WO2022217520A1 - 探测方法、装置、可移动平台及存储介质 - Google Patents

探测方法、装置、可移动平台及存储介质 Download PDF

Info

Publication number
WO2022217520A1
WO2022217520A1 PCT/CN2021/087322 CN2021087322W WO2022217520A1 WO 2022217520 A1 WO2022217520 A1 WO 2022217520A1 CN 2021087322 W CN2021087322 W CN 2021087322W WO 2022217520 A1 WO2022217520 A1 WO 2022217520A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
interest
region
movable platform
detection
Prior art date
Application number
PCT/CN2021/087322
Other languages
English (en)
French (fr)
Inventor
卢栋
陈亚林
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/087322 priority Critical patent/WO2022217520A1/zh
Priority to CN202180079531.2A priority patent/CN116529630A/zh
Publication of WO2022217520A1 publication Critical patent/WO2022217520A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application relates to the field of detection technology, and in particular, to a detection method, device, movable platform and storage medium.
  • Detection devices play an important role in many fields, for example, they can be used on mobile platforms or non-mobile platforms for remote sensing, obstacle avoidance, mapping, modeling, and environmental perception.
  • mobile platforms such as robots, human-controlled aircraft, unmanned aerial vehicles, unmanned vehicles and unmanned ships, can navigate in complex environments through detection devices to achieve path planning, obstacle detection and avoidance. Open obstacles, etc.
  • the detection device reflects light pulses to the detection environment and generates sensing data (eg, point clouds) for the detection environment based on the reflected light pulses.
  • sensing data eg, point clouds
  • the density of the point clouds obtained by the detection device is not high, which leads to the detection result of the point cloud.
  • the accuracy is not high. For example, in the field of navigation, the low density of point clouds may lead to errors in obstacle detection results, resulting in serious accidents.
  • one of the objectives of the present application is to provide a detection method, device, movable platform and storage medium.
  • an embodiment of the present application provides a detection method, for a detection device to scan a detection environment, the detection device includes an emitter for emitting light pulses and an emitter for continuously changing the transmission direction of the light pulses and then outputting the light pulses. scanning module;
  • the method includes:
  • the emission frequency of the transmitter is adjusted and/or the rotational speed of the optical element in the scanning module is adjusted; wherein the region of interest corresponds to after adjustment
  • the point cloud density of is higher than the corresponding point cloud density when unadjusted.
  • an embodiment of the present application provides a detection device, including a transmitter, a scanning module, and a processor;
  • the transmitter is used to emit light pulses
  • the scanning module includes at least one optical element, and the optical element is used to continuously change the transmission direction of the light pulse and then exit;
  • the processor is configured to determine a region of interest within the scanning range of the detection device; during the process of scanning the region of interest by the detection device, adjust the transmission frequency of the transmitter and/or adjust the scanning mode The rotational speed of the optical elements in the group; wherein, the point cloud density corresponding to the region of interest after adjustment is higher than the corresponding point cloud density when it is not adjusted.
  • an embodiment of the present application provides a movable platform, including:
  • a power system mounted on the body, for driving the movable platform to move;
  • the detection device according to the second aspect is mounted on the movable platform.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores executable instructions, and when the executable instructions are executed by a processor, the method according to the first aspect is implemented .
  • a detection method provided by an embodiment of the present application is used for a detection device to scan a detection environment.
  • This embodiment takes into account that in practical applications, all the sensing information (for example, point clouds) within the scanning range of the detection device is not necessarily valid information, and usually only the sensing information of a part of the area is valid.
  • this application implements For example, the region of interest is determined, and when scanning the region of interest, the emission frequency of the transmitter of the detection device is adjusted and/or the rotational speed of the optical element in the scanning module of the detection device is adjusted, so that the sensor
  • the point cloud density corresponding to the region of interest after adjustment is higher than the corresponding point cloud density when it is not adjusted, so as to increase the point cloud density of the region of interest, which is conducive to improving the accuracy of the point cloud detection results, and the determination of the region of interest. It is also beneficial to reduce the power consumption of the detection device and prolong the use time of the detection device.
  • FIG. 1 is a schematic diagram of an automatic driving scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a detection method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a circuit structure of a detection device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a detection device provided by an embodiment of the present application.
  • FIG. 5A and FIG. 5B are different schematic diagrams of determining a target range with a moving direction provided by an embodiment of the present application
  • FIG. 6 and FIG. 7 are different schematic diagrams of a region of interest provided by an embodiment of the present application.
  • 8A is a schematic diagram of overlapping scanning ranges of two detection devices provided by an embodiment of the present application.
  • FIG. 8B is a schematic diagram of a region of interest provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of increasing the density of point clouds by increasing the frequency provided by an embodiment of the present application.
  • FIGS. 10A and 10B are schematic diagrams of comparison of regions of interest before and after adjustment provided by an embodiment of the present application.
  • FIG. 11 is another structural diagram of a detection device provided by an embodiment of the present application.
  • FIG. 12 is a structural diagram of a movable platform provided by an embodiment of the present application.
  • the embodiment of the present application provides a detection method, which is used for a detection device to scan the detection environment, and the detection device includes a detection device for outgoing light.
  • a pulse transmitter and a scanning module for continuously changing the transmission direction of the light pulse and then exiting; during the process of scanning the detection environment by the detection device, determine the region of interest within the scanning range of the detection device, and then During the process of scanning the region of interest by the detection device, the emission frequency of the transmitter is adjusted and/or the rotational speed of the optical element in the scanning module is adjusted, so that the region of interest corresponding to the region of interest after adjustment is adjusted.
  • the point cloud density is higher than the corresponding point cloud density when unadjusted.
  • This embodiment takes into account that in practical applications, all the sensing information (for example, point clouds) within the scanning range of the detection device is not necessarily valid information, and usually only the sensing information of a part of the area is valid. Therefore, this application implements For example, the region of interest is determined, and the transmission frequency and/or rotational speed are adjusted when scanning the region of interest, so as to increase the point cloud density of the region of interest, which is beneficial to improve the accuracy of the point cloud detection results, and is also beneficial to The power consumption of the detection device is reduced, and the usage time of the detection device is prolonged.
  • the detection method can be applied to a detection device, and the detection device includes but is not limited to lidar, laser detection equipment, and the like.
  • the detection device is used to sense external environmental information, such as distance information, orientation information, reflection intensity information, speed information, etc. of environmental objects.
  • the detection device can detect the distance from the detection object to the detection device by measuring the time of light propagation between the detection device and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the detection device can also detect the distance from the detected object to the detection device through other technologies, such as a detection method based on phase shift measurement, or a detection method based on frequency shift measurement, which is not limited here. .
  • the detection device may be carried in a movable platform, which may be a movable vehicle.
  • the vehicle may traverse the environment by means of one or more propulsion units.
  • the vehicle may be an air vehicle, a land vehicle, a water vehicle, or a space vehicle.
  • the vehicle may be an unmanned vehicle.
  • the vehicle may be able to traverse the environment without a human occupant on it.
  • the vehicle may carry a human occupant.
  • the movable platform includes, but is not limited to, an unmanned aerial vehicle (UVA), an autonomous vehicle, an unmanned ship, or a mobile robot, and the like.
  • UVA unmanned aerial vehicle
  • the number of the detection device 20 may be one or more, which can be determined according to the actual application scenario.
  • four detection devices 20 and their scanning ranges are shown in FIG. 1 .
  • the mounting position of the detection device 20 may be specifically set according to the actual application scenario.
  • the detection device 20 may be mounted in front of, behind, or on the side of the autonomous vehicle 10 .
  • the detection device 20 can be used to scan the detection environment to obtain perception data (eg, point cloud), and then perform path planning, obstacle detection or obstacle avoidance based on the obtained perception data.
  • perception data eg, point cloud
  • the region of interest may be determined within the scanning range of the detection device 20 installed in front of the vehicle.
  • the point cloud inside assists the autonomous vehicle 10 to drive safely and reliably.
  • the region of interest can be determined within the scanning range of the detection device 20 installed at the rear of the vehicle, and the emission frequency of the transmitter and/or the rotational speed of the optical element can be adjusted to The density of the point cloud corresponding to the region of interest is increased, so as to assist the autonomous driving vehicle 10 to drive safely and reliably based on the point cloud in the region of interest.
  • the region of interest can be determined within the scanning range of the detection device according to the position information of the target to be detected, and the region of interest can be determined by adjusting the transmission frequency of the transmitter and/or Or the rotational speed of the optical element to increase the density of the point cloud corresponding to the region of interest, so as to achieve accurate target detection and tracking based on the point cloud in the region of interest.
  • target detection such as obstacle detection
  • the embodiment of the present application provides a detection method, which is used for a detection device to scan a detection environment, and the detection device includes an emitter for emitting light pulses and a scanning module for continuously changing the transmission direction of the light pulses and then exiting.
  • the method includes:
  • step S101 a region of interest within the scanning range of the detection device is determined.
  • step S102 during the process of scanning the region of interest by the detection device, adjust the emission frequency of the transmitter and/or adjust the rotational speed of the optical element in the scanning module;
  • the corresponding point cloud density of the region after adjustment is higher than the corresponding point cloud density when it is not adjusted.
  • the circuit structure of the detection device is described here: please refer to FIG. 3 , which is a circuit diagram of a detection device proposed by the present application according to an exemplary embodiment.
  • the detection device 20 at least includes a transmitting circuit 110 , a receiving circuit 120 , a Sampling circuit 130 and arithmetic circuit 140 .
  • the transmit circuit 110 may transmit light pulses (eg, the transmit circuit may be provided in a transmitter for transmitting light pulses).
  • the receiving circuit 120 can receive the light pulse reflected by the probe in the detection environment, and perform photoelectric conversion on the light pulse to obtain an electrical signal, which can be output to the sampling circuit 130 after processing the electrical signal.
  • the sampling circuit 130 may sample the electrical signal to obtain a sampling result.
  • the arithmetic circuit 140 may determine the distance between the detection device 20 and the detected object based on the sampling result of the sampling circuit 130 .
  • the detection device 20 may further include a control circuit 150, which can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 150 can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the detection device shown in FIG. 3 includes a transmitting circuit 110 , a receiving circuit 120 , a sampling circuit 130 and an arithmetic circuit 140 for emitting a light pulse for detection
  • the embodiment of the present application is not limited to Therefore, the number of any one of the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140 may also be at least two, for emitting at least two optical pulses in the same direction or in different directions respectively; wherein , the at least two light pulses may be emitted at the same time, or may be emitted at different times respectively.
  • the ranging module 200 includes a ranging module Module 200 and scanning module 300
  • the ranging module 200 includes a transmitter 201 (which may include the above-mentioned transmitting circuit 110), a collimating element 203, a detector 202 (which may include the above-mentioned receiving circuit 120, sampling circuit 130 and Operation circuit 140 ) and optical path changing element 204
  • the scanning module 300 includes at least two moving optical elements 301 and at least two drivers 302 corresponding to the optical elements 301 .
  • the transmitter 201 is used to emit light pulses.
  • the collimating element 203 is disposed on the outgoing light path of the transmitter 201 for collimating the light pulses emitted from the transmitter 201 , and collimating the light pulses emitted by the transmitter 201 into parallel light output to the scanning module 300 .
  • the optical element 301 in the scanning module 300 is placed on the outgoing light path of the transmitter 201 .
  • the moving optical element 301 in the scanning module 300 is used to continuously change the transmission direction of the light pulse and then emit, so that the light pulse emitted by the transmitter 201 scans the detection environment in two dimensions.
  • three optical elements 301 are rotated around a common axis for illustration: the driver 302 corresponding to the optical element 301 drives the optical element 301 to rotate, so that the optical element 301 changes the alignment
  • the direction of the light pulse after the collimation element 203 is collimated.
  • the optical element 301 can project the collimated light pulses to different directions at different times, so that a large spatial range can be scanned.
  • the optical element 301 includes a pair of relatively non-parallel surfaces through which the collimated light pulse passes.
  • the optical element 301 comprises a prism with a thickness varying in at least one radial direction.
  • the optical element 301 includes a wedge prism to refract the collimated light pulse.
  • the optical element 301 includes a mirror that reflects the collimated light pulses.
  • the rotational speed of each optical element 301 is different. It can be understood that the rotational speed is a vector, including direction and magnitude, and different rotational speeds may be in different directions, different values, or both.
  • the detector 202 is configured to receive at least partially reflected light pulses passing through the collimating element 203, generate three-dimensional points according to the reflected light pulses, and output a point cloud frame including several three-dimensional points at a specified frame rate.
  • the optical path changing element 204 can be used to combine the transmitting optical path and the receiving optical path in the detecting device 20 before the collimating element 203, so that the transmitting optical path and the receiving optical path can share the same collimating element 203, making the optical path more compact .
  • the emitter 201 and the detector 202 may use their own collimating elements 203 respectively, and the optical path changing element 204 is arranged on the optical path behind the collimating element 203 .
  • the optical path changing element 204 can use a small-area reflective mirror to The transmit light path and the receive light path are combined.
