各往路配管108,109には、ポンプ112,113が設けられている。 The positive electrode flow path 14 has an outbound pipe 108 and a return pipe 110 . The negative electrode channel 15 has an outbound pipe 109 and a return pipe 111 . Outbound pipes 108 and 109 send electrolyte solutions from the positive electrode tank 12 and the negative electrode tank 13 to the battery cell 10 . Each return pipe 110, 111 returns each electrolytic solution from the battery cell 10 to each tank. Pumps 112 and 113 are provided in the respective outbound pipes 108 and 109, respectively.
 RF電池システム1は通常、図2に示すような、複数の電池セル10が積層されたセルスタック100を備える。セルスタック100は、サブスタック200sをその両側から2枚のエンドプレート210で挟み込み、締付機構230で締め付けることで構成されている。図2は、複数のサブスタック200sを備えるセルスタック100を示している。サブスタック200sは、セルフレーム120、正極電極104、隔膜101、負極電極105の順に繰り返し積層され、その積層体の両端に給排板220が配置された構造である。給排板220には、上述した図1に示す往路配管108、109及び復路配管110、111が接続される。セルスタック100における電池セル10の積層数は適宜選択できる。 The RF battery system 1 normally includes a cell stack 100 in which a plurality of battery cells 10 are stacked, as shown in FIG. The cell stack 100 is configured by sandwiching a sub-stack 200 s from both sides with two end plates 210 and tightening them with a tightening mechanism 230 . FIG. 2 shows a cell stack 100 comprising multiple substacks 200s. The sub-stack 200s has a structure in which the cell frame 120, the positive electrode 104, the diaphragm 101, and the negative electrode 105 are repeatedly stacked in this order, and the supply/discharge plates 220 are arranged at both ends of the stack. The supply/discharge plate 220 is connected to the outgoing pipes 108 and 109 and the return pipes 110 and 111 shown in FIG. The number of stacked battery cells 10 in the cell stack 100 can be selected as appropriate.
 セルフレーム120は、図2に示すように、正極電極104と負極電極105との間に配置される双極板121と、双極板121の周囲に設けられる枠体122とを有する。双極板121の一面側、図2では紙面表側には、正極電極104が向かい合うように配置される。双極板121の他面側、図2では紙面裏側には、負極電極105が向かい合うように配置される。枠体122の内側には、正極電極104及び負極電極105が双極板121を挟んで収納される。隣り合う各セルフレーム120の双極板121の間に、隔膜101を挟んで正極電極104及び負極電極105が配置されることにより、1つの電池セル10が形成される。各セルフレーム120の枠体122の間には、電解液の漏洩を抑制するため、例えばOリングなどの環状のシール部材127が配置される。 The cell frame 120 has, as shown in FIG. On one side of the bipolar plate 121, which is the front side of the paper in FIG. 2, the positive electrodes 104 are arranged so as to face each other. On the other side of the bipolar plate 121, which is the back side of the paper in FIG. 2, the negative electrodes 105 are arranged so as to face each other. Inside the frame 122, the positive electrode 104 and the negative electrode 105 are accommodated with the bipolar plate 121 interposed therebetween. One battery cell 10 is formed by arranging the positive electrode 104 and the negative electrode 105 between the bipolar plates 121 of the adjacent cell frames 120 with the diaphragm 101 interposed therebetween. An annular sealing member 127 such as an O-ring is arranged between the frames 122 of the cell frames 120 in order to suppress leakage of the electrolyte.
 セルフレーム120の枠体122は、給液マニホールド123,124及び排液マニホールド125,126を有する。本例では、正極電解液は、給液マニホールド123から枠体122の一面側の下部に形成された溝を介して正極電極104に供給される。正極電極104に供給された正極電解液は、枠体122の一面側の上部に形成された溝を介して排液マニホールド125に排出される。同様に、負極電解液は、給液マニホールド124から枠体122の他面側の下部に形成された溝を介して負極電極105に供給される。負極電極105に供給された負極電解液は、枠体122の他面側の上部に形成された溝を介して排液マニホールド126に排出される。給液マニホールド123,124及び排液マニホールド125,126は、枠体122に貫通して設けられており、セルフレーム120が積層されることによって各電解液の流路を構成する。これら各流路は、給排板220を介して図1に示す往路配管108、109及び復路配管110、111にそれぞれ連通している。セルスタック100は、上記各流路によって、各電池セル10に正極電解液及び負極電解液を流通させることが可能である。 A frame 122 of the cell frame 120 has liquid supply manifolds 123 and 124 and liquid discharge manifolds 125 and 126 . In this example, the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 through a groove formed in the lower portion of the one surface side of the frame 122 . The positive electrode electrolyte supplied to the positive electrode 104 is discharged to the drainage manifold 125 through a groove formed in the upper part of one surface of the frame 122 . Similarly, the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 through a groove formed in the lower portion of the other surface of the frame 122 . The negative electrode electrolyte supplied to the negative electrode 105 is discharged to the drainage manifold 126 through a groove formed in the upper portion of the other surface of the frame 122 . The liquid supply manifolds 123 and 124 and the liquid discharge manifolds 125 and 126 are provided through the frame 122, and the cell frames 120 are laminated to constitute flow paths for the respective electrolytes. Each of these flow paths communicates with the outgoing pipes 108 and 109 and the return pipes 110 and 111 shown in FIG. The cell stack 100 is capable of circulating the positive electrode electrolyte and the negative electrode electrolyte to each battery cell 10 through the channels.
 (電解液)
 正極電解液及び負極電解液は、代表的には、活物質イオンを含む水溶液である。水溶液は、例えば、硫酸(HSO)水溶液、リン酸(HPO)水溶液、硝酸(HNO)水溶液である。活物質イオンは、電解液中で活物質として機能する元素のイオンである。活物質イオンは、例えば、バナジウム(V)、マンガン(Mn)、鉄(Fe)、クロム(Cr)、チタン(Ti)、及び亜鉛(Zn)からなる群より選択される元素のイオンである。正極電解液の活物質イオンは、代表的には、Vイオン、Feイオン、Mnイオンである。負極電解液の活物質イオンは、代表的には、Vイオン、Crイオン、Tiイオン、Znイオンである。これらの活物質イオンは、単独で用いてもよいし、複数組み合わせて用いてもよい。本実施形態では、正極電解液及び負極電解液の双方がVイオンを含む硫酸水溶液である。正極電解液は5価のVイオンを含む。負極電解液は2価のVイオンを含む。
(Electrolyte)
The positive electrode electrolyte and the negative electrode electrolyte are typically aqueous solutions containing active material ions. The aqueous solution is, for example, a sulfuric acid (H 2 SO 4 ) aqueous solution, a phosphoric acid (H 3 PO 4 ) aqueous solution, or a nitric acid (HNO 3 ) aqueous solution. Active material ions are ions of elements that function as active materials in the electrolyte. Active material ions are, for example, ions of elements selected from the group consisting of vanadium (V), manganese (Mn), iron (Fe), chromium (Cr), titanium (Ti), and zinc (Zn). The active material ions of the positive electrode electrolyte are typically V ions, Fe ions, and Mn ions. The active material ions of the negative electrode electrolyte are typically V ions, Cr ions, Ti ions, and Zn ions. These active material ions may be used singly or in combination. In this embodiment, both the positive electrode electrolyte and the negative electrode electrolyte are aqueous sulfuric acid solutions containing V ions. The positive electrode electrolyte contains pentavalent V ions. The negative electrode electrolyte contains divalent V ions.
 正極電解液の活物質イオンと負極電解液の活物質イオンとは、異なる元素のイオンであってもよいし、同じ元素のイオンであってもよい。正極電解液及び負極電解液に含まれる各活物質イオンの具体的な組み合わせを以下に示す。
(1)正極電解液:Vイオン(V4+/V5+)、負極電解液:Vイオン(V3+/V2+
(2)正極電解液:Feイオン(Fe2+/Fe3+)、負極電解液:Crイオン(Cr3+/Cr2+
(3)正極電解液:Mnイオン(Mn2+/Mn3+)、負極電解液:Tiイオン(Ti4+/Ti3+
(4)正極電解液:Feイオン(Fe2+/Fe3+)、負極電解液:Tiイオン(Ti4+/Ti3+
(5)正極電解液:Mnイオン(Mn2+/Mn3+)、負極電解液:Znイオン(Zn2+/Zn)
The active material ions of the positive electrode electrolyte and the active material ions of the negative electrode electrolyte may be ions of different elements or ions of the same element. Specific combinations of active material ions contained in the positive electrode electrolyte and the negative electrode electrolyte are shown below.
(1) Positive electrode electrolyte: V ions (V 4+ /V 5+ ), negative electrode electrolyte: V ions (V 3+ /V 2+ )
(2) Positive electrode electrolyte: Fe ions (Fe 2+ /Fe 3+ ), negative electrode electrolyte: Cr ions (Cr 3+ /Cr 2+ )
(3) Positive electrode electrolyte: Mn ions (Mn 2+ /Mn 3+ ), negative electrode electrolyte: Ti ions (Ti 4+ /Ti 3+ )
(4) Positive electrode electrolyte: Fe ions (Fe 2+ /Fe 3+ ), negative electrode electrolyte: Ti ions (Ti 4+ /Ti 3+ )
(5) Positive electrode electrolyte: Mn ions (Mn 2+ /Mn 3+ ), negative electrode electrolyte: Zn ions (Zn 2+ /Zn)
 正極電解液及び負極電解液は元素が同じ活物質イオンを含む。具体的には、正極電解液及び負極電解液に含まれる少なくとも一種の活物質イオンが同じ元素のイオンである。更に、正極電解液及び負極電解液に含まれる全ての活物質イオンが同じ元素のイオンであってもよい。正極電解液と負極電解液とがそれぞれ同じ元素の活物質イオンを含むことで、充放電の繰り返しによって両電解液間で活物質イオンが移動しても、電解液に与える影響が小さい。正極電解液及び負極電解液の活物質イオンが同じ元素のイオンであれば、正極電解液と負極電解液とを混合しても影響が小さい。 The positive electrode electrolyte and the negative electrode electrolyte contain active material ions of the same element. Specifically, at least one type of active material ions contained in the positive electrode electrolyte and the negative electrode electrolyte are ions of the same element. Furthermore, all active material ions contained in the positive electrode electrolyte and the negative electrode electrolyte may be ions of the same element. Since the positive electrode electrolyte and the negative electrode electrolyte contain active material ions of the same element, even if the active material ions move between the two electrolytes due to repeated charging and discharging, the influence on the electrolyte is small. If the active material ions of the positive electrode electrolyte and the negative electrode electrolyte are ions of the same element, mixing the positive electrode electrolyte and the negative electrode electrolyte has little effect.
