WO2022219674A1 - 水素リークディテクター - Google Patents

水素リークディテクター Download PDF

Info

Publication number
WO2022219674A1
WO2022219674A1 PCT/JP2021/015158 JP2021015158W WO2022219674A1 WO 2022219674 A1 WO2022219674 A1 WO 2022219674A1 JP 2021015158 W JP2021015158 W JP 2021015158W WO 2022219674 A1 WO2022219674 A1 WO 2022219674A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
container
leak detector
piezoelectric element
search gas
Prior art date
Application number
PCT/JP2021/015158
Other languages
English (en)
French (fr)
Inventor
久男 北條
Original Assignee
Q’z株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Q’z株式会社 filed Critical Q’z株式会社
Priority to PCT/JP2021/015158 priority Critical patent/WO2022219674A1/ja
Publication of WO2022219674A1 publication Critical patent/WO2022219674A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum

Definitions

  • the present invention relates to hydrogen leak detectors and the like.
  • conventional leak detectors use helium as a search gas, and the helium leaked from the measurement target is ionized in the analysis tube evacuated by a turbomolecular pump.
  • Helium ions guided by a magnet in the analysis tube are detected by the electron multiplier, and the existence of pinholes that cause leaks in the measurement target is detected.
  • the hydrogen concentration measuring device disclosed in Patent Document 1 by the present applicant includes a physical property-dependent pressure gauge and a pressure-sensitive pressure gauge.
  • a physical-property-dependent pressure gauge a container composed of a cylinder and a hydrogen-permeable membrane contains a piezoelectric element such as a crystal oscillator together with air other than hydrogen, such as air. If leaked hydrogen exists in the gas to be measured, the leak is detected by the output signal of the crystal oscillator that changes with the hydrogen introduced into the container through the hydrogen permeable film.
  • a pressure-sensitive pressure gauge in contact with the gas to be measured detects the pressure of the gas to be measured without being affected by the physical properties of the gas to be measured. Moreover, the indicated value of the pressure-sensitive pressure gauge hardly changes before and after a very small amount of hydrogen leaks into the gas to be measured. On the other hand, the indicated value of the quartz oscillator type pressure gauge becomes smaller than the viscosity of air alone due to the mixing of hydrogen, and the apparent pressure decreases. Since the physical properties (mass and viscosity) of hydrogen and air differ greatly in this way, when air and hydrogen are mixed in a container, the average mass and viscosity of the mixed gas are reduced.
  • the hydrogen concentration can be estimated by using a quartz oscillator pressure gauge before and after hydrogen leaks into the gas to be measured.
  • the crystal oscillator type pressure gauge indicates the same hydrogen concentration, if the pressure of the gas to be measured is high, the output of the crystal oscillator type pressure gauge will be large, resulting in poor accuracy. For this reason, the output of the crystal oscillator type pressure gauge is authorized by the output of the pressure sensitive type pressure gauge. Thereby, the accuracy of the measured hydrogen concentration can be improved.
  • Patent Document 1 a leak detector that is relatively small and manufactured at low cost can be constructed.
  • the piezoelectric element is housed in the container together with, for example, air, it is necessary to use a pressure-sensitive pressure gauge, which hinders miniaturization.
  • the piezoelectric element is housed in the container together with air, for example, it is not suitable for detecting low-concentration hydrogen below the concentration of hydrogen contained in the air.
  • Some aspects of the present invention are to provide a hydrogen leak detector that is small, has low manufacturing costs and low running costs, and is capable of detecting low-concentration hydrogen below the concentration of hydrogen contained in the air using a vacuum method. With the goal.
  • One aspect of the present invention is a hydrogen leak detector that detects the hydrogen in a hydrogen-containing search gas leaked from a measurement target, a piezoelectric element; a first container surrounding the piezoelectric element and partitioning the piezoelectric element from the search gas; a hydrogen permeable membrane provided as a partition wall for at least part of the first container; a getter pump for reducing the pressure in the first container; It relates to a hydrogen leak detector having
  • hydrogen in the hydrogen-containing search gas leaked from the object to be measured is introduced through the hydrogen permeable membrane into the first container decompressed by the getter pump.
  • the pressure in the first container changes by the hydrogen partial pressure
  • the output signal (resonance impedance or resonance frequency) from the piezoelectric element changes.
  • the output signal from the piezoelectric element is proportional to the first power of the hydrogen partial pressure in the molecular flow region, and is proportional to the (1/2) power of the hydrogen partial pressure in the viscous flow region. detectable.
  • a hydrogen leak detector according to an aspect of the present invention can be used for both the sniffer method and the vacuum method using a search gas of 5% hydrogen and 95% nitrogen, for example.
  • the getter pump since the inside of the first container in which the piezoelectric element is arranged is decompressed by the getter pump, if the vacuum method is used, hydrogen at a low concentration (0.5 ppm) less than the concentration of hydrogen contained in the air can be detected. can.
  • the getter pump is a vacuum pump that evacuates by the getter action, and unlike turbomolecular pumps, it is small and does not require running costs. Therefore, the hydrogen leak detector according to one aspect of the present invention is smaller than the helium leak detector and has lower manufacturing and running costs.
  • the first container may further include a conduit for introducing the search gas leaked from the measurement object into the region of the hydrogen permeable membrane.
  • a conduit for introducing the search gas leaked from the measurement object into the region of the hydrogen permeable membrane may further include a conduit for introducing the search gas leaked from the measurement object into the region of the hydrogen permeable membrane.
  • a gastight conduit for the search gas to the area of the hydrogen-permeable membrane is formed. Hydrogen in the search gas flowing through this conduit can be introduced into the region of the first container where the piezoelectric element is arranged via the hydrogen permeable film.
  • the hydrogen-permeable membrane may be provided to cover the open end of the pipeline extending into the space surrounded by the first container. This reduces the area of the hydrogen-permeable membrane and reduces the pressure that the water-permeable membrane receives from the search gas, so that the thickness of the hydrogen-permeable membrane can be reduced. By reducing the thickness of the hydrogen-permeable membrane, the hydrogen permeability can be increased.
  • it may further include a second container surrounding the first container, and a communication path connecting the first container and the second container.
  • the getter pump can evacuate the first container and the second container.
  • the getter pump is preferably arranged in the second container.
  • the first container may include a recess in which the piezoelectric element is arranged, and the hydrogen-permeable film may seal an open end of the recess. . By doing so, the volume of the first container can be further reduced.
  • aspects (1) to (6) of the present invention may further include a heater for heating the inside of the first container to a constant temperature, and a heat insulator surrounding the piezoelectric element.
  • a heater for heating the inside of the first container to a constant temperature for example, 45° C.
  • a heat insulator surrounding the piezoelectric element for example, 45° C.
  • the piezoelectric element in the first container which is heated by the heater to a constant temperature (for example, 45° C.) higher than room temperature, can be insulated from radiant heat by the heat insulator.
  • the insulation can be placed in the first container or the second container.
  • the probe placed close to the object to be measured pressurized by the search gas and the search gas leaked from the object to be measured are connected to the a suction unit for sucking into the probe, wherein the probe includes at least the piezoelectric element, the first container, the hydrogen permeable film and the getter pump, and the search is sucked by the suction unit.
  • the hydrogen in the gas can be guided into the first container through the hydrogen permeable membrane. This allows the hydrogen leak detector to be used in the sniffer method.
  • the hydrogen can be detected based on changes in resonance impedance of the piezoelectric element.
  • Hydrogen can also be detected from changes in the resonance frequency of the piezoelectric element, but using changes in the resonance impedance of the piezoelectric element makes it possible to detect even low-concentration hydrogen.