  • the optical path changing element 204 can also use a reflector with a through hole, wherein the through hole is used to transmit the light pulses emitted by the transmitter 201, and the reflector is used to reflect the reflected light pulses to the detector. device 202. In this way, in the case of using a small reflector, the occlusion of the return light by the support of the small reflector can be reduced.
  • the optical path changing element 204 is offset from the optical axis of the collimating element 203 . In some other implementations, the optical path changing element 204 may also be located on the optical axis of the collimating element 203 .
  • each optical element 301 is coated with an anti-reflection film.
  • the thickness of the anti-reflection film is equal to or close to the wavelength of the light pulse emitted by the transmitter 201, which can increase the intensity of the transmitted light beam.
  • a filter layer is coated on the surface of an element (such as the collimating element 203, the optical path changing element 204, etc.) located on the beam propagation path in the detection device 20, or a filter is provided on the beam propagation path, It is used to transmit at least the wavelength band of the light beam emitted by the transmitter 201 and reflect other wavelength bands, so as to reduce the noise brought by ambient light to the detector 202 .
  • an element such as the collimating element 203, the optical path changing element 204, etc.
  • the transmitter 201 emits nanosecond laser pulses.
  • the laser pulse receiving time can be determined, for example, by detecting the rising edge time and/or the falling edge time of the electrical signal pulse to determine the laser pulse receiving time.
  • the detection device 20 can calculate TOF (Time of flight, time of flight) by using the pulse receiving time information and the pulse sending time information, so as to determine the distance from the detection object to the detection device 20 .
  • the detection apparatus further includes a processor configured to execute the steps in the detection method provided by the embodiments of the present application. It can be understood that, the structure description of the detection device above is only an example, and this embodiment of the present application does not impose any limitation on this.
  • the detection method provided by the embodiments of the present application may be applied to such a detection device: the detection device may scan the detection environment in two dimensions; wherein, the detection device is in one of the dimensions The field of view is larger than the field of view in the other dimension.
  • the detection method provided in the embodiment of the present application can also be applied to a scene with the same large field of view in two dimensions, and no limitation is imposed on this.
  • the detection device may first determine a region of interest (ROI, region of interest) within the scanning range of the detection device.
  • ROI region of interest
  • the perceptual data (such as point cloud) related to the region of interest is data with relatively high degree of attention
  • the perceptual data related to non-interested region is relatively low degree of attention. data.
  • the detection devices mounted on the movable platform
  • the mounting position of the detection devices on the movable platform can also be specifically set according to the actual application scenario, for example, it can be mounted on the front and rear of the movable platform. and/or sides.
  • the detection device may be installed in front, rear and side of the automatic driving vehicle.
  • the detection device when the detection device is mounted in front of the autonomous driving vehicle, during the process of the autonomous driving vehicle moving straight forward, it can be determined that the forward direction of the autonomous driving vehicle is an area of high interest, and the autonomous driving vehicle The degree of attention behind or on the side of the vehicle is relatively low, so an area in the scanning range of the detection device related to the forward direction of the autonomous driving vehicle may be determined as the area of interest.
  • the movable platform when the detection device is mounted on a movable platform, the movable platform usually pays more attention to some sensing information on the moving path of the movable platform, and the moving direction of the movable platform is determined by Therefore, the region of interest can be determined according to the moving direction of the movable platform; in this embodiment, the region of interest is determined based on the moving direction of the movable platform, and is subsequently detected by adjusting The (transmitter) transmission frequency and/or the (scanning module) rotational speed of the device can increase the density of the point cloud corresponding to the region of interest, thereby effectively assisting the movable platform to move safely and reliably.
  • the region of interest may be within the target range of the movable platform toward the moving direction; the target range is within the scanning range of the detection device, or the target range is different from the target range.
  • the scanning ranges of the detection devices intersect.
  • the movable platform pays relatively high attention to the target range toward the moving direction, and relatively low attention to other directions.
  • FIG. 5A in FIG.
  • the target range may be a specified angle range with the movable platform as the vertex and the moving direction as the bisector of the angle, the The specified angle can be specifically set according to the actual application scenario, for example, the specified angle is 10°, 12° or 14°; as an example, please refer to FIG. 5B (in FIG. 5B , the autonomous vehicle is taken as an example), the target range can be It is a rectangular range with a specified size toward the moving direction, and the specified size can be specifically set according to the actual application scenario, for example, the specified size is not smaller than the size of the movable platform, etc.; of course, for the target range
  • the settings are not limited to this, and specific settings can be made according to actual application scenarios.
  • the detection device is installed in front of the automatic driving vehicle for illustration.
  • the automatic driving vehicle 10 may be used as the vertex. and the area within the specified angle range with the forward straight direction as the angle bisector is determined as the area of interest, for example, the gray area in FIG. 6 is the area of interest.
  • the detection device is mounted in front of the movable platform, and when the movable platform moves straight forward, the detection device can determine the region of interest within the scanning range of the detection device For example, within the scanning range of the detection device, determine the target range toward the straight forward direction, and the target range can be specified with the movable platform as the vertex and the straight forward direction as the angle bisector Angle range, the area within the target range is the area of interest. Exemplarily, for example, please refer to FIG.
  • the detection device in the case that the detection device is mounted directly in front of the movable platform, in the process of the movable platform moving straight forward, within the scanning range of the detection device Determine the target range towards the straight forward direction, the area within the target range is the area of interest, wherein the target range towards the straight forward direction is located within the scanning range of the detection device, and the area of interest is located at The detection device scans the middle of the range.
  • the detection device is mounted behind the movable platform, and when the movable platform moves backwards, the detection device can determine the sensory sensor within the scanning range of the detection device.
  • the region of interest for example, a target range in the backward and backward direction is determined within the scanning range of the detection device, and the region corresponding to the target range is the region of interest.
  • the detection device in the case where the detection device is mounted directly behind the movable platform, during the backward movement of the movable platform, the detection device can be scanned within the detection device to determine the sensor.
  • a region of interest the region of interest is located in the middle of the scanning range of the detection device.
  • the mounting positions of the detection device in the movable platform are not the same, and may not necessarily be installed directly in front of and/or behind the movable platform, that is, the The regions of interest are not necessarily all located in the middle of the scanning range of the detection device, and there may be deviations based on the installation positions of the detection positions. Therefore, the regions of interest are based on the moving direction of the movable platform and the detection device.
  • the loading position in the movable platform is jointly determined.
  • the mounting positions of the detection devices are considered when determining the region of interest, so as to further ensure that the determined region of interest is accuracy.
  • the target range toward the moving direction may be determined according to the moving direction of the movable platform, and the scanning range may be determined based on the mounting position of the detection device, and the target range and the scanning range may be intersected. Part of it is determined to be the region of interest.
  • the detection device is installed in front of the autonomous driving vehicle.
  • the detection device is installed in the right position in front of the autonomous driving vehicle.
  • the area corresponding to the part where the target range facing the moving direction intersects with the scanning range is the region of interest, and the region of interest is located to the left of the scanning range.
  • the region of interest in Figure 7 Regions are examples, but not limiting.
  • the region of interest is also related to the moving environment of the movable platform.
  • the autonomous driving vehicle when the autonomous driving vehicle is driving on a one-way street, it needs to pay attention to the road from the moving direction.
  • road information when an autonomous vehicle is driving at an intersection, in addition to the road information from the moving direction, it also needs to pay attention to road information from other directions to ensure safe and reliable driving; therefore, the sense of The area of interest may be jointly determined according to the moving direction of the movable platform and the moving environment.
  • the sensor when the movable platform moves in an intersection scene, the sensor can be determined within the scanning range of the detection device according to the moving direction of the movable platform and other directions determined based on the intersection. area of interest.
  • the region of interest may be determined within the scanning range of the detection device according to the moving direction of the movable platform.
  • the region of interest is jointly determined according to the moving direction of the movable platform, the moving environment and the mounting position of the detection device, so as to facilitate The accuracy of the region of interest is guaranteed.
  • FIG. 8A shows a scene in which two detection devices 20 are installed in front of the autonomous driving vehicle 10.
  • the autonomous driving vehicle 10 is going straight forward, there are autonomous driving vehicles within the scanning range of the two detection devices 20 that are driving straight ahead.
  • the effective information with higher attention in the direction is usually at the junction of the scanning ranges of the two detection devices 20 .
  • the detection device 20 can determine the region of interest within the scanning range of the at least two detection devices 20 according to the moving direction of the movable platform, and usually the region of interest is within the at least two detection devices 20 the junction of the scanning range.
  • the sensing data such as point clouds
  • the sensing data is the superposition of point clouds obtained by scanning them by at least two of the detection devices, that is, at least The point cloud density of the overlapping area within the scanning range of the two detection devices is sufficiently dense.
  • the detection devices In order to further reduce the power consumption of the detection devices, it may be considered not to increase the point cloud density of the overlapping area;
  • the region of interest In the case of the region of interest, the overlapping region within the scanning range of the at least two detection devices may not be considered, the region of interest may be determined from the non-overlapping regions within the scanning range of the at least two detection devices, and it may be determined from the non-overlapping region.
  • the point cloud density of the region of interest is thus beneficial to reduce the power consumption of the detection device.
  • the region of interest is at the junction of the scanning ranges of the at least two detection devices , it can be said that the region of interest determined in the embodiment of the present application is adjacent to the overlapping region within the scanning range of at least two detection devices.
  • the detection device may determine the region of interest from non-overlapping regions within the scanning range of at least two detection devices according to the moving direction of the movable platform;
  • the moving direction determines a target range toward the moving direction, and a region related to the target range in the non-overlapping regions is determined as the region of interest.
  • the target range may be determined in the direction of the automatic driving vehicle going straight forward, and two of the detection A region related to the target range in the non-overlapping regions within the scanning range of the device is determined as the region of interest, and it can be seen that the region of interest is adjacent to the overlapping regions within the scanning range of the two detection devices.
  • the overlapping region within the scanning range of the at least two detection devices may not be considered, that is, the region of interest that needs to increase the density of the point cloud is reduced, which is conducive to further reducing the detection power consumption of the device.
  • this embodiment does not impose any restrictions on the mounting positions of the at least two detection devices on the movable platform, for example, the at least two detection devices are mounted in front of, behind and/or on the movable platform. side.
  • at least two detection devices may be installed in front of the movable platform or both may be installed at the side of the movable platform; for example, at least two detection devices One of the devices is installed on the front or rear of the movable platform, and the other is installed on the side of the movable platform.
  • the moving direction of the target detection device is determined from a plurality of detection devices, or a target detection device is determined from a plurality of detection devices according to the moving direction and the moving environment of the movable platform, and the target detection device is a detection device that needs to determine the area of interest device.
  • the scanning range of the detection device may be determined based on the mounting position of the detection device, and the target range toward the moving direction may be determined according to the moving direction of the movable platform.
  • the target detection device that needs to determine the area of interest, other detection devices except the target detection device can work according to the normal working mode, and there is no need to adjust the transmission frequency of the transmitter and/or the optical element in the scanning module. Therefore, it is beneficial to reduce the power consumption of the detection device and prolong the use time of the detection device.
  • the detection device can re-select from a plurality of detection devices according to the changed moving direction and/or the changed moving environment of the movable platform.
  • the target detection device is determined in the middle, and the region of interest is determined within the scanning range of the target detection device, thereby effectively assisting the movable platform to operate safely and reliably.
  • At least two of the detection devices are mounted on a movable platform, and the at least two detection devices include a first detection device and a second detection device; the first detection device is mounted on the movable platform.
  • the number of the first detection devices may be one or more; the second detection devices are mounted on the side of the movable platform, and the number of the second detection devices may be is one or more.
  • the specified movement state refers to the movement direction of the movable platform or a state in which the movement environment changes, for example, the specified movement state includes a turning state and/or the movable platform A state in which the mobile platform is moving at an intersection, in which the region of interest needs to be re-determined, and the detection device can adjust the sense of movement within the scanning range of the first detection device according to the moving direction and/or the moving environment.
  • the region of interest is determined, and the region of interest within the scanning range of the second detection device is determined, so as to obtain the re-determined region of interest.