 本実施形態では、初期状態の正極電解液と負極電解液とは、イオン価数の比率が同じになるように調整されている。初期状態には、例えば、RF電池システム1の運転を開始する前の状態、メンテナンスを行った後であって運転を再開する前の状態などが含まれる。イオン価数の比率が同じとは、厳密に同じである場合の他、実質的に同じである場合も含まれる。両電解液のイオン価数の比率のずれが0.05以下、更に0.03以下の範囲にあれば、イオン価数の比率のずれが実質的に同じとみなす。つまり、イオン価数の比率が同じとは、正極電解液中の全てのVイオンに対する5価のVイオンの比率と、負極電解液中の全てのVイオンに対する2価のVイオンの比率との差が±5%以下の範囲内にあることを意味する。 In this embodiment, the positive electrode electrolyte and the negative electrode electrolyte in the initial state are adjusted so that the ion valence ratio is the same. The initial state includes, for example, a state before the operation of the RF battery system 1 is started, a state after maintenance and before operation is restarted, and the like. The same ionic valence ratio includes not only strictly the same but also substantially the same. If the difference in the ionic valence ratio between the two electrolytes is in the range of 0.05 or less, and further 0.03 or less, the difference in the ionic valence ratio is considered to be substantially the same. In other words, the same ionic valence ratio means the ratio of pentavalent V ions to all V ions in the positive electrode electrolyte and the ratio of divalent V ions to all V ions in the negative electrode electrolyte. It means that the difference is within ±5% or less.
 (計測器)
 計測器30は、正極電解液の電位、負極電解液の電位、及び正極電解液と負極電解液との電位差からなる群より選択される複数の値を測定する。つまり、計測器30は、正極電解液の電位、負極電解液の電位、及び両電解液の電位差のうち、2つ以上を測定する。測定には、電圧計を用いることができる。電圧計は、電圧又は電圧に換算可能な物理量を測定できるあらゆる計測器を含む。計測器30によって測定された値は制御装置50に送信される。
(Measuring instrument)
The measuring device 30 measures a plurality of values selected from the group consisting of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the positive electrolyte and the negative electrolyte. That is, the measuring instrument 30 measures two or more of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the two electrolytes. A voltmeter can be used for the measurement. A voltmeter includes any instrument capable of measuring a voltage or a physical quantity convertible to voltage. The values measured by measuring instrument 30 are sent to control device 50 .
 正極電解液の電位及び負極電解液の電位は、基準電位に対する電位である。基準電位とは、電位の基準となるものであり、電位が既知のものをいう。正極電解液の電位は、例えば、電位が既知の基準液を用いて、基準液と正極電解液との電位差を測定することができる。負極電解液の電位も同じように、電位が既知の基準液を用いて、基準液と負極電解液との電位差を測定することができる。また、正極電解液の電位は、基準電極を用いて、基準電極と正極電解液との電位差を測定してもよい。負極電解液の電位も、基準電極を用いて、基準電極と負極電解液との電位差を測定してもよい。基準電極は、例えば、銀-塩化銀電極(Ag/AgCl)である。 The potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte are potentials relative to the reference potential. A reference potential is a potential reference and has a known potential. For the potential of the positive electrode electrolyte, for example, using a reference solution with a known potential, the potential difference between the reference solution and the positive electrode electrolyte can be measured. Similarly, for the potential of the negative electrode electrolyte, a reference solution with a known potential can be used to measure the potential difference between the reference solution and the negative electrode electrolyte. Moreover, the potential of the positive electrode electrolyte may be determined by measuring the potential difference between the reference electrode and the positive electrode electrolyte using a reference electrode. As for the potential of the negative electrode electrolyte, a reference electrode may be used to measure the potential difference between the reference electrode and the negative electrode electrolyte. The reference electrode is, for example, a silver-silver chloride electrode (Ag/AgCl).
 本実施形態では、計測器30は、正極電解液の電位と負極電解液の電位との2つの値を測定する。本実施形態の計測器30は、正極モニタセル31と負極モニタセル32との2つのモニタセルを有する。正極モニタセル31及び負極モニタセル32は、充放電を行わない。 In this embodiment, the measuring instrument 30 measures two values, the potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte. A measuring instrument 30 of this embodiment has two monitor cells, a positive electrode monitor cell 31 and a negative electrode monitor cell 32 . The positive electrode monitor cell 31 and the negative electrode monitor cell 32 do not charge or discharge.
 〈正極モニタセル〉
 図1に示す正極モニタセル31は、正極電解液の電位を測定する。正極モニタセル31は、正極流路14の途中に設けられている。具体的には、往路配管108から分岐して復路配管110に接続される分岐流路16に設けられている。分岐流路16は、電池セル10をバイパスするように設けられている。正極モニタセル31には、往路配管108から分岐流路16を通して、電池セル10に供給される正極電解液と共通の正極電解液が供給される。つまり、電池セル10に供給される正極電解液と、正極モニタセル31に供給される正極電解液とはぞれぞれ、往路配管108から供給される。
<Positive electrode monitor cell>
The positive electrode monitor cell 31 shown in FIG. 1 measures the potential of the positive electrode electrolyte. The positive electrode monitor cell 31 is provided in the middle of the positive electrode flow path 14 . Specifically, it is provided in the branch flow path 16 branched from the outbound pipe 108 and connected to the inbound pipe 110 . The branch channel 16 is provided so as to bypass the battery cell 10 . The positive electrode monitor cell 31 is supplied with a positive electrode electrolyte common to the positive electrode electrolyte supplied to the battery cell 10 from the outgoing pipe 108 through the branch flow path 16 . That is, the positive electrode electrolyte solution supplied to the battery cell 10 and the positive electrode electrolyte solution supplied to the positive electrode monitor cell 31 are each supplied from the outgoing line pipe 108 .
 正極モニタセル31の具体例を、図3を参照して説明する。正極モニタセル31は、正極電解液22の電位の基準となる正極基準液24を有する。正極モニタセル31の基本的な構成は電池セル10と同様である。正極モニタセル31は、隔膜301によって正極セル312と基準セル314とに分離されている。正極セル312及び基準セル314には、それぞれ電極31pが内蔵されている。正極セル312には、分岐流路16が接続されており、正極電解液22が循環する。基準セル314には、正極基準液24が入れられている。隔膜301は、正極電解液22と正極基準液24との間で活物質イオンが移動しないものであれば特に限定されない。本実施形態の隔膜301は、活物質イオンの移動が生じない程度に厚い膜厚を有する。 A specific example of the positive electrode monitor cell 31 will be described with reference to FIG. The positive electrode monitor cell 31 has a positive electrode reference solution 24 that serves as a reference for the potential of the positive electrode electrolyte solution 22 . A basic configuration of the positive electrode monitor cell 31 is the same as that of the battery cell 10 . The positive monitor cell 31 is separated into a positive cell 312 and a reference cell 314 by a diaphragm 301 . The positive electrode cell 312 and the reference cell 314 each contain an electrode 31p. A branch channel 16 is connected to the positive electrode cell 312, and the positive electrode electrolyte 22 circulates. The reference cell 314 contains the cathode reference solution 24 . The diaphragm 301 is not particularly limited as long as the active material ions do not migrate between the positive electrode electrolyte solution 22 and the positive electrode reference solution 24 . The diaphragm 301 of this embodiment has a film thickness that is large enough to prevent active material ions from moving.
 正極モニタセル31は、電圧計31vを有する。電圧計31vは、電極31pに取り付けられている。電圧計31vは、電極31p間の開放電圧を測定することにより、正極基準液24と正極電解液22との電位差を測定する。この電位差を正極電解液22の電位とする。 The positive electrode monitor cell 31 has a voltmeter 31v. A voltmeter 31v is attached to the electrode 31p. The voltmeter 31v measures the potential difference between the positive electrode reference solution 24 and the positive electrode electrolyte solution 22 by measuring the open circuit voltage between the electrodes 31p. Let this potential difference be the potential of the positive electrode electrolyte 22 .
 〈負極モニタセル〉
 図1に示す負極モニタセル32は、負極電解液の電位を測定する。負極モニタセル32は、負極流路15の途中に設けられている。具体的には、往路配管109から分岐して復路配管111に接続される分岐流路17に設けられている。分岐流路17は、電池セル10をバイパスするように設けられている。負極モニタセル32には、往路配管109から分岐流路17を通して、電池セル10に供給される負極電解液と共通の負極電解液が供給される。つまり、電池セル10に供給される負極電解液と、負極モニタセル32に供給される負極電解液とはぞれぞれ、往路配管109から供給される。
<Negative electrode monitor cell>
The negative electrode monitor cell 32 shown in FIG. 1 measures the potential of the negative electrode electrolyte. The negative electrode monitor cell 32 is provided in the middle of the negative electrode flow path 15 . Specifically, it is provided in a branch flow path 17 branched from the outbound pipe 109 and connected to the inbound pipe 111 . The branch channel 17 is provided so as to bypass the battery cell 10 . A negative electrode electrolyte common to the negative electrode electrolyte supplied to the battery cell 10 is supplied to the negative electrode monitor cell 32 from the outgoing pipe 109 through the branch flow path 17 . That is, the negative electrode electrolyte solution supplied to the battery cell 10 and the negative electrode electrolyte solution supplied to the negative electrode monitor cell 32 are each supplied from the outgoing line pipe 109 .
