WO2022219917A1 - 情報処理方法及び情報処理システム - Google Patents

情報処理方法及び情報処理システム Download PDF

Info

Publication number
WO2022219917A1
WO2022219917A1 PCT/JP2022/006246 JP2022006246W WO2022219917A1 WO 2022219917 A1 WO2022219917 A1 WO 2022219917A1 JP 2022006246 W JP2022006246 W JP 2022006246W WO 2022219917 A1 WO2022219917 A1 WO 2022219917A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
quality
remote operation
information processing
insurance premium
Prior art date
Application number
PCT/JP2022/006246
Other languages
English (en)
French (fr)
Inventor
弘和 河本
弘章 浦部
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN202280026266.6A priority Critical patent/CN117157660A/zh
Priority to JP2023514359A priority patent/JPWO2022219917A1/ja
Priority to EP22787845.1A priority patent/EP4325419A4/en
Publication of WO2022219917A1 publication Critical patent/WO2022219917A1/ja
Priority to US18/371,559 priority patent/US20240013312A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/226Communication links with the remote-control arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/20Specific applications of the controlled vehicles for transportation
    • G05D2105/22Specific applications of the controlled vehicles for transportation of humans
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/10Outdoor regulated spaces
    • G05D2107/13Spaces reserved for vehicle traffic, e.g. roads, regulated airspace or regulated waters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the present disclosure relates to an information processing method and an information processing system for calculating an insurance premium for operating a mobile object.
  • Patent Document 1 a method of calculating an insurance premium for the operation of a mobile object based on a combination of the attributes of the driver and the driving operation.
  • Patent Document 1 does not disclose a method of calculating insurance premiums for remote operation of a mobile object.
  • the risks are not the same when the occupants of the mobile body operate the mobile body and when the remote control of the mobile body is performed, With the insurance premium calculation method, it is difficult to calculate the insurance premium for remote operation.
  • the present disclosure provides an information processing method and the like capable of calculating insurance premiums for remote operations.
  • An information processing method is an information processing method executed by a computer, in which a remote operation to be performed on a mobile object is acquired in accordance with an instruction via communication from a remote operator terminal, and the remote operation is performed.
  • the quality of the communication when the remote control is performed is acquired, the insurance premium for the remote operation is calculated based on the quality of the remote operation and the communication, and the calculated insurance premium is output.
  • FIG. 1 is a diagram illustrating an example of an information processing system according to an embodiment.
  • FIG. 2 is a sequence diagram showing an example of information flow when insurance premiums are calculated.
  • FIG. 3 is a flow chart showing an example of the operation of the information processing system according to the embodiment.
  • FIG. 4 is an example of a table showing risks for each combination of remote operation content (operation) and communication quality.
  • FIG. 5 is an example of a table showing risks for each combination of remote operation content (task) and communication quality.
  • FIG. 6 is a table showing an example of communication quality types acquired for remote operation contents.
  • FIG. 7 is a table showing an example of weighting of communication quality for remote operation contents.
  • FIG. 8 is a table showing an example of the type of communication quality acquired with respect to the conditions of the route along which the mobile unit moves.
  • FIG. 9 is a table showing an example of weighting of communication quality with respect to conditions of paths along which mobile bodies move.
  • An information processing method is an information processing method executed by a computer, which obtains a remote operation to be performed on a mobile body according to an instruction via communication from a remote operator terminal, A process of acquiring the quality of the communication when the operation is performed, calculating an insurance premium for the remote operation based on the quality of the remote operation and the communication, and outputting the calculated insurance premium.
  • the quality of communication between the remote operator terminal and the mobile object affects the risk of remote operation. This is because if the quality of communication is poor, it becomes difficult to perform correct remote control, and the risk of remote control increases. Therefore, it is possible to calculate the insurance premium for remote operation based on the quality of communication when remote operation is performed.
  • the risk of the remote operation may be determined according to the quality of the communication, and the insurance premium may be calculated based on the determined risk.
  • the type of communication quality is selected according to the remote operation, and in calculating the insurance premium, the insurance premium is calculated based on the remote operation and the selected type of communication quality. good too.
  • the type of communication quality that affects the risk of remote operation may differ depending on the content of remote operation. Therefore, it is possible to accurately calculate insurance premiums based on the type of communication quality selected according to remote control. In addition, since the types of acquired communication quality can be reduced, it is possible to reduce the amount of calculation when calculating insurance premiums.
  • the quality of the communication may be weighted according to the remote operation, and the insurance premium may be calculated based on the remote operation and the weighted quality of the communication.
  • the degree of impact of communication quality on the risk of remote control may differ. Therefore, it is possible to accurately calculate insurance premiums based on the quality of communication weighted according to remote control.
  • the type of communication quality may be calculated based on the quality of the selected type of communication.
  • the type of communication quality that affects the risk of remote control may differ depending on the route conditions of the mobile body on which remote control is performed (eg, road context, weather, traffic volume, etc.). Therefore, it is possible to accurately calculate insurance premiums based on the type of communication quality selected according to the status of the route of the remote-controlled mobile body. In addition, since the types of acquired communication quality can be reduced, it is possible to reduce the amount of calculation when calculating insurance premiums.
  • the mobile object to be remotely controlled For example, further obtaining the conditions of a route along which the mobile object to be remotely controlled moves, weighting the quality of the communication according to the condition of the route, and calculating the insurance premium based on the remote control and the weighting.
  • the insurance premium may be calculated based on the quality of the communication.
  • the degree of impact of communication quality on the risk of remote control may differ depending on the route of the mobile object on which remote control is performed. Therefore, insurance premiums can be accurately calculated based on the quality of communication weighted according to the status of the route of the remote-controlled mobile body.
  • a detection situation around the mobile object to be remotely operated is acquired, and in calculating the insurance premium, the insurance premium is calculated based on the detection situation, the quality of the remote operation and the communication.
  • detection conditions around the remote-controlled mobile object e.g., weather, sensor viewing angle, image recognition detection distance, surrounding environment discrimination accuracy such as roads, detectable objects type, stationary state of the detected object or sensing frequency, etc.
  • Poor detection conditions e.g. dark surroundings due to cloudy weather, narrow viewing angle of the sensor, short detection distance for image recognition, inability to distinguish road types such as sidewalks, roadways, or intersections, inability to detect bicycles, detection objects If it is not clear whether the robot is moving or stopped, or the frequency of sensing is low, it becomes difficult to perform remote operation correctly, and the risk of remote operation increases. Therefore, by using not only the quality of communication when remote operation is performed, but also the detected situation around the mobile object to be remotely operated, the insurance premium for remote operation can be calculated with high accuracy.
  • the quality of the remote operation and the communication may be used to calculate the insurance premium.
  • the state of the operation system of the mobile service using the remote-controlled mobile object (for example, the state of the automatic driving system, the state of the remote control system, or the state of the voice communication system, etc.) ) can affect the risks of remote operation.
  • a system failure in the operation system for example, a failure such as inability to operate automatically, inability to operate remotely, or poor voice communication
  • the remote operation may include at least one of an actuator operation for movement control of the moving body and a movement control task of the moving body.
  • the communication quality may include at least one of communication rate, communication delay, or communication loss.
  • the insurance premium for remote control can be calculated based on the communication rate, communication delay, or communication loss when remote control is performed.
  • An information processing system includes a remote operation acquisition unit that acquires a remote operation performed on a mobile body according to an instruction via communication from a remote operator terminal, and communication when the remote operation is performed. a communication quality acquisition unit that acquires the quality of the remote operation, a calculation unit that calculates an insurance premium for the remote operation based on the quality of the remote operation and the communication, and an output unit that outputs the calculated insurance premium Prepare.
  • FIG. 1 is a diagram showing an example of an information processing system 1 according to an embodiment.
  • the information processing system 1 is a system for calculating insurance premiums for remote control of mobile objects.
  • Mobile objects are monitored and remotely controlled by a remote control system. Specifically, the moving body is monitored and remotely controlled by a remote monitoring operator via a remote control system.
  • the mobile object is, for example, a vehicle, but the mobile object may be a mobile object other than a vehicle (for example, a robot, an aircraft, a ship, etc.).
  • the information processing system 1 is an example of a computer that executes an information processing method.
  • the components that make up the information processing system 1 may be provided in one housing, or may be distributed. When the components constituting the information processing system 1 are distributed and arranged, the information processing method may be executed by a plurality of computers.
  • the information processing system 1 is realized by, for example, a server.
  • the information processing system 1 may be part of a remote control system.
  • the information processing system 1 includes a remote operation acquisition unit 10, a communication quality acquisition unit 20, a route status acquisition unit 30, a detection status acquisition unit 40, a system status acquisition unit 50, a calculation unit 60, and an output unit 70.
  • the information processing system 1 is a computer including a processor, communication interface, memory, and the like.
  • the memory is ROM (Read Only Memory), RAM (Random Access Memory), etc., and can store programs executed by the processor.
