WO2022215272A1 - Terminal, base station, wireless communication system, and wireless communication method - Google Patents

Terminal, base station, wireless communication system, and wireless communication method Download PDF

Info

Publication number
WO2022215272A1
WO2022215272A1 PCT/JP2021/015091 JP2021015091W WO2022215272A1 WO 2022215272 A1 WO2022215272 A1 WO 2022215272A1 JP 2021015091 W JP2021015091 W JP 2021015091W WO 2022215272 A1 WO2022215272 A1 WO 2022215272A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiplexing
pusch
uci
priority
information element
Prior art date
Application number
PCT/JP2021/015091
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
聡 永田
チーピン ピ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/015091 priority Critical patent/WO2022215272A1/en
Publication of WO2022215272A1 publication Critical patent/WO2022215272A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to terminals, base stations, radio communication systems, and radio communication methods that perform radio communication, particularly terminals, base stations, radio communication systems, and radio communication methods related to multiplexing of uplink control information for uplink channels. .
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • 3GPP Release 15 supports simultaneous transmission of two or more uplink channels (PUCCH (Physical Uplink Control Channel) and PUSCH (Physical Uplink Shared Channel)) transmitted in the same slot.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the present invention has been made in view of such circumstances, and aims to provide a terminal, a radio communication system, and a radio communication method that can appropriately multiplex UCI to PUSCH.
  • the present disclosure is a terminal and explicitly or implicitly indicates at least one of enabling and disabling of multiplexing of uplink control information of the second priority for the uplink shared channel of the first priority.
  • the gist is to comprise a communication unit that receives an information element from a network, and a control unit that controls multiplexing of the uplink control information to the uplink shared channel based on the information element.
  • the present disclosure is a base station, explicitly or implicitly at least one of enabling and disabling of multiplexing of uplink control information of the second priority for the uplink shared channel of the first priority and a control unit that assumes reception of an uplink signal via the uplink shared channel based on the information element.
  • the present disclosure is a wireless communication system comprising a terminal and a base station, the terminal enabling and disabling multiplexing of uplink control information of a second priority for an uplink shared channel of a first priority.
  • a communication unit that receives from the network an information element that explicitly or implicitly indicates at least one of the above, and a control unit that controls multiplexing of the uplink control information for the uplink shared channel based on the information element and
  • the present disclosure is a wireless communication method, wherein at least one of enabling and disabling of multiplexing of uplink control information of a second priority to an uplink shared channel of a first priority is explicitly or implicitly performed. and controlling multiplexing of the uplink control information to the uplink shared channel based on the information element.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • FIG. 5 is a functional block configuration diagram of gNB100.
  • FIG. 6 is a diagram for explaining rate matching.
  • FIG. 7 is a diagram for explaining rate matching.
  • FIG. 8 is a diagram for explaining rate matching.
  • FIG. 9 is a diagram illustrating an operation example 1;
  • FIG. 10 is a diagram illustrating an operation example 2;
  • FIG. 11 is a diagram illustrating an operation example 3;
  • FIG. 12 is a diagram illustrating an operation example 4;
  • FIG. 13 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE 200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • gNBs or ng-eNBs
  • 5GC 5G-compliant core network
  • gNB100A and gNB100B are 5G-compliant radio base stations and perform 5G-compliant radio communication with UE200.
  • gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC multiple component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410MHz to 7.125GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
  • SCS may be interpreted as numerology.
  • numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz and up to 71 GHz or 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/ Discrete Fourier Transform - Spread (DFT-S-OFDM) may be applied.
  • FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
  • time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like.
  • the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
  • DMRS is a type of reference signal and is prepared for various channels.
  • it may mean a downlink data channel, specifically DMRS for PDSCH (Physical Downlink Shared Channel).
  • DMRS for PDSCH Physical Downlink Shared Channel
  • an uplink data channel specifically, a DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same way as a DMRS for PDSCH.
  • DMRS can be used for channel estimation in devices, eg, UE 200, as part of coherent demodulation.
  • DMRS may reside only in resource blocks (RBs) used for PDSCH transmission.
  • a DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. For mapping type A, the first DMRS is placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • mapping type B the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
  • DMRS may have multiple types (Type). Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
  • FIG. 4 is a functional block diagram of the UE200.
  • the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
  • the radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR.
  • the radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • the modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • a DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
  • reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • control channels include Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Random Access Channel (RACH), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • a data channel may be read as a shared channel.
  • control signal/reference signal processing unit 240 may receive downlink control information (DCI).
  • DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
  • the value stored in the DCI Format field is an information element that specifies the DCI format.
  • the value stored in the CI field is an information element that specifies the CC to which DCI is applied.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies.
  • the BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied.
  • a frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies.
  • the time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message.
  • a time-domain resource may be identified by a value stored in the TDRA field and a default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which DCI applies.
  • the MCS is specified by the values stored in the MCS and the MCS table.
  • the MCS table may be specified by RRC messages or identified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied.
  • the value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data.
  • the value stored in the RV field is an information element that specifies the data redundancy
  • control signal/reference signal processing unit 240 at least either enables or disables multiplexing of the second priority uplink control information (UCI) for the first priority uplink shared channel (PUSCH).
  • UCI uplink control information
  • PUSCH first priority uplink shared channel
  • the encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
  • the data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls each functional block that configures the UE200.
  • the control unit 270 constitutes a control unit that controls multiplexing of UCI to PUSCH.
  • Control section 270 may control multiplexing of UCI to PUSCH when the priority of PUSCH and the priority of UCI are the same.
  • the control unit 270 may control multiplexing of UCI to PUSCH when the priority of PUSCH is different from the priority of UCI.
  • the priority of PUSCH and UCI the first priority and the second priority may be assumed.
  • the first priority is different from the second priority.
  • Two types of HP (High Priority) and LP (Low Priority) are exemplified as the priority of PUSCH and UCI.
  • the first priority may be HP and the second priority may be LP, or the first priority may be LP and the second priority may be HP.
  • Three or more types of priority may be defined as the UCI priority.
  • the control unit 270 when the priority of PUSCH is different from the priority of UCI, the control unit 270, based on the information elements received from the NG RAN 20 (gNB 100), sets the second Priority UCI multiplexing may be controlled.
  • a UCI may contain an acknowledgment (HARQ-ACK) for one or more TBs.
  • the UCI may include an SR (Scheduling Request) requesting resource scheduling, and may include a CSI (Channel State Information) representing the channel state.
  • SR Service Request
  • CSI Channel State Information
  • control unit 270 controls the control signal/reference signal processing unit 240 described above, and the control signal/reference signal processing unit 240 performs communication for transmitting an uplink signal via PUSCH multiplexed with UCI. may constitute a part.
  • FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
  • the receiving unit 110 receives various signals from the UE200.
  • the receiver 110 may receive the UL signal via PUCCH or PUSCH.
  • the transmission unit 120 transmits various signals to the UE200.
  • Transmitting section 120 may transmit the DL signal via PDCCH or PDSCH.
  • the transmitting unit 120 transmits to the UE 200 an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of the second priority UCI to the first priority PUSCH. configures a communication unit that
  • Control unit 130 controls the gNB100.
  • Control section 130 configures a control section that assumes reception of uplink signals via PUSCH based on information elements to be transmitted to UE 200 . For example, control section 130 may assume reception of UCI multiplexed on PUSCH when an information element to be transmitted to UE 200 explicitly or implicitly indicates activation. Control section 130 may not assume reception of UCI multiplexed on PUSCH when the information element to be transmitted to UE 200 explicitly or implicitly indicates invalidation.
  • Rate Matching Rate matching will be described below. Specifically, UCI rate matching in the case of multiplexing UCI to UL SCH will be described.
  • HARQ-ACK, CSI Part 1, and CSI Part 2 are exemplified as UCI. Note that HARQ-ACK, CSI-Part 1 and CSI-Part 2 are performed separately.
  • a bit sequence of "C00, C01, " is obtained by applying channel coding to HARQ-ACK having a bit sequence of " X0 , X1, ## Rate matching is applied to such bit sequences.
  • Q NL is the number of PUSCH transmission layers.
  • Q m is the PUSCH modulation condition.
  • Q' ACK is represented by the following formula (TS38.212 V16.3.0 ⁇ 6.3.2.4.1.1 "HARQ-ACK").
  • Q' ACK is the minimum value of the item (left side) defined by the coefficient ( ⁇ ) and the item (right side) defined by the scaling factor ( ⁇ ). Therefore, it should be noted that the RE (Resource Element) used for HARQ-ACK transmission may be limited by the scaling factor ( ⁇ ).
  • a bit sequence of "C00, C01, " is obtained by applying channel coding to CSI Part 1 having a bit sequence of "Y0, Y1, !. Rate matching is applied to such bit sequences.
  • Q NL is the number of PUSCH transmission layers.
  • Q m is the PUSCH modulation condition.
  • Q' CSI- part1 is represented by the following formula (TS38.212 V16.3.0 ⁇ 6.3.2.4.1.2 "CSI part 1").
  • Q' ACK is the minimum value of the item (left side) defined by the coefficient ( ⁇ ) and the item (right side) defined by the scaling factor ( ⁇ ). Therefore, it should be noted that the RE (Resource Element) used for transmitting CSI Part 1 can be limited by the scaling factor ( ⁇ ).
  • a bit sequence of "C00, C01, " is obtained by applying channel coding to CSI Part 2 having a bit sequence of " Z0 , Z1, !. Rate matching is applied to such bit sequences.
  • Q NL is the number of PUSCH transmission layers.
  • Q m is the PUSCH modulation condition.
  • Q' CSI- part2 is represented by the following formula (TS38.212 V16.3.0 ⁇ 6.3.2.4.1.3 "CSI part 2").
  • Q' ACK is the minimum value of the item (left side) defined by the coefficient ( ⁇ ) and the item (right side) defined by the scaling factor ( ⁇ ). Therefore, it should be noted that the RE (Resource Element) used for transmitting CSI Part 2 can be limited by the scaling factor ( ⁇ ).
  • multiplexing of LP UCI reduces HP PUSCH resources, so in order to appropriately secure HP PUSCH resources, it is necessary to select whether to enable LP UCI multiplexing for HP PUSCH. be done.
  • a method for selecting whether to enable multiplexing of LP UCI to HP PUSCH is described below.
  • a new coefficient (new ⁇ ) is defined (added) as the coefficient ( ⁇ ) described above.
  • a new coefficient (new ⁇ ) is a coefficient applied when the priority of PUSCH is different from that of UCI.
  • the possible range of the new coefficient (new ⁇ ) (hereinafter referred to as extended range) includes values smaller than the minimum value "1.000" of the possible values of the coefficient ( ⁇ ) in the default range.
  • the extended range may include at least "0".
  • the default range may be the range specified in TS38.213 V16.5.0 ⁇ 9.3 “UCI reporting in physical uplink shared channel”.
  • an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH is included in the DCI received from NG RAN20 (gNB100), and the rate of UCI It may be a first information element specifying a new factor ( ⁇ ) by which the number of bits forming the UCI is multiplied in matching.
  • the new factor ( ⁇ ) may be specified by a field (eg, beta_offset indicator field) included in DCI received from NG RAN20 (gNB100). That is, when the new coefficient ( ⁇ ) is "0", multiplexing of LP UCI to HP PUSCH is disabled. On the other hand, multiplexing of LP UCI to HP PUSCH is enabled when the new coefficient ( ⁇ ) is greater than "0".