  • the re-determined interest is located at the junction within the scanning range of the first detection device and the scanning range of the second detection device; further, there is overlap in the scanning range of the first detection device and the scanning range of the second detection device
  • the re-determined region of interest is located in a non-overlapping region of the scanning range of the first detection device and the scanning range of the second detection device, and the re-determined region of interest is adjacent to the scanning range of the first detection device and the overlapping area of the second detection device.
  • the region of interest may be determined within the scanning range of the detection device according to the position information of the target to be detected, and the interest includes the target to be detected.
  • the emission frequency of the transmitter of the detection device and/or the rotational speed of the optical element in the scanning module of the detection device can be adjusted to improve the point cloud density of the region of interest, thereby It is beneficial to improve the accuracy of subsequent target detection using the point cloud corresponding to the region of interest.
  • the detection device can adjust the area of interest according to the position information of the target to be detected, and adjust the The target region of interest includes the target to be detected, thereby helping to improve the accuracy of subsequent target detection using the point cloud corresponding to the region of interest.
  • the detection device mentioned above at least includes an emitter, a scanning module and a detector; the emitter is used to emit light pulses; the optical element in the scanning module is used to continuously change the light The transmission direction of the pulse is backward, and the detection environment is scanned in two dimensions; the detector is used to receive the reflected light pulse, generate a three-dimensional point according to the reflected light pulse, and output a number of points at a specified frame rate.
  • a point cloud frame of 3D points the larger the frame rate of the output point cloud frame, the increase in the number of point cloud frames output per unit time, the decrease in the acquisition time corresponding to each point cloud frame, and the corresponding point cloud density of each point cloud frame.
  • the detection method of the embodiment of the present application may be implemented, that is, when the specified frame rate is higher than the preset
  • a threshold is set or the specified frame rate is increased
  • a region of interest within the scanning range of the detection device is determined, and the detection device can subsequently adjust the emission of the transmitter of the detection device when scanning the region of interest
  • the frequency and/or the rotational speed of the optical element in the scanning module of the detection device is adjusted to increase the point cloud density of the region of interest, thereby making up for the problem of insufficient point cloud density due to high frame rate.
  • step S102 after the region of interest is determined, in the process of scanning the detection environment by the detection device, when the detection device scans the region of interest, adjust the transmission frequency and /or adjust the rotational speed of the optical element in the scanning module, so that the corresponding point cloud density of the region of interest after adjustment is higher than the corresponding point cloud density when it is not adjusted.
  • the purpose of adjusting the emission frequency of the transmitter and/or adjusting the rotational speed of the optical element in the scanning module is to achieve a smaller difference between the exit angles of two adjacent light pulses exiting the region of interest.
  • each time the transmitter in the detection device emits a light pulse it will determine whether the region of interest is currently being scanned, and if so, adjust the transmitter's emission frequency and/or adjust The rotation speed of the optical element in the scanning module, if the region of interest has not been scanned, the transmitter is controlled to emit light pulses at a normal frequency or a normal rotation speed.
  • the detection device may determine the current scanning position of the detection device according to the pre-stored correspondence between the rotational speed and the position of the scanning module , and then determine whether the detection device is scanning the region of interest according to the current scanning position, for example, when it is determined that the current scanning position belongs to the region of interest, determine that the detection device is scanning the region of interest , the detection device can adjust the emission frequency of the transmitter and/or adjust the rotational speed of the optical element in the scanning module, so as to increase the density of the point cloud corresponding to the region of interest.
  • the detection device can obtain the position information of the last three-dimensional point generated by the detector in the detection device.
  • the detection device can adjust the emission frequency of the transmitter and/or adjust the optical element in the scanning module. speed to increase the density of the point cloud corresponding to the region of interest.
  • the detection device can increase the point cloud density in the region of interest by increasing the emission frequency of the transmitter; for example, as shown in FIG. 9 , the frequency curve 11 represents the normal uniform laser emission frequency, The frequency curve 12 shows the case of increasing the transmitting frequency of the transmitter when the area of interest is scanned.
  • the frequency between 111 and 112 is doubled or increased, and the corresponding point cloud distribution is shown at the bottom of the figure, relative to other positions, The area between the 111 and 112 positions has increased point cloud density, and each circle of the point cloud will increase the density of the area of interest.
  • the detection device can increase the density of the point cloud in the region of interest by reducing the rotational speed of the optical element in the scanning module. If the rotational speed of the optical element is reduced, the unit time The number of light pulses emitted by the transmitter to the region of interest increases, and the density of point clouds in the region of interest increases.
  • the detection device can increase the point cloud density in the region of interest by increasing the emission frequency of the transmitter and the rotational speed of the optical element in the scanning module; wherein the scanning When the rotational speed of the optical element in the module is increased, the number of times of scanning the region of interest is increased, and by increasing the emission frequency of the transmitter, the number of light pulses emitted to the region of interest is increased, and the sensor is further improved.
  • the point cloud density within the region of interest has increased.
  • the region of interest is located in the middle of the scanning range of the detection device, and in the automatic driving
  • the detection device scans the detection environment, and when the detection device scans the region of interest, by adjusting the transmission frequency and/or the emission frequency of the transmitter of the detection device Adjust the rotational speed of the optical element in the scanning module of the detection device, so that the corresponding point cloud density of the region of interest after adjustment is higher than the corresponding point cloud density when it is not adjusted, for example, please refer to FIG. 10A and FIG. 10B, FIG.
  • FIG. 10A is a point cloud frame obtained by the detection device when the transmission frequency of the transmitter and/or the rotational speed of the optical element in the scanning module is not adjusted
  • FIG. 10B is the transmission frequency and/or scanning mode of the transmitter being adjusted.
  • the point cloud frame obtained by the detection device after the rotation speed of the optical elements in the group is compared with FIG. 10A and FIG. 10B , it can be seen that the density of the point cloud in the middle part in FIG. 10B is denser.
  • the emission in the detection device may be reduced during the process of the detection device scanning the non-interested region
  • the transmission frequency of the detector is reduced, thereby reducing the power consumption of the detection device and prolonging the use time of the detection device.
  • an embodiment of the present application further provides a detection device 20 , including a transmitter 201 , a scanning module 300 and a processor 100 ;
  • the transmitter 201 is used to emit light pulses
  • the scanning module 300 includes at least one optical element 301, and the optical element 301 is used to continuously change the transmission direction of the light pulse and then exit;
  • the processor 100 is configured to determine a region of interest within the scanning range of the detection device 20; during the process of scanning the region of interest by the detection device 20, adjust the transmission frequency and/or the transmission frequency of the transmitter 201
  • the rotational speed of the optical element 301 in the scanning module 300 is adjusted; wherein, the point cloud density corresponding to the region of interest after adjustment is higher than the corresponding point cloud density when it is not adjusted.
  • the processor 100 is connected with the transmitter 201 for adjusting the transmission frequency of the transmitter 201; and the processor 100 is connected with the driver 302 in the scanning module 300 for adjusting The rotational speed of the optical element 301 in the scanning module 300; the driver 302 is used to drive the optical element 301 to rotate.
  • the number of the processors 100 may be one or more, and the processors 100 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP) ), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the region of interest is determined according to the moving direction of the movable platform.
  • the region of interest is jointly determined according to the moving direction of the movable platform and the mounting position of the detection device 20 in the movable platform.
  • the region of interest is determined from non-overlapping regions within the scanning range of at least two of the detection devices 20 .
  • the region of interest is adjacent to at least two overlapping regions within the scanning range of the detection devices 20 .
  • At least two of the detection devices 20 are mounted on the front of the movable platform, or at least two of the detection devices 20 are mounted on the side of the movable platform.
  • the detection device 20 is mounted in front of and/or behind the movable platform;
  • the processor 100 is further configured to: determine a region of interest within the scanning range of the detection device 20 when the movable platform moves straight forward or backward.
  • the region of interest is located in the middle of the scanning range of the detection device 20 .
  • At least two of the detection devices 20 are mounted on a movable platform; the at least two detection devices 20 include a first detection device 20 and a second detection device 20 ; the first detection device 20 is mounted on a movable platform; Front and/or rear of the movable platform, the second detection device 20 is mounted on the side of the movable platform.
  • the processor 100 is further configured to: adjust the region of interest within the scanning range of the first detection device 20 when the movable platform is in a specified moving state, and determine the region of interest within the scanning range of the first detection device 20.
  • the second detection device 20 scans the region of interest within the range.
  • the designated movement state includes a turn state and/or a state in which the movable platform is moving at an intersection.
  • the region of interest is determined according to the location information of the target to be detected.
  • the processor 100 is further configured to: if the target to be detected is located in a non-interested area within the scanning range of the detection device 20, adjust the target according to the position information of the target to be detected. area.
  • the target to be detected is included in the adjusted region of interest.
  • the detection device 20 further includes a detector 202, the detector 202 is configured to generate three-dimensional points according to the reflected light pulses, and output a point cloud frame including several three-dimensional points at a specified frame rate .
  • the processor 100 is further configured to: determine a region of interest within the scanning range of the detection device 20 when the specified frame rate is higher than a preset threshold or the specified frame rate is increased.
  • the processor 100 is further configured to: determine the current scanning position of the detection device 20 according to the pre-stored correspondence between the rotational speed and the position of the scanning module 300; determine the current scanning position according to the current scanning position. whether the detection device 20 is scanning the region of interest.
  • the detection device 20 further includes a detector 202 for generating three-dimensional points according to the reflected light pulses;
  • the processor 100 is further configured to: if the last three-dimensional point generated by the detector 202 is located in the region of interest, determine that the detection device 20 is scanning the region of interest.
  • the detection device 20 is used to scan the detection environment in two dimensions;
  • the field of view of the detection device 20 in one of the dimensions is larger than the field of view in the other dimension.
  • the detection device 20 has a larger field of view in the horizontal dimension than in the vertical dimension.
  • the processor 100 is further configured to: increase the transmission frequency of the transmitter 201 .
  • the processor 100 is further configured to: reduce the rotational speed of the optical element 301 in the scanning module 300 .
  • the processor 100 is further configured to: increase the transmission frequency of the transmitter 201 and the rotational speed of the optical element 301 in the scanning module 300 .
  • the processor 100 is further configured to: reduce the transmission frequency of the transmitter 201 during the process of scanning the non-interested area by the detection device 20 .
  • the difference between the exit angles of two adjacent light pulses exiting the region of interest is smaller than the difference between the exit angles of two adjacent light pulses exiting the non-interest region.
  • the various embodiments described herein can be implemented using computer readable media such as computer software, hardware, or any combination thereof.
  • the embodiments described herein can be implemented using application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays ( FPGA), processors, controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein are implemented.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein are implemented.
  • embodiments such as procedures or functions may be implemented with separate software modules that allow the performance of at least one function or operation.
  • the software codes may be implemented by a software application (or program) written in any suitable programming language, which may be stored in
  • an embodiment of the present application further provides a movable platform 01, including:
  • a power system 002, installed on the body 001, is used to drive the movable platform 01 to move;
  • the above-mentioned detection device 20 mounted on the movable platform 01 .
  • the region of interest of the detection devices is determined from non-overlapping regions within the scanning range of at least two of the detection devices.
  • the region of interest is adjacent to at least two overlapping regions within the scanning range of the detection device.
  • At least two of the detection devices are mounted in front of the movable platform, and/or at least two of the detection devices are mounted on the side of the movable platform.
  • the region of interest of the detection device is located in the middle of the scanning range of the detection device.
  • At least two of the detection devices are mounted on the movable platform; the at least two detection devices include a first detection device and a second detection device; the first detection device is mounted on the movable platform. The front and/or rear of the movable platform, the second detection device is mounted on the side of the movable platform.
  • the detection device can also be mounted on the top and/or bottom of the movable platform, for example, the detection device is mounted on the top and/or bottom of the UAV. .
  • non-transitory computer-readable storage medium such as a memory including instructions, executable by a processor of an apparatus to perform the above-described method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a non-transitory computer-readable storage medium when the instructions in the storage medium are executed by the processor of the terminal, enable the terminal to execute the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种探测方法、装置、可移动平台及存储介质,所述探测方法用于探测装置扫描探测环境,所述探测装置包括用于出射光脉冲的发射器和用于不断改变所述光脉冲的传输方向后出射的扫描模组。所述方法包括:确定在所述探测装置扫描范围内的感兴趣区域;在所述探测装置扫描所述感兴趣区域的过程中,调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速;其中,所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度。本实施例实现提高感兴趣区域的点云密度。