 負極モニタセル32の具体例を、図4を参照して説明する。負極モニタセル32は、負極電解液23の電位の基準となる負極基準液25を有する。負極モニタセル32の基本的な構成は正極モニタセル31と同様である。負極モニタセル32は、隔膜301によって負極セル323と基準セル325とに分離されている。負極セル323及び基準セル325には、それぞれ電極32pが内蔵されている。負極セル323には、分岐流路17が接続されており、負極電解液23が循環する。基準セル325には、負極基準液25が入れられている。 A specific example of the negative electrode monitor cell 32 will be described with reference to FIG. The negative electrode monitor cell 32 has a negative electrode reference solution 25 that serves as a reference for the potential of the negative electrode electrolyte solution 23 . The basic configuration of the negative electrode monitor cell 32 is the same as that of the positive electrode monitor cell 31 . The negative monitor cell 32 is separated into a negative cell 323 and a reference cell 325 by a diaphragm 301 . The negative electrode cell 323 and the reference cell 325 each contain an electrode 32p. A branch flow path 17 is connected to the negative electrode cell 323, and the negative electrode electrolyte 23 circulates. The reference cell 325 contains the negative electrode reference solution 25 .
 負極モニタセル32は、電圧計32vを有する。電圧計32vは、電極32pに取り付けられている。電圧計32vは、電極32p間の開放電圧を測定することにより、負極基準液25と負極電解液23との電位差を測定する。この電位差を負極電解液23の電位とする。 The negative electrode monitor cell 32 has a voltmeter 32v. A voltmeter 32v is attached to the electrode 32p. The voltmeter 32v measures the potential difference between the negative electrode reference solution 25 and the negative electrode electrolyte solution 23 by measuring the open circuit voltage between the electrodes 32p. Let this potential difference be the potential of the negative electrode electrolyte 23 .
 正極基準液24及び負極基準液25は、電位が既知のものであれば特に限定されない。正極基準液24及び負極基準液25は、例えば、電解液である。具体的には、正極基準液24は正極電解液22と同じ組成のものであり、負極基準液25は負極電解液23と同じ組成のものであってもよい。即ち、正極基準液24及び負極基準液25は、Vイオンを含む水溶液であってもよい。更に、正極基準液24に正極電解液22を用いると共に、負極基準液25に負極電解液23を用いる場合、正極基準液24及び負極基準液25の各々の充電状態(SOC)が実質的に同じであってもよい。換言すれば、正極基準液24のイオン価数の比率と、負極基準液25のイオン価数の比率とが実質的に同じになるように調整されている。具体的には、正極基準液24中の5価のVイオンの比率と、負極基準液25中の2価のVイオンの比率とが実質的に同じである。正極基準液24のSOCと負極基準液25のSOCは異なっていてもよい。即ち、正極基準液24のイオン価数の比率と負極基準液25のイオン価数の比率が異なっていてもよい。 The positive electrode reference solution 24 and the negative electrode reference solution 25 are not particularly limited as long as their potentials are known. The positive electrode reference liquid 24 and the negative electrode reference liquid 25 are, for example, electrolytic solutions. Specifically, the positive electrode reference solution 24 may have the same composition as the positive electrode electrolyte solution 22 , and the negative electrode reference solution 25 may have the same composition as the negative electrode electrolyte solution 23 . That is, the positive electrode reference liquid 24 and the negative electrode reference liquid 25 may be aqueous solutions containing V ions. Furthermore, when the positive electrode electrolyte solution 22 is used as the positive electrode standard solution 24 and the negative electrode standard solution 23 is used as the negative electrode standard solution 25, the state of charge (SOC) of each of the positive electrode standard solution 24 and the negative electrode standard solution 25 is substantially the same. may be In other words, the ionic valence ratio of the positive electrode reference solution 24 and the ionic valence ratio of the negative electrode reference solution 25 are adjusted to be substantially the same. Specifically, the ratio of pentavalent V ions in the positive electrode reference solution 24 and the ratio of divalent V ions in the negative electrode reference solution 25 are substantially the same. The SOC of the positive electrode reference solution 24 and the SOC of the negative electrode reference solution 25 may be different. That is, the ion valence ratio of the positive electrode reference solution 24 and the ion valence ratio of the negative electrode reference solution 25 may be different.
 本実施形態では、正極基準液24は正極電解液22と同じ組成を有する電解液であり、負極基準液25は負極電解液23と同じ組成を有する電解液である。つまり、正極基準液24及び負極基準液25は、Vイオンを含む。更に、正極基準液24のSOCと負極基準液25のSOCが実質的に同じである。即ち、正極基準液24のイオン価数の比率と負極基準液25のイオン価数の比率が実質的に同じである。 In this embodiment, the positive electrode reference solution 24 is an electrolytic solution having the same composition as the positive electrode electrolytic solution 22 , and the negative electrode reference solution 25 is an electrolytic solution having the same composition as the negative electrode electrolytic solution 23 . That is, the positive electrode reference liquid 24 and the negative electrode reference liquid 25 contain V ions. Furthermore, the SOC of the positive electrode reference solution 24 and the SOC of the negative electrode reference solution 25 are substantially the same. That is, the ion valence ratio of the positive electrode reference solution 24 and the ion valence ratio of the negative electrode reference solution 25 are substantially the same.
 正極モニタセル31及び負極モニタセル32によって測定された電位の値は制御装置50に送信される。 The potential values measured by the positive electrode monitor cell 31 and the negative electrode monitor cell 32 are transmitted to the control device 50 .
 更に、本実施形態のRF電池システム1は、図1に示すように、混合流路60と、バルブ70とを備える。 Further, the RF battery system 1 of this embodiment includes a mixing flow path 60 and a valve 70, as shown in FIG.
 (混合流路・混合配管)
 混合流路60は、正極電解液と負極電解液とを混合するためのものである。本実施形態では、図1に示すように、混合流路60が正極流路14と負極流路15とをつなぐ混合配管61を有する。本実施形態の混合配管61は、正極流路14の復路配管110と負極流路15の復路配管111とをつないでいる。混合配管61は、第一混合配管61a及び第二混合配管61bの2つの配管で構成されている。
(mixing flow path/mixing pipe)
The mixing channel 60 is for mixing the positive electrode electrolyte and the negative electrode electrolyte. In this embodiment, as shown in FIG. 1 , the mixing channel 60 has a mixing pipe 61 that connects the positive channel 14 and the negative channel 15 . The mixing pipe 61 of the present embodiment connects the return pipe 110 of the positive electrode flow channel 14 and the return pipe 111 of the negative electrode flow channel 15 . The mixing pipe 61 is composed of two pipes, a first mixing pipe 61a and a second mixing pipe 61b.
 第一混合配管61aは、正極流路14の復路配管110から負極流路15の復路配管111へ正極電解液を流通させる。第二混合配管61bは、負極流路15の復路配管111から正極流路14の復路配管110へ負極電解液を流通させる。そのため、混合配管61は、第一混合配管61a及び第二混合配管61bによって、正極電解液と負極電解液とを混合することが可能である。本実施形態とは異なり、第一混合配管61aは、正極流路14の復路配管110から直接、負極タンク13に接続されていてもよい。第二混合配管61bは、負極流路15の復路配管111から直接、正極タンク12に接続されていてもよい。 The first mixing pipe 61 a circulates the positive electrode electrolyte from the return pipe 110 of the positive electrode flow channel 14 to the return pipe 111 of the negative electrode flow channel 15 . The second mixing pipe 61 b circulates the negative electrode electrolyte from the return pipe 111 of the negative electrode flow channel 15 to the return pipe 110 of the positive electrode flow channel 14 . Therefore, the mixing pipe 61 can mix the positive electrode electrolyte and the negative electrode electrolyte through the first mixing pipe 61a and the second mixing pipe 61b. Unlike the present embodiment, the first mixing pipe 61 a may be directly connected to the negative electrode tank 13 from the return pipe 110 of the positive electrode flow channel 14 . The second mixing pipe 61 b may be directly connected to the positive electrode tank 12 from the return pipe 111 of the negative electrode flow channel 15 .
 (バルブ)
 バルブ70は、混合流路60の連通状態を調節する。本実施形態では、バルブ70は、混合配管61を構成する第一混合配管61a及び第二混合配管61bの連通状態を調節する。バルブ70は、正極流路14の復路配管110と第一混合配管61aとの分岐部、負極流路15の復路配管111と第二混合配管61bとの分岐部のそれぞれに設けられている。バルブ70は、混合流路60である混合配管61の連通状態を調節可能なものであればよく、その機構や取付位置は特に限定されない。
(valve)
Valve 70 adjusts the communication state of mixing channel 60 . In this embodiment, the valve 70 adjusts the state of communication between the first mixing pipe 61 a and the second mixing pipe 61 b that constitute the mixing pipe 61 . The valve 70 is provided at each of the branching portion between the return pipe 110 of the positive electrode flow channel 14 and the first mixing pipe 61a and the branching portion between the return pipe 111 of the negative electrode flow channel 15 and the second mixing pipe 61b. The valve 70 is not particularly limited as long as it can adjust the communication state of the mixing pipe 61 that is the mixing flow path 60, and its mechanism and mounting position are not particularly limited.