  • DCI is a factor ( ⁇ ) used in cases where the priority of PUSCH is the same as the priority of UCI (hereinafter, same priority multiplexing), and a case where the priority of PUSCH is different from the priority of UCI (
  • An information element that separately specifies a new coefficient ( ⁇ ) to be used in different priority multiplexing may be included.
  • An already defined beta_offset indicator field (hereinafter, existing beta_offset indicator field) may be used as an information element that specifies the coefficient ( ⁇ ) used in same priority multiplexing.
  • a newly defined (added) beta_offset indicator field (hereinafter, new beta_offset indicator field) may be used as an information element specifying a new coefficient ( ⁇ ) used in different priority multiplexing.
  • beta-offset configuration may be set separately by RRC messages (parameters).
  • a beta-offset configuration may be thought of as a candidate (beta-offset table) for coefficients ( ⁇ ) that may be specified by the beta_offset indicator field.
  • the beta-offset configuration for same priority multiplexing may be set by the already defined UCI-OnPUSCH.
  • a beta-offset configuration for different priority multiplexing may be set by a newly defined (added) UCI-OnPUSCH-diffPrio.
  • the coefficient ( ⁇ ) is specified by the existing beta_offset indicator field, the coefficient ( ⁇ ) is selected from the beta-offset table set by UCI-OnPUSCH.
  • the new factor ( ⁇ ) is specified by the new beta_offset indicator field, the new factor ( ⁇ ) is selected from the beta-offset table set by UCI-OnPUSCH-diffPrio.
  • FIG. 9 mainly describes the operation regarding whether to enable multiplexing of LP UCI to HP PUSCH.
  • UE 200 transmits a message including UE Capability to NG-RAN 20.
  • UE Capability may include an information element that explicitly or implicitly indicates whether the UE 200 has the capability to support the new coefficient ( ⁇ ).
  • step S11 the UE 100 receives the RRC message from the NG-RAN 20.
  • the RRC message may contain UCI-OnPUSCH-diffPrio for different priority multiplexing.
  • the RRC message may contain UCI-OnPUSCH for same priority multiplexing.
  • DCI may include a first information element (new beta_offset indicator field) that specifies a new coefficient ( ⁇ ) to be used in different priority multiplexing.
  • DCI may contain an information element (existing beta_offset indicator field) that specifies the coefficient ( ⁇ ) used in same priority multiplexing.
  • step S13 the UE 200 enables multiplexing of LP UCI to HP PUSCH when the new coefficient ( ⁇ ) is greater than "0".
  • the UE 200 multiplexes the LP UCI to the HP PUSCH and then transmits an uplink signal via the HP PUSH.
  • the UE 200 disables multiplexing of LP UCI to HP PUSCH when the new coefficient ( ⁇ ) is "0".
  • UE 200 transmits an uplink signal via HP PUSH without multiplexing LP UCI on HP PUSCH.
  • the beta-offset configuration (beta-offset table) can be flexibly set, so HP PUSCH reliability can be improved while flexibly suppressing HP PUSCH resource reduction. can be done.
  • operation example 1 a case (Dynamic beta-offset) in which the coefficient ( ⁇ ) is dynamically specified is assumed, so operation example 1 may be applied to DG (Dynamic Grant) PUSCH.
  • a new beta_offset indicator field that specifies a new coefficient ( ⁇ ) may be read as a bit that specifies a new coefficient ( ⁇ ).
  • a new DCI field (hereinafter referred to as new DCI field) is defined (added).
  • the new DCI field is a field that specifies at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH.
  • an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH is included in the DCI received from NG RAN20 (gNB100), enabling and It may be a second information element (new DCI field) that specifies at least one of the invalidations.
  • the new DCI field may consist of 1 bit. For example, “0” may mean enable multiplexing of LP UCI to HP PUSCH, and "1” may mean disable multiplexing of LP UCI to HP PUSCH. Conversely, "0” may mean disabling multiplexing of LP UCI for HP PUSCH, and "1” may mean enabling multiplexing of LP UCI for HP PUSCH.
  • the UL Grant DCI for scheduling the corresponding PUSCH may be used, and the DL Grant DCI for scheduling the downlink channel associated with the corresponding PUCCH is used.
  • the DL Grant DCI for scheduling the downlink channel associated with the corresponding PUCCH may be used.
  • a DCI that is transmitted independently of the corresponding PUSCH and the corresponding PUCCH may be used as the DCI including the new DCI field.
  • the beta_offset indicator field included in the DCI containing the new DCI field may specify the factor ( ⁇ ) used for same priority multiplexing and different priority multiplexing. Note that in operation example 2, unlike operation example 1, it is not necessary to define a new beta_offset indicator field that specifies a new coefficient ( ⁇ ).
  • FIG. 10 mainly describes the operation regarding whether to enable multiplexing of LP UCI to HP PUSCH.
  • UE 200 transmits a message including UE Capability to NG-RAN 20.
  • UE Capability may include an information element that explicitly or implicitly indicates whether the UE 200 has the capability corresponding to the new DCI field.
  • the UE 100 receives the RRC message from the NG-RAN 20.
  • the RRC message may include UCI-OnPUSCH or CG UCI-OnPUSCH for both same priority multiplexing and different priority multiplexing.
  • DCI includes a second information element (new DCI field) that specifies at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH.
  • a DCI may include a beta_offset indicator field that specifies the factor ( ⁇ ) used in same priority multiplexing and different priority multiplexing.
  • step S23 the UE 200 enables LP UCI multiplexing for HP PUSCH when the new DCI field specifies enabling LP UCI multiplexing for HP PUSCH.
  • the UE 200 multiplexes the LP UCI to the HP PUSCH and then transmits an uplink signal via the HP PUSH.
  • the UE 200 disables LP UCI multiplexing for HP PUSCH when the new DCI field specifies disabling LP UCI multiplexing for HP PUSCH.
  • UE 200 transmits an uplink signal via HP PUSH without multiplexing LP UCI to HP PUSCH.
  • the new DCI field can be represented by 1 bit, it is possible to disable multiplexing of LP UCI to HP PUSCH while suppressing an increase in DCI overhead, thereby increasing the reliability of HP PUSCH. can be improved.
  • operation example 2 may be applied to DG PUSCH.
  • operation example 2 may be applied to DG PUSCH and may be applied to CG PUSCH.
  • operation example 2 may be applied to DG PUSCH and may be applied to CG PUSCH.
  • Operation example 2 may be applied to the case where the coefficient ( ⁇ ) is dynamically specified (Dynamic beta-offset), or to the case where the coefficient ( ⁇ ) is semi-statically specified (Semi-static beta-offset ) may be applied to
  • Special DCI a specific DCI (hereinafter referred to as Special DCI) is defined (added).
  • Special DCI specifies at least one of enabling and disabling multiplexing of LP UCI for HP PUSCH by a combination of information elements stored in a specific field. Validation may be read as activation, and invalidation may be read as deactivation.
  • an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH is included in the specific DCI (Special DCI) received from NG RAN20 (gNB100). It may be a third information element configured by a combination of information elements stored in the specified field.
  • DL DCI Format 1_0 As the specific DCI format, one or more formats selected from DL DCI Format 1_0, DL DCI Format 1_1, DL DCI Format 1_2, UL DCI Format 0_0, UL DCI Format 0_1 and UL DCI Format 0_2 are used. good too.
  • Special DCI may be scrambled by newly defined (added) RNTI (eg, UM (Unacknowledged Mode)-RNTI, UL Multiplexing-RNTI).
  • a field already defined as a field included in DCI may be used as the specific field.
  • the specified fields may be the fields shown below.
  • one or more fields selected from RV field, HPN field, and beta_offset indicator field may be used as the specific field.
  • the UE 200 may activate multiplexing of LP UCI to HP PUSCH when the first condition that RV, HPN and beta_offset indicator are all "0" is satisfied.
  • the UE 200 may deactivate multiplexing of LP UCI to HP PUSCH when the first condition is satisfied.
  • RV field a field selected from RV field, HPN field, beta_offset indicator field, MCS field and FRDA field
  • UE200 has RV, HPN and beta_offset indicator all "0"
  • all bits of MCS are "1”
  • RV, HPN and beta_offset indicator are all "0"
  • all bits of MCS are "1”
  • the UE 200 may activate multiplexing of LP UCI to HP PUSCH when the second condition is satisfied.
  • the UE 200 may activate multiplexing of LP UCI for HP PUSCH when the first condition is satisfied, and deactivate multiplexing of LP UCI for HP PUSCH when the second condition is satisfied. Alternatively, the UE 200 may activate multiplexing of LP UCI for HP PUSCH when the second condition is satisfied, and deactivate multiplexing of LP UCI for HP PUSCH when the first condition is satisfied. .
  • FIG. 11 mainly describes the operation regarding whether to enable multiplexing of LP UCI to HP PUSCH.
  • step S30 UE 200 transmits a message including UE Capability to NG-RAN 20.
  • UE Capability may include an information element that explicitly or implicitly indicates whether the UE 200 has the capability to support Special DCI.
  • the UE 100 receives the RRC message from the NG-RAN 20.
  • the RRC message may include UCI-OnPUSCH or CG UCI-OnPUSCH for both same priority multiplexing and different priority multiplexing.
  • step S32 UE 200 receives Special DCI from NG-RAN 20 via PDCCH.
  • Special DCI includes a third information element (eg, RV, HPN, beta_offset indicator, etc.) composed of a combination of information elements stored in specific fields.
  • step S33 the UE 200 enables multiplexing of LP UCI to HP PUSCH when the third information element included in Special DCI satisfies the first condition (or second condition).
  • the UE 200 multiplexes the LP UCI to the HP PUSCH and then transmits an uplink signal via the HP PUSH.
  • UE 200 disables multiplexing of LP UCI to HP PUSCH when the third information element included in Special DCI satisfies the second condition (or first condition).
  • UE 200 transmits an uplink signal via HP PUSH without multiplexing LP UCI on HP PUSCH.
  • operation example 3 may be applied to DG PUSCH or may be applied to CG PUSCH. Operation example 3 may be applied to the case where the coefficient ( ⁇ ) is dynamically specified (Dynamic beta-offset), or to the case where the coefficient ( ⁇ ) is semi-statically specified (Semi-static beta-offset ) may be applied to
  • MAC CE Control Element
  • the MAC CE message specifies at least one of activation and deactivation regarding multiplexing of LP UCI to HP PUSCH.
  • an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH is included in the message (MAC CE message) received from NG RAN20 (gNB100). It may be a fourth information element that specifies at least one of multiple activation and deactivation of LP UCI for HP PUSCH.
  • the UE 200 may activate LP UCI multiplexing for HP PUSCH when receiving a MAC CE message specifying activation of LP UCI multiplexing for HP PUSCH.
  • the UE 200 may deactivate multiplexing of LP UCI for HP PUSCH when receiving a MAC CE message specifying deactivation of multiplexing of LP UCI for HP PUSCH.
  • a timer (eg, activation timer) may be defined that defines multiple activation periods of LP UCI to HP PUSCH.
  • the activation timer may be started upon receipt of a MAC CE message.
  • the UE 200 may activate LP UCI multiplexing for HP PUSCH when the activation timer is activated, and deactivate LP UCI multiplexing for HP PUSCH when the activation timer has expired.
  • MAC CE messages specifying multiple deactivations of LP UCI for HP PUSCH may not be defined.
  • a timer (eg, deactivation timer) may be defined that defines multiple deactivation periods of the LP UCI for the HP PUSCH.
  • a deactivation timer MAY be activated upon receipt of a MAC CE message.
  • the UE 200 may deactivate multiplexing of LP UCI for HP PUSCH when the deactivation timer is activated, and activate multiplexing of LP UCI for HP PUSCH when the deactivation timer has expired.