Description

探测方法、装置、可移动平台及存储介质 技术领域
本申请涉及探测技术领域,具体而言,涉及一种探测方法、装置、可移动平台及存储介质。
背景技术
探测装置在很多领域发挥很重要的作用,例如可以用于可移动平台或非移动平台上,用来遥感、避障、测绘、建模、环境感知等。尤其是可移动平台,例如机器人、人工操控飞机、无人飞行器、无人驾驶车辆和无人驾驶船只等,可以通过探测装置在复杂的环境下进行导航,来实现路径规划、障碍物探测和避开障碍物等。
其中,探测装置通过向探测环境反射光脉冲并基于反射回的光脉冲产生针对于探测环境的感知数据(例如点云),然而相关技术中探测装置获取的点云密度不高导致点云检测结果准确率不高,比如在导航领域,点云密度不高可能导致障碍物探测结果出现错误,从而导致严重事故。
发明内容
有鉴于此,本申请的目的之一是提供一种探测方法、装置、可移动平台及存储介质。
第一方面,本申请实施例提供了一种探测方法,用于探测装置扫描探测环境,所述探测装置包括用于出射光脉冲的发射器和用于不断改变所述光脉冲的传输方向后出射的扫描模组;
所述方法包括:
确定在所述探测装置扫描范围内的感兴趣区域;
在所述探测装置扫描所述感兴趣区域的过程中,调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速;其中,所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度。
第二方面,本申请实施例提供了一种探测装置,包括发射器、扫描模组和处理器;
所述发射器用于出射光脉冲;
所述扫描模组包括至少一个光学元件,所述光学元件用于不断改变所述光脉冲的传输方向后出射;
所述处理器用于确定在所述探测装置扫描范围内的感兴趣区域;在所述探测装置扫描所述感兴趣区域的过程中,调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速;其中,所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度。
第三方面,本申请实施例提供了一种可移动平台,包括:
机体;
动力***,安装于所述机体,用于驱动所述可移动平台移动;
以及,搭载于所述可移动平台的如第二方面所述的探测装置。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时实现如第一方面所述的方法。
本申请实施例所提供的一种探测方法,用于探测装置扫描探测环境。本实施例考虑到在实际应用中,在所述探测装置扫描范围内的所有感知信息(例如点云)并不一定都是有效信息,通常只有部分区域的感知信息是有效的,因此本申请实施例确定了感兴趣区域,并在扫描所述感兴趣区域时调整所述探测装置的发射器的发射频率和/或调整所述探测装置的扫描模组内的光学元件的转速,使得所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度,实现增加感兴趣区域的点云密度,从而有利于提高点云检测结果的准确率,并且感兴趣区域的确定也有利于降低所述探测装置的功耗,延长所述探测装置的使用时长。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的一种自动驾驶场景的示意图;
图2是本申请一个实施例提供的一种探测方法的流程示意图;
图3是本申请一个实施例提供的一种探测装置的电路结构示意图;
图4是本申请一个实施例提供的一种探测装置的结构示意图;
图5A和图5B是本申请一个实施例提供的以移动方向确定目标范围的不同示意图;
图6和图7是本申请一个实施例提供的感兴趣区域的不同示意图;
图8A是本申请一个实施例提供的两个探测装置扫描范围重叠的示意图;
图8B是本申请一个实施例提供的感兴趣区域的示意图;
图9是本申请一个实施例提供的通过提高频率以提高点云密度的示意图;
图10A和图10B是本申请一个实施例提供的调整前后,感兴趣区域的对比示意图;
图11是本申请一个实施例提供的探测装置的另一结构图;
图12是本申请一个实施例提供的可移动平台的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决相关技术中点云密度不高导致点云检测结果准确率不高的问题,本申请实施例提供了一种探测方法,用于探测装置扫描探测环境,所述探测装置包括用于出射光脉冲的发射器和用于不断改变所述光脉冲的传输方向后出射的扫描模组;在所述探测装置扫描探测环境的过程中,确定在所述探测装置扫描范围内的感兴趣区域,然后在所述探测装置扫描所述感兴趣区域的过程中,调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速,使得所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度。本实施例考虑到在实际应用中,在所述探测装置扫描范围内的所有感知信息(例如点云)并不一定都是有效信息,通常只有部分区域的感知信息是有效的,因此本申请实施例确定了感兴趣区域,并在扫描所述感兴趣区域时调整发射频率和/或转速,实现增加感兴趣区域的点云密度,从而有利于提高点云检测结果的准确率,并且也有利于降低所述探测装置的功耗,延长所述探测装置的使用时长。
其中,所述探测方法可以应用于探测装置中,所述探测装置包括但不限于激光雷达、激光探测设备等。在一种实施方式中,探测装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,探 测装置可以通过测量探测装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到探测装置的距离。或者,探测装置也可以通过其他技术来探测探测物到探测装置的距离,例如基于相位移动(phase shift)测量的探测方法,或者基于频率移动(frequency shift)测量的探测方法,在此不做限制。
所述探测装置可以搭载于可移动平台中,所述可移动平台可以是可移动的载运工具。所述载运工具可以借助于一个或多个推进单元跨越环境。所述载运工具可以是空中载运工具、陆地载运工具、水上载运工具、或太空载运工具。所述载运工具可以是无人载运工具。所述载运工具可能能够在其上没有人类乘员的情况下跨越环境。替代地,所述载运工具可以携带人类乘员。示例性地,所述可移动平台包括但不限于无人飞行器(UVA)、自动驾驶车辆、无人船或者移动机器人等。
在一示例性的应用场景中,请参阅图1,以所述探测装置20搭载于自动驾驶车辆10为例进行说明:所述探测装置20的数量可以是一个或多个,可依据实际应用场景进行具体设置,图1中示出4个探测装置20及其扫描范围。所述探测装置20的搭载位置可依据实际应用场景进行具体设置,例如所述探测装置20可以搭载于所述自动驾驶车辆10的前方、后方或者侧面。在自动驾驶车辆10行驶过程中,可以使用所述探测装置20扫描探测环境以获取感知数据(例如点云),进而基于获取的感知数据进行路径规划、障碍物检测或者避障等等。
作为例子,当自动驾驶车辆10在向前直行的过程中,可以在安装于车辆前方的探测装置20扫描范围内确定感兴趣区域,在所述探测装置20扫描所述感兴趣区域的过程中,调整所述探测装置20的发射器的发射频率和/或调整所述探测装置20的扫描模组内的光学元件的转速,以提高所述感兴趣区域对应的点云密度,进而基于感兴趣区域内的点云辅助自动驾驶车辆10安全可靠地行驶。
作为例子,当自动驾驶车辆10在向后倒行的过程中,可以在安装于车辆后方的探测装置20扫描范围内确定感兴趣区域,通过调整发射器的发射频率和/或光学元件的转速以提高所述感兴趣区域对应的点云密度,进而基于感兴趣区域内的点云辅助自动驾驶车辆10安全可靠地行驶。
作为例子,当自动驾驶车辆在进行目标检测(例如障碍物检测)时,可以根据待检测的目标的位置信息在所述探测装置扫描范围内确定感兴趣区域,通过调整发射器的发射频率和/或光学元件的转速以提高所述感兴趣区域对应的点云密度,进而基于感兴趣区域内的点云实现准确地目标检测与跟踪。
接下来对本申请实施例提供的探测方法进行说明,请参阅图2,本申请实施例提 供了一种探测方法,用于探测装置扫描探测环境,所述探测装置包括用于出射光脉冲的发射器和用于不断改变所述光脉冲的传输方向后出射的扫描模组。所述方法包括:
在步骤S101中,确定在所述探测装置扫描范围内的感兴趣区域。
在步骤S102中,在所述探测装置扫描所述感兴趣区域的过程中,调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速;其中,所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度。
这里对所述探测装置的电路结构进行说明:请参阅图3,为本申请根据一示例性实施例提出的一种探测装置的电路图,所述探测装置20至少包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲(例如所述发射电路可以设置于发射器中,用于发射光脉冲)。接收电路120可以接收经探测环境中的探测物反射的光脉冲,并对该光脉冲进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,确定探测装置20与探测物之间的距离。
可选地,该探测装置20还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图3示出的探测装置中包括一个发射电路110、一个接收电路120、一个采样电路130和一个运算电路140,用于出射一路光脉冲进行探测,但是本申请实施例并不限于此,发射电路110、接收电路120、采样电路130、运算电路140中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光脉冲;其中,该至少两束光脉冲可以是同时出射,也可以是分别在不同时刻出射。
这里对所述探测装置的结构进行说明:请参阅图4,这里以所述探测装置20中采用同轴光路对所述光脉冲的传输过程进行举例说明:所述测距模块200包括有测距模块200和扫描模组300,所述测距模块200包括有发射器201(可以包括上述的发射电路110)、准直元件203、探测器202(可以包括上述的接收电路120、采样电路130和运算电路140)和光路改变元件204;所述扫描模组300包括至少两个运动的光学元件301和与所述光学元件301对应的至少两个驱动器302。
其中,所述发射器201用于出射光脉冲。准直元件203设置于发射器201的出射光路上,用于准直从发射器201发出的光脉冲,将发射器201发出的光脉冲准直为平行光出射至扫描模组300。
所述扫描模组300中的光学元件301被放置于所述发射器201的出射光路上。所 述扫描模组300中运动的光学元件301用于不断改变所述光脉冲的传输方向后出射,以使得所述发射器201出射的光脉冲对探测环境进行两个维度上的扫描。
图4所示的实施例中,以三个光学元件301绕共同轴转动进行举例说明:与所述光学元件301对应的驱动器302驱动所述光学元件301旋转,使所述光学元件301改变经准直元件203准直后的光脉冲的方向。在所述驱动器302的驱动下,在不同时刻所述光学元件301可以将准直后的光脉冲投射至不同的方向,从而可以扫描较大的空间范围。
在一个实施例中,所述光学元件301包括相对非平行的一对表面,准直后的光脉冲穿过该对表面。在一个实施例中,所述光学元件301包括厚度沿至少一个径向变化的棱镜。在一个实施例中,所述光学元件301包括楔角棱镜,对准直后的光脉冲进行折射。在一个实施例中,所述光学元件301包括反射镜,对准直后的光脉冲进行反射。其中,各个光学元件301之间的转动速度不同。可理解的是,所述转动速度为矢量,包括方向和数值大小,不同的转动速度可以是方向不同、数值不同或者两者均不同。
出射至所述探测环境中的光脉冲经探测物反射后,经过所述扫描模组300然后入射至所述准直元件203,准直元件203还用于会聚经探测物反射回的光脉冲,探测器202用于接收穿过准直元件203的至少部分反射回的光脉冲,根据经反射回的光脉冲产生三维点,并以指定帧率输出包含若干三维点的点云帧。
其中,可以通过光路改变元件204来将探测装置20探测装置20内的发射光路和接收光路在准直元件203之前合并,使得发射光路和接收光路可以共用同一个准直元件203,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器201和探测器202分别使用各自的准直元件203,将光路改变元件204设置在准直元件203之后的光路上。
考虑到发射器201出射的光脉冲的光束孔径较小,探测装置20探测装置20所接收到的反射回的光脉冲的光束孔径较大,所以光路改变元件204可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件204也可以采用带通孔的反射镜,其中该通孔用于透射发射器201出射的光脉冲,反射镜用于将反射回的光脉冲反射至探测器202。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图4所示实施例中,光路改变元件204偏离了准直元件203的光轴。在其他的一些实现方式中,光路改变元件204也可以位于准直元件203的光轴上。