 本実施形態のバルブ70は、各復路配管110,111と各混合配管61a,61bとの間で流路を切り替える切替弁である。バルブ70が開状態では、各復路配管110,111が連通状態となり、各混合配管61a,61bが非連通状態となる。そのため、正極流路14及び負極流路15の各復路配管110,111を通って、正極電解液及び負極電解液は正極タンク12及び負極タンク13の各タンクに戻される。バルブ70が閉状態では、各復路配管110,111が非連通状態となり、各混合配管61a,61bが連通状態となる。そのため、正極流路14の復路配管110から第一混合配管61aを通って、正極電解液は負極流路15の復路配管111に送られる。また、負極流路15の復路配管111から第二混合配管61bを通って、負極電解液は正極流路14の復路配管110に送られる。バルブ70は、各混合配管61a,61bの連通状態を調節することで、正極電解液と負極電解液との混合量を調節することが可能である。正極電解液と負極電解液との混合量は、例えば、各ポンプ112,113の流量とバルブ70の開閉時間によって測定することが可能である。また、例えば、バルブ70又は各混合配管61a,61bに流量計(図示せず)を取り付けて、流量計を用いて混合量を測定してもよい。 The valve 70 of this embodiment is a switching valve that switches the flow paths between the return pipes 110, 111 and the mixing pipes 61a, 61b. When the valve 70 is open, the return pipes 110 and 111 are in communication, and the mixing pipes 61a and 61b are in non-communication. Therefore, the positive electrode electrolyte and the negative electrode electrolyte are returned to the positive electrode tank 12 and the negative electrode tank 13 through the return pipes 110 and 111 of the positive electrode flow path 14 and the negative electrode flow path 15, respectively. When the valve 70 is closed, the return pipes 110 and 111 are not communicated, and the mixing pipes 61a and 61b are communicated. Therefore, the positive electrode electrolyte is sent from the return pipe 110 of the positive electrode flow channel 14 to the return pipe 111 of the negative electrode flow channel 15 through the first mixing pipe 61a. Further, the negative electrode electrolytic solution is sent from the return pipe 111 of the negative electrode flow channel 15 to the return pipe 110 of the positive electrode flow channel 14 through the second mixing pipe 61b. The valve 70 can adjust the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte by adjusting the communication state of the mixing pipes 61a and 61b. The mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be measured by, for example, the flow rate of each pump 112 and 113 and the open/close time of the valve 70 . Also, for example, a flow meter (not shown) may be attached to the valve 70 or the mixing pipes 61a and 61b to measure the mixing amount using the flow meter.
 バルブ70の開閉動作は、制御装置50からの制御信号によって制御される。 The opening and closing operations of the valve 70 are controlled by control signals from the control device 50 .
 (制御装置)
 制御装置50は、RF電池システム1の運転の制御を行うことは勿論、RF電池システム1の状態を監視し、改善するために必要な動作の制御を行うことも含む。本実施形態の制御装置50は、第一演算器51と、第二演算器52と、混合制御器53とを備える。
(Control device)
The controller 50 not only controls the operation of the RF battery system 1, but also monitors the state of the RF battery system 1 and controls operations necessary for improvement. The control device 50 of this embodiment includes a first calculator 51 , a second calculator 52 , and a mixing controller 53 .
 制御装置50は、代表的には、コンピュータにより構成される。コンピュータは、プロセッサ、メモリなどを備える。メモリには、第一演算器51、第二演算器52、及び混合制御器53の各処理をプロセッサに実行させるためのプログラムが格納されている。プロセッサは、メモリに格納されたプログラムを読み出して実行する。プログラムは、第一演算器51、第二演算器52、及び混合制御器53の各処理に関する命令群を含む。制御装置50による処理手順については、後述する<RF電池の運転方法>の項で詳しく説明する。 The control device 50 is typically composed of a computer. A computer includes a processor, memory, and the like. The memory stores a program for causing the processor to execute each process of the first arithmetic unit 51, the second arithmetic unit 52, and the mixing controller 53. FIG. The processor reads and executes programs stored in memory. The program includes a group of instructions for each process of the first arithmetic unit 51, the second arithmetic unit 52, and the mixing controller 53. The processing procedure by the control device 50 will be described in detail in the section <How to Operate the RF Battery> later.
 本実施形態では、制御装置50のメモリには、初期状態の電解液の情報が記憶されている。電解液の情報は、例えば、正極電解液及び負極電解液の各電解液中の活物質イオンのモル濃度(no)、活物質イオンの全モル数(N)、各電解液の液量(L)などである。 In this embodiment, the memory of the control device 50 stores information on the electrolytic solution in the initial state. The information on the electrolyte is, for example, the molar concentration (no) of the active material ions in each electrolyte of the positive electrode electrolyte and the negative electrode electrolyte, the total number of moles of the active material ions (N), the liquid volume of each electrolyte (L ) and so on.
 〈第一演算器〉
 第一演算器51は、計測器30によって測定された値に基づいて、正極電解液と負極電解液との間での活物質イオンの移動量を演算する。本実施形態では、計測器30によって測定された値は、正極モニタセル31によって測定された正極電解液の電位と、負極モニタセル32によって測定された負極電解液の電位との2つの値である。第一演算器51は、上述した<活物質イオンの移動量の算出方法>の項で説明した演算を行うことにより、上述した移動量δを求める。移動量δは、上述したように、初期状態における負極電解液中のVイオンの全モル数(N)に対する移動した2価のVイオンのモル数(ΔN)との比で表される。
<First calculator>
The first computing unit 51 computes the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte based on the values measured by the measuring device 30 . In this embodiment, the values measured by the measuring instrument 30 are two values, the potential of the positive electrode electrolyte measured by the positive electrode monitor cell 31 and the potential of the negative electrode electrolyte measured by the negative electrode monitor cell 32. The first calculator 51 obtains the above-described movement amount δ by performing the calculation described in the section <Method for calculating movement amount of active material ions>. As described above, the amount of migration δ is represented by the ratio of the number of moles (ΔN) of migrated divalent V ions to the total number of moles (N) of V ions in the negative electrode electrolyte in the initial state.
 更に、制御装置50は、活物質イオンの移動量が所定の閾値以下か否かを判定する判定部を有してもよい。活物質イオンの移動量は、例えば、電池容量の低下が許容範囲内であるか否かの判断の指標の一つとして使用できる。活物質イオンの移動量が小さければ、両電解液のイオン価数の比率のずれが小さい。つまり、正極電解液と負極電解液との価数バランスの崩れが小さい。よって、価数バランスがある程度保たれている状態、即ち電池容量の低下が小さい状態である。そのため、活物質イオンの移動量が閾値以下である場合は、電池容量の低下が許容範囲内であるといえる。一方、活物質イオンの移動量が大きければ、両電解液のイオン価数の比率のずれが大きい。つまり、正極電解液と負極電解液との価数バランスが崩れた状態である。価数バランスが崩れた状態は、電池容量の低下が大きい。そのため、活物質イオンの移動量が閾値超である場合は、電池容量の低下が許容範囲を超えているといえる。上記閾値は、例えば0以上0.1以下とする。 Furthermore, the control device 50 may have a determination unit that determines whether or not the movement amount of the active material ions is equal to or less than a predetermined threshold. The amount of movement of active material ions can be used, for example, as one of indicators for determining whether the decrease in battery capacity is within the allowable range. If the amount of movement of the active material ions is small, the difference in the ratio of the ionic valences of both electrolytes is small. That is, the breakdown of the valence balance between the positive electrode electrolyte and the negative electrode electrolyte is small. Therefore, it is a state in which the valence balance is maintained to some extent, that is, a state in which the decrease in battery capacity is small. Therefore, when the amount of movement of active material ions is equal to or less than the threshold, it can be said that the decrease in battery capacity is within the allowable range. On the other hand, if the amount of movement of the active material ions is large, the difference in the ionic valence ratio between the two electrolytes is large. That is, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte is lost. When the valence balance is lost, the battery capacity drops significantly. Therefore, when the amount of movement of active material ions exceeds the threshold, it can be said that the decrease in battery capacity exceeds the allowable range. The threshold value is, for example, 0 or more and 0.1 or less.
 判定部によって活物質イオンの移動量が閾値以下であると判定された場合には、制御装置50は、電池容量の低下が許容範囲内であると判断して、正常と判定する。一方、活物質イオンの移動量が閾値超であると判定された場合には、制御装置50は、電池容量の低下が許容範囲を超えていると判断して、異常と判定する。制御装置50は、異常判定した場合、例えばユーザに通知する。 When the determining unit determines that the movement amount of active material ions is equal to or less than the threshold, the control device 50 determines that the decrease in battery capacity is within the allowable range and determines that the battery is normal. On the other hand, when it is determined that the amount of movement of the active material ions exceeds the threshold, the control device 50 determines that the decrease in battery capacity exceeds the allowable range, and determines that there is an abnormality. When the controller 50 determines that there is an abnormality, it notifies the user, for example.
 本実施形態のRF電池システム1は、更に、上記判定部による判定結果を報知する報知器59を備えてもよい。制御装置50は、判定部によって活物質イオンの移動量が閾値超であると判定された場合、即ち上記異常判定の場合に、その判定結果を報知器59に報知させる。報知器59は、例えば、スピーカ、ランプ、ディスプレイなどの少なくとも一つを含む。報知器59は、上記移動量が閾値超であることを、例えばスピーカから音を発したり、ランプを点灯させたり、ディスプレイに文字などを表示したりすることによって外部に報知する。 The RF battery system 1 of this embodiment may further include an annunciator 59 that notifies the result of determination by the determination unit. When the determining unit determines that the moving amount of the active material ions exceeds the threshold value, that is, in the case of the abnormality determination, the control device 50 causes the notification device 59 to notify the determination result. The annunciator 59 includes, for example, at least one of a speaker, lamp, display, and the like. The annunciator 59 informs the outside that the amount of movement exceeds the threshold by, for example, emitting a sound from a speaker, lighting a lamp, or displaying characters on a display.