  • the remote operation acquisition unit 10, the communication quality acquisition unit 20, the route status acquisition unit 30, the detection status acquisition unit 40, the system state acquisition unit 50, the calculation unit 60, and the output unit 70 are processors and It is implemented by a communication interface or the like.
  • the remote operation acquisition unit 10 acquires the remote operation performed on the mobile object according to the instruction of the remote monitoring operator via communication from the remote operator terminal provided in the remote control system. For example, a remote operator terminal and a mobile unit perform wireless communication, and remote operation is performed on the mobile unit through the wireless communication.
  • Remote operation includes, for example, at least one of an actuator operation for movement control of a mobile body and a movement control task of a mobile body.
  • the remote operation acquiring unit 10 acquires the content of the remote operation (for example, information indicating what kind of remote operation was performed and to what extent).
  • the remote operation acquisition unit 10 acquires operations such as a steering wheel, accelerator or brake operation, or tasks such as obstacle avoidance or road shouldering. Also, for example, the remote operation acquiring unit 10 acquires how much the steering wheel, accelerator, brake, or the like is operated.
  • the communication quality acquisition unit 20 acquires the quality of communication between the remote operator terminal provided in the remote control system and the mobile object when remote control is performed. For example, the communication quality acquisition unit 20 acquires the communication quality of sensing data or mobility data transmitted and received between a mobile object and a remote operator terminal when remote operation is performed.
  • Communication quality includes, for example, at least one of communication rate, communication delay, or communication loss. In other words, communication quality types include communication rate, communication delay, and communication loss.
  • the remote control acquisition unit 10 selects the type of communication quality according to the remote control. Further, the remote operation acquiring unit 10 weights the communication quality according to the remote operation. Details of selection of the type of communication quality and weighting of communication quality according to remote control will be described later.
  • the route status acquisition unit 30 acquires the status of the route along which the remote-controlled mobile body travels.
  • the conditions of the route are, for example, the weather on the route, the traffic volume of the route, or the road context of the route (crosswalk or roadway, etc.).
  • the route status acquisition unit 30 selects the type of communication quality according to the acquired route status.
  • the route status acquisition unit 30 weights the communication quality according to the acquired route status. The details of selection of the type of communication quality and weighting of communication quality according to route conditions will be described later.
  • the detection status acquisition unit 40 acquires the detection status around the moving object to be remotely controlled.
  • the detection status around the mobile body may be the detection status of a sensor mounted on the mobile body (for example, a camera or LiDAR (Light Detection and Ranging), etc.), or the detection status of an infrastructure sensor around the mobile body. There may be.
  • the detection status is, for example, the viewing angle of the sensor, the detection distance of image recognition by the sensor, or the frequency of sensing.
  • the system status acquisition unit 50 acquires the status of the operation system of the mobile service using the remotely controlled mobile object.
  • the state of the operation system is, for example, the state of the automatic driving system, the state of the remote control system, or the state of the voice communication system, etc.
  • the system state acquisition unit 50 determines whether each of these systems is normal or abnormal. or get
  • the calculation unit 60 calculates an insurance premium for remote operation based on the acquired quality of remote operation and communication. Details of the calculation unit 60 will be described later.
  • the output unit 70 outputs the calculated insurance premium.
  • the output unit 70 outputs the calculated insurance premium to the demonstrator, service operator, or the like.
  • FIG. 2 is a sequence diagram showing an example of information flow when insurance premiums are calculated.
  • FIG. 2 shows the flow of information between the mobile unit, remote control system, remote monitoring operator, and information processing system 1 .
  • pre-processing from step S1 to step S8 is performed before the insurance premium is calculated.
  • sensing data, mobility data, etc. are transmitted from the mobile object to the remote control system (step S1).
  • the remote control system can calculate the quality of communication between the remote control system and the mobile object (step S2).
  • calculation of communication quality may also be performed periodically.
  • the remote monitoring operator remotely operates the mobile object via the remote control system (step S3).
  • a remote monitoring operator remotely operates a mobile object by operating a steering wheel, an accelerator, a brake, or the like provided in the remote control system while watching images of the surroundings of the mobile object.
  • the remote control system transmits to the information processing system 1 remote control information indicating the details of the remote control to be performed on the mobile object (step S4). Thereby, the information processing system 1 can acquire the remote operation.
  • the remote control system transmits to the information processing system 1 the status of the route along which the remote-controlled moving body travels, which is obtained from a server that manages weather, traffic volume, map information, or the like (step S5).
  • the information processing system 1 can acquire the status of the route along which the remote-controlled moving object moves.
  • the remote control system transmits communication quality information indicating the calculated communication quality to the information processing system 1 (step S6). Thereby, the information processing system 1 can acquire the communication quality when the remote operation is performed.
  • the remote control system transmits to the information processing system 1 detection status information indicating the detection status of the surroundings of the remote-operated mobile body acquired from the mobile body or the infrastructure around the mobile body (step S7).
  • the information processing system 1 can acquire the detection status around the moving object to be remotely controlled.
  • the remote control system is a system that indicates the status of a mobile service operation system that uses a mobile object that is remotely controlled, obtained from a server that manages an automatic driving system, a remote control system, or a voice communication system.
  • the state information is transmitted to the information processing system 1 (step S8).
  • the information processing system 1 can acquire the state of the operation system of the mobile service using the remote-controlled mobile object.
  • the information processing system 1 calculates insurance premiums for remote operation using various types of information including communication quality acquired in the processes from step S4 to step S8 (step S9).
  • FIG. 3 is a flow chart showing an example of the operation of the information processing system 1 according to the embodiment. Since the information processing system 1 is an example of a computer that executes the information processing method according to the embodiment, FIG. 3 is also a flowchart showing an example of the information processing method according to the embodiment.
  • the remote operation acquisition unit 10 acquires a remote operation performed on a mobile object according to an instruction via communication from a remote operator terminal (step S11).
  • the remote operation acquiring unit 10 acquires information that a remote operation such as a steering wheel operation, an accelerator operation, or a brake operation has been performed as the content of the remote operation, and also acquires information such as the steering wheel operation angle, the accelerator depression amount, or the brake depression amount. and so on.
  • the remote operation acquisition unit 10 acquires an obstacle avoidance or roadside approach based on the situation around the mobile object (such as the situation of obstacles around the mobile object or the position of the mobile object) when the remote operation is performed. You may acquire the information that tasks, such as, were performed.
  • the route status acquisition unit 30 acquires the status of the route along which the remote-controlled mobile body travels (step S12). For example, the route status acquisition unit 30 obtains, as the route status, a road context such as whether it is a crosswalk or a roadway, weather such as whether it is cloudy or light rain, or types of obstacles on the route (types of pedestrians, bicycles, automobiles, etc.). Get the traffic volume per
  • step S12 may be performed when there is a need to acquire the status of the route.
  • the case where it is necessary to acquire the route status is, for example, the case where the information processing system 1 receives a request for highly accurate calculation of insurance premiums from an insurance business operator or a user's terminal.
  • the communication quality acquisition unit 20 acquires the quality of communication when remote control is performed (step S13).
  • the communication quality acquisition unit 20 acquires communication quality of types such as communication rate, communication delay, or communication loss.
  • the calculator 60 determines the risk of remote operation according to the acquired communication quality.
  • a method for determining the risk of remote operation will be described with reference to FIGS. 4 and 5.
  • FIG. 4 is an example of a table showing risks for each combination of remote operation content (operation) and communication quality.
  • FIG. 5 is an example of a table showing risks for each combination of remote operation content (task) and communication quality.
  • the calculation unit 60 determines the risk of remote operation by referring to a table such as that shown in FIG. 4 or FIG. As shown in FIG. 4, for example, when the content of the remote operation performed on the mobile body is steering wheel operation and the communication rate at that time is low, the risk of the remote operation is determined as "risk a". . Further, as shown in FIG. 5, for example, when the content of the remote control performed on the mobile body is obstacle avoidance and the communication rate at that time is low, the risk of the remote control is defined as "risk j". I judge. For example, “Risk a”, “Risk b”, “Risk c”, . . . are predetermined. For example, the content of remote operation and communication should be adjusted so that the risk is higher when remote operation is performed with low (bad) communication quality than when remote operation is performed with high (good) communication quality. A risk is set for each combination with quality.
  • the type of communication quality to be acquired may be selected according to the details of the remote operation. This will be described with reference to FIG.
  • FIG. 6 is a table showing an example of communication quality types acquired for remote operation content.
  • the remote operation acquisition unit 10 selects communication delay as the type of communication quality to be acquired. This is because the communication delay can greatly affect the risk of remote steering operation. Also, if the content of the remote control is to operate both the steering wheel and the accelerator, or to avoid obstacles, communication delay, communication loss, and communication rate are selected as the types of communication quality to be acquired. This is because communication delay, communication loss, and communication rate can greatly affect the risk of remote steering and accelerator operation and obstacle avoidance. Note that the combination of the content of the remote operation and the type of communication quality to be acquired shown in FIG. 6 is an example, and the combination is not limited to these.