  • MAC CE messages specifying multiple activations of LP UCI for HP PUSCH may not be defined.
  • FIG. 12 mainly describes the operation regarding whether to enable multiplexing of LP UCI to HP PUSCH.
  • UE 200 transmits a message including UE Capability to NG-RAN 20.
  • UE Capability may include an information element that explicitly or implicitly indicates whether the UE 200 has the capability to support MAC CE messages.
  • step S41 the UE 100 receives the RRC message from the NG-RAN 20.
  • the RRC message may include UCI-OnPUSCH or CG UCI-OnPUSCH for both same priority multiplexing and different priority multiplexing.
  • step S42 the UE 200 receives the MAC CE message from the NG-RAN 20.
  • the MAC CE message includes a fourth information element that specifies at least one of multiple activation and deactivation of LP UCI to HP PUSCH.
  • step S43 the UE 200 enables multiplexing of LP UCI to HP PUSCH when the MAC CE message specifies activation, when the activation timer is running, or when the deactivation timer has expired.
  • the UE 200 multiplexes the LP UCI to the HP PUSCH and then transmits an uplink signal via the HP PUSH.
  • UE 200 disables multiplexing of LP UCI to HP PUSCH when the MAC CE message specifies deactivation, when the deactivation timer is activated, or when the activation timer expires. become UE 200 transmits an uplink signal via HP PUSH without multiplexing LP UCI on HP PUSCH.
  • operation example 4 may be applied to DG PUSCH or may be applied to CG PUSCH. Operation example 4 may be applied to a case where the coefficient ( ⁇ ) is dynamically specified (Dynamic beta-offset), or a case where the coefficient ( ⁇ ) is semi-statically specified (Semi-static beta-offset ) may be applied to
  • the UE 200 is based on an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI for HP PUSCH, LP for HP PUSCH. Controls UCI multiplexing. According to such a configuration, multiplexing of LP UCI to HP PUSCH can be invalidated, and the reliability of HP PUSCH can be improved.
  • which of the above options may be set by a higher layer parameter, and the capability information of the UE 200 (UE Capability ) or may be predetermined in the wireless communication system 10 . Furthermore, which of the above options to apply may be determined by higher layer parameters and UE Capabilities.
  • the UE Capability may include the following information elements. Specifically, the UE Capability may include an information element indicating whether or not to support the function of multiplexing PUCCH/PUSCH that overlap in time and have the same priority. The UE Capability may include an information element indicating whether or not to support the function of multiplexing PUCCH/PUSCH overlapping in time and having different priorities. UE Capability may include an information element indicating whether to support a function of enabling or disabling multiplexing of PUCCH/PUSCH that overlap in time and have different priorities.
  • Operation Example 2 Operation Example 3, and Operation Example 4 are applied to multiplexing of two or more PUCCHs that overlap in time and have different priorities. may In such cases, HP PUSCH may be read as HP PUCCH.
  • multiplexing of LP UCI to HP PUSCH was mainly described.
  • the above disclosure may be applied to multiplexing LP UCI and HP UCI to HP PUSCH.
  • the above disclosure may be applied to multiplexing of HP UCI to LP PUSCH, or to multiplexing of LP UCI and HP UCI to LP PUSCH.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
  • a subframe may further consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first”, “second”, etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 NG-RAN 100 gNB 110 receiver 120 transmitter 130 controller 200 UE 210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to the present invention comprises: a communication unit that receives, from a network, an information element explicitly or implicitly presenting enablement and/or disablement of multiplexing of uplink control information of a second priority level with regards to an uplink shared channel of a first priority level; and a control unit that controls the multiplexing of the uplink control information with regards to the uplink shared channel on the basis of the information element.

Description

端末、基地局、無線通信システム及び無線通信方法TERMINAL, BASE STATION, WIRELESS COMMUNICATION SYSTEM AND WIRELESS COMMUNICATION METHOD
 本開示は、無線通信を実行する端末、基地局、無線通信システム及び無線通信方法、特に、上りリンクチャネルに対する上りリンク制御情報の多重に関連する端末、基地局、無線通信システム及び無線通信方法に関する。 The present disclosure relates to terminals, base stations, radio communication systems, and radio communication methods that perform radio communication, particularly terminals, base stations, radio communication systems, and radio communication methods related to multiplexing of uplink control information for uplink channels. .
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with
 3GPPのRelease 15では、同一スロット送信される2以上の上りリンクチャネル(PUCCH(Physical Uplink Control Channel)及びPUSCH(Physical Uplink Shared Channel))の同時送信がサポートされる。  3GPP Release 15 supports simultaneous transmission of two or more uplink channels (PUCCH (Physical Uplink Control Channel) and PUSCH (Physical Uplink Shared Channel)) transmitted in the same slot.
 さらに、3GPPのRelease 17では、異なる優先度を有するUCI(Uplink Control Information)をPUSCHに多重する動作をサポートすることが合意された(例えば、非特許文献1)。 Furthermore, in Release 17 of 3GPP, it was agreed to support the operation of multiplexing UCI (Uplink Control Information) with different priorities to PUSCH (for example, Non-Patent Document 1).
 このような背景下において、発明者等は、鋭意検討の結果、UCIとは異なるPUSCHにUCIを多重する場合に、PUSCHのリソースを適切に確保する必要性を見出した。 Against this background, the inventors, as a result of diligent studies, discovered the need to appropriately secure PUSCH resources when multiplexing UCI to PUSCHs that are different from UCIs.
 そこで、本発明は、このような状況に鑑みてなされたものであり、UCIをPUSCHに適切に多重し得る端末、無線通信システム及び無線通信方法の提供を目的とする。 Therefore, the present invention has been made in view of such circumstances, and aims to provide a terminal, a radio communication system, and a radio communication method that can appropriately multiplex UCI to PUSCH.
 本開示は、端末であって、第1優先度の上りリンク共有チャネルに対する第2優先度の上りリンク制御情報の多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素をネットワークから受信する通信部と、前記情報要素に基づいて、前記上りリンク共有チャネルに対する前記上りリンク制御情報の多重を制御する制御部と、を備える、ことを要旨とする。 The present disclosure is a terminal and explicitly or implicitly indicates at least one of enabling and disabling of multiplexing of uplink control information of the second priority for the uplink shared channel of the first priority. The gist is to comprise a communication unit that receives an information element from a network, and a control unit that controls multiplexing of the uplink control information to the uplink shared channel based on the information element.
 本開示は、基地局であって、第1優先度の上りリンク共有チャネルに対する第2優先度の上りリンク制御情報の多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素を端末に送信する通信部と、前記情報要素に基づいて、前記上りリンク共有チャネルを介した上りリンク信号の受信を想定する制御部と、を備える、ことを要旨とする。 The present disclosure is a base station, explicitly or implicitly at least one of enabling and disabling of multiplexing of uplink control information of the second priority for the uplink shared channel of the first priority and a control unit that assumes reception of an uplink signal via the uplink shared channel based on the information element.
 本開示は、無線通信システムであって、端末と基地局とを備え、前記端末は、第1優先度の上りリンク共有チャネルに対する第2優先度の上りリンク制御情報の多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素をネットワークから受信する通信部と、前記情報要素に基づいて、前記上りリンク共有チャネルに対する前記上りリンク制御情報の多重を制御する制御部と、を備える、ことを要旨とする。 The present disclosure is a wireless communication system comprising a terminal and a base station, the terminal enabling and disabling multiplexing of uplink control information of a second priority for an uplink shared channel of a first priority. A communication unit that receives from the network an information element that explicitly or implicitly indicates at least one of the above, and a control unit that controls multiplexing of the uplink control information for the uplink shared channel based on the information element and
 本開示は、無線通信方法であって、第1優先度の上りリンク共有チャネルに対する第2優先度の上りリンク制御情報の多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素をネットワークから受信するステップと、前記情報要素に基づいて、前記上りリンク共有チャネルに対する前記上りリンク制御情報の多重を制御するステップと、を備える、ことを要旨とする。 The present disclosure is a wireless communication method, wherein at least one of enabling and disabling of multiplexing of uplink control information of a second priority to an uplink shared channel of a first priority is explicitly or implicitly performed. and controlling multiplexing of the uplink control information to the uplink shared channel based on the information element.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a radio communication system 10. As shown in FIG. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10. As shown in FIG. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10. As shown in FIG. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of UE200. 図5は、gNB100の機能ブロック構成図である。FIG. 5 is a functional block configuration diagram of gNB100. 図6は、レートマッチングについて説明するための図である。FIG. 6 is a diagram for explaining rate matching. 図7は、レートマッチングについて説明するための図である。FIG. 7 is a diagram for explaining rate matching. 図8は、レートマッチングについて説明するための図である。FIG. 8 is a diagram for explaining rate matching. 図9は、動作例1を示す図である。FIG. 9 is a diagram illustrating an operation example 1; 図10は、動作例2を示す図である。FIG. 10 is a diagram illustrating an operation example 2; 図11は、動作例3を示す図である。FIG. 11 is a diagram illustrating an operation example 3; 図12は、動作例4を示す図である。FIG. 12 is a diagram illustrating an operation example 4; 図13は、gNB100及びUE200のハードウェア構成の一例を示す図である。FIG. 13 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. Note that the same or similar reference numerals are given to the same functions and configurations, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Radio Communication System FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment. The radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 Note that the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B). Note that the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network".
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。 gNB100A and gNB100B are 5G-compliant radio base stations and perform 5G-compliant radio communication with UE200. gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 Also, the wireless communication system 10 supports multiple frequency ranges (FR). FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 supports FR1 and FR2. The frequency bands of each FR are as follows.
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・FR1: 410MHz to 7.125GHz
・FR2: 24.25 GHz to 52.6 GHz
In FR1, a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz may be used and a bandwidth (BW) of 5-100 MHz may be used. FR2 is higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 It should be noted that SCS may be interpreted as numerology. numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまたは114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz and up to 71 GHz or 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
 高周波数帯では位相雑音の影響が大きくなる問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/ Discrete Fourier Transform - Spread (DFT-S-OFDM) may be applied.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10. FIG.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Also, the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth part)などと呼ばれてもよい。 Note that the time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like. Also, the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。 DMRS is a type of reference signal and is prepared for various channels. Here, unless otherwise specified, it may mean a downlink data channel, specifically DMRS for PDSCH (Physical Downlink Shared Channel). However, an uplink data channel, specifically, a DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same way as a DMRS for PDSCH.
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。 DMRS can be used for channel estimation in devices, eg, UE 200, as part of coherent demodulation. DMRS may reside only in resource blocks (RBs) used for PDSCH transmission.
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2又は3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2又は3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。 A DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. For mapping type A, the first DMRS is placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。 In mapping type B, the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。 In addition, DMRS may have multiple types (Type). Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。
(2) Functional Block Configuration of Radio Communication System Next, the functional block configuration of the radio communication system 10 will be described.
 第1に、UE200の機能ブロック構成について説明する。 First, the functional block configuration of the UE200 will be explained.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block diagram of the UE200. As shown in FIG. 4, the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR. The radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
 変復調部230は、所定の通信先(gNB100又は他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB). The modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 A DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 Also, the channel includes a control channel and a data channel. Control channels include Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Random Access Channel (RACH), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 In addition, data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. A data channel may be read as a shared channel.