一个实施例中,各光学元件301上镀有增透膜。可选的,增透膜的厚度与发射器 201发射出的光脉冲的波长相等或接近,能够增加透射光束的强度。
一个实施例中,探测装置20中位于光束传播路径上的一个元件(比如准直元件203、光路改变元件204等)表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器201所出射的光束所在波段,反射其他波段,以减少环境光给探测器202带来的噪音。
在一些实施例中,所述发射器201发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,探测装置20可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF(Time of flight,飞行时间),从而确定探测物到探测装置20的距离。
在一些实施例中,所述探测装置还包括处理器,用于执行本申请实施例提供的探测方法中的步骤。可理解的是,以上对于探测装置的结构描述仅为举例说明,本申请实施例对此不做任何限制。
在一些实施例中,本申请实施例提供的探测方法可以应用于这样的探测装置中:所述探测装置可以对探测环境进行两个维度上的扫描;其中,所述探测装置在其中一个维度中的视场大于另一个维度中的视场。作为例子,比如针对于搭载于自动驾驶车辆的探测装置,基于自动驾驶车辆的移动特点,该类探测装置在水平维度中的视场通常大于垂直维度中的视场。当然,本申请实施例提供的探测方法也可以应用在两个维度的视场同样大的场景,对此不作任何限制。
在步骤S101中,在使用所述探测装置扫描探测环境之前,所述探测装置可以先确定在所述探测装置扫描范围内的感兴趣区域(ROI,region of interest)。其中,可以认为,有关于所述感兴趣区域的感知数据(例如点云)为关注度相对较高的数据,有关于非感兴趣区域的感知数据(例如点云)为关注度相对较低的数据。
其中,搭载在可移动平台上的探测装置可以是一个或多个,所述探测装置在可移动平台上的搭载位置也可以根据实际应用场景进行具体设置,比如可以搭载于可移动平台前方、后方和/或侧面。在一个例子中,以可移动平台为自动驾驶车辆为例,基于自动驾驶车辆的移动特点,则可以在自动驾驶车辆的前方、后方和侧面均安装所述探测装置。
在一个例子中,在所述探测装置搭载于自动驾驶车辆前方的情况下,在自动驾驶车辆向前直行过程中,可以确定自动驾驶车辆朝前方向为关注度较高的区域,而对自动驾驶车辆后方或者侧方的关注度相对较低,因此可以将所述探测装置扫描范围中有关于自动驾驶车辆朝前方向的区域确定为感兴趣区域。
在一实施例中,在所述探测装置搭载于可移动平台的情况下,所述可移动平台通常更关注于在可移动平台移动路径上的一些感知信息,而可移动平台的移动方向是决定移动路径的关键因素之一;因此,所述感兴趣区域可以根据所述可移动平台的移动方向确定;本实施例基于所述可移动平台的移动方向确定感兴趣区域,并在后续通过调整探测装置的(发射器)发射频率和/或(扫描模组)转速以提高感兴趣区域对应的点云密度,从而能够有效辅助所述可移动平台安全可靠地移动。
在一种可能的实现方式中,所述感兴趣区域可以处于所述可移动平台朝向所述移动方向的目标范围内;所述目标范围位于所述探测装置扫描范围内,或者所述目标范围与所述探测装置扫描范围相交。可移动平台在移动过程中对于朝向所述移动方向的目标范围的关注度相对较高,而对其他方向的关注度相对较低。作为例子,请参阅图5A(图5A中以自动驾驶车辆为例),所述目标范围可以是以所述可移动平台为顶点和以所述移动方向为角平分线的指定角度范围,所述指定角度可依据实际应用场景进行具体设置,比如所述指定角度为10°、12°或者14°;作为例子,请参阅图5B(图5B中以自动驾驶车辆为例),所述目标范围可以是朝向所述移动方向的指定尺寸的矩形范围,所述指定尺寸可依据实际应用场景进行具体设置,例如所述指定尺寸不小于所述可移动平台的尺寸等;当然,对于所述目标范围的设置不限于此,可依据实际应用场景进行具体设置。
示例性地,比如请参阅图5A以及图6,以探测装置安装于自动驾驶车辆前方为例进行说明,在自动驾驶车辆10向前直行的过程中,可以将以所述自动驾驶车辆10为顶点和以所述向前直行方向为角平分线的指定角度范围内的区域确定为所述感兴趣区域,比如图6中的灰色区域即为感兴趣区域。
在一个例子中,所述探测装置搭载在所述可移动平台的前方,在所述可移动平台向前直行的情况下,所述探测装置可以确定在所述探测装置扫描范围内的感兴趣区域,比如在所述探测装置扫描范围内确定朝向所述向前直行方向的目标范围,所述目标范围可以是以所述可移动平台为顶点和以所述向前直行方向为角平分线的指定角度范围,所述目标范围内的区域即为所述感兴趣区域。示例性的,比如请参阅图6,在所述探测装置搭载在所述可移动平台的正前方的情况下,在所述可移动平台向前直行的过程中,在所述探测装置扫描范围内确定朝向向前直行方向的目标范围,所述目标范围内的区域即为所述感兴趣区域,其中,朝向向前直行方向的目标范围位于所述探测装置扫描范围内,所述感兴趣区域位于所述探测装置扫描范围的中部。
在另一个例子中,所述探测装置搭载在所述可移动平台的后方,在所述可移动平 台向后倒行的情况下,所述探测装置可以确定在所述探测装置扫描范围内的感兴趣区域,比如在所述探测装置扫描范围内确定朝向所述向后倒行方向的目标范围,所述目标范围对应的区域即为所述感兴趣区域。示例性的,在所述探测装置搭载在所述可移动平台的正后方的情况下,在所述可移动平台向后倒行的过程中,可以在所述探测装置扫描范围内确定所述感兴趣区域,所述感兴趣区域位于所述探测装置扫描范围的中部。
当然,考虑到在实际应用中,所述探测装置在可移动平台中的搭载位置并不相同的,可能并不一定正好安装在所述可移动平台的正前方和/或正后方,即所述感兴趣区域不一定都位于所述探测装置扫描范围的中部,可能基于所述探测位置的安装位置有所偏差,因此,所述感兴趣区域根据所述可移动平台的移动方向和所述探测装置在所述可移动平台中的搭载位置共同确定。本实施例考虑到探测装置的搭载位置有所差异导致扫描范围不尽相同的问题,在确定所述感兴趣区域时考虑到所述探测装置的搭载位置,从而进一步保证所确定的感兴趣区域的准确性。
示例性地,可以根据所述可移动平台的移动方向确定朝向所述移动方向的目标范围,以及基于所述探测装置的搭载位置确定其扫描范围,将所述目标范围和所述扫描范围相交的部分确定为所述感兴趣区域,比如请参阅图7,以探测装置安装于自动驾驶车辆前方为例进行说明,探测装置搭载于自动驾驶车辆前方偏右的位置,在自动驾驶车辆向前直行的过程中,朝向所述移动方向的目标范围与所述扫描范围相交的部分对应区域即为所述感兴趣区域,所述感兴趣区域在所述扫描范围偏左的位置,图7中的感兴趣区域仅为示例,但不限此。
在一些实施例中,所述感兴趣区域还跟所述可移动平台的移动环境相关,比如在自动驾驶场景下,当自动驾驶车辆在单行道上行驶时,其需要关注在来自移动方向上的路道信息;当自动驾驶车辆在交叉路口行驶时,除了需要关注来自移动方向上的路道信息之外,还需关注来自其他方向的路道信息,以保证安全可靠地驾驶;因此,所述感兴趣区域可以根据所述可移动平台的移动方向和移动环境共同确定。
示例性的,在所述可移动平台在交叉路口场景中移动时,可以根据所述可移动平台的移动方向和基于所述交叉路口确定的其他方向共同在所述探测装置扫描范围内确定所述感兴趣区域。示例性的,在所述可移动平台在非交叉路口场景中移动时,可以根据所述可移动平台的移动方向在所述探测装置扫描范围内确定所述感兴趣区域。
在一些实施例中,考虑到探测装置在可移动平台的搭载位置的差异性,所述感兴趣区域根据所述可移动平台的移动方向、移动环境和探测装置的搭载位置共同确定, 从而有利于保证所述感兴趣区域的准确性。
在一些实施例中,考虑到探测装置在可移动平台的搭载位置的差异性,可能存在至少两个探测装置的扫描范围均与所述可移动平台的移动方向相关,比如请参与图8A,图8A示出了2个探测装置20安装于自动驾驶车辆10前方的场景,在自动驾驶车辆10向前直行的情况下,这2个探测装置20的扫描范围内均有自动驾驶车辆在向前直行方向上关注度较高的有效信息,而且通常在这2个探测装置20的扫描范围的交界处。则所述探测装置20可以根据所述可移动平台的移动方向,在所述至少两个探测装置20的扫描范围内确定感兴趣区域,通常所述感兴趣区域在所述至少两个探测装置20的扫描范围的交界处。
其中,在至少两个所述探测装置的搭载位置相近或者至少两个所述探测装置视场范围较大的情况下,如图8A所示,存在所述至少两个探测装置的扫描范围可能存在重叠的情况,考虑到至少两个所述探测装置扫描范围内的重叠区域对应的感知数据(如点云)是至少两个所述探测装置均对其进行扫描得到的点云的叠加,即至少两个所述探测装置扫描范围内的重叠区域的点云密度已足够密集,为了进一步降低所述探测装置的功耗,可以考虑不增加该重叠区域的点云密度;因此,在确定所述感兴趣区域时,可以不考虑所述至少两个探测装置扫描范围内的重叠区域,所述感兴趣区域可以从至少两个所述探测装置扫描范围内的非重叠区域确定,提高从非重叠区域确定的感兴趣区域的点云密度,从而有利于降低所述探测装置的功耗。
其中,上述提到,存在至少两个探测装置的扫描范围均与所述可移动平台的移动方向相关的情况下,通常所述感兴趣区域在所述至少两个探测装置的扫描范围的交界处,可以说,本申请实施例中确定的所述感兴趣区域邻近至少两个所述探测装置扫描范围内的重叠区域。
示例性的,所述探测装置可以根据所述可移动平台的移动方向,从至少两个所述探测装置扫描范围内的非重叠区域确定所述感兴趣区域;例如可以根据所述可移动平台的移动方向确定朝向所述移动方向的目标范围,并将所述非重叠区域中与所述目标范围相关的区域确定为所述感兴趣区域。
在一个例子中,请参阅图8B,在图8A的基础上,在自动驾驶车辆向前直行的情况下,可以朝所述自动驾驶车辆向前直行方向确定目标范围,并将两个所述探测装置扫描范围内的非重叠区域中与所述目标范围相关的区域确定为所述感兴趣区域,可以看到,所述感兴趣区域邻近两个所述探测装置扫描范围内的重叠区域。本实施例在确定所述感兴趣区域时,可以不考虑所述至少两个探测装置扫描范围内的重叠区域,即 需要提高点云密度的感兴趣区域减小了,有利于进一步降低所述探测装置的功耗。
可以理解的是,本实施例对于至少两个所述探测装置在可移动平台的搭载位置不做任何限制,例如至少两个所述探测装置搭载于所述可移动平台的前方、后方和/或侧面。在至少两个探测装置的扫描范围存在重叠的情况下,比如至少两个所述探测装置可以均安装于可移动平台的前方或者均安装于可移动平台的侧面;又比如至少两个所述探测装置中的其中一个安装于可移动平台的前方或者后方,另一个安装在可移动平台的侧面。
在一些实施例中,在搭载于可移动平台的探测装置有多个且探测装置的搭载位置不相同的情况下,并不是所有的探测装置都需要确定感兴趣区域,可以根据所述可移动平台的移动方向从多个探测装置中确定目标探测装置,或者根据所述可移动平台的移动方向和移动环境从多个探测装置中确定目标探测装置,该目标探测装置为需要确定感兴趣区域的探测装置。作为例子,比如可以基于所述探测装置的搭载位置确定其扫描范围,根据所述可移动平台的移动方向确定朝向所述移动方向的目标范围,所述目标范围和所述扫描范围存在相交的即为需要确定感兴趣区域的目标探测装置,对于除目标探测装置之外的其他探测装置则按照正常工作模式进行工作即可,无需调整发射器的发射频率和/或扫描模组内的光学元件的转速,从而有利于降低所述探测装置的功耗,延长所述探测装置的使用时长。
进一步地,在所述可移动平台的移动方向或者移动环境改变的情况下,所述探测装置可以根据所述可移动平台改变后的移动方向和/或改变后的移动环境重新从多个探测装置中确定目标探测装置,并在所述目标探测装置扫描范围内确定感兴趣区域,从而有效辅助所述可移动平台安全可靠地运行。
在一示例性的实施例中,至少两个所述探测装置搭载于可移动平台,所述至少两个探测装置包括第一探测装置和第二探测装置;所述第一探测装置搭载于所述可移动平台的前方和/或后方,所述第一探测装置的数量可以是一个或多个;所述第二探测装置搭载于所述可移动平台的侧面,所述第二探测装置的数量可以是一个或多个。在所述可移动平台处于指定移动状态的情况下,所述指定移动状态指所述可移动平台的移动方向或者移动环境改变的状态,例如所述指定移动状态包括转弯状态和/或所述可移动平台在交叉路口移动的状态,在该状态下需要重新确定感兴趣区域,所述探测装置可以根据所述移动方向和/或所述移动环境调整在所述第一探测装置扫描范围内的感兴趣区域,并确定在所述第二探测装置扫描范围内的感兴趣区域,从而获得重新确定的感兴趣区域。其中,重新确定的感兴趣位于所述第一探测装置扫描范围和第二探测 装置扫描范围内的交界处;进一步地,在所述第一探测装置扫描范围和第二探测装置扫描范围内存在重叠区域的情况下,重新确定的感兴趣区域位于所述第一探测装置扫描范围和第二探测装置扫描范围的非重叠区域,且所述重新确定的感兴趣区域邻近所述第一探测装置扫描范围和第二探测装置的重叠区域。