  • the acquired communication quality may be weighted according to the details of the remote operation. This will be described with reference to FIG.
  • FIG. 7 is a table showing an example of the weight of communication quality for remote operation content.
  • the contents of the remote operation may be subdivided. Specifically, in the case of a steering wheel operation, the operation may be subdivided into whether it is a sudden operation or not, and in the case of an obstacle avoidance task, it may be subdivided into whether it is fixed object avoidance or moving object avoidance. good too.
  • the remote operation acquisition unit 10 gives a large weight to the communication delay, a medium weight to the communication loss, and a large weight to the communication rate. This is because the communication delay or communication rate can greatly affect the risk of sudden steering operation by remote control. Weighting on the communication quality changes the magnitude of the determined risk. For example, when the communication quality is not weighted, the risk determined when the communication rate is low when the steering wheel is suddenly operated remotely is heavily weighted as shown in FIG. , the risk of remote operation is weighted.
  • the type of communication quality to be acquired may be selected according to the conditions of the route along which the mobile body moves. This will be described with reference to FIG.
  • FIG. 8 is a table showing an example of the type of communication quality acquired with respect to the conditions of the route along which the mobile body moves.
  • the route status acquisition unit 30 selects communication delay as the type of communication quality to be acquired (in other words, does not select communication loss or communication rate). . This is because communication delays can greatly affect the risk of remote control at pedestrian crossings. At this time, the route status acquisition unit 30 may acquire the traffic volume at the crosswalk as the status of the route. No need to select. Further, when the road context is a roadway, communication delay, communication loss, and communication rate are selected as types of communication quality to be acquired. This is because communication delay, communication loss, and communication rate can greatly affect the risk of remote control on the roadway. For example, communication delay, communication loss and communication rate can affect the risk of sudden remote control for avoidance of parked vehicles on the roadway. It should be noted that the combination of the route status and the acquired communication quality type shown in FIG. 8 is an example, and is not limited to these.
  • the acquired communication quality may be weighted according to the conditions of the route along which the mobile body travels. This will be described with reference to FIG.
  • Fig. 9 is a table showing an example of the weight of the communication quality with respect to the status of the route along which the mobile body moves.
  • the route status acquisition unit 30 gives a large weight to the communication delay, a medium weight to the communication loss, and a large weight to the communication rate. This is because the communication delay or communication rate can greatly affect the risk of remote control on the roadway. Weighting on the communication quality changes the magnitude of the determined risk. For example, when the communication quality is not weighted, the risk determined when the communication rate is low when remote control is performed on the roadway is heavily weighted as shown in FIG. becomes larger as the risk of remote operation is weighted.
  • the detection status acquisition unit 40 acquires the detection status around the mobile object to be remotely controlled (step S14).
  • the detection status acquisition unit 40 as the detection status, the weather, the viewing angle of the sensor, the detection distance of image recognition by the sensor, the determination accuracy of the surrounding environment such as a road, the type of detectable object, the stop state of the detected object, or , sensing frequency, etc.
  • sensing accuracy and the like may be acquired in remote operation during light rain. If the road environment is complex, road types such as sidewalk, roadway or intersection may be determined. Wheelchairs, strollers, trash on the road, etc. may be detected. It may be determined whether the vehicle is stopped as the stopped state of the detected object. Further, when remote control is performed to return to autonomous movement after falling into a groove, image recognition accuracy and the like may be acquired since detection is performed by image recognition of the groove.
  • step S14 may be performed when there is a need to acquire the detection status.
  • the case where it is necessary to acquire the detection status is, for example, the case where the information processing system 1 receives a request for highly accurate calculation of insurance premiums from an insurance business operator or a user's terminal.
  • the system state acquisition unit 50 acquires the state of the operation system of the mobile service using the remote-controlled mobile object (step S15).
  • the system state acquisition unit 50 acquires the state of the automatic driving system, the state of the remote control system, the state of the voice communication system, or the like as the state of the operation system.
  • the state of a voice call system for example, a system having a function to say "a moving object will pass" to the person
  • a voice call system for example, a system having a function to say "a moving object will pass" to the person
  • step S15 may be performed when there is a need to acquire the state of the operation system.
  • the case where it is necessary to acquire the state of the operation system is, for example, the case where the information processing system 1 receives a request for highly accurate calculation of insurance premiums from an insurance business operator or a user's terminal.
  • the calculation unit 60 calculates an insurance premium for remote operation based on the quality of remote operation and communication (step S16). For example, the calculation unit 60 determines the risk of remote operation as described with reference to FIGS. 4 and 5, and calculates insurance premiums based on the determined risk. For example, the calculation unit 60 calculates insurance premiums so that the higher the risk of remote operation, the higher the insurance premium, and the lower the insurance premium, the lower the risk of remote operation.
  • the calculation unit 60 may calculate the insurance premium based on the remote operation and the quality of the type of communication selected by the remote operation acquisition unit 10 or the route status acquisition unit 30.
  • the quality of the type of communication selected by the remote operation acquisition unit 10 or the route status acquisition unit 30 may be calculated based on the remote operation and the quality of the type of communication selected by the remote operation acquisition unit 10 or the route status acquisition unit 30.
  • there are types of communication quality for example, communication rate, communication delay, or communication loss
  • a type of communication quality may be selected, and an insurance premium may be calculated based on the selected type of communication quality.
  • insurance premiums can be calculated with high accuracy.
  • the types of acquired communication quality can be reduced, it is possible to reduce the amount of calculation when calculating insurance premiums.
  • the calculation unit 60 may calculate insurance premiums based on the remote operation and the quality of communication weighted by the remote operation acquisition unit 10 or the route status acquisition unit 30 .
  • the quality of communication may be weighted with respect to the contents of the remote operation or the condition of the route, and the insurance premium may be calculated based on the weighted quality of communication.
  • insurance premiums can be calculated with high accuracy.
  • the calculation unit 60 may calculate insurance premiums based on the detection status of the surroundings of the mobile object to be remotely controlled and the quality of the remote control and communication.
  • the detection conditions around the mobile object that is remotely operated may affect the risk of remote operation.
  • insurance premium calculation may be performed. Since detection conditions around the moving object are also used for calculating the insurance premium, the insurance premium can be calculated with high accuracy.
  • the calculation unit 60 may calculate insurance premiums based on the state of the operating system of a mobile service using a remotely controlled mobile object, the quality of remote control and communication.
  • the state of the operation system of the mobile service using the remote-controlled mobile object may affect the risk of remote operation.
  • Premium calculations may also be based on the state of the operating system of the service. Since the state of the operation system is also used for calculating the insurance premium, the insurance premium can be calculated with high accuracy.
  • the output unit 70 outputs the calculated insurance premium (step S17). This allows the verifier, service operator, or the like to grasp the insurance premium for remote operation.
  • the quality of communication between the remote operator terminal and the mobile object affects the risk of remote operation. This is because if the quality of communication is poor, it becomes difficult to perform correct remote control, and the risk of remote control increases. Therefore, it is possible to calculate the insurance premium for remote operation based on the quality of communication when remote operation is performed.
  • the information processing system 1 includes the route status acquisition unit 30, the detection status acquisition unit 40, and the system state acquisition unit 50.
  • the route status acquisition unit 30 and the detection status acquisition unit 40 and at least one of the system state acquisition unit 50 may not be provided.
  • the quality of communication need not be weighted according to the remote control, and the insurance premium need not be calculated based on the remote control and the weighted quality of communication.
  • the present disclosure can be implemented as a program for causing a processor to execute the steps included in the information processing method.
  • the present disclosure can be implemented as a non-temporary computer-readable recording medium such as a CD-ROM recording the program.
  • each step is executed by executing the program using hardware resources such as the CPU, memory, and input/output circuits of the computer.
  • hardware resources such as the CPU, memory, and input/output circuits of the computer.
  • each step is executed by the CPU acquiring data from a memory, an input/output circuit, or the like, performing an operation, or outputting the operation result to the memory, an input/output circuit, or the like.
  • each component included in the information processing system 1 may be configured with dedicated hardware or realized by executing a software program suitable for each component.
  • Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
  • a part or all of the functions of the information processing system 1 according to the above embodiment are typically realized as an LSI, which is an integrated circuit. These may be made into one chip individually, or may be made into one chip so as to include part or all of them. Further, circuit integration is not limited to LSIs, and may be realized by dedicated circuits or general-purpose processors.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
  • the present disclosure also includes various modifications in which a person skilled in the art makes modifications to each embodiment of the present disclosure, as long as they do not deviate from the gist of the present disclosure.
  • the present disclosure can be applied to a system for remotely controlling mobile objects.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Technology Law (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