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信してもよい。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Allocation)、TDRA(Time Domain Resource Allocation)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。 Here, the control signal/reference signal processing unit 240 may receive downlink control information (DCI). DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。 The value stored in the DCI Format field is an information element that specifies the DCI format. The value stored in the CI field is an information element that specifies the CC to which DCI is applied. The value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies. The BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message. The value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied. A frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message. The value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies. The time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message. A time-domain resource may be identified by a value stored in the TDRA field and a default table. The value stored in the MCS field is an information element that specifies the MCS to which DCI applies. The MCS is specified by the values stored in the MCS and the MCS table. The MCS table may be specified by RRC messages or identified by RNTI scrambling. The value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied. The value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data. The value stored in the RV field is an information element that specifies the data redundancy to which DCI is applied.
 実施形態では、制御信号・参照信号処理部240は、第1優先度の上りリンク共有チャネル(PUSCH)に対する第2優先度の上りリンク制御情報(UCI)の多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素をネットワークから受信する通信部を構成する。 In the embodiment, the control signal/reference signal processing unit 240 at least either enables or disables multiplexing of the second priority uplink control information (UCI) for the first priority uplink shared channel (PUSCH). constitutes a communication unit that receives from the network an information element that explicitly or implicitly indicates one of
 符号化/復号部250は、所定の通信先(gNB100又は他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
 制御部270は、UE200を構成する各機能ブロックを制御する。実施形態では、制御部270は、PUSCHに対するUCIの多重を制御する制御部を構成する。制御部270は、PUSCHの優先度とUCIの優先度が同じ場合に、PUSCHに対するUCIの多重を制御してもよい。制御部270は、PUSCHの優先度がUCIの優先度と異なる場合に、PUSCHに対するUCIの多重を制御してもよい。 The control unit 270 controls each functional block that configures the UE200. In the embodiment, the control unit 270 constitutes a control unit that controls multiplexing of UCI to PUSCH. Control section 270 may control multiplexing of UCI to PUSCH when the priority of PUSCH and the priority of UCI are the same. The control unit 270 may control multiplexing of UCI to PUSCH when the priority of PUSCH is different from the priority of UCI.
 ここで、PUSCH及びUCIの優先度としては、第1優先度及び第2優先度が想定されてもよい。第1優先度は、第2優先度と異なる。PUSCH及びUCIの優先度として、HP(High Priority)及びLP(Low Priority)の2タイプについて例示する。第1優先度がHPであり、第2優先度がLPであってもよく、第1優先度がLPであり、第2優先度がHPであってもよい。UCIの優先度として3タイプ以上の優先度が定められてもよい。 Here, as the priority of PUSCH and UCI, the first priority and the second priority may be assumed. The first priority is different from the second priority. Two types of HP (High Priority) and LP (Low Priority) are exemplified as the priority of PUSCH and UCI. The first priority may be HP and the second priority may be LP, or the first priority may be LP and the second priority may be HP. Three or more types of priority may be defined as the UCI priority.
 このような前提下において、PUSCHの優先度がUCIの優先度と異なる場合においては、制御部270は、NG RAN20(gNB100)から受信する情報要素に基づいて、第1優先度のPUSCHに対する第2優先度のUCIの多重を制御してもよい。 Under this premise, when the priority of PUSCH is different from the priority of UCI, the control unit 270, based on the information elements received from the NG RAN 20 (gNB 100), sets the second Priority UCI multiplexing may be controlled.
 UCIは、1以上のTBに対する確認応答(HARQ-ACK)を含んでもよい。UCIは、リソースのスケジューリングを要求するSR(Scheduling Request)を含んでもよく、チャネルの状態を表すCSI(Channel State Information)を含んでもよい。 A UCI may contain an acknowledgment (HARQ-ACK) for one or more TBs. The UCI may include an SR (Scheduling Request) requesting resource scheduling, and may include a CSI (Channel State Information) representing the channel state.
 なお、制御部270は、上述した制御信号・参照信号処理部240を制御しており、制御信号・参照信号処理部240は、UCIが多重されたPUSCHを介して、上りリンク信号を送信する通信部を構成してもよい。 Note that the control unit 270 controls the control signal/reference signal processing unit 240 described above, and the control signal/reference signal processing unit 240 performs communication for transmitting an uplink signal via PUSCH multiplexed with UCI. may constitute a part.
 第2に、gNB100の機能ブロック構成について説明する。 Second, the functional block configuration of gNB100 will be explained.
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。 FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHを介してUL信号を受信してもよい。 The receiving unit 110 receives various signals from the UE200. The receiver 110 may receive the UL signal via PUCCH or PUSCH.
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHを介してDL信号を送信してもよい。実施形態では、送信部120は、第1優先度のPUSCHに対する第2優先度のUCIの多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素をUE200に送信する通信部を構成する。 The transmission unit 120 transmits various signals to the UE200. Transmitting section 120 may transmit the DL signal via PDCCH or PDSCH. In the embodiment, the transmitting unit 120 transmits to the UE 200 an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of the second priority UCI to the first priority PUSCH. configures a communication unit that
 制御部130は、gNB100を制御する。制御部130は、UE200に送信する情報要素に基づいて、PUSCHを介した上りリンク信号の受信を想定する制御部を構成する。例えば、制御部130は、UE200に送信する情報要素が有効化を明示的又は暗黙的に示す場合に、PUSCHに多重されたUCIの受信を想定してもよい。制御部130は、UE200に送信する情報要素が無効化を明示的又は暗黙的に示す場合に、PUSCHに多重されたUCIの受信を想定しなくてもよい。 The control unit 130 controls the gNB100. Control section 130 configures a control section that assumes reception of uplink signals via PUSCH based on information elements to be transmitted to UE 200 . For example, control section 130 may assume reception of UCI multiplexed on PUSCH when an information element to be transmitted to UE 200 explicitly or implicitly indicates activation. Control section 130 may not assume reception of UCI multiplexed on PUSCH when the information element to be transmitted to UE 200 explicitly or implicitly indicates invalidation.
 (3)レートマッチング
 以下において、レートマッチングについて説明する。具体的には、UCIをUL SCHに多重するケースにおけるUCIのレートマッチングについて説明する。ここでは、UCIとして、HARQ-ACK、CSI Part 1、CSI Part 2について例示する。なお、HARQ-ACK、CSI-Part 1及びCSI-Part 2は別々に実行される。
(3) Rate Matching Rate matching will be described below. Specifically, UCI rate matching in the case of multiplexing UCI to UL SCH will be described. Here, HARQ-ACK, CSI Part 1, and CSI Part 2 are exemplified as UCI. Note that HARQ-ACK, CSI-Part 1 and CSI-Part 2 are performed separately.
 図6に示すように、”X0、X1、…”のビット系列を有するHARQ-ACKに対してチャネル符号化が適用されることによって”C00、C01、…”のビット系列が得られる。このようなビット系列に対してレートマッチングが適用される。レートマッチング後のビット系列(EUCI)は、EUCI=NL×Q’ACK×Qmによって表されてもよい。 As shown in FIG. 6, a bit sequence of "C00, C01, ..." is obtained by applying channel coding to HARQ-ACK having a bit sequence of " X0 , X1, ...". Rate matching is applied to such bit sequences. The bit sequence after rate matching (E UCI ) may be represented by E UCI =N L ×Q′ ACK ×Q m .
 NLは、PUSCHの送信レイヤの数である。Qmは、PUSCHの変調条件である。例えば、Q’ACKは、以下の式によって表される(TS38.212 V16.3.0 §6.3.2.4.1.1 “HARQ-ACK”)。 NL is the number of PUSCH transmission layers. Q m is the PUSCH modulation condition. For example, Q' ACK is represented by the following formula (TS38.212 V16.3.0 §6.3.2.4.1.1 "HARQ-ACK").
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 なお、Q’ACKは、係数(β)によって定義される項目(左側)及びスケーリングファクタ(α)によって定義される項目(右側)の最小値である。従って、HARQ-ACKの送信に用いるRE(Resource Element)は、スケーリングファクタ(α)によって制限され得ることに留意すべきである。 Note that Q' ACK is the minimum value of the item (left side) defined by the coefficient (β) and the item (right side) defined by the scaling factor (α). Therefore, it should be noted that the RE (Resource Element) used for HARQ-ACK transmission may be limited by the scaling factor (α).
 図7に示すように、”Y0、Y1、…”のビット系列を有するCSI Part 1に対してチャネル符号化が適用されることによって”C00、C01、…”のビット系列が得られる。このようなビット系列に対してレートマッチングが適用される。レートマッチング後のビット系列(EUCI)は、EUCI=NL×Q’CSI-part1×Qmによって表されてもよい。 As shown in FIG. 7, a bit sequence of "C00, C01, ..." is obtained by applying channel coding to CSI Part 1 having a bit sequence of "Y0, Y1, ...". Rate matching is applied to such bit sequences. The bit sequence after rate matching (E UCI ) may be represented by E UCI =N L ×Q′ CSI-part1 ×Q m .
 NLは、PUSCHの送信レイヤの数である。Qmは、PUSCHの変調条件である。例えば、Q’CSI-part1は、以下の式によって表される(TS38.212 V16.3.0 §6.3.2.4.1.2 “CSI part 1”)。 NL is the number of PUSCH transmission layers. Q m is the PUSCH modulation condition. For example, Q' CSI- part1 is represented by the following formula (TS38.212 V16.3.0 §6.3.2.4.1.2 "CSI part 1").
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 なお、Q’ACKは、係数(β)によって定義される項目(左側)及びスケーリングファクタ(α)によって定義される項目(右側)の最小値である。従って、CSI Part 1の送信に用いるRE(Resource Element)は、スケーリングファクタ(α)によって制限され得ることに留意すべきである。 Note that Q' ACK is the minimum value of the item (left side) defined by the coefficient (β) and the item (right side) defined by the scaling factor (α). Therefore, it should be noted that the RE (Resource Element) used for transmitting CSI Part 1 can be limited by the scaling factor (α).
 図8に示すように、”Z 0、Z1、…”のビット系列を有するCSI Part 2に対してチャネル符号化が適用されることによって”C00、C01、…”のビット系列が得られる。このようなビット系列に対してレートマッチングが適用される。レートマッチング後のビット系列(EUCI)は、EUCI=NL×Q’CSI-part2×Qmによって表されてもよい。 As shown in FIG. 8, a bit sequence of "C00, C01, ..." is obtained by applying channel coding to CSI Part 2 having a bit sequence of " Z0 , Z1, ...". Rate matching is applied to such bit sequences. The bit sequence after rate matching (E UCI ) may be represented by E UCI =N L ×Q′ CSI-part2 ×Q m .
 NLは、PUSCHの送信レイヤの数である。Qmは、PUSCHの変調条件である。例えば、Q’CSI-part2は、以下の式によって表される(TS38.212 V16.3.0 §6.3.2.4.1.3 “CSI part 2”)。 NL is the number of PUSCH transmission layers. Q m is the PUSCH modulation condition. For example, Q' CSI- part2 is represented by the following formula (TS38.212 V16.3.0 §6.3.2.4.1.3 "CSI part 2").
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 なお、Q’ACKは、係数(β)によって定義される項目(左側)及びスケーリングファクタ(α)によって定義される項目(右側)の最小値である。従って、CSI Part 2の送信に用いるRE(Resource Element)は、スケーリングファクタ(α)によって制限され得ることに留意すべきである。 Note that Q' ACK is the minimum value of the item (left side) defined by the coefficient (β) and the item (right side) defined by the scaling factor (α). Therefore, it should be noted that the RE (Resource Element) used for transmitting CSI Part 2 can be limited by the scaling factor (α).