在一些实施例中,在进行目标检测(比如目标跟踪或者障碍物检测)的场景中,针对于目标采集到的点云数据越多,有利于提高针对于目标检测的准确性,则在一些实施例中,本申请实施例可以根据待检测目标的位置信息在所述探测装置扫描范围内确定所述感兴趣区域,所述感兴趣中包含所述待检测目标,后续所述探测装置在扫描所述感兴趣区域时可以通过调整所述探测装置的发射器的发射频率和/或调整所述探测装置的扫描模组内的光学元件的转速,以提高所述感兴趣区域的点云密度,从而有利于提高后续使用所述感兴趣区域对应的点云进行目标检测的准确性。
则在目标检测的场景中,如果待检测的目标位于所述探测装置扫描范围内的非感兴趣区域,所述探测装置可以根据所述待检测的目标的位置信息调整所述感兴趣区域,调整后的感兴趣区域中包含所述待检测的目标,从而有利于提高后续使用所述感兴趣区域对应的点云进行目标检测的准确性。
在一些实施例中,上述提到所述探测装置至少包括发射器、扫描模组和探测器;所述发射器用于出射光脉冲;所述扫描模组中的光学元件用于不断改变所述光脉冲的传输方向后出射,实现对探测环境进行两个维度的扫描;所述探测器用于接收经反射回的光脉冲,根据经反射回的光脉冲产生三维点,并以指定帧率输出包含若干三维点的点云帧。其中,输出所述点云帧的帧率越大,表明单位时间输出的点云帧的数量增加,每个点云帧对应的采集时间减少,则每个点云帧对应的点云密度也有所降低,则为了提高点云密度,可以在所述指定帧率高于预设阈值或者所述指定帧率提高的情况下实现本申请实施例的探测方法,即在所述指定帧率高于预设阈值或者所述指定帧率提高的情况下,确定在探测装置扫描范围内的感兴趣区域,后续所述探测装置在扫描所述感兴趣区域时可以通过调整所述探测装置的发射器的发射频率和/或调整所述探测装置的扫描模组内的光学元件的转速,以提高所述感兴趣区域的点云密度,从而弥补因高帧率导致点云密度不足的问题。
在步骤S102中,确定所述感兴趣区域之后,在所述探测装置扫描探测环境的过程中,当所述探测装置扫描到所述感兴趣区域的情况下,调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速,以使得所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度。其中,调整所述发射器的发射频率和/或调 整所述扫描模组内的光学元件的转速的目的,是实现出射至所述感兴趣区域的相邻两个光脉冲的出射角度之差更小,以便有更多的光脉冲出射至所述感兴趣区域,以提高所述感兴趣区域的点云密度,即出射至所述感兴趣区域的相邻两个光脉冲的出射角度之差小于出射至非感兴趣区域的相邻两个光脉冲的出射角度之差。
在一些实施例中,所述探测装置中的发射器在每次发射光脉冲时,都会判断当前是否扫描到所述感兴趣区域,如果是,则调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速,如果还没扫描到所述感兴趣区域,则控制所述发射器按照正常频率或者正常转速出射光脉冲。
在一种可能的实现方式中,在所述探测装置扫描探测环境的过程中,所述探测装置可以根据预存的所述扫描模组的转速与位置的对应关系,确定所述探测装置当前扫描位置,然后根据所述当前扫描位置确定所述探测装置是否在扫描所述感兴趣区域,比如当确定所述当前扫描位置属于所述感兴趣区域时,确定所述探测装置在扫描所述感兴趣区域,则所述探测装置可以调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速,以提高所述感兴趣区域对应的点云密度。
在另一种可能的实现方式中,考虑到扫描模组中用于驱动光学元件的驱动器的精度有限的问题,使得实际转速与位置并不是完全对应的,即上述确定的所述探测装置当前扫描位置存在误差,则所述探测装置可以获取所述探测装置中的探测器产生的上一个三维点的位置信息,当基于所述上一个三维点的位置信息确定所述探测器产生的上一个三维点位于所述感兴趣区域内时,确定所述探测装置在扫描所述感兴趣区域,所述探测装置可以调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速,以提高所述感兴趣区域对应的点云密度。
当然,也可以结合上述两种方式共同判断所述探测装置是否扫描到所述感兴趣区域,本实施例对此不作任何限制。
在一些实施例中,所述探测装置可以通过提高所述发射器的发射频率来提高所述感兴趣区域内的点云密度;比如如图9所示,频率曲线11表示正常均匀激光发射频率,频率曲线12示出了在扫描到感兴趣区域的情况下提高所述发射器的发射频率的情况,111和112之间频率翻倍或提高,对应点云分布如图底部,相对于其他位置,111位置和112位置之间的区域点云密度增加了,每一圈点云在感兴趣区域密度都会提高。
在一些实施例中,所述探测装置可以通过降低所述扫描模组内的光学元件的转速来提高所述感兴趣区域内的点云密度,所述光学元件的转速降低了,则单位时间内所述发射器出射至所述感兴趣区域的光脉冲数量增多,进而所述感兴趣区域内的点云密 度有所提高。
在一些实施例中,所述探测装置可以通过提高所述发射器的发射频率和所述扫描模组内的光学元件的转速来提高所述感兴趣区域内的点云密度;其中,所述扫描模组内的光学元件的转速提高了,则扫描所述感兴趣区域的次数增多了,并且通过提高所述发射器的发射频率增加出射至所述感兴趣区域的光脉冲数量,进而所述感兴趣区域内的点云密度有所提高。
示例性的,在自动驾驶场景下,在所述探测装置搭载在自动驾驶车辆的正前方和/或正后方的情况下,所述感兴趣区域位于所述探测装置扫描范围的中部,在自动驾驶车辆向前直行或者向后倒行时,所述探测装置对探测环境进行扫描,在所述探测装置扫描到所述感兴趣区域时,通过调整所述探测装置的发射器的发射频率和/或调整所述探测装置的扫描模组内的光学元件的转速,以使得所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度,比如请参阅图10A以及图10B,图10A为未调整发射器的发射频率和/或扫描模组内的光学元件的转速时所述探测装置得到的点云帧,图10B为在调整发射器的发射频率和/或扫描模组内的光学元件的转速后所述探测装置得到的点云帧,对比图10A和图10B可以看出,图10B中的中部的点云密度更密。
在一些实施例中,考虑到所述扫描范围内的非感兴趣区域的关注度通常较低,因此,在所述探测装置扫描非感兴趣区域的过程中,可以降低所述探测装置中的发射器的发射频率,从而降低所述探测装置的功耗,延长所述探测装置的使用时长。
相应的,请参阅图11,本申请实施例还提供了一种探测装置20,包括发射器201、扫描模组300和处理器100;
所述发射器201用于出射光脉冲;
所述扫描模组300包括至少一个光学元件301,所述光学元件301用于不断改变所述光脉冲的传输方向后出射;
所述处理器100用于确定在所述探测装置20扫描范围内的感兴趣区域;在所述探测装置20扫描所述感兴趣区域的过程中,调整所述发射器201的发射频率和/或调整所述扫描模组300内的光学元件301的转速;其中,所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度。
其中,所述处理器100与所述发射器201连接,用于调整所述发射器201的发射频率;以及,所述处理器100与所述扫描模组300内的驱动器302连接,用于调整所述扫描模组 300内的光学元件301的转速;所述驱动器302用于驱动所述光学元件301转动。
所述处理器100的数量可以是一个或多个,所述处理器100可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在一实施例中,在所述探测装置20搭载于可移动平台的情况下,所述感兴趣区域根据所述可移动平台的移动方向确定。
在一实施例中,所述感兴趣区域根据所述可移动平台的移动方向和所述探测装置20在所述可移动平台中的搭载位置共同确定。
在一实施例中,在至少两个所述探测装置20搭载于可移动平台的情况下,所述感兴趣区域从至少两个所述探测装置20扫描范围内的非重叠区域确定。
在一实施例中,所述感兴趣区域邻近至少两个所述探测装置20扫描范围内的重叠区域。
在一实施例中,至少两个所述探测装置20搭载于所述可移动平台的前方,或者,至少两个所述探测装置20搭载于所述可移动平台的侧面。
在一实施例中,所述探测装置20搭载在所述可移动平台的前方和/或后方;
所述处理器100还用于:在所述可移动平台向前直行或者向后倒行的情况下,确定在所述探测装置20扫描范围内的感兴趣区域。
在一实施例中,在所述探测装置20搭载在所述可移动平台的正前方和/或正后方的情况下,所述感兴趣区域位于所述探测装置20扫描范围的中部。
在一实施例中,至少两个所述探测装置20搭载于可移动平台;所述至少两个探测装置20包括第一探测装置20和第二探测装置20;所述第一探测装置20搭载于所述可移动平台的前方和/或后方,所述第二探测装置20搭载于所述可移动平台的侧面。
在一实施例中,所述处理器100还用于:在所述可移动平台处于指定移动状态的情况下,调整在所述第一探测装置20扫描范围内的感兴趣区域,并确定在所述第二探测装置20扫描范围内的感兴趣区域。
在一实施例中,所述指定移动状态包括转弯状态和/或所述可移动平台在交叉路口移动的状态。
在一实施例中,所述感兴趣区域根据待检测的目标的位置信息确定。
在一实施例中,所述处理器100还用于:如果待检测的目标位于所述探测装置20扫描范围内的非感兴趣区域,根据所述待检测的目标的位置信息调整所述感兴趣区域。
在一实施例中,调整后的感兴趣区域中包含所述待检测的目标。
在一实施例中,所述探测装置20还包括探测器202,所述探测器202用于根据经反射回的光脉冲产生三维点,,并以指定帧率输出包含若干三维点的点云帧。
在一实施例中,所述处理器100还用于:在所述指定帧率高于预设阈值或者所述指定帧率提高的情况下,确定在探测装置20扫描范围内的感兴趣区域。
在一实施例中,所述处理器100还用于:根据预存的所述扫描模组300的转速与位置的对应关系,确定所述探测装置20当前扫描位置;根据所述当前扫描位置确定所述探测装置20是否在扫描所述感兴趣区域。
在一实施例中,所述探测装置20还包括探测器202,所述探测器202用于根据经反射回的光脉冲产生三维点;
所述处理器100还用于:如果所述探测器202产生的上一个三维点位于所述感兴趣区域内,确定所述探测装置20在扫描所述感兴趣区域。
在一实施例中,所述探测装置20用于对探测环境进行两个维度上的扫描;
其中,所述探测装置20在其中一个维度中的视场大于另一个维度中的视场。
在一实施例中,所述探测装置20在水平维度中的视场大于垂直维度中的视场。
在一实施例中,所述处理器100还用于:提高所述发射器201的发射频率。
在一实施例中,所述处理器100还用于:降低所述扫描模组300内的光学元件301的转速。
在一实施例中,所述处理器100还用于:提高所述发射器201的发射频率和所述扫描模组300内的光学元件301的转速。
在一实施例中,所述处理器100还用于:在所述探测装置20扫描非感兴趣区域的过程中,降低所述发射器201的发射频率。
在一实施例中,在调整之后出射至所述感兴趣区域的相邻两个光脉冲的出射角度之差小于出射至非感兴趣区域的相邻两个光脉冲的出射角度之差。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领 域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由控制器执行。
相应地,请参阅图12,本申请实施例还提供了一种可移动平台01,包括:
机体001;
动力***002,安装于所述机体001,用于驱动所述可移动平台01移动;
以及,搭载于所述可移动平台01的上述的探测装置20。
在一实施例中,在至少两个所述探测装置搭载于所述可移动平台的情况下,所述探测装置的感兴趣区域从至少两个所述探测装置扫描范围内的非重叠区域确定。
在一实施例中,所述感兴趣区域邻近至少两个所述探测装置扫描范围内的重叠区域。
在一实施例中,至少两个所述探测装置搭载于所述可移动平台的前方,和/或,至少两个所述探测装置搭载于所述可移动平台的侧面。
在一实施例中,在所述探测装置搭载在所述可移动平台的正前方和/或正后方的情况下,所述探测装置的感兴趣区域位于所述探测装置扫描范围的中部。
在一实施例中,至少两个所述探测装置搭载于所述可移动平台;所述至少两个探测装置包括第一探测装置和第二探测装置;所述第一探测装置搭载于所述可移动平台的前方和/或后方,所述第二探测装置搭载于所述可移动平台的侧面。
在一实施例中,基于可移动平台的移动特点,所述探测装置还可以搭载于所述可移动平台的顶部和/或底部,例如所述探测装置搭载于无人机的顶部和/或底部。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由装置的处理器执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当存储介质中的指令由终端的处理器执行时, 使得终端能够执行上述方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (55)