情報処理方法は、遠隔オペレータ端末からの通信を介した指示により移動体に対して行われる遠隔操作を取得し、遠隔操作が行われるときの通信の品質を取得し、遠隔操作及び通信の品質に基づいて、遠隔操作に対する保険料を算出し、算出された保険料を出力する処理を含む。

Description

情報処理方法及び情報処理システム
 本開示は、移動体の操作に対する保険料を算出するための情報処理方法及び情報処理システムに関する。
 従来、運転者の属性と運転操作との組み合わせにより、移動体の操作に対する保険料を算出する方法が開示されている(例えば特許文献1)。
特許第6600536号公報
 近年、遠隔管制システムにより移動体の遠隔操作を行うサービスが登場しているが、上記特許文献1には、移動体の遠隔操作に対する保険料の算出方法については開示されていない。また、移動体の乗員に移動体の操作が行われる場合と移動体の遠隔操作が行われる場合とではリスクが同じとは言えないため、移動体の乗員によって移動体の操作が行われる際の保険料の算出方法では、遠隔操作に対する保険料を算出することが難しい。
 そこで、本開示は、遠隔操作に対する保険料を算出することができる情報処理方法などを提供する。
 本開示に係る情報処理方法は、コンピュータにより実行される情報処理方法であって、遠隔オペレータ端末からの通信を介した指示により移動体に対して行われる遠隔操作を取得し、前記遠隔操作が行われるときの前記通信の品質を取得し、前記遠隔操作及び前記通信の品質に基づいて、前記遠隔操作に対する保険料を算出し、算出された前記保険料を出力する。
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様に係る情報処理方法などによれば、遠隔操作に対する保険料を算出することができる。
図1は、実施の形態に係る情報処理システムの一例を示す図である。 図2は、保険料の算出が行われる際の情報の流れの一例を示すシーケンス図である。 図3は、実施の形態に係る情報処理システムの動作の一例を示すフローチャートである。 図4は、遠隔操作内容(操作)と通信品質との組み合わせごとのリスクを示すテーブルの一例である。 図5は、遠隔操作内容(タスク)と通信品質との組み合わせごとのリスクを示すテーブルの一例である。 図6は、遠隔操作内容に対して取得される通信品質の種別の一例を示す表である。 図7は、遠隔操作内容に対する通信品質への重みの一例を示す表である。 図8は、移動体が移動する経路の状況に対して取得される通信品質の種別の一例を示す表である。 図9は、移動体が移動する経路の状況に対する通信品質への重みの一例を示す表である。
 本開示の一態様に係る情報処理方法は、コンピュータにより実行される情報処理方法であって、遠隔オペレータ端末からの通信を介した指示により移動体に対して行われる遠隔操作を取得し、前記遠隔操作が行われるときの前記通信の品質を取得し、前記遠隔操作及び前記通信の品質に基づいて、前記遠隔操作に対する保険料を算出し、算出された前記保険料を出力する処理を含む。
 移動体の遠隔操作が行われる場合、遠隔オペレータ端末と移動体との通信の品質が遠隔操作のリスクに影響を与える。通信の品質が悪い場合、正しく遠隔操作を行いにくくなり、遠隔操作のリスクが高まるためである。そこで、遠隔操作が行われるときの通信の品質に基づいて遠隔操作に対する保険料を算出することができる。
 例えば、前記保険料の算出では、前記通信の品質にしたがって前記遠隔操作のリスクを判定し、判定された前記リスクに基づいて前記保険料を算出してもよい。
 これによれば、遠隔操作が行われるときの通信の品質にしたがって判定されたリスクに基づいて、保険料を精度良く算出することができる。
 例えば、さらに、前記遠隔操作にしたがって前記通信の品質の種別を選択し、前記保険料の算出では、前記遠隔操作及び選択された種別の前記通信の品質に基づいて、前記保険料を算出してもよい。
 例えば、遠隔操作の内容によっては、遠隔操作のリスクに影響を与える通信の品質の種別が異なり得る。そこで、遠隔操作にしたがって選択された通信の品質の種別に基づいて、保険料を精度良く算出することができる。また、取得される通信の品質の種別が少なくなり得るため、保険料の算出の際の計算量の抑制が可能となる。
 例えば、さらに、前記遠隔操作にしたがって前記通信の品質に重み付けし、前記保険料の算出では、前記遠隔操作及び重み付けられた前記通信の品質に基づいて、前記保険料を算出してもよい。
 例えば、遠隔操作の内容によっては、通信の品質の、遠隔操作のリスクへの影響度合いが異なり得る。そこで、遠隔操作にしたがって重み付けられた通信の品質に基づいて、保険料を精度良く算出することができる。
 例えば、さらに、前記遠隔操作が行われる前記移動体が移動する経路の状況を取得し、前記経路の状況にしたがって前記通信の品質の種別を選択し、前記保険料の算出では、前記遠隔操作及び選択された種別の前記通信の品質に基づいて、前記保険料を算出してもよい。
 例えば、遠隔操作が行われる移動体の経路の状況(例えば、道路コンテキスト、天候又は交通量など)によっては、遠隔操作のリスクに影響を与える通信の品質の種別が異なり得る。そこで、遠隔操作が行われる移動体の経路の状況にしたがって選択された通信の品質の種別に基づいて、保険料を精度良く算出することができる。また、取得される通信の品質の種別が少なくなり得るため、保険料の算出の際の計算量の抑制が可能となる。
 例えば、さらに、前記遠隔操作が行われる前記移動体が移動する経路の状況を取得し、前記経路の状況にしたがって前記通信の品質に重み付けし、前記保険料の算出では、前記遠隔操作及び重み付けられた前記通信の品質に基づいて、前記保険料を算出してもよい。
 例えば、遠隔操作が行われる移動体の経路の状況によっては、通信の品質の、遠隔操作のリスクへの影響度合いが異なり得る。そこで、遠隔操作が行われる移動体の経路の状況にしたがって重み付けられた通信の品質に基づいて、保険料を精度良く算出することができる。
 例えば、さらに、前記遠隔操作が行われる前記移動体の周辺の検知状況を取得し、前記保険料の算出では、前記検知状況、前記遠隔操作及び前記通信の品質に基づいて、前記保険料を算出してもよい。
 移動体の遠隔操作が行われる場合、遠隔操作が行われる移動体の周辺の検知状況(例えば、天候、センサの視野角、画像認識の検知距離、道路といった周囲環境の判別精度、検出可能な物体の種類、検出物体の停止状態又はセンシング頻度など)が遠隔操作のリスクに影響を与え得る。検知状況が悪い(例えば、曇天により周囲が暗い、センサの視野角が狭い、画像認識の検知距離が短い、歩道か車道か交差点かといった道路種別が判別できない、自転車の検出ができない、検出物体が移動しているのか停止しているのか分からない、又は、センシング頻度が少ないなど)場合、正しく遠隔操作を行いにくくなり、遠隔操作のリスクが高まるためである。そこで、遠隔操作が行われるときの通信の品質に加えて、遠隔操作が行われる移動体の周辺の検知状況も用いることで、遠隔操作に対する保険料を精度良く算出することができる。
 例えば、さらに、前記遠隔操作が行われる前記移動体を用いた移動サービスの運行システムの状態を取得し、前記保険料の算出では、前記運行システムの状態、前記遠隔操作及び前記通信の品質に基づいて、前記保険料を算出してもよい。
 移動体の遠隔操作が行われる場合、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態(例えば、自動走行システムの状態、遠隔管制システムの状態、又は、音声通話システムの状態など)が遠隔操作のリスクに影響を与え得る。運行システムにシステム障害(例えば、自動走行不能、遠隔操作不能又は音声通話不良などの障害)がある場合、正しく遠隔操作を行いにくくなり、遠隔操作のリスクが高まるためである。そこで、遠隔操作が行われるときの通信の品質に加えて、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態も用いることで、遠隔操作に対する保険料を精度良く算出することができる。
 例えば、前記遠隔操作は、前記移動体の移動制御のためのアクチュエータ操作又は前記移動体の移動制御タスクの少なくとも1つを含んでいてもよい。
 これによれば、移動体の移動制御のためのアクチュエータ操作又は移動体の移動制御タスクに対する保険料を算出することができる。