 (4)動作例
 以下において、実施形態の動作例について説明する。以下においては、LP UCIをHP PUSCHに多重するケース、LP UCI及びHP UCIをHP PUSCHに多重するケースについて説明する。LP UCI及びHP UCIをHP PUSCHに多重するケースにおいても、LP UCIがHP PUSCHに多重されるため、説明簡略化のために、LP UCIをHP PUSCHに多重するケースについて例示する。
(4) Operation Example An operation example of the embodiment will be described below. In the following, a case of multiplexing LP UCI with HP PUSCH and a case of multiplexing LP UCI and HP UCI with HP PUSCH will be described. Even in the case of multiplexing LP UCI and HP UCI to HP PUSCH, LP UCI is multiplexed to HP PUSCH, so for the sake of simplicity of explanation, the case of multiplexing LP UCI to HP PUSCH will be exemplified.
 このようなケースにおいては、LP UCIの多重によってHP PUSCHのリソースが減少するため、HP PUSCHのリソースを適切に確保するために、HP PUSCHに対するLP UCIの多重を有効化する否かの選択が要求される。以下においては、HP PUSCHに対するLP UCIの多重を有効化するか否かを選択する方法について説明する。 In such a case, multiplexing of LP UCI reduces HP PUSCH resources, so in order to appropriately secure HP PUSCH resources, it is necessary to select whether to enable LP UCI multiplexing for HP PUSCH. be done. A method for selecting whether to enable multiplexing of LP UCI to HP PUSCH is described below.
 (4.1)動作例1
 動作例1では、上述した係数(β)として、新たな係数(new β)が定義(追加)される。新たな係数(new β)は、PUSCHの優先度がUCIの優先度と異なるケースで適用される係数である。新たな係数(new β)の取り得る範囲(以下、拡張範囲)は、既定範囲において係数(β)が取り得る値の最小値”1.000”よりも小さい値を含む。拡張範囲は、少なくとも”0”を含んでもよい。既定範囲とは、TS38.213 V16.5.0 §9.3 “UCI reporting in physical uplink shared channel”で規定される範囲であってもよい。
(4.1) Operation example 1
In operation example 1, a new coefficient (new β) is defined (added) as the coefficient (β) described above. A new coefficient (new β) is a coefficient applied when the priority of PUSCH is different from that of UCI. The possible range of the new coefficient (new β) (hereinafter referred to as extended range) includes values smaller than the minimum value "1.000" of the possible values of the coefficient (β) in the default range. The extended range may include at least "0". The default range may be the range specified in TS38.213 V16.5.0 §9.3 “UCI reporting in physical uplink shared channel”.
 言い換えると、HP PUSCHに対するLP UCIの多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素は、NG RAN20(gNB100)から受信するDCIに含まれ、UCIのレートマッチングにおいてUCIを構成するビット数に乗算される新たな係数(β)を指定する第1情報要素であってもよい。新たな係数(β)は、NG RAN20(gNB100)から受信するDCIに含まれるフィールド(例えば、beta_offset indicator field)によって指定され得る。すなわち、新たな係数(β)が”0”である場合に、HP PUSCHに対するLP UCIの多重が無効化される。一方で、新たな係数(β)が”0”よりも大きな値である場合に、HP PUSCHに対するLP UCIの多重が有効化される。 In other words, an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH is included in the DCI received from NG RAN20 (gNB100), and the rate of UCI It may be a first information element specifying a new factor (β) by which the number of bits forming the UCI is multiplied in matching. The new factor (β) may be specified by a field (eg, beta_offset indicator field) included in DCI received from NG RAN20 (gNB100). That is, when the new coefficient (β) is "0", multiplexing of LP UCI to HP PUSCH is disabled. On the other hand, multiplexing of LP UCI to HP PUSCH is enabled when the new coefficient (β) is greater than "0".
 このようなケースにおいて、DCIは、PUSCHの優先度がUCIの優先度と同じであるケース(以下、same priority multiplexing)で用いる係数(β)、PUSCHの優先度がUCIの優先度と異なるケース(以下、different priority multiplexing)で用いる新たな係数(β)を別々に指定する情報要素を含んでもよい。same priority multiplexingで用いる係数(β)を指定する情報要素としては、既に定義されたbeta_offset indicator field(以下、existing beta_offset indicator field)が用いられてもよい。different priority multiplexingで用いる新たな係数(β)を指定する情報要素としては、新たに定義(追加)されるbeta_offset indicator field(以下、new beta_offset indicator field)が用いられてもよい。 In such cases, DCI is a factor (β) used in cases where the priority of PUSCH is the same as the priority of UCI (hereinafter, same priority multiplexing), and a case where the priority of PUSCH is different from the priority of UCI ( An information element that separately specifies a new coefficient (β) to be used in different priority multiplexing may be included. An already defined beta_offset indicator field (hereinafter, existing beta_offset indicator field) may be used as an information element that specifies the coefficient (β) used in same priority multiplexing. As an information element specifying a new coefficient (β) used in different priority multiplexing, a newly defined (added) beta_offset indicator field (hereinafter, new beta_offset indicator field) may be used.
 さらに、same priority multiplexingで用いる係数(β)及びdifferent priority multiplexingで用いる新たな係数(β)に関する設定(以下、beta-offset configuration)は、RRCメッセージ(パラメータ)によって別々に設定されてもよい。beta-offset configurationは、beta_offset indicator fieldによって指定し得る係数(β)の候補(beta-offset table)であると考えてもよい。same priority multiplexingに関するbeta-offset configurationは、既に定義されたUCI-OnPUSCHによって設定されてもよい。different priority multiplexingに関するbeta-offset configurationは、新たに定義(追加)されるUCI-OnPUSCH-diffPrioによって設定されてもよい。 Furthermore, the settings for the coefficient (β) used in same priority multiplexing and the new coefficient (β) used in different priority multiplexing (hereinafter referred to as beta-offset configuration) may be set separately by RRC messages (parameters). A beta-offset configuration may be thought of as a candidate (beta-offset table) for coefficients (β) that may be specified by the beta_offset indicator field. The beta-offset configuration for same priority multiplexing may be set by the already defined UCI-OnPUSCH. A beta-offset configuration for different priority multiplexing may be set by a newly defined (added) UCI-OnPUSCH-diffPrio.
 例えば、係数(β)がexisting beta_offset indicator fieldによって指定される場合に、係数(β)は、UCI-OnPUSCHによって設定されたbeta-offset tableの中から選択される。一方で、新たな係数(β)がnew beta_offset indicator fieldによって指定される場合に、新たな係数(β)は、UCI-OnPUSCH-diffPrioによって設定されたbeta-offset tableの中から選択される。 For example, if the coefficient (β) is specified by the existing beta_offset indicator field, the coefficient (β) is selected from the beta-offset table set by UCI-OnPUSCH. On the other hand, if the new factor (β) is specified by the new beta_offset indicator field, the new factor (β) is selected from the beta-offset table set by UCI-OnPUSCH-diffPrio.
 ここで、NG RAN20及びUE200の動作について図9を参照しながら説明する。図9では、HP PUSCHに対するLP UCIの多重を有効化するか否かに関する動作について主として説明する。 Here, the operations of NG RAN 20 and UE 200 will be described with reference to FIG. FIG. 9 mainly describes the operation regarding whether to enable multiplexing of LP UCI to HP PUSCH.
 図9に示すように、ステップS10において、UE200は、UE Capabilityを含むメッセージをNG-RAN20に送信する。UE Capabilityは、新たな係数(β)に対応する機能をUE200が有しているか否かを明示的又は暗黙的に示す情報要素を含んでもよい。 As shown in FIG. 9, in step S10, UE 200 transmits a message including UE Capability to NG-RAN 20. UE Capability may include an information element that explicitly or implicitly indicates whether the UE 200 has the capability to support the new coefficient (β).
 ステップS11において、UE100は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、different priority multiplexingに関するUCI-OnPUSCH-diffPrioを含んでもよい。RRCメッセージは、same priority multiplexingに関するUCI-OnPUSCHを含んでもよい。  In step S11, the UE 100 receives the RRC message from the NG-RAN 20. The RRC message may contain UCI-OnPUSCH-diffPrio for different priority multiplexing. The RRC message may contain UCI-OnPUSCH for same priority multiplexing.
 ステップS12において、UE200は、PDCCHを介してDCIをNG-RAN20から受信する。DCIは、different priority multiplexingで用いる新たな係数(β)を指定する第1情報要素(new beta_offset indicator field)を含んでもよい。DCIは、same priority multiplexingで用いる係数(β)を指定する情報要素(existing beta_offset indicator field)を含んでもよい。 In step S12, UE 200 receives DCI from NG-RAN 20 via PDCCH. DCI may include a first information element (new beta_offset indicator field) that specifies a new coefficient (β) to be used in different priority multiplexing. DCI may contain an information element (existing beta_offset indicator field) that specifies the coefficient (β) used in same priority multiplexing.
 ステップS13において、UE200は、新たな係数(β)が”0”よりも大きい場合に、HP PUSCHに対するLP UCIの多重を有効化する。UE200は、LP UCIをHP PUSCHに多重した上で、HP PUSHを介して上りリンク信号を送信する。一方で、UE200は、新たな係数(β)が”0”である場合に、HP PUSCHに対するLP UCIの多重を無効化する。UE200は、LP UCIをHP PUSCHに多重せずに、HP PUSHを介して上りリンク信号を送信する。 In step S13, the UE 200 enables multiplexing of LP UCI to HP PUSCH when the new coefficient (β) is greater than "0". The UE 200 multiplexes the LP UCI to the HP PUSCH and then transmits an uplink signal via the HP PUSH. On the other hand, the UE 200 disables multiplexing of LP UCI to HP PUSCH when the new coefficient (β) is "0". UE 200 transmits an uplink signal via HP PUSH without multiplexing LP UCI on HP PUSCH.
 このような構成によれば、beta-offset configuration(beta-offset table)を柔軟に設定することができるため、HP PUSCHのリソースの減少を柔軟に抑制しながら、HP PUSCHの信頼性が向上することができる。 With this configuration, the beta-offset configuration (beta-offset table) can be flexibly set, so HP PUSCH reliability can be improved while flexibly suppressing HP PUSCH resource reduction. can be done.
 なお、動作例1では、係数(β)が動的に指定されるケース(Dynamic beta-offset)が想定されているため、動作例1は、DG(Dynamic Grant) PUSCHに適用されてもよい。新たな係数(β)を指定するnew beta_offset indicator fieldは、新たな係数(β)を指定するbitと読み替えられてもよい。 In operation example 1, a case (Dynamic beta-offset) in which the coefficient (β) is dynamically specified is assumed, so operation example 1 may be applied to DG (Dynamic Grant) PUSCH. A new beta_offset indicator field that specifies a new coefficient (β) may be read as a bit that specifies a new coefficient (β).
 (4.2)動作例2
 動作例2では、新たなDCI field(以下、new DCI field)が定義(追加)される。new DCI fieldは、HP PUSCHに対するLP UCIの多重に関する有効化及び無効化の少なくともいずれか1つを指定するフィールドである。
(4.2) Operation example 2
In operation example 2, a new DCI field (hereinafter referred to as new DCI field) is defined (added). The new DCI field is a field that specifies at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH.