  1. 一种探测方法,其特征在于,用于探测装置扫描探测环境,所述探测装置包括用于出射光脉冲的发射器和用于不断改变所述光脉冲的传输方向后出射的扫描模组;
    所述方法包括:
    确定在所述探测装置扫描范围内的感兴趣区域;
    在所述探测装置扫描所述感兴趣区域的过程中,调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速;其中,所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度。
  2. 根据权利要求1所述的方法,其特征在于,在所述探测装置搭载于可移动平台的情况下,所述感兴趣区域根据所述可移动平台的移动方向确定。
  3. 根据权利要求2所述的方法,其特征在于,所述感兴趣区域根据所述可移动平台的移动方向和所述探测装置在所述可移动平台中的搭载位置共同确定。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,在至少两个所述探测装置搭载于可移动平台的情况下,所述感兴趣区域从至少两个所述探测装置扫描范围内的非重叠区域确定。
  5. 根据权利要求4所述的方法,其特征在于,所述感兴趣区域邻近至少两个所述探测装置扫描范围内的重叠区域。
  6. 根据权利要求1所述的方法,其特征在于,所述探测装置搭载在可移动平台的前方和/或后方;
    所述确定在探测装置扫描范围内的感兴趣区域,包括:
    在所述可移动平台向前直行或者向后倒行的情况下,确定在所述探测装置扫描范围内的感兴趣区域。
  7. 根据权利要求1或6所述的方法,其特征在于,在所述探测装置搭载在可移动平台的正前方和/或正后方的情况下,所述感兴趣区域位于所述探测装置扫描范围的中部。
  8. 根据权利要求1所述的方法,其特征在于,至少两个所述探测装置搭载于可移动平台;
    至少两个所述探测装置包括第一探测装置和第二探测装置;
    所述第一探测装置搭载于所述可移动平台的前方和/或后方,所述第二探测装置搭载于所述可移动平台的侧面。
  9. 根据权利要求8所述的方法,其特征在于,所述确定在探测装置扫描范围内的 感兴趣区域,包括:
    在所述可移动平台处于指定移动状态的情况下,调整在所述第一探测装置扫描范围内的感兴趣区域,并确定在所述第二探测装置扫描范围内的感兴趣区域。
  10. 根据权利要求9所述的方法,其特征在于,所述指定移动状态包括转弯状态和/或所述可移动平台在交叉路口移动的状态。
  11. 根据权利要求1所述的方法,其特征在于,所述感兴趣区域根据待检测的目标的位置信息确定。
  12. 根据权利要求1或11所述的方法,其特征在于,所述确定在探测装置扫描范围内的感兴趣区域,还包括:
    如果待检测的目标位于所述探测装置扫描范围内的非感兴趣区域,根据所述待检测的目标的位置信息调整所述感兴趣区域。
  13. 根据权利要求12所述的方法,其特征在于,调整后的感兴趣区域中包含所述待检测的目标。
  14. 根据权利要求1所述的方法,其特征在于,所述探测装置还包括探测器,所述探测器用于根据经反射回的光脉冲产生三维点;
    所述方法还包括:
    获取所述探测器产生的三维点,并以指定帧率输出包含若干三维点的点云帧。
  15. 根据权利要求14所述的方法,其特征在于,所述确定在探测装置扫描范围内的感兴趣区域,包括:
    在所述指定帧率高于预设阈值或者所述指定帧率提高的情况下,确定在探测装置扫描范围内的感兴趣区域。
  16. 根据权利要求1所述的方法,其特征在于,还包括:
    根据预存的所述扫描模组的转速与位置的对应关系,确定所述探测装置当前扫描位置;
    根据所述当前扫描位置确定所述探测装置是否在扫描所述感兴趣区域。
  17. 根据权利要求1或16所述的方法,其特征在于,所述探测装置还包括探测器,所述探测器用于根据经反射回的光脉冲产生三维点;
    所述方法还包括:
    如果所述探测器产生的上一个三维点位于所述感兴趣区域内,确定所述探测装置在扫描所述感兴趣区域。
  18. 根据权利要求1所述的方法,其特征在于,所述探测装置用于对探测环境进 行两个维度上的扫描;
    其中,所述探测装置在其中一个维度中的视场大于另一个维度中的视场。
  19. 根据权利要求18所述的方法,其特征在于,所述探测装置在水平维度中的视场大于垂直维度中的视场。
  20. 根据权利要求1所述的方法,其特征在于,所述调整所述发射器的发射频率,包括:
    提高所述发射器的发射频率。
  21. 根据权利要求1所述的方法,其特征在于,所述调整所述扫描模组内的光学元件的转速,包括:
    降低所述扫描模组内的光学元件的转速。
  22. 根据权利要求1所述的方法,其特征在于,所述调整所述发射器的发射频率和调整所述扫描模组内的光学元件的转速,包括:
    提高所述发射器的发射频率和所述扫描模组内的光学元件的转速。
  23. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述探测装置扫描非感兴趣区域的过程中,降低所述发射器的发射频率。
  24. 根据权利要求1所述的方法,其特征在于,在调整之后出射至所述感兴趣区域的相邻两个光脉冲的出射角度之差小于出射至非感兴趣区域的相邻两个光脉冲的出射角度之差。
  25. 一种探测装置,其特征在于,包括发射器、扫描模组和处理器;
    所述发射器用于出射光脉冲;
    所述扫描模组包括至少一个光学元件,所述光学元件用于不断改变所述光脉冲的传输方向后出射;
    所述处理器用于确定在所述探测装置扫描范围内的感兴趣区域;在所述探测装置扫描所述感兴趣区域的过程中,调整所述发射器的发射频率和/或调整所述扫描模组内的光学元件的转速;其中,所述感兴趣区域在调整之后对应的点云密度高于在未调整时对应的点云密度。
  26. 根据权利要求25所述的装置,其特征在于,在所述探测装置搭载于可移动平台的情况下,所述感兴趣区域根据所述可移动平台的移动方向确定。
  27. 根据权利要求26所述的装置,其特征在于,所述感兴趣区域根据所述可移动平台的移动方向和所述探测装置在所述可移动平台中的搭载位置共同确定。
  28. 根据权利要求25至27任意一项所述的装置,其特征在于,在至少两个所述探测装置搭载于可移动平台的情况下,所述感兴趣区域从至少两个所述探测装置扫描范围内的非重叠区域确定。
  29. 根据权利要求28所述的装置,其特征在于,所述感兴趣区域邻近至少两个所述探测装置扫描范围内的重叠区域。
  30. 根据权利要求25所述的装置,其特征在于,所述探测装置搭载在可移动平台的前方和/或后方;
    所述处理器还用于:在所述可移动平台向前直行或者向后倒行的情况下,确定在所述探测装置扫描范围内的感兴趣区域。
  31. 根据权利要求25或30所述的装置,其特征在于,在所述探测装置搭载在可移动平台的正前方和/或正后方的情况下,所述感兴趣区域位于所述探测装置扫描范围的中部。
  32. 根据权利要求25所述的装置,其特征在于,至少两个所述探测装置搭载于可移动平台;
    至少两个所述探测装置包括第一探测装置和第二探测装置;
    所述第一探测装置搭载于所述可移动平台的前方和/或后方,所述第二探测装置搭载于所述可移动平台的侧面。
  33. 根据权利要求32所述的装置,其特征在于,所述处理器还用于:在所述可移动平台处于指定移动状态的情况下,调整在所述第一探测装置扫描范围内的感兴趣区域,并确定在所述第二探测装置扫描范围内的感兴趣区域。
  34. 根据权利要求33所述的装置,其特征在于,所述指定移动状态包括转弯状态和/或所述可移动平台在交叉路口移动的状态。
  35. 根据权利要求25所述的装置,其特征在于,所述感兴趣区域根据待检测的目标的位置信息确定。
  36. 根据权利要求25或35所述的装置,其特征在于,所述处理器还用于:如果待检测的目标位于所述探测装置扫描范围内的非感兴趣区域,根据所述待检测的目标的位置信息调整所述感兴趣区域。
  37. 根据权利要求36所述的装置,其特征在于,调整后的感兴趣区域中包含所述待检测的目标。
  38. 根据权利要求25所述的装置,其特征在于,所述探测装置还包括探测器,所述探测器用于根据经反射回的光脉冲产生三维点,并以指定帧率输出包含若干三维点的点云帧。
  39. 根据权利要求38所述的装置,其特征在于,所述处理器还用于:在所述指定帧率高于预设阈值或者所述指定帧率提高的情况下,确定在探测装置扫描范围内的感兴趣区域。
  40. 根据权利要求25所述的装置,其特征在于,所述处理器还用于:根据预存的所述扫描模组的转速与位置的对应关系,确定所述探测装置当前扫描位置;根据所述当前扫描位置确定所述探测装置是否在扫描所述感兴趣区域。
  41. 根据权利要求25或40所述的装置,其特征在于,所述探测装置还包括探测器,所述探测器用于根据经反射回的光脉冲产生三维点;
    所述处理器还用于:如果所述探测器产生的上一个三维点位于所述感兴趣区域内,确定所述探测装置在扫描所述感兴趣区域。
  42. 根据权利要求25所述的装置,其特征在于,所述探测装置用于对探测环境进行两个维度上的扫描;
    其中,所述探测装置在其中一个维度中的视场大于另一个维度中的视场。
  43. 根据权利要求42所述的装置,其特征在于,所述探测装置在水平维度中的视场大于垂直维度中的视场。
  44. 根据权利要求25所述的装置,其特征在于,所述处理器还用于:提高所述发射器的发射频率。
  45. 根据权利要求25所述的装置,其特征在于,所述处理器还用于:降低所述扫描模组内的光学元件的转速。
  46. 根据权利要求25所述的装置,其特征在于,所述处理器还用于:提高所述发射器的发射频率和所述扫描模组内的光学元件的转速。
  47. 根据权利要求25所述的装置,其特征在于,所述处理器还用于:在所述探测装置扫描非感兴趣区域的过程中,降低所述发射器的发射频率。
  48. 根据权利要求25所述的装置,其特征在于,在调整之后出射至所述感兴趣区域的相邻两个光脉冲的出射角度之差小于出射至非感兴趣区域的相邻两个光脉冲的出射角度之差。
  49. 一种可移动平台,其特征在于,包括:
    机体;
    动力***,安装于所述机体,用于驱动所述可移动平台移动;
    以及,搭载于所述可移动平台的如权利要求25至48任意一项所述的探测装置。
  50. 根据权利要求49所述的可移动平台,其特征在于,在至少两个所述探测装置搭载于所述可移动平台的情况下,所述探测装置的感兴趣区域从至少两个所述探测装置扫描范围内的非重叠区域确定。
  51. 根据权利要求50所述的可移动平台,其特征在于,所述感兴趣区域邻近至少两个所述探测装置扫描范围内的重叠区域。
  52. 根据权利要求50或51所述的可移动平台,其特征在于,至少两个所述探测装置搭载于所述可移动平台的前方,和/或,至少两个所述探测装置搭载于所述可移动平台的侧面。
  53. 根据权利要求49所述的可移动平台,其特征在于,在所述探测装置搭载在所述可移动平台的正前方和/或正后方的情况下,所述探测装置的感兴趣区域位于所述探测装置扫描范围的中部。
  54. 根据权利要求49所述的可移动平台,其特征在于,至少两个所述探测装置搭载于所述可移动平台;
    至少两个所述探测装置包括第一探测装置和第二探测装置;
    所述第一探测装置搭载于所述可移动平台的前方和/或后方,所述第二探测装置搭载于所述可移动平台的侧面。
  55. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时实现如1至24任意一项所述的探测方法。
PCT/CN2021/087322 2021-04-14 2021-04-14 探测方法、装置、可移动平台及存储介质 WO2022217520A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/087322 WO2022217520A1 (zh) 2021-04-14 2021-04-14 探测方法、装置、可移动平台及存储介质
CN202180079531.2A CN116529630A (zh) 2021-04-14 2021-04-14 探测方法、装置、可移动平台及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087322 WO2022217520A1 (zh) 2021-04-14 2021-04-14 探测方法、装置、可移动平台及存储介质