 例えば、前記通信の品質は、通信レート、通信遅延又は通信欠損の少なくとも1つを含んでいてもよい。
 これによれば、遠隔操作が行われる時の通信レート、通信遅延又は通信欠損に基づいて遠隔操作に対する保険料を算出することができる。
 本開示の一態様に係る情報処理システムは、遠隔オペレータ端末からの通信を介した指示により移動体に対して行われる遠隔操作を取得する遠隔操作取得部と、前記遠隔操作が行われる時の通信の品質を取得する通信品質取得部と、前記遠隔操作及び前記通信の品質に基づいて、前記遠隔操作に対する保険料を算出する算出部と、算出された前記保険料を出力する出力部と、を備える。
 これによれば、遠隔操作に対する保険料を算出することができる情報処理システムを提供できる。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。
 (実施の形態)
 以下、実施の形態に係る情報処理システム及び情報処理方法について説明する。
 図1は、実施の形態に係る情報処理システム1の一例を示す図である。
 情報処理システム1は、移動体の遠隔操作に対する保険料を算出するためのシステムである。移動体は、遠隔管制システムによって監視及び遠隔操作が行われる。具体的には、移動体は、遠隔管制システムを介して遠隔監視操作員によって監視及び遠隔操作が行われる。移動体は、例えば車両であるが、移動体は車両以外の移動体(例えば、ロボット、航空機又は船舶など)であってもよい。情報処理システム1は、情報処理方法を実行するコンピュータの一例である。情報処理システム1を構成する構成要素は、1つの筐体内に設けられてもよいし、分散して配置されてもよい。情報処理システム1を構成する構成要素が分散して配置される場合、複数のコンピュータにより情報処理方法が実行されてもよい。情報処理システム1は、例えばサーバによって実現される。なお、情報処理システム1は、遠隔管制システムの一部であってもよい。
 情報処理システム1は、遠隔操作取得部10、通信品質取得部20、経路状況取得部30、検知状況取得部40、システム状態取得部50、算出部60及び出力部70を備える。情報処理システム1は、プロセッサ、通信インタフェース及びメモリなどを含むコンピュータである。メモリは、ROM(Read Only Memory)及びRAM(Random Access Memory)などであり、プロセッサにより実行されるプログラムを記憶することができる。遠隔操作取得部10、通信品質取得部20、経路状況取得部30、検知状況取得部40、システム状態取得部50、算出部60及び出力部70は、メモリに格納されたプログラムを実行するプロセッサ及び通信インタフェースなどによって実現される。
 遠隔操作取得部10は、遠隔管制システムに設けられた遠隔オペレータ端末からの通信を介した、遠隔監視操作員の指示により移動体に対して行われる遠隔操作を取得する。例えば、遠隔オペレータ端末と移動体とは無線通信を行い、無線通信を介して移動体に対して遠隔操作が行われる。遠隔操作は、例えば、移動体の移動制御のためのアクチュエータ操作又は移動体の移動制御タスクの少なくとも1つを含む。例えば、遠隔操作取得部10は、遠隔操作の内容(例えばどのような遠隔操作がどの程度行われたかを示す情報など)を取得する。例えば、遠隔操作取得部10は、ハンドル、アクセル若しくはブレーキなどの操作、又は、障害物回避若しくは路肩寄せなどのタスクを取得する。また、例えば、遠隔操作取得部10は、ハンドル、アクセル又はブレーキなどをどの程度操作したかを取得する。
 通信品質取得部20は、遠隔操作が行われるときの、遠隔管制システムに設けられた遠隔オペレータ端末と移動体との通信の品質を取得する。例えば、通信品質取得部20は、遠隔操作が行われるときに、移動体と遠隔オペレータ端末との間で送受信されるセンシングデータ又はモビリティデータの通信の品質を取得する。通信の品質は、例えば、通信レート、通信遅延又は通信欠損の少なくとも1つを含む。言い換えると、通信の品質の種別としては、通信レート、通信遅延及び通信欠損などがある。
 例えば、遠隔操作取得部10は、遠隔操作にしたがって通信の品質の種別を選択する。また、遠隔操作取得部10は、遠隔操作にしたがって通信の品質に重み付けする。遠隔操作に応じた通信の品質の種別の選択及び通信の品質への重み付けの詳細については後述する。
 経路状況取得部30は、遠隔操作が行われる移動体が移動する経路の状況を取得する。経路の状況は、例えば、経路における天候、経路の交通量又は経路の道路コンテキスト(横断歩道又は車道など)などである。経路状況取得部30は、取得した経路の状況にしたがって通信の品質の種別を選択する。また、経路状況取得部30は、取得した経路の状況にしたがって通信の品質に重み付けする。経路の状況に応じた通信の品質の種別の選択及び通信の品質への重み付けの詳細については後述する。
 検知状況取得部40は、遠隔操作が行われる移動体の周辺の検知状況を取得する。移動体の周辺の検知状況は、移動体に搭載されたセンサ(例えばカメラ又はLiDAR(Light Detection and Ranging)など)の検知状況であってもよいし、移動体の周辺のインフラセンサの検知状況であってもよい。検知状況は、例えば、センサの視野角、センサによる画像認識の検知距離、又は、センシング頻度などである。
 システム状態取得部50は、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態を取得する。運行システムの状態は、例えば、自動走行システムの状態、遠隔管制システムの状態、又は、音声通話システムの状態などであり、システム状態取得部50は、これらのシステムがそれぞれ正常であるか異常であるかを取得する。
 算出部60は、取得された遠隔操作及び通信の品質に基づいて、遠隔操作に対する保険料を算出する。算出部60の詳細については後述する。
 出力部70は、算出された保険料を出力する。例えば、出力部70は、算出された保険料を、実証者又はサービス運営者などへ出力する。
 次に、保険料の算出が行われる際の情報の流れについて図2を用いて説明する。
 図2は、保険料の算出が行われる際の情報の流れの一例を示すシーケンス図である。図2では、移動体、遠隔管制システム、遠隔監視操作員及び情報処理システム1間の情報の流れを示している。
 図2に示されるように、保険料の算出までに、ステップS1からステップS8までの事前処理が行われる。
 まず、移動体から遠隔管制システムへセンシングデータ及びモビリティデータなどが送信される(ステップS1)。これにより、遠隔管制システムは、遠隔管制システムと移動体との通信の品質を算出することができる(ステップS2)。なお、センシングデータ及びモビリティデータなどの送信は定期的に行われるため、通信品質の算出も定期的に行われてもよい。
 次に、遠隔監視操作員は、遠隔管制システムを介して移動体の遠隔操作を行う(ステップS3)。例えば、遠隔監視操作員は、移動体の周囲の映像などを見ながら遠隔管制システムに設けられたハンドル、アクセル又はブレーキなどを操作することで、移動体の遠隔操作を行う。
 次に、遠隔管制システムは、移動体に対して行われる遠隔操作の内容を示す遠隔操作情報を情報処理システム1に送信する(ステップS4)。これにより、情報処理システム1は、遠隔操作を取得することができる。
 また、遠隔管制システムは、天候、交通量又は地図情報などを管理するサーバなどから取得した、遠隔操作が行われる移動体が移動する経路の状況を、情報処理システム1へ送信する(ステップS5)。これにより、情報処理システム1は、遠隔操作が行われる移動体が移動する経路の状況を取得することができる。
 また、遠隔管制システムは、算出した通信品質を示す通信品質情報を情報処理システム1へ送信する(ステップS6)。これにより、情報処理システム1は、遠隔操作が行われるときの通信品質を取得することができる。
 また、遠隔管制システムは、移動体又は移動体周辺のインフラなどから取得した、遠隔操作が行われる移動体の周辺の検知状況を示す検知状況情報を、情報処理システム1へ送信する(ステップS7)。これにより、情報処理システム1は、遠隔操作が行われる移動体の周辺の検知状況を取得することができる。