  • FIG. 1 is a cross-sectional view of a hydrogen leak detector according to a first embodiment of the invention
  • FIG. 1 is a longitudinal sectional view of a hydrogen leak detector according to a first embodiment of the invention
  • FIG. 3A to 3C are schematic diagrams showing hydrogen leak detection by the vacuum method.
  • FIG. 4 is a characteristic diagram showing the relationship between the resonance impedance and resonance frequency of a crystal oscillator and the hydrogen partial pressure (hydrogen concentration) in the first container
  • FIG. 4 is a cross-sectional view of a hydrogen leak detector according to a second embodiment of the invention
  • FIG. 4 is a longitudinal sectional view of a hydrogen leak detector according to a second embodiment of the invention
  • FIG. 5 is a cross-sectional view of a hydrogen leak detector according to a third embodiment of the invention
  • FIG. 4 is a cross-sectional view of a hydrogen leak detector according to a fourth embodiment of the invention
  • FIG. 10 is a cross-sectional view of a hydrogen leak detector according to a fifth embodiment of the invention
  • FIG. 4 is a schematic diagram showing hydrogen leak detection by the sniffer method
  • FIG. 11 is a cross-sectional view of a hydrogen leak detector according to a sixth embodiment of the present invention.
  • the hydrogen leak detector 10 shown in FIGS. 1 and 2 is used for hydrogen leak detection by the vacuum method shown in FIGS. 3(A) to 3(C).
  • 3(A) to 3(C) as a leak detection device by the vacuum method, a vacuum chamber 1, a pipe 2, a pipe 3, a turbo molecular pump ⁇ MP, a dry roughing pump DP, and a valve V1 provided in the middle of the pipe 2 , a valve V2 is provided in the middle of the pipe 3 .
  • the vacuum chamber 1 is evacuated by a turbomolecular pump TMP and a dry roughing pump DP.
  • the vacuum chamber 1 is evacuated by a dry roughing pump DP.
  • the hydrogen leak detector 10 is connected to the pipe 2 in FIGS. 3(A) and 3(C), and is connected to the pipe 3 in FIG. 3(B).
  • Leak detection is performed after the measurement target is assembled in order to inspect whether there are pinholes that cause leaks in the measurement target, such as welding points.
  • the object to be measured is placed in a pressurized tank (not shown) and left pressurized with a hydrogen-containing search gas for a certain period of time.
  • the outside of the object to be measured is evacuated inside.
  • the search gas enters the object to be measured when the helium gas is pressurized and leaks out into the vacuum.
  • Hydrogen in the leaked search gas is detected by the hydrogen leak detector 10 to discover the leak.
  • the hydrogen-containing search gas contains a non-flammable mixture of 5% hydrogen and 95% nitrogen.
  • the hydrogen leak detector 10 shown in FIGS. 1 and 2 detects hydrogen in the search gas G leaked from the object to be measured in the vacuum chamber 1 .
  • the hydrogen leak detector 10 includes at least a piezoelectric element such as a tuning fork crystal oscillator 20, a first container 30, a hydrogen permeable film 40, and a getter pump 50.
  • a first container 30, for example in the form of a cylinder having a top and a bottom, encloses the crystal oscillator 20 with a fixed end of the crystal oscillator 20 having a free end fixed.
  • the hydrogen permeable membrane 40 is provided, for example, as at least a partial partition wall (for example, a peripheral wall of a cylindrical body) of the metal first container.
  • the hydrogen-permeable membrane 40 is a membrane that allows hydrogen to permeate but does not allow other gases to permeate.
  • the hydrogen-permeable membrane 40 may be made of any material, but preferably has a function of allowing only hydrogen from the search gas to permeate at a high flow rate. can be used.
  • the getter pump 50 is a vacuum pump that evacuates by getter action, and unlike a turbo-molecular pump, a dry roughing pump, or the like, it is small and does not incur running costs.
  • a non-evaporable type that uses an active surface to adsorb and exhaust gases such as oxygen and carbon monoxide can be used.
  • the getter pump 50 preferably evacuates the interior of the first container 30 to, for example, 10 ⁇ 5 Pa or less.
  • the first container 30 can further have a conduit 60 that introduces the search gas G leaked from the object to be measured into the region of the hydrogen permeable membrane 40 .
  • a conduit 60 airtightly surrounds the first container 30 at least outside the hydrogen permeable membrane 40 .
  • One end of a connecting pipe 62 may be connected to the conduit 60 so that the search gas G is introduced into the airtight conduit 60 leading to the hydrogen permeable membrane 40 .
  • a flange 63 is provided at the other end of the connecting pipe 62 . The flange 63 is fixed to the pipe 2 or pipe 3 shown in FIGS. 3(A) to 3(C).
  • a second container 70 surrounding the first container 30 is further provided.
  • the second container 70 is an airtight container.
  • communicating passages 31 and 61 are provided for communicating the first container 30 and the second container 70 .
  • the through hole 31 of the first container 30 and the through hole 61 of the pipeline 60 are provided in order to form the communicating paths 31 and 61 at positions where the walls of the first container 30 and the pipeline 60 overlap. ing.
  • the through hole 31 may be provided only in the exposed area.
  • the communication paths 31 and 61 can be provided, for example, at a total of two locations, the top and bottom portions of the cylindrical first container 30 and the pipe line 60, and one of them serves as an extraction hole for the wirings 21 and 22 of the crystal oscillator 20. Can be used in combination. The wirings 21 and 22 of the crystal oscillator 20 are pulled out from the second container 70 to the outside.
  • the getter pump 50 is arranged inside the second container 70, for example.
  • the getter pump 50 reduces the pressure in the second container 70 and reduces the pressure in the first container 30 via the communication passages 31 and 61 .
  • the second container 70 surrounding the first container 30 in which the crystal oscillator 20 is accommodated is in a reduced-pressure atmosphere, so that convection in the second container 70 is eliminated.
  • the crystal oscillator 20 can be vacuum-insulated from the outside air, and the detection accuracy can be improved.
  • a heater 80 that heats the inside of the first container 30 to a constant temperature can be further provided.
  • an insulator 90 disposed within the second container 70 and surrounding the first container 30 may further be provided.
  • the crystal oscillator 20 in the first container 30 heated to a constant temperature (for example, 45° C.) higher than room temperature by the heater 80 is vacuum-insulated by the second container 70, and in addition, the heat insulator 90 absorbs radiant heat. can also be insulated. In this way, adverse effects due to room temperature fluctuations can be reduced. Note that the heat insulator 90 does not block communication between the first container 30 and the second container 70 .
  • the conduit 60, the second container 70, the heater 80, or the heat insulator 90 can be omitted depending on the application and performance.
  • the sniffer method which will be described later, it is not necessary to provide the second container 70, the heater 80 and the heat insulator 90, and the conduit 60 can also serve as the probe main body. If the second container 70 is not required, the getter pump 50 can be placed inside the first container 30 .
  • the search gas G leaked from the object to be measured in the vacuum chamber 1 shown in FIGS. is introduced into the first container 30 in a reduced pressure atmosphere through the hydrogen permeable membrane 40 .
  • the crystal oscillator 20 placed in the first container 30 is maintained at, for example, 1 ⁇ 10 ⁇ 5 Pa or less by the getter pump 50 , but the hydrogen is introduced into the first container 30 .
  • the hydrogen partial pressure detected by the crystal oscillator 20 is proportional to the hydrogen concentration or hydrogen leak amount.
  • the getter pump 50 has the ability to exhaust hydrogen, the hydrogen partial pressure detected by the crystal oscillator 20 will be the difference from the hydrogen partial pressure exhausted by the getter pump 50. Even in this case, the hydrogen concentration or hydrogen leak amount can be detected.
  • the hydrogen in the first container 30 is exhausted instantaneously, so the response speed is faster.
  • the hydrogen pumping capacity of the getter pump 50 decreases with time, the hydrogen capacity of the getter pump 50 should be very small or absent.
  • the lower horizontal axis indicates changes in hydrogen partial pressure in the first container 30
  • the left vertical axis indicates changes in resonance impedance
  • the right vertical axis indicates changes in resonance frequency.
  • Both the impedance characteristic A and the frequency characteristic B are proportional to the first power of the hydrogen partial pressure in the molecular flow region, and proportional to the (1/2) power of the hydrogen partial pressure in the viscous flow region.
  • the impedance characteristic A is superior to the frequency characteristic B in that it can be detected even if the hydrogen partial pressure in the first container 30 is low. 0.01 ⁇ ).