 〈第二演算器〉
 第二演算器52は、第一演算器51によって得られた活物質イオンの移動量に基づいて、正極電解液のSOC及び負極電解液のSOCが同じになる混合量を演算する。ここでいうSOCが同じとは、正極電解液のSOC及び負極電解液のSOCが厳密に同じである場合に限定されるものではなく、実質的に同じである場合も含まれる。例えば、正極電解液と負極電解液とを上記混合量で混合した後の状態において、両電解液のイオン価数の比率のずれが0.05以下の範囲にあれば、両電解液のSOCが実質的に同じとみなす。混合量は、正極電解液と負極電解液とを互いに混合する量である。換言すれば、混合量は、正極電解液と負極電解液とを互いに入れ替える量である。第二演算器52は、上述した<正極電解液と負極電解液との混合量の算出方法>の項で説明した演算を行うことにより、正極電解液と負極電解液との混合量を求める。具体的には、上述した混合割合εoを算出して、混合割合εoから電解液の混合量を求める。εoの範囲は[0≦εo<1/2]である。例えば、混合割合εoが0.2のとき、混合量は、各電解液の液量の20%である。即ち、正極電解液の液量の20%に相当する正極電解液が負極電解液に混合されると共に、負極電解液の液量の20%に相当する負極電解液が正極電解液に混合されることを意味する。
<Second calculator>
The second computing unit 52 computes the mixing amount at which the SOC of the positive electrode electrolyte and the SOC of the negative electrode electrolyte become the same, based on the movement amount of the active material ions obtained by the first computing unit 51 . The same SOC as used herein is not limited to the case where the SOC of the positive electrode electrolyte and the SOC of the negative electrode electrolyte are strictly the same, but also includes the case where they are substantially the same. For example, in the state after the positive electrode electrolyte and the negative electrode electrolyte are mixed in the above-described mixing amount, if the difference in the ratio of the ionic valences of both electrolytes is in the range of 0.05 or less, the SOC of both electrolytes is considered to be substantially the same. The mixed amount is the amount of mixing the positive electrode electrolyte and the negative electrode electrolyte with each other. In other words, the mixed amount is the amount to replace the positive electrode electrolyte and the negative electrode electrolyte with each other. The second calculator 52 obtains the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte by performing the calculation described in the above section <method for calculating the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte>. Specifically, the mixing ratio εo described above is calculated, and the mixed amount of the electrolytic solution is obtained from the mixing ratio εo. The range of εo is [0≦εo<1/2]. For example, when the mixing ratio εo is 0.2, the mixing amount is 20% of the liquid amount of each electrolytic solution. That is, the positive electrode electrolyte corresponding to 20% of the liquid amount of the positive electrode electrolyte is mixed with the negative electrode electrolyte, and the negative electrode electrolyte corresponding to 20% of the liquid amount of the negative electrode electrolyte is mixed with the positive electrode electrolyte. means that
 第二演算器52による処理は、例えばメンテナンス時など、正極電解液と負極電解液とを混合するときに実行してもよい。具体的には、第二演算器52による処理は、活物質イオンの移動量が上記閾値を超えたときに、実行する。活物質イオンの移動量は、正極電解液と負極電解液とを混合するタイミングの指標として使用できる。上述したように、活物質イオンの移動量が閾値超である場合は、電池容量の低下が許容範囲を超えていると判断できる。したがって、活物質イオンの移動量が閾値を超えたときは、正極電解液と負極電解液とを混合して価数バランスを調整するタイミングの指標になる。活物質イオンの移動量が閾値を超えたか否かは、上述した判定部の判定結果に基づいて判定すればよい。 The processing by the second calculator 52 may be executed when the positive electrode electrolyte and the negative electrode electrolyte are mixed, for example, during maintenance. Specifically, the processing by the second calculator 52 is executed when the movement amount of the active material ions exceeds the threshold. The amount of movement of the active material ions can be used as an indicator of the timing of mixing the positive electrode electrolyte and the negative electrode electrolyte. As described above, when the amount of movement of active material ions exceeds the threshold, it can be determined that the decrease in battery capacity exceeds the allowable range. Therefore, when the movement amount of the active material ions exceeds the threshold, it serves as an indicator of the timing of mixing the positive electrode electrolyte and the negative electrode electrolyte to adjust the valence balance. Whether or not the movement amount of the active material ions has exceeded the threshold may be determined based on the determination result of the determination unit described above.
 〈混合制御器〉
 混合制御器53は、第二演算器52によって得られた混合量に基づいて、正極電解液と負極電解液とを混合するように、バルブ70を動作させる。本実施形態では、混合制御器53は、上述したようにバルブ70を閉動作させることにより、混合配管61を介して正極電解液と負極電解液との混合を行う。また、混合制御器53は、正極電解液と負極電解液とを上記混合量で混合した後、バルブ70を開動作させることにより、正極電解液と負極電解液との混合を停止する。正極電解液と負極電解液とを混合する量は、例えば、各ポンプ112,113の流量やバルブ70の開閉時間によって調節することが可能である。正極電解液と負極電解液とが上記混合量まで混合されたか否かは、例えば、各ポンプ112,113の流量とバルブ70の開閉時間によって判定することができる。或いは、上述した流量計によって測定された流量から判定してもよい。
<Mixing controller>
The mixing controller 53 operates the valve 70 based on the mixing amount obtained by the second computing unit 52 so as to mix the positive electrode electrolyte and the negative electrode electrolyte. In this embodiment, the mixing controller 53 mixes the positive electrode electrolyte and the negative electrode electrolyte through the mixing pipe 61 by closing the valve 70 as described above. After mixing the positive electrode electrolyte and the negative electrode electrolyte in the above mixing amount, the mixing controller 53 stops the mixing of the positive electrode electrolyte and the negative electrode electrolyte by opening the valve 70 . The amount of the positive electrode electrolyte and the negative electrode electrolyte to be mixed can be adjusted by, for example, the flow rate of each pump 112 and 113 and the opening/closing time of the valve 70 . Whether or not the positive electrode electrolyte and the negative electrode electrolyte have been mixed up to the above mixing amount can be determined by, for example, the flow rate of each pump 112 and 113 and the opening/closing time of the valve 70 . Alternatively, it may be determined from the flow rate measured by the flow meter described above.
 正極電解液と負極電解液との混合は、各電解液のSOCが低い状態で行うとよい。SOCが高い状態で正極電解液と負極電解液とを混合すると、エネルギーロスが大きくなるからである。反対に、SOCが低い状態で正極電解液と負極電解液とを混合すれば、エネルギーロスが小さくなる。SOCが低い状態とは、例えば、各電解液のSOCが30%以下、更に25%以下、20%以下である。 It is preferable to mix the positive electrode electrolyte and the negative electrode electrolyte while the SOC of each electrolyte is low. This is because the energy loss increases when the positive electrode electrolyte and the negative electrode electrolyte are mixed in a state where the SOC is high. On the contrary, if the positive electrode electrolyte and the negative electrode electrolyte are mixed in a state where the SOC is low, the energy loss is reduced. The low SOC state means, for example, that the SOC of each electrolytic solution is 30% or less, further 25% or less, or 20% or less.
 正極電解液と負極電解液との混合は、RF電池システム1の運転中、即ち充放電を行いながら行ってもよいし、RF電池システム1を停止した状態、即ち充放電を行わない状態で行ってもよい。 The positive electrode electrolyte and the negative electrode electrolyte may be mixed while the RF battery system 1 is in operation, that is, while charging and discharging, or while the RF battery system 1 is stopped, that is, while charging and discharging are not performed. may
 [変形例1]
 図5を参照して、実施形態に係るRF電池システム1の変形例を説明する。図5に示す変形例1のRF電池システム1は、計測器30が両極モニタセル40を有する点が、図1に示す実施形態のRF電池システム1と異なる。以下の説明は、上述した実施形態との相違点を中心に行う。実施形態と同様の構成の説明は省略することがある。
[Modification 1]
A modification of the RF battery system 1 according to the embodiment will be described with reference to FIG. The RF battery system 1 of Modification 1 shown in FIG. 5 differs from the RF battery system 1 of the embodiment shown in FIG. 1 in that the measuring instrument 30 has a bipolar monitor cell 40 . The following description focuses on differences from the above-described embodiment. Descriptions of configurations similar to those of the embodiment may be omitted.
 〈両極モニタセル〉
 両極モニタセル40は、正極電解液と負極電解液との電位差を測定する。両極モニタセル40は充放電を行わない。両極モニタセル40は、正極流路14及び負極流路15の途中に設けられている。両極モニタセル40には、電池セル10に供給される正極電解液及び負極電解液と共通の正極電解液及び負極電解液が供給される。本実施形態では、正極流路14の往路配管108及び負極流路15の往路配管109から両極モニタセル40に正極電解液及び負極電解液がそれぞれ供給されるように構成されている。
<Bipolar monitor cell>
The bipolar monitor cell 40 measures the potential difference between the positive electrolyte and the negative electrolyte. The bipolar monitor cell 40 does not charge or discharge. The bipolar monitor cell 40 is provided in the middle of the positive flow path 14 and the negative flow path 15 . The bipolar monitor cell 40 is supplied with a positive electrode electrolyte and a negative electrode electrolyte that are common to the positive electrode electrolyte and the negative electrode electrolyte that are supplied to the battery cell 10 . In this embodiment, the positive electrode electrolyte and the negative electrode electrolyte are supplied to the bipolar monitor cell 40 from the outgoing pipe 108 of the positive electrode channel 14 and the outgoing pipe 109 of the negative electrode channel 15, respectively.
 両極モニタセル40の構成は、電池セル10と同様であり、正極電極104と、負極電極105と、隔膜101とを有する。隔膜101によって分離された正極セル102及び負極セル103には、正極電極104及び負極電極105がそれぞれ内蔵されている。両極モニタセル40は、電圧計40vを有する。電圧計40vは、電極104,105間の開放電圧を測定することにより、正極電解液と負極電解液との電位差を測定する。両極モニタセル40によって測定された電位差の値は制御装置50に送信される。 The configuration of the bipolar monitor cell 40 is the same as that of the battery cell 10, and has a positive electrode 104, a negative electrode 105, and a diaphragm 101. A positive electrode 104 and a negative electrode 105 are built in a positive electrode cell 102 and a negative electrode cell 103 separated by a diaphragm 101, respectively. The bipolar monitor cell 40 has a voltmeter 40v. The voltmeter 40v measures the potential difference between the positive electrode electrolyte and the negative electrode electrolyte by measuring the open circuit voltage between the electrodes 104 and 105 . The value of the potential difference measured by the bipolar monitor cell 40 is sent to the controller 50 .