 また、遠隔管制システムは、自動走行システム、遠隔管制システム、又は、音声通話システムなどを管理するサーバなどから取得した、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態を示すシステム状態情報を、情報処理システム1へ送信する(ステップS8)。これにより、情報処理システム1は、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態を取得することができる。
 そして、情報処理システム1は、ステップS4からステップS8までの処理で取得した通信品質を含む各種情報を用いて、遠隔操作に対する保険料を算出する(ステップS9)。
 次に、情報処理システム1の動作の詳細について図3を用いて説明する。
 図3は、実施の形態に係る情報処理システム1の動作の一例を示すフローチャートである。なお、情報処理システム1は、実施の形態に係る情報処理方法を実行するコンピュータの一例であるため、図3は、実施の形態に係る情報処理方法の一例を示すフローチャートでもある。
 まず、遠隔操作取得部10は、遠隔オペレータ端末からの通信を介した指示により移動体に対して行われる遠隔操作を取得する(ステップS11)。例えば、遠隔操作取得部10は、遠隔操作の内容として、ハンドル操作、アクセル操作又はブレーキ操作などの遠隔操作が行われたという情報を取得し、また、ハンドル操作角、アクセル押下量又はブレーキ押下量などを取得する。また、例えば、遠隔操作取得部10は、遠隔操作が行われたときの移動体の周辺の状況(移動体の周辺の障害物の状況又は移動体の位置など)から、障害物回避又は路肩寄せなどのタスクが行われたという情報を取得してもよい。
 次に、経路状況取得部30は、遠隔操作が行われる移動体が移動する経路の状況を取得する(ステップS12)。例えば、経路状況取得部30は、経路の状況として、横断歩道か車道かといった道路コンテキスト、曇りか小雨かといった天候、又は、経路上の障害物の種別(歩行者、自転車又は自動車などの種別)ごとの交通量を取得する。
 なお、ステップS12は、経路の状況を取得する必要性がある場合に行われてもよい。経路の状況を取得する必要性がある場合とは、例えば、保険事業者又はユーザの端末などから高精度な保険料の算出の要求を情報処理システム1が受信した場合などである。
 次に、通信品質取得部20は、遠隔操作が行われるときの通信の品質を取得する(ステップS13)。例えば、通信品質取得部20は、通信レート、通信遅延又は通信欠損などの種別の通信品質を取得する。例えば、算出部60は、取得された通信品質にしたがって遠隔操作のリスクを判定する。ここで、遠隔操作のリスクの判定方法について図4及び図5を用いて説明する。
 図4は、遠隔操作内容(操作)と通信品質との組み合わせごとのリスクを示すテーブルの一例である。
 図5は、遠隔操作内容(タスク)と通信品質との組み合わせごとのリスクを示すテーブルの一例である。
 例えば、算出部60は、図4又は図5に示されるようなテーブルを参照することで、遠隔操作のリスクを判定する。図4に示されるように、例えば、移動体に対して行われる遠隔操作の内容がハンドル操作であり、そのときの通信レートが低い場合には、遠隔操作のリスクを「リスクa」と判定する。また、図5に示されるように、例えば、移動体に対して行われる遠隔操作の内容が障害物回避であり、そのときの通信レートが低い場合には、遠隔操作のリスクを「リスクj」と判定する。例えば、「リスクa」、「リスクb」、「リスクc」、・・・は、予め決められている。例えば、通信品質が高い(良い)状態で遠隔操作が行われるときよりも、通信品質が低い(悪い)状態で遠隔操作が行われるときの方がリスクが高くなるように、遠隔操作内容と通信品質との組み合わせごとのリスクが設定される。
 なお、遠隔操作内容にしたがって、取得される通信品質の種別が選択されてもよい。これについて、図6を用いて説明する。
 図6は、遠隔操作内容に対して取得される通信品質の種別の一例を示す表である。
 例えば、遠隔操作取得部10は、遠隔操作の内容がハンドル操作である場合、取得される通信品質の種別として通信遅延を選択する。通信遅延は、遠隔によるハンドル操作のリスクに大きく影響し得るためである。また、遠隔操作の内容がハンドル及びアクセルの両方の操作の場合、又は、障害物回避の場合、取得される通信品質の種別として通信遅延、通信欠損及び通信レートを選択する。通信遅延、通信欠損及び通信レートは、遠隔によるハンドル及びアクセルの両方の操作、並びに、障害物回避のリスクに大きく影響し得るためである。なお、図6に示される、遠隔操作の内容と取得される通信品質の種別との組み合わせは一例であり、これらに限らない。
 なお、遠隔操作内容にしたがって、取得される通信品質に重み付けがされてもよい。これについて、図7を用いて説明する。
 図7は、遠隔操作内容に対する通信品質への重みの一例を示す表である。なお、図7に示されるように、遠隔操作内容が細分化されてもよい。具体的には、ハンドル操作の場合、その操作が急操作か否か細分化されてもよいし、障害物回避のタスクの場合、固定物回避であるか移動物回避であるか細分化されてもよい。
 例えば、遠隔操作取得部10は、遠隔操作の内容がハンドルの急操作である場合、通信遅延に大きな重み付け、通信欠損に中程度の重み付け、通信レートに大きな重み付けをする。通信遅延又は通信レートは、遠隔によるハンドルの急操作のリスクに大きく影響し得るためである。通信品質への重み付けによって、判定されるリスクの大きさが変わる。例えば、通信品質への重み付けがされない場合に、遠隔によるハンドルの急操作が行われるときの通信レートが低いときに判定されるリスクに対して、図7に示されるように大きな重み付けがされる場合には、遠隔操作のリスクが重み付けされた分大きくなる。
 また、移動体が移動する経路の状況にしたがって、取得される通信品質の種別が選択されてもよい。これについて、図8を用いて説明する。
 図8は、移動体が移動する経路の状況に対して取得される通信品質の種別の一例を示す表である。
 例えば、経路状況取得部30は、取得する経路の状況として道路コンテキストが横断歩道である場合、取得される通信品質の種別として通信遅延を選択する(言い換えると、通信欠損又は通信レートを選択しない)。通信遅延は、横断歩道での遠隔操作のリスクに大きく影響し得るためである。このとき、経路状況取得部30は、経路の状況として横断歩道での交通量を取得してもよく、交通量が少ない場合(例えば見通しのよい横断歩道である場合)、通信欠損又は通信レートを選択しなくてもよい。また、道路コンテキストが車道である場合、取得される通信品質の種別として通信遅延、通信欠損及び通信レートを選択する。通信遅延、通信欠損及び通信レートは、車道での遠隔操作のリスクに大きく影響し得るためである。例えば、車道において路上駐車された車両の回避のための突発的な遠隔操作のリスクに、通信遅延、通信欠損及び通信レートが影響し得る。なお、図8に示される、経路の状況と取得される通信品質の種別との組み合わせは一例であり、これらに限らない。
 なお、移動体が移動する経路の状況にしたがって、取得される通信品質に重み付けがされてもよい。これについて、図9を用いて説明する。
 図9は、移動体が移動する経路の状況に対する通信品質への重みの一例を示す表である。
 例えば、経路状況取得部30は、取得する経路の状況として道路コンテキストが車道である場合、通信遅延に大きな重み付け、通信欠損に中程度の重み付け、通信レートに大きな重み付けをする。通信遅延又は通信レートは、車道での遠隔操作のリスクに大きく影響し得るためである。通信品質への重み付けによって、判定されるリスクの大きさが変わる。例えば、通信品質への重み付けがされない場合に、車道での遠隔操作が行われるときの通信レートが低いときに判定されるリスクに対して、図9に示されるように大きな重み付けがされる場合には、遠隔操作のリスクが重み付けされた分大きくなる。
 図3での説明に戻り、次に、検知状況取得部40は、遠隔操作が行われる移動体の周辺の検知状況を取得する(ステップS14)。例えば、検知状況取得部40は、検知状況として、天候、センサの視野角、センサによる画像認識の検知距離、道路といった周囲環境の判別精度、検出可能な物体の種類、検出物体の停止状態、又は、センシング頻度などを取得する。例えば、小雨時の遠隔操作では、センシング精度などが取得されてもよい。道路環境が複雑な場合には、歩道、車道又は交差点といった道路種別が判別されてもよい。車椅子、ベビーカー、道路に落ちているゴミなどが検出されてもよい。検出物体の停止状態として車両が停車中なのかが判別されてもよい。また、溝への落ち込みから自律移動への復帰のために遠隔操作が行われる場合には、溝の画像認識による検知が行われるため、画像認識精度などが取得されてもよい。