  • the drag force received by the vibrating crystal oscillator 20 is sensitive to the pressure of the leaked hydrogen, which is the single gas in the first container 30 . It is known that the change ⁇ Z of the resonance impedance of the crystal oscillator 20 is expressed by the following unified formula in all pressure regions (molecular flow, intermediate flow, and viscous flow).
  • C is a constant
  • R is the thickness of the tuning-fork crystal oscillator 20
  • is the resonance frequency
  • is the viscosity of the gas
  • is the density of the gas.
  • the upper horizontal axis in FIG. 4 is obtained by converting the change in hydrogen partial pressure in the first container 30 shown in the lower horizontal axis in FIG.
  • a boundary line L1 indicates a dangerous hydrogen concentration, and it is dangerous if hydrogen with a concentration exceeding the boundary line L1 is released into the atmosphere.
  • a boundary line L2 is the concentration of hydrogen contained in the atmosphere. According to the sniffer method, the details of which will be described later, leaked hydrogen is released into the atmosphere, so only the area between the boundary line L1 and the boundary line L2 is the detection band.
  • the vacuum method extends the detection band between the boundary line L3 and the boundary line L4.
  • Boundary line L3 is the upper limit of detection at a hydrogen concentration of 100%
  • boundary line L4 is the lower limit of detection in the vacuum method.
  • the detection lower limit of hydrogen detection is determined by the hydrogen permeation performance of the hydrogen permeable film 40 and the minimum hydrogen detection performance of the crystal oscillator 20 .
  • the minimum hydrogen partial pressure of the crystal oscillator 20 is 1 ⁇ 10 ⁇ 3 ppm (1 ppb) of hydrogen concentration at the left end of the upper horizontal axis corresponding to 1 ⁇ 10 ⁇ 4 Pa at the left end of the lower horizontal axis shown in FIG.
  • the hydrogen permeable membrane 40 a membrane capable of detecting a minimum hydrogen concentration of 0.1 ppb is currently being developed.
  • the hydrogen permeation performance of the hydrogen permeable membrane 40 is evaluated by the hydrogen permeation rate, and the permeation rate depends on the solubility and diffusion rate of hydrogen. And the hydrogen solubility and diffusion rate constants change with temperature.
  • the impedance of the crystal oscillator 20 for detecting hydrogen has secondary temperature characteristics with a peak around 10° C. with respect to temperature. Therefore, in order to improve the performance of the hydrogen leak detector 10, it is important that the hydrogen leak detector 10 is configured so as not to be affected by temperature changes such as the outside air temperature.
  • the temperature of the crystal oscillator 20 and the hydrogen-permeable film 40 can be maintained at a temperature, for example, 45° C., which is less affected by the ambient temperature.
  • the temperature can be measured by measuring the hydrogen partial pressure based on the impedance change of the resonance frequency of the crystal oscillator 20 and detecting the resonance frequency proportional to the temperature. The measured temperature enables the measured impedance change to be corrected, and the hydrogen partial pressure can be detected with high accuracy.
  • FIGS. 5 and 6 show a modification of the hydrogen leak detector 10 shown in FIGS.
  • the shapes of the first container 110, the pipeline 120 and the hydrogen permeable membrane 130 are different from the first container 30, the pipeline 60 and the hydrogen permeable membrane 40 of FIGS.
  • the first container 110 and the conduit 120 have communication paths 111 and 121 that allow the first container 110 and the second container 70 to communicate with each other. Accordingly, the point that the getter pump 50 is arranged in the second container 70 to reduce the volume of the first container 110 is also the same as in the first embodiment.
  • the first container 110 has a recess 112 in, for example, a part of a rectangular parallelepiped, and the crystal oscillator 20 is housed in the recess 112 .
  • the hydrogen-permeable film 130 seals the open end of the recess 112 in which the crystal resonator 20 is accommodated (reference numeral 130 in FIG. 5 indicates the place where the hydrogen-permeable film is arranged).
  • the volume of the first container 110 evacuated by the getter pump 50 is the volume of the recess 112, and the volume can be further reduced than in the first embodiment.
  • the function of the pipe 120 surrounding the first container 110 at least outside the hydrogen permeable membrane 130 is the same as in the first embodiment.
  • FIG. 7 shows a modification of the hydrogen leak detectors 10, 100.
  • the other end of the pipe line 64 connected to the flange 63 is connected to the first container 160 .
  • a hydrogen permeable membrane 170 is arranged at a position where the other end of the pipe 64 is connected to the first container 160 .
  • the hydrogen permeable membrane 170 can be made as small as 4 mm or less in diameter, for example.
  • the pressure applied to the hydrogen-permeable membrane 170 is reduced, so the thickness of the hydrogen-permeable membrane 170 can be set to 0.2 mm or less, for example.
  • the hydrogen leak detector 150 can be made more sensitive and more compact. This is because the hydrogen permeability can be increased by reducing the thickness of the hydrogen permeable film 170 .
  • the first container 160 communicates with the second container 70 in which the getter pump 50 is arranged through the communication path 161 .
  • FIG. 8 shows a modification of the hydrogen leak detector 150 shown in FIG.
  • the hydrogen leak detector 180 shown in FIG. 8 members having the same functions as the members of the hydrogen leak detector 150 shown in FIG. Since the hydrogen leak detector 180 shown in FIG. 8 is not provided with the first container 160 shown in FIG. 7, the second container 70 shown in FIG. 7 functions as the first container. That is, the crystal oscillator 20 and the getter pump 50 are arranged in the first container 70 shown in FIG.
  • the hydrogen-permeable membrane 190 is arranged such that the other end of the pipeline 65 having the flange 63 at one end protrudes into the first container 70 and covers the opening of the other end.
  • the pipeline 65 is divided into an inner pipeline 65A inside the first container 70 and an outer pipeline 65B outside the first container 70.
  • the inner conduit 65A is part of the partition wall of the first container 70 that surrounds the crystal oscillator 20 and separates the crystal oscillator 20 from the search gas. That is, also in the fourth embodiment, the hydrogen-permeable film 190 covering the open end of the inner conduit 65A is provided on a part of the partition wall of the first container 70 that partitions the crystal resonator 20 from the search gas.
  • the hydrogen leak detector 180 can be further miniaturized. Note that the heater 80 and the heat insulator 90 may be omitted in FIG.
  • a hydrogen leak detector 200 shown in FIG. 9 is used for hydrogen leak detection by the sniffer method of FIG.
  • a container 4 to be measured is pressurized and filled with a search gas through a pipe 5 connected via a valve V1. If the container 4 has pinholes, the search gas leaks to the atmosphere.
  • a hydrogen leak detector 200 shown in FIG. 9 is placed close to the position of the pinhole in the container 4 to detect hydrogen in the search gas leaking through the pinhole. Thereby, the position of the pinhole can be identified.
  • the hydrogen leak detector 200 has a probe 210 that is placed close to the measurement object 4 pressurized by the search gas, and a suction part 220 that sucks the search gas leaked from the measurement object 4 into the probe 210 .
  • the suction mechanism of the suction unit 220 is omitted.
  • the probe 210 is a cylindrical body having an opening 211 at its tip, and the search gas G sucked from the opening 211 passes through the probe 210 .
  • the probe 210 has a piezoelectric element 20 , a first container 30 , a hydrogen permeable film 40 and a getter pump 50 . Since the second container 70 is not provided in this embodiment, the getter pump 50 is arranged in the first container 230 . Hydrogen in the search gas G sucked into the probe 210 by the suction part 220 can be led through the hydrogen-permeable membrane 40 into the decompressed first container 230 . Thus, hydrogen leak detector 200 can be used in the sniffer method of FIG.
  • FIG. 11 shows a modification of the hydrogen leak detector 200.
  • FIG. 11 In the hydrogen leak detector 250 shown in FIG. 11, members having the same functions as the members of the hydrogen leak detectors 10 and 200 shown in FIGS. do.
  • the search gas G leaked from the container 4 to be measured in FIG. 10 is introduced into the first container 160 in a reduced pressure atmosphere through the pipeline 64 and the hydrogen permeable membrane 170 of the hydrogen leak detector 250 shown in FIG. be done.
  • Hydrogen leak detector 250 can thereby be used in the sniffer method of FIG.
  • the hydrogen permeable film 170 can have a diameter of 4 mm and a thickness of 0.2 mm, for example, so that the hydrogen leak detector 250 can be made more sensitive and smaller.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