 正極電解液と負極電解液との電位差を測定する場合は、正極電解液の電位及び負極電解液の電位のうちの一方の電位を測定しなくてもよい。つまり、両極モニタセル40を有する場合は、正極モニタセル31及び負極モニタセル32のうちの一方のモニタセルは省略することが可能である。図5では、正極モニタセル31及び負極モニタセル32の双方を記載している。上述の<活物質イオンが移動した後の各電解液の電位>の項で説明したように、正極電解液と負極電解液との電位差(Vc)と、正極電解液の電位(ΔVp)及び負極電解液の電位(ΔVn)のうちの一方の電位とが分かれば、正極電解液及び負極電解液の他方の電位は求められるからである。 When measuring the potential difference between the positive electrode electrolyte and the negative electrode electrolyte, it is not necessary to measure either the potential of the positive electrode electrolyte or the potential of the negative electrode electrolyte. That is, when the bipolar monitor cell 40 is provided, one of the positive electrode monitor cell 31 and the negative electrode monitor cell 32 can be omitted. In FIG. 5, both the positive electrode monitor cell 31 and the negative electrode monitor cell 32 are shown. As described in the above section <Electrolyte Potential After Active Material Ions Move>, the potential difference (Vc) between the positive electrode electrolyte and the negative electrode electrolyte, the potential (ΔVp) of the positive electrode electrolyte, and the negative electrode This is because if one of the potentials (ΔVn) of the electrolyte is known, the potential of the other of the positive electrolyte and the negative electrolyte can be obtained.
 [変形例2]
 図6を参照して、実施形態に係るRF電池システム1の別の変形例を説明する。図6に示す変形例2のRF電池システム1は、混合流路60が正極タンク12と負極タンク13とをつなぐ連通配管65を有する点が、図1に示す実施形態のRF電池システム1と異なる。以下の説明は、上述した実施形態との相違点を中心に行う。実施形態と同様の構成の説明は省略することがある。
[Modification 2]
Another modification of the RF battery system 1 according to the embodiment will be described with reference to FIG. The RF battery system 1 of Modification 2 shown in FIG. 6 is different from the RF battery system 1 of the embodiment shown in FIG. . The following description focuses on differences from the above-described embodiment. Descriptions of configurations similar to those of the embodiment may be omitted.
 連通配管65は、第一連通配管65a及び第二連通配管65bの2つの配管で構成されている。第一連通配管65aは、正極タンク12から負極タンク13へ正極電解液を流通させる。第二連通配管65bは、負極タンク13から正極タンク12へ負極電解液を流通させる。そのため、連通配管65は、第一連通配管65a及び第二連通配管65bによって、正極電解液と負極電解液とを混合することが可能である。本例では、第一連通配管65aの一端が正極流路14の往路配管108に設けられたポンプ112の下流側に接続され、第一連通配管65aの他端が負極タンク13に接続されている。また、第二連通配管65bの一端が負極流路15の往路配管109に設けられたポンプ113の下流側に接続され、第二連通配管65bの他端が正極タンク12に接続されている。そのため、各ポンプ112,113を利用して、正極タンク12と負極タンク13との間で正極電解液と負極電解液とを混合することが可能である。 The communication pipe 65 is composed of two pipes, a first communication pipe 65a and a second communication pipe 65b. The first communication pipe 65 a circulates the positive electrode electrolyte from the positive electrode tank 12 to the negative electrode tank 13 . The second communication pipe 65 b allows the negative electrode electrolyte to flow from the negative electrode tank 13 to the positive electrode tank 12 . Therefore, the communication pipe 65 can mix the positive electrode electrolyte and the negative electrode electrolyte by the first communication pipe 65a and the second communication pipe 65b. In this example, one end of the first communication pipe 65a is connected to the downstream side of the pump 112 provided in the outgoing pipe 108 of the positive electrode flow path 14, and the other end of the first communication pipe 65a is connected to the negative electrode tank 13. ing. One end of the second communication pipe 65b is connected to the downstream side of the pump 113 provided in the outward pipe 109 of the negative electrode flow channel 15, and the other end of the second communication pipe 65b is connected to the positive electrode tank 12. Therefore, it is possible to mix the positive electrode electrolyte and the negative electrode electrolyte between the positive electrode tank 12 and the negative electrode tank 13 using the respective pumps 112 and 113 .
 本例では、バルブ70は、連通配管65を構成する第一連通配管65a及び第二連通配管65bの連通状態を調節する。バルブ70は、正極流路14の往路配管108と第一連通配管65aとの分岐部、負極流路15の往路配管109と第二連通配管65bとの分岐部のそれぞれに設けられている。本例のバルブ70は、往路配管108と連通配管65aとの間で流路を切り替えると共に、往路配管109と連通配管65bとの間で流路を切り替える切替弁である。バルブ70が開状態では、各往路配管108,109が連通状態となり、各連通配管65a,65bが非連通状態となる。そのため、正極流路14及び負極流路15の各往路配管108,109を通って、正極電解液及び負極電解液は電池セル10に送られる。バルブ70が閉状態では、各往路配管108,109が非連通状態となり、各連通配管65a,65bが連通状態となる。そのため、正極タンク12から第一連通配管65aを通って、正極電解液は負極タンク13に送られる。また、負極タンク13から第二連通配管65bを通って、負極電解液は正極タンク12に送られる。正極電解液と負極電解液との混合量は、例えば、各ポンプ112,113の流量とバルブ70の開閉時間によって測定することが可能である。また、例えば、バルブ70又は各連通配管65a,65bに流量計(図示せず)を取り付けて、流量計を用いて混合量を測定してもよい。 In this example, the valve 70 adjusts the communication state of the first communication pipe 65 a and the second communication pipe 65 b that constitute the communication pipe 65 . The valve 70 is provided at a branching portion between the forward pipe 108 of the positive electrode flow channel 14 and the first communication pipe 65a and at a branching portion between the outward pipe 109 of the negative electrode flow channel 15 and the second communication pipe 65b. The valve 70 of the present example is a switching valve that switches the flow path between the outward piping 108 and the communication piping 65a and switches the flow path between the outward piping 109 and the communication piping 65b. When the valve 70 is open, the outgoing pipes 108 and 109 are in communication, and the communication pipes 65a and 65b are in non-communication. Therefore, the positive electrode electrolyte solution and the negative electrode electrolyte solution are sent to the battery cell 10 through the outgoing pipes 108 and 109 of the positive electrode flow channel 14 and the negative electrode flow channel 15 , respectively. When the valve 70 is closed, the forward pipes 108 and 109 are not communicated, and the communicating pipes 65a and 65b are communicated. Therefore, the positive electrode electrolyte is sent from the positive electrode tank 12 to the negative electrode tank 13 through the first communication pipe 65a. Further, the negative electrode electrolyte is sent from the negative electrode tank 13 to the positive electrode tank 12 through the second communication pipe 65b. The mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be measured by, for example, the flow rate of each pump 112 and 113 and the open/close time of the valve 70 . Alternatively, for example, a flow meter (not shown) may be attached to the valve 70 or the communication pipes 65a and 65b to measure the mixing amount using the flow meter.
 <RF電池の運転方法>
 図7、図8を参照して、実施形態に係るRF電池の運転方法を説明する。RF電池の運転方法は、上述したRF電池システム1を利用して、電池セル10に正極電解液及び負極電解液を供給して充放電を行う。実施形態のRF電池の運転方法の特徴の一つは、図7に示すように、測定工程S11と、第一の演算工程S12とを備える点にある。上述したRF電池システム1で説明した内容と同様の内容については説明を省略することがある。
<How to operate the RF battery>
A method of operating the RF battery according to the embodiment will be described with reference to FIGS. 7 and 8. FIG. The method of operating the RF battery utilizes the above-described RF battery system 1 to supply the positive electrode electrolyte and the negative electrode electrolyte to the battery cell 10 for charging and discharging. One of the features of the method of operating the RF battery of the embodiment is that it includes a measurement step S11 and a first calculation step S12, as shown in FIG. Descriptions of the same contents as those described for the RF battery system 1 may be omitted.
 (1.測定工程)
 測定工程S11は、正極電解液の電位、負極電解液の電位、及び正極電解液と負極電解液との電位差からなる群より選択される複数の値を測定する工程である。つまり、測定工程では、正極電解液の電位、負極電解液の電位、及び両電解液の電位差のうち、2つ以上を測定する。正極電解液の電位及び負極電解液の電位は、例えば、上述した正極モニタセル31(図3)及び負極モニタセル32(図4)を用いて測定することができる。正極電解液と負極電解液との電位差は、例えば、上述した両極モニタセル40(図5)を用いて測定することができる。
(1. Measurement process)
The measurement step S11 is a step of measuring a plurality of values selected from the group consisting of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the positive electrolyte and the negative electrolyte. That is, in the measuring step, two or more of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the two electrolytes are measured. The potential of the positive electrode electrolyte and the potential of the negative electrode electrolyte can be measured using, for example, the positive electrode monitor cell 31 (FIG. 3) and the negative electrode monitor cell 32 (FIG. 4) described above. The potential difference between the positive electrode electrolyte and the negative electrode electrolyte can be measured using, for example, the above-described bipolar monitor cell 40 (FIG. 5).
 本実施形態では、測定工程S11は、正極電解液の電位ΔVp及び負極電解液の電位ΔVnを測定する。 In the present embodiment, the measuring step S11 measures the potential ΔVp of the positive electrode electrolyte and the potential ΔVn of the negative electrode electrolyte.
 (2.第一の演算工程)
 第一の演算工程S12は、測定工程S11により測定した値に基づいて、正極電解液と負極電解液との間での活物質イオンの移動量を演算する工程である。本実施形態では、第一の演算工程S12は、測定工程S11により測定した正極電解液の電位ΔVp及び負極電解液の電位ΔVnに基づいて、イオン移動量δを算出する。第一の演算工程S12は、上述の<活物質イオンの移動量の算出方法>の項で説明した演算を行うことにより、上述した移動量δを算出する。第一の演算工程S12は、上述した第一演算器51により実行される処理である。
(2. First calculation step)
The first calculation step S12 is a step of calculating the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte based on the values measured in the measurement step S11. In the present embodiment, the first calculation step S12 calculates the amount of ion movement δ based on the potential ΔVp of the positive electrode electrolyte and the potential ΔVn of the negative electrode electrolyte measured in the measurement step S11. In the first calculation step S12, the movement amount δ described above is calculated by performing the calculation described in the section <Method for calculating movement amount of active material ions>. The first computing step S12 is a process executed by the first computing unit 51 described above.