 なお、ステップS14は、検知状況を取得する必要性がある場合に行われてもよい。検知状況を取得する必要性がある場合とは、例えば、保険事業者又はユーザの端末などから高精度な保険料の算出の要求を情報処理システム1が受信した場合などである。
 次に、システム状態取得部50は、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態を取得する(ステップS15)。例えば、システム状態取得部50は、運行システムの状態として、自動走行システムの状態、遠隔管制システムの状態、又は、音声通話システムの状態などを取得する。例えば、人を回避するための遠隔操作が行われる場合には、音声通話システム(例えば当該人に対して移動体が「通ります」といった発話をするための機能を有するシステム)の状態が取得されてもよい。
 なお、ステップS15は、運行システムの状態を取得する必要性がある場合に行われてもよい。運行システムの状態を取得する必要性がある場合とは、例えば、保険事業者又はユーザの端末などから高精度な保険料の算出の要求を情報処理システム1が受信した場合などである。
 次に、算出部60は、遠隔操作及び通信の品質に基づいて、遠隔操作に対する保険料を算出する(ステップS16)。例えば、算出部60は、図4及び図5で説明したように遠隔操作のリスクを判定し、判定されたリスクに基づいて保険料を算出する。例えば、算出部60は、遠隔操作のリスクが大きいと保険料が高くなるように保険料を算出し、遠隔操作のリスクが小さいと保険料が安くなるように保険料を算出する。
 また、例えば、算出部60は、遠隔操作、及び、遠隔操作取得部10又は経路状況取得部30に選択された種別の通信の品質に基づいて、保険料を算出してもよい。遠隔操作の内容又は経路の状況によっては、遠隔操作に対するリスクに影響を与えやすい通信品質の種別(例えば、通信レート、通信遅延又は通信欠損)があるため、図6及び図8に示されるように、通信の品質の種別が選択され、選択された種別の通信の品質に基づいて、保険料が算出されてもよい。これにより、保険料を精度良く算出することができる。また、取得される通信の品質の種別が少なくなり得るため、保険料の算出の際の計算量の抑制が可能となる。
 また、例えば、算出部60は、遠隔操作、及び、遠隔操作取得部10又は経路状況取得部30に重み付けられた通信の品質に基づいて、保険料を算出してもよい。遠隔操作の内容又は経路の状況によっては、遠隔操作に対するリスクに影響を与えやすい通信品質の種別(例えば、通信レート、通信遅延又は通信欠損)があるため、図7及び図9に示されるように、遠隔操作の内容又は経路の状況に対して通信の品質に重み付けがされ、重み付けられた通信の品質に基づいて、保険料が算出されてもよい。これにより、保険料を精度良く算出することができる。
 また、例えば、算出部60は、遠隔操作が行われる移動体の周辺の検知状況、遠隔操作及び通信の品質に基づいて、保険料を算出してもよい。移動体の遠隔操作が行われる場合、遠隔操作が行われる移動体の周辺の検知状況が遠隔操作のリスクに影響を与え得るため、遠隔操作が行われる移動体の周辺の検知状況にも基づいて、保険料の算出が行われてもよい。保険料の算出に移動体の周辺の検知状況も用いられるため、保険料を精度良く算出することができる。
 また、例えば、算出部60は、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態、遠隔操作及び通信の品質に基づいて、保険料を算出してもよい。移動体の遠隔操作が行われる場合、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態が遠隔操作のリスクに影響を与え得るため、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態にも基づいて、保険料の算出が行われてもよい。保険料の算出に運行システムの状態も用いられるため、保険料を精度良く算出することができる。
 そして、出力部70は、算出された保険料を出力する(ステップS17)。これにより、実証者又はサービス運営者などは、遠隔操作に対する保険料を把握することができる。
 以上説明したように、移動体の遠隔操作が行われる場合、遠隔オペレータ端末と移動体との通信の品質が遠隔操作のリスクに影響を与える。通信の品質が悪い場合、正しく遠隔操作を行いにくくなり、遠隔操作のリスクが高まるためである。そこで、遠隔操作が行われるときの通信の品質に基づいて遠隔操作に対する保険料を算出することができる。
 (その他の実施の形態)
 以上、本開示の一つ又は複数の態様に係る情報処理方法及び情報処理システム1について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を各実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の一つ又は複数の態様の範囲内に含まれてもよい。
 例えば、上記実施の形態では、情報処理システム1は、経路状況取得部30、検知状況取得部40及びシステム状態取得部50を備える例について説明したが、経路状況取得部30、検知状況取得部40及びシステム状態取得部50の少なくとも1つを備えていなくてもよい。つまり、遠隔操作にしたがって通信の品質に重み付けしなくてもよく、保険料の算出では、遠隔操作及び重み付けられた通信の品質に基づいて、保険料を算出しなくてもよい。また、遠隔操作が行われる移動体が移動する経路の状況を取得しなくてもよく、経路の状況にしたがって通信の品質の種別を選択しなくてもよく、保険料の算出では、遠隔操作及び選択された種別の通信の品質に基づいて、保険料を算出しなくてもよい。また、遠隔操作が行われる移動体が移動する経路の状況を取得しなくてもよく、経路の状況にしたがって通信の品質に重み付けしなくてもよく、保険料の算出では、遠隔操作及び重み付けられた通信の品質に基づいて、保険料を算出しなくてもよい。また、遠隔操作が行われる移動体の周辺の検知状況を取得しなくてもよく、保険料の算出では、検知状況、遠隔操作及び通信の品質に基づいて、保険料を算出しなくてもよい。また、遠隔操作が行われる移動体を用いた移動サービスの運行システムの状態を取得しなくてもよく、保険料の算出では、運行システムの状態、遠隔操作及び通信の品質に基づいて、保険料を算出しなくてもよい。
 例えば、本開示は、情報処理方法に含まれるステップを、プロセッサに実行させるためのプログラムとして実現できる。さらに、本開示は、そのプログラムを記録したCD-ROM等である非一時的なコンピュータ読み取り可能な記録媒体として実現できる。
 例えば、本開示が、プログラム(ソフトウェア)で実現される場合には、コンピュータのCPU、メモリ及び入出力回路等のハードウェア資源を利用してプログラムが実行されることによって、各ステップが実行される。つまり、CPUがデータをメモリ又は入出力回路等から取得して演算したり、演算結果をメモリ又は入出力回路等に出力したりすることによって、各ステップが実行される。
 なお、上記実施の形態において、情報処理システム1に含まれる各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 上記実施の形態に係る情報処理システム1の機能の一部又は全ては典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらに、本開示の主旨を逸脱しない限り、本開示の各実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本開示に含まれる。
 本開示は、移動体の遠隔操作を行うシステムに適用できる。
 1 情報処理システム
 10 遠隔操作取得部
 20 通信品質取得部
 30 経路状況取得部
 40 検知状況取得部
 50 システム状態取得部
 60 算出部
 70 出力部