測定対象(1)からリークされる水素含有サーチガス中の水素を検出する水素リークディテクター(10、100、150、180、200、250)は、圧電素子(20)と、圧電素子(20)を包囲して、圧電素子(20)をサーチガスから区画する第1容器(30、65A+70、110、160、230)と、第1容器の少なくとも一部の隔壁として設けられる水素透過膜(40、130、170、190)と、第1容器内を減圧にするゲッターポンプ(50)と、を有する。水素透過膜を介して第1容器内に導入されるサーチガス中の水素は、圧電素子からの出力信号に基づき検出される。

Description

水素リークディテクター
 本発明は、水素リークディテクター等に関する。
 例えば従来のリークディテクターは、サーチガスとしてヘリウムを用い、ターボ分子ポンプで真空引きされた分析管内で、測定対象からリークしたヘリウムがイオン化される。分析管内にて磁石により導かれたヘリウムイオンが電子増倍管で検出されることで、測定対象にリークの要因となるピンホールが存在することが検出される。
 一方、本出願人による特許文献1に開示された水素濃度測定装置は、物性依存式圧力計と感圧式圧力計とを含んで構成される。物性依存式圧力計として、シリンダー及び水素透過膜で構成される容器内に、水素以外例えば空気と共に圧電素子例えば水晶振動子を収容している。被測定気体中にリークした水素が存在すると、水素透過膜を介して容器内に導入される水素により変化する水晶振動子の出力信号によりリークが検出される。
 被測定気体と接する感圧式圧力計は、被測定気体の物性の影響を受けずに被測定気体の圧力を検出する。また、感圧式圧力計の指示値は、被測定気体中にごく微量の水素がリークする前後でほとんど変化しない。一方、水晶振動子式圧力計の指示値としては、水素の混入によって空気のみの粘性よりも小さくなり、見かけの圧力が下がる。このように水素と空気とでは物性(質量及び粘性)が大きく異なるため、容器内にて空気と水素とが混合した場合には、その混合気体の平均質量及び粘性が低下する。そこで、被測定気体への水素漏洩前後の水晶振動子式圧力計により、水素濃度を見積ることができる。ただし、水晶振動子式圧力計が同じ水素濃度を示しても、被測定気体の圧力が高ければ、水晶振動子式圧力計の出力も大きくなるので、精度が悪い。このことから、水晶振動子式圧力計の出力を感圧式圧力計の出力でオーサライズしている。それにより、測定される水素濃度の精度を高めることができる。
特許第6364209号公報
 従来のヘリウムリークディテクターは、ターボ分子ポンプ等で分析管を真空引きすることから、大型で製造コストが高価であり、排気するための電力等に起因してランニングコストも要していた。
 一方、特許文献1によれば、比較的小型で製造コストも低いリークディテクターを構成できる。しかし、容器内に例えば空気と共に圧電素子を収容しているので、感圧式圧力計を併用する必要がある分、小型化の障害となる。また、容器内に例えば空気と共に圧電素子を収容しているので、空気中に含まれる水素濃度未満の低濃度の水素検出には不向きであった。
 本発明の幾つかの態様は、小型で製造コスト及びランニングコストが安価であり、真空法を用いれば空気中に含まれる水素濃度未満の低濃度の水素検出が可能な水素リークディテクターを提供することを目的とする。
 (1)本発明の一態様は、測定対象からリークされる水素含有サーチガス中の前記水素を検出する水素リークディテクターにおいて、
 圧電素子と、
 前記圧電素子を包囲して、前記圧電素子を前記サーチガスから区画する第1容器と、
 前記第1容器の少なくとも一部の隔壁として設けられる水素透過膜と、
 前記第1容器内を減圧にするゲッターポンプと、
を有する水素リークディテクターに関する。
 本発明の一態様によれば、測定対象からリークされる水素含有サーチガス中の水素は、水素透過膜を介して、ゲッターポンプで減圧された第1容器内に導入される。それにより、第1容器内の圧力は水素分圧の分だけ変化し、圧電素子からの出力信号(共振インピーダンスまたは共振周波数)が変化する。圧電素子からの出力信号は、分子流領域では水素分圧の1乗に比例し、粘性流領域では水素分圧の(1/2)乗に比例するので、リークされるサーチガス中の水素を検出できる。本発明の一態様に係る水素リークディテクターは、例えば水素5%及び窒素95%のサーチガスを用いるスニッファー法及び真空法の双方に利用することできる。ここで、圧電素子が配置される第1容器内はゲッターポンプにより減圧されているので、真空法を用いれば、空気中に含まれる水素濃度未満の低濃度(0.5ppm)未満の水素を検出できる。しかも、ゲッターポンプは、ゲッター作用により排気する真空ポンプであり、ターボ分子ポンプなどとは異なり、小型であり、ランニングコストはかからない。よって、本発明の一態様に係る水素リークディテクターは、ヘリウムリークディテクターよりも小型で製造及びランニングコストが安価となる。
 (2)本発明の一態様(1)では、前記第1容器は、前記測定対象からリークされる前記サーチガスを前記水素透過膜の領域に導入する管路をさらに有することができる。こうして、水素透過膜の領域に至るサーチガスの気密の管路が形成される。この管路を流れるサーチガス中の水素を、水素透過膜を介して第1容器の圧電素子が配置される領域内に導入することができる。
 (3)本発明の一態様(2)では、前記水素透過膜は、前記第1容器で囲まれる空間内に延びる前記管路の開口端を覆って設けられてもよい。こうすると、水素透過膜の面積が小さくなり、水誘透過膜がサーチガスから受ける圧力が小さくなるので、水素透過膜の厚さを薄くできる。水素透過膜の厚さを薄くすることで、水素透過率を高めることができる。
 (4)本発明の一態様(2)または(3)では、前記第1容器を囲む第2容器と、前記第1容器と前記第2容器とを連通させる連通路と、をさらに有することができ、前記ゲッターポンプは、前記第1容器及び前記第2容器を減圧することができる。こうすると、圧電素子が収容される第1容器を囲む第2容器が減圧雰囲気とされるので、第2容器内での対流がなくなる。こうして、圧電素子を外気から真空断熱することができ、検出精度を高めることができる。
 (5)本発明の一態様(4)では、前記ゲッターポンプは前記第2容器に配置されることが好ましい。こうすると、ゲッターポンプを配置する必要のない第1容器の容積を縮小できる。それにより、第一容器内の水素分圧が早く高くなるので感度が高くなる可能性がある。
 (6)本発明の一態様(5)では、前記第1容器は、前記圧電素子が配置される凹部を含むことができ、前記水素透過膜は前記凹部の開口端を封止することができる。こうすると、第1容器の容積をさらに縮小することができる。
 (7)本発明の一態様(1)~(6)では、前記第1容器内を一定温度に加熱するヒーターと、前記圧電素子を囲む断熱体と、をさらに有することができる。こうすると、ヒーターで室温より高い一定温度(例えば45℃)に加熱される第1容器内の圧電素子を、断熱体によって輻射熱を断熱することができる。こうして、室温変動による悪影響を低減でき、水素濃度の検出下限を下げることができる。断熱体は、第1容器または第2容器内に配置することができる。