 言い換えると、HP PUSCHに対するLP UCIの多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素は、NG RAN20(gNB100)から受信するDCIに含まれ、有効化及び無効化の少なくともいずれか1つを指定する第2情報要素(new DCI field)であってもよい。new DCI fieldは、1bitで構成されてもよい。例えば、”0”は、HP PUSCHに対するLP UCIの多重の有効化を意味し、”1”は、HP PUSCHに対するLP UCIの多重の無効化を意味してもよい。逆に、”0”は、HP PUSCHに対するLP UCIの多重の無効化を意味し、”1”は、HP PUSCHに対するLP UCIの多重の有効化を意味してもよい。 In other words, an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH is included in the DCI received from NG RAN20 (gNB100), enabling and It may be a second information element (new DCI field) that specifies at least one of the invalidations. The new DCI field may consist of 1 bit. For example, "0" may mean enable multiplexing of LP UCI to HP PUSCH, and "1" may mean disable multiplexing of LP UCI to HP PUSCH. Conversely, "0" may mean disabling multiplexing of LP UCI for HP PUSCH, and "1" may mean enabling multiplexing of LP UCI for HP PUSCH.
 ここで、new DCI fieldを含むDCIとしては、対応するPUSCHをスケジューリングするためのUL Grant DCIが用いられてもよく、対応するPUCCHと関連付けられた下りリンクチャネルをスケジューリングするためのDL Grant DCIが用いられてもよい。new DCI fieldを含むDCIとしては、対応するPUSCH及び対応するPUCCHとは無関係に送信されるDCIが用いられてもよい。 Here, as the DCI including the new DCI field, the UL Grant DCI for scheduling the corresponding PUSCH may be used, and the DL Grant DCI for scheduling the downlink channel associated with the corresponding PUCCH is used. may be A DCI that is transmitted independently of the corresponding PUSCH and the corresponding PUCCH may be used as the DCI including the new DCI field.
 動作例2では、HP PUSCHに対するLP UCIの多重が有効化されており、かつ、RRCメッセージ(パラメータ)に含まれるPUSCH-Config又はCG(Configured Grant)-UCI-OnPUSCHによってDynamic beta-offsetが設定されている場合に、new DCI fieldを含むDCIに含まれるbeta_offset indicator fieldは、same priority multiplexing及びdifferent priority multiplexingで用いる係数(β)を指定してもよい。動作例2では、動作例1とは異なり、新たな係数(β)を指定するnew beta_offset indicator fieldが定義される必要がないことに留意すべきである。 In operation example 2, multiplexing of LP UCI to HP PUSCH is enabled, and Dynamic beta-offset is set by PUSCH-Config or CG (Configured Grant)-UCI-OnPUSCH included in the RRC message (parameter). , the beta_offset indicator field included in the DCI containing the new DCI field may specify the factor (β) used for same priority multiplexing and different priority multiplexing. Note that in operation example 2, unlike operation example 1, it is not necessary to define a new beta_offset indicator field that specifies a new coefficient (β).
 ここで、NG RAN20及びUE200の動作について図10を参照しながら説明する。図10では、HP PUSCHに対するLP UCIの多重を有効化するか否かに関する動作について主として説明する。 Here, the operations of the NG RAN 20 and the UE 200 will be explained with reference to FIG. FIG. 10 mainly describes the operation regarding whether to enable multiplexing of LP UCI to HP PUSCH.
 図10に示すように、ステップS20において、UE200は、UE Capabilityを含むメッセージをNG-RAN20に送信する。UE Capabilityは、new DCI fieldに対応する機能をUE200が有しているか否かを明示的又は暗黙的に示す情報要素を含んでもよい。 As shown in FIG. 10, in step S20, UE 200 transmits a message including UE Capability to NG-RAN 20. UE Capability may include an information element that explicitly or implicitly indicates whether the UE 200 has the capability corresponding to the new DCI field.
 ステップS21において、UE100は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、same priority multiplexing及びdifferent priority multiplexingの双方に関するUCI-OnPUSCH又はCG UCI-OnPUSCHを含んでもよい。  In step S21, the UE 100 receives the RRC message from the NG-RAN 20. The RRC message may include UCI-OnPUSCH or CG UCI-OnPUSCH for both same priority multiplexing and different priority multiplexing.
 ステップS22において、UE200は、PDCCHを介してDCIをNG-RAN20から受信する。DCIは、HP PUSCHに対するLP UCIの多重に関する有効化及び無効化の少なくともいずれか1つを指定する第2情報要素(new DCI field)を含む。DCIは、same priority multiplexing及びdifferent priority multiplexingで用いる係数(β)を指定するbeta_offset indicator fieldを含んでもよい。 In step S22, UE 200 receives DCI from NG-RAN 20 via PDCCH. DCI includes a second information element (new DCI field) that specifies at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH. A DCI may include a beta_offset indicator field that specifies the factor (β) used in same priority multiplexing and different priority multiplexing.
 ステップS23において、UE200は、HP PUSCHに対するLP UCIの多重の有効化をnew DCI fieldが指定する場合に、HP PUSCHに対するLP UCIの多重を有効化する。UE200は、LP UCIをHP PUSCHに多重した上で、HP PUSHを介して上りリンク信号を送信する。一方で、UE200は、HP PUSCHに対するLP UCIの多重の無効化をnew DCI fieldが指定する場合に、HP PUSCHに対するLP UCIの多重を無効化する。UE200は、LP UCIをHP PUSCHに多重せずに、HP PUSHを介して上りリンク信号を送信する。 In step S23, the UE 200 enables LP UCI multiplexing for HP PUSCH when the new DCI field specifies enabling LP UCI multiplexing for HP PUSCH. The UE 200 multiplexes the LP UCI to the HP PUSCH and then transmits an uplink signal via the HP PUSH. On the other hand, the UE 200 disables LP UCI multiplexing for HP PUSCH when the new DCI field specifies disabling LP UCI multiplexing for HP PUSCH. UE 200 transmits an uplink signal via HP PUSH without multiplexing LP UCI to HP PUSCH.
 このような構成によれば、new DCI fieldを1bitで表すことができるため、DCIのオーバヘッドの増大を抑制しながら、HP PUSCHに対するLP UCIの多重を無効化することができ、HP PUSCHの信頼性を向上することができる。 With such a configuration, since the new DCI field can be represented by 1 bit, it is possible to disable multiplexing of LP UCI to HP PUSCH while suppressing an increase in DCI overhead, thereby increasing the reliability of HP PUSCH. can be improved.
 なお、new DCI fieldを含むDCIとしてUL Grant DCIが用いられる場合には、動作例2は、DG PUSCHに適用されてもよい。new DCI fieldを含むDCIとしてDL Grant DCIが用いられる場合には、動作例2は、DG PUSCHに適用されてもよく、CG PUSCHに適用されてもよい。new DCI fieldを含むDCIとしてPUSCH及びPUCCHとは無関係なDCIが用いられる場合には、動作例2は、DG PUSCHに適用されてもよく、CG PUSCHに適用されてもよい。動作例2は、係数(β)が動的に指定されるケース(Dynamic beta-offset)に適用されてもよく、係数(β)が準静的に指定されるケース(Semi-static beta-offset)に適用されてもよい。 Note that when UL Grant DCI is used as the DCI including the new DCI field, operation example 2 may be applied to DG PUSCH. When DL Grant DCI is used as the DCI including the new DCI field, operation example 2 may be applied to DG PUSCH and may be applied to CG PUSCH. When DCI unrelated to PUSCH and PUCCH is used as the DCI including the new DCI field, Operation Example 2 may be applied to DG PUSCH and may be applied to CG PUSCH. Operation example 2 may be applied to the case where the coefficient (β) is dynamically specified (Dynamic beta-offset), or to the case where the coefficient (β) is semi-statically specified (Semi-static beta-offset ) may be applied to
 (4.3)動作例3
 動作例3では、特定DCI(以下、Special DCI)が定義(追加)される。Special DCIは、特定フィールドに格納された情報要素の組合せによって、HP PUSCHに対するLP UCIの多重に関する有効化及び無効化の少なくともいずれか1つを指定する。有効化は、活性化と読み替えられてもよく、無効化は、非活性化と読み替えられてもよい。
(4.3) Operation example 3
In operation example 3, a specific DCI (hereinafter referred to as Special DCI) is defined (added). Special DCI specifies at least one of enabling and disabling multiplexing of LP UCI for HP PUSCH by a combination of information elements stored in a specific field. Validation may be read as activation, and invalidation may be read as deactivation.
 言い換えると、HP PUSCHに対するLP UCIの多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素は、NG RAN20(gNB100)から受信する特定DCI(Special DCI)に含まれる特定フィールドに格納された情報要素の組合せによって構成される第3情報要素であってもよい。 In other words, an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH is included in the specific DCI (Special DCI) received from NG RAN20 (gNB100). It may be a third information element configured by a combination of information elements stored in the specified field.
 特定DCIのフォーマットとしては、DL DCI Format 1_0、DL DCI Format 1_1、DL DCI Format 1_2、UL DCI Format 0_0、UL DCI Format 0_1及びUL DCI Format 0_2の中から選択された1以上のフォーマットが用いられてもよい。Special DCIは、新たに定義(追加)されるRNTI(例えば、UM(Unacknowledged Mode)-RNTI、UL Multiplexing-RNTI)によってスクランブルされてもよい。 As the specific DCI format, one or more formats selected from DL DCI Format 1_0, DL DCI Format 1_1, DL DCI Format 1_2, UL DCI Format 0_0, UL DCI Format 0_1 and UL DCI Format 0_2 are used. good too. Special DCI may be scrambled by newly defined (added) RNTI (eg, UM (Unacknowledged Mode)-RNTI, UL Multiplexing-RNTI).
 特定フィールドとしては、DCIに含まれるフィールドとして既に定義されたフィールドが用いられてもよい。特定フィールドは、以下に示すフィールドであってもよい。 A field already defined as a field included in DCI may be used as the specific field. The specified fields may be the fields shown below.
 第1に、特定フィールドとしては、RV field、HPN field及びbeta_offset indicator fieldの中から選択された1以上のフィールドが用いられてもよい。例えば、UE200は、RV、HPN及びbeta_offset indicatorの全てが”0”である第1条件が満たされた場合に、HP PUSCHに対するLP UCIの多重を活性化してもよい。或いは、UE200は、第1条件が満たされた場合に、HP PUSCHに対するLP UCIの多重を非活性化してもよい。 First, one or more fields selected from RV field, HPN field, and beta_offset indicator field may be used as the specific field. For example, the UE 200 may activate multiplexing of LP UCI to HP PUSCH when the first condition that RV, HPN and beta_offset indicator are all "0" is satisfied. Alternatively, the UE 200 may deactivate multiplexing of LP UCI to HP PUSCH when the first condition is satisfied.
 第2に、特定フィールドとしては、RV field、HPN field、beta_offset indicator field、MCS field及びFRDA fieldの中から選択された1以上のフィールドが用いられてもよい。例えば、UE200は、RV、HPN及びbeta_offset indicatorの全てが”0”であり、MCSの全てのbitが”1”であり、かつ、μ=0のFRDA Type 2のFRDAの全てのbitが”0”である第2条件が満たされた場合に、HP PUSCHに対するLP UCIの多重を非活性化してもよい。UE200は、RV、HPN及びbeta_offset indicatorの全てが”0”であり、MCSの全てのbitが”1”であり、かつ、μ=0のFRDA Type 2のFRDA以外のFRDAの全てのbitが”1”である第2条件が満たされた場合に、HP PUSCHに対するLP UCIの多重を非活性化してもよい。或いは、UE200は、第2条件が満たされた場合に、HP PUSCHに対するLP UCIの多重を活性化してもよい。 Second, as the specific field, one or more fields selected from RV field, HPN field, beta_offset indicator field, MCS field and FRDA field may be used. For example, UE200 has RV, HPN and beta_offset indicator all "0", all bits of MCS are "1", and all bits of FRDA of FRDA Type 2 with μ=0 are "0" ” may deactivate multiplexing of the LP UCI to the HP PUSCH if the second condition is satisfied. For UE200, RV, HPN and beta_offset indicator are all "0", all bits of MCS are "1", and all bits of FRDA other than FRDA Type 2 with μ=0 are " Multiplexing of LP UCI to HP PUSCH may be deactivated if a second condition of 1" is met. Alternatively, the UE 200 may activate multiplexing of LP UCI to HP PUSCH when the second condition is satisfied.