Claims (11)

  1.  コンピュータにより実行される情報処理方法であって、
     遠隔オペレータ端末からの通信を介した指示により移動体に対して行われる遠隔操作を取得し、
     前記遠隔操作が行われるときの前記通信の品質を取得し、
     前記遠隔操作及び前記通信の品質に基づいて、前記遠隔操作に対する保険料を算出し、
     算出された前記保険料を出力する
     情報処理方法。
  2.  前記保険料の算出では、
     前記通信の品質にしたがって前記遠隔操作のリスクを判定し、
     判定された前記リスクに基づいて前記保険料を算出する
     請求項1に記載の情報処理方法。
  3.  さらに、前記遠隔操作にしたがって前記通信の品質の種別を選択し、
     前記保険料の算出では、前記遠隔操作及び選択された種別の前記通信の品質に基づいて、前記保険料を算出する
     請求項1又は2に記載の情報処理方法。
  4.  さらに、前記遠隔操作にしたがって前記通信の品質に重み付けし、
     前記保険料の算出では、前記遠隔操作及び重み付けられた前記通信の品質に基づいて、前記保険料を算出する
     請求項1~3のいずれか1項に記載の情報処理方法。
  5.  さらに、前記遠隔操作が行われる前記移動体が移動する経路の状況を取得し、
     前記経路の状況にしたがって前記通信の品質の種別を選択し、
     前記保険料の算出では、前記遠隔操作及び選択された種別の前記通信の品質に基づいて、前記保険料を算出する
     請求項1~4のいずれか1項に記載の情報処理方法。
  6.  さらに、前記遠隔操作が行われる前記移動体が移動する経路の状況を取得し、
     前記経路の状況にしたがって前記通信の品質に重み付けし、
     前記保険料の算出では、前記遠隔操作及び重み付けられた前記通信の品質に基づいて、前記保険料を算出する
     請求項1~5のいずれか1項に記載の情報処理方法。
  7.  さらに、前記遠隔操作が行われる前記移動体の周辺の検知状況を取得し、
     前記保険料の算出では、前記検知状況、前記遠隔操作及び前記通信の品質に基づいて、前記保険料を算出する
     請求項1~6のいずれか1項に記載の情報処理方法。
  8.  さらに、前記遠隔操作が行われる前記移動体を用いた移動サービスの運行システムの状態を取得し、
     前記保険料の算出では、前記運行システムの状態、前記遠隔操作及び前記通信の品質に基づいて、前記保険料を算出する
     請求項1~7のいずれか1項に記載の情報処理方法。
  9.  前記遠隔操作は、前記移動体の移動制御のためのアクチュエータ操作又は前記移動体の移動制御タスクの少なくとも1つを含む
     請求項1~8のいずれか1項に記載の情報処理方法。
  10.  前記通信の品質は、通信レート、通信遅延又は通信欠損の少なくとも1つを含む
     請求項1~9のいずれか1項に記載の情報処理方法。
  11.  遠隔オペレータ端末からの通信を介した指示により移動体に対して行われる遠隔操作を取得する遠隔操作取得部と、
     前記遠隔操作が行われる時の通信の品質を取得する通信品質取得部と、
     前記遠隔操作及び前記通信の品質に基づいて、前記遠隔操作に対する保険料を算出する算出部と、
     算出された前記保険料を出力する出力部と、を備える
     情報処理システム。
PCT/JP2022/006246 2021-04-12 2022-02-16 情報処理方法及び情報処理システム WO2022219917A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280026266.6A CN117157660A (zh) 2021-04-12 2022-02-16 信息处理方法以及信息处理***
JP2023514359A JPWO2022219917A1 (ja) 2021-04-12 2022-02-16
EP22787845.1A EP4325419A4 (en) 2021-04-12 2022-02-16 INFORMATION PROCESSING METHOD AND INFORMATION PROCESSING SYSTEM
US18/371,559 US20240013312A1 (en) 2021-04-12 2023-09-22 Information processing method and information processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-067253 2021-04-12
JP2021067253 2021-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/371,559 Continuation US20240013312A1 (en) 2021-04-12 2023-09-22 Information processing method and information processing system

Publications (1)

Publication Number Publication Date
WO2022219917A1 true WO2022219917A1 (ja) 2022-10-20

Family

ID=83639609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006246 WO2022219917A1 (ja) 2021-04-12 2022-02-16 情報処理方法及び情報処理システム

Country Status (5)

Country Link
US (1) US20240013312A1 (ja)
EP (1) EP4325419A4 (ja)
JP (1) JPWO2022219917A1 (ja)
CN (1) CN117157660A (ja)
WO (1) WO2022219917A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03536B2 (ja) 1985-10-08 1991-01-08 Metsutsuraa Gmbh
US10373259B1 (en) * 2014-05-20 2019-08-06 State Farm Mutual Automobile Insurance Company Fully autonomous vehicle insurance pricing
JP2020061163A (ja) * 2018-10-13 2020-04-16 Global Mobility Service株式会社 車両遠隔制御システム、車載器、車両、サーバ、車両遠隔制御方法、車両遠隔制御プログラム及び記憶媒体
WO2020202405A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 情報処理装置、移動体、プログラム及び方法
WO2021065559A1 (ja) * 2019-10-04 2021-04-08 ソニー株式会社 情報処理システム、および情報処理方法、並びに情報処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10657597B1 (en) * 2012-02-17 2020-05-19 United Services Automobile Association (Usaa) Systems and methods for dynamic insurance premiums
JP6590937B2 (ja) * 2015-03-31 2019-10-16 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 遠隔制御無人航空機(uav)の挙動を分析するための機器、システム、及び方法
JP2020529660A (ja) * 2017-07-28 2020-10-08 ニューロ・インコーポレーテッドNuro Incorporated 自律車両および半自律車両による食料および飲料配達システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03536B2 (ja) 1985-10-08 1991-01-08 Metsutsuraa Gmbh
US10373259B1 (en) * 2014-05-20 2019-08-06 State Farm Mutual Automobile Insurance Company Fully autonomous vehicle insurance pricing
JP2020061163A (ja) * 2018-10-13 2020-04-16 Global Mobility Service株式会社 車両遠隔制御システム、車載器、車両、サーバ、車両遠隔制御方法、車両遠隔制御プログラム及び記憶媒体
WO2020202405A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 情報処理装置、移動体、プログラム及び方法
WO2021065559A1 (ja) * 2019-10-04 2021-04-08 ソニー株式会社 情報処理システム、および情報処理方法、並びに情報処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4325419A4

Also Published As

Publication number Publication date
US20240013312A1 (en) 2024-01-11
JPWO2022219917A1 (ja) 2022-10-20
EP4325419A4 (en) 2024-06-19
EP4325419A1 (en) 2024-02-21
CN117157660A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6845894B2 (ja) 自動運転車両におけるセンサー故障を処理するための方法
JP6754856B2 (ja) 自動運転車両のためのセンサー集約フレームワーク
JP6894471B2 (ja) 自動運転車(adv)のサブシステムによるパトロールカーのパトロール
JP7030044B2 (ja) 自律走行車(adv)に対して車両とクラウド間のリアルタイム交通地図を構築するためのシステム
US10755007B2 (en) Mixed reality simulation system for testing vehicle control system designs
JP7355877B2 (ja) 車路協同自動運転の制御方法、装置、電子機器及び車両
CN111240312B (zh) 用于自动驾驶车辆的基于学习的动态建模方法
WO2019169604A1 (en) Simulation-based method to evaluate perception requirement for autonomous driving vehicles
US11458991B2 (en) Systems and methods for optimizing trajectory planner based on human driving behaviors
US10849543B2 (en) Focus-based tagging of sensor data
WO2018047114A2 (en) Situational awareness determination based on an annotated environmental model
US20230202504A1 (en) Dynamic route information interface
US20210191394A1 (en) Systems and methods for presenting curated autonomy-system information of a vehicle
CN116803784A (zh) 密集车辆环境中的自主控制
KR102565573B1 (ko) 서브시스템 성능 평가를 위한 메트릭 역전파
JP2018158719A (ja) 自動運転車両に用いられる制御型の計画と制御システム
RU2750243C2 (ru) Способ и система для формирования траектории для беспилотного автомобиля (sdc)
US11531349B2 (en) Corner case detection and collection for a path planning system
CN111259712B (zh) 用于车辆行为预测的压缩环境特征的表示
CN117130298A (zh) 用于评估自动驾驶***的方法、装置及存储介质
CN113753040A (zh) 预测弱势道路用户乱穿马路行为
CN117387647A (zh) 融合车载传感器数据与道路传感器数据的道路规划方法
WO2022219917A1 (ja) 情報処理方法及び情報処理システム
US20230256994A1 (en) Assessing relative autonomous vehicle performance via evaluation of other road users
US20240169112A1 (en) Simulation fidelity for end-to-end vehicle behavior

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514359

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022787845

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022787845

Country of ref document: EP

Effective date: 20231113