 (8)本発明の一態様(1)~(7)では、前記サーチガスにより加圧される前記測定対象に接近して配置されるプローブと、前記測定対象からリークされる前記サーチガスを前記プローブ内に吸引する吸引部と、をさらに有することができ、前記プローブが、少なくとも前記圧電素子、前記第1容器、前記水素透過膜及び前記ゲッターポンプを含み、前記吸引部により吸引された前記サーチガス中の前記水素を、前記水素透過膜を介して前記第1容器内に導くことができる。こうすると、水素リークディテクターをスニッファー法に用いることができる。
 (9)本発明の一態様(1)~(8)では、前記圧電素子の共振インピーダンスの変化に基づいて前記水素を検出することができる。圧電素子の共振周波数の変化によっても水素は検出可能であるが、圧電素子の共振インピーダンスの変化を用いると、特に低濃度の水素も検出可能となる。
本発明の第1実施形態に係る水素リークディテクターの横断面図である。 本発明の第1実施形態に係る水素リークディテクターの縦断面図である。 図3(A)~図3(C)は、真空法による水素リーク検出を示す模式図である。 水晶振動子の共振インピーダンス及び共振周波数と、第1容器内の水素分圧(水素濃度)との関係を示す特性図である。 本発明の第2実施形態に係る水素リークディテクターの横断面図である。 本発明の第2実施形態に係る水素リークディテクターの縦断面図である。 本発明の第3実施形態に係る水素リークディテクターの横断面図である。 本発明の第4実施形態に係る水素リークディテクターの横断面図である。 本発明の第5実施形態に係る水素リークディテクターの横断面図である。 スニッファー法による水素リーク検出を示す模式図である。 本発明の第6施形態に係る水素リークディテクターの横断面図である。
 以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
 1.第1実施形態
 1.1.水素リークディテクターの構造
 図1及び図2に示す水素リークディテクター10は、図3(A)~図3(C)の真空法による水素リーク検出に用いられる。図3(A)~図3(C)において、真空法によるリーク検出装置として、真空チャンバー1、配管2、配管3、ターボ分子ポンプТMP、ドライ粗引きポンプDP、配管2途中に設けられるバルブV1、配管3途中に設けられるバルブV2が設けられる。図3(A)及び図3(B)に示す真空法では、真空チャンバー1はターボ分子ポンプТMP及びドライ粗引きポンプDPで真空引きされる。図3(C)に示す真空法では、真空チャンバー1はドライ粗引きポンプDPで真空引きされる。水素リークディテクター10は、図3(A)及び図3(C)では配管2に接続され、図3(B)では配管3に接続される。
 測定対象の例えば溶接個所などにリークの要因となるピンホールがあるか否かを検査するために、測定対象の組立後にリーク検出が実施される。図3(A)~図3(C)に示す真空法では、測定対象を図示しない加圧タンク内に入れて水素含有サーチガスで一定時間加圧放置した後、測定対象を取り出し、真空チャンバー1内で測定対象の外側を真空排気する。もし、測定対象にリークがあればヘリウムガスの加圧時にサーチガスが測定対象の中に入り、これが真空中に漏れ出してくる。リークしたサーチガス中の水素を水素リークディテクター10で検出して、リークを発見する。水素含有のサーチガスは、水素5%及び窒素95%の非可燃性混合ガスを含有する。図1及び図2に示す水素リークディテクター10は、真空チャンバー1内の測定対象からリークされるサーチガスG中の水素を検出する。
 水素リークディテクター10は、圧電素子例えば音叉型水晶振動子20と、第1容器30と、水素透過膜40と、ゲッターポンプ50とを少なくとも含む。例えば頂部と底部のある筒体形状の第1容器30は、自由端を有する水晶振動子20の固定端を固定して、水晶振動子20を包囲する。水素透過膜40は、例えば金属製の第1容器の少なくとも一部の隔壁(例えば筒体の周壁)として設けられる。水素透過膜40は、水素を透過し他の気体を透過させない膜である。水素透過膜40は、その材質は問わないが、サーチガスから水素のみを高い流速で透過する機能を持つ、例えばバナジウムム(V)合金両面にパナジウム(Pd)合金薄膜をコーティングしたデバイスを好適に用いることができる。ここで水素透過膜40は膜厚が薄いほど水素透過性は高い。よって、水素透過膜40では、バナジウム(V)合金が保形性の機能を有しているため、パナジウム(Pd)合金薄膜はバナジウムム(V)合金にコーティングできる最低限の膜厚にすると良い。
 ゲッターポンプ50は、ゲッター作用により排気する真空ポンプであり、ターボ分子ポンプやドライ粗引きポンプ等とは異なり、小型であり、ランニングコストはかからない。本実施形態では、例えば、活性表面を利用して酸素、一酸化炭素等のガスを吸着して排気する非蒸発タイプを使用することができる。ゲッターポンプ50は、第1容器30内を例えば10-5Pa以下に真空引きすることが好ましい。
 本実施形態では、第1容器30は、測定対象からリークされるサーチガスGを水素透過膜40の領域に導入する管路60をさらに有することができる。図1及び図2では、少なくとも水素透過膜40の外側で第1容器30を気密に囲む管路60を設けている。水素透過膜40に至る気密の管路60にサーチガスGが導入されるように、管路60には連結管62の一端が連結されてもよい。連結管62の他端には例えばフランジ63が設けられる。フランジ63は、図3(A)~図3(C)に示す配管2または配管3に固定される。こうして、図3(A)~図3(C)に示す真空チャンバー1内の測定対象からリークされるサーチガスGは、管路60に導入される。この管路60には水素透過膜40が露出されているので、真空チャンバー1内の測定対象からリークされるサーチガス中の水素は、水素透過膜40を介して第1容器30に導入可能となる。つまり、第1容器30は水晶振動子20をサーチガスから区画するものであり、ゲッターポンプ50により真空雰囲気とされる水晶振動子20は、水素透過膜40を介して第1容器30に導入された水素とのみ接触する。
 本実施形態では、第1容器30を囲む第2容器70をさらに設けている。第2容器70は気密容器である。この場合、第1容器30と第2容器70とを連通させる連通路31、61を設けている。本実施形態では、第1容器30及び管路60の壁部が重なる位置に連通路31、61形成するために、第1容器30の貫通孔31と管路60の貫通孔61とが設けられている。ただし、第1容器30の壁が第2容器70内に露出していれば、その露出領域に貫通孔31を設けるだけでも良い。第1容器30と第2容器70とを連結する連通路31、61のコンダクタンスが非常に小さい場合は、水素分圧の上昇は第1容器30内の方が第2容器70より早く水素分圧が高くなるので、感度が高くなる可能性がある。連通路31、61のコンダクタンスを大きくすれば、第1容器30と第2容器70内の圧力は瞬時に一定にすることができる。