 (3.判定工程)
 本実施形態のRF電池の運転方法は、更に、判定工程S13を備えてもよい。判定工程S13は、第一の演算工程S12により算出した活物質イオンの移動量δが所定の閾値以下か否かを判定する。イオン移動量δが閾値以下であると判定した場合は、電池容量の低下が許容範囲内であると判断して、正常判定S14を行う。イオン移動量δが閾値以下ではない、即ちイオン移動量δが閾値超であると判定した場合は、電池容量の低下が許容範囲を超えていると判断して、異常判定S15を行う。判定工程S13は、上述した判定部によって実行される処理である。
(3. Determination step)
The method of operating the RF battery of this embodiment may further include a determination step S13. A determination step S13 determines whether or not the movement amount δ of the active material ions calculated in the first calculation step S12 is equal to or less than a predetermined threshold value. When it is determined that the ion transfer amount δ is equal to or less than the threshold, it is determined that the decrease in battery capacity is within the allowable range, and normality determination S14 is performed. If it is determined that the ion migration amount δ is not below the threshold value, ie, the ion migration amount δ exceeds the threshold value, it is determined that the decrease in battery capacity exceeds the allowable range, and abnormality determination S15 is performed. The determination step S13 is a process executed by the determination unit described above.
 正常判定S14の場合は、RF電池システム1の運転を継続する。異常判定S15の場合は、例えばユーザに通知する。具体的には、イオン移動量σが閾値超であることを外部に報知する工程を備えてもよい。報知方法は、例えば、スピーカから音を発したり、ランプを点灯させたり、ディスプレイに文字などを表示したりする。 In the case of normal determination S14, the operation of the RF battery system 1 is continued. In the case of the abnormality determination S15, for example, the user is notified. Specifically, a step of notifying the outside that the amount of ion movement σ exceeds a threshold value may be provided. The notification method is, for example, emitting a sound from a speaker, lighting a lamp, or displaying characters on a display.
 本実施形態のRF電池の運転方法は、図8に示すように、更に、第二の演算工程S21、及び混合工程S22を備える。 As shown in FIG. 8, the method of operating the RF battery of this embodiment further includes a second calculation step S21 and a mixing step S22.
 (4.第二の演算工程)
 第二の演算工程S21は、第一の演算工程S12(図7)により算出した活物質イオンの移動量に基づいて、正極電解液の充電状態及び負極電解液の充電状態が同じになる混合量を演算する工程である。第二の演算工程S21は、上述の<正極電解液と負極電解液との混合量の算出方法>の項で説明した演算を行うことにより、混合量を算出する。具体的には、上述した混合割合εoを算出して、混合割合εoから電解液の混合量を求める。第二の演算工程S21は、上述した第二演算器52によって実行される処理である。
(4. Second calculation step)
In the second calculation step S21, based on the movement amount of the active material ions calculated in the first calculation step S12 (FIG. 7), the mixed amount that makes the state of charge of the positive electrode electrolyte and the state of charge of the negative electrode electrolyte the same. is a step of calculating In the second calculation step S21, the mixing amount is calculated by performing the calculation described in the section <Method for calculating the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte>. Specifically, the mixing ratio εo described above is calculated, and the mixed amount of the electrolytic solution is obtained from the mixing ratio εo. The second computing step S21 is a process executed by the second computing unit 52 described above.
 (5.混合工程)
 混合工程S22は、第二の演算工程S21により算出した混合量に基づいて、正極電解液と負極電解液とを混合する工程である。正極電解液と負極電解液との混合は、例えば、バルブ70を動作することにより、混合流路60である混合配管61(図1)や連通配管65(図6)を通して行う。混合工程S22は、上述した混合制御器53によって実行される処理である。混合工程S22は、正極電解液と負極電解液とを上記混合量で混合した後、正極電解液と負極電解液との混合を停止する。
(5. Mixing step)
The mixing step S22 is a step of mixing the positive electrode electrolyte and the negative electrode electrolyte based on the mixing amount calculated in the second calculation step S21. The positive electrode electrolyte and the negative electrode electrolyte are mixed through the mixing pipe 61 (FIG. 1) and the communication pipe 65 (FIG. 6), which are the mixing flow paths 60, by operating the valve 70, for example. The mixing step S22 is a process executed by the mixing controller 53 described above. In the mixing step S22, after mixing the positive electrode electrolyte and the negative electrode electrolyte in the above mixing amount, the mixing of the positive electrode electrolyte and the negative electrode electrolyte is stopped.
 本実施形態では、RF電池の運転中、測定工程S11、第一の演算工程S12及び判定工程S13を順に繰り返し行う。第二の演算工程S21及び混合工程S22は、異常判定S15、即ちイオン移動量δが閾値超になった場合に実行する。 In this embodiment, the measurement step S11, the first calculation step S12, and the determination step S13 are repeated in order during operation of the RF battery. The second calculation step S21 and the mixing step S22 are executed when the abnormality determination S15, that is, when the ion movement amount δ exceeds the threshold value.
 上述した実施形態に係るRF電池システム1及びRF電池の運転方法は、次の効果を有する。 The RF battery system 1 and the RF battery operating method according to the above-described embodiment have the following effects.
 正極電解液と負極電解液との間での活物質イオンの移動量をリアルタイムに把握できる。特に、正極電解液の電位、負極電解液の電位、及び正極電解液と負極電解液との電位差から選択される複数の値に基づいて、活物質イオンの移動量を演算することから、活物質イオンの移動量を正確かつ定量的に把握することが可能である。そのため、活物質イオンの移動に起因する電池容量の低下を正確に把握することが可能である。 The amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte can be grasped in real time. In particular, the movement amount of the active material ions is calculated based on a plurality of values selected from the potential of the positive electrode electrolyte, the potential of the negative electrode electrolyte, and the potential difference between the positive electrode electrolyte and the negative electrode electrolyte. It is possible to accurately and quantitatively grasp the movement amount of ions. Therefore, it is possible to accurately grasp the decrease in the battery capacity due to the movement of the active material ions.
 活物質イオンの移動量を把握することによって、電解液の状態を適切に管理できる。活物質イオンの移動によって生じた両電解液のイオン価数の比率のずれ、換言すれば価数バランスの崩れを定量的に評価できるからである。 By grasping the amount of movement of active material ions, the state of the electrolyte can be appropriately managed. This is because it is possible to quantitatively evaluate the shift in the ratio of the ionic valences of the two electrolytic solutions caused by the migration of the active material ions, in other words, the collapse of the valence balance.
 正極電解液と負極電解液との混合量を適切に設定できる。その理由は、正確な活物質イオンの移動量に基づいて、混合量を演算するからである。 The mixed amount of the positive electrode electrolyte and the negative electrode electrolyte can be set appropriately. The reason is that the mixing amount is calculated based on the accurate movement amount of the active material ions.
 活物質イオンの移動に起因する電池容量の低下を回復できる。その理由は、正極電解液と負極電解液とを混合することで、正極電解液と負極電解液との価数バランスを戻すことができるからである。 It is possible to recover the decrease in battery capacity caused by the movement of active material ions. The reason is that by mixing the positive electrode electrolyte and the negative electrode electrolyte, the valence balance between the positive electrode electrolyte and the negative electrode electrolyte can be restored.
 1 レドックスフロー電池システム(RF電池システム)
 10 電池セル
  101 隔膜、102 正極セル、103 負極セル
  104 正極電極、105 負極電極
 12 正極タンク、13 負極タンク、14 正極流路、15 負極流路
 16、17 分岐流路
  108,109 往路配管、110,111 復路配管
  112,113 ポンプ
 22 正極電解液、23 負極電解液、24 正極基準液、25 負極基準液
 30 計測器
 31 正極モニタセル、32 負極モニタセル
  301 隔膜、312 正極セル、323 負極セル
  314、325 基準セル
  31p、32p 電極
  31v、32v 電圧計
 40 両極モニタセル
 40v 電圧計
 50 制御装置
 51 第一演算器、52 第二演算器 53 混合制御器
 59 報知器
 60 混合流路
 61 混合配管、61a 第一混合配管、61b 第二混合配管
 65 連通配管、65a 第一連通配管、65b 第二連通配管
 70 バルブ
 80 交流/直流変換器、81 変電設備
 90 電力系統、91 発電部、92 負荷
 100 セルスタック
 200s サブスタック
 120 セルフレーム、121 双極板、122 枠体
 123,124 給液マニホールド、125,126 排液マニホールド
 127 シール部材
 210 エンドプレート、220 給排板、230 締付機構
 S11 測定工程、S12 第一の演算工程
 S13 判定工程、S14 正常判定、S15 異常判定
 S21 第二の演算工程、S22 混合工程
1 Redox flow battery system (RF battery system)
10 battery cell 101 diaphragm 102 positive electrode cell 103 negative electrode cell 104 positive electrode 105 negative electrode 12 positive electrode tank 13 negative electrode tank 14 positive flow channel 15 negative flow channel 16, 17 branch flow channel 108, 109 outbound pipe 110 , 111 return pipe 112, 113 pump 22 positive electrode electrolyte, 23 negative electrode electrolyte, 24 positive electrode reference solution, 25 negative electrode reference solution 30 measuring instrument 31 positive electrode monitor cell, 32 negative electrode monitor cell 301 diaphragm, 312 positive electrode cell, 323 negative electrode cell 314, 325 Reference cell 31p, 32p Electrode 31v, 32v Voltmeter 40 Bipolar monitor cell 40v Voltmeter 50 Control device 51 First calculator, 52 Second calculator 53 Mixing controller 59 Alarm 60 Mixing channel 61 Mixing pipe, 61a First mixing Piping 61b Second mixing pipe 65 Communication pipe 65a First communication pipe 65b Second communication pipe 70 Valve 80 AC/DC converter 81 Substation equipment 90 Power system 91 Power generation unit 92 Load 100 Cell stack 200s Sub Stack 120 cell frame 121 bipolar plate 122 frame 123, 124 liquid supply manifold 125, 126 drainage manifold 127 sealing member 210 end plate 220 supply/discharge plate 230 tightening mechanism S11 measurement step S12 first calculation Step S13 Determination step S14 Normality determination S15 Abnormality determination S21 Second calculation step S22 Mixing step

Claims (10)

  1.  正極電解液及び負極電解液が供給される電池セルと、
     前記正極電解液の電位、前記負極電解液の電位、及び前記正極電解液と前記負極電解液との電位差からなる群より選択される複数の値を測定する計測器と、
     前記複数の値に基づいて、前記正極電解液と前記負極電解液との間での活物質イオンの移動量を演算する第一演算器とを備える、
    レドックスフロー電池システム。
    a battery cell to which the positive electrode electrolyte and the negative electrode electrolyte are supplied;
    a measuring instrument for measuring a plurality of values selected from the group consisting of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the positive electrolyte and the negative electrolyte;
    a first calculator that calculates the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte based on the plurality of values;
    Redox flow battery system.