 すなわち、UE200は、第1条件が満たされた場合に、HP PUSCHに対するLP UCIの多重を活性化し、第2条件が満たされた場合に、HP PUSCHに対するLP UCIの多重を非活性化してもよい。或いは、UE200は、第2条件が満たされた場合に、HP PUSCHに対するLP UCIの多重を活性化し、第1条件が満たされた場合に、HP PUSCHに対するLP UCIの多重を非活性化してもよい。 That is, the UE 200 may activate multiplexing of LP UCI for HP PUSCH when the first condition is satisfied, and deactivate multiplexing of LP UCI for HP PUSCH when the second condition is satisfied. . Alternatively, the UE 200 may activate multiplexing of LP UCI for HP PUSCH when the second condition is satisfied, and deactivate multiplexing of LP UCI for HP PUSCH when the first condition is satisfied. .
 ここで、NG RAN20及びUE200の動作について図11を参照しながら説明する。図11では、HP PUSCHに対するLP UCIの多重を有効化するか否かに関する動作について主として説明する。 Here, the operations of the NG RAN 20 and the UE 200 will be explained with reference to FIG. FIG. 11 mainly describes the operation regarding whether to enable multiplexing of LP UCI to HP PUSCH.
 図11に示すように、ステップS30において、UE200は、UE Capabilityを含むメッセージをNG-RAN20に送信する。UE Capabilityは、Special DCIに対応する機能をUE200が有しているか否かを明示的又は暗黙的に示す情報要素を含んでもよい。 As shown in FIG. 11, in step S30, UE 200 transmits a message including UE Capability to NG-RAN 20. UE Capability may include an information element that explicitly or implicitly indicates whether the UE 200 has the capability to support Special DCI.
 ステップS31において、UE100は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、same priority multiplexing及びdifferent priority multiplexingの双方に関するUCI-OnPUSCH又はCG UCI-OnPUSCHを含んでもよい。  In step S31, the UE 100 receives the RRC message from the NG-RAN 20. The RRC message may include UCI-OnPUSCH or CG UCI-OnPUSCH for both same priority multiplexing and different priority multiplexing.
 ステップS32において、UE200は、PDCCHを介してSpecial DCIをNG-RAN20から受信する。Special DCIは、特定フィールドに格納された情報要素の組合せによって構成される第3情報要素(例えば、RV、HPN、beta_offset indicatorなど)を含む。 In step S32, UE 200 receives Special DCI from NG-RAN 20 via PDCCH. Special DCI includes a third information element (eg, RV, HPN, beta_offset indicator, etc.) composed of a combination of information elements stored in specific fields.
 ステップS33において、UE200は、Special DCIに含まれる第3情報要素が第1条件(又は第2条件)を満たす場合に、HP PUSCHに対するLP UCIの多重を有効化する。UE200は、LP UCIをHP PUSCHに多重した上で、HP PUSHを介して上りリンク信号を送信する。一方で、UE200は、Special DCIに含まれる第3情報要素が第2条件(又は第1条件)を満たす場合に、HP PUSCHに対するLP UCIの多重を無効化する。UE200は、LP UCIをHP PUSCHに多重せずに、HP PUSHを介して上りリンク信号を送信する。 In step S33, the UE 200 enables multiplexing of LP UCI to HP PUSCH when the third information element included in Special DCI satisfies the first condition (or second condition). The UE 200 multiplexes the LP UCI to the HP PUSCH and then transmits an uplink signal via the HP PUSH. On the other hand, UE 200 disables multiplexing of LP UCI to HP PUSCH when the third information element included in Special DCI satisfies the second condition (or first condition). UE 200 transmits an uplink signal via HP PUSH without multiplexing LP UCI on HP PUSCH.
 このような構成によれば、追加的なDCI fieldを定義する必要がないため、DCIのオーバヘッドの増大を抑制しながら、HP PUSCHに対するLP UCIの多重を無効化することができ、HP PUSCHの信頼性を向上することができる。 With such a configuration, there is no need to define an additional DCI field, so it is possible to disable multiplexing of LP UCI to HP PUSCH while suppressing an increase in DCI overhead, thereby increasing the reliability of HP PUSCH. can improve sexuality.
 なお、動作例3は、DG PUSCHに適用されてもよく、CG PUSCHに適用されてもよい。動作例3は、係数(β)が動的に指定されるケース(Dynamic beta-offset)に適用されてもよく、係数(β)が準静的に指定されるケース(Semi-static beta-offset)に適用されてもよい。 Note that operation example 3 may be applied to DG PUSCH or may be applied to CG PUSCH. Operation example 3 may be applied to the case where the coefficient (β) is dynamically specified (Dynamic beta-offset), or to the case where the coefficient (β) is semi-statically specified (Semi-static beta-offset ) may be applied to
 (4.4)動作例4
 動作例4では、新たなメッセージ(以下、MAC CE(Control Element)メッセージ)が定義(追加)される。MAC CEメッセージは、HP PUSCHに対するLP UCIの多重に関する活性化及び非活性化の少なくともいずれか1つを指定する。
(4.4) Operation example 4
In operation example 4, a new message (hereinafter referred to as MAC CE (Control Element) message) is defined (added). The MAC CE message specifies at least one of activation and deactivation regarding multiplexing of LP UCI to HP PUSCH.
 言い換えると、HP PUSCHに対するLP UCIの多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素は、NG RAN20(gNB100)から受信するメッセージ(MAC CEメッセージ)に含まれ、HP PUSCHに対するLP UCIの多重の活性化及び非活性化の少なくともいずれか1つを指定する第4情報要素であってもよい。 In other words, an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI to HP PUSCH is included in the message (MAC CE message) received from NG RAN20 (gNB100). It may be a fourth information element that specifies at least one of multiple activation and deactivation of LP UCI for HP PUSCH.
 第1に、UE200は、HPPUSCHに対するLP UCIの多重の活性化を指定するMAC CEメッセージを受信した場合に、HP PUSCHに対するLP UCIの多重を活性化してもよい。UE200は、HP PUSCHに対するLP UCIの多重の非活性化を指定するMAC CEメッセージを受信した場合に、HP PUSCHに対するLP UCIの多重を非活性化してもよい。 First, the UE 200 may activate LP UCI multiplexing for HP PUSCH when receiving a MAC CE message specifying activation of LP UCI multiplexing for HP PUSCH. The UE 200 may deactivate multiplexing of LP UCI for HP PUSCH when receiving a MAC CE message specifying deactivation of multiplexing of LP UCI for HP PUSCH.
 第2に、HP PUSCHに対するLP UCIの多重の活性化する期間を定義するタイマ(例えば、activation timer)が定義されてもよい。activation timerは、MAC CEメッセージの受信によって起動してもよい。UE200は、activation timerが起動している場合に、HP PUSCHに対するLP UCIの多重を活性化し、activation timerが満了している場合に、HP PUSCHに対するLP UCIの多重を非活性化してもよい。このようなケースにおいて、HP PUSCHに対するLP UCIの多重の非活性化を指定するMAC CEメッセージは定義されなくてもよい。 Second, a timer (eg, activation timer) may be defined that defines multiple activation periods of LP UCI to HP PUSCH. The activation timer may be started upon receipt of a MAC CE message. The UE 200 may activate LP UCI multiplexing for HP PUSCH when the activation timer is activated, and deactivate LP UCI multiplexing for HP PUSCH when the activation timer has expired. In such cases, MAC CE messages specifying multiple deactivations of LP UCI for HP PUSCH may not be defined.
 第3に、HP PUSCHに対するLP UCIの多重の非活性化する期間を定義するタイマ(例えば、deactivation timer)が定義されてもよい。deactivation timerは、MAC CEメッセージの受信によって起動してもよい。UE200は、deactivation timerが起動している場合に、HP PUSCHに対するLP UCIの多重を非活性化し、deactivation timerが満了している場合に、HP PUSCHに対するLP UCIの多重を活性化してもよい。このようなケースにおいて、HP PUSCHに対するLP UCIの多重の活性化を指定するMAC CEメッセージは定義されなくてもよい。 Third, a timer (eg, deactivation timer) may be defined that defines multiple deactivation periods of the LP UCI for the HP PUSCH. A deactivation timer MAY be activated upon receipt of a MAC CE message. The UE 200 may deactivate multiplexing of LP UCI for HP PUSCH when the deactivation timer is activated, and activate multiplexing of LP UCI for HP PUSCH when the deactivation timer has expired. In such cases, MAC CE messages specifying multiple activations of LP UCI for HP PUSCH may not be defined.
 ここで、NG RAN20及びUE200の動作について図12を参照しながら説明する。図12では、HP PUSCHに対するLP UCIの多重を有効化するか否かに関する動作について主として説明する。 Here, the operations of the NG RAN 20 and the UE 200 will be explained with reference to FIG. FIG. 12 mainly describes the operation regarding whether to enable multiplexing of LP UCI to HP PUSCH.
 図12に示すように、ステップS40において、UE200は、UE Capabilityを含むメッセージをNG-RAN20に送信する。UE Capabilityは、MAC CEメッセージに対応する機能をUE200が有しているか否かを明示的又は暗黙的に示す情報要素を含んでもよい。 As shown in FIG. 12, in step S40, UE 200 transmits a message including UE Capability to NG-RAN 20. UE Capability may include an information element that explicitly or implicitly indicates whether the UE 200 has the capability to support MAC CE messages.
 ステップS41において、UE100は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、same priority multiplexing及びdifferent priority multiplexingの双方に関するUCI-OnPUSCH又はCG UCI-OnPUSCHを含んでもよい。  In step S41, the UE 100 receives the RRC message from the NG-RAN 20. The RRC message may include UCI-OnPUSCH or CG UCI-OnPUSCH for both same priority multiplexing and different priority multiplexing.
 ステップS42において、UE200は、MAC CEメッセージをNG-RAN20から受信する。MAC CEメッセージは、HP PUSCHに対するLP UCIの多重の活性化及び非活性化の少なくともいずれか1つを指定する第4情報要素を含む。  In step S42, the UE 200 receives the MAC CE message from the NG-RAN 20. The MAC CE message includes a fourth information element that specifies at least one of multiple activation and deactivation of LP UCI to HP PUSCH.
 ステップS43において、UE200は、MAC CEメッセージが活性化を指定する場合に、activation timerが起動している場合に、或いは、deactivation timerが満了している場合に、HP PUSCHに対するLP UCIの多重を有効化する。UE200は、LP UCIをHP PUSCHに多重した上で、HP PUSHを介して上りリンク信号を送信する。一方で、UE200は、MAC CEメッセージが非活性化を指定する場合に、deactivation timerが起動している場合に、或いは、activation timerが満了している場合に、HP PUSCHに対するLP UCIの多重を無効化する。UE200は、LP UCIをHP PUSCHに多重せずに、HP PUSHを介して上りリンク信号を送信する。 In step S43, the UE 200 enables multiplexing of LP UCI to HP PUSCH when the MAC CE message specifies activation, when the activation timer is running, or when the deactivation timer has expired. become The UE 200 multiplexes the LP UCI to the HP PUSCH and then transmits an uplink signal via the HP PUSH. On the other hand, UE 200 disables multiplexing of LP UCI to HP PUSCH when the MAC CE message specifies deactivation, when the deactivation timer is activated, or when the activation timer expires. become UE 200 transmits an uplink signal via HP PUSH without multiplexing LP UCI on HP PUSCH.