 連通路31、61は、例えば円筒状の第1容器30及び管路60の頂部と底部との計2箇所に設けることができ、その一方を水晶振動子20の配線21、22の引き出し孔として兼用することができる。水晶振動子20の配線21、22は、第2容器70から外部に引き出される。
 この場合、ゲッターポンプ50は、例えば第2容器70内に配置される。ゲッターポンプ50は、第2容器70内を減圧にするとともに、連通路31、61を介して第1容器30内を減圧にする。こうすると、水晶振動子20が収容される第1容器30を囲む第2容器70が減圧雰囲気とされるので、第2容器70内での対流がなくなる。それにより、水晶振動子20を外気から真空断熱することができ、検出精度を高めることができる。
 本実施形態では、第1容器30内を一定温度に加熱するヒーター80をさらに設けることができる。加えて、第2容器70内に配置され、第1容器30を囲む断熱体90をさらに設けることができる。こうすると、ヒーター80で室温より高い一定温度(例えば45℃)に加熱される第1容器30内の水晶振動子20を、第2容器70により真空断熱することに加えて、断熱体90によって輻射熱も断熱することができる。こうして、室温変動による悪影響を低減できる。なお、断熱体90は第1容器30と第2容器70との連通を妨げるものではない。
 なお、上記実施形態において、管路60、第2容器70、ヒーター80または断熱体90は用途や性能に応じて削除することができる。例えば、後述するスニッファー法では、第2容器70、ヒーター80及び断熱体90を設ける必要はなく、管路60はプローブ本体を兼用できる。第2容器70が不要である場合、ゲッターポンプ50は第1容器30内に配置すればよい。
 1.2.水素リーク検出
 図3(A)~図3(C)の真空チャンバー1内の測定対象からリークされるサーチガスGは、図1及び図2に示す水素リークディテクター10の連結管62、管路60、水素透過膜40を介して、減圧雰囲気の第1容器30に導入される。第1容器30に配置される水晶振動子20は、第1容器30はゲッターポンプ50により例えば1×10-5Pa以下に維持されているが、水素が導入されることによって第1容器30内の水素分圧が変化する。第1容器30内の水素分圧の変化は、図4に示すように、水晶振動子20の出力信号からの共振インピーダンスの変化(図4中の特性A)または共振周波数の変化(図4中の特性B)に反映する。
 ここで、ゲッターポンプ50が水素排気能力を有していない場合は、水晶振動子20で検出される水素分圧は水素濃度又は水素リーク量と比例する。一方、ゲッターポンプ50に水素排気能力があると、水晶振動子20で検出される水素分圧はゲッターポンプ50で排気される水素分圧との差となり、この場合でも、水素濃度又は水素リーク量を検出することができる。ただし、この場合、水晶振動子20で検出された水素分圧から水素濃度又はリーク量を決定が煩雑になるが、第1容器30内の水素が瞬時に排気されるため応答速度は速くなる利点がある。なお、ゲッターポンプ50の水素排気能力は時間とともに低下するため、ゲッターポンプ50の水素能力は非常に小さいか、無い方がよい。
 図4は、下部横軸が第1容器30内の水素分圧の変化を、左縦軸が共振インピーダンスの変化を、右縦軸が共振周波数の変化を示している。インピーダンス特性A及び周波数特性Bは、共に、分子流領域では水素分圧の1乗に比例し、粘性流領域では水素分圧の(1/2)乗に比例している。ただし、インピーダンス特性Aの方が、周波数特性Bよりも、特に第1容器30内の水素分圧が低くても検出できる点で優れ、例えば7桁の高分解能(最大計測インピーダンス100KΩ~最小計測インピーダンス0.01Ω)とすることができる。
 ここで、振動している水晶振動子20の受ける抗力は、第1容器30内の単一ガスであるリーク水素の圧力に敏感である。水晶振動子20の共振インピーダンスの変化ΔZは全圧力領域(分子流・中間流・粘性流)において次の統一式で表されることが知られている。
Figure JPOXMLDOC01-appb-M000001
 ここで、式(1)において、Cは定数、Rは音叉型水晶振動子20の厚さ、ωは共振周波数、ηは気体の粘性率、ρは気体の密度である。
 図4の上部横軸は、図4の下部横軸の第1容器30内の水素分圧の変化を水素のリーク量(ppm)に換算し直したものである。図4において、境界線L1は危険水素濃度を示し、境界線L1を超えた濃度の水素が大気に放出されると危険である。境界線L2は、大気中に含まれる水素濃度である。詳細を後述するスニッファー法によれば、リーク水素は大気に放出されるので、境界線L1と境界線L2との間のみが検出帯域となる。真空法では境界線L3と境界線L4との間の検出帯域に拡大される。境界線L3は水素濃度100%の検出上限であり、境界線L4は真空法での検出下限である。特に、真空法によれば、本実施形態の水素リークディテクター10を用いることで、スニッカー法による検出下限(水素濃度が0.5ppm)未満の低濃度のリーク検出が可能となる。水素検出の検出下限は、水素透過膜40の水素透過性能と水晶振動子20の最小水素検出性能によって決定される。水晶振動子20の最小水素分圧は、図4に示す下部横軸左端の1×10-4Paに相当する上部横軸左端の水素濃度1×10-3ppm(1ppb)である。一方、水素透過膜40としては、現在、最小水素濃度0.1ppbが検出可能な膜が開発されている。
 さらに詳しくは、水素透過膜40の水素透過性能は水素透過速度によって評価され、透過速度は水素の溶解度及び拡散速度に依存する。そして、水素の溶解度及び拡散速度の定数は温度によって変化する。一方、水素を検出する水晶振動子20のインピーダンスは温度に対して10℃近傍を頂点とした二次温度特性を有する。従って、水素リークディテクター10の性能をより高精度にするには、水素リークディテクター10の外気温等による温度変化に影響されない構成にすることが重要となる。
 この対策として、ヒーター80と断熱体90を設置することが好ましい。ヒーター80及び断熱体90によって、水晶振動子20及び水素透過膜40の温度を外気温度の影響を受けにくい温度例えば45℃に保つことができる。一方、水晶振動子20の共振周波数のインピーダンス変化に基づいて水素分圧を計測し、温度に比例する共振周波数を検出することで温度を計測することができる。計測された温度によって、計測されたインピーダンス変化を補正することが可能になり、水素分圧を精度良く検出することができる。
  2.第2実施形態
 図5及び図6は、図1及び図2に示す水素リークディテクター10の変形例を示す。図5及び図6に示す水素リークディテクター100において、図1及び図2に示す水素リークディテクター10の部材と同一機能を有する部材については、同一符号を付してその説明を省略する。