  2.  前記計測器は、前記正極電解液の電位を測定する正極モニタセル、前記負極電解液の電位を測定する負極モニタセル、及び前記正極電解液と前記負極電解液との電位差を測定する両極モニタセルからなる群より選択される少なくとも一つのモニタセルを有し、
     前記正極モニタセルは、前記正極電解液の電位の基準となる正極基準液を有し、
     前記負極モニタセルは、前記負極電解液の電位の基準となる負極基準液を有する、請求項1に記載のレドックスフロー電池システム。
    The measuring instrument comprises a positive electrode monitor cell for measuring the potential of the positive electrode electrolyte, a negative electrode monitor cell for measuring the potential of the negative electrode electrolyte, and a bipolar monitor cell for measuring the potential difference between the positive electrode electrolyte and the negative electrode electrolyte. having at least one monitor cell selected from
    The positive electrode monitor cell has a positive electrode reference solution that serves as a reference for the potential of the positive electrode electrolyte,
    The redox flow battery system according to claim 1, wherein the negative electrode monitor cell has a negative electrode reference solution that serves as a reference for the potential of the negative electrode electrolyte.
  3.  前記活物質イオンの移動量に基づいて、前記正極電解液及び前記負極電解液の各々の充電状態が同じになる前記正極電解液及び前記負極電解液との混合量を演算する第二演算器を有する、請求項1又は請求項2に記載のレドックスフロー電池システム。 a second calculator for calculating, based on the amount of movement of the active material ions, the mixed amount of the positive electrode electrolyte and the negative electrode electrolyte so that the state of charge of each of the positive electrode electrolyte and the negative electrode electrolyte becomes the same; 3. The redox flow battery system of claim 1 or claim 2, comprising:
  4.  前記正極電解液を貯留する正極タンクと、
     前記負極電解液を貯留する負極タンクと、
     前記正極タンクと前記電池セルとの間で、前記正極電解液が循環される正極流路と、
     前記負極タンクと前記電池セルとの間で、前記負極電解液が循環される負極流路と、
     前記正極電解液と前記負極電解液とを混合する混合流路と、
     前記混合流路の連通状態を調節するバルブと、
     前記混合量に基づいて前記正極電解液と前記負極電解液とを混合するように、前記バルブを動作させる混合制御器とを有する、請求項3に記載のレドックスフロー電池システム。
    a positive electrode tank that stores the positive electrode electrolyte;
    a negative electrode tank that stores the negative electrode electrolyte;
    a positive electrode flow path through which the positive electrode electrolyte is circulated between the positive electrode tank and the battery cell;
    a negative electrode flow path through which the negative electrode electrolyte is circulated between the negative electrode tank and the battery cell;
    a mixing channel for mixing the positive electrode electrolyte and the negative electrode electrolyte;
    a valve for adjusting the communication state of the mixing channel;
    4. The redox flow battery system according to claim 3, further comprising a mixing controller that operates the valve so as to mix the positive electrode electrolyte and the negative electrode electrolyte based on the mixing amount.
  5.  前記混合流路は、前記正極流路と前記負極流路とをつなぐ混合配管を有する、請求項4に記載のレドックスフロー電池システム。 The redox flow battery system according to claim 4, wherein the mixing channel has a mixing pipe connecting the positive electrode channel and the negative electrode channel.
  6.  前記混合流路は、前記正極タンクと前記負極タンクとをつなぐ連通配管を有する、請求項4に記載のレドックスフロー電池システム。 The redox flow battery system according to claim 4, wherein the mixing channel has a communicating pipe that connects the positive electrode tank and the negative electrode tank.
  7.  前記正極電解液は、前記活物質イオンとして、5価のバナジウムイオンを含み、
     前記負極電解液は、前記活物質イオンとして、2価のバナジウムイオンを含む、請求項1から請求項6のいずれか一項に記載のレドックスフロー電池システム。
    The positive electrode electrolyte contains pentavalent vanadium ions as the active material ions,
    The redox flow battery system according to any one of claims 1 to 6, wherein the negative electrode electrolyte contains divalent vanadium ions as the active material ions.
  8.  電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池の運転方法であって、
     前記正極電解液の電位、前記負極電解液の電位、及び前記正極電解液と前記負極電解液との電位差からなる群より選択される複数の値を測定する工程と、
     前記複数の値に基づいて、前記正極電解液と前記負極電解液との間での活物質イオンの移動量を演算する工程とを備える、
    レドックスフロー電池の運転方法。
    A method of operating a redox flow battery for charging and discharging by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell, comprising:
    measuring a plurality of values selected from the group consisting of the potential of the positive electrolyte, the potential of the negative electrolyte, and the potential difference between the positive electrolyte and the negative electrolyte;
    calculating the amount of movement of active material ions between the positive electrode electrolyte and the negative electrode electrolyte based on the plurality of values;
    A method of operating a redox flow battery.
  9.  前記活物質イオンの移動量に基づいて、前記正極電解液及び前記負極電解液の各々の充電状態が同じになる前記正極電解液及び前記負極電解液との混合量を演算する工程を備える、請求項8に記載のレドックスフロー電池の運転方法。 calculating, based on the amount of movement of the active material ions, the amount of mixture of the positive electrode electrolyte and the negative electrode electrolyte at which the state of charge of each of the positive electrode electrolyte and the negative electrode electrolyte becomes the same. Item 9. A method of operating the redox flow battery according to Item 8.
  10.  前記混合量に基づいて、前記正極電解液と前記負極電解液とを混合する工程を備える、請求項9に記載のレドックスフロー電池の運転方法。 The operating method of the redox flow battery according to claim 9, comprising a step of mixing the positive electrode electrolyte and the negative electrode electrolyte based on the mixed amount.
PCT/JP2022/010296 2021-04-15 2022-03-09 Redox flow battery system and method for operating redox flow battery system WO2022219974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-069243 2021-04-15
JP2021069243 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022219974A1 true WO2022219974A1 (en) 2022-10-20

Family

ID=83640273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010296 WO2022219974A1 (en) 2021-04-15 2022-03-09 Redox flow battery system and method for operating redox flow battery system

Country Status (1)

Country Link
WO (1) WO2022219974A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351346A (en) * 2005-06-15 2006-12-28 Kansai Electric Power Co Inc:The Redox flow battery system
JP2009016217A (en) * 2007-07-05 2009-01-22 Sumitomo Electric Ind Ltd Redox flow battery system, and operation method thereof
JP2013037857A (en) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd Redox flow cell
JP2020187939A (en) * 2019-05-15 2020-11-19 住友電気工業株式会社 Redox flow battery system and operating method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351346A (en) * 2005-06-15 2006-12-28 Kansai Electric Power Co Inc:The Redox flow battery system
JP2009016217A (en) * 2007-07-05 2009-01-22 Sumitomo Electric Ind Ltd Redox flow battery system, and operation method thereof
JP2013037857A (en) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd Redox flow cell
JP2020187939A (en) * 2019-05-15 2020-11-19 住友電気工業株式会社 Redox flow battery system and operating method thereof

Similar Documents

Publication Publication Date Title
Sun et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery
US8980484B2 (en) Monitoring electrolyte concentrations in redox flow battery systems
KR101574410B1 (en) Method and apparatus for evaluating redox flow battery
JP2009016217A (en) Redox flow battery system, and operation method thereof
JP2006351346A (en) Redox flow battery system
JP2013037857A (en) Redox flow cell
US20150086896A1 (en) Monitoring electrolyte concentrations in redox flow battery systems
JP2006147374A (en) Method of operating vanadium redox flow battery system
WO2018003554A1 (en) Redox flow battery, electrical quantity measurement system, and electrical quantity measurement method
JP3193991B2 (en) Electrolyte flow battery
WO2022219974A1 (en) Redox flow battery system and method for operating redox flow battery system
KR20190007573A (en) Redox flow battery and method for measuring state of charge of the same
JP2012084284A (en) Fuel cell power generation system
JP2020187939A (en) Redox flow battery system and operating method thereof
JP7248029B2 (en) Redox flow battery system
CN107014856B (en) Method and apparatus for measuring the electrolyte balance of redox flow batteries
US20230268533A1 (en) Redox flow battery system and method for operating redox flow battery
JPH01124966A (en) Electrolyte flow type cell system
JP7286062B2 (en) Redox flow battery cell, cell stack, and redox flow battery system
JPH01146265A (en) Rebalancing device of electrolyte flow type cell
KR20150018148A (en) REDOX flow battery and Control method for capacity recovery of the same
WO2022270108A1 (en) Redox flow battery system
CN114072944B (en) Redox flow battery cell, cell stack, and redox flow battery system
KR101542669B1 (en) Method and apparatus for controlling operation of redox flow battery
CN116879771A (en) Voltage detection method and detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787902

Country of ref document: EP

Kind code of ref document: A1