 このような構成によれば、追加的なDCI fieldを定義する必要がないため、DCIのオーバヘッドの増大を抑制しながら、HP PUSCHに対するLP UCIの多重を無効化することができ、HP PUSCHの信頼性を向上することができる。 With such a configuration, there is no need to define an additional DCI field, so it is possible to disable multiplexing of LP UCI to HP PUSCH while suppressing an increase in DCI overhead, thereby increasing the reliability of HP PUSCH. can improve sexuality.
 なお、動作例4は、DG PUSCHに適用されてもよく、CG PUSCHに適用されてもよい。動作例4は、係数(β)が動的に指定されるケース(Dynamic beta-offset)に適用されてもよく、係数(β)が準静的に指定されるケース(Semi-static beta-offset)に適用されてもよい。 Note that operation example 4 may be applied to DG PUSCH or may be applied to CG PUSCH. Operation example 4 may be applied to a case where the coefficient (β) is dynamically specified (Dynamic beta-offset), or a case where the coefficient (β) is semi-statically specified (Semi-static beta-offset ) may be applied to
 (5)作用・効果
 実施形態では、UE200は、HP PUSCHに対するLP UCIの多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素に基づいて、HP PUSCHに対するLP UCIの多重を制御する。このような構成によれば、HP PUSCHに対するLP UCIの多重を無効化することができ、HP PUSCHの信頼性を向上することができる。
(5) Actions and effects In the embodiment, the UE 200 is based on an information element that explicitly or implicitly indicates at least one of enabling and disabling multiplexing of LP UCI for HP PUSCH, LP for HP PUSCH. Controls UCI multiplexing. According to such a configuration, multiplexing of LP UCI to HP PUSCH can be invalidated, and the reliability of HP PUSCH can be improved.
 (6)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(6) Other Embodiments Although the contents of the present invention have been described in accordance with the embodiments, it should be understood that the present invention is not limited to these descriptions and that various modifications and improvements are possible. self-evident to the trader.
 上述した開示では特に触れていないが、上述したオプション(例えば、動作例1~動作例4)のいずれを適用するかは、上位レイヤパラメータによって設定されてもよく、UE 200の能力情報(UE Capability)によって報告されてもよく、無線通信システム10で予め定められてもよい。さらに、上述したオプションのいずれを適用するかは、上位レイヤパラメータ及びUE Capabilityによって決定されてもよい。 Although not particularly mentioned in the above disclosure, which of the above options (eg, operation example 1 to operation example 4) is applied may be set by a higher layer parameter, and the capability information of the UE 200 (UE Capability ) or may be predetermined in the wireless communication system 10 . Furthermore, which of the above options to apply may be determined by higher layer parameters and UE Capabilities.
 ここで、UE Capabilityは、以下に示す情報要素を含んでもよい。具体的には、UE Capabilityは、時間的に重なるPUCCH/PUSCHであって、互いに同じ優先度を有するPUCCH/PUSCHを多重する機能をサポートするか否かを示す情報要素を含んでもよい。UE Capabilityは、時間的に重なるPUCCH/PUSCHであって、互いに異なる優先度を有するPUCCH/PUSCHを多重する機能をサポートするか否かを示す情報要素を含んでもよい。UE Capabilityは、時間的に重なるPUCCH/PUSCHであって、互いに異なる優先度を有するPUCCH/PUSCHの多重を有効化又は無効化する機能をサポートするか否かを示す情報要素を含んでもよい。  Here, the UE Capability may include the following information elements. Specifically, the UE Capability may include an information element indicating whether or not to support the function of multiplexing PUCCH/PUSCH that overlap in time and have the same priority. The UE Capability may include an information element indicating whether or not to support the function of multiplexing PUCCH/PUSCH overlapping in time and having different priorities. UE Capability may include an information element indicating whether to support a function of enabling or disabling multiplexing of PUCCH/PUSCH that overlap in time and have different priorities.
 上述した開示では特に触れていないが、動作例2、動作例3及び動作例4は、時間的に重なる2以上のPUCCHであって、互いに異なる優先度を有する2以上のPUCCHの多重に適用されてもよい。このようなケースにおいて、HP PUSCHは、HP PUCCHと読み替えられてもよい。 Although not specifically mentioned in the disclosure above, Operation Example 2, Operation Example 3, and Operation Example 4 are applied to multiplexing of two or more PUCCHs that overlap in time and have different priorities. may In such cases, HP PUSCH may be read as HP PUCCH.
 上述した開示では、HP PUSCHに対するLP UCIの多重について主として説明した。しかしながら、上述した開示はこれに限定されるものではない。上述した開示は、HP PUSCHに対するLP UCI及びHP UCIの多重に適用されてもよい。或いは、上述した開示は、LP PUSCHに対するHP UCIの多重に適用されてもよく、LP PUSCHに対するLP UCI及びHP UCIの多重に適用されてもよい。 In the above disclosure, multiplexing of LP UCI to HP PUSCH was mainly described. However, the above disclosure is not so limited. The above disclosure may be applied to multiplexing LP UCI and HP UCI to HP PUSCH. Alternatively, the above disclosure may be applied to multiplexing of HP UCI to LP PUSCH, or to multiplexing of LP UCI and HP UCI to LP PUSCH.
 上述した実施形態の説明に用いたブロック構成図(図4及び図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagrams (FIGS. 4 and 5) used to describe the above-described embodiment show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In any case, as described above, the implementation method is not particularly limited.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、当該装置のハードウェア構成の一例を示す図である。図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the gNB 100 and UE 200 (applicable device) described above may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 13 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 13, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 A processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Furthermore, the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be referred to as an auxiliary storage device. The recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. A part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom. may be applied to Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, a mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions that the mobile station has.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A subframe may further consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 In addition, long TTI (for example, normal TTI, subframe, etc.) may be read as TTI having a time length exceeding 1 ms, and short TTI (for example, shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. A TTI having a TTI length greater than or equal to this value may be read as a replacement.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element: RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first", "second", etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 受信部
 120 送信部
 130 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
110 receiver 120 transmitter 130 controller 200 UE
210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Claims (5)

  1.  第1優先度の上りリンク共有チャネルに対する第2優先度の上りリンク制御情報の多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素をネットワークから受信する通信部と、
     前記情報要素に基づいて、前記上りリンク共有チャネルに対する前記上りリンク制御情報の多重を制御する制御部と、を備える端末。
    A communication unit that receives from the network an information element that explicitly or implicitly indicates at least one of enabling and disabling of multiplexing of uplink control information of the second priority on the uplink shared channel of the first priority. When,
    and a control unit that controls multiplexing of the uplink control information for the uplink shared channel based on the information element.
  2.  前記情報要素は、前記ネットワークから受信する下りリンク制御情報に含まれ、前記上りリンク制御情報のレートマッチングにおいて前記上りリンク制御情報を構成するビット数に乗算される係数を指定する第1情報要素、前記ネットワークから受信する下りリンク制御情報に含まれ、前記有効化及び無効化の少なくともいずれか1つを指定する第2情報要素、前記ネットワークから受信する特定下りリンク制御情報に含まれる特定フィールドに格納される情報要素の組合せによって構成される第3情報要素、及び、前記ネットワークから受信するメッセージに含まれ、前記第1優先度の上りリンク共有チャネルに対する前記第2優先度の上りリンク制御情報の多重の活性化及び非活性化の少なくともいずれか1つを指定する第4情報要素の少なくともいずれか1つである、請求項1に記載の端末。 The information element is included in the downlink control information received from the network, a first information element specifying a coefficient to be multiplied by the number of bits forming the uplink control information in rate matching of the uplink control information, A second information element that is included in the downlink control information received from the network and specifies at least one of the activation and deactivation, and is stored in a specific field included in specific downlink control information received from the network. and a third information element configured by a combination of information elements, and multiplexing of the uplink control information of the second priority to the uplink shared channel of the first priority, which is included in the message received from the network. 2. The terminal according to claim 1, wherein the terminal is at least one of a fourth information element specifying at least one of activation and deactivation of the .
  3.  第1優先度の上りリンク共有チャネルに対する第2優先度の上りリンク制御情報の多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素を端末に送信する通信部と、
     前記情報要素に基づいて、前記上りリンク共有チャネルを介した上りリンク信号の受信を想定する制御部と、を備える、基地局。
    A communication unit that transmits an information element that explicitly or implicitly indicates at least one of enabling and disabling of multiplexing of uplink control information of the second priority to the uplink shared channel of the first priority to the terminal. When,
    and a control unit that assumes reception of an uplink signal via the uplink shared channel based on the information element.
  4.  端末と基地局とを備え、
     前記端末は、
      第1優先度の上りリンク共有チャネルに対する第2優先度の上りリンク制御情報の多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素をネットワークから受信する通信部と、
      前記情報要素に基づいて、前記上りリンク共有チャネルに対する前記上りリンク制御情報の多重を制御する制御部と、を備える無線通信システム。
    comprising a terminal and a base station,
    The terminal is
    A communication unit that receives from the network an information element that explicitly or implicitly indicates at least one of enabling and disabling of multiplexing of uplink control information of the second priority on the uplink shared channel of the first priority. When,
    a control unit that controls multiplexing of the uplink control information for the uplink shared channel based on the information element.
  5.  第1優先度の上りリンク共有チャネルに対する第2優先度の上りリンク制御情報の多重に関する有効化及び無効化の少なくともいずれか1つを明示的又は暗黙的に示す情報要素をネットワークから受信するステップと、
     前記情報要素に基づいて、前記上りリンク共有チャネルに対する前記上りリンク制御情報の多重を制御するステップと、を備える無線通信方法。
    receiving from the network an information element that explicitly or implicitly indicates at least one of enabling and/or disabling multiplexing of second priority uplink control information on first priority uplink shared channels; ,
    and controlling multiplexing of the uplink control information for the uplink shared channel based on the information element.
PCT/JP2021/015091 2021-04-09 2021-04-09 Terminal, base station, wireless communication system, and wireless communication method WO2022215272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015091 WO2022215272A1 (en) 2021-04-09 2021-04-09 Terminal, base station, wireless communication system, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015091 WO2022215272A1 (en) 2021-04-09 2021-04-09 Terminal, base station, wireless communication system, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2022215272A1 true WO2022215272A1 (en) 2022-10-13

Family

ID=83545776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015091 WO2022215272A1 (en) 2021-04-09 2021-04-09 Terminal, base station, wireless communication system, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2022215272A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (OPPO): "Summary#1 of email thread [104-e-NR-R17-IIoT_URLLC-04]", 3GPP DRAFT; R1-2101842, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 8 February 2021 (2021-02-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051977631 *

Similar Documents

Publication Publication Date Title
WO2022163840A1 (en) Terminal and wireless communication system
WO2022162749A1 (en) Terminal, base station, and wireless communication method
WO2022215272A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2022239078A1 (en) Terminal, radio communication system, and radio communication method
WO2022244504A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023026968A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244496A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190377A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023026941A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022249749A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022195787A1 (en) Terminal, wireless communication system and wireless communication method
WO2022244497A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022201462A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190289A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022249721A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022215271A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190287A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023026975A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244097A1 (en) Terminal and wireless communication method
WO2022220136A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022029972A1 (en) Terminal
WO2022185499A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2022239081A1 (en) Terminal and wireless communication method
WO2022239080A1 (en) Terminal and radio communication method
WO2022153509A1 (en) Terminal, base station, and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936075

Country of ref document: EP

Kind code of ref document: A1