 水素リークディテクター100は、第1容器110、管路120及び水素透過膜130の形状が、図1及び図2の第1容器30、管路60及び水素透過膜40と異なる。第1容器110及び管路120は、第1容器110と第2容器70とを連通させる連通路111、121を有する点は、第1実施形態と同じである。これにより、ゲッターポンプ50を第2容器70内に配置して、第1容器110の容積を小さくしている点でも、第1実施形態と同じである。
 第1容器110は、図6に示すように、例えば直方体の一部に凹部112を有し、水晶振動子20は凹部112内に収容される。水素透過膜130は、水晶振動子20が収容された凹部112の開口端を封止している(図5中の符号130は水素透過膜が配置される場所を示している)。こうすると、第1容器110がゲッターポンプ50により真空引きされる容積は凹部112の容積となり、第1実施形態よりもさらにその容積を縮小することができる。なお、管路120は、少なくとも水素透過膜130の外側で第1容器110を囲む機能は第1実施形態と同じである。
 3.第3実施形態
 図7は、水素リークディテクター10、100の変形例を示す。図7に示す水素リークディテクター150において、図1及び図2に示す水素リークディテクター10の部材と同一機能を有する部材については、同一符号を付してその説明を省略する。図7では、フランジ63に一端が連結された管路64の他端が第1容器160に連結されている。管路64の他端が第1容器160と連結される位置には、水素透過膜170が配置される。こうして、図3(A)~図3(C)の真空チャンバー1内の測定対象からリークされるサーチガスGは、図7に示す水素リークディテクター150の管路64、水素透過膜40を介して、減圧雰囲気の第1容器160に導入される。水素透過膜170は、例えば直径4mm以下と小さくすることができる。こうすると、水素透過膜170が受ける圧力が小さくなるので、水素透過膜170はその厚さを例えば0.2mm以下とすることができる。こうして、水素リークディテクター150のさらなる高感度化と小型化を図ることができる。水素透過膜170の厚さを薄くすることで、水素透過率を高めることができるからである。なお、第1容器160は、連通路161を介して、ゲッターポンプ50が配置された第2容器70と連通している。
 4.第4実施形態
 図8は、図7に示す水素リークディテクター150の変形例を示す。図8に示す水素リークディテクター180のうち、図7に示す水素リークディテクター150の部材と同一機能を有する部材については、同一符号を付してその説明を省略する。図8に示す水素リークディテクター180では、図7に示す第1容器160が設けられていないので、図7に示す第2容器70が第1容器の役割を果たす。つまり、図8に示す第1容器70内に、水晶振動子20及びゲッターポンプ50が配置される。水素透過膜190は、一端にフランジ63を有する管路65の他端が第1容器70内に突出配置され、その他端の開口を覆って配置される。
 ここで、管路65は、第1容器70の内側にある内側管路65Aと、第1容器70の外側にある外側管路65Bとに分けられる。第4実施形態では、内側管路65Aは、水晶振動子20を包囲して水晶振動子20をサーチガスから区画する第1容器70の隔壁の一部である。つまり、第4実施形態においても、内側管路65Aの開口端を覆う水素透過膜190は、水晶振動子20をサーチガスから区画する第1容器70の隔壁の一部に設けられている。こうして、水素リークディテクター180をさらに小型化することができる。なお、図8において、ヒーター80及び断熱体90を省略しても良い。
  5.第5実施形態
 図9に示す水素リークディテクター200は、図10のスニッファー法による水素リーク検出に用いられる。図10に示すように、測定対象である容器4には、バルブV1を介して連結される配管5によりサーチガスが加圧して充填される。もし容器4にピンホールがあれば、サーチガスは外気にリークする。図9に示す水素リークディテクター200は、容器4のピンホールの位置に接近して配置されて、ピンホールを介してリークされるサーチガス中の水素を検出する。それにより、ピンホールの位置を特定できる。
 図9に示す水素リークディテクター200のうち、図1に示す水素リークディテクター10と同一機能を有する部材については、図1と同一符号を付して、その詳細な説明を省略する。水素リークディテクター200は、サーチガスにより加圧される測定対象4に接近して配置されるプローブ210と、測定対象4からリークされるサーチガスをプローブ210内に吸引する吸引部220と、有する。なお、吸引部220の吸引機構は省略されている。プローブ210は、先端に開口211を有する筒体であり、開口211から吸引されるサーチガスGがプローブ210内を通過する。
 プローブ210は、圧電素子20、第1容器30、水素透過膜40及びゲッターポンプ50を有する。本実施形態では第2容器70を設けていないので、ゲッターポンプ50は第1容器230内に配置される。吸引部220によりプローブ210内に吸引されたサーチガスG中の水素を、水素透過膜40を介して、減圧された第1容器230内に導くことができる。こうして、水素リークディテクター200を図10のスニッファー法に用いることができる。
 6.第6実施形態
 図11は、水素リークディテクター200の変形例を示す。図11に示す水素リークディテクター250において、図1、図2、図7及び図9に示す水素リークディテクター10、200の部材と同一機能を有する部材については、同一符号を付してその説明を省略する。図11では、図7に示す水晶振動子20が配置された第1容器160、水素透過膜170、管路64、第2容器70、ヒーター80及び断熱体90が、プローブ260の筒体内部に配置される。こうして、図10の測定対象である容器4からリークされるサーチガスGは、図11に示す水素リークディテクター250の管路64、水素透過膜170を介して、減圧雰囲気の第1容器160に導入される。それにより、水素リークディテクター250を図10のスニッファー法に用いることができる。また、水素透過膜170は例えば直径4mm、厚さ0.2mmとすることができ、水素リークディテクター250の更なる高感度化と小型化を図ることができる。
 1…真空チャンバー、2、3、5…配管、4…測定対象、10、100、150、180、200、250…水素リークディテクター、20…圧電素子(水晶振動子)、30、65A+70、110、160、230…第1容器、31、61、161…連通路、40、130、170、190…水素透過膜、50…ゲッターポンプ、60、64、65、120…管路、62…連結管、63…フランジ、70…第2容器、80…ヒーター、90…断熱体、210、260…プローブ、211…開口端、220…吸引部、DP…ドライ粗引きポンプ、G…リークされたサーチガス、ТMP…ターボ分子ポンプ、V1、V2…バルブ
 