Publications (1)

Publication Number Publication Date
WO2022217520A1 true WO2022217520A1 (zh) 2022-10-20

Family

ID=83639999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087322 WO2022217520A1 (zh) 2021-04-14 2021-04-14 探测方法、装置、可移动平台及存储介质

Country Status (2)

Country Link
CN (1) CN116529630A (zh)
WO (1) WO2022217520A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116449376A (zh) * 2023-04-26 2023-07-18 青岛森科特智能仪器有限公司 一种剖面运动的养殖网箱生物统计装置及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107632296A (zh) * 2017-09-08 2018-01-26 深圳市速腾聚创科技有限公司 激光雷达控制方法及激光雷达
WO2018138064A1 (fr) * 2017-01-25 2018-08-02 Valeo Schalter Und Sensoren Gmbh Detection d'obstacles dans l'environnement d'un vehicule automobile par traitement d'images
US20180284234A1 (en) * 2017-03-29 2018-10-04 Luminar Technologies, Inc. Foveated Imaging in a Lidar System
CN109239691A (zh) * 2018-11-08 2019-01-18 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN109814128A (zh) * 2019-01-23 2019-05-28 北京理工大学 时间飞行与关联成像相结合的高分辨快速成像***及方法
CN111566510A (zh) * 2018-12-05 2020-08-21 深圳市大疆创新科技有限公司 测距装置及其扫描视场的均衡方法、移动平台
CN111670384A (zh) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 一种光发射方法、装置及扫描***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138064A1 (fr) * 2017-01-25 2018-08-02 Valeo Schalter Und Sensoren Gmbh Detection d'obstacles dans l'environnement d'un vehicule automobile par traitement d'images
US20180284234A1 (en) * 2017-03-29 2018-10-04 Luminar Technologies, Inc. Foveated Imaging in a Lidar System
CN107632296A (zh) * 2017-09-08 2018-01-26 深圳市速腾聚创科技有限公司 激光雷达控制方法及激光雷达
CN109239691A (zh) * 2018-11-08 2019-01-18 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN111566510A (zh) * 2018-12-05 2020-08-21 深圳市大疆创新科技有限公司 测距装置及其扫描视场的均衡方法、移动平台
CN111670384A (zh) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 一种光发射方法、装置及扫描***
CN109814128A (zh) * 2019-01-23 2019-05-28 北京理工大学 时间飞行与关联成像相结合的高分辨快速成像***及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116449376A (zh) * 2023-04-26 2023-07-18 青岛森科特智能仪器有限公司 一种剖面运动的养殖网箱生物统计装置及其工作方法
CN116449376B (zh) * 2023-04-26 2023-09-15 青岛森科特智能仪器有限公司 一种剖面运动的养殖网箱生物统计装置及其工作方法

Also Published As

Publication number Publication date
CN116529630A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
KR101925816B1 (ko) 거리 산출 방법 및 이를 수행하는 라이다 장치
WO2022126427A1 (zh) 点云处理方法、点云处理装置、可移动平台和计算机存储介质
US12013464B2 (en) Environment sensing system and movable platform
US20190257950A1 (en) Time-of-flight imaging device, system and method
WO2021051281A1 (zh) 点云滤噪的方法、测距装置、***、存储介质和移动平台
US20210333370A1 (en) Light emission method, device, and scanning system
WO2020177077A1 (zh) 一种标定板、深度参数标定方法、探测装置及标定***
WO2022188090A1 (zh) 固态激光雷达的微振镜控制方法、装置和固态激光雷达
WO2020124318A1 (zh) 调整扫描元件运动速度的方法及测距装置、移动平台
WO2023083198A1 (zh) 一种回波信号的处理方法、装置、设备及存储介质
WO2022217520A1 (zh) 探测方法、装置、可移动平台及存储介质
WO2020155159A1 (zh) 增加点云采样密度的方法、点云扫描***、可读存储介质
US20210333401A1 (en) Distance measuring device, point cloud data application method, sensing system, and movable platform
WO2020154980A1 (zh) 一种探测装置外参数标定方法、数据处理装置和探测***
US11567210B2 (en) LiDAR for vehicle blind spot detection
WO2020177076A1 (zh) 一种探测装置初始状态标定方法及装置
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
WO2020087376A1 (zh) 光探测方法、光探测装置和移动平台
US20210333374A1 (en) Ranging apparatus and mobile platform
WO2020107379A1 (zh) 应用于测距装置的反射率校正方法、测距装置
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
WO2022081917A1 (en) Light detection and ranging device using combined pulse and continuous optical signals
WO2022226984A1 (zh) 扫描视场的控制方法、测距装置和可移动平台
WO2020110801A1 (ja) 測距センサおよび車両用灯具、測距方法
WO2020147121A1 (zh) 雨量测量方法、探测装置、可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180079531.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936409

Country of ref document: EP

Kind code of ref document: A1