 

Claims (9)

  1.  測定対象からリークされる水素含有サーチガス中の水素を検出する水素リークディテクターにおいて、
     圧電素子と、
     前記圧電素子を包囲して、前記圧電素子を前記サーチガスから区画する第1容器と、
     前記第1容器の少なくとも一部の隔壁として設けられる水素透過膜と、
     前記第1容器内を減圧にするゲッターポンプと、
    を有する、水素リークディテクター。
  2.  請求項1において、
     前記第1容器は、前記測定対象からリークされる前記サーチガスを前記水素透過膜の領域に導入する管路をさらに有する、水素リークディテクター。
  3.  請求項2において、
     前記水素透過膜は、前記第1容器で囲まれる空間内に延びる前記管路の開口端を覆って設けられる、水素リークディテクター。
  4.  請求項2または3おいて、
     前記第1容器及び前記管路を囲む第2容器と、
     前記第1容器と前記第2容器とを連通させる連通路と、
    をさらに有し、
     前記ゲッターポンプは、前記第1容器及び前記第2容器を減圧する、水素リークディテクター。
  5.  請求項4において、
     前記ゲッターポンプは前記第2容器に配置される、水素リークディテクター。
  6.  請求項5において、
     前記第1容器は、前記圧電素子が配置される凹部を含み、
     前記水素透過膜は、前記凹部の開口端を封止する、水素リークディテクター。
  7.  請求項1乃至6のいずれか一項において、
     前記第1容器内を一定温度に加熱するヒーターと、
     前記圧電素子を囲む断熱体と、
    をさらに有する、水素リークディテクター。
  8.  請求項1乃至7のいずれか一項において、
     前記サーチガスにより加圧される前記測定対象に接近して配置されるプローブと、
     前記前記測定対象からリークされる前記サーチガスを前記プローブ内に吸引する吸引部と、
    をさらに有し、
     前記プローブが、少なくとも前記圧電素子、前記第1容器、前記水素透過膜及び前記ゲッターポンプを含み、前記吸引部により吸引された前記サーチガス中の前記水素を、前記水素透過膜を介して前記第1容器内に導く、水素リークディテクター。
  9.  請求項1乃至8のいずれか一項において、
     前記圧電素子の共振インピーダンスの変化に基づいて前記水素を検出する、水素リークディテクター。
PCT/JP2021/015158 2021-04-12 2021-04-12 水素リークディテクター WO2022219674A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015158 WO2022219674A1 (ja) 2021-04-12 2021-04-12 水素リークディテクター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015158 WO2022219674A1 (ja) 2021-04-12 2021-04-12 水素リークディテクター

Publications (1)

Publication Number Publication Date
WO2022219674A1 true WO2022219674A1 (ja) 2022-10-20

Family

ID=83640241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015158 WO2022219674A1 (ja) 2021-04-12 2021-04-12 水素リークディテクター

Country Status (1)

Country Link
WO (1) WO2022219674A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022540A (ja) * 2000-07-07 2002-01-23 Nikon Corp 熱型赤外線検出装置
JP2002134492A (ja) * 2000-10-27 2002-05-10 Tokyo Electron Ltd 熱処理装置
KR100786328B1 (ko) * 2007-07-03 2007-12-14 주식회사 미리코 방폭형 진공펌프 구조를 갖는 가스 검출기
JP2012230071A (ja) * 2011-04-27 2012-11-22 Murata Mfg Co Ltd 水素ガスセンサ
JP2013015362A (ja) * 2011-07-01 2013-01-24 National Institute Of Advanced Industrial & Technology 気体の分子量測定装置
JP2015526694A (ja) * 2012-05-24 2015-09-10 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated 圧力下のガスのシリンダーの真の含有量を測定するための方法および装置
JP6364209B2 (ja) * 2014-03-07 2018-07-25 バキュームプロダクツ株式会社 水素濃度測定装置
JP2018159563A (ja) * 2017-03-22 2018-10-11 ヤマハファインテック株式会社 ガスセンサ装置及びガス漏れ検知装置
CN209102291U (zh) * 2018-11-15 2019-07-12 杭州超钜科技有限公司 一种单一组分连续检漏***
JP2020159998A (ja) * 2019-03-28 2020-10-01 株式会社豊田中央研究所 水素量センサー、水素量測定装置および水素吸蔵放出システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022540A (ja) * 2000-07-07 2002-01-23 Nikon Corp 熱型赤外線検出装置
JP2002134492A (ja) * 2000-10-27 2002-05-10 Tokyo Electron Ltd 熱処理装置
KR100786328B1 (ko) * 2007-07-03 2007-12-14 주식회사 미리코 방폭형 진공펌프 구조를 갖는 가스 검출기
JP2012230071A (ja) * 2011-04-27 2012-11-22 Murata Mfg Co Ltd 水素ガスセンサ
JP2013015362A (ja) * 2011-07-01 2013-01-24 National Institute Of Advanced Industrial & Technology 気体の分子量測定装置
JP2015526694A (ja) * 2012-05-24 2015-09-10 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated 圧力下のガスのシリンダーの真の含有量を測定するための方法および装置
JP6364209B2 (ja) * 2014-03-07 2018-07-25 バキュームプロダクツ株式会社 水素濃度測定装置
JP2018159563A (ja) * 2017-03-22 2018-10-11 ヤマハファインテック株式会社 ガスセンサ装置及びガス漏れ検知装置
CN209102291U (zh) * 2018-11-15 2019-07-12 杭州超钜科技有限公司 一种单一组分连续检漏***
JP2020159998A (ja) * 2019-03-28 2020-10-01 株式会社豊田中央研究所 水素量センサー、水素量測定装置および水素吸蔵放出システム

Similar Documents

Publication Publication Date Title
US8616046B2 (en) Hydrogen sensor
US20040123646A1 (en) Gas permeability measurement method and gas permeability measurement device
EP1631806B1 (en) Methods and apparatus for detection of large leaks in sealed articles
EP0047324A1 (en) Leakage detection method using helium
KR102684152B1 (ko) 시험 가스 입구에서의 압력 측정
CN101622531A (zh) 使用复合膜的测试气体检漏
CN105547956A (zh) 一种真空计测量薄膜气体渗透率的装置和方法
US10900862B2 (en) Gross leak measurement in an incompressible test item in a film chamber
CN101460820B (zh) 具有可加热的气体选择性渗透膜的气体传感器
JP3930871B2 (ja) 透湿度・気体透過度測定装置及び気体透過度測定方法
CN106525683A (zh) 一种薄膜渗透率测量装置和测量方法
JP7041665B2 (ja) ガスバリア性評価装置およびガスバリア性評価方法
CN111983142A (zh) 气氛检测装置的测试装置以及方法
WO2022219674A1 (ja) 水素リークディテクター
JPH06241978A (ja) フィルム用ガス透過率測定装置
JP2022544885A (ja) 液体封入被験体の気密性試験
JP4402427B2 (ja) ヘリウムガス漏れ検出装置
JP5145148B2 (ja) ヘリウム検出ユニット
JP6944527B2 (ja) 二重フィルムを有するフィルムチャンバ
Zapfe Leak detection
JPH08145835A (ja) スニッファー用ヘリウムリークディテクタ
Hara et al. 76‐4: Development of Gas‐Barrier‐Property Evaluation System for High Sensitivity and Short Evaluation Time
RU2002111643A (ru) Способ испытания на герметичность и вакуумная система течеискателя, реализующая его
RU2505883C1 (ru) Способ откачки и наполнения прибора газом
STECKELMACHER Methods of proving the gas tightness of vacuum equipment and components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP